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Advanced Pattern Recognition Techniques
(RTO EN-2)

Executive Summary

Pattern recognition has its roots in biological evolution. It is the extraction of consistent information
from noisy spatiotemporal data and is currently being used in systems for battlefield supervision, smart
weapons, anti-counterfeiting of all kinds, and for the reduction of false-alarm rates in the detection of
land mines and unexploded ordnance.

Conventional methods of pattern recognition are mainly based on statistical approaches, such as density
estimates or discriminant analysis. In this sense artificial neural networks can be regarded as an
extension of these techniques. Fuzzy methods originate from control theory, but have also proven
successful in pattern recognition. Over time, neuro-fuzzy methods have emerged that try to combine the
advantages of each method and minimize the drawbacks.

An important task in pattern recognition is to choose the right features. Therefore a main part of this
Lecture Series was devoted to feature extraction. This can be achieved in several ways: by
electromagnetic and acoustic singularity expansion methods, by model based scattering signatures, also
by using multiresolution time and frequency domain analysis, by SARISAR imaging, bistatic
microwave imaging and electromagnetic inversion techniques.

Practical applications of pattern recognition techniques were demonstrated with focus on statistical
methods and artificial neural networks. Real-time software for discriminant and principal component
analysis as well as PC based accelerator boards with on chip artificial neurons were introduced.
Different methods for feature extraction with examples for automatic pattern recognition were shown.

The material in this publication was assembled to support a Lecture Series under the sponsorship of the
Sensors and Electronics Technology Panel and the Consultant and Exchange Programme of RTO
presented on 14-15 September 1998 in Bristol, UK, on 17-18 September 1998 in Rome, Italy, and on
21-22 September 1998 in Lisbon, Portugal.
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Techniques avancees de reconnaissance de forme
(RTO-EN-2)

Synth se

La reconnaissance de forme tire son origine de l'6volution biologique et peut atre d6finie comme
l'extraction d'informations coh6rentes ý partir de donndes spatio-temporelles brutes. Elle est utilis6e
pour la surveillance du champ de bataille, dans les munitions intelligentes, pour la contre contrefagon et
pour la r~dution des taux de fausses alarmes dans la d6tection des mines terrestres et des munitions
explosives non explos6es.

Les m~thodes classiques de reconnaissance de forme s'inspirent essentiellement d'approches
statistiques, comme les estimations de densit6 et 1'analyse discriminante. De ce point de vue, les
r~seaux neuronaux peuvent etre consid~r~s comme l'extension de ces techniques. Les m6thodes floues
d6rivent de la th~orie de commande, mais elles ont 6t6 employ6es avec succbs pour la reconnaissance
de forme. Suite ý ces ddveloppements, sont apparus des neuro-m~thodes ayant pour ambition de
combiner les avantages de chaque m6thode tout en r6duisant au minimum leurs d~savantages.

Le choix des caract6ristiques appropri6es est l'une des t~ches essentielles de la reconnaissance de
forme. Par consequent, l'une des sessions principales de ce cycle de confrrences a 6t6 consacr~e A
1'extraction des caract6ristiques. Un certain nombre de techniques ont Wd examin6es ý savoir

- les mdthodes SEM acoustiques et 6lectromagn6tiques

- la mod6lisation des signatures de diffusion

- 1'analyse dans les domaines temporel et fr6quentiel

- l'imagerie SARISAR

- l'imagerie hyperfr6quence bistatique et les m6thodes inverses

Des applications de techniques de reconnaissance de forme ont 6t6 pr~sent~es, 1'accent 6tant mis sur les
m6thodes statistiques et les r~seaux neuronaux artificiels. Des logiciels de gestion temps reel pour
l'analyse discriminante et pour l'analyse des principaux composants ont W d~montr6s, ainsi que des
cartes acc~l6ratrices pour PC int6grant des neurones artificiels sur puce. Diff~rentes mdthodes
d'extraction de caractdristiques ont 6t6 expos6es avec des exemples relatifs A la reconnaissance de
forme.

Les textes contenus dans cette publication ont servi de support au Cycle de conf6rences 214 pr6sent6
sous l'6gide de la Commission des senseurs et technologies de l'61lectronique dans le cadre du
programme des consultants et des 6changes de la RTO du 14 au 15 septembre 1998 A Bristol, au
Royaume-Uni, du 17 au 18 septembre 1998 ý Rome en Italie, et du 21 au 22 septembre 1998 A Lisbon
au Portugal.
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Approaches to Pattern Recognition

Hendrik Rothe
e-mail: rothe@unibw-hamburg.de
Tel.: 040/6541-2723 - Fax: 040/6541-2743

Mess- und Informationstechnik, FB-MB, Universitaet der Bundeswehr
Holstenhofweg 85, D-22043 Hamburg

1 Introduction * identify types of vehicles, planes

Pattern Recognition' per se covers a wide range of * identify fingerprints and DNA profiles
activities from many areas of science, engineering
and everyday life. It has a long and respectable • recognize handwritten characters and human

history within engineering directed to military ap- voice

plications. However, the cost of hardware to ac-
quire the necesssary data (images or sensor signals) * picking optimal moves in certain situations

restricted its broad application for many years. (chess, war)

Nowadays, it is possible for almost everybody to * identify incoming missiles from sensor sig-
design and test even powerful automated pattern nals
recognition systems.
Therefore there is an increasing need to understand • detecting land mines and unexploded ord-
fundamentals of pattern recognition techniques. nance

How could pattern recogniton be defined? A good While humans are able to do many of these tasks
first approximation could be: quite well, the desire is to construct machines per-

Given some examples of complex sig- forming these tasks cheaper, better, faster and of
nals and their correct classification, course, automatically. Pattern recognition is the
make correct decisions automatically engineering discipline of building such machines.
for a stream offuture examples. Because humans can perform many pattern recog-

The roots of pattern recognition can be found in bi- nition tasks very well, there has been for many

ological evolution, since many of us humans can, years an interchange of ideas between engineers in

e.g. the pattern recognition area and psychologists and
physiologists doing research on human and animal

"• spot changing weather brains. In the late 1950s the result of this coop-
"eration was the perceptron, in the mid 1980s ar-

p identify thousands of species (flowers, tificial neural networks occured. Both approaches
plants, animals) left their biological roots and were studied by exact

"* recognize faces and voices mathematical techniques with respect to their engi-
neering performance.

In science and technology emerged literally thou-
sands of pattern recognition tasks, like: Human pattern recognition is mainly learnt. It is

not possible to describe the rules used to recognize
* diagnosing diseases a certain voice. On the other hand, biologists can

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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give rules to discriminate, e.g. between African and Very often, the most important aspect in the design
Indian elephant. of a classifier is to choose the right features. If the

Imagine to taste a large number of unlabeled tasses wrong data are measured the task may become very

of tea. After some training we will be able to detect difficult or even unachievable. In this sense, ad-

a grouping in the teas. But we will need a teacher, vances in pattern recognition techniques have come

to tell us that our favourite group is, e.g. Darjeeling from better features instead of more complex clas-

GFOP, first flush. sifiers.

The discovery of new groupings in sets of data is
called unsupervised pattern recognition. The more 2 Feature Extraction
common method uses a training set, also called
recognition set with predefined groupings of data. As mentioned in the preceding section, feature ex-

Thisis alld spervsedpaternreconiton.Af-traction is very important for correct pattern recog-

ter the system has learned, it classifies future data, nition techniques. In principle, there are two main

the prediction set into one or more sets of learned

classes. approaches, namely induction and deduction.
Induction is from the historic point of view the

Pattern recognition should not be confused with older method. It was used before the advent of
machine learning which was fathered by the ar- modern science. The point is that certain hypothe-
tifcial intelligence and computer science commu- ses about the object under study lead to the extrac-
nities. Machine learning labels its classes in gen- tion of information - that possibly - describes the
eral only with true or false, while pattern recogni- object or process in a correct manner. Clearly, ex-
tion uses much more classes. In general, it can be perience is of fundamental importance in this case.
said that machine learning mimics human reason- However, there is one basic principle called Oc-
ing by logical or binary operations and background cam's Razor. It was found by the English scientist
knowledge may be exploited. William of Occam int middle of the 14th century. It

Now we can define the pattern recognition task in a says:

more formal way. We assume a given set of K well Non sunt multiplicanda entia praeter
defined classes and a classifier C. For each exam- necessitatem.
pie of a class there is a certain number of features,
or feature variables. These features are fed into the With respect to pattern recognition we could trans-
classifier C. After a - hopefully - short time the late as follows:

classifier responds:

"* this example is from class Ki Use as few feature variables as possi-
ble to provide consistent classification.

"* this example is from none of the classes
"Occams Razor is starting point of modern statisti-
cal inference theory, which provides the possibility

The second category contains all outliers, while the to assess feature variables with respect to their spe-
third reports all rejects or doubts. The primary as- cific discriminatory power or information content.
sessment of C will be its performance in terms of Examples for such methods are Principal Compo-
per cents of correct classification. The other aspect nent Analysis and Discriminant Analysis.
is the power of explanation. Users need to have It should be mentioned here that Artificial Neural
confidence in the system before it will be accepted. Networks, Fuzzy Sets and Neuro-Fuzzy-Methods
For example, no one really cares if an automatic are not capable of assessing feature variables, nor
Zip code reading machine rejects an odd letter. But can they give information about the stability of the
when a civilian airliner is classified as enemy air- classification process, or the probability of correct

craft and shot down, or an area is classified mine decisions.
free, and explosions happen, serious questions are
raised. Therefore in many cases black C boxes are Deduction is a method which is typical for modern
totally inacceptable. science and engineering. It works as follows:
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" Make a physical model of the object or pro- Position, Orientation, Symmetry These are
cess under study useful descriptors of objects within images. Posi-

tion refers to the location of the object in the plane.
" Choose the applicable fundamental laws of The object's centroid (center of mass) is used to

nature specify it's position. Orientation refers to how an
object is situated in the plane. The object's mo-

"* Make a mathematical model ment of inertia is used to determine it's angle of
orientation. Symmetry is the ratio of the minimum

" Solve the equations of the mathematical moment of inertia to the maximum moment of in-
model either analytically or numerically ertia. For binary images the feature symmetry is a

rough measure of how elongated an object is. In
" Find the variables describing the interesting this sense, a circle has a symmetry of equal to 1, a

properties of the system - these are the fea- straight line of equal to 0.

ture variables
Moment invariants are image statistics that are

Deduction is always more desirable than induction independent of rotation, translation (shift) and
because it provides insight. However, since many scale. Moment invariants are uniquely determined
processes can not be modeled today by deduction, by an image and vice versa. These properties facil-
peaceful co-existence between the two approaches itate pattern recognition by a great extent.
will last for a long time. The moments invariants can be derived from the
In this paper, only feature variables derived by in- definitions of moments, centralized moments, and
duction will be used. normalized centralized moments. Let f be a con-

tinuous function defined over R 2. The moment of
order (p,q) of f is defined by

2.1 ... from Images2  0o

Features derived from images should be invariant mpq:- J J xPy qf (x,y )dxdy

with respect to shift, rotation and scale. While shift -00-0
invariance can be obtained by using Fourier trans- wherep, q E {0, 1, 2,... }. It has been shown that if
form techniques, rotational invariance requires the f is a piecewise continuous function with bounded
transformation of the image in the polar plane. support, then moments of all orders exist, and, ad-
Finally, scale invariance can be achieved by the ditionally, mpq is uniquely determined by f and
Mellin transform. Complete invariance implies the vice versa. The central moments of f are defined
use of all three approaches. by

However, by the use of moments one can achieve 7' 7'
complete invariance without complicated and time fpq f (x - )P(y -ý)qdxdy

consumimg numerical computation. -00-00

with
That in mind, we can now deal with some simple wM0
feature variables, moo

and
- M 0 1

Moo

Area and Perimeter are commonly used desrip- The point (.t, 17) is called the image centroid which
tors for regions in a plane. is the same as the center of gravity for a rigid body

in a force field.
The discrete counterpart of the centralized moment

Euler Number This number is a topological de- of order (p, q) is given by
scriptor for binary images. It is defined to be the
number of connected components minus the num- 00 0 )p(y _ 9)qdXdy
ber of holes inside the connected components. -pq= - .

-00 -00
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The normalized central moment 77pq is defined by It is also possible to use Hough transform for the
detection of lines and statistical estimators of tex-

_7 pq ture, like energy, entropy, texture correlation, in-
A00 verse difference moments, and also inertia. This is,

where however, beyond our scope.
p+q

2 +1 2.2 ... from Sensor Data

The following seven momets invariants developed If a sensor is conceived as a device which trans-
by Hu are in the continuous case independent of forms a certain physical, chemical, or biological
rotation shift and scale. In the discrete some aber- property in a time dependent electrical signal, then
rations may occur, so one has to be careful. we have to deal with one-dimensional problems.

Because of the many advantages, we use again mo-
D1 9720 + 7702 ments, but only one-dimensional ones. Since sen-

4) = (7720 - 7702) + 1 sor data are always digitized, we have discrete data
13 =(7730 -- 39712)2 +- (39721 -- 9703)2 only. Therefore we are now in the domain of such

4 (7730 + 37712)2 + (37721 + 7703)2 statistics, which deals with measurements of a cer-

4= (7730 + 712)2 + (7721 + 7703) tain variable at a certain time. Table 1 displays

"D = (9730 - 37712)(7730 + 7712) so called empirical statistical moments of a one-

X [(7730 + 'R12)2 - 3(7721 + 1703)2] dimensional probability distribution.
For all our classification examples, we will use

+ (37721 - 9703)(9721 + 9773) these features.

x [3(7730 + 7712)2 - (7721 + 7703)2] Furthermore, Table 2 shows actual data of degra-
(7720 - 7702) [(7730 + 7/12)22 - -- (7 703)2] dation measurements for high performance optics.

There are four damage effects due to environmen-
+ 47711 (77307712) (7721 + 7703) tal problems which degrade image quality. This is

(7 = (37721 - 7730)(7730 + 7721) the test set for all pattern recognition approaches

X [(7730 + 7712)2 - 3(7721 + 7703)2] discussed in this paper.3,4 ,5

Figure 1 shows the backscatter-curves for four dif-
+ (37712 - 7730)(7721 + 7703) ferent error pattern. They are significantly different

x [3(7730 + 7712)2 - (7721 + 7703)2] from each other. There are 24 observations - 1 per
sample - and namely 6 per error pattern. Five ob-
servations of every group form the recognition set

Very often also so called form factors are used to R which is used for the supervised learning of the

extract information from images. A very popular classification algorithm employed. Observations

one is compactness: 1, 7, 13 and 19 are used for testing the predictive
power of the classification approaches under study.

Perimeter 2  The ocurrence of the 4 error pattern is in general
compactness = 47r x Area equally likely.

3 Assessment of Features by Prin- responses, linear free energy-related (LFER) pa-

cipal Component Analysis rameters, quantum chemical indices, substituent
constants, descriptors of the quality of a product.
Formally, the design is equivalent to that of an one-The design matrix of a Principal Component group design with a single set of variables.

Analysis6,7,8 (PCA) can easily be defined by con-

sidering Table 3. For example, the h = 1,... , n
objects or sample members are subjects, com-
pounds, plants, technical products. The k =
1,... ,p variables are time-dependent biological
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No. Name Formula Remarks
/Xmin Xi is the measured

1 Q(X1 ... XN) (mf) backscatter-intensity at
SXmax/ the sample point i

N Average of all N mea-
2 XM(Xl "." XN) N xi sured values

N Average Deviation
3 ADev(xi ... XN) N E xi-xM More robust estimator

Mi) than variance

4 (xl .. x) (xi - XM)2 Standard Deviation
N" -1Li=1 Square root of variance

1 N XM2 fVariance
5 Var(xl ... XN) N 1  (xi - xm Measure for the "variabil-

-1 ity" of data

Skewness

6 Xi - XMk13 Characterizes the shape
N E or of the underlying distribu-

tion
Kurtosis

7 Kurt(xl ... xg) ( [X -- XM] 4 -3 Measure for "peaked-
a 3) ness" or "flatness" of a

distribution

Table 1: Feature variables extracted from backscatter-measurement

3.1 Assumptions ber of zeroes) may lead to artificial clustering, mix-
tures of distributions, etc. A careful check of the re-Design Robustness. sults is then necessary to avoid wrong conclusions.

Please, take care that for most designs the degree

of freedom due to error, Model Robustness.
The analysis is scale sensitive. Outliers are ex-

n, = n - p - 1 pected to have improportionally heigh weight in
influencing the orientation of objects in a multi-

is equal to or larger than the degree of freedom due dimensional pattern space. This is an advantage
to hypothesis, because unusual effects can so be discovered very

nh= p rapidly.

The variables are continuously distributed or dis- Hypothesis Testing.
crete random variables. Whenever possible, do not The method is perfectly general; it involves no as-
employ a mixture of measured variables and qual- sumptions on the underlying distribution model.
itative ones, because the resulting categorization Inasfar, it is a nonparametric approach. However,
may induce a grouping effect. For example, if a for hypothesis testing, it is only optimal if multi-
variable includes only ones and zeroes, two classes variate normality is assumed. Inasfar, the proba-
of sizes N1 (the number of ones) and N2 (the num- bilistic principal component analysis is parametric.
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Effect Group Obs. P/TR Q Ave ADev SDev SVar Skew Kurt
1 7P -20.32 -13.20 1.47 2.08 4.34 -0.26 4.87
2 R -17.43 -10.83 0.79 1.37 1.87 3.39 26.88

Scating 1 3 R -16.85 -9.86 1.04 1.61 2.60 2.77 13.81
4 7 -16.42 -9.35 0.86 1.35 1.83 3.49 22.95
5 7R -16.85 -9.91 0.90 1.41 2.00 2.85 20.16
6 R -16.94 -10.29 0.82 1.37 1.86 3.53 25.95
7 7P -14.60 -6.17 0.63 1.07 1.14 4.90 44.00
8 1 -14.66 -6.29 0.59 1.06 1.12 4.59 44.82

Fog 2 9 7 -14.60 -6.12 0.62 1.09 1.18 4.70 40.89
10 7? -14.49 -5.73 0.54 0.97 0.94 4.99 50.98
11 1 -14.77 -6.19 0.61 1.05 1.10 3.79 39.56
12 7R -14.70 -6.02 0.61 1.06 1.12 3.84 37.33
13 7' -14.44 -6.30 1.25 1.57 2.46 1.73 7.98
14 7 -14.68 -6.66 1.31 1.62 2.61 1.64 7.11

Holes 3 15 7? -14.31 -6.23 1.26 1.57 2.45 1.76 8.15
16 7? -14.22 -5.68 1.63 1.92 3.70 0.94 1.60
17 7 -14.26 -6.38 1.32 1.62 2.63 1.63 6.55
18 7 -14.32 -6.44 1.29 1.61 2.58 1.71 7.04
19 7' -14.50 -7.73 0.47 0.93 0.87 8.66 109.28
20 7? -15.63 -9.03 0.67 1.12 1.24 5.28 54.42

Scating 4 21 7 -14.70 -8.05 0.46 0.93 0.87 8.93 112.31
+ 22 7 -15.25 -8.66 0.53 1.04 1.08 7.17 80.50

Fog 23 R -15.96 -9.58 0.57 1.09 1.18 6.64 72.31
24 7? -15.57 -8.78 0.67 1.19 1.43 4.97 44.10

Table 2: Classification data (7': prediction set, RZ: recognition set)

3.2 Goal of Analysis arranged in order of decreasing contributions
to the information content of the variables to

1. The original data should be transformed to t a ieratchy (onant is t, lesti
asymtotcall no-naly dstrbute scres get a hierarchy ("dominant is first, least is

asymptotically normally distributed scores

with unit variances and zero means in order last").

to make variables with different variances 3. Internal relationships within the original
and/or meaning commensurable, regardless variables, and between the original and new
of the fact that the original measurements variables, should easily be discovered.
may be "distorted" when all variables are
"treated equally". Furthermore, the result- 3.3 Application Examples
ing new variables should be independently
distributed (completely uncorrelated, orthog- Application examples are so many-fold that only
onal). This allows a better interpretation some may here be collected.
by illustrating graphically the results, and
has strong advantages if subsequent analyses 1. Discovery of an unknown, common, syn-
should be made. thetic factor (also called metameter, compos-

ite parameter, overall parameter) of a pro-
2. The number of original variables should be file of variables. Usually, the new parameter

reduced to satisfy the principle of parsinomy may be regarded as linear combination of the
(to increase the test power of subsequent original variables. In such case, it is the first
analyses) without remarkable loss of infor- (dominant) principal component function. It
mation. Thus, the new variables should be should be emphasized that linearity concerns
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Figure 1: Typical backscatter-curves of the four kinds of surface damage

Objects .. 2 ... ..

1 Yii Y12 ..a. Yip

2 Y21 Y22 .. Y2P

n Yni Yn2 ... Ynp

Table 3: Design Matrix of PCA
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only the mechanics. where the p-dimensional vector of arith-
For example, the variables y, y2 enter in lin- metic mean values is defined by
ear combination if the transformation Y1 =

Y, Y2 = y2 is applied, yielding = Yh
h=1

•Y(Y1, Y2) = ao -baiY1 [-a2 Y 2 The (p, p)-dimensional variance-covariance

where ao to a2 are coefficients to be esti- or dispersion matrix becomes then

mated. 1

2. Discovery of the structure of a single vari- n- 1

able which may be thought as a mixture of where the main-diagonal elements contain
intercorrelated variables, the variances, and the off-elements include

the covariances. This matrix plays a funda-
3. Application of diagnostic statistics, such mentarole in all apro h p ts a gonal

as o (i outyin obsrvaions (i) muti- mental role in all approaches. Its diagonal
as of (i) outlying observations, (ii) multi- matrix may be written as

collinear data structures, (iii) homogeneous

subsets of objects (clusters, groups) that are diag(S) = D
scattered around a central value, (iv) homo-
geneous subsets of variables. (it includes the variances in the main diago-

nal while the off-elements are zeroes). The
4. Use of the components in subsequent analy- correlation matrix R is the second matrix of

ses, such as in (i) regression analysis and (ii) fundamental importance; it is defined by
Euclidean distance analysis (in this case, the
distances are invariant under rotation of the R = (D-4S)(D-14)
axes). In this special case, R is a symmetric (p, p)-

matrix which simplifies considerably the
3.4 Algorithms computation of its eigenvalues and eigenvec-

3.4.1 Underlying Formalisms tors.

1. Let Y be the (n,p)-matrix of the design of As already described, the f= 1,... ,s < p
Table 3, non-zero eigenvalues Af are ordered, and its

resulting s-dimensional vector may be writ-
Y = (Yh) = (Yhk) ten as

AT = (AiA 2 ... AS)
where h = 1,... , n denotes the objects,k = 1,... ,p denotes the number of vari- Let I be a (p,p)-dimensional identity matrix
ae that...p denoterm the d umbera of var- (a matrix where the main diagonal containsables that determ ine the dim ensionality of a o e h l h f -l m n si c u e z r e)
distribution. The matrix may also be written ones while the off--elements include zeroes).
in terms of the Yk variables, Then, the eigenvalues are obtained by

yT=(YI...Yp) det(R - AI)vf = 0

where det denotes the determinant. We re-
where yT denotes the transposed matrix, member that the determinant of R is given

and the parentheses symbolize an order of by

variables. In contrast, I... } denotes an arbi- bp
trary sequence of parameters. The so-called det(R) = fI Af
within-group matrix becomes then in this f=i

one-sample design and the determinant of the inverse R- 1 is

n 1) .

