
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DESIGN OF A TRUSTED COMPUTING BASE

EXTENSION FOR COMMERCIAL OFF-THE-SHELF
WORKSTATIONS (TCBE)

by

Jason X: Hackerson

September 1998

Thesis Advisor: Cynthia Irvine

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0!

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of infonrahin,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ar':nglon, VA
22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1998.

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
DESIGN OF A TRUSTED COMPUTING BASE EXTENSION FOR COMMERCIAL OFF-THE-SHELF
WORKSTATIONS (TCBE)
6. AUTHOR(S) Jason X. Hackerson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) i

United States policy requires that access to and dissemination of classified information be controlled. Separate networks
and workstations for each classification do not meet user requirements. Users also need commercially available office
productivity tools. Traditional multilevel systems are costly and are unable support an evolving suite of Commercial Off-The-
Shelf (COTS) applications.

This thesis presents a design for a Trusted Computing Base Extension (TCBE) that allows COTS workstations to
function securely as part of a multilevel network that uses high assurance multilevel servers as the backbone. The TCBE will
allow COTS workstations to use commercially available software applications, while providing a Trusted Path to a high
assurance multilevel server.

The research resulted in a design of a TCBE system that can be employed with COTS workstations, allowing th.ein.to
function as untrusted clients in the context of a secure multilevel network.

14. SUBJECT TERMS Information Assurance, Multilevel Security, MLS, Secure LAN, Trusted Computing
Base, Trusted Path

15. NUMBER OF
PAGES

168
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION

OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

. UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89
Prescribed by ANSI SW. 239-18

298-102

Approved for public release; distribution is unlimited

DESIGN OF A TRUSTED COMPUTING BASE EXTENSION FOR
COMMERCIAL OFF-THE-SHELF WORKSTATIONS(TCBE)

Jason X. Hackerson
Captain, United States Marine Corps

B.S., United States Naval Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

Author:

NAVAL POSTGRADUATE SCHOOL
September 1998

Approved by:
C^m C. r-JPur**^,

Cynthia E. Irvine, Thesis Advisor

aniel F^Wjuren, Second Reader

DaniehBoger, Chan^eriartment of Computer Science

m

IV

ABSTRACT

United States policy requires that access to and dissemination of classified

information be controlled. Separate networks and workstations for each classification do

not meet user requirements. Users also need commercially available office productivity

tools. Traditional multilevel systems are costly and are unable support an evolving suite of

Commercial Off-The-Shelf (COTS) applications.

This thesis presents a design for a Trusted Computing Base Extension (TCBE)

that allows COTS workstations to function securely as part of a multilevel network that

uses high assurance multilevel servers as the backbone. The TCBE will allow COTS

workstations to use commercially available software applications, while providing a

Trusted Path to a high assurance multilevel server.

The research resulted in a design of a TCBE system that can be employed with

COTS workstations, allowing them to function as untrusted clients in the context of a

secure multilevel network.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PURPOSE 1
B. SCOPE 3
C. OVERVIEW OF CHAPTERS 3

I. Introduction 3
II. TCBE Functional Requirements for a Secure Multilevel Network 4
III. TCBE System Specification Development 4
IV. Software Implementation of TCBE components 4
V. Hardware Implementation of TCBE components .4
VI. Conclusions 5

D. OVERVIEW OF APPENDICES 5
1. Appendix A - TCBE Design Development 5
2. Appendix B - TCBE Software Specification Document 5
3. Appendix C - TCBE Executive Source Code 5

II. TCBE FUNCTIONAL REQUIREMENTS FOR A SECURE MULTILEVEL .

NETWORK ;..., .,., , 7

A TCBE FUNCTIONAL REQUIREMENT 1 .., 7
B. TCBE FUNCTIONAL REQUIREMENT 2 8
C. TCBE FUNCTIONAL REQUIREMENT 3 9
D. TCBE FUNCTIONAL REQUIREMENT 4 9
E. TCBE FUNCTIONAL REQUIREMENT 5 10

III. TCBE SYSTEM SPECIFICATION DEVELOPMENT... 11

A. CONCEPT OF OPERATIONS 12
1. Initialization ; 12
2. Trusted Operations 12
3. Data Path Operation 13
4. Trusted Path Options 13
5. TCBE Physical Structure 14

B. OUTLINE OF THE BASIC MODULES 15
1. TCBE Core ; 16
2. Trusted Path Module 16
3. Data Path Module .' 17
4. Keyboard Secure Attention Key Module 18
5. Encryption Module 18
6. TCBE Hardware 19

C. LAYER DESCRIPTIONS 19

vn

1. Hardware Layer 20
2. Hardware Management layer 20
3. Encryption Layer 20
4. SAK Layer 21
5. Trusted Path Layer ..21
6. Data Path Layer 21
7. TCBE Main Layer 21

IV. SOFTWARE IMPLEMENTATION OF TCBE COMPONENTS23

A. TCBE SOFTWARE PLACEMENT CONSIDERATIONS 23
1. TCBE Software Implementation Option 1 24
2. TCBE Software Implementation Option 2 25
3. TCBE Software Implementation Option 3 27

B. TCBE OPERATING SYSTEM DESIGN 28
1. TCBE Executive Requirements 28
2. TCBE State Operations 29

V. HARDWARE IMPLEMENTATION OF TCBE COMPONENTS 39

A. TCBE HARDWARE REQUIREMENTS 39
1.- Memory : 39
2. Microprocessor 41
3. Communications Interfaces , 41

B. HOST COMPUTER HARDWARE REQUIREMENTS 42
1. Hard Disk Drive Presence 42
2. Amount of Random Access Memory 45

C. IMPLEMENTATION OF TCBE 45

VI. CONCLUSIONS. 49

: A. COST EFFECTIVENESS 49
B. RECOMMENDATIONS FOR FUTURE RESEARCH 49

1. Host Computer 49
2. Trusted Path Research 51

C. CONCLUSIONS 52

APPENDIX A. TCBE DESIGN DOCUMENTATION 55

A. TCBE SCENARIOS 56
B. TCBE STATE DIAGRAMS 61
C. TCBE OBJECT DIAGRAM 63
D. TCBE FUNCTIONAL MODULES DIAGRAM AND DEFINITIONS 64

APPENDIX B. TCBE SOFTWARE SPECIFICATION DOCUMENT 69

vui

1. TRUSTED COMPUTING BASE EXTENSION SOFTWARE DESCRIPTION 69
2. TRUSTED COMPUTING BASE EXTENSION LAYERS 69
3. TRUSTED COMPUTING BASE EXTENSION MODULES 70

APPENDIX C. TRUSTED COMPUTING BASE EXTENSION EXECUTIVE

SOURCE CODE 87

1. IMPLEMENTATION FUTURE WORK 87
a. Interrupt Service Routines 87
b. Memory Manager 88

2. ASSEMBLY LANGUAGE TO C LANGUAGE LINKAGE 88
a. Resolving Memory and Linkage Issues 88
b. Resolving Shared Procedure and Function Names 89

3. TCBE IMPLEMENTATION SOURCE CODE 91
a. Custom.h 91
b. TCBEXh ...: 92
c. TCBEXc 97
d. TCBE_Module.h 112
e. TCBE_Module.c .* ". 113
f. TP_Module.h 115
g. TPJVIodule.c :...; 115
h. Stddefs.asm 118
i. Regs.asm 129
j. Makefile '. 148
k. Batch File 150

LIST OF REFERENCES 151

BIBLIOGRAPHY 153

INITIAL DISTRIBUTION LIST 155

IX

LIST OF FIGURES

Figure 1 TCBE Layer Diagram 20
Figure 2 TCBE Software Implementation Options 24
Figure 3 State Machine Engine 30
Figure 4 TCBE State Diagram 31
Figure 5 Trusted Path State Diagram 32
Figure 6 Data Path State Diagram 34
Figure 7 TCBE State Matrix 35

I. INTRODUCTION

A. PURPOSE

Access to multiple levels of information is essential to the operation of many

Department of Defense (DoD) and Department of the Navy (DON) organizations. The

ability to access the information via a single computer terminal is cost effective and

efficient. Computer systems that allow the user to securely access different levels of

classified material from a single terminal while maintaining the ability to use popular

Commercial Off The Shelf (COTS) hardware and software do not exist.

Currently, the DoD allows access to multiple levels of information on automatic

data processing systems by following a "system-high" policy of classifying computers and

using "guard" computers to separate networks. A system-high policy states that all data

that is processed on system high equipment is considered labeled at the classification of

the computer. For example, if a computer is labeled as a system-high or top secret

processor, then any individual who is authorized to use that computer must have a

clearance level as high as the computer, even if that person uses the computer only to

access and process unclassified material.

Secure Department of Defense networks are maintained for each classification

level. Guard computers link high and low networks, such as the SBPRNET and the

NDPRNET. These computers permit certain, controlled transfers of data between

networks such as the movement of unclassified electronic mail to high networks. The

guard ensures that the networks at each security level are correctly separated, but it does

1

not allow simultaneous multilevel access to the information. Most guards currently in use

do not label data or prevent Trojan horses that may downgrade sensitive information

without the user's knowledge. Additionally, multiple networks require that duplicate

equipment to be installed and maintained within a single site. Many users of these systems

must maintain a separate end terminal for each classification level on their desks in order

to access the different classes of information.

There are high assurance computer systems that allow multiple levels of

information to reside on the same machine. These systems are commercially available and

are purchased by the DoD primarily to function as guard platforms. High assurance

computers are costly to develop, purchase, and maintain. Their interfaces do not support

commonly used commercial software (e.g. Microsoft products, or many popular UNIX

applications). Additionally, since the cost of these systems is high, they cannot be placed

on each desktop.

To eliminate redundancy and cost, a solution to these problems that uses a few

current high assurance systems as servers and many COTS computers as end terminals to

provide a single secure multilevel local area network (LAN) should be found. By

providing COTS solutions for the client end of a secure multilevel LAN, users will be able

to take advantage of the security features in a high assurance system to process sensitive

and classified data while using popular commercial software.

The design of a Trusted Computing Base Extension (TCBE) for COTS clients is a

key part of a secure multilevel network. The TCBE helps ensure that the information

processed is not compromised, and that it comes from a secure resource. Additionally, the

trusted path enabled by the TCBE at the client provides the user the capability to

efficiently process all levels of information.

B. SCOPE

The objectives of this thesis are:

• Development of Trusted Computing Base Extension (TCBE) functional
requirements for COTS clients of a Secure Multilevel Network.

• System Specification documenting the design of a TCBE for COTS personal
computers.

• Development of a prototype TCBE for a COTS personal computer.

C. OVERVIEW OF CHAPTERS

I. Introduction

Chapter I discusses the purpose and scope of the thesis. An overview of the

following additional chapters is provided: Chapter II, TCBE Functional Requirements for

a Secure Multilevel Network; Chapter III, TCBE System Specification Development;

Chapter IV, Software Implementation of TCBE components; Chapter V, Hardware

Implementation of TCBE components; Chapter VI, Conclusions and Recommendations;

APPENDIX A. TCBE Design Development; APPENDIX B. TCBE Software

Specification Document; APPENDIX C. TCBE Executive Source Code.

II. TCBE Functional Requirements for a Secure Multilevel Network

TCBE requirements will be developed following the Department of Defense's

Trusted Computer Security Evaluation Criteria (TCSEC) for Class B3 systems [1]. The

requirements that the TCBE must meet in order to operate as part of the multilevel

network are addressed. The purpose of the TCBE is not to build a Class B3 system at

the client, but to extend the evaluated Class B3 system that provides the locus of security

control for the multilevel secure local area network to the client systems.

HI. TCBE System Specification Development

Chapter III will document the development of the system specification and the

design documentation for the TCBE. An analysis of the functional requirements will be

discussed, a concept of operations will be developed, and the TCBE's basic operating

modules will be outlined.

IV. Software Implementation of TCBE components

This chapter explains the design and implementation of each of the proposed

TCBE's modules. This chapter also explains how COTS software will be integrated into

the TCBE framework.

V. Hardware Implementation of TCBE components

This chapter describes the hardware that was used and modified to reach the

TCBE's security policy requirements.

VI. Conclusions

Chapter VI contains the conclusions for the use and future development of the

Trusted Computing Base Extension. The chapter focuses on the cost effectiveness of

implementing the TCBE in a secure network environment and provides recommendations

into future research areas involving the design and development of Trusted Computing

Base Extensions.

D. OVERVIEW OF APPENDICES

1. Appendix A - TCBE Design Development

This appendix provides the documents that were developed in the course of

designing the Trusted Computing Base Extension. The first document contains the

scenarios of TCBE operation. The next set of documents contains the state diagrams that

were developed from the scenarios. The system's object diagram was produced next

along with the system's layers and function modules.

2. Appendix B - TCBE Software Specification Document

This appendix provides the TCBE Software Specification Document. This

document provides descriptions of the major modules and functions of the Trusted

Computing Base Extension.

3. Appendix C - TCBE Executive Source Code

This appendix provides the source code and all files to implement the TCBE

subset.

II. TCBE FUNCTIONAL REQUIREMENTS FOR A SECURE
MULTILEVEL NETWORK

The goal of the TCBE is to allow the user the ability to access multiple levels of

information via a single terminal device. As such, it will have the characteristics of the

reference monitor concept: the TCBE is always invoked, it is tamperproof, and that the

Trusted Computing Base Extension code is analyzable for correctness and security.

The TCBE will be established through modules and hardware that are attached to

the client operating system and computer without modification to the operating system ,

source code. By avoiding source code modification of the operating system, the design of

the TCBE is simplified and its security processing is more easily evaluated. The TCBE

will be considered as a volatile device that functions as a robust client without permanent

data storage capabilities. The TCBE has the following requirements:

A. TCBE FUNCTIONAL REQUIREMENT 1

The TCBE will prevent object reuse and data remanence. Object reuse is

described as the ability of an unauthorized user to access data left from a previous user's

session [2]. The data could remain in memory, accessed through shared memory, or be

stored inadvertently on a secondary storage device such as a hard drive. To satisfy the

object reuse requirement, the computer system must make provisions to ensure that all

potentially shared objects such as data segments are clear of data or have been overwritten

by a random pattern, of bits.

"Data Remanence is the residual physical representation of data that has been in

some way erased" [3]. Information still remains on storage media even after a user

7

application or operating system has called for the data to be deleted. Data can be cleared

from storage devices by overwriting the information such that normal operation of the

system does not allow the information to be accessed. Information can be purged from a

system by using physical methods such as a degausser which magnetically moves the

storage media from a "recorded state to an unrecorded state" [3]. Ineffectively cleared

memory and storage devices can lead to unauthorized object reuse after a change in

session level or between users.

Client workstations will be assumed to be under the physical control of a single

user during a session. That user will logon and negotiate a session level. All data

connected with that session will be purged from the client system by the TCBE at the end

of the operation of the negotiated session level. User files will not be stored on the TCBE

after the user has completed a session. Operating system and application software for the

TCBE will reside on read-only media. Data the operating system uses for normal

operations will reside in volatile storage devices whose memory can be erased or quickly

overwritten at the end of a session.

B. TCBE FUNCTIONAL REQUIREMENT 2

The High Assurance Server will enforce the system's mandatory access control

policy. The TCBE will only gain access to objects according to the policy that the High

Assurance Server enforces. The High Assurance Server will mediate all user reads and

writes from the TCBE.

C. TCBE FUNCTIONAL REQUIREMENT 3

The TCBE will support a Trusted Path for initial login and authentication. The

Trusted Path provides assurance to the user that the TCBE is connected to the trusted

server, and it provides the assurance to the trusted server that it is connected to an

authorized client. Communications via this path shall be activated by the user or the TCB

and shall be logically isolated and unmistakably distinguishable from other paths. The user

will be able to invoke the Trusted Path via a "secure attention key" (SAK) at any time in

order to communicate directly with the high assurance server. When the Trusted Path is

invoked, all client processing, except the trusted path interface on the TCBE, will be

halted. The user will be able to switch session levels or log out once the Trusted Path is

invoked.

Identification and authentication of a single user will be initiated from the user's

terminal via the TCBE. The authorization database will reside at the High Assurance

Server. The TCBE will provide only user name and identification information such as

passwords and biometric data to the server. After identification and authentication is

complete, the user will have access to the objects (files) that the user is authorized for.

D. TCBE FUNCTIONAL REQUIREMENT 4

The TCBE will consist of functional modules and well-defined interfaces that

minimize the complexity of the TCBE. The TCBE shall maintain a domain for its own

execution that protects it from external interference or tampering. By placing the TCBE

on a controller board that manages the client computer's input and output functions,

logical and physical separation from the client computer's operating system applications is

achieved. The TCBE will be designed so that unauthorized personnel can not modify its

software modules. The system administrator or security officer will physically control the

configuration management of the client computer operating system and applications.

The TCBE will be designed so that it will support trusted recovery to a known

secure state in the event of system failure. When loss of power occurs, all information

that resided on the TCBE client shall be erased. When the TCBE is started again, it will

initiate procedures that prevent object reuse and data remanence from the interrupted

session.

E. TCBE FUNCTIONAL REQUIREMENT 5

Interfaces to the TCBE will be well defined and non-bypassable. All secure access

to the high assurance server from the client computer will be via the TCBE. The protocol

established between the TCBE and the high assurance server will ensure that clients

without TCBE support will be unable to obtain service from the server.

10

III. TCBE SYSTEM SPECIFICATION DEVELOPMENT

System development of the TCBE will begin with a description of the requirements

of the system, followed by analysis of the functional requirements that will produce a

concept of operations for the TCBE as well as form the basis of the system's modules.

Once the basic modules have been outlined, the system will be broken into layers. The

layers are formed by presenting the system in a bottom up manner, where the elements of

the system at the higher layer require the functions and information that are provided by

the elements at the lower layers in order to conduct their operations. Layering indicates

which modules of the system have the greatest access to the system's resources and thus

are conceptually more privileged. Thus an architecture in which objects are allocated to

hierarchically ordered layers is achieved. .

By breaking the TCBE into layers, we ensure that data dependencies travel from

the least privileged modules to the most privileged modules. Additionally, layering of the

system allows the designer to refine the basic modules and break them down into layers of

smaller modules that have well defined interfaces and are easier to implement. Since it is

easier to demonstrate that smaller modules are performing in the manner desired, the

designer's confidence that the TCBE will perform correctly is increased.

Following the layering, the modules and their databases are designed. Interfaces,

input and output parameters and actual functions are defined. The designs of the software

and hardware modules are discussed in Chapters IV and V.

11

A. CONCEPT OF OPERATIONS

A concept for how the TCBE will operate is developed by examining the

functional requirements. An analysis of the requirements leads to operational scenarios

and state diagrams for the TCBE. A brief description of the TCBE Concept of Operations

is provided, the actual scenarios and state diagrams are presented in Appendix A.

1. Initialization

The TCBE will begin operations in an Initialization state. In this state the TCBE

and its modules are loaded and the host computer's random access memory (RAM) is

overwritten. At this point, the TCBE is in a wait state and all that is displayed to the user

is a blank screen or a TCBE logo.

2. Trusted Operations

The trusted operation state begins whenever the user presses the Secure Attention

Key (SAK). The Trusted Path activates and begins an initialization sequence with the high

assurance server (HAS). The initialization sequence first establishes that the TCBE is

talking to the HAS and the HAS server provides the TCBE with the encryption key that it

will use to encrypt further communications with the HAS along the Trusted Path. This

trusted path encryption key will encrypt all communications whenever the TCBE enters

the trusted operation state.

Once the TCBE has received the trusted path encryption key, the user will be able

to login to the HAS. The user logs in by entering in a User-ID and password, as well as

any other authentication information such as a smart card or biometric data. The TCBE

encrypts this data with the Trusted Path encryption key and sends it to the high assurance

12

server for processing. Once the HAS authenticates the user, it sends a session encryption

key to the TCBE. The session encryption key will be used to encrypt the data transfers

between the host computer and the HAS for the selected session level. When the login

procedure is completed, the user will be able to begin work at the selected session level,

switch session levels, return to the current session after pressing the SAK, or log out of

the session.

3. Data Path Operation

When the user begins work at the selected session level, the TCBE moves into a

data path state. In this mode the TCBE acts only as conduit for the secure movement of

data between the HAS and the host computer. Before operations in this state begin the

TCBE will ensure that the host computer's operating system is loaded and that the host

computer CPU is ready to begin operations. Once those tasks are complete the TCBE is

ready to encrypt and decrypt data and send it to or receive data from the high assurance

server. Temporary reads and writes such as swap files are sent to the volatile secondary

storage unit within the host computer.

4. Trusted Path Options

The user can press the Secure Attention Key at any point. If the SAK is pressed

while the TCBE is in the data path state, the TCBE halts the host computer's CPU and

initiates a confirmation protocol with the high assurance server. The confirmation

protocol simply confirms that the TCBE is communicating with the high assurance server.

The user can then select any trusted path option except login.

13

If the user chooses to switch session levels, then the current session encryption key

is replaced by a new one from the high assurance server, which completed the processing

required to support the user at the new session level. The TCBE resets the client host

computer and overwrites its memory. Following the reset and clearing of volatile

memory, the client operating system is booted on the host computer.

If the user chooses to return to the current session, the TCBE commands the host

computer's CPU to resume operations.

When the user logs out of the session, the TCBE halts the host computer's CPU

and overwrites its memory. Once the high assurance server has acknowledged receipt of

the log out request, the TCBE clears its own memory including the session encryption key

and the trusted path encryption key. The TCBE moves into a wait state until the SAK is

pressed.

5. TCBE Physical Structure

As described in Functional Requirement 4, the TCBE will be placed on a separate

controller card that is connected to the host computer. Since the TCBE needs access to a .

keyboard and a monitor for input and output, two methods of physically implementing the

TCBE are considered.

a. Internal TCBE Controller Card

By placing the controller card inside the host computer connected to the

bus via the motherboard, the TCBE has direct access to the host computer's memory,

keyboard, and monitor. Acting as a device on the host computer's system bus, the TCBE

only has to signal an interrupt to gain control of the host computer. However, the TCBE

14

must contend with the client operating system's control over the same memory, keyboard,

and monitor. For example, in this configuration the TCBE must provide the keyboard

interrupt functions for the host computer in order to check each keyboard scan code for

the Secure Attention Key. In many cases it may not be possible to insert code that will

provide TCBE control over those devices once the operating system is loaded.

b. External TCBE Controller Card

In this configuration, the TCBE would have its own keyboard and display

device, (similar to a Microsoft Windows CE Personal Digital Assistant). The TCBE

would not have to contend with what the client operating system does with the host

computer's I/O devices. However, an additional communications layer must be added to

the TCBE, in order for it to effectively control the host computer.

Both configurations have advantages and disadvantages. The design of the

TCBE is general enough so that it could apply to either configuration. However, due to

the lack of involvement of the client computer's operating system in implementing the

TCBE as an external Controller Card, choosing the second configuration option for

implementation is recommended.

B. OUTLINE OF THE BASIC MODULES

Chapter I provided the problem statement. Chapter II defined the requirements

that the TCBE must meet in order to solve the problem. The analysis of the requirements

determined the TCBE operational scenarios and states, which were described briefly in the

TCBE Concept of Operations section of this chapter. Following the concept of

operations, the major TCBE modules are produced. Each of the major modules may have

15

sub-modules that perform internal module functions, the additional modules are detailed in

the Software Specification Document located in Appendix B.

1. TCBE Core

The first module is the TCBE Core. This module is first activated when the

system is turned on and when there is a switch in the session levels. The module will

initialize the other TCBE modules, format and overwrite the volatile secondary storage

unit and hold the system in a secure waiting state until the Trusted Path to the high

assurance server is invoked. Once the user has properly gained access to the system, this

module will load or permit the client computer operating system to proceed and allow the

host computer to communicate with the high assurance server. Object Reuse functionality

is provided by this module's ability to overwrite the host computer's memory. This is the

module where control of the host computer, the client operating system and the activation

and deactivation of TCBE hardware reside.

2. Trusted Path Module

The Trusted Path is invoked when the user presses the SAK. The primary

functions the Trusted Path Module is the establishment of a Trusted Path to the high

assurance server, and to insure the user that the TCBE is connected to the high assurance

server. The second function the Trusted Path Module provides is support for switching

session levels. Logging out of the system is the third function that the module supports.

This module contains the required protocols that initialize the connection to the high

assurance server and that conduct the required handshaking between the TCBE and the

high assurance server in order to correctly establish a Trusted Path.

16

The Trusted Path Interface Module lies within the Trusted Path. This module

displays the front end of the Trusted Path to the user and allows the user to enter in

Identification and Authentication information. The user will be able to enter in a User-ID

and password in response to prompts issued by the high assurance server. The module

will pass this information to the Trusted Path protocol, which will .securely forward the

information to the high assurance server. A token, such as a smart card or PCMCIA

media, may also be used to provide additional authentication as well as provide encryption

keys and algorithms to the TCBE. This module must have access to the monitor and

keyboard for user interface functions.

3. Data Path Module

The Data Path Module serves as a pipe between the host computer and the secure

Local Area Network. This means that the high assurance server appears to be nothing

more than an additional storage device to the host computer. The module, via this

representation, intercepts all user file accesses. The Data Path Module sends user data

through the Encryption Module to the trusted server.

The Data Path Module is responsible for supporting the client end of the trusted

computing base data transfer protocols (tcbdtp) when the TCBE is in the Data Path State.

In the Data Path State, the TCBE provides the secure communications path to the high

assurance server. When the user is finished with or saves the file, the TCBE supports the

operation of those protocols that permit data to be stored on and retrieved from the high

assurance server.

17

The tcbdtp are a set of protocols that may be similar to the standard file transfer

protocol (ftp). The protocols' main purpose are to ensure that data travels correctly and

securely between the high assurance server and the TCBE.

The Data Path Module may consist of a driver that is installed in the client

operating system. This driver would provide the storage device representation of high

assurance server to the operating system.

4. Keyboard Secure Attention Key Module

The Keyboard Secure Attention Key Module (S AK) provides the user the ability

to invoke the trusted path. In the configuration where the TCBE is connected directly to

the host computer's bus, this module must lie either logically or physically between the

keyboard and the client operating system in order to ensure that it captures the appropriate

key strokes when the user desires a trusted path. When the SAK is activated not only

must the Trusted Path be initiated, but the client operating system must be halted and the

TCBE prepared to overwrite the host computer's volatile memory.

5. Encryption Module

The Encryption module encrypts and decrypts TCBE data and user data. The

module provides the management of the storage for a variety of encryption keys such as

the Trusted Path Key and a session key. The Encryption module will lie between the

communications device and the TCBE. By placing the encryption module in this position,

the encryption module will provide a non-bypassable interface through which the services

of the high assurance server are accessed. Hence, data cannot be passed to the local area

network unencrypted. This module also provides the interface to a cryptographic device

18

module. The cryptographic device module can encapsulate hardware such as a

FORTEZZA card or a software algorithm. This capability allows different encryption

choices for each session or LAN configuration, and allows for easy upgrading of

encryption devices, modules, and algorithms.

6. TCBE Hardware

The TCBE Hardware comprises the physical components of the TCBE. These

components include the TCBE's microprocessor and memory, the network

communications device and the cryptographic device (which could also be software).

Additionally, the TCBE must handle a keyboard and a display device as well as the

interface between the TCBE and the host computer. Depending on the configuration

discussed in section A.5 of this chapter, the keyboard and display device may be the host

computer's or separate components connected to a TCBE that resides outside of the host

computer. In the case of the external TCBE, the TCBE to host computer interface would

consist of a cable connection.

Each one of these devices will have their own TCBE drivers and interfaces to

connect to the rest of the TCBE modules.

C. LAYER DESCRIPTIONS

The Trusted Computing Base Extension Layers are presented in Figure l.Each

layer will be described beginning with the layer that has the most privilege within the

TCBE.

19

TCBE LAYER DIAGRAM

«TCBESTATEy?! TCBE CORE

CPU CONTROLLER fe? STATE

'

DATA PATH

TRUSTED PATH

^ TRUSTED
r PATH

DATA V ^INIIIALI^iiiiifeiteiid
SAK MODULE 1 SECURE

KEYBOARD DRI\

L ATTENTION

< /ER F SCAM COPES
[KEY

&ESSJDNKE¥Sl ENCRYPTION MODULE
TRUSTED PATH KE," 1 r ENCRYPTION

CRYPTOGRAPHIC
DEVICE DRIVER

KEYBOARD
DRIVER

TCBE/PC INTERFACE
DRIVER

NIC
DRIVER

MONITOR
DRIVER HARDWARE

MEMORY MANAGER

MEMORY L HARDWARE
TCRF HARHWARF

nternal Modules | | Layers 1 1 lt.*.TA Data Stores

Figure 1 TCBE Layer Diagram

i. Hardware Layer

The TCBE Hardware layer consists of the TCBE Hardware as described in

Section B.6. of this chapter. All other modules depend on this layer to perform their

functions

2. Hardware Management layer

This layer includes the TCBE's Memory Manager and the device drivers

associated with the each device.

3. Encryption Layer

The Encryption Layer consists of the Encryption Module. The Encryption Module

relies on the both the cryptographic device and the network communications device in

20

order to perform its functions. The Encryption Module depends on the Hardware

Management Layer.

4. SAK Layer

The next layer is the Secure Attention Key Layer. The Secure Attention depends

on the keyboard to operate. The SAK requires direct access to the Hardware

Management Layer and the keyboard's memory buffers.

5. Trusted Path Layer

The Trusted Path depends on the SAK to activate. It accesses the keyboard in

order to receive user input and the monitor to display information to the user from the

high assurance server. Since the SAK can be pressed at any time, the Trusted Path

Module's keyboard access depends on the SAK module to capture all keyboard input.

The Trusted Path module communicates to the HAS via the Encryption Module.

6. Data Path Layer

The Data Path.Layer is the link between the host computer and the TCBE for

passing user information. It communicates to the high assurance server via the Encryption

Module. This module allows the host computer operating system applications to conduct

normal operations such as preparing data for local storage before it is handed off to the

Data Path Module for secure transmission.

7. TCBE Main Layer

The TCBE Main Layer consists of the TCBE Core Module and the modules

necessary to initialize the TCBE and control the operation of the host computer. As such,

21

it depends upon the functions of the Trusted Path and the Hardware Management Layer to

communicate to the host computer. It also depends on the Data Path Module when

switching between Trusted Path and Data Path operating modes.

22

IV. SOFTWARE IMPLEMENTATION OF TCBE COMPONENTS

The software implementation of the TCBE is split into two portions. The first

portion discusses the placement of the TCBE software within the client computer. The

second part consists of designing the underlying operating system on the TCBE that

allows the various modules of the TCBE to interact.

A. TCBE SOFTWARE PLACEMENT CONSIDERATIONS

Before implementing the TCBE's software, the location of the TCBE's code was

determined. Placement of the TCBE code must satisfy the TCBE functional requirements

discussed in Chapter II. In order for the code to be considered a part of the Trusted

Computing Base it must demonstrate the characteristics of a reference monitor.

Therefore, the placement of the code must ensure that the TCBE is always invoked and

that untrusted mechanisms on the host computer can not circumvent it. Additionally, the

TCBE must be tamperproof and its software small and modular to allow analysis of its

self-protection features and correctness of operation. The architectural placement of the

TCBE can affect the extent to which software mechanisms must be constructed to achieve

the reference monitor objectives. In fact, incorrect placement of the TCBE can make it

impossible to engineer a high assurance security architecture.

The three options considered for locating the code are: placing all of the code

within a driver on the host computer's operating system, placing portions of the code in

the host computer's memory alongside its operating system and some of the code on the

TCBE hardware, or placing some of the code within the client's operating system and

some on the TCBE hardware. The options are graphically represented in Figure 2.

23

CLIENT OPERATING SYSTEM

OPTION 1

APPLICATIONS

*————
iKÖSSS^Ä. OTHER
iHAESWAK&tj HARDWARE

CLIENT COMPUTER MEMORY

CLIENT COMPUTER
HARDWARE

TO HIGH ASSURANCE SERVER

OPTION 2 CLIENT COMPUTER MEMORY

OPTION 3

APPLICATIONS 1
CLIENT
OPERATING
SYSTEM

L CLIENT COMPUTER
TCBE
DRIVER |

*tCB2t^
cors

S-.TCS6 s - ,
HAW5WAEE

OTHER
HARDWARE

1 CLlkNI COMPUlkK
f HARDWARE

TO HIGH ASSURANCE SERVER
 k.

n
I TRUSTED

UNTRUSTED

Figure 2 TCBE Software Implementation Options

1. TCBE Software Implementation Option 1

If the TCBE software were placed wholly on the client operating system, then the

modules would be designed as file system and hardware drivers. The TCBE hardware

would exist mainly as a network interface card. All authentication, encryption, and

Trusted Path operations would run from the client operating system. By using this

approach there would be smooth interaction between TCBE components and the client

operating system. TCBE code would be able to take advantage of the client operating

system's functionality as well as commercially produced software tools. Additionally it

would be potentially easier for commercial software development firms to develop and

produce the TCBE.

24

However, the TCBE software would need to be ported to each operating system.

As the commercial vendors of operating systems upgraded or patched their software, the

TCBE would have to be monitored to ensure that the improvements did not interfere with

the drivers or break the TCBE's functional requirements. Since the TCBE is within the

client operating system's structure it is also occupying the same domain as the operating

system. This placement violates the fourth TCBE functional requirement, which states that

the TCBE must maintain a domain for its own execution that protects it from external

interference or tampering. If the commercial OS has a security flaw then the entire TCBE

and by extension the secure network's security policy could be violated. This problem is

mitigated somewhat by the fact that the OS could not be modified on the host computer,

however it does not stop changes to the system during run-time, nor prevent malicious

code passed by data driven attacks, from affecting the software during a session.

2. TCBE Software Implementation Option 2

The second option involves not placing any TCBE software within the client

operating system at all. This could be implemented by placing the TCBE code with

interface and host computer hardware control functions in the host computer's memory.

The TCBE code would become a second interrupt vector table for the client computer.

The interrupt vector table holds the addresses for host computer's interrupt handler code.

The TCBE would "hook", i.e. replace, the interrupt addresses with vectors that pointed to

TCBE interrupt handlers. All critical hardware and software interrupts managed by the

original interrupt vector table would be handled by the TCBE software.

25

The TCBE hardware would consist of a controller card as well encryption devices.

This option would capture all system inputs and outputs and direct then to the high

assurance server without involving the client operating system, since the TCBE code has

direct access to the host computer's hardware.

This option has several drawbacks. First, the code that is placed on the host

computer and controls the hardware would be machine dependent, and therefore must be

ported to each platform. The code must be small enough so that the client operating

system and the TCBE can be active simultaneously. There is no guarantee that the client

operating system will not overwrite the TCBE's portion of memory when it is initialized

or during normal operations which violates TCBE Functional Requirement Four. In order

to overcome this problem, a memory manager must be developed that partitions the host

computer's memory. This partitioning system must not allow the client operating system

to overwrite the TCBE's partition.

Since the TCBE code on the host computer would have direct access and control

of the hardware it would be similar to constructing another small and primitive operating

system on the computer. All interfaces, or drivers, to other devices (such as cryptographic

peripherals) would have to be written at the hardware system level. This would involve

writing the interfaces in the assembler code particular to the microprocessor of the host

computer. Similar to the TCBE software, these device drivers would also have to be

rewritten for each platform that the TCBE is installed in.

26

3. TCBE Software Implementation Option 3

The third option involves placing a few untrusted functions on the client operating

system and having the TCBE software reside on the TCBE hardware. This implementation

would present the TCBE solely as a network interface device to the client operating

system. The interface would consist of a single untrusted TCBE "device" driver. The

advantage of this alternative is that the device driver can use some of the features of the

client operating system to perform simple non-critical tasks, such as data transmission

preparation, while assuring that critical functions, such as encryption and authentication

are located within the TCBE. The driver code would be the only software that would

have to be changed to accommodate different operating systems, hardware platforms, or

client operating system modifications. Additionally, the majority, of the TCBE code need

only be written once, and only has to perform the services outlined in the functional

requirements.

The main drawback to this choice is that the TCBE cannot be a simple

combination of a network interface card and an encryption device. The TCBE must have

the ability to intelligently manage several different functions and hardware, as well as have

enough memory to store data transmissions and TCBE code. Essentially the TCBE would

almost have to be another computer. Therefore, in order to operate that computer, a

small embedded operating system must be used for the TCBE. Because commercial

embedded operating systems are proprietary, the source code cannot be accessed. This

means that commercially developed embedded operating systems may have security flaws

that are unacceptable for a secure environment; hence, a unique embedded operating

27

system may have to be developed for the TCBE. Additionally, commercial operating

systems may not offer the specific functionality desired for the TCBE, or conversely, they

may offer additional features that increase the complexity and the security vulnerabilities

of the system.

Despite the complexity involved with the third option, it does provide the best

means of ensuring a Trusted Computing Base Extension that meets the desired assurance

requirements. The design of a small embedded operating system or executive for the

TCBE Hardware is discussed in the next section.

B. TCBE OPERATING SYSTEM DESIGN

The Trusted Computing Base Extension will be designed as an executive. An

executive is a system that does not require multitasking or dynamic rescheduling of

processes. Since the software modules that run on an executive execute in a

predetermined manner, an executive system can be less complex and more efficient than

multitasking operating systems [4].

1. TCBE Executive Requirements

In order for the TCBE to function effectively and efficiently, the executive must

perform a few operations reliably. First, the TCBE executive must be able to control and

interface with its hardware. Next the executive has to manage memory for its code

modules. The executive has to have a mechanism for defining a state. For the executive,

a state r< defined when it has its own or well-defined address space and stack

configuration and is ready for execution. The executive will only start a state's operation

when it receives the correct inputs and matches those inputs against a well-defined and

28

unchangeable set of starting criteria for each state. The executive will terminate a state's

operations when the state has completed its functions or is interrupted by a set of

predetermined events. The executive must correctly transition from one state to another.

In order for the executive to transition between the states it must have a mechanism that

correctly determines the correct state to transition to given the system's current state and

a set of conditions.

Finally, the executive must have a method for handling asymmetric

communications between states, the hardware, and the user. Asymmetric communications

are inputs to the system that are not part of a planned sequence of occurrences that are

encoded in a program. Examples of asymmetric communications are hardware and

software interrupts and exceptions.

2. TCBE State Operations

In the Trusted Computing Base Extension software design, a state is defined as a

common grouping of functions and values that describe and effect the TCBE's current

operating behavior. For example, the Trusted Path State is the operation of the TCBE •

when it is communicating directly with the Trusted Computing Base on the High

Assurance Server. It is made up of functions and variables that include the trusted path

communications protocols, logging in and the switching of session levels. If the extension

is not communicating with the TCB directly, then it is no longer in the Trusted Path State.

Each state may consist of several substates that further describe exactly what the

TCBE is doing. Trusted Path Login is a substate of the Trusted Path state. However,

functions that perform specific actions in support of a state are not substates. While the

29

TCBE may be in the process of encrypting data to go across the network, its mode of

operation is not encrypting data. Instead, the data encryption function is used in support of

a TCBE behavior such as logging in, which require the encryption of user information.

A state machine engine is represented by a table of transitions and actions [5]. In

the TCBE executive, the state matrix consists of the states of the TCBE and a set of

actions that include asymmetric communications, called events, which cause transitions.

Figure 3 represents a state machine engine.

STATES
EVENTS 1 2 3 4

A 2 4 4 4
B 1 3 4 2
C 1 3 3 3
D 3 4 3 4

Figure 3 State Machine Engine

The state machine engine constitutes a simple algorithm that keeps track of the

present state of the system in a current state table and monitors actions with an event

table. When an event occurs, the engine checks the state matrix for the position within the

matrix of the event and the current state and then transitions according to what is at that

location in the matrix.

For example, from Figure 3, if the system is currently in state 3, and event A

happens then the executive will transition to state 4. If event C happens and the system is

in state 3, then no transition will occur. Additionally, all events are serialized so there is

no conflict caused by simultaneous events.

30

a. TCBE Software States Defined

The analysis of the concept of operations, and the TCBE architecture

presented in Chapter III provided the basis for determining the states that form the

TCBE's operations. The TCBE operates in four main software states. The main states

diagram is displayed in Figure 4 below.