W = E(h- -) i)T det(R') H
h=1 1=1 AXf
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These properties are useful for procedureL. If only the "relevant" eigenvalues and eigen-
applied to other techniques than PCA. The vectors are used, the resulting correlation
eigenvectors vf are obtained by matrix Rdeg deviates slightly from R, and

(R - Af I) = 0the difference

where the normalization condition is Re = R - Rdeg

(vf)Tvf = 1 is the residual matrix which should only con-

because R is a symmetric matrix. Remem- tain zero or near-zero values.

ber also that the angle between two eigenvec- 3. In a third stage of numerical computation,
tors, say, for example, v, and vo can easily the correlation matrix M between original
be determined by variables and components may be estimated

Cos(Vvo) V Vp3 directly or by the simple equation
11V,11 MTV,61L½M

For example, let v, be the first eigenvector = LIV

of a principal component analysis of group Re-arranging the equations, we can now re-
,,4, and let vp be the first eigenvector of turn to the original data matrix if all com-
group B. This offers the possibility to com- ponents are included, or to a degenerated or
pare groups by angular statistics, but that is adjusted original matrix if at least one com-

not a matter of concern here. ponent is omitted,

2. The second step is the calculation of the ma- = = 9k + sk(qhk)
trix of coefficients of principal component
functions, (k = 1,...kp)

pT 1 ~

where 9k and Sk are the kth mean value and
where L is the diagonal matrix of the eigen- standard deviation (square root of the kth
values, and V is the matrix of eigenvec- variance) of the original measurements, and

tors. As already mentioned, there are good

reasons to make the original measurements Q = (qhk) = FMT

commensurable. This may be done by the
transformation The adjusted variables may loosely be com-

h = D-(h - pared with the adjusted means of covariance
= Yh -analysis.

The resulting matrix Y has unit variances
and zero means. The scores of the principal 4. The squared distance between two objects,

component function are then computed by termed A and lB for simplicity, is the squared
F = YkP Euclidean distance

and the covariances resp. correlations be- d2 (A, ) = IIFA - F 3 112

tween the components Ff are zero. In other Thus, principal component analysis may also
words, the dispersion matrix of the compo- be applied for discovering subsets of objects
nents is an identity matrix. around the gravity center or other centers,

Spectral decomposition of the correlation and has strong relationships to cluster anal-
matrix means that R can be expressed by ysis and multidimensional scaling (principal

s coordinate analysis). It should be empha-
R = E AfvfvT sized that the number of components applied

f=1 to an actual analysis can be determined by

= VLVT the user himself.
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3.4.2 Decision Procedure The null hypothesis is rejected at the signifi-
cance level a if

Test of Dimensionality of Original Variables
The squared multiple correlation coefficients TS= q ln(ao/8o)' > ; X'
within the variables, called internal determination

coefficients, where (ao/13o) is the likelihood-ratio crite-
rion. The test statistic is asymptotically X2

Dk = 1 - Ak = - 1/rkk with
1

(k = 1,... ,p; 0 < ODk 1) = (p - K + 2)(p - K - 1)
2

must be significantly different from zero if subse- degrees of freedom, and K is the number of
quent analysis makes sense. Note that rkk is the kth eigenvalues to be removed (K = 0 for test-
element of the main diagonal of R- 1, and Ak is the ing IHI0i). Furthermore, we obtain
likelihood-ratio criterion.
It can be shown that, if at least one eigenvalue Af 1 P

of R is zero, at least a single Dk is one. The null a0  (p - K) AK

hypothesis I1 ::= (at least one internal determina- k=0

tion coefficient of the population is zero) is rejected and
at the significance level a if the test statistic TS is (0 AK)/K

TS = Dk > (1 - A,) = a \K=0

Thus, for testing %01, the procedure is sim-
where A, is the likelihood-ratio criterion, 0, is the plified to a0 = 1 and
largest-root criterion, and the degrees of freedom 1

are here lo = det(R)(pK)
nh = p-- 1,hn. = n--p We must still define q and r. For small sam-

Rejecting this null hypothesis suggests that at least ple sizes, the two arguments are defined as
one multiple correlation coefficient of the original follows:
data is significant.

r =l,q =(n -1)(p- K)

Test of Dimensionality of Components The big For larger samples, a more conservative de-
question of PCA is how the essential dimension- cision may be applied:
ality should be determined. We have solved this
problem by testing the eigenvalues of R and the r = p-K, q = (n-1)-- (2p+5)--K
correlation coefficients of M. 2 3

If H01 is rejected, we can test the significance
a. Test of Eigenvalues. Let Af be the estimator of the individual eigenvalues resp. the local

of the eigenvalue af of the population. Then, null hypotheses,
the global null hypothesis becomes

K 2 ::= (01 = 0, 02 = 0,... , as = 0)

I (a:= .. .. a ).
First, A1 is excluded (K = 1), and TS and i

This is equivalent to the assumption that the must be determined as described above. The
correlation matrix of the population is an desired test statistic for examining H02 ::=
identity matrix. "Accepting" this null hy- (a, = 0) is then given by the difference of
pothesis would suggest the existence of a TS related to K = 0, and of TS related to
spherical symmetry or, respectively, reject- K = 1. In strict analogy, the difference of
ing this hypothesis would suggest that at the degrees of freedom is determined. Then,
least one correlation coefficient of the orig- the X2 significance point is taken from tables,
inal data is significant. and the procedure is continued if the first
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eigenvalue is significant. In strict analogy, (i) there is a non-normality or
the subsequent eigenvalues are examined. (ii) we have a mixed distribution con-

Remark. Remember the test of significance sisting of unimodal distributions

of eigenvalues is sensitive to departures from with different variances resp. dis-

normality, persion matrices (grouped obser-
vations within a one-sample de-

The information content of an individual sign), or
component can be visualized by (iii) points (i) and (ii) are valid. In

inf(%)Pca = Af(100%)/tr(R) particular, we find this property if
one-group designs contain various

Because R is a correlation matrix, its trace is subgroups (clusters with homoge-

equivalent with the sum of eigenvalues or the neous distrts).

number s of non-zero eigenvalues,

For a small sample size (n < 30), the
tr(R) E Af = s scores are ranked and then regressed

f=1 against the ordinate values of the cu-

and the cumulative percentage cum(%) PCA mulative normal distribution (95% con-

is its successive sum. fidence limit). If the correlation coeffi-
cient is significant, the intercept is ap-

b. Test of Correlation Coefficients. Up to now, proximately 50%, and a common slope
a joint probability density function of sam- can be observed, normality may be hy-
pie correlation coefficients is not available in pothesized.
a closed form. However, a-priori statistics
can be employed. For larger sample sizes, a frequency

histogram shows a bell-shaped distri-

Setting p for any of the coefficients of a cor- bution, that is, the cumulative frequen-

relation matrix, and let r be its estimator. cies vs. the upper class limits leads to

Then, the null hypothesis a straight line in the normal probabil-
ity paper of Hazen. Rules are available

1103 ::= (p = 0) for the assignment of sample members

is rejected at the significance level a if the into classes and the estimation of class

test statistic is limits. Another possibility is the esti-
mation of skewness 93 and kurtosis 94.

TS 1r 1 go 2 =(2./(t2 + f2) For large samples (asymptotic case),Tfx,f2;afl,f2;c / the skewness becomes:

where the degrees of freedom are

f, =p, f 2 = n -p -1 skew. = n-lh I(Yh-)
(n - 1)(n - 2)s 3

with p as number of variables under study.

c. Diagnostic Statistics (missing if the standard deviation s is
zero, or of the sample size n is less than

1. Normality. In general, it can be stated 3). We use the standardized skewness,
that parametric methods are relatively
robust against departures from normal- skew.
ity if the principles of design robustness 93 -

are satisfied approximately. Neverthe- V/n
less, in some cases it is necessary to ex-
amine statistically this assumption. A because it is asymptotically normally
rejection of the hypothesis of normal- distributed (for example, an absolute
ity means: value of g3 that is equal to or larger than



1-12

1.96 means that the hypothesis of nor- are called normal scores. Statistically
mality must be rejected at the 5% sig- speaking, normality must be hypothe-
nificance level or less). For large sam- sized if the correlation coefficient be-
pies, the kurtosis becomes tween the ranked original data and the

normal scores is significant and if there

kurt. = n(n + 1) i=i(Yh - y4) is a common straight line. It must be
(n - 1)(n - 2)(n - 3)s4 emphasized that a graphical plot is an

3(n - 1)2 important means to get a survey on

(n - 2)(n - 3) the role of individual sample members
(outliers, clustering etc.).

(missing if s = 0 or n < 4). We pro- Deviations from normality have usually

pose to use the standardized version, no serious consequences if design and
model robustness exists, and if there is

kurt. a symmetry of distribution. In some

= L24 cases, an apparent normality may con-

sist of a mixture of distributions.
because this statistic is asymptoticallynormally distributed. Compensating for non-normality is to

employ a transformation (which nor-

We employ also a suitable compromise malizes and works often as variance-

between the two procedures. It is sup- stabilizing transformation, too) to each
posed that Yhk represents h = 1,... , n variable. Although the effect to mul-
independent observation of a continu- tivariate normality is general unknwon

ous random variable Yk for each of the and this univariate transformation may
k = 1, ... , n variables, with a cumula- only achieve marginal normality, it has
tive distribution function (cdf) the advantage of simplicity. The limita-

tion of tests of multivariate normality is
.T ((Yk - PIk)/1k) that their power is still to be shown; fur-

where Pk and Ork are the population thermore, tables of critical quantiles in-
means and standard deviations. The clude only the uni- and bivariate case,
meobansliy a t istar deiatiron. the oin general. Thus, it is difficult to test
probability plot is a scatter of the or- multivariate normality with the excep-

tion of very particular designs. We pro-

Ylk < ... YnkVS.Zlk < ... < Znk pose to examine a jointly distributed
composite parameter, such as scores

where of the significant principal component

Zhk = (rhk 
functions.

2. Randomness of Data. Randomness of

with 7rhk as an empirical estimate of the data is the basis of considering each-se-

cdf. Several values for 7rhk have been lection of objects to be equally likely.

suggested; we use here Various tests are available. We employ
the serial correlation coefficient. In

(h - -) most cases, randomness is obtained by
hk (n + 1) experimental designing so that mutual

dependence of the sample members

(for eachk = 1,... ,p) (autocorrelation) can be excluded. In

some cases, a measurement or residual
If Tr is the cdf of a normal distribu- of regression analysis may depend on
tion, the resulting scatter plot is called the previous values. Examples: Growth
normal probability plot, and the Zhk curves, time series, nonlinear models,



1-13

step-by-step optimization procedures which have been subjected to certain data transfor-
(the result depends then on the previ- mations T. For simplicity we choose:
ous results). The estimators will no
longer be minimum variance estima- * 7ý - Y (i.e. the output data are equal to the
tors. Compensating for randomness is input data)
based on the use of random number ta-
bles, and of autoregressive transforma- 0 =

tions.

3. Outliers. Let Rh be any correlation 0 TY --v•

matrix without the sample member -h, * T- ln(Y)
let R be the correlation matrix of all
sample members. Then, the smallest Using the set of input data Y ,- (1, 2, 3) the (4,3)-
scattering ratio design matrix of PCA becomes:

fdet(R-h)
R-h = min det (R) 1.00 2.00 3.00

1.00 4.00 9.00is an indicator that -h is an outlier (the Y 1.00 1.41 1.73
range of R-h varies from 0 to 1). If 0.00 0.69 1.09
the empirical value R-h is less than the
tabulated quantile r, the null hypoth- Figure 2 shows a listing in extracts produced by
esis (no outlier) must be rejected. I the software package MDAD: Multivariate Design,
should be emphasized that this test is Analysis and Diagnosing which was developed in
very radical ("very sharp"). the research group of the author. The signs of the

1st and 2 nd principal component are:
3.5 Computational Examples

3.5.1 Test example + - (T"C + + T
The question is now, how PCA can be used as a tool TY
for machine learning and pattern recognition. The + 1J
way we employed is pointed out by the following
small example. Imagine that we have four different where C is the classification matrix. The four dif-
pattern in our data set. These pattern can be con- ferent pattern are fully recognized. The features are
ceived to be obtained from the same input data X consistent in this simple case.

MDAD 1.02a (c) --- Multivariate Statistics
Principal Component Analysis

Matrix TEST-EXPL.MAT
1 2 3

1 1.00 2.00 3.00
2 1.00 4.00 9.00
3 1.00 1.41 1.73
4 0.00 0.69 1.10

Means
0.75 2.03 3.71

Standard Deviations
0.50 1.42 3.62

Correlation Matrix(cO = 1.00)
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1 2 3
1 1.00 0.63 0.48
2 0.63 1.00 0.98
3 0.48 0.98 1.00

Eigenvalues
2.42 * 0.58 0.96e-03

Eigenvectors
1 2 3

1 0.48 -0.86 0.15
2 0.63 0.23 -0.74
3 0.60 0.45 0.66

Principal Component Function
1 2 3

1 0.31 -1.13 4.75
2 0.41 0.30 -23.89
3 0.39 0.59 21.24

Principal Component Function Scores
1 2 3

1 0.07 -0.69 -1.33
2 1.29 0.72 0.26
3 -0,23 -1.02 1.08
4 -1.13 0.99 -6.82e-03

The global Null Hypothesis is rejected: TS (19.83) > ChiSquare (15.09)
General Alpha level is equal to 1% (Values marked by an asterisk are
significant)
Test of Eigenvalues was performed automatically
Number of Non-Zero Eigenvalues is 3
Number of significant Eigenvalues is 1

Figure 2: Listing in extracts

3.5.2 Example of principal components were used for classifica-
tion, no error occured. Furthermore the results of

Figure 3 shows classification results for the exam- Pin ndce tha te Furesmorm a cosis de
PCA indicate that the features form a consistent de-

pie according Table 2.
Thestitammtt according Tsign matrix from the statistical point of view. ThatThe statistical m om ents were computed according m a s l at r e o nto p r a h s s o l
to Table 1, and the resulting design matrix was sub- me all ttern recogt aproaheshu
jected to a principal component analysis. The signs

4 Pattern Recognition Methods basic idea underlying discriminant analysis is to de-
termine whether groups differ with regard to the

4.1 Discriminant Analysis mean of a feature variable. This variable is then
used to predict group membership.

4.1.1 General purpose and computational ap-

proach Computational approach Computationally, dis-

General purpose Discriminant analysis 9,10 is riminant analysis is very similar to the analysis of
commonly used to determine which variables dis- variance (ANOVAIMANOVA). In the case of a sin-
criminate best between two or more groups. The gle variable, the final significance test of whether or
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Sign of PC 1 and PC 2

-* First PC
- e- Second PC

1 0 0-0. 40 -40--
I I

I
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0 5 10 1 5 20 25
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Figure 3: 1 1t and 2 nd principal component vs. No. of observation

not a variable discriminates between groups is the be difficult. The main difference which is clearly
F-test. F is computed as the ratio of the between- recognizable is the form of the "ground" of the
groups variance in the data over the pooled within- "canyon". In the case of "Scating + Fog" the
group variance. If the between-group variance is ground is shaped like a gable, while the "Fog" pro-
significantly larger than the within-group variance files show a straight line tilted from left to right.
then there must be significant differences between However, discrimination of all 4 groups should be
means. Usually, several variables are included in possible.
a discriminant analysis - we actually use 7 feature
variables in our example. Consequently, we have a Canonical analysis When actually performing a
matrix of total variances and covariances, and also multiple group discriminant analysis the use of
a matrix of pooled within-group variances and co-
variances. These two matrices can be compared via canonical discriminant analysis will provide some

multivariate F-tests in order to decide whether or optimal combinations of groups and variables with
tnrespect to best discrimination between groups. In

not Eveny significan tions with this sense, the first discriminant function provides
groups. Even though the computations with mul-thmotvealdsrininbtwngou,

the most overall discrimination between groups,
tiple variables are more complex, the principal rea-
soning is still the same, and namely that we are

over, the discriminant functions will be orthogo-nal, i.e. their contributions to the discrimination
groups. of groups will not overlap.

Before starting the computational procedures it
makes always sense to have a look at the data pro- 4.1.2 Assumptions
files. This gives a first impression, if discrimina-
tion of multiple groups could be possible. In Fig- Normality It is assumed that the measured data
ure 4 the 7 feature variables are displayed in form (backscatter-curves) and the derived feature vari-
of "data canyons". ables represent a sample from a multivariate normal
It can be seen that the effects "Scating" and distribution. However, violations of the normality
"Holes" have rather different profiles, while the assumption are usually not severe, meaning that the
separation of "Fog" and "Scating + Fog" could results of analysis are still reliable.
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Homogeneity It is assumed that the van- example do not show this property.
ance/covariance matrices are homogenous across
groups. The multivariate Box M-test can be used. Categorized normal probability plot This plot
If deviations from homogeneity are detected, this is constructed as follows. First, the deviations
should not be taken too seriously. However, our from the mean, i.e. the residuals, are rank or-
data are homogenous. dered. From these ranks standardized values of the

normal distribution based on the assumption that
Correlations between means and variances the data come from a normal distribution are com-
Validity of discriminant analysis can be influenced puted. These values are plotted on the y-axis. If
when means and variances across groups are cor- the observed residuals which are plotted on the x-
related. If there is a large variability in a group axis are normally distributed then they will not de-
with particularly high means on some variables, viate from the line. If there is a general lack of fit,
then those means are not reliable. Significance tests and the data do not form a clear pattern, then non-
will fail in this case. The experimental data of our normality may be assumed.

Plot of Data Profiles

Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 Obs. 6

Obs. 7 Obs. 8 Obs. 9 Obs. 10 Obs. 11 Obs. 12h L k
Obs. 13 Obs. 14 Obs. 15 Obs. 16 Obs. 17 Obs. 18

SObs. 19 Obs. 20 Obs. 21 Obs. 22 Obs. 23 Obs. 24

Figure 4: Data profiles

UC!D.F Perc. Coefficients for
No. of Intercept Q Ave ADev SDev SVar Skew Kurt

Var. 1 2 3 4 5 6 7
1 60.79 -67.02 2.22 -2.43 45.61 72.55 -32.03 -0.48 0.20
2 30.96 -94.98 -6.28 6.73 1.63 71.59 -24.21 -1.75 0.18
3 8.25 -195.26 -11.69 6.57 7.62 75.24 -24.98 0.86 0.11

Table 4: Unstandardized canonical discriminant function coefficients
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Group Value of UCDY No.
No. 1 2 3

1 1.1860 -4.1838 4.1985
2 -10.4797 5.3353 0.0329
3 10.4154 5.1644 -0.8131
4 -1.1217 -6.3159 -3.4183

Table 5: Unstandardized canonical discriminant functions evaluated at group means

4.1.3 Canonical discriminant functions for where e1,1,i (i = 0, 1,... 7) are the coefficients of
multiple groups the UCDY1 ,1 and xi (i = 1, 2,... 7) are the fea-

ture variables. Inserting the numerical values we
Classification is performed by using feature vari- obtain:
ables and the 3 unstandardized canonical discrim-
inant functions UCD9T. The coefficients of these UCDF,1 =

functions can be seen in Table 4. The values of the - 67.0162

UCD.F evaluated at group means (cf. Table 5) give + 2.2168 x (-16.8968)
the following pattern of signs: - 2.4335 x (-10.0484) + 45.6078 x (0.8822)

+ +Scating + 72.5525 x (1.4222) - 32.0300 x (2.0326)

- + + Fog - 0.4794 x (3.2028) + 0.2017 x (21.9470)

+ + - Holes
Scating + Fog

Of course, this is only a "rule of thumb" for classi- The result of these 7 multiplications and 8 addi-

fication, because the proper cut-off points obtained tions is 1.186. Consequently, classification itself isficaion beaus th prpercutoffpoits btanedvery simple and can be performed in real-time even

from the multivariate procedure must be used. To wimoderate c atina power.

illustrate the possibility of real-time implementa-

tion of the algorithm, the compuation of the first Table 6 shows the results of prediction, i.e. classifi-
discriminant function for the group mean of the cation of the observations 1, 7, 13 and 19. No error
first group - "Scating" - shall be demonstrated occured, 100% accuracy was achieved.
now:

7

UCDYl,1 = e1,1,0 + 4 e1,1,i x Xi
j=1

Obs. Value of UCDY No. Pred. Grp.
No. 1 2 3

1 0.4690 -8.4919 15.2796 1
7 -8.3681 4.2935 0.3135 2,/
13 9.1518 6.3696 -0.4366 3V
19 -1.2544 -5.1226 -5.6608 1 4V

Table 6: Unstandardized canonical discriminant functions evaluated at the prediction set

4.1.4 Statistical inference age MDAD - Multivariate Design, Analysis and
Diagnosing which was developed in the research

All results of statistical analyses have to be checked group of the authors. This listing clearly indicates
carefully for significance. Table 8 shows therefore the overall significance of the discriminant analy-
a listing in extracts produced by the software pack-
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sis, univariately as well as multivariately. A main point is, that all feature variables are

Table 7 gives an impression concerning the dis- needed for the discrimination of the 4 error pattern,
criminatory power of the single feature variables even if some of them are not significant for the dis-

for the overall performance. Table 9 shows the crimination of certain groups.

power of the single feature variables for the dis-
crimination of the single groups.