The TCBE system starts from an off or inactive state. Since, there is no

power to either the TCBE or the host computer, the TCBE Off state is not considered an

operating state. The next state is the Trusted Computing Base Extension Initialization

State (TCBE Ink). In this state the TCBE's software is loaded and its hardware is

TCBE STATE DIAGRAM

SAK PRESSED

TURN HOST COMPUTER OFF

* ► TCBE

Figure 4 TCBE State Diagram

31

initialized. The host computer is also turned on in this state, although its operating system

is not yet loaded. This state automatically transitions to the next state which is the

Trusted Computing Base Extension Wait (TCBE Wait). In this state the TCBE is waiting

for the Secure Attention Key to be pressed in order to invoke the Trusted Path. TCBE

Wait is only a waiting state.

Once the SAK is pressed the TCBE transitions to the Trusted Path State.

This state is made up of several substates. The substates are presented in Figure 5. The

first substate is the Trusted Path Initialization State (TP Init). It is in this state that the

TRUSTED PATH STATE DIAGRAM

 »
[NO TRUSTED PATH)

SAK PRESSED,

JTRUSTED PATH ' fcuSTEp'pATH)c°NnRMED,
ESTABLISHED] "

SAK PRESSED

[START SESSION] REATTACH SESSION

TRUSTED PATH
LOGOUT

[LOGOUT]

TRUSTED PATH
CLEAR BUFFER

Figure 5 Trusted Path State Diagram

Trusted Path is first set up between the user and the Trusted Computing Base on the high

assurance server for a particular session. The next substate is the Trusted Path

32

Confirmation State (TP Confirm). In this state, the user, via the TCBE, verifies that a

Trusted Path exists between the TCBE and TCB. The next substate is the Trusted Path

Display (TP Display).. In the Trusted Path Display the user selects the Trusted Path -

options of login, logout, switch sessions, or reattach to a session. Because of the behavior

of the TCBE during these options, login (TP Login), logout (TP Logout), and switch

sessions (TP Switch Session) are also considered substates of the Trusted Path.

Reattaching to a current session is merely a transition function between the Trusted Path

State and the last state, the Data Path State.

The Data Path State is broken into two substates that are presented in

Figure 6. The first substate is the Data Path Initialization State (DP Init). In this state the

TCBE loads the client computer's operating system into memory. Once this operation is

complete, the TCBE transitions to the Data Path Active (DP Active) state. This state is

characterized by use of the client computer as a normal workstation with the secure flow

DATA PATH STATE DIAGRAM

[CLIENT OS NOT LOADED]

DATA PATH
"* (INITIALIZATION)

[LOAD CLIENT OS)

[CLIENT OS LOADED]

DATA PATH
"♦ (ACTIVE)

SAK PRESSED

ACTIONS IN DATA PATH lactiy») STATE
1. TRAP DATA/COMMAND
2. TRANSLATE DATA/COMMAND
3. SEND DATA/COMMAND TO H.A.S.
4. RECBVE DATA/COMMANDFROM H.A.S.

Figure 6 Data Path State Diagram

33

of user application data between the host computer and the high assurance server.

b. TCBE Events Defined

Trusted Computing Base Extension Events are asymmetric functions that

effect a transition between states. The most critical event is the Secure Attention Key

(SAK). When the SAK is pressed, the TCBE must conduct the actions that will result in a

transition to the correct state. The SAK event incorporates the use of the keyboard and

its associated interrupts.

The next event is the transition event. When a state has properly

completed its actions or certain conditions are met (signified by [] on the state diagrams),

the state activates a transition event, which causes the TCBE to shift to the next state.

Specialized transition functions include the login, logout, switch session, and reattach

session events. These events are only called from the Trusted Path Display State and

cause a transition from that state to the state corresponding with the event.

The final event is the keyboard event. This event is caused from the

keyboard hardware interrupts. It only affects the TCBE in two states. In the TP Display

state, the keys entered from the keyboard allow the user to choose Trusted Path options

such as login or logout. In the TP Login State, the keyboard is used to enter user

identification and authentication information. In both of these states, the keyboard event

causes no transition, it only allows the functions within those states to read and if

necessary, display, the keyboard scan codes. Otherwise the keyboard is allowed to

function without affecting TCBE operations.

34

c. TCBE State Matrix

The state matrix for the TCBE is presented in Figure 7. The states are

presented across the top of the matrix with the events listed along the left side. Each state

is assigned a number which is placed in the appropriate position within the state matrix.

Blank locations signify that no action is taken when the two conditions that form that

point exist.

TCBE STATE MATRIX

STATES

JO
C

H 3

I
o o

11 2 3 4 5 6 7 8 9 10 11
SAK 2 3 4 4 5 5 5 5 5 5 5
TRANSIT 6 6 10 2 10 11
REATTACH 11
KEYBOARD 6 7
LOGIN 7
LOGOUT 8
SWITCH 9

Figure 7 TCBE State Matrix

d. TCBE Executive Operation

TCBE Executive operation is presented in the following Pseudo-code.

Initialize System
Clear memory
Initialize Data Structures

35

Define States
Assign address space
Assign Stack space

Build State Table
Set Initial State and event
Call State Machine Algorithm

Do {State transitions until TCBE is turned off
Events call new state transitions}

States are defined from functions that are written in the program code.

The definition of the state includes the function name, its parameters, and a state

identification number. Each function is assigned a set address space and fixed amount of

memory.

The state table is built by assigning each location in the state matrix a

pointer to the state identified by its state identification number. The executive then assigns

an initial state and a transition event. The State Machine Algorithm is then called and

continues until the TCBE is turned off.

e. State Machine Algorithm

The State Machine Algorithm is presented in the following pseudo-code.

Machine called
Save current State
Select the next State

Check Event Table for entry
Check Current State Table
Get new state from location in the State Table

Reassign memory and reinitialize TP Init, TP Confirm, and
Login if required

Switch Control to new State
New state operates until next event

36

Certain states such as the TP Confirmation state and the Login state need

to have local variables cleared and their entire process restarted after events to prevent

user and trusted path authentication data from being leaked. If a user is logging in and has

entered user identification data but has not finished before being interrupted and pressing

the Secure Attention Key, then that information may still reside in local storage on the

TCBE. Another user may be able to manipulate the system and get that information if it is

not removed. Therefore those states are restarted from the beginning of their instruction

sequences.

The Data Path State will start at the next instruction in its instruction

sequence if its session is interrupted and then reattached to by the user. If a different

session level is selected, or a new user logs in, then the Data Path is restarted from the

beginning of its instruction sequence.

37

38

V. HARDWARE IMPLEMENTATION OF TCBE COMPONENTS

The hardware of the Trusted Computing Base Extension is intended to maximize

the functionality of the system. The hardware configuration of both the TCBE and the

host computer are important to ensuring that Functional Requirement Four, which calls

for the TCBE to operate a domain separate from the that of the host computer, and

Functional Requirement One, which requires that there be object reuse and data

remanence services at the client computer, are satisfied. .

A. TCBE HARDWARE REQUIREMENTS

Chapter III discussed two options for the physical placement of the Trusted

Computing Base Extension Hardware. Whether the TCBE is implemented as a card that

is mounted inside the host computer or as a separate terminal device with a

communications interface with the host computer, the overall design requirements remain

the same.

1. Memory

The allocation and use of memory is the most important part of the TCBE. The

system's memory will contain not only the operating software but it will also contain

TCBE databases such as encryption keys, which include the session keys and initialization

keys. The operating software should reside in read only memory (ROM). Once the

operating code is "burned" into the ROM it cannot be changed. This is the equivalent of

designing a microprocessor as the TCBE's state machine engine. The only way that this

code can be changed is if the memory is replaced. Replacement of the TCBE's hardware

39

should only be done under controlled conditions. Checksums can be incorporated into the

operating code. Checksums use a memory and hardware signature to verify that the code

has not been changed. If the hardware has been changed or removed there will be no -

method of communicating with the Trusted Computing Base at the server.

The TCBE must have volatile memory that stores TCBE databases, TCBE code

module execution stacks, user access information, as well as user interface data. The

TCBE's software design includes specific interfaces between modules and layers that

prevent overflows of data between the various functions of the TCBE. Additionally, the

design of the executive uses a memory allocation system that provides each state of the

TCBE its own block of contiguous memory within the system's random access memory

upon initialization. The memory allocation system also includes functions to reinitialize

the memory for each state upon a state transition if required. The state machine algorithm,

presented in Chapter IV section B.2.e, determines which states get reinitialized when a

state transition occurs.

The TCBE should also have procedures to completely clear the TCBE's random

access memory of encryption keys and other session identification and interface

information when a session is complete. The TCBE operating system includes procedures

for erasing the areas of volatile memory used by each state when the system transitions

between states, this function could include the same algorithms that are developed to clear

the host computer's memory. Finally, when the TCBE loses power, the TCBE's entire

random access memory must be cleared.

40

2. Microprocessor

The TCBE's microprocessor plays a key role. As described in Chapter IV, the

TCBE system must be able to handle a variety of functions efficiently. There is no

requirement for multitasking of TCBE functions. Multitasking of the defined TCBE

functions will lead to a more complicated system that will be harder to verify that it is

operating correctly. The Trusted Computing Base Extension's CPU should be sufficiently

fast enough to make TCBE operations transparent to the user. The central processing unit

should have sufficient power and speed to efficiently handle encryption algorithms that

may be software implementations within the TCBE.

3. Communications Interfaces

The TCBE controls two communications interfaces. The first interface is the

connection to the host computer. The. TCBE virtualizes the network interface card (NIC)

to the host computer via the TCBE driver so that the host computer thinks it is

communicating with a regular NIC. The TCBE ensures the proper encryption and

transmission of the data sent to the high assurance server. The bandwidth of the

connection between the TCBE and the host computer should be large enough that routine

passing of data and commands is transparent to the user.

The second interface is the one established between the TCBE and the TCB over

the local area network. This connection will be through a common network interface

card. The NIC operations should not be modified in any way. All cryptographic functions

should take place in the Encryption Module, which includes encryption devices and

software, on the TCBE. The NIC only passes encrypted data to and from the Trusted

41

Computing Base Extension. This separation of functions allows troubleshooting of the

NIC and its communications protocol without affecting the TCBE's cryptographic

functions. In addition, it permits modularity; the cryptographic and trusted path protocols

that are established between the TCB and the TCBE may be examined separately.

B. HOST COMPUTER HARDWARE REQUIREMENTS

The host computer requires few changes from a normal workstation or personal

computer configuration. The major changes are interrelated and include the amount of

random access memory available to the system, and the presence of hard disk drives and

other secondary storage devices.

1. Hard Disk Drive Presence

A hard disk drive is used as permanent storage of files and data on workstations.

It normally consists of metallic platters with a magnetic coating that holds the information

even if there is no power. Because it is non-volatile storage, many commercial operating

systems rely on the hard disk drive for loading operating system software into the

workstation's memory, and storing user information, operating system configuration data,

and page-swapping of data between real and virtual memory.

The TCBE is required by Functional Requirement One to prevent object reuse and

data remanence at the client workstation. Moreover, the requirement states that operating

system software and user applications will be stored on read-only media. Therefore if the

system were to have a hard drive, its capability to write data would have to be disabled

after the operating system and applications are loaded. This would require modification of

42

the COTS operating system, which is not possible due to the proprietary nature of

commercial software applications. In order to accomplish read-only operations, the

operating system must be configured at this point to not swap pages of information

between memory and the hard drive. If the host computer has sufficient random access

memory then the impact of the lack of virtual memory on a hard drive for paging is

minimal.

There are two alternatives to the hard drive in the host system. The first

alternative is to use a compact disk - read only memory (CD-ROM) as the repository for

the operating system and applications. This method would allow the system security

administrator to record system disks with the correct configuration data as well as the

proper applications. Once these disks are recorded they cannot be overwritten during

normal operations.

A potential vulnerability to this approach is that newer CD-ROM systems permit

recording on unused portions of the CD. This would require that the CD-ROM be

initialized as a "multi-session", which allows multiple recordings on a single disk, by the

original recorder of the disk and the presence of CD-ROM recording software installed in

the operating system. System configuration can be used to prevent this vulnerability. The

system administrator should not initialize the CD-ROM as "multi-session" nor should the

recording software be installed in the original operating system configuration for each

workstation.

The host computer would require a CD-ROM drive. This should not be a problem

since most computers and workstations come with these drives already installed. The

main disadvantage to using CD-ROM disks is that their data transfer rates are

43

considerably slower than those of hard disk drives. This may cause an unacceptable delay

between sessions, as the entire operating system must be reloaded each time a new session

is started or when there is a switch between session levels. Additionally, each

workstation's CD-ROM would have to be replaced whenever the system administrator

decided to update or add software to the secure LAN's client computers.

The other alternative is to store the operating system and workstation applications

on the high assurance server and have the server send a copy of the software to the client

computer at each login or change of session levels. In this case, the high assurance server

ensures the integrity of the software and this makes configuration management of client

computer software easier as all clients use copies of the one centrally managed software

component. Additionally, this option may be less expensive than using CD-ROMs, since

any change in that first alternative's operating system or application software requires the

purchase new CD-ROMS for each client computer on the network.

There is one main disadvantage to this alternative. This drawback is the size of

current commercial operating systems and applications. A basic configuration of

Microsoft Windows NT 4.0 requires 80 Mbytes of hard disk drive space. This does not

include commonly used Microsoft Office applications. On a 10 Mb/sec local area

network, it would take approximately sixty-four seconds to transmit the operating system

code, if the network was not busy. This does not include the time for the client system to

load the system software in its memory. This problem may be alleviated by faster

networks and data transfer protocols, but as the size of commercial software and the

number of clients on the network grows, this wait time may become unacceptable.

44

If the host computer cannot have a hard drive it must not have any other secondary

storage devices including floppy disk drives. If a floppy drive is associated with the

system it should be disabled or removed. The high assurance server should include

services for transferring data to secondary storage devices that it directly controls.

2. Amount of Random Access Memory

The second major change required to turn a workstation into a host computer for

the TCBE relates to the amount of random access memory at the workstation. A

minimum of 128 Mbytes of random access memory should be installed on the host

computer, with 256 Mbytes considered optimal for today's commercial software. Since

RAM is easy to wipe clear after each use, the host computer will use RAM exclusively to

run its operating systems and applications and locally store user produced data.

Additionally, the operating system may need to use RAM as virtual memory to write

pages to during page swapping operations since the secondary storage device normally

used for that function would be inaccessible.

The introduction of computers such as Network Computers and Windows terminal

devices may provide may provide the optimum client for the secure network. These

computers are designed to operate with random access memory only and without the use

of non-volatile secondary storage such as hard disk drives or floppy disk drives [6].

C. IMPLEMENTATION OF TCBE

A subset of the Trusted Computing Base Extension is implemented for this thesis.

The subset is designed to show that the state machine engine operates properly when the

Secure Attention Key is pressed.

45

The TCBE subset is implemented on an Intel 80486 based personal computer. The

microprocessor operates at 33 MHz. The system has eight megabytes of random access

memory and a network interface card, as well as a keyboard, monitor, and a floppy disk

drive. This implementation resembles the TCBE option of placing the TCBE in a separate

terminal device such as a PDA. In fact, the personal computer used can be thought of as a

trusted PDA with a NIC attached.

The TCBE executive was written in assembly and the C programming language

using the Borland C++ (v 5.00) compiler and Turbo Linker. This program is

approximately 3000 lines of code in length. For this implementation, the executive relies

only on the personal computer's basic input-output system (BIOS) for access to the

system's hardware. It is loaded into the personal computer using the system's disk

operating system (DOS). Once loaded, the TCBE calls no other DOS functions, including

system calls and interrupts. This version of the implementation used less than 70000 KB

of the personal computer's RAM. Future implementations using a compiler and linker

optimized for a controller card or PDA platform will most likely use less space.

Ultimately, the system DOS will have to be replaced to provide a complete assurance

architecture.

The executive included the capability for the Secure Attention Key, alt-S,

operations to be examined using a test function. As proof of concept each of the TCBE's

states was implemented as stub procedures that displayed their state name when they were

activated. Appendix C contains the source code for the executive and the make file and

commands required to load and use the software. The stub procedures presented in the

46

source code provide the examples necessary to complete the functions of the TCBE so

that they interface correctly with the TCBE executive.

47

48

VI. CONCLUSIONS

The design of a Trusted Computing Base Extension is feasible. None of the

elements that went into the design of the TCBE are beyond current technological

capabilities. This chapter discusses the cost effectiveness of the TCBE as well as

recommendations for future work required in order to make the TCBE function as part of

a secure local area network.

A. COST EFFECTIVENESS

Construction of the TCBE as a combination controller card and network interface

card or as a personal digital assistant type device would cost less than $500. The

additional costs to the system would involve the addition ofsystem memory. Given the

current prices for random access memory, 256 Mbytes of RAM should cost less than

$200. Therefore total additional cost should be approximately $700 per system or less if

the TCBE is produced in large quantities. This compares to the approximate $4,500 cost

of having three separate computers for each security level, or costs an order of magnitude

higher for purchasing an evaluated high assurance multilevel system for each user on the

local area network. If intelligence information is being processed, the number of security

levels increases dramatically and so the savings are considerable.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

1. Host Computer

Host computer research can be broken into three areas. The first area is host

computer operating system control and loading. Chapter V discussed the issues

49

surrounding the loading, or booting, of the client operating system. Control of the

operating system can be accomplished by installing the TCBE via the device driver on the

host computer. The device driver will be written such that when the device interrupts, the

operating system halts and the host computer's microprocessor follows the TCBE's

instructions.

Since it is possible for the host computer's microprocessor to save the state of the

CPU when it is interrupted, it may be possible to save the state of the client operating

system when there is a session level switch [7]. This would allow only the restarting of

the state of the session operating system as opposed to the current mode where the entire

client operating system must be rebooted. A method to store and reload the operating

system state must be developed.

The second area of research involves implementation of the TCBE's object reuse

functions. The TCBE must support object reuse of host computer memory, which ■

includes clearing all memory including caches within the host computer. The procedures

to conduct the clearing functions performed by the TCBE must be developed. Present

designs only provide the program interfaces for those functions.

The third area of research for the host computer involves the structure of the

system's random access memory. Optimally the host computer's RAM should be

structured into logical RAM drives. There should be a minimum of two RAM drives built

when the host computer is turned on. The first RAM drive is where the client operating

system is loaded. The second RAM drive is where the client OS would temporarily store

user-produced data. This would simplify the configuration for the client operating system.

Each RAM drive would appear to the OS as a physical drive such as C: and D: drives.

50

There is source code available for constructing a RAM drive and an associated file system

[8]. Research needs to be conducted into constructing two separate drives from one

source of physical memory and determining how to construct the RAM drives from -

functions resident on the TCBE.

2. Trusted Path Research

The establishment and maintenance of the Trusted Path between the TCBE and the

TCB is perhaps the most important component of the secure local area network. If the

Trusted Path is not constructed properly, then intruders on the net can compromise the

entire system by either impersonating the High Assurance Server or authorized users. The

design of the TCBE places the Trusted Path operations into five tentative states:

Initialization, Confirmation, Login, Logging Out, and Switching session levels. Of those

five states, the Initialization State is the most critical phase of the establishment of the

Trusted Path.

In the Initialization State, the TCBE must first securely identify itself to the

Trusted Computing Base then the TCB must authenticate itself to the TCBE. The first

•question to be solved is the identification of the TCBE to the TCB. If there is a

permanent identification code stored with each TCBE, then a malicious user could place

the TCBE in a host computer that has local secondary storage capability or copy the code

onto some non-TCBE device.

Once a method for TCBE identification is developed, there must be a way of

protecting the secrecy and integrity of the identity information for transmission over the

LAN. The techniques for protecting this information may include software, hardware, and

51

configuration management equipment and procedures. One issue involved in developing

these protection features is the use of encryption. Any encryption algorithm used to

support these techniques must allow decryption by the TCB, so it would have to be

previously negotiated. If the algorithm is negotiated beforehand, then it must be decided

where the keys for the encryption scheme are stored. This question leads to determining

the best and most secure way to store the key(s), which is similar to the storage of the

TCBE identification code. Fortunately, there has been research conducted that looks into

the requirement for security in a distributed system and several protocols such as

Needham-Schroeder [9] and Kerberos [10] have been developed. But none of the

research or the developed protocols seems to answer the requirements for the Trusted

Path. The remaining phases of the Trusted Path development are solvable once the

Initialization protocol is developed.

C. CONCLUSIONS

The Trusted Computing Base Extension provides an economical method to

connect commercial off-the-shelf personal computers or workstations to a secure local

area network. A systems software engineering approach was taken to produce a design for

the TCBE that satisfies the security requirements of connecting to a multilevel system

while requiring minimum changes to a COTS computer or operating system and

application software.