Values of mean SCD.F-Coefficients for all feature variables
Q Ave ADev SDev SVar Skew Kurt
1 2 3 4 5 6 7

1.1959 1.7329 2.6932 7.1225 8.1873 0.6406 1.8474

Table 7: Discrimination power of the feature variables referring to all UCD.T
High values denote a high discrimination power

4.2 Artificial Neural Networks type of network to model any deterministic process
to a certain degree, therefore we will use it here for

4.2.1 Introduction the purpose of pattern recognition.

Neural Networks"1 have arisen from analogies with Figure 5 actually represents a function acting on a
models of the way that humans might solve the pat- vector, where the neural network function sends the
tern recognition task. However, they have devel- vector (x 1, ... , XN) in RN to the vector (ya, ... , YM)
oped a long way from the biological roots. Great in RM. Thus, the feedforward network can be rep-
claims have been made for artificial neural net- resented as:
works, few of them have withstood careful checks.
But, nevertheless neural networks have influenced = F(x)
pattern recognition practice very strongly. Al- where x = (x1 ,... ,x) and y = (yl,..., yM).
though there is no full theoretical understanding The action of this function is determined in a spe-
of how they work at the moment, dozens of soft- cific way. For a network with N input nodes, H
ware packages and hardware accelerator cards have hidden layer nodes, and M output nodes, the val-
emerged on the market and disseminate the ideas of ues Yk are given by:
pattern recognition via artificial neural networks.

The most widely used and easily recognized neu- [ ]
ral network is the so-called feedforward network. Yk = 9 Wjk
By some estimates, it accounts for 90 percent of all

neural network applications, with k = 1 ... M.
Typical applications outside the area of pattern Variable W0 is the output "weight" from hidden
recognition are for example: predictions of the node j to output node k, and g is a function map-
stock market, recognition of handwriting, synthe- ping R1 to R1. The values of the hidden layer
sis of speech from text, driving a truck. nodes hj, j = 1, ... , H can be computed as fol-

lows:

4.2.2 Feedforward Network Operation hj [Ewf'xi+ T-w

Figure 5 shows a common three-layer feedforward

architecture. By "three-layer" is meant that the with j = 1, ... , H. Here, wlj is the input "weight"
network has an input layer, one hidden layer, and from input node i to hidden node j, wT is a thresh-
an output layer. More hidden layers can be used. old "weight" from an input node which has the con-
In general, three layers are sufficient to enable this stant value 1 to hidden node j , and xi is the value at
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Multivariate Statistics - Discriminant Analysis

Number of variables: 7 Number of groups: 4 Number of cases:20
Number of cases in groups: 5 5 5 5
Group prior probabilities: 0.25 0.25 0.25 0.25
Number of unknown observations to classify: 4
Degrees of freedom due to hypothesis/error (nh)/(ne) : 3/16

Univariate Wilks' Lambda and F-Ratio

gives the discrimination capability of the variables via
variance shares.

Alpha level: 0.01 (0.05) [0.1]
F-Table value: 5.2922 (3.2389) [2.4618]

The Chisquare statistics was transformed into a F-ratio.
A variable is significant if the F-ratio > F-table value(3,16,alpha).

Var. Wilks F-Ratio Significance
No. Lambda

1 0.07634 64.53 yes (yes) [yes]
2 0.05281 95.65 yes (yes) [yes]
3 0.07685 64.07 yes (yes) [yes]
4 0.11681 40.33 yes (yes) [yes]
5 0.14571 31.27 yes (yes) [yes]
6 0.15334 29.45 yes (yes) [yes]
7 0.19623 21.85 yes (yes) [yes]

Multivariate Test Criteria

If the Trace-criterion >= c * F-table value(3,16,0.01) it is
significant-> Trace Criterion: 113.5858/Table value: 12.8234

Canonical Discriminant Functions

The unstandardized canonical discriminant functions (UCDF)
are evaluated from the non-zero eigenvalues. An UCDF is
significant if the Chisquare statistics > Chisquare-table
value(DF,0.01).
After R.Wilks Degrees of Chisquare Table Signi-
Fct Lambda Freedom Value Value ficance

1 0.00004 21 137.37589 38.93217 yes
2 0.00267 12 80.01103 26.21696 yes
3 0.09646 5 31.57141 15.08627 yes

0 discriminant function(s) excluded from further analysis.
3 discriminant function(s) remained after the test of
significance.

Table 8: Listing in extracts
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Group Group Var. t-Statistics Significance
A B No. a-Level 1% 5% 10%
1 2 1 10.0669 yes yes yes
1 2 2 12.6259 yes yes yes
1 2 3 4.0255 yes yes yes
1 2 4 5.0988 yes yes yes
1 2 5 4.1253 yes yes yes
1 2 6 1.9012 no no yes
1 2 7 2.1328 no yes yes
1 3 1 11.3433 yes yes yes
1 3 2 11.9620 yes yes yes
1 3 3 6.6115 yes yes yes
1 3 4 3.2958 yes yes yes
1 3 5 3.3411 yes yes yes
1 3 6 2.6903 no yes yes
1 3 7 1.6284 no no no
1 4 1 6.5868 yes yes yes
1 4 2 3.9061 yes yes yes
1 4 3 4.1968 yes yes yes
1 4 4 4.7020 yes yes yes
1 4 5 3.8293 yes yes yes
1 4 6 5.4751 yes yes yes
1 4 7 5.2143 yes yes yes
2 3 1 1.2764 no no no
2 3 2 0.6639 no no no
2 3 3 10.6370 yes yes yes
2 3 4 8.3946 yes yes yes
2 3 5 7.4664 yes yes yes
2 3 6 4.5914 yes yes yes
2 3 7 3.7612 yes yes yes
2 4 1 3.4801 yes yes yes
2 4 2 8.7198 yes yes yes
2 4 3 0.1713 no no no
2 4 4 0.3968 no no no
2 4 5 0.2959 no no no
2 4 6 3.5739 yes yes yes
2 4 7 3.0815 yes yes yes
3 4 1 4.7565 yes yes yes
3 4 2 8.0559 yes yes yes
3 4 3 10.8083 yes yes yes
3 4 4 7.9978 yes yes yes
3 4 5 7.1705 yes yes yes
3 4 6 8.1653 yes yes yes
3 4 7 6.8428 yes yes yes

Table 9: Univariate t-Statistics estimates how two groups differ with respect to one variable. Alpha
level/t-Table value: 0.01 0.05 0.10/2.92 2.12 1.75 (The local null hypothesis is rejected if the t-statistics
> t-table value.)
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input node i. Variable a is the "sigmoid" function possible. Suppose, for simplicity, a single data
given by point (x, d) consisting of an input vector x =

1 (X1,. ,XN) and an desired output vector d =
1 + e-x (di,. dm). For a given set W of weight val-

and is called the activation function of the neural ues, the feedforward network produces the output
network. vector y(W) = (y, (W),... ,yM(W)). One way
Function g may be the same as the activation func- to express the error e(W) is:
tion or may be a different function. It is impor-
tant that the activation function is nonlinear and has e(W) = 1 - (dk Yk (W))2
bounded output. 2 k Yk
The action of the feedforxfard network is deter-
mined by its architecture (how many input, hid- For a good performance of the feedforward net-
den, and output nodes it has), and the values of the work the weights W have to be chosen in such a
weights. The numbers of input and output nodes manner that the following equation is valid:
are determined by the application, i.e. how many
features, how many groups are within the pattern e(W) -+ Min.
recognition tasks.Theognumberof hidn nNotice that the actual value of Min. depends uponcanhbe ajusted by thiden u ese. is adjusietmnt d the architecture of the network. Part of the art of
can be adjusted by the user. This adjustmenh v- training is determining the smallest number of hid-pends upon experience of the user, of hide den nodes that will do the ob best, i.e. with small-ious methods for setting the number of hidden es vau ofM n
nodes, or pruning away unnecessary nodes, have
been proposed. We have here a problem of convex optimization

With the architecture g , i i which can be solved numerically by the steepest
values which getermiven, i thenetherk wei. descent algorithm. The iteration step can be writ-valus wichdetermine how the network performs.

The process of adjusting these weight values in or- ten as:

der to solve a certain pattern recognition task is
called the training of the network. The network
learns as the weight values are being modified to Variable W is a vector with (N+ 1)H+HM com-
achieve the training goal. ponents, grad denotes the gradient with respect to
However, the weights are nothing more than a set W, and -y is a the stepsize that controls the magni-
of parameters, determining the behavior of a par- tude of the change in each iteration.
ticular function. Backpropagation training is nothing more than the

steepest descent algorithm applied to the vector of
4.2.3 Backpropagation Training Algorithm weight values and the error function.

The starting point for any training procedure is The notion of "backward propagation" comes

data. from the rather complicated expressions that arise

Training data consists of input-output pairs that when one actually computes the components of

have been generated by the process which the net- grad(e(W)) by applying the chain rule for deriva-

work is to emulate. For specific inputs, the feedfor- tives numerous times.

ward network will produce its own set of outputs. Unfortunately, steepest descent is a notoriously
The difference between the network outputs and slow algorithm, requiring many iterations to reach
the actual desired outputs is the "error" produced an acceptable solution. Therefore, many improve-
by the network. While training the network, we ments have been suggested, but they are beyond our
want to reduce this error to as small a value as scope here.
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Input- Layer Hidden- Layer Output- Layer
I ,II

+10+19-1. +29 30 30 69

M, Y12

Here we deal with the classification of the data set (+0.0 -5.7 +5.5 +7.6 -0.3 -10.4 -8.6|
givn n ecio 22 sig afedfrwrdnewok. -0.9 +5.2 +17.6 --3.1 --16.4 +12.3 +5.0
givn n ecio 22 sig afedfrwrdnewok. -0.4 +4.4 -3.3 -13.4 -0.3 +12.2 -9.0/

The neural network will be trained using the given
data set with a simple rule: /'-23.4\•

+172

if x is in the ith group then the ith |+1.2|-.6'

component of y is one and the other -19.4/+e~components are zero.

\-14.0/
The output vector y is in R 4 and the given input Figure 6 shows the classified recognition set. The
vector x is in R 7. The neural network function will whole data set is correctly classified. The output
be choosen as activities for the prediction set are:

YT a(wO' u(wI'xT "-bT1) bk T2)" '100 0.00
The a function normalizes a
ues to the range (0, 1). thOaneofotptva-Yi=Y2 ooo

0.0I

Consequently, the output activities y are easy to 0.00] \0.00]interpret. Using the backpropagation training al- t0.00\ y0.00w
gorithm with normalized random distributed initial 0.00+ 6:.00
conditions the weights can be found as: Ye =0.0 Y. -0.3 -1. _

Sn1.3 -0.8 -0.1 +1.2 -3.0 -0.3 -0.6

a +a 1.3 4.3 3.7 +4.4 1.0 which is completely correct.-3.1 +5.7 +4.3 -3.6 -2.1 +3.5 -0.5
4 +2.8 -7.6 -4.9 -5.9 -4.1 -0.3 Therefore the neural network function found by the

-1.5 +3.0 +2.7 +5.7 +2.9 +1.6 +0.9 learning step represents a reliable pattern recogni-
+2.2 -1.8 +6.5 -2.0 +3.0 -2.6 +0.31-1.7 -2.2 -2.7 -1.1 +0.8 -0.7 tion model for this process.
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Observation# vs. output activities 1 .4
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2 4 6 8 10 12 14 16 18 200.5

. 05
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0 2 4 6 8 10 12 14 16 18 20

01

2 4 6 8 10 12 14 16 is 20
Observation#

Figure 6: Observations vs. output activities y

4.3 Fuzzy Methods 4.3.2 Fuzzy Sets

4.3.1 Introduction

Fuzzy logic'1 is a means of dealing with informa-
tion in the same way that humans or animals do,
i.e. in imprecise terms. An ordinary set divides data into those items that

Fuzzy logic is built around the concept of reason- are completely in the set and those items that are
ing in degrees, rather than in boolean (yes/no, 0/1) completely outside of the set.
expressions like computers do. We can describe this phenomenon by assigning the

value 1 to all those data which are members of the
set and the value 0 to all data which are not mem-

Variables are defined in terms of fuzzy sets. bers of the set. For ordinary sets, only these two
are specified by logically combining fuzzy sets.vausrexitn.Tefciowhhasgs

The combination of fuzzy sets defined for input and these values is called the characteristic function of

output variables, together with a set of fuzzy rules theset.
the set.

that relate one or more input fuzzy sets to an output Fuzzy sets allow the possibility of degrees of mem-
fuzzy set, comprise a fuzzy system. bership. That is, any of the values between 0 and

1 (including 0 and 1) may be assigned. For exam-
Fuzzy systems represent well-defined static deter- ple, given the fuzzy set "fast cars", we may speak
ministic functions. Therefore reaction of a fuzzy of a particular car being a member of this set to de-
system to inputs is anything but fuzzy. Inputs are gree 0.8. This would be a rather fast car, but not the
presented to the system as specific values, and the fastest car imaginable.
fuzzy system produces a specific output value. The The function which assigns this value is called the
operation of a fuzzy system is thus analogous to membership function associated with the fuzzy set.
that of conventional control systems. Fuzzy membership functions are the mechanism
Fuzzy systems are easy to design, typically require through which the fuzzy system interacts with the
less computer power than alternative approaches, outside world. The range, or possible output val-
and provide robust operation. ues, of a membership function is the interval [0, 1],
However, since they can be regarded as an induc- the set of all real numbers between 0 and 1, in-
tive approach, their use in pattern recognition ap- clusive. A typical choice for a fuzzy membership
plications can be a quite tricky one. function is a piecewise linear trapezoidal function.
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4.3.3 Fuzzy Rules and Y. However, this is in general not necessarily
the case.

Fuzzy rules combine two or more input fuzzy sets,

called the antecedent sets, and associate with them The membership functions for the fuzzy sets N,
an output, or consequent, set. The antecedent sets ZE, and P are denoted by FN, FZE, and Fp,
are combined by means of operators that are anal- respectively. A particular value x of the input
ogous to the usual.logical conjunctives "and," "or," variable X then has membership degrees FN(x),

etc. FZE(X), and Fp(x).
One method of storing and representing fuzzy rules For example, with the trapezoidal membership
is through the use of a fuzzy associative memory functions shown in Figure 8 and a value x = 0.8,
(FAM) matrix. Figure 7 shows an example of a we get:
FAM matrix. In this example there are two inputs,
X and Y. Each input variable has three fuzzy sets
associated with it, which are labeled N, ZE, and FN(0.8) = 0
P, for "Negative," "Zero," and "Positive" (these FZE(0.8) = 0.7

need not be the same for each input variable). Fp (0.8) = 0.2
The output variable Z has five fuzzy sets associ-
ated with it: NL (Negative Large), NS (Negative
Small), ZE (Zero), PS (Positive Small), and PL The value y -0.7 (cf. Figure 8) will give
(Positive Large). Each FAM matrix entry is an out-
put fuzzy set that is the consequent of a fuzzy rule.
For example, the shaded entry in Figure 7 repre- FN(-0.7) = 0.13

sents the rule: FZE(-0.7) = 0.8

If X is Positive (P) and Y is Zero Fp(-0.7) = 0.0

(ZE), then Z is Positive Small (PS).

("Zero" is a fuzzy set that would typically represent Now we present x = 0.8 and y = -0.7 to the sys-
a range of values near 0.) tem as values of the input variables X and Y. The
FAM matrices can have also dimensions higher idea is to assign a weight value to each entry in the
than two. The number of inputs, or antecedents,the mem-
to the fuzzy rules determines the dimension. Three F mrix byntin te m in m the em-
inputs would result in a FAM matrix that looks like bership function values associated with that entry.Consider the FAM matrix entry corresponding to
a three-dimensional cube. Higher numbers of in- X a member of the fuzzy set ZE, and Y a member
puts produce 1lyper-FAM matrices. of the fuzzy set N (cf. Figure 9). The weight w,
In general it is not necessary to combine all system associated with this entry is:
input variables into all of the fuzzy rules. However,
this depends upon the structure of the system.

w, = min{FzE(0.8),FN(-0.7)}

4.3.4 Fuzzy System Operation = min{0.7, 0.13}
= 0.13

Now there are fuzzy sets for the input and output

variables, as well as fuzzy rules. How can a de-
fuzzified output be obtained from a fuzzy system.?
A simple method will be demonstrated at the Clearly, only those FAM matrix entries which have
system associated with the FAM matrix shown nonzero membership-function values for both X
in Figure 7. In this case, there are two input and Y will have nonzero weights associated with
variables, X and Y, with associated fuzzy sets them.
N ("Negative"),ZE ("Zero"), and P ("Positive"). In this sense it is said that the rules corresponding
Figure 8 shows how the membership functions look to these entries are activated.
for these sets. The marked squares in Figure 9 show the four acti-
The same membership functions will be used for X vated rules for the values in this example. In addi-
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tion to wl, there exist three more nonzero weights: The output variable Z consists of five fuzzy sets:
NL, NS, ZE, PS, and PL.

w2 = rin{FZE(0.8), FZE(--0.7)} Rather than treat these as fuzzy sets, we're going to

= mrin{O.7, 0.8} assign specific values to them.

= 0.7 This does not imply that the fuzzy system output
is limited to a finite number of values. This will
result in the fact that NL, NS, ZE, PS, and PL
now represent specific numerical values.

W3 = min{Fp(O.8), FN(-0.7)} These values can be computed as follows:
= min{O.2,0.13}

= 0.13 Out = (wiNS + w2 ZE + w 3NS + w4PS)
E4
Ei=l Wi

W4 = min{Fp(0.8), FZE(-0.7)} With more general output fuzzy sets, determina-

= min{0.2, 0.8} tion of the defuzzified output involves computation

= 0.2 of centroid values of - in general - overlapping

membership functions.

X

N ZE P

N NL NS NS

Y ZE NS ZE PS

p PS PS PL

Figure 7: An example of a two-dimensional FAM matrix.

0.8 N ZEP 0.7

0.13 0.2

-2 -1 0 1 2

Figure 8: Fuzzy membership functions. The point 0.8 is a member of the fuzzy set P to degree 0.2, and a
member of the fuzzy set ZE to degree 0.7. The point -0.7 is a member of the fuzzv set N to degree 0.13
and a member of the fuzzy set ZE to degree 0.8.

4.3.5 Example The fuzzy system function will be adjusted in the
same way as shown in the prcededing section:

Here we use a Sugeno-type fuzzy inference sys-

tem.
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X

N ZE P

N NL NS S

Y ZE NS E P

P PS PS PL

Figure 9: FAM matrix. The shaded entries are the activated rules

if the input vector x is in the ith group classification system we obtain
then the ith component of output vec-
tor y is one and the other components (-0.98' (-0.98\

are zero. /-0.01 1.00

- -0.02 Y-0.00
/ 0.03' /3.17\

Concerning the given data set the output vector y 0.00 | 0.00/
is in R 4 and the given input vector x is in R7 . Y3 1.00/ ,4 = -0.00]
The first-order Sugeno fuzzy model has rules in the 0.001 \ 1.02]
following form:

which is only correct for pattern 3.
This shows that the fuzzy system function does not
represent a reliable pattern recognition model for

if xj is Al and.. and X7 is B 7 then this process.
z = Pl " 1 + .. + P7 * X7 + r, The fuzzy inference system studied here can there-

fore only be a starting step to build a robust fuzzy
classifier. The logical linkages of each rule, the
number of rules used and the type of membership

where Ai are the components of an input vector x, functions must be changed to achieve correct pat-
Ai are the fuzzy sets, w i and r are tants. tern recognition. The optimization process will
Five fuzzy rules will be used to model the fuzzy in- need certainly many iterations because the number
put. As membership functions the Gaussian curve of degrees of freedom is high.
f(z) = e(inxo)k/(e )) will be employed. This simple example highlights the difficulties and
The AND linkage will be defined as logical prod- limitations in using and optimizing fuzzy inference

uct. The consequent term of the used rule includes systems.

four output functions. Each output function is a

weighted linear combination of the fuzzy input.
The defuzzification is simply a weighted and nor- 4 Neuro-Fuzzy Methods
malizied average of the output functions using the 4.4.1 How it works ...
activation functions of each rule. All constants will
be calculated with the least squares method. The main advantage of fuzzy systems is that a
In result, each input vector (recognition set) is cor- desired system behaviour can be implemented by
rectly classified. Therefore, learning of the fuzzy simple reasoning operations. This will often pro-
system worked quite well. vide a solution with a small effort in terms of cost,
However, with the prediction set as input for the time, and manpower. Additionally, all engineering
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knowledge can be used to improve system perfor- if xl in A2 AND X2 in B2 then
mance. Y2 = C2,0 + C2,1Xl ± C2 ,2 X2

However, this advantage is also a limitation, be-
cause, like in pattern recognition, knowledge has to
be extracted manually from data. This is a problem with the defuzzification

especially with large and noisy data sets. /31Y1 + /32Y2

On contrary, because a neural net can be trained Y 31/32
from data, it provides a - more or less - good solu-
tion for a given task without any help from humans. when the activation functions of each rule will be
Despite this, only a few applications exist for neu- denoted as a and /y2d

ral networks in practice. This is mainly due to the The ler wt can ia sle layehAda
large amount of computing power needed to solve lie networ witiabl weights.
even moderate sized classification tasks. Further- The activation functions of each rule are the var-
more, a neural net remains a black box, since it can able weights. The parameters can be adjusted using

not be interpreted what certain weights may mean. a backpropagation algorithm alone, or in combina-
tion with a least squares method.

This is the reason, why the idea arose to establish The learning rule will be in our case:
a hybrid system, namely a combination of a neural
net and a fuzzy logic system. So neuro-fuzzy sys- if the input vector x is in the ith group
tems were developed which combine the explicit then the y presents the value i.
knowledge representation of fuzzy logic with thelearning power of neural nets. The group numbers are here 0... 3.

Figure 11 shows the used structure. This struc-
The training of neuro-fuzzy systems is rather com- ture consists of 18 rules with gausssian member-
plicated since the backpropagation algorithm can ship functions and linear output functions.
not be used, because it needs explicit differentia- Thie structure was trained with an hybrid algorithm
tion of the activation functions of the neurons. This of backpropagation and the least squares method.
is, however, not possible with fuzzy logic rules, Figure 12 shows the - correct - classification re-
because certain mathematical functions like mini- sults of the recognition set.
mum and maximum are used. Also all members of the prediction set were classi-
The most common solution to this problem is the fled correctly.
use of FAM (fuzzy associative memory) matrices. Therefore the neuro fuzzy system function is robust
Algorithms were developed which map FAM's to and gives a perfect pattern recognition system with
neurons. our small example.
Therefore error backpropagation methods with
neuro fuzzy systems can be used. Y1 = 0.00, Y2 = 1.01

Y3= 1.97, Y4 = 2.92

4.4.2 Example 5 Conclusions

Last, but not least we consider the Adaptive Net-
work based Fuzzy Inference System (ANFIS). A short introduction to pattern recognition has been
ANFIS is used as learning algorithm for the presented. It has been shown that powerful meth-
Takagi-Sugeno system which was introduced al- ods exist, however, care has to be taken to build ro-
ready in section 4.3.5. bust and consistent classifiers. The best approach

"The Takagi- Sugeno fuzzy system can be rewritten for the unexperienced user seems to be the use of
as a feedforward neural network. classical statistical tools, since plug andplay works
Figure 10 shows it in layer structure form. The in this case. Otherwise a profound background
fuzzy system function is given as: knowledge on the behaviour of the methods used is

if x1 in Al AND X2 in B, then needed, since mis-classification or overfitting may
occur without notice.Yl= cl,o +q Cl,lXl +- Cl,2X2
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X,

Figure 11: ANFIS - example structure
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Figure 12: Observations vs. output activity



2-1

Signature Based Target Recognition

Carl E. Baum
Air Force Research Laboratory

AFRL/DEHP, Building 909
3550 Aberdeen Avenue S. E.

Kirtland AFB, NM 87117-5776
U.S.A.

1. SUMMARY signature: a set of specific parameter values
In identifying a target as a member of a target (including aspect dependence) associated with a
class (e.g., a particular model of aircraft) one can signature type and related scattering model.
use the scattering signatures from a transient
type of radar (or a radar with a large number of A target may have more than one signature due
frequencies). There are various types of signa- to the applicability of more than one scattering
tures that one can use and a number of the most model.
common ones are discussed.

4. SCATTERING MODELS
2. INTRODUCTION There are various scattering models of interest
One way to identify a target is to "look" at it in including
the sense of a photograph so that one observes
shape, color, etc., as the relevant items for iden- 1. Singularity expansion method (SEM)
tification. This is often referred to as imaging -poles (natural frequencies) and residues
and implies wavelengths short compared to di-
mensions of interest on the target, and quite 2. Generalized cone (dilation symmetry)
small angular resolution if the target is far away.
This is an important approach to target recogni- 3. High-frequency method (HFM)
tion, but not the approach considered here. - asymptotic
Another approach is called inverse scattering,
but this is quite complicated and is also not con- 4. Linear array of scatterers
sidered here.

5. Scattering centers
3. SIGNATURES
In this paper we consider identification by means 6. Low-frequency method (LFM)
of signatures. For this we consider model-based - electric and magnetic polarizabilities
parameters. By a scattering model we mean
some mathematical expression with a not-too- A unifying concept for these models is symme-
large set of parameters which represent the try, either of the whole target or of some of its
scattering (exact or approximate) over some substructures (combined with temporal isolation
region of time, frequency, etc. The parameters (causality)).
may be aspect dependent or aspect independent 5. CONCLUDING REMARKS
(more desirable). So we can define There is already a large literature on this

signature type: a set of parameters associated subject. The accompanying bibliography em-
with a scattering model phasizes the larger review papers and book

chapters where an enormous number of refer-
ences (not repeated here) can be found. One may
think of this as a metabibliography.
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will have different spectral characteristics at different
1. SUMMARY propagations times. The early time scattering may be
Many types of radar systems are available that can dominated by specular scattering (events narrow in time
obtain the band limited calibrated impulse response of extent) and the late time may be dominated by resonant
the radar target. This can be done by using a broad band "ringing" (events narrow in frequency). In this sense, it
coherent radar and then transforming from the frequency is necessary to consider such radar targets as "non-
domain to the time domain, or it can be done by actually stationary" or "dispersive" because the spectral response
transmitting a very short time impulse (or other is a function of propagation time. One can obtain images
waveform) and receiving the voltage versus time (signatures or mappings) of the scattering behavior of
response of the signal scattered from a target (the the target by computing time-frequency representations
technique shown as an example here). of the scattering. We will discuss several algorithms for

doing this here and show examples of the resulting
Considerable information about the radar target response images.
electromagnetic phenomenology can be obtained by
time-frequency analysis of the resulting band limited For simplicity, a single example data set will be used for
impulse response. Such time-frequency analysis of the the discussions here. We will use a generic missile shape
impulse response is usually at the upper limit of spectral and a set of data files containing data for the scattering
resolution in cases where the target has resonant effects of a short pulse from a mock missile shape (a cylinder
over the radar frequency band. In this paper, we will with a conic frustrum shape for a nose) provided by Mr.
discuss these time frequency technniques especially Jamie Henderson and Ms. J.Arthur [17]. In the
including wavelet transformations and show examples measurement range used here [17], and shown in Figure
for a specific target measured using an impulse radar. 1, a short EM impulse is propagated over a ground plane

to the missile shape. Scattering points on the mock-
2. INTRODUCTION missile are labeled in the figure. As the pulse propagates,
The ultra-wideband radar sýattering from an object it is detected by a D-dot probe (a voltage probe that
contains considerable information about the responds to the derivative of the actual E-field) before it
phenomenology of the target/electromagnetic illuminates the missile and also after it scatters from the
interactions. Often, the data are measured as scattering missile (near-field bistatic). The scattered waveforms in
amplitude and phase over a very wide band of frequency this case were sampled at a rate of 0.02 ns per sample.
increments (the frequency domain). Recently, there has The digitizer is able to sample the wave form as fast as
been great interest in applications involving transmission 0.002 ns per sample. This provides information on the
and reception of very short impulses (0.1 to 2 ns) (or waveforms with a spectral span of 25 GHz. Spectral
other short-time/wide bandwidth waveform) to obtain a analysis of the data shows that the energy in the
(band limited) impulse response of the target. The illumination impulse and the scattered signal is limited to
author has done conciderable recent research, for less than 8 GHz, well within the capability of the
example, on a class of radar systems that transmit measurement system.
random electromagnetic noise and obtain the target
(band limited) impulse as a cross correlation of the The missile was constructed with a removable probe (a 5
transmitted signal and the received signal. cm rod) on the nose attached to a bulkhead coaxial

connector. Depending on the test, the bulkhead
It is possible to transform from one domain to another connector was terminated inside the missile with an open
(FFT and IFFT), so these different measurement circuit or a short circuit.
techniques are equivalent as long as the frequency band
is equivalent. Extraction of target phenomenology or The missile orientation is shown in the figure. It is tilted
radar target identification is possible by processing the at a 45 degree angle toward the radar. Note that there is a
data in either the time or the frequency domain. On the Styrofoam support block not shown here (which may
other hand, it can be shown that most scattering objects
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cause some spurious scattering). The data files discussed etc.) add in phase in the direction of the D-dot probe.
here and the configurations are summarized below. An estimate, based only on path distances, gives

enhanced scattering toward the D-dot probe at
Table 1. Missile configurations approximately 2, 4, 6 and 8 GHz. When we look at the

frequency behavior of this mechanism using the time
FILE NAME PROBE INTERNAL frequency distribution (TFD) analysis, we will see such

7USA3 NO SHORT spectral behavior for this term.
6USA8 NO OPEN
7USA2 YES SHORT If there are effects due to the probe attached to the top of
7USA9 YES OPEN the frustrum, we expect to see probe induced changes in

the frustrum top term, or resonances. The resonances
The missile is a cylinder/frustrum with a removable may be due to the probe itself, or due to the cavity inside
conductive probe on the nose. The cylinder is 118.70 the missile body (if the bulkhead connector is open
cm long, the frustrum 14.6 cm long. The diameter of the circuited). We can look for spectral effects near the
cylinder and base of frustrum is 15.75 cm tapering to 8.5 probe scattering term. The inside of the missile body
cm. The probe was 5.35 cm long. The bulkhead coaxial may also behave like a shorted waveguide. We may see
connector at the tip may have a short circuit, open circuit dispersive scattering due the shorted end of this circular
or matched load attached. There was also a data file waveguide for the case of the probe with the open
called IMPULSE2.DAT which is the signal radiated circuit. The time delay of this term from the direct probe
from the TEM antenna as sensed by the D-dot probe. It scattering term will be dispersive but will be
is approximately the time derivative of the field incident approximately the same as the external delay term
upon the scatterer and can be used for calibration, discussed above (Number 4 at 8 to 9 ns from the direct

top of frustrum term).

The goal is to use time and frequency based signal 4. CALIBRATION
processing techniques to extract signatures from the data The scattering data measured by the D-dot probe is the
which reveal the behavior of the time and frequency derivative of the actual E-field. It is necessary to
dependent response of the missile. A number of integrate the data in order to obtain a voltage waveform
algorithms were implemented and used to analyze the which is directly proportional to the E-field detected
data and are described in the next several sections of this voltage. Even if this is done, the resulting E-field
paper. waveform contains time and frequency dispersive effects

due to the signal source, antenna, detector (D-dot probe),
3. EVALUATION OF POTENTIAL SCATTERING coaxial transmission lines and sensor. We may wish to
MECHANISMS also remove these effects.

If we consider the possible scattering mechanisms listed It would be possible to remove these dispersive effects if
below, we can estimate the propagation times and we had scattering data on a radar scatterer with a
evaluate those regions on the time plots and in the time theoretically known RCS (and thus radar impulse
frequency studies that follow, response). To do that, we would take the raw data

scattered from the target under test (TUT), Vtut(t) and
1. Source -- top of frustrum - Ddot probe: the raw data scattered from the calibration target Vc(t)

Time = 0.0 ns (reference). and integrate. This would give htut(t) and hc(t), the
2. Source - top of frustrum - Ddot probe: voltage waveforms proportional to the scattered E-fields

Time= -2.Ons for the target under test and the calibration target. At this
3. Source -- top of frustrum - base - Ddot probe: point, we would take the Fourier transform of htut(t) and

Time= 4.0 ns. hc(t) to obtain Stut(w) and Sc(w), the frequency spectra
4. Source - top of frustrum - base - frustrum -- proportional to the scattered E-fields. Finally, we would

Ddot probe: Time = 8.3 to 9.05 ns. compute Scai(w), the calibrated scattered field in units of

Akarea) or ( (RCS)).
Also, if we consider the fully illuminated top of the
frustrum, we see that it may scatter an attached wave S( o)
traveling down the body of the missile. It will be a fairly Scaj(Co) S' xa())Stt()

strong term. Thus items 3 and 4 above are likely
candidates. If we look at the actual measured data, we We would have the square root of RCS (at this point a
clearly see 1, 2 and 4. Thus in the actual data, the "base complex number) of the target as a function of
to D-dot probe" term is not seen. Finally, the ring-type frequency.
discontinuity that the top of the frustrum presents will
scatter energy toward the D-dot probe at a set of Now at this point, a large part of the calibrated spectrum
frequencies where the multiple paths (near side/far side would still be incorrect. This is because over a large part
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of the spectrum, the spectral energy will be very low not be calibrated. The higher frequencies will be
because the system can not produce or radiate energy in enhanced in our work.
these frequency bands. Typically, only the band where
the system efficiently produces and radiates energy will 5. SHORT TIME FOURIER TRANSFORM
be valid. This region can be determined by integrating ANALYSIS
the D-dot data and transforming it to the frequency 5.1 The Short Time Fourier Transform Algorithm
domain. Only the non-zero (approximately zero) region Much of this work is concerned with the behavior of the
will be valid. Outside of this band, the denominator in spectrum of the mock missile as a function of time delay.
the calibration equation is very small and the result is specrumof temoc missileas a funcin ofst dadominated by measurement noise. We set the unreliable This analysis will attempt to reveal the specific onset of
dowmfrequency measuremnts noise. Wer s throw unreliae resonance effects as is expected from a resonant
low frequency data points to zero and throw away the scatterer. The analysis will consist of forms of time
unreliable high frequency data points. (Danger - Do not frequency representations (TFR's) or time frequency
throw away the low frequency part of the array, we will distributions (TFD's) [12, 14 to 20, 22 to 24]. These are
need this string of zeros extending from the first useful representations or mappings of the spectral behavior of
frequency point to the DC value later). Finally, if we the target scattering as a function of time. The most
wish, we may take the Fourier transform of this final set intuitive of these algorithms is the short time Fourier
of data to yield the calibrated impulse response of the transform (STFT). In this algorithm (in our case), the
target under test. time domain data are broken into overlapping segments

Unfortunately, in the available data set in this example, (a rectangular window) and each segment is then

we do not have scattered data from a calibration Fourier transformed into the frequency domain and the

reference. We do have data on the incident E-field as amplitude squared taken to form the power density
measured by the D-dot probe. If we assume that the data versus frequency as a function of time. We then plot the

data as a two dimensional color mapping with frequency
from the D-dot probe is flat, we can perform a vertical and time horizontal. The color scale for the
transformation of the data which will permit the relative image is scaled to the radar scattering power at each
behavior of the scattered field to be determined. In this particular frequency and time. The algorithm is sketched
case, we integrate both the incident voltage waveform inrFigur 2.
and the scattered waveform. We have done this, and in Figure 2.

some of the results will be shown in the next section. We have applied this algorithm, and a data subtraction

version (target with probe minus target without probe) toHaving said all this, it is important to make an
each of the data files. The results are given in the nextobservation about the Fourier transform. We know that scinsection.

the Fourier transform of the integral of any time series is
simply 1/jto times the Fourier transform of that time
series. Thus the process of taking the integral simply 5.2 STFT Applied to the Tilted Missile
introduces a spectral roll-off in the result as a function of If we apply the STFT to the 45 degree tilt case, we can
frequency. If we do this, we note that at 8 GHz the raw look for interaction terms and resonance terms at
data PSD is 17 dB stronger than the integrated data PSD. different times. We have data with and without the 5 cm.
Also, given the type of data measured here, I believe that probe and for the cases of a short circuit on the
we can trust the dynamic range to extend to connector (on the inside) and an open circuit.
approximately 35 dB. So, if -35 dB is used as a criteria,
the raw data has an upper frequency limit of Consider first the 45 deg. tilt missile with no probe and
approximately 9.5 GHz, while the integrated waveform with a short circuit on the bulkhead connector inside the
has an upper frequency limit of 8 GHz. missile (7USA3) as shown in Figure 3. Note that a

distinct response is found at approximately 2.3 ns, 7.3 ns
For the studies to be done here, rapid frequency rolloff is and 11.0 ns. These responses correspond to STFT
a disadvantage. We want to observe the spectral responses (shifted 2 ns earlier as mentioned above) as
response of resonant structures on a test target (the listed below
missile shape). This integration process will actually
suppress these effects. We have done studies both with
and without integration and have shown that the resonant SPECTRAL MECHANISM
effects that we wish to see are more clearly revealed if TIME RESPONSE TIMING
the integration process is not done. Note also that the 0.3 ns 1.6 GHz response top and side of
PSD for the raw data is more flat (has less rapid rolloff) frustrum

than when the integration is done. For these reasons, we 5.2 ns 2.4 to 0.4 GHz response top to base to D-dot

will show most of the spectral responses in the following 9.0 ns 6.4 GHz to DC resp. top to base to top to

section by processing only the raw data. The only (dispersive) D-dot

penalty will be that the impulse response that we get will
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The mechanisms were previously listed in section 3. attached modes on the outside of the skin of the missile
Also note the small response at approximately 5.6 GHz or if they represent terms that couple to the inside of the
at 0.3 ns (STFT). Perhaps this is a higher order term missile shape via. the open circuit and probe and travel
(double bounce) related to the strong 1.6 GHz effect at to the base and back on the inside of the missile. Both
this time. The triple bounce term at 9.0 ns. in the STFT cases would imply scattering from the neighborhood of
display is particularly interesting because of its the frustrum/probe to the base and back to the
dispersive nature (frequency response is function of frustrum/probe and then to the D-dot probe. One way of
delay time). Since there is no probe on the missile, none determining the difference is demonstrated in Figure 8.
of this behavior is due to the probe. In this figure we subtract data for the case of the probe

with the short circuit on the inside (7USA2) from the
Next, we applied the same algorithm to 7USA2, as data for the missile with the probe with an open circuit
shown in Figure 4. In this case, there is a probe on the on the inside (6USA9). The only difference in the two
tip of the missile, but the inside is terminated in a short cases is the open and short circuit on the inside of the 5
circuit, so there can be no internal effects. We also cm probe on the nose. Note in the figure the strong
applied the STFT algorithm to 6USA9 in Figure 5, response at 9 ns. This is the time that corresponds to a
where the inside of the bulkhead connector is open signal traveling from the tip to the base and back to the
circuited. In this case, there is an opportunity for some tip where it re-radiates to the D-dot probe. We can
signal propagation and resonances due to the inside of speculate that the strong multi-frequency response must
the missile case. Unfortunately, there are no obvious be due to internal propagation. Unfortunately, the
differences in these three figures. The addition of the change from the short to the open circuit also changes
probe causes no strong effect in the data. the impedance and resonant behavior of the 5 cm probe

itself. Thus even though the signal may travel on the
We also applied the STFT algorithm to the response data outside of the missile, the change in the 5 cm probe
after integration. The result should be more truthful in impedance would change the behavior of the signal from
the sense that the roll-off in frequency should be one data set to the other. That could account for the
included. The result, shown in Figure 6 for 6USA9 (with response we see at 9 ns in Figure 8 also.
probe and open circuit), shows nearly equal spectral
energy levels at the three times identified here. The Figure 9 is an attempt to resolve this question using the
frequency coverage is also nearly the same (approx. 5 data provided. In this case, we take the difference of two
GHz to DC as seen in the figure). sets of data, one with a 5 cm probe on the tip (7USA2)

and one without (7USA3). Both of these missile shapes
In order to look into the details of the scattering have a short circuit on the bulkhead on the inside and
differences between the probe and the no-probe case, we thus prevent any signal from propagating inside the
also performed pair subtraction prior to STFT analysis. missile. Note that there is a strong response at 1.6 GHz at
An example where the data for the missile with no probe 1.5 ns which would correspond to a direct probe effect.
and a short circuit (7USA3) is subtracted from the On the other hand, there is no strong response at 9 ns,
scattering data for the missile with a probe and an open which would be a tip to base to tip to D-dot probe term.
circuit (6USA9) is shown in Figure 7. Note in the top This implies that the external signal mode is very small
plot that the strong isolated responses seen in the and that the response shown in Figure 8 at 9 ns is due to
previous figures have been suppressed. internal propagating signals.

The initial scattering term (the frustrum scattering) This is still not a definitive proof of internal propagating
shows a dispersive and strong term shifting from 2.5 modes. To help distinguish internal and external modes,
GHz to 1.8 GHz over the time frame from 0.2 ns to 2.5 one may put a baffle plate at some distance from the
ns. There are also response terms at 4.2 GHz and 6 GHz base of the missile shape on the inside. This would
(also somewhat dispersive). The scattering at 5.2 ns change the timing and resonant behavior of the internal
(frustrum to base to probe) extends from 6.5 GHz to DC modes while leaving the external modes unchanged.
and is somewhat dispersive also.