Chapter II listed the functional requirements for the Trusted Computing Base

Extension. These requirements should serve as guide for development of future versions

of the TCBE or other devices that are designed to enhance the security of a system or

52

network. Chapter III provides the analysis of the requirements that went into the design

of the system. The concept of operations describes the operations of the TCBE as a

sequential process engine that is to be encoded in the TCBE operating code and

applications. Chapter IV detailed the development of the software needed for the TCBE.

The design of this system requires a clear understanding of the hardware of both the host

computer and the physical components of the TCBE. The outcome of this design is a

limited operating system, or executive, that can be evaluated for its correct operation. The

TCBE operating system can be expanded, once it is shown to be operating correctly, to

include additional states, or functions, as the need arises.

Chapter V discussed the hardware requirements for the client computer and the

TCBE. None of the hardware needs to be specifically developed for this system. Client

computers are easily available. The components that make up the TCBE can be

manufactured by an embedded controller card producer or purchased as part of a modified

Personal Digital Assistant. In the future, thin client systems such as Network Computers,

may be a viable option for the secure local area network.

53

54

APPENDIX A. TCBE DESIGN DOCUMENTATION

The appendix represents a preliminary design for the TCBE. Additional effort will

be required to ensure that the layering of the TCBE meets the requirements for a high

assurance architecture.

The documents presented here follow the object-oriented methodology developed

by Rumbaugh, et al.[5]. The requirements for the TCBE were discussed in Chapter H

These requirements formed the basis for the TCBE design. The scenarios of the TCBE

were produced first. The scenarios are a step by step presentation of the expected

operation of the TCBE from turning it on to off.

From the scenarios, state diagrams were developed. These state diagrams

. graphically represent the behavior of the system at specific points in its operation. The

state diagrams were the basis for developing the layers and the dependencies of each of

the code modules and the entire TCBE. The state diagrams are also used to develop the

TCBE executive.

Following from the reference, the object modules were defined. They are

presented in this document in graphical and tabular format. An object diagram was drawn

that detailed the function of the software modules. The combination of the state diagrams,

layer and module functions, and object diagram were combined with a hierarchical, top-

down approach to system architecture. This permitted objects to be placed in partially

ordered layers such that dependencies were well understood and circularities eliminated

from the software architecture. The result was the System Software Specification

Document that is presented in Appendix B.

55

A. TCBE SCENARIOS

1. Initialization

A.
1. Turn on the host computer (if the TCBE is installed within

the host computer then it turns on when it receives power)
a. BIOS POST Test
b. The TCBE begins functioning in place of the client
operating system, since there is no secondary storage
holding the client's operating system.
c. TCBE Core Loaded.
d. TCBE in Initialization Mode.
e. TCBE Core initializes all devices.

2. Turn on the host computer; Turn on the TCBE (if TCBE is
a separate device)
a. BIOS POST Test.
b. Host computer start up stopped here since there is no
operating system installed on-secondary storage.
c. TCBE Core Loaded.
d. TCBE in Initialization Mode.
e. TCBE Core initializes all devices.

B. TCBE Core Overwrites host computer memory
C. TCBE Core halts host computer CPU
D. TCBE Core loads all TCBE Modules
E. TCBE Interface Displayed

1. TCBE Video Screen Cleared
2. TCBE Logo displayed

2. Secure Attention Key (SAK) pressed, on TCBE keyboard

A. Keyboard Generates SAK interrupt.
B. SAK Module sends activate Trusted Path command to TCBE Core.
C. TCBE Mode switched to Trusted Path (TP) Mode
D. Encryption module mode switched to Initialization by TP Module

1. Session Key Store Flags set to Null
2. Trusted Path Key Store Flag set to Null

E. Trusted Path conducts initialization sequence with the HIGH
ASSURANCE SERVER; to ensure that the appropriate computers
are talking to each other.

56

F. Trusted Path module receives Trusted Path encryption key (TPK)
from High Assurance Server.
1. Trusted path Key Store Flag set to active

G. Trusted Path Established

H. Go to Trusted Path Interface

3. Trusted Path Interface

A. Trusted Path Interface presented on TCBE Monitor on command
from the high assurance server

B. User enters one of the following options 1. Login; 2. Logout; 3.
Change Session Level; 4. Start Session; 5. Reattach Session

C. If Login go to Trusted Path Login
D. If Start Session then go to Data Path Mode
E. If Logout go to User Logs Off
F. If Change Session Level go to User switches session level
G. If Reattach Session go to User reattaches to current session

4. Trusted Path Login

A. Trusted Path login interface presented on TCBE monitor on
command from the high assurance server.

B. User enters login name and password
C. User info encrypted with TPK goes through TP Protocol to High

Assurance Server
D. User enters desired session level (make sure there is a default

session level at TCBE)
E. Session Level info sent to High Assurance Server
F.. High Assurance Server sets a session level at desired Session Level,

returns a session key to Trusted Path Module
G. Trusted Path sends key and session level to Encryption Module
H. Encryption Module receives Session Key, stores it under a session

level key store
1. Session Key Store Flag set to active

I. Encryption Module tells TP Module that it has received the
Session Key

J. TP Module switches Encryption Module to the appropriate session
mode

K. Trusted Path Module tells TCBE Core that session is ready
M. Go to Trusted Path Interface

5. Data Path Mode

A. TCBE State switched to Data Path Mode

57

B. If Client OS is not loaded then go to Data Path Mode (Initial
C. If Client OS is loaded then go to Data Path Mode (ActiveX

1. Data Path Mode (Initial)
(If initial session)

1. TCBE Core tells CPU to resume
2. TCBE Core Overwrites host computer RAM.
3. TCBE Core constructs memory resident file system;
4. TCBE Core loads client OS in File System
5. TCBE core loads Input/Output (I/O) Trap;

a. 10 Trap stays resident and communicates with NIC via
encryption module

6. Client OS completes loading
7. Go to Data Path Mode (Active)

2. Data Path Mode (Active)

1. If the host computer CPU is idle then the TCBE Core tells CPU to
resume.

NIC accepts Data.
2. User operates on top of client OS
3. User I/O trapped by I/O Trap:

a. User command translated to High Assurance Server command
b. TCBE data block constructed with command
c. Data block encrypted w/session key

1. Data block sent to Encryption device
2. Data block encrypted
3. Data block returned to the Encryption Module

d. Data block sent to High Assurance Server
e. Data block decrypted by High Assurance Server
f. High Assurance Server processes request
g. High Assurance Server constructs data block
h. High Assurance Server Encrypts data block
i. High Assurance Server sends data to TCBE client
j. Communications Device receives data block
k. Send data block to encryption module for decryption (similar to

c. Data block encrypted w/session key)
1. Decrypted data sent to Data Path
m. Data Path sends data to client OS

58

4. OS I/O not trapped sent to secondary memory / or controlled path

3. User Invokes Trusted Path While Using Client OS

1. SAK Pressed
2. SAK sends signal to TCBE Core
3. TCBE State switched to Trusted Path; TCBE core idles client

OS/Host Computer; Network Interface Card stops accepting data
4. Encryption Module Switched to Trusted Path mode
5. TCBE calls TP Module

a. Path confirmed
b. TP Module controls keyboard; monitors for SAK

6. Go to Trusted Path Interface

6. User Logs Off

A. Go to User Invokes Trusted Path While Using Client OS
B. User selects logout
C. TCBE Core halts CPU
D. Logout signal sent to high assurance server
E. TCBE Erases Client PC memory; Session Keys; Trusted Path Key;
F. Logout complete signal received from the high assurance server
G. TCBE interface displayed
H. Host computer Screen blank

7. User Switches Session Level

A. Go to User Invokes Trusted Path While Using Client OS
B. User selects switch session level'
C. User enters desired session level
D. Session level information sent to high assurance server (encrypted)
E. High assurance server sets session at desired session level returns a

session key to Trusted Path Module
F. Trusted Path sends key and session level to Encryption Module
G. Encryption Module receives Session Key, stores it under session

level key store
1. Session Key Store Flag set to active

H. Encryption Module tells TP Module that it has received the Session
Key

I. TP Module sets Encryption Module to that session mode
(encryption module knows know to use the key that matches the
mode until told by the TP Module to switch)

J. TCBE erases secondary memory (Or stores this information on the
board if possible)

K. TCBE prior session key (Or stores this information if possible)

59

L. Encryption Module tells TP module that it has received the Session
Key

M. Trusted Path Module tells TCBE Core Trusted Path complete
N. Go to Trusted Path Interface

8. User Reattaches To Current Session

A. TP Module sets Encryption module to the session mode active
before SAK pressed.

B. Trusted Path Module tells TCBE Core Trusted Path complete.
C. Go to Data Path Mode

9. User Presses SAK While In Trusted Path Mode

A. TP module does the following
1. If confirming Trusted Path then restart confirmation process
2. If initializing Trusted Path then restart initialization process
3. If Trusted Path is idle then confirm Trusted Path
4. If switching sessions, logging in or out then do the next

three steps:
a. Trusted Path Buffers/Memory cleared
b. Trusted Path Confirmation Protocol Initiated
c. Trusted Path confirmed

B. Go to Trusted Path Interface

60

B. TCBE STATE DIAGRAMS

TCBE STATE DIAGRAM

SAK PRESSED

TURN HOST COMPUTER OFF

TCBE INITIALIZATION MODE

TCBE CORE
LOADING

CO RE
LO ADED,

■

DEVICE
INITIALIZATION

DEVICE
INITIALIZATION
COMPLET E

■

HOST
COMPUTER
PREPARATION

1. HOST COMPUTER
MEMORY OVERWRITTEN
2. HOST COMPUTER CPU
IN IDLE STATE

' '
TCBE MODULE
LOADING

ALL MODUI .ES
LOADED

- r

61

TRUSTED PATH STATE DIAGRAM

 ►

[NO TRUSTED PATH]

SAK PRESSED

, + .DNFIK..5 CONFIRMEDI
[TRUSTED PATH [TRUSTED PATH f-°""K"^0l
ESTABUSHED]

SAK PRESSED

[START SESSION] REATTACH SESSION

TRUSTED PATH
LOGOUT

[LOGOUT]

TRUSTED PATH
CLEAR BUFFER

DATA PATH STATE DIAGRAM

[CLIENT OS NOT LOADED]

DATA PATH
~* [INITIALIZATION)

[LOAD CLIENT OS]

[CLIENT OS LOADED]

DATA PATH
"* (ACTIVE)

SAK PRESSED

ACTIONS IN DATA PATH (activ») STATE
1. TRAP DATA/COMMAND
2. TRANSLATE DATATCOMMAND
S. SEND DATA/COMMANO TO H.A.S.
4. RECDVE DATA/COMMANDFROM H.A.S.

62

C. TCBE OBJECT DIAGRAM

COMPUTER,,.
HARDWARE

CONSISTS
OF

PROVIDES
CONNECTION

□

1. SIR USER INFO
2. S OESIRED SESSION

LEVEL 1. PROVIDES SESSION KEY
2. PROVIDES TRUSTED PATH KEY

TCBE MODULES

USER GENERATED
DATA

In the Object Diagram the lines indicate the associations, or the relationships

between the software modules. The dashed lines are used to signify associations that will

travel over physical communication links between hardware components of two modules.

These links are only present in the interface portion between the TCBE and the host

computer and in the secure local area network operations of the TCBE. Although the

object diagram indicates that the TCBE Keyboard and Monitor are part of the TCBE, this

is meant only as an abstraction. The associations do not represent dependencies between

63

modules, they serve only to represent the connections that either conceptually or

physically link the components.

D. TCBE FUNCTIONAL MODULES DIAGRAM AND DEFINITIONS

The following table provides a brief description of each module's functions. It also

provides a listing of the dependencies for each module.

PRELIMINARY TCBE DEPENDENCY AND ENGINEERING ARCHITECTURE DIAGRAM

DATA -<
PATH ^

INITIALIZATION
SEQUENCE

1. MEMORY
2. MEMORY MANAGER
3. TCBE CORE
4. TCBE CORE LOADER
5. DEVICE INITIALIZER
6. TCBE MODULES

LOADER

PC MEMORY
CONTROLLER CPU CONTROLLER ige STATE CLIENT OS LOADER

:| TCBE INITIALIZERS
TCBE CORE

t TCBE STATE

IOTRAP

IO TRAP
COMMUNICATION INTERFACE

TRUSTED PATH USER INTERFACE

TRUSTED PATH

INPUT INTERFACE DISPLAY INTERFACE

TP INITIALIZER

TP PROTOCOL t ffllTIAUZATlON KEY

ENCRYPTION MODULE MODE SWITCHER

TP COMMUNICATION INTERFACE
SAK MODULE

KEYBOARD DRIVER »SCAM COPES>

iSeSSipN KEYS ENCRYPTION MODULE [TRUSTED PATH KEY

TCBE/PC INTERFACE

ENCRYPTION DEVICE KEYBOARD NIC MONITOR

MEMORY MANAGER

MEMORY

TCBE HARDWARE

TCBE MAIN

TRUSTED
PATH

SECURE
"ATTENTION

KEY
ENCRYPTION

DEVICE
DRIVERS

MEMORY
MANAGER

-HARDWARE

Initializers | | Layers | | Modules ^ O | Data Stores

64

Table 1. Preliminary Module Definitions and Dependencies

Module Name Module Function Depends On

TCBE MAIN MODULES
Host Computer/Client OS Host computer that holds the client

OS; contains a driver that sees the
TCBE as just a NIC

The TCBE to function on the secure
network

TCBE Core Core of the TCBE; controls the
initialization of the modules of the
TCBE; maintains TCBE current
state.

SAK
Trusted Path
Encryption Module
Memory Manager
DataPath

TCBE Modules Loader (TML) Loads and initializes the TCBE
modules

TCBE Core

Client OS Loader (COSL) Loads the Client OS on the host
Computer; may need to create a
Ram drive file system

TCBE Core

TCBE Core Loader (TCL) Loads the TCBE Core into the
controller device's memory on
startup

Memory Manager

PC Memory Controller (PCML) Overwrites PC's memory TCBE Core
CPU Controller (CPUC) Places the PC's CPU into one of

three modes
1. Idle (No instructions executing)
2. Active (Normal Operation of

the CPU)
3. Stop (Shutdown the Computer

for restart)

TCBE Core

Device Initializer Initializes the TCBE's hardware
TCBE MAIN DATABASES
TCBE State States that the TCBE is in

TCBE States:

1. Initialization
2. Wait
3. Trusted Path
4. Data Path

TCBECore
Trusted Path
DataPath

PC State Present mode of host Computer
CPU:
1. Idle
2. Active
3. Stop

CPU Controller

TRUSTED PATH MODULE
Trusted Path User Interface (TPI) Presents Trusted Path interface and TCBE Keyboard and Monitor

command items to the user; Input Interface
Collects user info for the Trusted Display Interface
path High assurance server

65

TP Protocol
Input Interface Driver to operate TCBE keyboard SAK Module

TCBE Keyboard
Display Interface Driver to operate TCBE Monitor TCBE Monitor
Trusted Path Initializer (TPINIT) Module produces an initialization

key and algorithm that starts the
Trusted path protocol

TP Protocol

TP Confirmation Protocol Confirms presence of the Trusted
Path with the high assurance server

TP Protocol

TP Protocol The protocol that establishes the
Trusted Path between the TCBE and
theTCB

Encryption Module

Encryption Module Mode Switcher Switches the mode of the TP Communication Interface
(EMMS) Encryption Module between Trusted

Path Mode and the Appropriate
session key.

TP Communication Interface Communications protocol between
the Trusted Path Module and the
Encryption Module to the NIC

TCBE Hardware

TRUSTED PATH MODULE
DATABASES
Initialization Key Key produced by the TPINIT that

initializes the Trusted Path
User Information (User Info) Memory Buffer where data is stored

before encryption and transmission.
Store of user identification and

Depends on high assurance server.

authentication information:
1. User Name
2. Password
3. Biometrie Data
4. Desired Session Level
5. Present Session Level
6. Default Session Level

SECURE ATTENTION KEY
MODULE
Secure Attention Key Module Module contains the routine Keyboard Driver
(SAK) necessary to recognize a keyboard

combination as a SAK and send a
start Trusted Path command to the
TCBE core. This is coded as part of
an interrupt routine in the TCBE
Executive.

Keyboard Driver Low level keyboard routine that
allows the SAK module to work;
This code sits on top of normal
keyboard driver and modifies the
driver to provide the SAK code;
May not be necessary depending on
how the SAK module and the

TCBE Keyboard

66

keyboard driver are implemented
SECURE ATTENTION KEY
MODULE DATABASES
Scan Codes The memory buffer where the scan

codes are compared against the
SAK

Keyboard
Memory

DATA PATH MODULE
Input Output Trap (10 Trap) Translates user data into High 10 Trap Communication Interface

Assurance Server Format; May Encryption Module
convert client OS file system
commands to High Assurance
Server Commands;
Directs User data to Encryption

. Module and NIC. Both the 10 Trap
and the 10 Trap Communication
Interface would be coded as part of
the TCBE Driver within the client
operating system.

10 Trap Communication Interface Protocol to talk to Encryption
Module

ENCRYPTION MODULE
Encryption Module ' This module provides the interface Encryption Device(s)

between TCBE components, the Memory Manager
physical Encryption device or
program and the NIC.
Encryption Module Mode
1. Trusted Path
2. Data Path
3. Initialization

ENCRYPTION MODULE
DATABASES
Trusted Path Key Store for the trusted path key

provided by the High Assurance
Server.

Memory

Session Keys Multiple storage for the session keys
provided by the High Assurance

Memory

Server

DEVICE DRIVERS
TCBE/PC Interface Virtual NIC to host computer

interface
Memory Manager
TCBE Hardware

Encryption Device The physical device or software
routine that performs the actual
encryption of data. There may be
multiple Encryption Devices

Memory Manager
TCBE Hardware

Network Interface Card The physical device driver that
connects the TCBE to the secure
LAN

Memory Manager
TCBE Hardware

Keyboard The physical device driver that Memory Manager

67

provides keyboard input to the
TCBE

TCBE Hardware

Monitor The physical device driver that
allows the TCBE to display
information on the screen

Memory Manager
TCBE Hardware

•
MEMORY MANAGER Module that manages the memory

resources of the TCBE.
Memory

HARDWARE
Memory The physical memory provided for

the TCBE for its operation
TCBE hardware The physical devices that make up

the TCBE

68

APPENDIX B. TCBE SOFTWARE SPECIFICATION DOCUMENT

The TCBE software specification document lists the TCBE's Modules and their

interfaces. The specification document is partitioned by major TCBE module. Not all of

the functions, particularly the Trusted Path and the host computer hardware control

functions, have complete specifications. Those will need to be developed as part of future

•research which was detailed in Chapter VI.

1. TRUSTED COMPUTING BASE EXTENSION SOFTWARE
DESCRIPTION

The Trusted Computing Base Extension (TCBE) is a platform designed to connect

to a commercial off-the-shelf (COTS) personal computer or workstation. The TCBE will

allow the personal computer to function as a client on a secure multilevel local area

network. The TCBE will provide this functionality by meeting a subset of the Department

of Defense (DoD) Trusted Computer System Evaluation Criteria (TCSEC) standards for a

Class B3 evaluated system [1].

2. TRUSTED COMPUTING BASE EXTENSION LAYERS

The TCBE's software modules are designed in a layered manner. The higher level

modules depend on the lower level modules for operation. For example, the proper

operation of the Trusted Path Module is dependent upon the Encryption Module

performing its cryptographic operations. Chapter III, Section C. describes the layers of

the TCBE from the most privileged layer to the least privileged.

69

3. TRUSTED COMPUTING BASE EXTENSION MODULES

Description: This is a software specification document. The descriptions presented here
are a representation of the functionality of the software modules. They do not represent
the complete architectural layering. The software programmer may find that due to
hardware and software constraints that the internals of the system should change. Any
modifications should allow the TCBE to complete the requirements described in Chapter
II of this thesis.

Variables:

TCBE_State = (Initialization, Wait, Data_Path, Trusted_Path}
Record Data_Block_Type = [string Command, generic Data]
Record TCBE_Data_Block [string Command, Data_Block_Type Data_Block, integer

Size of Data_Block]

3. 1 SAK MODULE

3.1.1 Description: The SAK Module provides the operation of the Secure Attention Key
for the Trusted Computing Base Extension. It is dependent upon the keyboard
driver within the Hardware Module for proper operation. This module will be
coded as an interrupt within the TCBE's operating system.