We have also applied the STFT analysis to the integrated
The scattering at 9 ns (frustrum-base-frustrum-D-dot data set corresponding to Figure 7. The result is shown
probe) is now very extended in frequency. The strongest in Figure 10. Once again, we are subtracting the missile
response is at 2.7 GHz, but there are other terms at 5 and shape with no probe and an internal short from the case
7 GHz and above. These terms are not dispersive. This where there is a 5 cm probe on the tip (7USA3) and an
plot indicates that the double and triple diffraction open circuit on the inside (6USA9). (Remember that the
mechanisms are quite strong, Their behavior can be color scale is now logarithmic.) The response shows
extracted using the STFT processing. similar general behavior as given in Figure 7

An important question is whether the multiple terms in
Figure 7 at 9 ns are caused by multiple scattering of
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6. WIGNER ANALYSIS Figure 10 which can be compared with Figure 3

6.1. The Wigner Algorithm (7USA3; 45 deg; no probe, short inside). The STFT

The short time Fourier transform algorithm has been shows the initial response (0.5 ns) to be a single diffuse

used to find the frequency spectral behavior of the return at 1.5 GHz or so, while the Wigner (4.5 ns)

scattering from the missile shape as a function of time. resolves the return into 3 or 4 individual terms. There is
a return 5 ns later in both cases, but the Wigner resolvesThequencies , alo thmuse has a fixedctime windw foreit into two terms. Finally, at 9 ns later, both algorithms

frequencies, and thus has a reduction in frequency show a term which lowers in frequency in the later (0.5
resolution as the frequency band is lower. Thus a major ns) phase, but the Wigner shows another low frequency

limitation is in finding an appropriate window for the te , but tehniqushows ante r l frequens

tradeoff between time and frequency resolution. In many tr.Bt ehiusrva emna ~ t9n
applicatiobns, this e is andesira becausen thest n(identified as a delay corresponding to "top to base to D-
applications, this is undesirable because the requirement dot" in section 5.2) from the initial return, but once again
is that the spectral resolution must be as high as possible the Wigner resolves it into two terms approximately 0.4over the signal processing domain. h inrrsle tit w em prxmtl .

ns apart. This 0.4 ns corresponds to a spacing delay on

This problem is addressed directly by considering the the target (two-way) of 6 cm spacing. This is a
reasonable spacing across the 8.5 (tilted) top of the

energy distribution versus the variables of time andresnbepaigcosth8.(ild)opfteenergyncdistributioneversusetheavariables ofstimeuand n frustrum or it may correspond to a extra delay based on
frequency. A non-linear phase space energy distribution the diagonal extent of the double bounce.

approach was originally developed by Wigner [1] in a

quantum mechanics context. The theory is developed in We can also compare the Wigner for 7USA2 (45 deg.;
several references [1, 2 and 3] and in the Moghaddar pe so inside she in For 11. We eg.;Ph.D. dissertation, [24], and will not be re-derived here, probe; short inside) shown in Figure 11. We expect to

see a change in those terms where the probe influences

The Wigner distribution, although non-linear, satisfies the result. In fact, at this angle, we expect all of the terms
the condition that a summation over frequency (or time) to involve the top of the missile and thus can look forat a particular time (or frequency) yields the total energy effects in each mechanism. A careful comparison shows
at atparticular time (or frequency). yhields t talld einegy tsome differences in the later time of the cluster of terms
at that time (or frequency). This is called satisfying the between 4.5 and 5.6 ns (I.E. the term near 5.6 ns). We
marginals, also see small terms near 14.5 ns in Figure 4 (with

The most important property of the Wigner distribution probe) that are not seen in Figure 10 (no probe). These

is that it can be shown that it has the highest signal may be caused by the addition of the probe on the tip.

concentration in the time-frequency plane. As a serious Note the higher resolution of the scattering terms. Also

disadvantage, however, since it is a non-linear technique note the terms near 7 and I11 and 17 ns. These are due to

it generates spurious cross-terms in that plane. This interactions that are the result of the non-linear nature of

means that interpretation can be very difficult. This is the Wigner algorithm. (There are ways to reduce this

why we have chosen to perform the STFT first and to effect, but they are not necessary here.)

attempt interpretation of the STFT data first in this study. We also applied the Wigner algorithm to 6USA9 (45

The algorithm [following Moghaddar] is given for a deg; probe; open inside) as seen in Figure 12. In this
discrete-frequency signal S(n) as case, the only change between this figure and Figure 4 isthe change on the inside of the bulkhead connector from

2N a short circuit to an open circuit. There are some

W(t,n)= 1 -- S(n + k).S(n-k).ej41ktf 8 l changes near 5.9 ns (the later part of the initial term,
27t .(2N+1) k=2N tentatively identified as a scattering from the frustrum

area directly to the d-dot probe. These changes are not
where: specific enough to be unambiguously identified as

n is the discrete variable caused by the change from the short to the open circuit.
f is the frequency
t is the continuous variable Once again, it is seen that the resolution in the time-

frequency domain is better for the Wigner than for the
In this particular work, we consider the discrete variable STFT. The identification of specific terms is still
as the electromagnetic impulse response of the target. difficult because the experimental set-up was not
Thus we exchange time and frequency in the above specifically for this type of analysis.
equation and remember that the impulse response is a 6.3. The Wigner Algorithm; Summary
scalar and not complex. We have shown the use of the Wigner time-frequency

6.2. The Wigner Algorithm Applied to the Tilted algorithm to evaluate the impulse scattering from the
Missile missile shape. The algorithm has been shown to have
We can demonstrate the Wigner algorithm using the 45 higher resolution than the STFT. The interaction terms
degree missile orientation data. Examples are shown in were not a problem in this application, mostly because
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the STFT resolution was sufficient to resolve most of the frequency and then perform the convolution. The result
interaction ambiguities. It is never-the-less possible that is a very useful type of wavelet. In fact, the STFT and
some of the fine-grain behavior that we discussed was the wavelet transform can be generalized as simply two
actually some type of interaction, types of cross-ambiguity functions and they have the

same general properties [13].
The experiments could be modified in the future to
specifically reveal some of the specific individual Before we get into the application of the wavelet
mechanisms in the interaction. Very careful (internal transform here, the important concept of "scale" must be
motor driven) probe extension as data are taken is one discussed. The development of the wavelet transform
example. leads to issues of orthogonality, completeness and

energy conservation (of course). The result is that the
7. WAVELET ANALYSIS natural units to use instead of frequency is "scale." This

7.1. Wavelet Analysis is because equal increments of frequency would produce
7.t. isaell-kno at A is ivariations in the resolution and thus we would moveIt is well-known that it is impossible to perform spectral from an optimal frequency domain sampling to over-

analysis with infinite resolution in the time and

frequency domain simultaneously. (We might have a sampling or under-sampling. The only scheme which

deterministic formula for the time domain behavior, for works is a uniform "scale" axis. (Refer to the
example, and then we could get infinite resolution in the references.) Thus the plots given here will be given inexamleandthe wecoud gt ininie rsoltio inthe units of "scale" versus time.
frequency domain. This is what happens with model-
based superresolution techniques.) The most commonbase suerrsoltiontecniqes. Themos comon We will use the discrete wavelet transform (DWT) here.

spectral analysis technique (the Fourier technique) is Simply put, we use a prototype waveform (a "mother

actually a type of convolution between finite data sets wavelet") and convolve it with the d-dot probe time

and sinusoids. (Windowing techniques make up for

some of the flaws of this approach.) The limits of the domain waveform. All other wavelets are stretched or

resolution are fundamentally due to the finite nature of compressed versions of the prototype. The wavelet

the data sets and the convolution process. prototype ha(t) is given as

Wavelet spectral analysis recognizes immediately that 1 tha(t)= h t(-
the data set to be processed is to be convolved with a Ja[ a
specific waveform (the wavelet), and specifies a
resolution in frequency and in time by the careful design where a is the "scale factor." Thus the definition of the
of the wavelet [13, 14, 16, 20, 21, 22 and 24]. The result DWT is
is a time-frequency domain representation of the
waveform where the resolution is optimized over the
domain of time and frequency. Entire books have been DWT(ta)= - X(x(t)'h(-)'At)
written on the wavelet transform, and thus a full a, a

discussion is beyond the scope of this paper. See the
very nice survey article by Rioul and Vetterli in the Note that variations in time and scale are imbedded in
IEEE Signal Processing Magazine [13], or try the book this convolution. Also note the inefficiency of this
A Friendly Guide to Wavelets by G. Kaiser [21]. There calculation because the tricks used in the "fast" Fourier
are also a number of world wide web pages on the transformation are not used. (A "fast" DWT is available,
Internet where more background can be found. however; see [21])

Consider the short time Fourier transform (STFT) With this version of the wavelet transform, we can form
discussed earlier in this report. In this case, a sinusoid is a specific relationship between frequency and scale. In
windowed to produce a finite time duration sinusoid this particular case, it is
which is then convolved with the waveform. Actual
implementation may change the order of the process, but scale = (f/F)(0. 2 5 )
we must have a triple product of the original waveform
to be evaluated, the window and the sinusoid. In the where F is the folding frequency and F = 1/8, where 8 is
STFT, note that the window size is fixed as a function of the sampling time increment. In this case, 8 = 0.02 ns,
frequency and time: Thus as the sinusoid is scanned over and thus F = +/- 25 GHz.
frequency, the number of cycles in the window varies.
Thus the resolution of the transform varies as a function An example data file was created to demonstrate the
of frequency. One way to correct for this (if we want to) behavior of the wavelet transform. The test waveform is
is by creating a window which always contains the same the sum of the following four signals.
number of cycles. This means that we can simply
modify the STFT so that the window is a function of
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1. An impulse (a single data point) of amplitude three We subtracted pairs of data from the above data sets and
at 1.1 ns. formed the Wavelet transform on the difference

2. A sinusoid of amplitude 1 and frequency 2.3 GHz waveforms. The plots are given in Figures 17 and 18,
starting at 4.3 ns. and listed below.

3. A sinusoid of amplitude 1 and frequency 6.7 GHz
starting at 9.7 ns. Figure 17: 6USA9 - 7USA2; probe on both; internal;

4. A sinusoid of amplitude 1 and frequency 12.4 GHz open minus shorted
starting at 12.4 ns.

Figure 18: 6USA9 - 7USA3; (probe; open) minus (no
If we evaluate this waveform using the STFT, we get the probe; short)
result shown in Figure 13. Note that the 50 data point
span is such that the start time of the STFT response is at In the subtracted pairs, clear multiple interaction effects
0.5 ns. This is early enough to capture the single point are seen. Both show clear effects at the time delay
event, but there is no effect that can be seen. The first corresponding to an internal bounce off the inside
waveform begins at 4.3 ns and has frequency 2.3 GHz, bottom (10 to 11 ns.; 0.75 scale). If both data sets have a
and the second waveform begins at 9.7 ns and has probe (Fig. 17), no change is seen at 2 ns where the
frequency 6.7 GHz as expected. The response images probe scattering effects are expected. If only one has a
for these waveforms are very clear. The third waveform probe, a clear dispersive probe effect is seen at this
is above the top of the plot. This is because we stopped location. As was shown in the subtracted STFT data,
plotting the response at 9 GHz because the impulse radar there appears to be an internal reflection mechanism,
has an upper frequency limit of approximately 8 GHz, where the signal penetrates into the missile body through
and we wish to see the details of the response below 8 the probe and the open ended coaxial bulkhead
GHz. connector on the inside.

The wavelet analysis of this waveform is shown in We especially note that the response at a delay of 6.5 ns
Figure 14. In this figure, the impulse can be seen in the after the initial response is probably "real." It is
upper plot. We see the wavelet response of the impulse ambiguous in the STFT results, but seems clear and
at 1.1 ns, where the STFT was not able to resolve it. specific in the wavelet images. Unfortunately, if we look
Note that most of the energy is at the high frequency at the earlier 45 degree write-up, we see no specific
limit of the analysis, as we expect for the very short time mechanism that corresponds to this type of time delay.
impulse modeled here. Next, we see the three sinusoids This response mechanism needs more study.
starting at 4.3, 9.7 and 12.4 ns. They have scale factors
of 0.55 (2.3 GHz), 0.72 (6.7 GHz) and 0.8 4 (12.4 7.3. Wavelet Analysis; Summary
GHz). Note that all three waveforms are shown. In 7.3 wavelet analysis summaryThe wavelet analysis has shown very close agreement
fact, the scale from 0 to 1 is the entire frequency span with the STFT results in this case. The mechanisms
of (0 to 1/2t, where t is the time increment). involved in the mock missile do not have a form which

would be critical to the differences in the resolution
7.2. Wavelet Analysis Applied to the Tilted Missile abilities between the STFT and the CWT. If there were
The application of the Continuous Wavelet Transform more dispersive mechanisms involved in the scattering
(CWT) to the 45 degree orientation data is shown in from the missile shape, then the differences would
Figures 15 and 16. The configuration is summarized become important because the curves would have
below. specific dispersive signature shapes [12, 14, 15, 16, 18

and 19].
* Figure 15- 7USA3; no probeintemal short
* not shown here- 7USA8; no probe; internal open We have shown the general application of this type of
* not shown here- 7USA2;probe; internal short analysis to impulse measurements such as can be
* Figure 16- 6USA9; probe; internal open obtained from the time domain range and the d-dot

probe. Other types of scattering mechanisms, such as
Careful observation of these plots does not show any propagation through dispersive media (plasma or earth)
obvious change as the probe is installed or removed. If or scattering from resonant targets (cavities or ducts)
we make a careful comparison between the STFT results would more critically depend on wavelet analysis.
and the CWT results, we note that the initial response
(2.2 ns at 0.5 scale = 1.56 GHz) and the second response
(11.5 ns and 0.5 scale = 1.56 GHz also) are very similar
in relative time and frequency (1.5 GHz corresponds to 8. BISPECTRAL ANALYSIS
0.5 scale = 1.56 GHz). 8.1. Bispectral Analysis

So far, we have been discussing transformations from
the time domain to the time-frequency domain. The goal
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has been to identify the spectral response of various It has been shown for radar scattering that it is possible
scattering mechanisms. The direct scattering to exchange the time and frequency parameters in the
mechanisms are relatively easy to characterize because above argument and arrive at a "bi-time" response or,
there is a direct relationship between the time of since time is related to distance by the speed of light, the
occurrence and the range domain (or down-range) "bi-range profile" of a radar target [8 to 11]. Using a
location of the scatterer. Many of the terms in the similar argument (with t and o interchanged), we arrive
response profile, however, are the result of multiple at a form of the bi-time response as
interactions. These terms are difficult to specifically
identify because they appear no differently in the down B(t 1 ,t2 ) = h(tl) h(t2 ) h(tl+t2).
range profile than the direct scattering terms. There is a
difference, however. The interactive terms are related in Where h(t) is the (band limited) radar target impulse
a specific way to the two direct terms involving the response. What we are saying is that two response terms
interacting scatterers. An algorithm that can reveal these in the impulse response at t1 and t2 can be shown to be
relationships is the bispectrum. due to an interaction that produces a third term at tI+t2

if there is a response at the product of h(tl) h(t 2 ) and
The bispectrum is defined as the two-dimensional h(tl+t2). This information has been used for radar target
Fourier transform of the third moment sequence or the identification [5, 6, 8 and 9].
bicorrelation function R(t1 ,t2 ) [4 to 8]. If we have
scattering measurements in the time domain, h(t), the The above formula can be shown to only apply to a case
bicorrelation function is defined as where the multiple interaction is along the axis of

propagation of a monostatic radar beam. It also has a
ft =0 problem with the zero time offset [ 10]. In the next

Rh(tl,t 2 ) = I h*(t) h(t+tl) h(t+t2 ) dt section, we will modify the algorithm to apply
J t=_oo specifically to our 45 degree missile.

(remember that h(t) is scalar) and thus the bispectrum of 8.2. Bispectral Analysis for the 45 Deg. Case
h(t) is defined as As we can see, the bispectrum can be used to analyze

t =0 t =0 radar direct scattering and interactions when the multiple
1 2 scattering is along the same axis as the incident beam. In

SI Rx(t1 ,t2)exp(_j(wltl+w2 t2 ))dt1 dt 2 . our case, we have a missile shape tilted at a 45 degree
B(wlw 2) = angle and the d-dot probe is in the near field and is at a

distinct bistatic angle with respect to the incident signal.
tl=--C t2 ='00 The bispectral algorithm must be modified to fit this

Note that if the data are corrupted by noise, the specific configuration in order to evaluate multiple
bispectrum (which represents an integration over the interactions. Consider the geometry of a 45 degree tilted

domain of t1 and t2 tends to the bispectrum of the object as shown in Figure 19.

noiseless data. In other words, the triple correlation of In this figure, (1) an incident signal arrives at points A
the noise approaches zero [5 and 8]. and B and scatters bistatically to the D-dot probe, (2) the

incident signal arrives at point A, scatters to point B and
An alternate formulation of the bispectrum is to take the then back to point A, and then to the D-dot probe. We
triple product of the spectrum that results from the wish to use the bispectral concept to evaluate the
Fourier transform of the impulse response h(t). Thus if interaction between points A and B. Using this

i-t=oo geometry, (and the known value of the intercept point, x)
S(w) h(t) exp(-jwt) dt, for every pair of points in time t(A) and t(B),

t=-00 corresponding to the reception of a signal from

generalized points A and B, we can compute the time of
the interaction term t(C). We then form the triple product

then it can be shown that

B(wl,w 2 ) = S(wl)S(w2 ) S*(wl+w2). B(t(A),t(B)) = t(A) * t(B) * t(C).

This is the generalized form of the bispectrum. In this The two dimensional image, B(t(A),t(B)), is then
,it permits relationships between spectral responses generated. The magnitude of the response at each point

form, ifferent requencies betdisperal r in the image is proportional to the correlation of the
at two different frequencies to be discovered. Our product t(A)*t(B) with t(C). This magnitude will be
problem is different, however. Our problem is to nnzr hnteei nitrcintr ewe

discover relationships between two different responses in and B.

the time domain. We will make this change below.
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Using (relatively) simple trigonometry, we have derived If we compare these figures, we see a change as we go
the generalized value of t(C) for given values of t(A) and from the no-probe case to the probe case at index 55
t(B) and the intercept point x. vertical 180 horizontal. This timing might correspond to

an interaction between the probe and the bottom of the
missile shape (as discussed in item 3 above). This is

8.3. Bispectral Analysis Applied to the Tilted Missile speculation.

Data
We applied the 45 deg. modified bispectral analysis to If we compare the internal open with the internal short
the 45 degree missile impulse scattering data. The 45deg. modified bispectral image for file 7USA3 (no case, we also see a possible effect at 55 vertical and 180

horizontal (the same location as described just above for
probe; internal short) is shown in Figure 20. Ignoring the probe versus no-probe case). Once again, we can
the data on the main diagonal (t(A) = t(B) = t(C)), we speculate that there is some effect involving the change
can see several specific interaction terms. They are caused by the open versus short case which effects the
listed below. All timing/mechanism estimates are based p
on geometrical considerations. probe versus bottom of missile interaction.

1. Vertical index 65; horizontal 110 (remember that each 8.4. Bispectral Analysis; Summary
index is 0.02 ns) In summary, what we see in the image seems to show
This timing corresponds to an interaction between a multiple interaction terms between the top and bottom of
reflection from the top of the frustrum and the bottom of the frustrum and between the near side and the far side
the frustrum. (Top of frustrum to bottom of frustrum to of the base. We also may see an interaction between the
d-dot). frustrum and the base of the missile shape.

2. Vertical index 55; horizontal index 130 There also seem to be some "accidental" bright spots.
This timing corresponds to an interaction between a These could be caused by the accidental correlation of
reflection from the top of the frustrum and something some strong terms in the time domain response. Note,
with a delay time 1.4 ns longer. There is no obvious for example, the off-diagonal lines in the image. They
mechanism except perhaps an attached mechanism that originate at specific bright points and cause "bright
forms a creeping wave around the back of the missile spots" where they cross the horizontal or vertical
cylinder/frustrum and returns to the D-dot probe. More response lines of other strong scattering mechanisms.
study of this is called for. It may be a false correlation These intersection spots are likely not true interaction
simply because of an overlap with other terms. terms.

3. Vertical index 65; horizontal index 180 Clearly, this modified bispectral interaction analysis
This timing corresponds to an interaction between a shows promise. We may actually be able to specifically
reflection from the top of the frustrum and a point 3/4 of identify interaction terms in the impulse response. More
the way down the cylinder part. There does not seem to research on this modified application of the bispectrum
be a scatterer at this point, but perhaps we are actually is called for.
seeing an interaction between the nose of the missile and
the base of the missile. More detailed study of this 9. CONCLUSIONS
algorithm is called for. 9.1 Time-Frequency Representations for Impulse

4. Vertical index 120; horizontal index 180 Scattering Analysis
We have shown applications of the Short Time Fourier

ThisTransform, the Wigner algorithm, the wavelet transform
direct creeping wave at the bistatic 45 degree specular and the bispectrum to the problem of analysis of the

point and a term 2.4 ns later. No mechanism is seen resonant behavior of a generic missile shape. The missile

there. It may be an accidental overlap of other terms. resonant be gr o wa the issile rape.

was tilted 45 degrees toward the impulse radar.
5. Vertical index 180; horizontal index 2105. Vrtial idex180;horzontl idex 10All three analysis techniques were able to show
This timing corresponds to an interaction between the
near side of the base and the far side of the base of the 1) the direct reflection mechanisms and their frequency
missile shape. spectrum

We also applied this algorithm to the data sets from 2) multiple reflection mechanisms involving
6USA8 (no probe; internal open), Figure 21, 7USA2
(probe, internal short) - Figure 22, and 6USA9 (probe, (a) multiple reflections (interactions) from the
internal open) - Figure 23. nose region to the rear

(b) multiple reflections (interactions) across
the nose region and the rear region
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Note that any multiple interaction mechanism is, in fact, "short" and internal "open"). These effects occur when
a type of resonance. the probe on the nose of the missile conducts energy

directly into the interior of the missile. They are easy to
A particularly effective technique was to subtract two confuse with external attached mode multiple interaction
data files involving only a specific change in the radar with the frustum area.
target (with and without a probe, for example). This
technique was able to extract specific interactions that
could not be seen directly.
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Figure 12. Raw data and Wigner algorithm for 6USA9(45 0 ).
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Figure 13. Raw waveform and STFT image of theoretical data. (impulse at 1. 1 ns; 2.3 GHz
starting 4.3 ns; 6.7 GHz starting 9.7 ns; 12.4 GHz starting at 12.4 ns).
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Figure 14. Raw waveform and wavelet image of theoretical data. (impulse at 1. 1 ns; 2.3 GHz
starting 4.3 ns; 6.7 GHz starting 9.7 ns; 12.4 GHz starting at 12.4 ns).
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Figure 16. Raw data and wavelet image of 6USA9 (450).



3-27

6USA9.DAT - 7USA2.DAT WLET2S 24-Mar-98
10 , , , I

0

0

C')

-5

0 2 4 6 8 10 12 14 16 18 20
TIME (ns)

1

O

w0

0Q

U-

0 .5IIIIIIIII

CD)

0
0 2 4 6 8 10 12 14 16 18

0 1 2 3 4 5 6 7 8

Figure 17. Raw data and wavelet image of 6USA9-7USA2 (subtraction).
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Figure 18. Raw data and wavelet image of 6USA9-7USA3 (subtraction).
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Figure 20. Bispectral image of 7USA3.
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Figure 21. Bispectral image of 6USA8.
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Figure 22. Bispectral image of 7USA2.
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Electromagnetic Inversion

A. Peter M. Zwamborn
TNO Physics and Electronics Laboratory

Oude Waalsdorperweg 63
P.O. Box 96864

2509 JG 's Gravenhage
The Netherlands

1. INTRODUCTION 1981 Convention finished in Geneva. One of the main top-
ics was land mines. Some additional rules to those of 1981

1.1 The Land Mine Pollution Problem were agreed upon. Internal conflicts are now also covered
The pollution of areas with large quantities of anti-tank and by the convention. It was further agreed that land mines
anti-personnel land mines, especially in countries of former must have a self-deactivation device and that they must con-
armed conflicts, like Afghanistan, Angola, Cambodia, Iraq, tain at least 8 g of iron, to be detectable by the current types
Kuwait, Somalia, Vietnam and Yugoslavia, is a major prob- of mine detectors.
lem. According to United Nations estimates, the number The above discussion on the land mine pollution problem
of uncharted buried anti-personnel mines exceeds 100 mil- demonstrates the need to develop new technologies to in-
lion, in over 60 countries around the world. The rate of new crease the efficiency and to reduce the costs of mine clear-
mines being laid is about one million per year, which sur- ing operations.
passes the number of mines cleared by a factor of twenty.
Some 2 million mines have been deposited in the war-torn 1.2 Electromagnetic Inversion
areas of former Yugoslavia alone. Whole areas of coun- The detection of objects buried in the ground is in gen-
tries, especially Cambodia, have been severely held back eral difficult. An even bigger problem is discrimination or
from further development [1]. classification of the buried object. The first problem is the
According to the Mine Clearance Planning Agency in ground itself. It is usually very inhomogeneous and has a
Afghanistan, over a period of 15 years an estimated 20,000 complicated layered structure, often containing rocks and
civilians have been killed and 400,000 wounded by land voids. Moreover, many other objects like metal cans can
mines in that country. The current rate is 4000 killed and be present in the ground. Without a reliable identification
another 4000 wounded annually, world-wide. Injuries are method, the false-alarm rate of a ground-penetrating-radar
horrific and usually result in amputation; returning refugees system would be so high that the cost of c-learing of a mine-
to conflict zones often find minefields in previously farmed field would be prohibitive.
lands, and usually have to clear the land themselves. Meth- The objective of this lecture on inverse methods is to
ods used at present for locating and clearing mines are present some methods to carry out detection of buried ob-
painstaking, costly, time consuming and highly dangerous. jects. Subsequently, the reconstructed data is available to
Those methods include the use of sniffer dogs, magnetic dedicated pattern recognition algorithms to obtain classifi-
mine detection aids (e.g. metal detectors) and manual prob- cation of the detected object.
ing. These methods are very slow and involve teams of two In general the electromagnetic data is obtained by using
working their way along rows as narrow as 1 m across. For fixed-frequency systems operating at a single or multiple
instance, a team of 30 men with dogs is able to cover only frequencies or ultra-wideband systems. The term ultra-
2000 squared meters per day. The costs of such clearance wideband is used in all situations where one deals with
is reported to lie between $ 200 (US dollars) and $ 1000 per pulses of extremely short duration. A pulse of almost
mine. After the food problem, the so called land mine pol- zero duration, which approximates a delta function, con-
lution problem is seen as the biggest humanitarian problem tains almost all frequencies. Hence, short pulses are ultra-
in the world [1]. wideband pulses. It has been claimed by some authors that
Initial moves have been made towards a world-wide ban of UWB systems have many advantages compared to fixed-
land mines. In December 1993, the United Nations Gen- frequency systems when used for probing the ground [2],
eral Assembly passed a non-binding resolution calling for [3]. In a UWB system, like a ground-penetrating-radar sys-
such a ban. In the 1981 United Nations Convention, some tem, a large amount of individual frequencies are applied
rules governing the use of land mines (considering for ex- towards the object of interest.
ample the automatic neutralization of land mines and the
obligation to record pre-planned land minefields by means 1.3 The EM-Inversion Methods Presented in this Lec-
of maps) have been agreed upon. This international law ture
regulating the use of land mines, the 1981 Land Mines Pro- The first method that is presented is denoted as "Microwave
tocol, at present only regulates the use of land mines in Image Reconstruction Methods" by S. Primak et. al. This
wars, but not in internal conflicts, and has been ratified by method uses a special mapping of gathered data and in this
only 39 countries. Meanwhile, new minefields have been paper a tutorial type overview of microwave tomographic
created in Georgia, Armenia and Tajikistan, for example, imaging is given. The second method that is presented is
as well as in the territories of former Yugoslavia. denoted as "Two-Dimensional Inverse Profiling: Nonlinear
In May 1996, a United Nations Review Conference of the Optimization and Embedding" by A. Tijhuis et. al. In this
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paper, a method is presented to solve nonlinear inverse scat-
tering problems. This approach is based on the availability
of efficient iterative solvers to carry out the electromagnetic
computations. The last method discussed in this lecture is
denoted as "Non-linear Inversion Based on Contrast Source
Gradients" by van den Berg et. al. This method is an algo-
rithm for reconstructing the complex index of refraction of
a bounded object. Also, this method incooperates efficient
iterative solvers.
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Microwave Image Reconstruction Methods

Sergey Primak, Joe LoVetri, and Beibei Zhang
Department of Electrical and Computer Engineering

The University of Western Ontario
London, Ontario, Canada N6A 5B9

1. SUMMARY 3. METHODS OF IMAGE CONSTRUCTION

In this paper we give a tutorial type overview of microwave As we've seen, but not proved, the scatterer geometry is simply

tomographic imaging, or inverse synthetic aperture ISAR (and the 2-D inverse Fourier Transform of the reflectivity of the

SAR) imaging, of perfectly conducting bodies by considering object in the k.- ky plane. Methods of image construction

the simplest high-frequency model of scattering and we review from measurements, based on the direct application of the 2-D

methods allowing one to obtain these images. inverse Fourier Transform as well as alternative methods,
making use of the so called Central Slice Theorem, will now be

2. IDEAL POINT SCATTERER MODEL AND ISAR discussed.

ISAR (SAR) imaging provides a way to map data gathered at
multiple frequencies and aspect angles into a two-dimensional 3.1. 2-D inverse Fourier Transform
image, where the points correspond to x-y coordinates in As has just been discussed, an image of the geometry of a

space (called down-range and cross-range respectively) [3]. scatterer can be constructed by an inverse 2-D Fourier

An intuitive explanation based on ideal point scatterers will be Transform of the scattered signal in the frequency domain, that

given in this section. is [5, 6]

Consider a monochromatic electromagnetic plane wave, s(x, y) = IflS(kx, ky)exp[2j(kxx + kyy)]dkxdk (5)
having a frequency o , incident at an angle pi', on a target ltR2

containing an ideal scattering centre of strength A at position
(xo, Yo) (see Fig. 1). The incident plane wave is represented as This expression gives us a direct method of recovering the

image from the measurements. Unfortunately, the discrete
version of (5) requires the uniform rectangular sampling of
information in the kx-ky domain, while the measurements

where k = k (CixCOSqpi + aivsinqpi) = a.xkx + tik, is the wave are usually taken in the o - qpi domain, which is non-uniform

vector with k = co/c (c is the speed of propagation), in the kxu-k domain. Thus some kind of interpolation has to

r = &,tx +a yy is the position vector in the plane, ax and ay be used (see [5] for details).

are the unit vectors in x and y directions, respectively. Theresulting backscattered field can be written as [3] 3.2. Filtering and backprojection
An alternative method will now be described (see [6, 7, 11]).
Using the fact that k. = (co/c)cos(pi, andky = (co/c)sincpi

= A exp (- 2jk~xx - 2jkyo)exp(Jk. r + Jt) (2) one can rewrite integral (5) as

Dividing the scattered field by the incident field and
multiplying by exp(-2k • r) one obtains s(x, y) = f [ S(kx, ky)exp[2j(kxx + kyy)]dkxdky

R
2

S(03, wi) = Aexp(-2jkx0 cospi-2jky0 sin(pi) (3) = •21 ()c)e2J°o(xcos p +ysinp) 03 d03d(pi

= C f~ f Ti if(,jca cdp
If we take the 2-D inverse Fourier transform of (2) with respect 0
to 2kx and 2k, we obtain

where S, (co) = S(co, (pi) is the slice of the frequency domain
image (frequency response of the of the target) taken at the

s(x, y) = A8(x-x 0 )6(y-yo) (4) angle pi . Using p = ft-x2 +y 2 and j3 = atan(y/x), we get

a k yo -. --- A s(p, )() = 2 j -( j)e p(cos cosi + sifn lIsifn(pi)coldcod~i
x I -0 (7)

X0 f dD f S•,x , ((~ j~ csP (dc~

Figure 1. Incident wave vector and ideal scattering centre. dpi - ST(2))e 2JTPcos(-Pi)lcold03

This is the essential idea behind ISAR processing: ideal Therefore the shape of the scatterer can be obtained by first
scattering centres correspond to ideal points in the ISAR image filtering the frequency domain slices, that is obtain the filtered
[3, 4]. signal
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(~P1cos(P-(Pd) = f J ImIS~i(co)e2J)Pcos(P(Pi)do 8 s(x, y) = -k2 f f S9(m())e 2j o)(x cos(p i + ysi n(p ) I mldwd~pi (11)
-00 (8)

= F cos (pi) [W1 S.(°) ] or, using the variables P3 and p, as

This is just the I -D inverse Fourier transform (using the spatial
parameter 2pcos(13P-p)) of the frequency domain slice, 1 -00

taken at angle qpi and multiplied by Iol :'Alternatively, it is the s(P3, p) = -• f fS (Vi)e 2 jmP(cs)csi+sldwd

spatial domain slice convolved with h(t) = F-1 [I(l] [6]. -_0

The next step is called back-projection of the filtered slices: = -2 J" S S(o)e2Pi Pc°((P-))oedodpi (12)

-0

7TE t2 007 t2 -2s(p, )=2Idqi•(co(-~) (9)= F(])2-it IS(•ejp~(3%d~

This states that the reconstructed function s(p, 3) is the result and, finally,
of averaging the signal P (pcos(P3- p)) with respect to (pi,
which, in turn, is the back-projection of the signal %.(x) along 2 -2 7C

the line in the same direction in which the projection function s(3, p) = -F -(1l() * S -(pcos(3 -p))dpi (13)
is obtained (see Fig. 2). Thus, the reconstructed pixel is the o

averaged back-projection of the measurements, taken all
around the object. Since the filtered version of the where * denotes 2-D convolution. The final integral term in
measurements is used, this algorithm is called filtered back- (12) represents the back-projection of the signal, restored from
projection [6]. From equation (9), the discrete approximation the frequency domain measurements without any filtering, i.e.
of the reconstructed function s(p, P3) can be obtained as
follows

sIN(x) = 21 7 S(i(m)e 2fmxd°o (14)

s(p, f) JdP(i (pcos( - )) but to restore the true function s(p, (p) one has to convolve the

0 (10) result of the back-projection with a point-spread function [6]
N-I

00 Y, ,(pcos(P- -n/N))
,,=0 F- 2(1o1) = p-1 , p = ýrx2+y2 (15)

which can be performed sequentially as a new measurement is As we can see, this algorithms allows the reconstruction of the
obtained. Thus, the filtered back-projection algorithm employs image in two steps, one of which requires a two-dimensional
only a series of 1-D inverse Fourier transforms and does not convolution with a singular function. Where only a rough
require the complete data set to start reconstruction. This image of the body is required, the convolution may be omitted.
makes the algorithm the best choice for reconstruction of the
function from its projections [6, 13]. 4. PHYSICS-BASED SCATTERING CENTRE MODEL

The previous considerations were based on the following
assumptions:

ý(xcosO + ysin0)
i) that scattering from a complex object can be thought of as

scattering from a relatively small number of ideal point

scatterers [3, 4]; and that
Filtered Projection - I- - . 2) measurements are available for all incident angles in the

" L to x-y plane or, at least, for a discrete set of angles,
[ L Icovering the range [0, 2t] , [6, 7].

Back-projection r T - In practice, any of these assumptions may become invalid. Due
Ito the limited frequency content of the excitation, especially

taking into account its base-band nature, the real physical
object cannot be represented as a set of ideal point scatterers
[7, 8]. In fact, the reflection coefficients depend on frequency

Figure 2. Back-projection algorithm and angle of incident. Also, if a wide range of angles is used
some scattering centres may become invisible for some of the

3.3. Back-projection and filtering aspect angles. Cavities, ducts, and other structures present in
The filtered back-projection is not the only way to reconstruct real targets produce scattered signals that have a very strong
the desired function from the measurements. In fact, equation frequency dependence which cannot be "focused" on the ISAR
(5) can be rewritten as (SAR) image.
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For realistic targets it is almost impossible to obtain the The angle dependence of the magnitude of the scattered field is
information about the scattered waves for a wide range of a much more complicated question. Most man-made targets,
aspect angles. This is why many authors have considered containing sharp edges can be characterized by a sinc-like
microwave imaging using the back-projection algorithm as a aspect dependence of the scattering coefficient. In practice,
narrow-band (with respect to the angular variable) technique. especially, for the narrow-band angle ISAR (SAR), this

dependence can be accurately approximated by the

Another physical phenomena, inherently presented, is the exponential, i.e. [10]

dependence of the scattering parameters on the polarization of
the incident wave. S(e), (Pi) = A,,(j03)aePPi (19)

In this section we will present more realistic models of the Thus, GTD predicts the following model for the scattering
targets, based on the geometrical theory of diffraction (GTD) from large targets

[9].
Al -2.j--(x cos(P +ysin pi)

4.1. GTD scattering model p(co p) = Y A(jo))el'ee c' (20)

The GTD scattering model is valid under the assumption that I = I
the wavelength of the incident excitation is small relative to the which sometimes results in ISAR (SAR) image of a target
targets extent [9]. It represents the scattered field as originating different from those obtained using PO approximation.
from a set of M discrete scattering centres located at points
(x,,,, y,,) 'I < m < M, i.e. 4.2. ISAR image of the point scatterer from narrow band

of angles

E At If the measurements are performed in a narrow range of
Es(o, (pi, t) . ... Si(o, (pi)exp[-jmT,] (16) incident angles, say -ocmx, < < T< <.ax, and in the frequency

cot n = 1 range -- Omx < 0) < (m0x, then

where o is the angular frequency, co is the propagation 0 3 nax
velocity, -I •l <-o sina (21)

coco

2
Tm = 2(xmcos(pi + y,,sin pi) (17) :vA

"co O
) max .

is the round trip delay of the m -th scattering centre, and M is co k under consideration

the number of scattering centres. The amplitude Sm(@o, (p) is a

frequency and angle dependent coefficient determined by the max
geometry, composition, and orientation of the scattering co
mechanism. The normalized field for a given polarization
(suppressing the e-jmt dependence) is then

M Figure 3. A narrow-band angular k. - ky plane-2 jk(x., cosp% + v.. sinp.)
p((O, (Pi) = Z InO'(ie""18

m=1 and the image of the scatterer is given by
0 . 0) sinoc

For frequency dependence, GTD predicts that the scattering CO co

amplitude is of the form (jm)CIý where ai,. is an integer s(x, y) f e2 jtk,(xx)+ky(Yy0)ldkdk.
multiple of 0.5. Table I shows the relation between different "t2  f
values of the parameter a,, and the geometry of the scatterer • ..... mm•.sin•

[10]. Co co (22)

sin[Or2-X(X-Xo)sinK!1L1LX(vvyosina]
Table 1. Relation between ax and scatterer geometry 1 so'j co--y osi

•2 omaxxX) O...(-Y)si
TE ýmax WI

Value of a Canonical scatterers -(X-xo ) -Co(y-yo)sina

I Flat plate at broadside; dihedral which approximately represents an ellipse in the ISAR plane.

1/2 Singly curved surface reflection 4.3. Resonant scattering

0 point scatterer; As was mentioned before, the low frequencies in the incident
doubly curved surface reflection waveform can excite the resonance of the target [14]. This
straight edge specular effect can be described by an extra term in the frequency

response of the target. If we assume that the resonant response
-1/2 curved edge diffraction is localized at the point (xo, yo) and the frequency of

oscillations is mco, with a damping factor is y, and an angle
- I corner diffraction dependence which is proportional to a decaying exponential
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term exp((pi), then the extra term due to the resonance can
be written as 1

exp - 2Jcxocosqi - 2j y0 sinpi 20

Sr(CO, (pi) - exp(p3tpi) + (23)

weasue ls ha ae40....................

If we assume also that data are gathered over a narrow range of
angles -ax < (pi < a, equation (23) can be rewritten as 6; 60 -. . . . . .

00
ep 2j--x 0 -2] ~g

Sr(03 (Pi) e +j(03-c 0 ) (24) 80:

thus, the image in the ISAR plan will be given 100. ..............

120 ..........0. .OC,, exp -2j x0-2Jc'(pi

101 J +J(_) exp[2j(k r)]dd(piCY+j( 0)20 4 60 80 100 120
Down-range, units

Figure 4. ISAR image of a resonant scatterer.

exp 2j-0[(x-x 0 )+(-0(iCOToddi (25) open end closed end
f J' G+j(Wo- 0)0) d~~ 2)oe n

sin -T(y-yo)sinox %2 + +2ax-_x0)x

= C Ie a-)x- u(x-xo)
-(y-yo)sina 72 30 cm

Figure 5. Open ended cavity as a scatterer.

where C is a constant and u(.) stands for the unit step
function. The corresponding ISAR image is the "cloud",
spreading through the down-range shown in Fig. 4. This cloud
not only makes the image more crowded, but may in some
cases obscure some other important scattering centres. 2 - . .....

As an example, the finite difference time domain (FDTD) :!

method was used to obtain synthetic time-domain data for the .*,

monostatic scattering from the perfectly conducting cavity :' :
shown in Fig. 5 [15]. Data was taken for plane waves incident 8 ;
with the electric field polarized in the z-direction. The angle of
incidence was varied, in the x-y plane, by 5 degrees over a 180 2 :
degree sweep of the target. The ISAR image, constructed using : io
the FDTD data, is shown in Fig. 6. Note that although the 21

outline of the cavity can be discerned, the artifacts due to the
resonant nature of the target tend to obscure the image.

16

5. Physical Optics Approximation Of Scattering
Instead of approaching the problem from the geometrical 18 .... ....

optics point of view one could formulate the high-frequency
scattering problem using physical optics. 20 .. ...... .

0 5 10 15 20 20 30 35 40 45

5.1. High frequency scattering by a PEC body Figure 6. ISAR image of rectangular cavity.

Consider a perfectly conducting body illuminated by a plane
monochromatic wave, as shown in Fig. 7. The surface of the H, = f[(n x H) x VGlds = -+VG x (n x H)ds (26)
scatterer is denoted by S and its volume by V Using the ' s s
Stratton-Chu formula [16] for the direct integration of the
vector electromagnetic wave equation, the magnetic field Hs which, in turn, can be rewritten for the far-field zone as
scattered by the object can be written in terms of the magnetic
and electric fields on the surface of the body. Since the
boundary conditions are nxE = 0 and n.H = 0 the Hs =-•VGx(nxH)ds =-fGjk 3sX(n xH)ds (27)
integral equation simplifies to s s



5-5

Here n is the unit vector normal to the surface of the scatterer, Hi = . (k3i)e k3i ' (33)
H is the total magnetic field, G stands for the appropriate
Green's function, k 3i and k3, are the incident and scattered Recalling, that the three dimensional Green's function for free
field wave vectors.

space is

ejk,
G = -- tr', r = Ix-x' (34)

k • • one can rewrite (31) in the form

"(k 3 ) = 2j j eFik3.. (r-x' jk) 3 X k ds (35)

Figure 7. Geometry of the problem l(k 3 ) k3 n < 0 4nr

For scatterers that are large compared to the wavelength of the In the far field, we have

excitation, the physical optics approximation states that the
total magnetic field H, tangential to the surface is twice the
incident tangential magnetic field on the illuminated side of the 2j 4ir 2j 4i-r - Jr and ed",.' (r-x) __ e-k3, x (36)
scatterer and zero on the shadow side, i.e., 4F71

thus, (35) can be rewritten, for the monostatic case, as

2n x Hi, k3i . n < 0

n x H = 2,zxll,, k !Z<0(28) S(k 3) e 2 k3 XkdS (37)
0, k 3i'it>0 p(k3)- l(k3) ,4T~k3.n<0

This approximation allows us to rewrite (27) in the following where k3 = k 3s = -k 3i. Here p(k 3) represents the
form normalized monostatic response.

H, =-2j f Gk 3s x (n x Hi)ds Let Sk be the surface illuminated by the plane wave
k3,, <u propagating in the direction given by the wave vector k3

(29) Then, assuming a convex object:
= 2j f G[Hi(k 3 ,. n)-n(k3, -Hi)]ds

k3i'n<0 S = Sk+S -k (38)

If the incident field is taken as a plane wave, then for the
monostatic case k3, = -k 3i and thus k 3i . Hi = 0 which where S-k is the part of the surface S illuminated by the
reduces (29) to wave, propagating in the opposite direction to the wave

described by wave vector k 3 , i.e. is the part of the surface
illuminated by the wave propagating in the direction described

H, = 2j f GHi(k 3. " n)ds (30) by the wave vector 4 . For this case (37) can be rewritten as
k3i n<0

From this equation it can be seen that the polarization of the S(-k 3) e2jk3 xk3 ds (39)
scattered magnetic field yielded by the physical optics p(-k 3) - -- -- k3.n < 0

approximation is co-linear with the incident magnetic field
polarization. Thus, no cross-polarization information can be
obtained from the physical optics approximation. Equation or
(30) can now be rewritten without loss of generality in terms of
the complex spatial vector magnitude of the incident and e-2jk3"xk

scattered fields as P (k3) f 3 e 2 kX 3 ds (40)
Jk 3 -n<o

H, = 2j f GHik3s" ds (31) Adding (37) and (40) yields

k 3 i i' <0

In the far field, the scattered field can be considered a spherical P(k 3) + P*(-k 3) = f -,J•--x.

wave, thusn >0 (41)

Sf e-2jk3xk 3 ds = Jf -2jk3x ' ds

H ., = S(k3.,.) e - (32) _ -n<0FC

According to Gauss theorem, the surface integral can be
while the incident field is the plane wave transformed to a volume integral of the form
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P(k3) + p"(-k 3) = 1,e2 ik3 Xk 3 • ds A 1,) k 3 for which p(k 3) is known (47)

=- J fV • (e-21k3xk 3)dv (42) 0, Vk 3 for which p(k 3) is unknown

2k22  and let a(x) be a three-dimensional Fourier transform of
"_f- fe- 2 .3"Xdv A(k 3 )

where k3 = 1k3l. a(x)= 13 J A(k 3)dk3  (48)
R

3

5.2. The inverse problem Then, equation (46) can be rewritten as
Equation (42) allows us to solve the direct problem, i.e. to find
the scattered far field, if the shape of the target is known. A
small modification of (42), suggested in [17] allows to solve a(x)*y(x) =-5/2 R -p e
the inverse problem, i.e. to restore the shape of the object if the 16 f k2

R
3  3

scattered field is known. This will now be explained.
where star denotes 3-D convolution operator. Equation (49)

Let us introduce the following membership function shows that in the case of incomplete angular information the
reconstructed ISAR (SAR) image differs from those
reconstructed from the complete information. It is 3-D

I, Vx E v convolution of the "complete" image with some aperture
0(x) = 0, Vx 0 V function which depends only on part of the frequency space

where measurements are available.