3.1.2 Variables:

Boolean SAK_Pressed; //if SAK Button is pressed returns true

3.1.3 Functions:

3.1.3.1 SAK_Monitor_Keyboard
3.1.3.1.1 Inputs
3.1.3.1.1.1 Input 1: Scan Codes
3.1.3.1.2 Outputs
3.1.3.1.2.1 Output 1: SAK_Pressed
3.1.3.1.3 Return Value: Boolean

3.1.3.1.4 Description: Check scan codes for SAK keys. If the correct buttons are
pressed then send true. Continuous monitoring until the SAK keys are
pressed. This function should be coded as an interrupt within the TCBE's
operating system.

70

3.2 TRUSTED PATH MODULE

3.2.1 Description: The Trusted Path Module contains the functions and protocols
necessary to operate the Trusted Path between the TGBE and the high assurance
server. It depends on the Encryption Module, the SAK Module, and the Hardware
Module for proper operation. The functions within this module are vague and
represent an abstraction as to what will physically happen at the TCBE. They may
change considerably depending on how the Trusted Path is actually constructed.

3.2.2 Variables:

Trusted_Path_Status = {Established, NotJEstablished}
Trusted_Path_State = {Idle, Confirming, Initializing, Logging_Out, Logging_In>

Switching_Session_Level, Clearing_Buffer)
Trusted_Path_Command = {Start_Session, Reattach_Session, Login, Logout,

Switch_Session_Level, Confirm, TP_Idle}
Encryption_Key Session_Encryption_Key
Integer Session_Number

Record Trusted_Path_Session_Info = [Session_Number,
Session_Encryption_Key]

Record Trusted_Path_Session_Table = [Current_Session_Number,
Trusted_Path_Session_Info]

Record Trusted_Path_Buffer =[integer Desired_Session_Level]
Record Current_User_Information = [Username, Password, Biometric_Data

3.2.3 Functions:

3.2.3.1 TP_Start_Trusted_Path
3.2.3.1.1 Inputs
3.2.3.1.1.1 Input 1: TCBE_State
3.2.3.1.2 Outputs
3.2.3.1.2.1 Output 1: None
3.2.3.1.3 Return Value: Boolean
3.2.3.1.4 Description: This function initiates the Trusted Path. It checks to ensure

that the TCBE and the host computer are in the correct state in order to
begin.

3.2.3.2 Idle_Trusted_Path
3.2.3.2.1 Inputs
3.2.3.2.1.1 Input 1: None

71

3.2.3.2.2 Outputs
3.2.3.2.2.1 Output!:
3.2.3.2.3 Return Value: Trusted_Path_Command
3.2.3.2.4 Description: This function displays a Trusted Path Interface screen on the

monitor.

Pseudo-code

Trusted_Path_State = Idle;
Loop {

TPI_Display_TP_Menu;
If Command = Confirm

Then TP_Confirm_Trusted_Path;
If Command = Login

Then TP_Login;
If Command = Switch_Session_Level;

Then TP_Switch_Session_Level;
Exit when Command = StartjSession, ReattachjSession, or Logout

}
return (Command);

3.2.3.3 TP_Confirm_Trusted_Path
3.2.3.3.1 Inputs
3.2.3.3.1.1 Input 1: None
3.2.3.3.2 Outputs
3.2.3.3.2.1 Output 1: None
3.2.3.3.3 Return Value: Boolean
3.2.2.3.4 Description: This function confirms that a trusted path exists to the user.

Pseudo-code

TP_Clear_Buffers;
Trusted_Path_State = Confirming;
"Code to confirm trusted path";

If confirmation successful then return to calling function
Else Trusted_Path_Status = NotJEstablished;

TP Start Trusted Path;

3.2.3.4 TP_Login
3.2.3.4.1 Inputs
3.2.3.4.1.1 Input 1: None
3.2.3.4.2 Outputs

72

3.2.3.4.2.1 Output 1: Username
3.2.3.4.2.2 Output 2: Password and/or Biometrie data
3.2.3.4.2.3 Output 3: session level
3.2.3.4.3 Return Value: Boolean
3.2.3.4.4 Description: This function handles the logging in to the high assurance

server. This function does not perform the actual login. It only forwards
the encrypted information to the high assurance server.

3.2.3.5 TP_Logout
3.2.3.5.1 Inputs
3.2.3.5.1.1 Input 1: None
3.2.3.5.2 Outputs
3.2.3.5.2.1 Output 1: None
3.2.3.5.3 Return Value
3.2.3.5.4 Description: This function handles the logout of the high assurance server.

It does not perform the actual log out, only forwards the command and
then waits for the receipt of the confirmed logout signal from the high
assurance server. The function will ensure that the all the buffers within
the Trusted Path Module are cleared.

3.2.3.6 TP_Switch_Session_Level
3.2.3.6.1 Inputs
3.2.3.6.1.1 Input 1 :integer New_Session_Number
3.2.3.6.2 Outputs
3.2.3.6.2.1 Output 1:
3.2.3.6.3 Return Value: Boolean
3.2.3.6.4 Description: This function performs the switching of the session level at the

TCBE. It will get the appropriate session key, then make the call to start a '
new session.

Pseudo-code

TP_Get_Session_Key;
Trusted_Path_Session_Table.Current_Session_Number =

New_Session_Number;
TP_Start_Session; • '

3.2.3.7 TP Start Session
3.2.3.7.1 Inputs
3.2.3.7.1.1 Input 1: integer Session Level
3.2.3.7.2 Outputs

73

3.2.3.7.2.1 Output 1: None
3.2.3.7.3 Return Value: Boolean
3.2.3.7.4 Description: This function makes sure that the TCBE is ready to start a

session. It will load the appropriate encryption key into the Encryption
Module and then start the Data Path.

Pseudo-code

If (EM_Mode_Switch(DataJPath,
Trusted_Path_Session_Table.Current_Session_Number))

Then TCBE_Switch_State(Data_Path);
TCBE_State = DataJPath;

Else Return (Encryption module error)

3.2.3.8 TP_Get_Session_Key
3.2.3.8.1 Inputs
3.2.3.8.1.1 Input 1: None
3.2.3.8.2 Outputs
3.2.3.8.2.1 Output 1: Session_Encryption_Key
3.2.3.8.3 Return Value:
3.2.3.8.4 Description: This function gets the session encryption key from the high

assurance server.

3.2.3.9 TP_Clear_Buffers
3.2.3.9.1 Inputs
3.2.3.9.1.1 Input 1: None
3.2.3.9.2 Outputs
3.2.3.9.2.1 Output 1: None
3.2.3.9.3 Return Value:
3.2.3.9.4 Description: This function clears all memory buffers used by the Trusted

Path Modules.

3.2.3.10 TPI_Display_TP_Menu
3.2.3.10.1 Inputs
3.2.3.10.1.1 Input 1: None
3.2.3.10.2 Outputs
3.2.3.10.2.1 Output 1: None
3.2.3.10.3 Return Value:
3.2.3.10.4 Description: This function displays a Trusted Path Interface Menu on the

TCBE's monitor. It also provides the mechanism by which user

74

information is entered from the keyboard and sent to the high assurance
server and the Trusted Path module.

75

3.3 TCBE CORE MODULE

3.3.1 Description: The TCBE Core module provides the functions necessary to
interface with the host computer. It is dependent on all the other modules of the
TCBE for correct operation. The descriptions here are intended to provide a
sketch of the TCBE Core's functionality. They do not represent a complete
architectural layering.

3.3.2 Variables:

Integer Session_Number //One assigned to each session for the current user
Record Client_OS_Information // particular state of the CPU and OS when

halted by TCBE. Note: to be used when TCBE has ability to hold Client
OS state.

Record Session_Info [Session_Number, Client_OS_Information]
Record Session_Table [integer Current_Session_Number, Array of Session_Info]
Data_Path_Mode = {Initial, Active}
Client_OS_Status = {Loaded, NotJLoaded}
CPU_Command = {Activate, Idle, Stop}
Data_Path_Command = {Start, Stop}
PC_State = {Idle, Active, Stop}
Module ={Data_Path, Encryption_Module, TP_Module, SAK_Module}

3.3.3 Functions:

3.3.3.1 TCBE_Switch_State
3.3.3.1.1 Inputs
3.3.3.1.1.1 Input 1: TCBE_State
3.3.3.1.2 Outputs
3.3.3.1.2.1 • Output 1: None
3.3.3.1.3 Return Value: Boolean Result
3.3.3.1.4 Description: This function changes the TCBE State and its functioning to

the called upon state. Once this operation is complete it will return true if
the switch was successful.

Pseudo-code

Result = False;
If TCBE_State = Data_Path

Then Result = TCBE_CPU_Controller(Activate, 0);
If Client_OS_Status = NotJLoaded

Then if Result = (TCBE_Initialize_Data_Path)
Then Result - DP_Path(Open);

IfClient_C Status = Loaded

76

Then Result = DP_Path(Open);

If TCBE_State = Trusted_Path
Then Result = DP_Path(Close);

. Result = TCBE_CPU_Controller(Idle, 0);

IfTCBE_State = Wait
Then Result = DP_Path(Close);

Result = TCBE_CPU_Controller(Stop, 0);

If TCBE_State = Initialization
Then Result = TCBEJnitialize;

Return(Result)

3.3.3.2 TCBE_Initialize_Data_Path
3.3.3.2.1 Inputs
3.3.3.2.1.1 Input 1: None
3.3.3.2.2 Outputs
3.3.3.2.2.1 Output 1: None
3.3.3.2.3 Return Value: Boolean
3.3.3.2.4 Description: This function activates the host computer and ensures that the

client operating system is loaded.

Pseudo-Code
If(TCBE_CPU_Controller(Activate,0));
If (TCBE_Load_Client_OS(0))

Then Client_OS_Status = Established;

3.3.3.3 TCBE_Activate_Data_Path
3.3.3.3.1 Inputs
3.3.3.3.1.1 Input 1: integer Current session number
•3.3.3.3.2 Outputs
3.3.3.3.2.1 Output 1:
3.3.3.3.3 Return Value: Boolean
3.3.3.3.4 Description: This function will load the correct operating system state

depending on the session level. This function is used when switching
session levels. (For future work when capable of saving Client OS state
For each session level)

3.3.3.4 TCBE_Load_Client_OS
3.3.3.4.1 Inputs
3.3.3.4.1.1 Input 1: integer Session Number
3.3.3.4.2 Outputs
3.3.3.4.2.1 Output l:None

77

3.3.3.4.3
3.3.3.4.4

3.3.3.5
3.3.3.5.1
3.3.3.5.1.1
3.3.3.5.2
3.3.3.5.2.1
3.3.3.5.3
3.3.3.5.4

Return Value: Boolean
Description: This function loads the Client OS into the host computer

TCBE_Module_Loader
Inputs
Input 1: None
Outputs
Output 1:
Return Value: Boolean
Description: This module loads each module of the TCBE in a distinct
memory location within the controller card. This will be important if the
entire TCBE must be coded in assembly.

3.3.3.6 TCBE_CPU_Controller
3.3.3.6.1 Inputs
3.3.3.6.1.1 Input 1: Command
3.3.3.6.1.2 Input 2: integer Session_Number
3.3.3.6.2 Outputs
3.3.3.6.2.1 Output 1: None
3.3.3.6.3 Return Value: Boolean
3.3.3.6.4 Description: This function controls the host computer's processor and

memory. May be coded as an interrupt to the host computer.

Pseudo-Code:

If Command = Idle
Then TCBE_Save_PC_State(Session_Number); //if possible

TCBE_Erase_Secondary_Memory;

If Command = Activate
ThenTCBE_Start_PC_State(Session_Number);

If Command = Stop
Then TCBE_Erase_Secondary_Memory;

Return(Boolean);

3.3.3.7 TCBE Initialize
3.3.3.7.1 Inputs
3.3.3.7.1.1 Input 1: None
3.3.3.7.2 Outputs
3.3.3.7.2.1 Output 1: None
3.3.3.7.3 Return Value: Boolean

78

3.3.3.7.4 Description: This function provides the initialization routines for the
TCBE.

3.3.3.8 TCBE_Save_PC_State
3.3.3.8.1 Inputs
3.3.3.8.1.1 Input 1: integer Session Number
3.3.3.8.2 Outputs
3.3.3.8.2.1 Output 1: None
3.3.3.8.3 Return Value: Boolean
3.3.3.8.4 Description: This function saves the state of the PC and registers when the

Trusted Path is invoked. This function may not be necessary if the
TCBE_CPU_Controller is constructed as an interrupt. However, if future
work were to allow multiple sessions without rebooting between sessions
then this function would have to be developed.

3.3.3.9 TCBE_Start_PC_State
3.3.3.9.1 Inputs
3.3.3.9.1.1 Input 1: integer Session Number
3.3.3.9.2 Outputs
3.3.3.9.2.1 Output 1: None
3.3.3.9.3 Return Value: Boolean
3.3.3.9.4 Description: This module loads the state of the PC according to the

Session Number. When multiple sessions are not possible, the Session
Number will always be zero indicating a reload of the entire system.

3.3.3.10 TCBE_Erase_Secondary_Memory
3.3.3.10.1 Inputs
3.3.3.10.1.1 Input 1: None ' ' ' ■
3.3.3.10.2 Outputs
3.3.3.10.2.1 Output 1: None
3.3.3.10.3 Return Value: Boolean
3.3.3.10.4 Description: This function erases the host computer memory by writing a

random pattern of one's and zeroes in the host computer's RAM and
caches.

3.3.3.11 Function: TCBEJDisplay
3.3.3.11.1 Inputs
3.3.3.11.1.1 Input 1: None
3.3.3.11.2 Outputs
3.3.3.11.2.1 Output l:None
3.3.3.11.3 Return Value: None

79

3.3.3.11.4 Description: This function displays a blank screen before the Trusted Path
has been started.

80

3.4 ENCRYPTION MODULE

3.4.1 Description: The Encryption Module provides those functions that interface with
the encryption devices or algorithms used by the TCBE.

3.4.2 Databases: EM_Data_Buffer = Array of TCBE_Data_Block

3.4.3 Functions:

3.4.3.1 EM_Mode_Switch
3.4.3.1.1. Inputs
3.4.3.1.1.1 Input 1: TCBE_State
3.4.3.1.1.2 Input 2: Session_Number
3.4.3.1.2 Outputs
3.4.3.1.2.1 Output 1: None
3.4.3.1.3 Return Value: Boolean
3.4.3.1.4 Description: Switches the encryption module to the sent in state and to the

corresponding session key if applicable. Returns true once this operation is
complete _ .

3.4.3.2 EM_Send
3.4.3.2.1 Inputs
3.4.3.2.1.1 Input 1: TCBE_Data_Block BlackJData
3.4.3.2.1.2 Input 2: Integer EM_Socket
3.4.3.2.2 Outputs
3.4.3.2.2.1 Output 1: None
3.4.3.2.3 Return Value: integer
3.4.3.2.4 Description: This function takes the data and encrypts it before sending it

to the Communications device. It-then takes the return from the
communications device and decrypts it. The decrypted data is assigned a
buffer position corresponding to the EM_Socket.

Pseudo-code
TCBE_DataJBlock Red_Data

CD_Encrypt (TCBE_DataJBlock, BlackJData, key);
NIC_Write (Comm_Port_No, BlackJData, size)
NIC_Read (Comm_Port_No, Buffer, size, Black_Data);
CD_Decrypt (BlackJData, Red_Data, key);
EM_Assign_Data (Red_Data, EMjSocket);
Return(integer);

3.4.3.3 EM_Receive
3.4.3.3.1 Inputs

81

3.4.3.3.1.1 Input 1: Integer EM_Socket
3.4.3.3.2 Outputs
3.4.3.3.2.1 Output l:TCBE_Data_Block
3.4.3.3.3 Return Value: integer
3.4.3.3.4 Description: This function returns the size of the data located in the

EM_Data_Buffer at the EM_Socket. The data has been copied to the
TCBE Data Block

3.4.3.4 EM_Assign_Data
3.4.3.4.1 Inputs
3.4.3.4.1.1 Input 1: TCBEDataBlock Red_Data
3.4.3.4.1.2 Input 2: Integer EM_Socket
3.4.3.4.2 Outputs
3.4.3.4.2.1 Output 1: None
3.4.3.4.3 Return Value: None
3.4.3.4.4 Description: This function assigns the data to a spot on the

EM_Data_BufFer

Pseudo-code

EM_Data_Buffer(EM_Socket) = Red_Data.

82

3.5 DATA PATH MODULE

3.5.1 Description: This module provides the functions to operate the DataJPath. It
depends on the Encryption Module and the Hardware Module to operate
correctly. This module would serve as an interface to a TCBE Driver that is
installed in the client operating system.

3.5.2 Databases: None

3.5.3 Functions:

3.5.3.1 DP_Path
3.5.3.1.1 Inputs
3.5.3.1.1.1 Input 1: Command (Open, Close}
3.5.3.1.2 Outputs
3.5.3.1.2.1 Output: Boolean
3.5.3.1.3 Description: This function starts the Data Path between the host computer

and the high assurance server. The data path is merely a pipe with one end
the Client OS and the other end the Encryption Module. When this pipe is
opened the Client OS receives a signal the path is ready. When the pipe is
closed the Client OS can no longer send data to the High Assurance Server

3.5.3.2 DP_Get X
3.5.3.2.1 Inputs
3.5.3.2.1.1 Input 1: string Filename
3.5.3.2.2 Outputs
3.5.3.2.2.1 Output 1: None
3.5.3.2.3 Return Value: FILE Pointer
3.5.3.2.4 Description: This function gets a block of data or file from the high

assurance server via the TCBE and a data transfer protocol. It uses the
Trusted Computing Base Data Transfer Protocols (tcbdtp) discussed in
Chapter III.

Pseudo-code

Convert tcbdtp Get function into TCBE_Data_Block
EM_Send(TCBE_Data_Block, EM_Socket)
EM_Receive(TCBE_Data_Block,EM_Socket)
Pointer = Convert TCBE Data Block into file

Return(Pointer)

3.5.3.3 DP Send
3.5.3.3.1 Inputs

83

3.5.3.3.1.1 Input 1: Data
3.5.3.3.2 Outputs
3.5.3.3.2.1 Output 1: None
3.5.3.3.3 Return Value: None
3.5.3.3.4 Description: This function gets a block of data or file from the host

computer and sends it to the high assurance server via the encryption
module. It uses the Trusted Computing Base Data Transfer Protocols
(tcbdtp) discussed in Chapter III. Whether this function waits for an
acknowledgement is up to the designers of the tcbdtp or other
communication protocols.

Pseudo-code

Convert tcbdtp Send function into TCBE_Data_Block
EM_Send(TCBE_Data_Block, EM_Socket)

3.6 TCBE HARDWARE

3.6.1 Description: The TCBE Hardware Module provides the interfaces between TCBE
modules and the hardware of the Trusted Computing Base Extension.

3.6.2 Databases:

3.6.3 Functions

3.6.3.1 CD_Encrypt
3.6.3.1.1 Inputs
3.6.3.1.1.1. Input 1: TCBE_Data_Block Red_Data
3.6.3.1.1.2 ■ Input 2: EncryptionJCey key
3.6.3.1.2 Outputs

■3.6.3.1.2.1 Output 1: TCBEJ)ata_Block Black_Data
3.6.3.1.3 Return Value: Boolean
3.6.3.1.4 Description: This function sends the data to the cryptographic device for

encryption.

3.6.3.2 Function: CD_Decrypt
3.6.3.2.1 Inputs
3.6.3.2.1.1 Input 1: TCBEJDataJBlock BlackJData
3.6.3.2.1.2 Input 2: EncryptionJCey key
3.6.3.2.2 Outputs
3.6.3.2.2.1 Output l:TCBE_Data_BlockRed_Data
3.6.3.2.3 Return Value: Boolean
3.6.3.2.4 Description: This function sends the data to the cryptographic device for

decryption.