Then the integral (42) can be rewritten as 5.4. Two-dimensional thickness function

2k2 If the scattering information is restricted to the two-
p(k3) + p*(-k 3) - 3 f-e- 2 k3 -Xdv dimensional (k,, ky) plane, then the scattering information

"3• V aperture must be chosen as the one-dimensional Dirac-delta
V (44) function in the orthogonal direction to this plane, i.e. [18]

- 2•2y(x)e-2 ik 3Xdv
,FTR3 A(k 3) = 8(k) (50)

or Thus, according to (48)

"FE[p(k3) + p*(-k 3)]I f y(x)e-2k3Xdv (45) a(x) = 1 j e 2jk3 x8(k,)dk 3 = 18(x)8(y) (51)

2k2 R(2n)3j z

The right part of equation (45) is the three dimensional Fourier and the integral equation (49) can be rewritten as

transform of the membership function y(x) , and can be easily
inverted to produce

T(x, y) = f y(x, y, z)dz

I f ( ,[P(k 3 ) + P*(-k 3)] .- 2ik3  -0d,Y(X ) = .( •32n)3J T 2 k2 -e 3 7C 5/Xdk 3 j 3 ' d
3 k f 1-)Re V e2k3Xdk)z=~~~ ~ ~ ~ TC5/ f e-5/2Rek33 52J116 k k3  )

R 13 X-5/2 ( rp(k3 ) e22k3Xdz (52)
R3  -' N(46) - -5--ReI 2-dk3  j

TE-5/2r r P(k3)e-2ik3 "Xdk 1 kR3 k3 -)

+ 16 ( k2 -- -
.R3 3 =nrt-5/2 Re f2 )e-Re )2jk.xe21k (kz)dk3)

= 7-5R2Re f )e_2k3 Xdk 16 y.33 kR )

16 k k2
R 3  3 and, finally, taking into account that k2 = k3 in this case

Thus, if the response from the target is known for all possible
wave vectors k 3 , then the membership function y(x) can be T(x, y) = n-3/2 Re p(kxkky) e- 2 jk2 x2 (53)
exactly reconstructed. T8x yf I ~- ' k dk2

R
2  2

5.3. Case of incomplete scattering information It can be easily seen from the equation (52), that the two-
Let a scattering information aperture function A(k3) be dimensional function T(x, y) , which can be restored from two-
defined as unity or zero for all values of k3 for which the dimensional measurements represents the dimension of the
scattered response is known or unknown, respectively, i.e. body in the z direction, i.e. its thickness [18, 19].
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5.5. Conducting plate example 8bc t = -r 2a. 2a )
Consider a perfectly conducting rectangular plate of dimension 9F(nn, t) = -- ) - (t + -coj (60)

2a x 2b x 2c centred on the origin. According to (42) one can
write In the very same manner one can obtain that

P Ik3) = 2jk XdV91(+2 t) = --8-Ia8(t -- 2)-b (t +-bI (61)
ptk 3 ) = IfC e 2 TC atL c0 co

21k 3 12 ae 2 jk b.x F' C For any other angles, the inverse Fourier transform, applied to
= 'T I e Jdx f e-2 kfYdY J e-2ik•Zdz (54) the equation (57), gives

-a -h -c

21k 3 [2 sin(2kxa)sin(2kyb)sin(2kzc) T(t, 9) = 16c 1

= Fr1 kx k , kz 4r7 cos(psinp([8(t- T -2) •5( + 1 +T2) (62)

If the measurements are obtained only in the x - y plane than - T] - T2) + + T, + T2 )

the z component of the k3 vector is equal to zero: kz = 0 -(5(t- T1 + T2 ) - 5(t + T1 - T2)
and (54) can be rewritten as

Corresponding ISAR images are shown in Fig. 8-9. It can be

_2k 3 
2 sin(2kxa)sin(2kyb) clearly seen from the Fig. 8 that scattering from the edges of a

p(k2) = 2c plate are dominant, thus producing image similar to "optical"
n kx ky image of the plate, but contaminated by artifacts. At the same

_ 
4 c (k2 +2 sin(2kxa)sin(2kvb) time, a narrowband image, shown in Fig. 9 emphasizes point

scattering, i.e. only sharp changes in target shape can be-- (tx k) x y observed.

The next step is to use the following relation between the
components of the k2 vector and polar coordinates on the ' - ' 20
x- y plane

i 18

50-

kx cos p, I, k=-i~ (56) 16co co 100

After plugging (56) into (55) one can find that 100 0.14

12

sin 2- acosqo sin 2 bsin (p 150
4cow2 ( coc 10

p(co, ) C 2  o
0 Cos ( -sin (p 200co co8

4c 1 (
S sin(Tao) sin(Tbmo) (57)

cos (psin (p _5o

-16c -1 j(T +TI)o) -j(T +T,)o 4

,FTC cos(psin(p 300

ei(T,, - TI)-o _ e-j(T, - T•) ]c

where we have used the following notations 50 100 150 200 250 300

Figure 8. ISAR image of a rectangular plate (PO data).

Ta = 2acs, T = 2 bsinp (58)
Co Co Yet another important feature can be seen from Fig. 9. Instead

If (p = 0 or (p =tc then the denominator in (57) becomes of a single point, representing a nearly isotropic point scatterer,
two or three different scatterers can be observed. This

zero and the true value of the p((p, (o) can be calculated as a emphasize the difference between PO and GTD
limit: approximations. However, for the case of a rectangular plate it

does not introduce a big difference. The results can be quite
p(7n, co) = lim p(p, o) different if the target has a few closely spaced sharp edges.

sin 2 Cos sin ( 2 bsingm W 6. CONCLUSIONS AND MODERN TRENDS

= lim 4c "C Co0  (59) In this paper we have briefly reviewed the background of ISAR
4,-1nfln$ coscP sin(p (SAR) microwave imaging and have considered the main

4c .s(2ac 2b methods of image reconstruction from the projections. As we
7 7 n.c ) 7 o) have seen, the ISAR(SAR) image does not coincide with the

"true" optical image of the target. Nevertheless, it seems that
and thus, the corresponding time response is such an image reflects deep physical properties of the target
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1. SUMMARY R
R * .

Previous work by the first two authors has shown that it- R * 0

erative procedures for solving nonlinear inverse-scattering •0 0 Do
problems that are based on a local linearization can be used o0
to reconstruct objects of large contrast with a given resolu- Do
tion, provided that multiple-frequency information is avail-
able. This approach has become feasible since combining *
the CGFFT method with a special extrapolation procedure !
leads to an extremely fast solution of the corresponding
direct-scattering problem for varying angle of incidence Scattering

and contrast. Presently, we are trying to overcome two D

of the limitations of this approach. First, we replace the Do

"update step" by a line search in a nonlinear optimization __7H_71

procedure. Second, we use the scattering response of the
estimated object in a homogeneous environment to recon-
struct objects in more realistic measurement set ups like a 9
water-filled metal cylinder. =

2. FORMULATION OF THE PROBLEM D O
We consider an inhomogeneous, lossless dielectric cylin- • * S

der in an observation domain 'Do, embedded in vac-
uum and excited by a time-harmonic electric line source FIGURE 1: typical inverse-scattering geometry.
on a circular contour 09Do around the cylinder (Fig. 1).
"Complete" scattering data are available, i.e. the scattered integral relation can be derived:
electric field is known on 0Do for a line source anywhere
on that contour. The question is to what extent we can re- -"f
construct the relative permittivity Er(x, y) from this field G(p,IP) = Gre(P, PS) - s2 /, GT e (pp') x
information. A Fourier transformation with respect to the o
angular coordinate shows that: (i) any incident field in Do [Cr (P') - &ref (pi)] G(p', Ps) dA', (2)
can be generated by a surface current on 0Do; (ii) any scat-
tered field in Do is completely determined by its value on which holds for any {p, Ps } C D,,,. In (2), the superscript
0Do. This implies that excitation or detection in Do does ref pertains to a known reference configuration.
not give new information, which explains the designation
"complete". 2. FORWARD PROBLEM

Mathematically, the field caused by each line source can Before we address the inverse problem, we must be able
betidentifidcasal Green's fundctoie., tyeachle solutioneof to determine the Green's function G(p, ps) for a knownbe identified as a Green's function, i.e., the solution of the permittivity er (P). This field is obtained from the so-called
second-order differential equation field equation, which is obtained from (2) by taking p E

Do and ref = 1. We obtain the contrast-source integral
[V- - s 2 rr(p)] G(p, Ps) = - 6 (P - Ps) (1) equation:

that satisfies the radiation condition as p =Ip -* oo. In [ G
(1), s is a complex frequency with Re(s) Ž0. G(p,p) = Go(p, pS) - 82 Go(p,p') x

For the function G(p, ps) the following contrast-source [Cr(P') - 1] G(p', Ps) dA'. (3)

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
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Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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In (3), Go(p, p') is the two-dimensional Green's function In this equation, we replace E(p) by the parameterized ver-
of free space sion (5), and we minimize the cost function (6), augmented

by a regularization term that favours a smooth solution.

Go(p, p') Ko(slp - P'), (4) This should result in a "better" estimate g(p).
271- Linearized inversion schemes like distorted-wave Born and

where K 0 is the modified Bessel function of the second Newton-Kantorovitch essentially amount to alternately de-

kind of order 0. termining G(p, Ps) by the procedure outlined in Section 2,
and g(p) as explained above. This procedure gives rise to

Equation (3) is discretized as described in [2]. First, we two fundamental questions.
decompose Go (p, p') into a stationary part, which is loga- • First, how much information can be retrieved? To
rithmically singular as R = lp-p'I -4 0, and a part which, answer this question, we consider a small perturbation
apart from an additive constant, behaves as R 2 ln(R). This (a "pixel") in a known configuration, and we use the
results in two integrals, which can both be approximated distorted-wave Born approximation given in (8) to recon-
with the aid of piecewise-bilinear interpolation with mesh struct it in a single step. This step is representative of the
size h. This results in a convolution-type form that is accu- final stage of the iterative procedure. We formally arrive at
rate up to O[h2 ln(h)] as h -+ 0. We choose h so small that a SAR-like processing scheme which shows that the reso-
the error in determining G(p, Ps) does not affect the inver- lution improves with increasing w (. This has been
sion procedure. The resulting discretized system is solved confirmed by implementing the reconstruction scheme for
by CGFFT, using the extrapolation procedure outlined in the special case where the estimated configuration is a ho-
[1] to generate the successive initial estimates. This proce- mogeneous circular cylinder.
dure is known as "marching on in anything"; in the present • Second, will the scheme converge? The dynamic range
application, we march either in angle of incidence or in of the procedure depends on the error in the linearization,
contrast. Typically, the full scattering matrix is available i.e., on the magnitude of the term of O([E, - g•] 2) in (8).
at the cost of at most a few field computations with the For a general configuration, it is hard to give a quantitative
original CGFFT procedure. estimate of this "Born error". Therefore, we have inves-
3. COST FUNCTION AND LINEARIZATION tigated its behavior from closed-form expressions for ho-
In numerical schemes for solving the inverse-scattering mogeneous circular cylinders. It turns out that the "Born
problem, it is convenient to introduce a parameterization error" increases with increasing contrast Ie, - , difference
of the unknown permittivity: in object dimension, and frequency w.

To reconcile these observations, we start with a small w
E(P) = Z g ¢ (P) (5) to obtain the "trend". In a few steps, we then increase the

frequency to obtain more and more "detail", using previous
results as initial estimates for e€ (p).

where 0,•(p) is a known expansion function. Within the

space spanned by these expansion functions, we define the 3. EXTENSIONS
"reconstruction" as the linear combination for which the With the fast forward solution of Section 2 and the theo-
squared error retical analysis of Section 3, linearized inversion schemes

have again become attractive. However, the availability
2) ,2 of the full scattering matrix also offers the possibility to

ERR d d jR dgps IG(PR, PS) - G(PR, Ps) , (6) overcome some of the limitations of the scheme outlined
in Section 3.

is minimized. In (6), G(pR, PS) is the known field at * A first idea is to replace the determination of g(p) by
receiver position p = PR for a source at p = Ps, and a line search in a nonlinear optimization scheme. Substi-

G(PR, Ps) is the field in the configuration corresponding tuting the linearized equation in the cost function gives the

to the set of parameters {?,}. With (5) and (6), the inverse- profile gradient in closed form.

scattering problem has been reduced to an optimization 27r 27r
problem for a fixed number of parameters. fj f] APR,PS)-G(PRPS)12 &Rds

Most inversion schemes are based on a linearization of In 27,
the cost function (6) around some "best" estimate E(p) = IG(PR, Ps) - G(PR, Ps)12 d&R dps (9)
E--, f. 0. (p). Taking Eref = E results in the integral rela- fo
tion:" /' 2,• 2,r

+ 2Re . 2 lI 0 [of(p)- _(p)J f G(p, PR) X
G(p, p') = G(p, p') - s 2 I [E,(p1") -r(P"1)] X 0of

d )G,0 G(p, Ps) [G(PR, Ps) - G(PR, ps)]* dcOR dqps dA}G(p, p") a(p", p') dA, (7)

for p, p' E D,,.. We use the same representation for By "marching on in search parameter" we obtain a similar
G(p", p') in the integrand on the right-hand side and use efficiency of the successive field computations as in the lin-
the reciprocity relation G(p, p') = G(p', p) to obtain the earized schemes. This idea has recently been implemented
approximate equation: in combination with the BFGS method [3].

* A second idea is to consider a more general environ-
2ff7 ment. The CGFFT method can only be applied to objects

S2  '[r(P) - gr(P)] G(P, PR) G(P, Ps) dA in a homogeneous environment. Practical measurements,
o0  e.g. for biological tissue, must be carried out in a more

= G(PR, Ps) - G(PR, Ps) + O([e5 -1f] 2 ) (8) complicated set-up like a water-filled metal cylinder. Such



6-3

a set-up is presently being developed by the last two au-
thors (Fig. 2). In that case, a direct computation of the
field is relatively complicated from a computational point
of view. Hence, the idea is to use the procedure outlined
above to determine the complete scattering response of the
estimated object in a homogeneous environment, and sub-
sequently use a spectral formulation to "embed" this object
in the actual environment [4]. That environment' is then
characterized once by experimental and/or computational
techniques.

AY• Conductingle

SCylinder

Computational

SMuscle
SBone

FIGURE 2: set-up for biological tissue.

At the conference, both ideas will be discussed, and the
first numerical results will be presented. To this end, the
modified algorithm will be applied to theoretical as well as
experimental results.
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1. ABSTRACT ject (or objects) whose location and index of refraction
This paper describes a simple algorithm for reconstructing or contrast is unknown but which is known to lie within
the complex index of refraction of a bounded object im- another, larger, bounded simply connected domain D. If
mersed in a known background from a knowledge of how uV(p) = uin'(p, qj, kj) denotes an incident wave with
the object scatters known incident radiation. The method wavenumber kj (assumed to be real) and source point qj
described here is versatile accommodating both spatially (qj is replaced by the unit vector 4j for plane waves) then
and frequency varying incident fields and allowing a pri- for a large class of scattering problems the total field in D
ori information about the scatterer to be introduced in a is known to satisfy the integral equation
simple fashion. Numerical results show that this new algo-
rithm outperforms the modified gradient approach which Uj(P) = ui(p)
until now has been one of the most effective reconstruction Ialgorithms available. + k32 4D Gj (p, q) Xj (q) uj (q) dv (q) , (1)

2. INTRODUCTION where Gj (p, q) denotes the Green function of the back-
The problem of reconstructing the complex index of re- ground medium,
fraction of a bounded object immersed in a known back-
ground medium, from a knowledge of how the object scat- Gj (p, q) = 4 Ho (kj lp - q1) (2)
ters known incident acoustic or electromagnetic radiation,
has received a tremendous amount of attention in the past and
decade. Almost all reconstruction algorithms rely in some k2 (q, kj)
way upon the Lippmann-Schwinger equation or domain in- Xj V I . (3)
tegral equation for the field inside the scattering object as 3

well as the related integral representation for the field out- We assume that, while the spatial dependence of Xj is un-
side the object. known, the frequency dependence is known, so that, for
The present paper describes a simple algorithm for recon- example, in electromagnetics for a Maxwell medium,
structing unknown contrasts which is extremely versatile,
accommodating both spatially and frequency varying inci- k=j (8FoP0) ½ (4)
dent fields and allowing for the introduction of a priori in- and
formation, such as positivity constraints, in a simple fash- e(q) - Eo ia(q)
ion. The algorithm is a variant of the source type integral Xj (q) = + , (5)
equation (STIE) method introduced by Habashy et al. [11] EO Wcjo

on one hand and the modified gradient approach used by where E0 and po are the permittivity and the permeability
the authors in [12], [13], [14] on the other. Numerical of the (lossless) background, while E(q) and a(q) are the
results show that, despite the simplicity of the algorithm, permittivity and conductivity of the scatterer which is as-
it outperforms the modified gradient approach which has sumed to be nonmagnetic. Equation (5) may also be writ-
been one of the most effective reconstruction algorithms ten as
available until now [25]. We present here the simplest ver- Wo k0
sion of the algorithm wherein we treat scalar waves in Rt2  Xj (q) = X' (q) + ix 1 (q),qj, r - - (6)
for bodies immersed in a homogeneous background. w3 k.'

where k0 is the wavenumber for j = 0. This equation
3. NOTATION AND PROBLEM STATEMENT simplifies to
Denote by p and q position vectors in. R 2 and let B de-
note a bounded, not necessarily connected, scattering ob- xj(q) := X(q) = xr(q) + iXi(q) (7)

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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if all the measurements are made at the same frequency, in terms of AXj,n = Xj,n - Xj,n-1, namely,
say at kj = k0 .
Observe that if p is not in B then Xj vanishes, but if the lo- (I - G )
cation of B is unknown then it is not known a priori where + (I - Gxj n-1)-lG DA(j ](I - GDXj,n-X)-1
Xj vanishes. However with the assumption that B C D it [,,
is known that Xj vanishes forp outside D. In fact denoting (16)
by S a domain (or curve, or a discrete collection of points)
outside of D where the scattered field is measured to be leads to the Newton-Kantorovich method [17], [19] which
fj(p), (1)becomes has been shown to be equivalent to the Distorted Born

approach [6]. Observe that at each step in the itera-
2 tion it is necessary to compute the action of the opera-

fj(p) = k2 L Gj(p, q) xj(q) uj(q) dv(q), (8) tor [I - GPXj,n_1]- 1 for known Xj,n-I This means that
forward problems, or direct scattering problems must be

P E S solved at each iterative step.
A method which avoids the necessity of solving forward

if there is no noise or error in the measurements. But error problems completely was proposed by the authors [12] and
free data are extremely unlikely and we do not assume that was refined [13], [14], [25] and extended [24]. This mod-
(8) holds exactly. Rewriting (1) and (8) in symbolic form ified gradient method involves the simultaneous construc-
we have the object or state equations tion of sequences {uj, } and {Xj,n} to minimize the error

in a cost functional consisting of the normalized errors in
Uj += Uj + GfX ui, p G D, (9) both state equations (9) and data equations (10). It has

proven to be very effective in a large number of numerical
and the data equations tests using both synthetic and experimental data.