84

3.6.3.3 Function: NIC_Write
3.6.3.3.1 Inputs
3.6.3.3.1.1 Input 1: Integer Comm_Port_No
3.6.3.3.1.2 Input 2: TCBE_Data_Block Black_Data
3.6.3.3.1.3 Input 3: Integer size of data
3.6.3.3.2 Outputs
3.6.3.3.2.1 Output 1: None
3.6.3.3.3 Return Value: Boolean
3.6.3.3.4 Description: This function sends encrypted data to the communications

device to send on to the net

3.6.3.4 Function: NICJtead
3.6.3.4.1 Inputs
3.6.3.4.1.1 Input 1: Integer Comm_Port_No
3.6.3.4.1.2 Input 2: TCBE_Data_Block Buffer
3.6.3.3.1.3 Input 3: Integer size of data
3.6.3.4.2 Outputs
3.6.3.3.2.1 Output l:TCBE_Data_Block BlackJData
3.6.3.3.3 Return Value: Boolean
3.6.3.3.4 Description: This function receives encrypted data from the

communications device.

85

86

APPENDIX C. TRUSTED COMPUTING BASE EXTENSION
EXECUTIVE SOURCE CODE

The source code contains the files necessary to load and operate the implemented

subset of the Trusted Computing Base Extension. The files provide include the C

language headers and source code as well as the assembly language modules. The

makefile for the project is included as well as a batch file. The batch file is used to

overcome the conflict between long file names and the eight character file name limitations

placed on compiling and linking the code on Microsoft Disk Operating System (MSDOS).

1. IMPLEMENTATION FUTURE WORK

Most of the functions that are identified in the specification were not built for this

implementation and are dependent on the future work mentioned in the Conclusions

chapter. However, there are several basic operating functions that are missing from this

implementation that are needed to produce a fully operational Trusted Computing Base

Extension.

a. Interrupt Service Routines

Interrupt Service Routines (ISR) are needed to manipulate the TCBE's keyboard.

These ISR's are hardware dependent. Currently, the Secure Attention Key is tested by

using'a test function: SAKTest, which causes the event to happen within the TCBE's

executive.

87

b. Memory Manager

The memory functions present in this implementation are simple and static.

Starting at a static starting address, a constant size list of fixed-size memory blocks is

built. Each state is assigned a memory block in sequential order, i.e. state 1 gets memory

block 1, state 2 gets memory block 2, etc. When the state is finished with the block, the

block is designated as free. However, the block is never used again by another state. If a

•state needs a new block of memory, it uses the next free sequential block of memory on

the memory list. For example if there are five states, and state 2 frees its block and then

needs another block of memory it will be assigned memory block 6. This happens until all

of the memory blocks have been used once. Then the system is out of memory and no

longer operates. A dynamic memory management system needs to be developed.. The

dynamic memory manager should be able to use blocks of different size, and allow states

to reuse different blocks of memory after the memory has been overwritten by an erasing

function.

2. ASSEMBLY LANGUAGE TO C LANGUAGE LINKAGE

The code developed for the TCBE was written in the C and Assembly

programming languages. Because of this linkage several, there are several requirements

that must be fulfilled before modifying, compiling, and linking the source code.

a. Resolving Memory and Linkage Issues

In order for the names of functions that are called across different language

models to be recognized, the following switches have to be applied when assembling and

compiling the source code.

88

Assembly code. TASM /mx code, asm

TASM is the name of the assembler. In this case Borland's Turbo Assembler. The

/mx switch that tells the assembler not to change the case of the names of the procedures

that are present in the Assembler code. TASM will automatically change all characters to

uppercase. The C language does not change the case of its functions. If this switch is not

used, the linking operation will not work.

C Code. BCC -c -ml code.c

BCC is the name of the compiler. In this instance it is the Borland C compiler. The

-c switch tells the compiler not to link the code, this will be accomplished in the batch and

make files. The -ml switch tells the compiler to compile the code using the LARGE

model. The LARGE model means that the program's code and data reside in different

segments in memory. This is necessary because of the size of the code and the fact that it

is written in two different languages. The assembler code must have the ".model large" or

similar statement present at the beginning of its program.

b. . Resolving Shared Procedure and Function Names

In addition to not changing the case of its functions when the code is compiled, the

C language adds underscores to the function names in the object code file that is produced

after compilation. Since Assembly language does not add the underscore to its procedure

names, the underscore must be added to all procedures that are called from C language

modules and the underscore must be added to Assembly procedures that are called by C

modules. For example:

89

Assembly Program

public _functionl ; This is an Assembly function called by a C module

extrn _function2 ; This is a C function called by an Assembly module.

<beginning of Assembly Program Body>

_functionl proc far
<body of _functionl >

_functionl endp

<ending of Assembly Program Body>

In the C language module, _function2 will be written as fiinction2.

90

TCBE IMPLEMENTATION SOURCE CODE

a. Custom.h

/* Filename: Custom.h
Author: Micheal Podanoffsky; modified by Jason Hackerson
Date: 04 August 1998
Function: Header file for customizable options of the executive

*/

/*

Customizable Parameters

Make sure all parameters here are customized to your needs.
 */

#defineNUM_STATES / 12 /*--number of states */

#define MEM_BLOCKS (NUM_STATES * (NUM_STATES/2))

#define NUMJEVENTS 7 /* ~ number of events */

#define MAX_STATE_NAME 32 /* — max characters in state name ~ */

#define MIN_STACK_SIZE 128

/* Serial Communications Events - Not used in this implementation of the
TCBEX */

/* -- enter in the enum list the
names of any custom event flags — */

typedef enum {

NOTJVAITING = 0, I* keep this line here */
COM1JUNG,
COMl_TX_EMPTY,
COMl_DATA_AVAJJLABLE,
COMl_CHANGE_CARRTER,

91

C0M2_RING,
C0M2_TX_EMPTY,
C0M2_DATA_AVAILABLE,
C0M2_CHANGE_CARRIER,

C0M3_RING,
C0M3_TX_EMPTY,
C0M3_DATA_AVAJJLABLE,
C0M3_CHANGE_CARRIER,

C0M4_RING,
C0M4_TX_EMPTY,
C0M4_DATA_AVAILABLE,
C0M4_CHANGE_CARRIER,

LAST_EVENT /* -- keep this entry alone -- */
} customEvents;

b. TCBEX.h

/* Filename: tcbex.h
Author: Micheal Podanoffsky; Modified by Jason Hackerson
Date: 04 August 1998
Function: Provides Header file for tcbe executive

*/
#include "Custom.h"

/* ///////////// System Events ///////////////////////////////////// */
/*— These are events that serve as inputs into the state machine engine —*/

typedef enum {

SAKJEVENT,
TRANSIT_EVENT,
REATTACH_EVENT,
KEYBOARD_WAIT,
LOGINJEVENT,
LOGOUT_EVENT,
SWITCH_SESSION_EVENT,
LAST_SYSTEM_EVENT

} systemEvents;

92

/* TCBEX system states */
typedef enum {

TCBE_INIT,
TCBEDISPLAY,
TRUSTED_PATH,
TPJNIT,
TP_CONFIRM,
TP_DISPLAY,
TP_LOGIN,
TP_LOGOUT,
TP_SWITCH,
DP_INIT,
DP_ACTIVE

JstateTypes;

typedef enum {

REATTACH,
CONFIRM,
LOGIN,
LOGOUT,
SWITCH_SESSION

}commandTypes;

93

/*— TCBEX system flags system flags help the state machine engine keep track
of what has been initialized —*/

typedef enum {

TCBEJNITJFLAG,
TP_INIT_FLAG,
DP_INIT_FLAG

}flagTypes;

/* ///////////// Other Defines ///////////////////////////////////// */

#define FALSE 0
#define TRUE 1 .

#define NULL OL

#define PERIODIC 1

#define CURR_STATE f OL /* indicates current task */
#define CURRENT_STATE' CURR_STATE /* indicates current task */
#define CURRENTSTATE CURR_STATE /* indicates current task */

#defineNO_ARGUMENT NULL

#define event unsigned int /* event flags stored in unsigned ints */
#define far_address(s, p) (void *)((unsigned long)((unsigned long)((s)) « 16) +
(unsigned long)((p)))

extern unsigned long *SystemClock;

l*IIIJIIII
Error Codes

#define SUCCESS 0
#define ERR_TASKALLOC_FULL SUCCESS -1
#define ERR_TIMERID_NOTFOUND SUCCESS - 2
#define ERR_INVALID_ADDRESS SUCCESS-3
#defme ERR INVALID EVENTED SUCCESS - 4

94

State Structure

This control structure defines a State. A state is a grouping of functions,
that determines the TCBE's current Mode of operations. When a state is
suspended, all of the registers including instruction address, flags, etc...
are stored in the state's stack and the suspended bit is set. The
suspended bit indicates that the stack contains registers to pop
before starting the state. The timing variables are left in the structure to
support a future version of the TCBE that may use multitasking.

)lllllllllllllllllllllllHIII*l

typedef struct {
unsigned suspended: 1;
unsigned free:l;

unsigned long sleep;
unsigned long time_slice;
unsigned long time_slice_interval;
event eventsf NUMJEVENTS];
event startup_event;

void *init_stack_addr;
void * curr_stack_addr;
void *start_addr;
void * argument;
unsigned stack_size;
int state_num;
char state_name [MAX_STATE_NAME]

} State;

Function Prototypes

iiiiiiiiiiiiiiiiiiiiiiniiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiuiiiiii*i

I* — general prototypes

void initStateSystem(void);
void restore_IntTraps(void);
void * tmalloc(void);

95

void tstrncpy(char * strl, char * str2, int n);
void * tfree(void * ptr);

extern void far * save_initregs
(void * stack,
void * start_addr,
void * argument,
int state_num);

extern void tprint(char * string);
extern void init_IntTraps(void);
extern void setClockInterrupt(unsigned long min_clock_value);
extern void setClockIntValue(void);

extern void scheduler(void);
extern void enableInts(void);
extern void condenableInts(int);
extern int disableInts(void);

extern void enableSched(void);
extern void disableSched(void); "

extern event SystemEvent[];

extern unsigned long *SystemClock;

/* — event related prototypes */

void clearSystemEvent(event event_id);
int defineEventFct(event event_id,

int (*start_addr) (event event_id, void * arg),
void * argument);

void Transit(void);
void SAKTest(void);
void Reattach(void);
void Login(void);
void Logout(void);
void Switch_Session(void);

96

/* — State related prototypes

State * defineState(int (*start_addr) (void * arg),
void * argument,
unsigned stack_size,
int state_num,
char * state_name);

State * redefmeState(State * state);

void transit(int current_state, int new_state);
void * returnState_Stackframe(void);
int terminateState(State * state);
int terminateState_num(int state_num);

typedef struct {
unsigned int ax;
unsigned int bx;
unsigned int ex;
unsigned int dx;
unsigned int si;
unsigned int di;
unsigned int es;
unsigned int ds;
} ALL_REGS;

void SaveRegisters(void);
void RestoreRegisters(void);

c. TCBEX.c

I* lilillillllllllllllllllllllllllllllllilllllilllilliilllllllllllllllll

Name: TCBEX.c (Trusted Computing Base Extension Executive)
Author: Jason Hackerson (from code originally written

by Michael Podanoffsky)
Date: 10 September 1998
Function: Provides the operating executive that operates the Trusted Computing

Base Extension.Note: Some functions remain from original RTX code. These
functions are deemed potentially useful for future implementations of the TCBEX.

Ill*!

97

i*iiiniiiiiin

Include these libraries when working with DOS and need their
functionality. Not needed otherwise

#include <stdio.h>
#include <malloc.h>

ll*/
^include "tcbex.h"

!*IIHIIIIIIIIIIIIIIIIIIIIIIIII
tcbex internal data structures

lll*!

int Current_State_Array[NUM_STATES];
int Event_Array[NUM_EVENTS];
State * State_Matrix[NUM_EVENTS][NUM_STATES];
stateTypes TCBE_state;
systemEvents TCBE_event;
flagTypes TCBE_flag;
int System_flags[3];
State * currentState;
State States[NUM_STATES];

l*IIIIIIIIIIIIIIIIIIIIIIIHIIIUI

Left over from RTX. May be useful to define events that are more
robust than current events

typedef struct {
int (* fct)(event event_id, void *arg);
void *argument;

} eventFct;

Allocate States and Counters

IIIIIIIIIIIIIHIIIIHIIIIIIIIIIIHIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIII*/
int actual_states = 0;
State *currentState = NULL;
unsigned long *SystemClock = far_address(0x0040, 0x006C);

98

I*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Data structures for memory management

llt*l

struct Block_Type{

, int block_num;
void * block_address;
int free;

struct Block_Type Block_Array[20];

#defineNOT(a) r(a)
#define PROTECTION_PATTERN 0xC0C4 I* stack protection signature */

/* lll

defines an event function.
Us a null fct argument to clear an event function.
Not used by TCBEX; may be useful for future implementations

IIIHIIIIIIIIIIIIIIII
int defineEventFct(event event_id,

int (*fct) (event eventjd, void * arg),
void * argument)

{ ■ '

if (eventjd > NUMJEVENTS)
return ERR_INVALID_EVENTID;

EventFunctionsf event_id].fct = fct;
EventFunctions[event_id].argument = argument;
return SUCCESS;

}
*/

99

I*IIIIIIIIIIIIIIIIIIHIIHIIIIIIIIIIIIIIIIIHIIIHIIHIIIIIIIIIIIIIIIII

Sets any system event

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiniiin*i
void setSystemEvent(unsigned event_id)
{

disablelntsO;
Event_Array[event_id] = 1;
enablelntsO;

}

l*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

waits for keyboard event

IIIHIIIIIIIIIIIIIIIIIIIIIIII*I
extern void waitKbdEvent(void)
{

setSystemEvent(KEYBOARD_WAIT);
}

Sets keyboard event in SystemEvent

lll*!
extern void setKbdEvent(void)
{

setSystemEvent(KEYBOARD_WAIT);

}

Sets SAK event in SystemEvent

IIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllll*!
extern void setSAKEvent(void)

{

setSystemEvent(SAK_EVENT);

100

}

void SAKTest(void)

{

setSAKEventO;
schedulerO;

}
I*IIIIIIIIIIJIIIIIIIIUII

Sets Transit event in SystemEvent

lll*!
extern void setTransitEvent(void)
{

setSystemEvent(TRANSIT_EVENT);

}

void Transit(void){

setTransitEvent();
schedulerO;

}

Sets Login event in SystemEvent

iiiniiiiiiiiiiiiiiiiiiiiii*i
extern void setLoginEvent(void)
{

setSystemEvent(LOGINJEVENT);

}

voidLogin(void){

setLoginEventO;
scheduler();

}
I*IIIIIIIIIIIIIIIIIIIIHIII

101

Sets Logout event in SystemEvent

extern void setLogoutEvent(void)

{

setSystemEvent(LOGOUTJEVENT);

}

void Logout(void){

setLogoutEventO;
scheduler();

}
I* lll

Sets Switch Session event in SystemEvent

Illlllllllllllllll/IIIIIIIIIIIHIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII*/
extern void setSwitchSessionEvent(void)

{

setSystemEvent(SWITCH_SESSION_EVENT);

}

void Switch_Session(void){

setSwitchSessionEventO;
schedulerQ;

}

l*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Sets Reattach event in SystemEvent

extern void setReattachEvent(void)

{

setSystemEvent(REATTACHJEVENT);

}

102

void Reattach(void){

setReattachEventO;
scheduler();

}

/* IIIIIIIHIIHIIIIIIHIIHIIUUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Support routine: returns hello as a place marker when debugging
assembly code

lll */
void hello(void){

tprint(" Hello ");

}

Function returns the stack pointer for the current stack when
switching stacks,
printf statement requires stdio.h

lll*!
extern void * returnState_StackFrame(void)

{

/*printf(" \nRSSF %#08.41x \n", (int *)currentState->curr_stack_addr);*/
return (currentState ? currentState->curr_stack_addr : NULL);

}

l*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIJIIIIIIIIIIIIIIIIIIII

Support routine: sets stack address of a suspended stack,
printf statement requires stdio.h

///*/
void saveCurrentState_Stack(void * stack)

{

if (currentState && stack)
currentState->curr stack addr = stack;

103

/*printf("SCCS stack addr %#08.41x \n",(int *)currentState->curr_stack_addr);*/

}

l*IIHIIIIII

Debugging function that provides an address. Needs stdio.h to display
the address.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIH*I
void printa(void * address)

{
tprint(" Printing Address");
/♦printfC'address = %#08.41x \n", (int *)address);*/

}

Clear a system event. From RTX, may be useful for future
implementation.

IIIIJIIIHIIIIIIIIIIIIIII*!
void clearSystemEvent(unsigned eventjd)

{

disablelntsO;
Event_Array[event_id] = 0;
enablelnts();

l*IIIIIIIHIIIIIIHIHIII

ClearEventArrayO

lll*!

void ClearEventArray(int index)

{
Event_Array[index] = 0;

}

104

l*IIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIItllllllllllUIII

tmemset: overwrites memory with given symbol

void * tmemset(void * pointer, int value, int len){

inti;
int * t = pointer;
for (i = 0; i < len; i++){
*(t + i) = value; .

}
return(pointer);

}

Function: mem_init
Input: none
Output: none
Purpose: initializes the memory queue

lll*!

void mem_init(void){

inti;

for(i = 0; i < 20; i++){

Block_Array[i].block_num = i;
Block_Array[i].block_address - 0;
Block_Array[i].free= 1;

}
}'

Function: blockjmalloc
Input: int i
Output: void pointer to a block of memory

105

Purpose: allocate assign a block of memory

IIIHIIIIIIIIIIIIIIIlllllllllllll*!
void * block_malloc(int i){

const int mem_start = 0x1000;
const int start = 0x0000;
const int buffer_size = 0x0400;
int buffer;
const int block_size = 0x1000;
int block;
void * address = far_address(0x0000,0x0000);

buffer = buffer_size * (i + 1);
block = block_size *(i + 1) + (buffer);
address = far_address(start, block);
address = far_address(mem_start, buffer);

return(address);
}

I*III11IJII

Function: tmalloc
Input: none
Output: void pointer to a block of memory
Purpose: allocate memory to each state

void * tmalloc(vpid){

int i;

for(i = 0; i < 20; i++){

if(Block_Array[i].free){
Block_Array[i].free = 0;
break;

}

}
return(block_malloc(i));

}

106

I*IIIHIIIIUIIII

Function: tfree
Input: void * address
Output: void pointer to a block of memory
Purpose: frees the allocated memory block

lll*!

void * tfiree(void * address) {

int i;
Block_Array[i].free = 1;
return(address);

}

l*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIII

State Machine Engine: Runs through State matrix to get the next state.

IIHIIIIIHII*I
void * -StateSelect(void) "
{

int e,s, eflag;
stateTypes Data_Path = DPJNIT;
systemEvents Reattach_Event = REATTACHJEVENT;
State * new_state = NULL;
int old_state_num = currentState->state_num;

eflag = 0; .
while (new_state — NULL){

while(eflag < NUM_EVENTS){

/*— first find event —*/
if (Event_Array[eflag]) {

e = eflag;
eflag = NUM_EVENTS;

for (s = 0; s < NUM_STATES; s++){
/*— Then check the state —*/
if (Current_State_Array[s]) {

/*— If not in Data Path or not reattaching,
then need to restart current state —*/

107

if(s > 3 && s < Data_Path && e != Reattach_Event){
new_state = redefineState(State_Matrix[e][s]);
break;

} /* if(s > 3 && s < Data_Path && e != Reattach_Event */
else{

new_state = State_Matrix[e][s];
break;

}/* else */

}/* if (Current_State_Array[s]) */

}/* for s */

}/* if (Event_Array[eflag]) */

else eflag++;

}/* while eflag */

}/* while */

ClearEventArray(e);

if (new_state = NULL){
new_state = currentState;

}
currentState = new_state;
Current_State_Array[old_state_num] = 0;
Current_State_Array[currentState->state_num] = 1;

return currentState->curr_stack_addr;

}

This function initializes the TCBEX's data structures

void initStateSystem(void)
{

108

tmemset(States, 0, sizeof(States));
tmemset(Event_Array, 0, sizeof(Event_Array));
tmemset(Current_State_Array, 0, sizeof(Current_State_Array));
tmemset(State_Matrix, 0, sizeof(State_Ma.trix));
mem_init0;

currentState = NULL;
Current_State_Array[l] = 1;

init_IntTrapsO;
tprint(" State System Initialized ");

}

This function defines each state with a stack

iin*i
State * defineState(int (*start_addr) (void * arg),

void * argument,
unsigned stack_size,
int state_num,
char * state_name)

void * stack_addr;
int * stack_bottom
State * state;

state = &States[state_num];

tmemset(state, NULL, sizeof(State));

if ((stack_addr = tmallocO) = NULL)
return NULL;

stack_bottom = (int *)stack_addr;

stack_bottom[0] = PROTECTION_PATTERN;

109

stack_addr = (void *)((char *)stack_addr + stack_size - sizeof(int));

state->stack_size = stack_size;
state->state_num = state_num;
state->start_addr = start_addr;
state->argument = argument;
state->init_stack_addr = stack_addr;

state->curr_stack_addr = save_initregs
(stack_addr, start_addr, argument, state_num);

return (&States[state_num]);

}

I*IIIHIIIIIIIIIIII*I

This function gives a state a new stack and address
Space.

State *• redefineState(State * state)

{
void * stack_addr;
void * start_addr;
void * argument;
int * stack_bottom;
int state_num;
unsigned stack_size;

/*— get the state's information —*/
state->free = TRUE;
start_addr = state->start_addr;
state_num = state->state_num;
argument = state->argument;

/*— free the space that it was using before --*/
tfree(state->init_stack_addr);

/*— now give it new space and information —*/
if ((stack_addr = tmallocO) = NULL)

return NULL; /* if tmalloc failed */

110

stack_bottom = (int *)stack_addr;
stack_bottom[0] = PROTECTION_PATTERN;

stack_addr = (void *)((char *)stack_addr + stack_size - sizeof(int));

state->stack_size = stack_size;
state->init_stack_addr = stack_addr;
state->curr_stack_addr = save_initregs

(stack_addr, start_addr, argument, state_num);

return state;

,}

Called from terminateState_num. Frees the memory of the state pointed at.
Modified to overwrite that portion of memory.

int terminateState(State * state)

if (state = currentState)
currentState = NULL;

state->free = TRUE;
tfree(state->init_stack_addr);
tmemset(state, NULL, sizeof(State));
return(O);

}

l*IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Frees the memory of the corresponding state. Only called from Task_Exit
in regs.asm. This function may be useful for redundancy when finishing
or switching states

iiiiiiiiiiiiiiiiiiiiiiiiriiiniiii*i
int terminateState_num(int state_num)
{

terminateState(&States[state_num]);
return (0);

}

111

Left over from RTX. may be useful for future implementations

extern int x_keyboardEventFct(event event_id, void * arg)
{

int * kbdJmffPtr = far_address(0x0040, 0x001 A);
int kbd_buffer_status;

disablelntsO;

kbd_buffer_status = (kbd_buffPtr[0] != kbd_buffPtr[1]);

enablelntsO;

return kbd_buffer_status;

}

d. TCBE_Module.h

/*

//Name:TCBE_Module.h
// Author: Jason Hackerson
//Date: 06 July 1998
// Function: Provide the header file with global information for the
// entire TCBE System
//. */

/* Structures used to pass data between modules and components on the TCBE and
the host computer*/

struct Data_Block_Record{
char * Command;
void * Data;

};

112

struct TCBE_Data_Block_Record{
char * Command;
struct Data_Block_Record Data_Block;
int Data_Block_Size;

};

int TCBE_Initialize(void * argument);
int TCBE_Display(void * argument);
int DP_Path_Init(void * argument);
int DP_Path(void * argument);

e. TCBE_Module.c

/* . .

//Name: TCBE_Module.c
// Author: Jason Hackerson
//Date: 08 September 1998
// Purpose: Provides the TCBE Core modules for the TCBE. Also includes some
// stub functions for the Data Path Module
// „r . */

#include "tcbex.h"

/* One session number assigned for each session in use*/
int SessionJSTumber;

/* particular state of the CPU and OS when halted by the TCBE; to be used when
TCBE has ability to hold client OS State*/

typedef struct {
int Client_OS_Size;

}Client_OS_Info_Record;

/* Tables to hold the Client OS state and the appropriate session number*/
struct Session_Info_Record{

int SessionJSfum;
Client_OS_Info_RecordClient_OS_Info;

};

struct Session_Table_Record{
int Current_Session_Number;
struct Session_Info_Record* Session_Info;

};

113

int DP Established = 0:

int TCBE_Load_Client_OS(void){

tprintC'*** TCBE Loading Client OS ***");
/* Code to load Client OS */
DP_Established = 1;
return(l);

}

int TCBE_Initialize(void * argument)!
tprint(" Initializing TCBE");
TransitO;
return (4);

}

int TCBE_Display(void * argument)!
tprint(" TCBE Display");
SAKTestO;
return (4);

}

int DP_Path_Init(void * argument)!

tprint(" Initializing Data Path ");
/* Code to start data path */
if(DP_Established){

TransitO;
1
else {

tprintC'*** Need to Load Client Operating System ***");

if(TCBE_Load_Client_OS()){
TransitO;

}
}
return(O);

}

int DP_Path(void * argument) {
tprint(" Data Path");
return (4);

}

114

f. TP_Module.h

/*

// Name: TP_Mödule.h
// Author: Jason Hackerson
//Date: 09 July 1998
// Function: Provide the header file for the Trusted Module of the TCBE
//. */

/* Only the functions that form states need to be public */
int TP_Start_Trusted_Path(void * argument);
int TP_Idle_Trusted_Path(void * argument);
int TP_Confirm_Trusted_Path(void * argument);
int TP_Login(void * argument);
int TP_Logout(void * argument);
int TP_Switch_Session_Level(void * argument);

g. TP_Module.c

/* .

//Name: TP_Module.c
// Author: Jason Hackerson
// Date: 10 September 1998 •
// Purpose: Provides the driver program for the TCBE. These functions are
// stub functions. The Trusted Path developer should put the Trusted Path code
// here.
//". _ */

#include "tcbex.h"

enum Trusted_Path_Status_Type {Esatblished, Not_Established};
enum Trusted_Path_State_Type {Idle, Confirming, Initializing, Logging_Out,

Logging_In, Switching_Session_Level,
Clearing_Buffer};

typedef int Encryption_Key;
typedef int Data;

/* structures to keep track of where the TCBE is in security levels*/

115

struct Tnisted_Path_Session_Info_Record{
int Session_Number;'
Encryption_Key Session_Encryption_Key;

};

/* This structure expands if able to hold multiple session states;
// for initial implementation it will only have one entry*/

struct Trusted_Path_Session_Table_Record{
int Current_Session_Number;
struct Trusted_Path_Session_Info_Record* Trusted_Path_Session_Info;

.};

/* Buffer holds requests*/

struct Trusted_Path_Buffer_Record{
int Desired_Session_Level;

};

/* Self-explanatory*/

struct Current_User_Information_Record{
char * Username;
char * Password;
Data Biometric_Data;

};

/* Global Values while operating in the Trusted Path*/
struct Trusted_Path_Session_Info_Record Trusted_Path_Session_Info;
struct Trusted_Path_Session_Table_RecordTrusted_Path_Session_Table;
struct Trusted_Path_Buffer_Record Trusted_Path_Buffer_Record;
struct Current_User_Information_Record Current_User_Information;

int TP_Start_Session(int Session_Level){ return (2);}
int TP_Get_Session_Key(void){ return (2);}

int TP_Start_Trusted_Path(void * argument) {

int result = 0;
result = 1;
tprint(" Starting Trusted Path ");
/* Code to initialize the trusted path */
Transit();

116

return(result);

}

int TP_Idle_Trusted_Path(void * argument)!

commandTypes Command;
static int count = 1;

/* Code to display Trusted Path Menu or start screen */
/* Code to allow the user to input choice or command */

tprint(" Trusted Path Display");

if (count = 0){Command = CONFIRM;}
if (count = l){Command = LOGIN;}
if (count = 2){Command = LOGOUT;}
if (count = 3){Command = REATTACH;}
if (count = 4){Command = SWITCH_SESSION;}

if(Command = CONFIRM)!
SAKTestO;

}
else if(Command = LOGIN) {

LoginO;
}
else if(Command = LOGOUT) {

LogoutO;
}
else if(Command = REATTACH) {

ReattachO; •
}
else Switch_Session();

count++;
return (1);

}

int TP_Confirm_Trusted_Path(void * argument) {

tprint (" Confirming Trusted Path ");
/* Code to confirm the Trusted Path with the

high assurance server */
TransitO;

117

return (2);
}

int TP_Login(void * argument)!

tprint(" Logging in to High Assurance Server");
/* Code to login to high assurance server */
TransitO;
return (2);

}

int TP_Logout(void * argument)!
tprint(" Logging out of High Assurance Server ");
/* Code to log out of high assurance server */
TransitO;
return (2);

}

h. Stddefs.asm

.imiMiimiimmimimmMiiiiiHiimimiitiii.

; Standard Definitions.;

; (C) Copyright, 1991. Mike Podanoffsky
; All Rights Reserved.

.Macros developed by original author

zero equO
one equ 1
two equ 2
minusOne equ -1

no equ 0
yes equ 1

false equ 0
true equ 1

118

 pointer

 segment

equO

equ2

; Dos Function Codes; Not used by TCBEX

ExitProgram equ OOh

SetDiskTransferAddr equ lAh
GetDiskTransferAddr equ 2Fh
SetlntVector equ 25h
GetlntVector equ 35h
TerminateProcess equ 4ch

; Flag Register Values

_flags_of
_flags_df
_flags_if
_flags_tf
_flags_sf
_flags_zf
_flags_af
_flags_pf
_flags_cf

equ 0800h
equ 0400h
equ 0200h
equ 01 OOh
equ 0080h
equ 0040h
equ 001 Oh
equ 0004h
equ 000lh

nmiimmmiimiimimiiimiimmiinimm.

Entry Macro.

entry macro label

label proc far
_ARGP =6
_ARGT =0

push bp
mov bp,sp
endm

119

iimmNHHtiHiMMiiiiHiMiHiHiniminmiNt.

alias Macro. :

alias macro label

label proc far
label endp

endm

NIIIMMIIIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIMIII.

Return Macro.

return macro nbytes
mov sp,bp
popbp

ifidn <nbytes> <pascal>
ret _ARGP-6
else
ret nbytes
endif

endm

IIIHIIMIIIMHIHIItinimHIIItmiHIimillllMH.
7

Define Double Argument. ;

darg macro label

label =_ARGP
ARGP =_ARGP+4 ;long

chklabel label
endm

IMIIIIIIMMItlllMMIIIItllllllMllllllltlllltlllllll.

Define Argument. ;

arg macro label

label = ^ARGP ;set argument.
_ARGP =_ARGP+2

chklabel label
endm

120

.HIMMMIHIIIMIIIIItllllllimilHIIMItlllMMlHII.

; Temporary Storage.

targ macro label,reg

_ARGT =_ARGT-2
label =_ARGT ;set argument.
pushedreg = no

ifb <reg>
push ax
pushedreg = yes
endif

ifnb <reg>
irp treg,<ax,bx,cx,dx,si,di,es,ds,f>
ifidn <reg>,<treg>

tpush reg
pushedreg = yes
endif
endm
endif

ife pushedreg-no ;if not pushed
push ax
mov word ptr label [bp],reg ;really a value,
endif

chklabel label
endm

iiHiiiMiiHiiiMiiHHimHiiimimmmiiMiHM.

Temporary Double Arg Storage.;

tdarg macro label,reg,seg

_ARGT =_ARGT-4
label =_ARGT ;set argument.
pushedreg = no
pushedseg = no

ifb <reg>

121

push ax
push ax
pushedreg = yes
pushedseg = yes
endif

ifnb <reg>
irptreg,<ax,bx,cx,dx,si,di,es,ds,f>
ifidn <reg>,<treg>

tpush reg
pushedreg = yes
endif
endm
endif

ife pushedreg-no ;if not pushed
push ax
push ax
mov word ptr label [bp],reg ;really a value,
mov word ptr label [bp+2],zero ;32 bits,
pushedreg = yes
pushedseg = yes
endif

ifnb <seg>
irp tseg,<es,ds>
ifidn <seg>,<tseg> '
tpush seg
pushedseg = yes
endif
endm
endif

ife pushedseg-no
push ax
endif

chklabel label
endm

MlllllllllinMllimillllMIIIIMIMIIMMMIIIIIIIII.

Check for Bad Label ;

chklabel macro label

122

ifidn <label> <offset>
error "bad label"
endif

ifidn <label>,<org>
error "bad label"
endif

ifidn <label> <ptr>
error "bad label"
endif

ifidn <label>,<end>
error "bad label"
endif

ifidn <label>,<endp>
error "bad label"
endif

ifidn <label>,<even>
error "bad label" .
endif

ifidn <label><segment>
error "bad label"
endif

endm

. iiHiniMMiimimnmimnHimiiiimMiMimi.

; Define Double Argument.;

getdarg macro seg,reg,label
loadedflag =no

ifidn <seg>,<es>
les reg,dword ptr label [bp]
loadedflag = yes
endif

ifidn <seg>,<ds>
Ids reg,dword ptr label [bp]
loadedflag = yes

123

endif

ife loadedflag-no
mov reg,word ptr label [bp]
mov seg,word ptr label [bp+2]
endif
endm

HHMiiiimimiiiHtiiiiHimiimniMMimmiii.
j

Define Argument. ;

getarg macro reg,label
mov reg,word ptr label [bp]
endm

IIIIIIIIMMIIIIIIIIIIIIIIIIIIIIIIIIHHtlllllMIIIIIII.

Store Double Argument. ;

stordarg macro label,reg,seg
mov word ptr label [bp],reg
mov word ptr label [bp+2],seg
endm

llllllflllllllllllMIIIIMnimtllllllltlllMIIMMIII.
y

Store Argument. •

storarg macro label,reg
mov wordptrlabel [bp],reg
endm

IIMIIHIIIIIHIininiMMIIIIHIIMIIHIIIIMIIIIMII.
)

Save Registers. ;

saveRegisters macro

push ax
push bx
push ex
push dx
push si
push di

124

push bp

push ds
push es
endm

niMMIIMIIIMMMMMIMIimiHIIIMMIIIIMIIItlM

Restore Registers.

restoreRegisters macro
pop es
pop ds

popbp
pop di
pop si
pop dx
pop ex
pop bx
pop ax
endm

MIIIIIMIIMIIIMIHIIIIHMMIIIIIIIMMIinillllllll.

Save Segments. ;

saveSegments macro reg 1 ,reg2,reg3 ,reg4,reg5,reg6,reg7,reg8,reg9,reg0

push ds
push es'

ifhb <regl>
tpush regl
endif

ifhb <reg2>
tpush reg2
endif

ifhb <reg3>
tpush reg3
endif

ifhb <reg4>
. tpush reg4

endif
ifnb <reg5>

125

tpush reg5
endif

ifnb <reg6>
tpush reg6
endif

ifhb <reg7>
tpush reg7
endif

ifnb <reg8>
tpush reg8
endif

ifnb <reg9>
tpush reg9
endif

ifnb <regO>
tpush regO
endif
endm

.iiiimiiimiiimiimiHiiiiiMiiiiimiiHiiiiHin.

; Restore Segments. ;

restoreSegments macro regl,reg2,reg3,reg4,reg5,reg6,reg7,reg8,reg9,reg0

ifnb <regl>
tpop regl
endif

ifnb <reg2>
tpopreg2
endif

ifnb <reg3>
tpop reg3
endif

ifnb <reg4>
tpop reg4
endif

ifhb <reg5>
. tpop reg5
endif

ifnb <reg6>
tpop reg6
endif

ifnb <reg7>
tpop reg7

126

endif
ifnb <reg8>

tpop reg8
endif

ifhb <reg9>
tpop reg9
endif

ifnb <regO>
tpop regO
endif

pop es
pop ds
endm

.IIIMIMIIICMMIMMIMMIIHIIIMIMMMMMIMIMIII.

; This Segment

thisSegment macro regl,reg2,reg3,reg4,reg5,reg6,reg7,reg8,reg9,reg0

ifhb <regl>
push cs

popregl
endif

ifhb <reg2>
push cs

pop reg2
endif

ifhb <reg3>
push cs

pop reg3
endif

ifhb <reg4>
push cs

pop reg4
endif

ifnb <reg5>
push cs

pop reg5
endif

ifhb <reg6>
push cs

pop reg6
endif

127

ifnb <reg7>
push cs

pop reg7
endif

ifnb <reg8>
push cs

pop reg8
endif

ifnb <reg9>
push cs

pop reg9
endif

ifnb <regO>
push cs

pop regO
endif
endm

HmHIHHMMIIimHHHMMIimimiMHimMHI.

Call Dos

callDos macro fctvalue,lowvalue

ifnb <fctvalue>
mov ah,fctvalue
endif

ifnb <lowvalue>
mov al,lowvalue
endif

int 21h
endm

. IIIIIIIIMMIMMIIIIIIMIM1IIIIMIMIIIMMMIMIIIII.

7 >

; Set Interrupt Vector.

setlntTrap macro intvector, newvector, savevector

callDos GetlntVector, intvector
mov word ptr [savevector + 2], es

. mov word ptr [savevector], bx

128

mov dx,seg newvector
mov ds,dx
mov dx, offset newvector
callDos SetlntVector, intvector

endm

i. Regs.asm

title "tcbex register support"
page,132

IIIIHMinimMIMIMmimtMHHtHIMUniMtlM!.

Interrupt/ Register Support for TCBEX

(C) Copyright, 1991. Mike Podanoffsky
All Rights Reserved

Technical questions: 508/454-1620.
Modified by Jason Hackerson, September 1998

.model large
include stddefs.asm

reg_supp segment para public 'CODE'
assume cs:reg_supp,ds:reg_supp,es:reg_supp,ss:reg_supp

public _tprint . ; provides simple print function
public _ischeduler ; iret scheduler call
public _scheduler ; far call scheduler call
public _keyboardEventFct ; keyboard event function

public _condenableInts ; allow ints on cond
public _enablelnts ; enable interrupts
public _disablelnts ; disable interrupts

public _save_initregs ; used to init a task's stack
public _init_IntTraps ; initial state interrupt traps
public _restore_IntTraps ; restore interrupt traps

129

public _SaveRegisters
public JRestoreRegisters

extrn _terminateState_num:proc
extrn _StateSelect:proc
extrn _saveCurrentState_Stack:proc
extrn _returnState_StackFrame:proc

extrn _waitKbdEvent:proc
extrn _setKbdEvent:proc
extrn _setSAKEvent
extrn _printa:proc

, Mil 11111111111111111111111111111111111IIII1111111111II,

; Flags/ Storage Definitions

schedulerPending: dwO
tcbex_DataS egment: dwO

_originalDosTrap: ddO
_originalTickInt: ddO
_originalKbdS vcTrap: ddO
_originalKbdHdwTrap: ddO
_original S crnTrap: ddO

01dlnt9 dw ?
01dlnt8 dw ?
OldlntlO dw ? •

01dlntl6 dw ?
01dlnt21 dw ?

SAK Scan Code equ lfh ;alt-S
AltBit equ 8
KbdFlags equ <byteptrds:[17h]>

totaMnts: dwO

. «llillllllnmimMMmiiiiniimimmiliiiMim.

; Macro Definitions.

130

Int macro loc

pushf
call dword ptr es:[loc] ; keep rentrancy problems down.

endm

.IIIMIIIIIIIIIMIIIIItlllltltllMMIIMMtnilMIIIIIII.

; save_initregs >

; Initializes stack for the state
; void * savejnitregs
; (void far * stack,
; void far * start_addr,
; void far * argument,
; int task_id);

?

entry _save_initregs

darg stack
darg start_addr
darg argument
arg taskjd

; order of items stored to task's stack

_task_id equ 40
_argument equ 36
_taskExit equ 32

start addr equ 28
_pushf equ 26
_push_ax equ 24
_push_bx equ 22
_push_cx equ 20
_push_dx equ 18
_push_si equ 16
jpush_di equ 14

; void far *
; task exit address

; start address
; push flag emulation

;ax
;bx
;cx
;dx
;si
;di

131

_push_bp equ 12

_push_ds
_push_es

equ 10
equ 08

_push_dta equ 04
_push_stackf equ 00

FLAGS_VALUE equ 0246h

;bp

;ds
;es

;dta
; null stack frame pointer

; ei zr nc

; execution starts here.

saveSegments

push ds
pop es
getdarg ds,bx, stack

; insure es: = ds:

sub bx, 128
push bx
push ds

; disk transfer address

; ds:bx

sub bx,_task_id+2 ; total arguments we'll store

; task stack will contain taskjd, return address,...

getarg ax, taskjd
mov word ptr _task_id[bx],ax

getdarg dx, ax, argument
mov word ptr _argument+2[bx],dx
mov word ptr _argument[bx],ax

mov word ptr _taskExit+2[bx], seg taskExit
mov word ptr _taskExit[bx], offset taskExit

mov word ptr _pushf[bx], FLAGSJVALUE ; flags.

getdarg dx, ax, start_addr
mov word ptr _start_addr+2[bx],dx
mov word ptr _start_addr[bx],ax

132

now save on stack ALL registers

xorax,ax
mov word ptr _push_ax[bx],ax
mov word ptr _push_bx[bx],ax
mov word ptr _push_cx[bx],ax
mov word ptr _push_dx[bx],ax
mov word ptr _push_si [bx], ax
mov word ptr _push_di[bx],ax
mov word ptr _push_bp[bx],ax

mov word ptr _push_ds[bx],ss
mov word ptr _push_es[bx],ss

pop word ptr jpush_dta[bx] ; seg (dta)
pop word ptr _push_dta + 2[bx] ; address

xor ax, ax
mov word ptr _push_stackf[bx],ax ; seg' (stack frame)
mov word ptr _push_stackf+ 2[bx],ax ; address

return adjusted stack address

mov dx,ds
mov ax,bx ; dx:ax contain remaining stack.

restoreSegments
return pascal

_save_initregs endp

IIHIIIIHIIMIIIIIIIIIIIIIIIIIIIMIIHIIIIIIHIIttllll.
?

scheduler

No parameters.
5

Will suspend current task, schedule next task.
See related function: ischedule() for isr calls.

133

scheduler proc far

pushf ; save flags

SaveRegisters

push bx
push es

cli
call _returnState_StackFrame
push dx ; save current stack frame.
push ax

mov dx,ss
mov ax,sp
push dx
push ax
call _saveCurrentState_Stack
sti
xordx,dx

; stack switch

scheduler_32:

call StateSelect
mov ex, ax
or cx,dx ; NULL value ?

jnz scheduler_36
int3
jmp scheduler_38

; if new state then switch

; else restore

scheduler 36:
cli ; switch state stacks.
mov ss,dx
mov sp,ax

; if return, stack switch

134

scheduler_38:
call _saveCurrentState_Stack ; restore stack frame,
sti : ok ints now

; restore the registers
; first six pops get the stack pointer to the correct spot on the
; state's stack
pop ax
pop ax

pop ax
pop ax

pop ax
pop ax

popbp
pop di
pop si
pop dx
pop ex
popbx
pop ax

popf ; this will restore ints
mov al, ■x1 ; marker for scheduler switching
call PutcBIOS
xor ax, ax
xor dx, dx •

ret far

_scheduler endp

MIIMMItHMMtllMMIHUIIMIMHIIflMltMMIIHM.

ischeduler

No parameters.

Will suspend current task, schedule next task.
Performs an iret. Some ISRs may find this call
preferable.

135

_ischeduler proc far

call _scheduler
iret

Jscheduler endp

taskExitO

This process is called whenever a task terminates.
Calls scheduler to release task.

taskExit proc far
mov bp,sp ; didn't get here through a call
mov dx,word ptr [bp] ; should be taskjd

; switch to temp stack, then ...
cli
mov ds, word ptr cs:[tcbex_DataSegment]
mov ax,seg temp_stack
mov ss,ax
mov sp,offset temp_stack

sti
push dx ; copy to stack
call _terminateState_num ; terminate task

taskExit_08:
call _scheduler
jmp taskExit_08

taskExit endp

limiiiiitimimiiiiiimimiHMmmitiMimin.

enablelntsO

Enables interrupts for C programs.

136

_enablelnts proc far

sti
ret

_enablelnts endp

IIIUMIMIIIMMIIIMIIIMIIIIMI

disablelntsO

IIIIIUMIMIIIMMIIIMIIIMIIIIMIIIIinitlllllllHM.

Disables interrupts for C programs.

_disablelnts proc far

pushf
pop ax ; copy flags to ax.
and ax,_flags_if
jz disablelnts_08 ; if ints were disabled —>
mov ax, 1 ; if ints are enabled.

disablelnts 08:
cli
ret

disablelnts endp

timMtMmillHMMtmilMHHHMHIHIHimimt.

condenablelntsO

Conditional enables interrupts. Use disablelnts to
disable interrupts. This is a convenience function.

entry _condenableInts
or ax,ax
jz condenablelnts_08
sti

137

condenablelnts_08:
return

_condenableInts endp

MlimlimiHIIHIHIIMIimitlllllHIIHIIII. 'int 08
TimerTick

This ISR is called every clock tick (int 08)
If the current clock value at interrupt equals or
passes the next required clock value, the scheduler
is called to determine what action is required next.

TimerTick proc far

push ax
pushbx
push dx
push ds

_Int _originalTickInt
inc word ptr cs:[totaMnts]

emulate int call

; see ifmin timer value expired.

mov ax,40h
mov ds,ax
mov bx, 6Ch

mov ax,word ptr [bx]
mov dx,word ptr [bx + 2]

push cs
pop ds
jg TimerTick_40

; set ds to current.

sti
xor ax,ax

138

saveRegisters
mov ds, word ptr cs:[tcbex_DataSegment]
call _scheduler ; see if task time slice
restoreRegisters

TimerTick_40:
pop ds
pop dx
popbx
pop ax

iret

TimerTick ehdp

imiiMmiimmimimmiimtiHmiMinmmi.

restore_IntTraps()

Restores interrupt traps before exit.
Not used for the TGBEX.

_restore_IntTraps proc far

Ids dx,dword ptr cs:[_originalDosTrap]
callDos SetlntVector, 21h ; restore vector to Int21.

Ids dx,dword ptr cs:[_originalKbdHdwTrap]
callDos SetlntVector, 09h

Ids dx,dword ptr cs:[_originalScrnTrap]
callDos SetlntVector, 10h

Ids dx,dword ptr cs:[_originalKbdSvcTrap]
callDos SetlntVector, 16h

Ids dx,dword ptr cs:[_originalTickInt]
callDos SetlntVector, 08h

ret
_restore_IntTraps endp

139

MM1111l1MtttM«M11tMMMtltffttttff(tlllt1M1tfft*.

Int2lQ

Int 21 traps to here. We can detect DMA address
change, terminate process, and whether we are
entering/exiting DOS.

Int21 proc far

cmp ah,ExitProgram
jz Int21_12
cmp ah,TerminateProcess
jnz Int21_20

Int21_12:
push ax save return code.

Ids dx,dword ptr cs:[_originalDosTrap]
callDos SetlntVectdr, 21h ; restore vector to Irit21.
call _restore_IntTraps
pop ax

Int21_20:
_Int _originalDosTrap
ret 2

Int21 endp

; emulate int call
; pass through our own status.

MIIHHIHHIMIMMtmiMminmHIIIIMHHHtlllim.

SetCmd - this procedure communicates with the 8042
processor in the keyboard. Code borrowed from Randall
Hyde's Art of Assembly

HIIIIIIIIIIIIIIIIIIIIIMMIIIIIIIIIIIMMMIIIIIIIIIIMIII.

SetCmd proc near
push ex
push ax
cli

140

xor ex, ex

mov al, 'F
call PutcBIOS
xor ax, ax

Wait4Empty: in al, 64h
test al, 10b
loopnz Wait4Empty

;send command to the 8042

;Read Keyboard status register
;Input Buffer full?
;if so wait until empty

SetCmd

pop
out
sti

ax
64h, al

pop
ret

ex

endp

imtHtllMMHIItinmiMIIMtHMMIIHIIMtlHttM.

Intl6()

Int 16 is used to read the keyboard. It needs to
trap to a waitKbdEvent.0 function which sets the
KBD event flag in the current task and exits to the
scheduler.

Int 16 proc far
or ah,ah
jnzlntl6_22

SaveRegisters
mov ah, 1
int 16h
jnzlntl6_20

; is it a keyboard wait call ?
; no, go ahead and execute —>

; we'll call ourselves
; if key available, no need waiting —>

mov ds, word ptr cs:[tcbex_DataSegment]
call waitKbdEvent : wait on kbd event.

Intl6 20:

141

RestoreRegisters •

Intl6_22:
_Int _originalKbdSvcTrap

ret 2 ; pass through our own status.

Intl6 endp

HHMimiiim

Int090

•iiiiiitittinitiiiiitiiiriiiiiititiiiifiitiiiiMiitiit.

Int 09 is the keyboard interrupt. If a key is
detected and saved by the ROM BIOS it will force
the setKbdEvent and call the scheduler to evaluate
task priorities. This code has been modified by
Jason Hackerson. Original RTX code has been commented
out.

Int09 proc far

_Int _originalKbdHdwTrap ; do normal kbd duties.

;push ax
;push bx
;push ds

push dx
push ax
push ex

mov ax,40h
mov ds,ax ; look at bios kbd area
;movbx, lAh

mov al, 40h
call SetCmd
cli

. xor ex, ex
Wait4Data:

142

in al, 64h
test al, 10b
loopz Wait4Data
in al, 60h
cmp al, SAK_Scan_Code
jne OrigInt9

;is it the alt-S key?

;if it is the alt-S key then eat the S and do not let it through

;reenable keyboard mov al, Oaeh
call SetCmd
mov al, 20h
out 20h, al
pop ex
pop ax
pop ds

;send EOI
; to the 8259APIC

;mov ax, word ptr [bx]
;cmp ax, word ptr [bx + 2]
;sti
Jzlnt09_20

SaveRegisters
mov ds, word ptr cs:[tcbex_DataSegment]
call _setSAKEvent ; say Secure Attention Key event occurred.
call _scheduler
RestoreRegisters

Int09 20:
;pop ds
;pop bx
;pop ax
;iret

OrigInt9:
mov al, Oaeh
call SetCmd
pop ex
pop ax
pop ds
jmp cs:01dlnt9

Int09 endp

; Reenable keyboard

143

.itiiMiiiimHimmmiHiiimmmiimmmiiii.

KeyboardEventFct
>

Sample of an event fct. This returns true (non-zero)
when keyboard data is available; false (zero) when no
keyboard data is available.

entry _keyboardEventFct

7

push bx
push ds
mov ax,40h
mov ds,ax ; look at bios kbd area
movbx,lAh

cli
mov ax,word ptr [bx]
cmp ax,word ptr [bx + 2]
sti

;lAh
. ; ICh

mov ax, 0
jz keyboardEventFct_08

; false if no input available.
; if zero, no keys pending ->

mov ax, 1 ; true if input available.

keyboardEventFct_08: .
pop ds
popbx
return

_keyboardEventFct endp

.tllllllllllHIimilllimilltimilllllltlllimHIIII. .

, IntlOO
> 9

, This would handle any program to Int 10 calls. There
; are no screen special considerations unless you need
; to support different windows per task.

144

Int 10 proc

_Int _original S crnTrap

iret
Int 10 endp

Set_IntTrap macro intno, newint, oldint

cli
mov ax, Oh
mov es, ax
mov ax, es:[intno*4]
mov word ptr oldint, ax
mov ax, es:[intno*4+2]
mov word ptr oldint+2, ax
mov es: [intno*4], offset newint
mov es:[intno*4+2],cs
sti

endm

IMIMIIIIIHIIIIIIMIHIIIIIIMIMIHMMIIIIMIMMII.

init_IntTrapsO

Init int traps for whole system. Called by
initTaskSystemQ •

_init_IntTraps proc far

saveSegments

mov ax, ds
mov ds, ax

push cs
pop ds

Set_IntTrap 9, Int09, _originalKbdHdwTrap

SetJntTrap 10, IntlO, OldlntlO

145

Set_IntTrap 16, Int 16, _originalKbdSvcTrap

Set_IntTrap 08, TimerTick, 01dlnt8

SetJntTrap 21, Int21, 01dlnt21

restoreSegments
ret

_init_IntTraps endp

SaveRegisters procfar

push bp
sub sp,10
mov bp,sp

push word ptr [bp+14]
push word ptr [bp+12]
push word ptr [bp+10]

mov word ptr
mov word ptr
mov word ptr
mov word ptr
mov word ptr
mov word ptr
mov word ptr
mov word ptr

[bp+00], ax
[bp+02], bx
[bp+04], ex
[bp+06], dx
[bp+08], si
[bp+10], di
[bp+12], es
[bp+14], ds

; points to bottom of table

; return address

; bp pushed on call

popbp
ret

_SaveRegisters endp

_RestoreRegisters proc far

push bp
mov bp,sp
add bp,6

mov ax, word ptr [bp+00]

; points to bottom of table

146

mov bx, word ptr [bp+02]
mov ex, word ptr [bp+04]
mov dx, word ptr [bp+06]
mov si, word ptr [bp+08]
mov di, word ptr [bp+10]
mov es, word ptr [bp+12]
mov ds, word ptr [bp+14]

popbp
ret 16

_RestoreRegisters endp

_tprint proc far
push bp
mov bp, sp
push ax
push es
push bx

les bx, [bp + 6]
jmp short TestZero

;Get return address

PrintLoop: call PutcBios
inc bx

TestZero: mov al, es:[bx]
emp al, 0
jnz PrintLoop

?

inc bx
mov [bp + 6], bx
pop bx
pop es
pop ax
pop bp
ret

_tprint endp

PutcBIOS proc near
push ax
mov ah, 14
int 10h
pop ax
ret

147

PutcBIOS endp

reg_supp ends

.miiimiiiHMMMMiimiHinc

; temporary stack

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIHIMIIIIIIIIIIII.

t_stack segment para DATA1

dw 4000 dup(0)
temp_stack dd 0
t stack ends

end

Makefile

Borland C++ IDE generated makefile
Generated 8/17/98 at 10:43:32 AM

AUTODEPEND

Borland C++tools

IMPLIB =Implib
BCCDOS = Bcc+BccDos.cfg
TLINK =TLink
TLB =TLib
TASM = Tasm

IDE macros

External tools

Assembler = tasm.exe # IDE Command Line: $TASM /mx

148

Options

IDE_LinkFLAGSDOS = -LD:\BC5\LIB
IDE_BFLAGS =
LinkerLocalOptsAtDOS_tcbedexe = -c -Tde
ResLocalOptsAtDOS_tcbedexe =
BLocalOptsAtDOS_tcbedexe =
CompInheritOptsAtJcbedexe = -ID:\BC5\INCLUDE
LinkerInheritOptsAt_tcbedexe = -x
LinkerOptsAt_tcbedexe = $(LinkerLocalOptsAtDOS_tcbedexe)
ResOptsAtJcbedexe = $(ResLocalOptsAtDOS_tcbedexe)
BOptsAtJcbedexe = $(BLocalOptsAtDOS_tcbedexe)

Dependency List

Dep_tcbe = \

tcbe.exe

tcbe: BccDos.cfg $(Dep_tcbe)
echoMakeNode ' .

Dep_tcbedexe = \
regs.obj\
tp_mod~l.obj\
tcbe.obj\
tcbex.obj\
tcbe_m~l.obj

tcbe.exe: $(Dep_tcbedexe)
$(TLINK) @&&|

/v $(IDE_LinkFLAGSDOS) $(LinkerOptsAt_tcbedexe)
$(LinkerInheritOptsAt_tcbedexe) +
D:\BC5\LIB\c01.obj+
regs.obj+
tp_mod~l.obj+
tcbe.obj+
tcbex.obj+
tcbe_m~l.obj
$<$*
D:\BC5\LIB\cl.lib

149

k. Batch File

j.bat

tasm /mx regs.asm
bcc -c -ml tcbex.c
bcc -c -ml tp_mod~l.c
bcc -c -ml tcbe_m~l.c
bcc -c -ml tcbe.c
make
copy d:\bc5\bin\hcode\tcbex\tcbe.exe a:

150

LIST OF REFERENCES

[1] Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, December 1985.

[2] A Guide to Understanding Object Reuse in Trusted Systems, National Computer
Security Center, NCSC-TG-018 VERSION-1, July 1992.

[3] A Guide to Understanding Data Remanence in Automated Information Systems,
National Computer Security Center, NCSC-TG-025 VERSION-2, September
1991.

[4] Software Systems Construction with Examples in Ada, Sanden, Bo, Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

[5] Object-Oriented Modeling and Design, Rumbaugh, James; Blaha, Micheal;
Premerlani; William, Eddy; Frederick, Lorensen, William. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1991.

[6] "IBM Network Computer Reference Platform White Paper", International
Business Machines Corporation, USA,. June 1997.
http://www.chips.ibm.com/nc/whitepaper.html

[7] Intel Architecture Software Developer 's Manual, Volume 3: System Programming
Guide, Intel Corporation, USA, 1997.

[8] "Primary Executive", National Aeronautics and Space Administration.
http://www.dfrc.nasa.gov/Projects/F18SRA/ARTS/sra-001/execp.html

[9] "Using Encryption for Authentication in Large Networks of Computers",
Needham, R.; Schroeder, M. Communications of the ACM, December 1978.

[10] "Kerberos Authentication and Authorization System", Miller, S.; Neuman, B.;
Schiller, J.; Saltzer, J. Section E.2.1, Project Athena Technical Plan, M.I.T.
Project Athena, Cambridge, MA, 27 October 1998.

151

152

BIBLIOGRAPHY

A Guide to Understanding Identification and Authentication in Trusted Systems, National
Computer Security Center, NCSC-TG-017 VERSION-1, September 1991.

A Guide to Understanding Design Documentation in Trusted Systems, National Computer
Security Center, NCSC-TG-007 VERSION-1, 2 October 1988.

A Guide to Understanding Security Modeling in Trusted Systems, National Computer
Security Center, NCSC-TG-010 VERSION-1, October 1992.

"A Multilevel File System for High Assurance", Irvine, Cynthia E. Computer Science
Department, Naval Postgraduate School, Proceeding of the IEEE Symposium on Security
and Privacy, Oakland, pp. 78-87, May 1995.

"High Assurance Multilevel Services for OfF-the-Shelf Workstation Applications", Irvine,
Cynthia E., Anderson, James P., Hackerson, Jason X., Draft, 27 February 1998.

"The Architecture of a Distributed Trusted Computing Base", Fellows, Jon; Hemenway,
Judy; Kelem, Nancy; Romero, Sandra. Unisys, Santa Monica, CA.

"A Secure and Reliable Bootstrap Architecture", Arbaugh, William A.; Färber, David J.;
Smith, Jonathan M. University of Pennsylvania, Distributed Systems Laboratory,
Philadelphia, IEEE, pp. 65-71, November 1997.

"Dyad: A System for Using Physically Secure Coprocessors", Tygar, J.D.; Yee, Bennet
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 4 May 1991.

Assembly Language for the IBM-PC, Irvine, Kip R. Macmillan Publishing Co., New •
York, NY, 1990.

"*3 * ' * ■>

Mastering Turbo Assembler, Swan, Tom. Hayden Books, Carmel, LA, 1989.

The Indispensable PC Hardware Book, Messmer, Hans-Peter. Addison Wesley Longman
Ltd. England, 1997.

153

154

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93 943 -5101

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, Virginia 22134-5027

4. Director, Marine Corps Research Center 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, Virginia 22134-5107

5. Director, Studies and Analysis Division 1
MCCDC, Code C45
300 Russell Road
Quantico, Virginia 22134-513 0

6. Marine Corps Representative 1
Naval Postgraduate School
Code 037, Bldg: 234, HA-220
699 Dyer Rd.
Monterey, California 93940

7. Marine Corps Tactical Systems Support Activity 1
Technical Advisory Branch
Attn: Maj J.C Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

8. Chairman, Code CS 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

155

9. Dr. Cynthia E. Irvine
Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5000

10. Daniel F. Warren
Computer Science Department Code CS/Wd
Naval Postgraduate School
Monterey, CA 93943-5000

11. Dr. Blaine Burnham
National Security Agency
Research and Development Building
R23
9800 Savage Road
Fort Meade, MD 20755-6000

12. CAPTDanGalik
Space and Naval Warfare Systems Command
PMW161
Building OT-1, Room 1024
4301 Pacific' Highway
San Diego, CA 92110-3127

13. Commander, Naval Security Group Command.
Naval Security Group Headquarters
9800 Savage Road
Suit 6585
Fort Meade, MD 20755-6585
ATTN: Mr. James Shearer

14. Mr. GeorgeBieber
Defense Information Systems Agency
Center for Information Systems Security
5113 Leesburg Pike, Suite 400
Falls Church, VA 22041-3230

15. CDR Chris Perry
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

156

16. CDR Chris Perry
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

17. Mr. James P. Anderson
Box 42
Port Washington, PA 19034

18. Captain Jason Hackerspn.
2541BabcockRd.
Vienna, Virginia 22181

157