Because the contrast and fields occur as a product, many
f jGSxjuj, p S, (10) workers have introduced the quantity

the superscripts D and S on the operators defined implic- wj = XjUj, (17)
itly in (1) and (8) are added to accentuate the location of
the point p, since the operators are identical in all other which is called a contrast source since uj satisfies the equa-
respects, tion

ro(V2 + k)u -kswj in B, (18)
4. THEORETICAL BACKGROUND
In the absence of other a priori information, (9) and (10) Then the data equations become
are the only equations we have relating the unknown con- s(19)
trast Xj (which, recall, consists of at most two unknown =
real valued functions) and the unknown fields uj in D. while the state equations become
The known data consist of the incident fields, us , the
wavenumbers, kj, the measured data, fj, and the test do- uj = u ) , + Gj , (20)
main D. Equations (9) find (10) are linear in each of the
unknowns Xj and uj, but since both are unknown the prob- or, with (17),
lem is in fact mildly nonlinear. Of course the dependence
of the fields us on the contrast Xj is highly non-linear. This XU0 = -W xGDw.. (21)
may be seen by writing the formal inverse of (10) as Equation (19) is called by some a source type integral

uj (I - X- 1 GP.('1) equation and it has a long history. It is a classic ill-posed
S -uequation and for a time there was considerable attention

This form has been utilized in a number of inversion meth- paid to the question of uniqueness, e.g., [1], [8], [2]. It
ods. Introducing it into the data equations we obtain was shown that there exist non-trivial solutions of the ho-

mogeneous form of (19), although it was argued by some
= Gs[xj(I - G Xj)l U,] , (12) that uniqueness could be restored from physical consider-
S= s ( -ations. A good summary of the debate is given by De-

wherein the non-linearity of the inverse problem is clearly vaney and Sherman [9] and the responses by Bojarski [3]
exposed. Approximating the inverse operator by and Stone [18]. It is not our intent to renew this contro-

versy since it is now well accepted that non-trivial solu-

(I GD 1 tions of (19) exist. Moreover it has also been shown that
(I- iXi) I (13) the minimum norm solution of (19), the solution produced,

leads to the Born approximation, while in iterative meth- for example, by the conjugate gradient method, is not the

ods, where a sequence x is constructed, the approxi- appropriate physical solution. Nonetheless this source type

mation {Xj,n} equation has served as an essential ingredient in many in-
version procedures, e.g., [10], [4], [5], [7], [11]. Habashy

(I - GDXj\,)- 1 ;Z (I - GPXj,_i)- 1  (14) et al. [11] present an inversion method wherein the min-
imum norm solution of (19) is found first and then a ba-

gives rise to the iterative Born method [20], while the lin- sis for the orthogonal complement of this solution is con-
earization of structed in terms of which the physical solution is sought

to satisfy (21). Van den Berg and Haak [22] proposed a
(I - GPX• n•-l variant of this technique wherein the full minimum norm

3 D(Xj", solution is not found but rather it is sought iteratively, us-
[I - GPXj,n-1 - G(n-Xi,n-1)]1_ (15) ing conjugate gradient steps, with the contrast updated at
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each step to satisfy (21) and a new source defined through where Gq* and GP* are the adjoints of G- and GP map-
(17). This approach yielded promising numerical results ping L2 (S) into L2 (D) and L2 (D) into L2 (D), respec-
however the error did not decrease monotonically. tively. Further the overbar denotes complex conjugate.
In the present paper we propose a method which combines With the update directions completely specified the con-
spirit of the approach of Van den Berg and Haak [22] using stant aj, is determined to minimize the cost functional
the source type integral equation with that of the modified
gradient approach by seeking linear updates in the source F j [fj -l sw S
in an error reducing method which does not require the F E iJ ijiJ
solution of any forward problem. -, lift S11

5. CONTRAST SOURCE INVERSION METHOD + 2j iXi,f-l1Ui,, - wi D

As in the modified gradient as well as the Van den Berg- Ei •"• 1
Haak approach we simultaneously construct sequences of - j 3IPj,n- - s 2

sources wjn, fields Uj,n and contrasts Xjn to minimize -j 11fjJ12
a cost functional. Rather than choosing a cost functional
consisting only of errors in the data equation, as Van den 2j Ilrj,n--1 - Oi,n(Vj,n - Xj,n--G1j jVnD
Berg and Haak did, we define the cost functional + Ej2 w,n-l"tii 2D (29)

F 2 lif 3 - SG~w Il and is found explicitly to beF =j1fj1
23 IIfiI• a + b

Ej 3 lxjuý - wj + xjGjwjJlo , 22 c + d (30)

2+ i x u i I -_ 3_ _ _ _ _ _+ yIx~•'"ilo D 2) (pj,n-1, G'vj,n)S

where 11. {12 and 1 -11' denote the norms on L2 (S) and Ek f
L2 D(D), respectively. The normalization is chosen so that b -

both terms are equal to one if wj = 0. The first term mea- -,k IlXk,n-1U7l1D2
sures the error in the data equations and the second term II 2
measures the error in the form of the state equations given C - __GjV_,__s

in (21). This is a quadratic functional in wj, but highly Zk I Sfkll•
nonlinear in Xj. We propose an iterative minimization of Ilvj,n -- 112
this cost functional using an alternating method which first d = 2
updates wj and then updates Xj. Thus we construct se- Ek IIXkn-U1iI ,
quences {wj,n} and {Xj,n}, for n = 0, 1, 2, . in the where (., ")s denotes the inner product on L2 (S).
following manner.
Define the data error to be Once wj,n is determined, u is obtained via (25) and (26)

as

Pj, n= fjn - Gwj,n, (23) Uj,n = Uj,n-1 + oaj- Gv, (31)
and we then seek Xj to minimize the cost functionaland the state error to be

rj,n = Xj,nUj,n - Wj,n, (24) FD = (3 IIX)Uin - wjID(2)
Ej IlXjUj,h e

where u + G (25) Since this minimization is not so easy especially in the case
Uj 3 3j of a priori information, we use a minimization in two steps.

Now suppose wi,n-I and Xi,n-1 are known. We update First we minimize the much simpler cost functional
wj by12

Wj,n = Wj,n-1 + Ojj,nVj,n, (26) Fý = EIIlxjU,, - wj,nlD (33)

where aj, is constant and the update directions Vi,n are and then we use the found contrast as an optimization di-
functions of position. rection in a line minimization to minimize (32). This two-
The update directions are chosen to be the Polak-Ribi~re step minimization technique guarantees that the process is
conjugate gradient directions always error reducing and allows for easy implementation

of a priori information or constraints on Xj. Since we fi-
Vj'o = 0, nally need to minimize the cost functional of (32), we de-

gjn + gj,n , gj,n -9j,,n-0)D fine the contrast function that minimizes (33), ýj, through

V3 ,nf g (gj,n-1,gj,n-1)D V'n-l (27) F() = min(FD) (34)

n > 1, Restricting attention to inhomogeneities complying with
the Maxwell model, (6), and in the absence of any a pri-

where gj,n is the gradient (Frechet derivative) of the cost ori information on X, we find that, [23], Fb is minimized
functional with respect to wj evaluated at Wj,n-1, Xj,n-1, by choosing
while (., ")D denotes the inner product on L2 (D). Explic-
itly this found to be -iRe(winUin)

Pj,n-1 rj,n-1 - S (j,--lrj,n--) n Ujn

gj,n-- J lhk ll Zk2 IIXk,n-1uC iD 2 EZliIm(wi,n"fi,.)
() Xnl = 2l~Iin-I (35)(28) 77 2~~
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However if a priori information is available then it is rel- This completes the description of the algorithm except for
atively simple to incorporate it in choosing ý. If either designating the starting values wj,o. Observe that we can-
XT or X' is known, then we merely use this known value in not start with wj,0 = 0 since then X1 = X' = 0 and the
place of either the first equality or second equality of (35). cost functional (29) is undefined for n = 1. Therefore
Thus, for example, if X' = 0, we limit our reconstruction we choose as starting values either the constant values that
procedure to ý' from the outset. If we have a priori infor- minimize the data error,

mation that Xr and Xi are positive, we use, [23] (fjGý1)s

e(winic) fJGS11(3

n =j Iuj,I 12  , (36) or the values obtained by backpropagation,
S*2

f J bp IIGj fillo2 GS(WE~ -- Gnf " (44)

S J lujl ) ( This completes the description of the algorithm.
Xn -- 2 U" 12 .(7

1j 3n6. COMPUTATIONAL TESTS
A number of tests have been done with the algorithm in-

These choices of and cni de cluding stability tests, resolution tests and test for various
Tn coincide with those obtained kinds of contrast profiles [23]. Here some tests are pre-

by Kohn and McKenney [15] for an optimization problem sented for using the method for reconstructing AP-mines.
with a positivity constraint and employed in the modified We used one frequency of 500 MHz, a relative background
gradient algorithm [14] with good results. permittivity of s. = 5 and a background conductivity of
Next a line minimization is used to make the cost func- a = 0 S/m. Further we used a computational domain of
tional of equation (32) error reducing. We introduce a con- 29 x 29 cm. The AP-mines were given a relative permit-
trast update direction as tivity of r = 7 and a conductivity of a = 0 S/m. Their di-

dn = Xn - Xn-1 (38) ameter varied between 5 cm and 10 cm. The measurement
curve, S, is a circle of radius I mn and center at the center

and we write Xn as of D. The discrete form of the algorithm is obtained by

Xn = Xn-1 + Od, (39) dividing D into 29 x 29 subsquares, assuming the contrast,
sources and fields are piecewise constant and the integrals

Then 0 is chosen to minimize the cost functional of equa- over subsquares were approximated by integrals over cir-
tion (32) cles of equal area which were calculated analytically [ 16].

_3 IWxý 11- 2 The discrete spatial convolution of the operators G' andIGD* were computed using FFT routines [21 ]. The incident
jIlXn lD fields were chosen to be excited by line sources parallel to

Zj IlXn-lUj,n - wj,, + 0(ý. - X,-x)uj,n112 the axis of the scatterer. These sources were taken to be
Zj ](n-luc +-}- 9()n - Xn~i)U,• 2equally spaced on the measurement circle, and the source

-- 11X.-10' ( n--) D locations were also chosen as discretization points on the
a 02 + 2b 9 - c circle. All integrals on S were approximated by point col-

A0 2 + 2B9 + C' (40) location at the discretization points, that is, the rectangular

where rule with the integrand evaluated at the mid-points. The
measured data were simulated by solving the direct scat-a = Etering problem with a conjugate gradient method [21]. TheI x Icircle S was subdivided into 30 equally spaced arcs. Each

mid-point served as the location of a line source and all the
b = ReE(Xn-luj,n-wj,n, (n-Xn-1)Uj,n)D, mid-points served as receiver. In all test backpropagation

i has been used for the initial guess.

Z E lxn-uj,n-wj,nll2,, In figure 1, we show the original contrast pro-
file of a circular mine with a 7 cm diameter.

_X _ inc2

A = Z•l(xn-X _)u'lID,

original
B = Re',( n--Xn-1)0j)D, 04

__ Uinc 2

C - x lj IliD, (41)
joo

This is the quotient of two quadratics which, using elemen- °1
tary analysis, may be shown to attain its minimum when . 01

_ -(aC - Ac) 02

2(aB -Ab) ReX 5 . 1

/(aC - Ac) 2 - 4(aB - Ab)(bC - Bc) ( F 0T a
+ 2(aB -Ab) Fig 1:The original profile
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In figure 2, we show the reconstruction of the contrast pro-
file of the mine after 4 and after 64 iterations. Continued

S4 iteration provided no noticeable improvement.
The conductivity of the mines is zero. We can therefore

02 set the imaginary part of the contrast equal to zero. Since
tests indicated that this restriction does not improve the al-
gorithm, this restriction has been left out. Furthermore,

°°5 since we used a permittivity of the mines which is higher
than that of the background, we could use positivity for the
mine permittivity. In figure 3, we show the reconstructed

[V 03 contrast profile after 4 iterations using CSI with a priori
o' oinformation, (a), and after 64 iterations with a priori infor-

Re[] 01 mation, (b). Each iteration took approximately 5 seconds
03 o on a Pentium PC computer.

(a) Next we have put two mines in the configuration, one cir-
cular mine having a diameter of 5 cm and one having a

original

.2 004

() 00oo5

oo5

o101
0103

o3 0150

Fig 2: The reconstructions after 4 iterations (a), and after Fig 4: The original profile with two mines
64 iterations (b), using CSI without a priori information.
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6itrtos()usnCIwihaporinomto.64 iterations (b), using CSI without a priori information.
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04• 0.4 •
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6itrton 1buigCIwt5 roiifrain 4ieatos() sn S ihu roiifrain



7-6

this new algorithm exhibits the best features of the mod-
ified gradient algorithm, successfully reconstructing a va-

40, .riety of contrasts and fairly insensitive to noise. However,
202• the new algorithm exhibits additional properties which sur-

pass the modified gradient approach. It is faster, requires
less memory as well as less data and more easily accom-
modates a priori information.

o, To give some idea of the computational complexity, if J
denotes the number of excitations and N denotes the num-0.0.3 ber of subdomains in the test domain, then the time re-

°Re[] quired for each iteration is roughly 2J times the time for
025 0 . one step in the conjugate gradient solution of the forward

o3 o 005 problem for one excitation, with a memory requirement

(a) of approximately 5JN x 16 bytes (complex double pre-
cision). The time required for each iteration is roughly one
third that needed in the modified gradient algorithm with
no a priori information on the contrast and is an order of

n= 64 magnitude faster if positivity is included for both real and
04 .imaginary parts.
02 :No tests have yet been carried out on the effect of ad-

ditional regularizers such as total variation which proved
effective for the modified gradient algorithm [24]. This

°5.5 is one of the subjects for future work. The simplicity,
o, speed and reduced memory requirements offer hope that

S...this technique will provide a feasible approach to three-
003 dimensional inversion problems.
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Mine Detection with Microwaves
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Summary clearing of expanded lots suspected of
Location and identification of buried land mines.
mines is a real challenge for sensor The requirements on civilian mine clearing
technology and target identification are quite ambitious:
algorithms. We analyse the performance of e Detection rate of 99.9% or better,
a bistatic microwave imaging system with a e Operating at rough soil surface as well
focused synthetic aperture. If the soil is as for wet soil,
homogeneous and dry with a very smooth * Low false alarm rate, i.e. clear
surface it will be possible to identify even distinction of mines versus scrap, rock
plastic mines under a 10 cm overburden, pieces, soil surface structures.
However, under a rough surface or in wet It was suggested to exploit the explosive
soil even a relatively big metallic anti-tank charge which is contained in every mine to
mine could be missed, since the signal to detect them under a shallow soil
clutter ratio gets quite poor under these overburden. Almost all explosive charges
circumstances. consist of strongly nitrogenious chemicals.

Therefore a high local nitrogen
1. Introduction concentration in the soil may indicate a
Military conflicts left vast tracts of country buried mine. The proposals for spotting
under the suspicion of contamination by local nitrogen concentrations close to the
land mines. Efficient, reliable mine soil surface require variing technical
detecting, identification and clearing expenditure. Sniffing by specially trained
techniques are urgently needed. Buried land dogs and y-ray activation of the natural
mines present a particular hard problem. nitrogen isotop with subsequent detection
Standard detection procedures for buried of the resulting instable isotop are two
land mines still rely on metal detectors and examples that have been suggested [1].
bayonet probing. Brute force clearing uses Another starting point for the detection and
deep plowing, moulding and harrowing. identification of buried mines hopes to
Obviously, these procedures can be applied exploit the casing geometry of buried mines
only on limited areas. as seen by microwaves. An aspect
The buried mines range from small, independent way of perceiving the
inexpensive anti-personal plastic mines with geometry of a target is given by the
very little metal content to bulky metallic complex frequency poles of the electro-
anti-tank mines. Possible mine shapes magnetic scattering amplitude caused by a
include disks, cylinders, square boxes and buried target if it gets illuminated by micro-
more fancy geometries. The sizes of mines waves [2]. If one has a catalogue of these
start at about 5 cm and may go up to 40 complex frequency pole patterns for all
cm. Looking froni above ground, it is interesting buried targets one may hope to
virtually impossible to find a unique determine the target from an analysis of
signature that can be used to discriminate a microwave scattering data in the relevant
buried mine from other similar looking frequency band.
pieces of scrap. A low false alarm rate, One diffculty with this method when
however, is required for an efficient applied to targets buried in the soil is the

variing influence of the soil overburden on

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.



8-2

the received scattering signal. This is in r = (n- 1)/(n+ 1), (1)
contrast to the better known application of where n is the index of refraction of the
this identification technique to airborne soil. This means for n = 3 half of the
targets. The influence of the air on the back incident wave amplitude would be reflected
scattering data is much smaller and at the ground surface and would interfere
reasonably well under control. The effect of with the echo from buried objects. Since
soil on the comlex resonance frequencies of the radar range resolution is not sufficient
a buried target varies with the thickness and to separate the ground surface echo from
composition of the soil. overburden, that of shallowly buried targets,
Furthermore in the S-band, which is most suppression of the ground surface echo is
relevant for mine identification, wet soil is required.
expected to produce a strong signal The reflection from a plane surface is
dispersion, which may disturb the final minimal (ideally zero) if the plane is
complex pole analysis of the scattering illuminated along the Brewster direction by
data. a wave which is polarized in the plane of
In this paper we analyse narrow band incidence. The Brewster angle is
microwave imaging of buried objects as determined by the index of refraction of the
inspired by much employed high resolution soil:
radar techniques [3,4]. The objective is to tan0B = n (2)
investigate the performance of microwave For soil this angle lays in the range from
imaging for mine searching and 520 to 850. If the illumination misses the
identification, exhausting the physical Brewster angle by 30 the reflection factor
capabilties of microwaves without caring will be still less than 10%.
much about implementation details.

2. Bistatic Microwave Imaging with receiving antenna illuminating antenna

Focussing Synthetic Aperture / - 0
In order to obtain a good spatial resolution 0

for buried targets the wave length used for |
microwave imaging should be chosen as
small as possible. Since a mine buried under I*

a 20 cm thick layer of moderately wet soil ..

should be still visible, the microwave
should be able to cross a 1 cm layer of ... I I .... .1
water without too much absorption. terrain surface

Looking at the absorption coefficient of Fig. 1: Bistatic microwave mine detection
water as a function of frequency one learns, and imaging system
that one cannot go beyond S-band
frequencies. Therefore spatial resolution for
ground penetrating imaging systems based The spatial resolution increases with theon non-ionizing electromagnetic waves aperture dimension of the receiving antenna
cannot go much below 4 to 6 cm. All and decreases with the distance from thecannt g muc beow 4to cm.All antenna to the focussed region. Hence, in
numerical studies in this paper use a anten to the focsse region H en
frequency of 3.5 GHz. order to achieve a high resolution power
In order to look into the soil one has to for the microwave imaging system the

overcome the reflection from the soil receiving aperture should be as close to

surface which is superimposed to the ground as possible. Practical operation

scattering echos from buried objects. For conditions require a sufficient terrain

vertical illumination a soil surface produces clearance. In our study we assume that the

a reflection factor r, given by: receiving antenna is 0.7 m above average
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ground level. The receiving antenna is stepping direction

receiving array positions illuminating horn positiondesigned as an approximately 1 m long 1 2 3 4 1 23 34

linear dipole array. A much bigger array ------,--,- L
would restrict the possible use of the mine -----..-----
searching system which could be mounted *,. . . ..--

--,,'-t -J;'-" .• ... .. ............ . .• - -""" -

in front of a small cross-country vehicle. .. ........

The resolution in the direction orthogonal --------

to the linear array is produced by the
forward move of the complete imaging
system. The receiving array sweeps a two target plane

dimensional ground strip, thereby forming a Fig.2: Synthetic aperture with 4 real antenna
synthetic aperture, much like in a forward positions.
looking SAR-system. At every step, the
received complex scattering amplitude as Figure 2 sketches the bistatic system in
seen by the individual dipole elements of action, forming a synthetic plane aperture
the receiving array will be stored in the which consists out of 4 real antenna
memory of a data processing unit. positions.
The stepping direction will be called
'longitudinal' whereas the orthogonal 3. Longitudinal and Lateral Resolution
direction, parallel to the linear receiving Power
antenna, will be addressed as 'lateral'. The processing of the stored scattering data
The longitudinal length of the synthetic consists in focussing the data relative to a
aperture, i.e. the number of real antenna grid of focus points which is projected onto
positions used to compose an image of a the presumed mine laying plane (target
point in real space determines the plane). For a chosen focus point in the
resolution of the system in the longitudinal target plane one calculates the optical path
direction. The physical length of the array, length from the illuminating antenna via
i.e. the lateral width of the synthetic apertur that focus point to the individual antenna
controls the lateral resolution, elements in the receiving aperture. The
Since the microwave scattering is complex scattering amplitudes as actuallly
concentrated around the reflection angle, received by the elements of the synthetic
an aperture length in stepping direction Of aperture get multiplied by the complex
the order of 1 m would be sufficient. conjugate phases related to the path length
Larger aperture dimension would improve from illuminating antenna to receiving
only marginally the resolution power of the element via the chosen focal point on the
system at the expense of a longer image target plane. The resulting phase corrected
processing time. amplitudes are summed over all elements of
Figure 1 illustrates the basic system design. the synthetic aperture. For a target that sits
Illuminating and receiving antenna are kept directly at a focus point all phase-corrected
at a riggid horizontal distance from each amplitudes of the individual elements in the
other. In our study this distance is 2 m. The synthetic aperture add up whereas the
complete system steps forward in the phase-corrected elementwise scattering
direction from the receiving array to the amplitudes of a target which is more than a
illuminating horn. The receiving array is resolution distance away from that focus
oriented laterally. The horn and the dipole point would cancel each other almost
elements of the receiving array both are completely in the summed antenna
inclined by angle 0B against the vertical, response.

This focussing is performed one by one for
all focus points of the grid. By mapping the
distribution of the focussed antenna
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response onto the target plane one obtains to the Fresnel region of the receiving
an image of all scattering objects which are antenna. The distance from the receiving
buried within a certain layer around the antenna to the focus point is not much
target plane. The thickness of this layer is larger than the longitudinal and lateral
determined formally by the depth of fields aperture dimension.
of the imaging system. As we shall see The formula (3) neglects the fact, that the
later it is not the formal depth field but the focus point is below ground. The correct
much shorter electromagnetic penetration electromagnetic path from transmitting
depth which puts actually the limit for the horn to receiving array antenna via focus
vision into the soil. point would have to take refraction into
Mathematically the focussing algorithm is account. For a shallow overburden this
defined as follows. Let A(m,n) be the would cause a small path length correction.
complex scattering amplitude as actually In the numerical simulation, which we
received by the m-th array element of the report later on, the full 'optical' path length
array at the n-th step position over the has been computed and used for the
target plane. Furthermore let (x,y) be the focussing. Unfortunately the explicit

coordinates of a chosen focus point on the expression for the full optical path length is
target plane. Then the total amplitude somewhat bulky to write down explicitely,

received by the focussed aperture is given therefore we stay with the deputy formula

by: (3).
A (x, y) =One may estimate the spatial resolution ofthe synthetic aperture following a popular

SA(m,n). exp(-j, k X/2-argument in optics and antenna theory:
mn (3) First compute the path length for the so-
[Vh 2 +(Xn _ + (Y -y)2 called central ray. The central ray starts at

the wave source, scatters off the target
+±h + (xn + 2 a - x)2 ]} point and ends at the centre of the receiving

h distance of the target plane from aperture. Next compute the path length for
the aperture plane, the so-called boundary ray. The boundary

k wave vector 2r-f/c (f= ray shares with the central ray the same
frequency, c = speeed of light) starting and scattering points but it ends at

a half distance between illuminatinig the boundary of the receiving aperture. If
horn and receiving linear array, both path lengths differ by half a

x. longitudinal position of the wavelength, then the scattering signal
receiving antenna at the n-th step, caused by that target point cancels in the

y, lateral distance of the m-th array received total antenna signal.
element from array line center. For a focussed array antenna it is the

relative path length which enters the
The height h and the distance a are related preceeding argument. The relative path
by the incident angle: length is obtained from the original path

cot B =2h/a (4) length by subtracting from it the length of

The focussing is achieved by compensating the focus reference path. The focus

the phases as actually received by the reference path has the same starting and

different antenna elements by the path end points as the original central ray, resp.

lengths of the ray pencil which passes the boundary ray, however, it passes through

chosen focus point, the focus point instead of being scattered
The summation in (3) runs over all off at the target point.

elements m of the real linear array and all According to the X./2 argument a target
positions n which form the synthetic point close to a chosen focus point will not
aperture. Note that the focus point belongs contribute significantly to the signal
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received from that focus point, if the R1 T + T S1 , and finally R1 F + F S1 is the
relative path lengths for the central and the path length for the reference ray associated
boundary ray via that target point differ by with the boundary ray.
half a wavelength or more. The path length difference between the
Figure 3 displays the rays which are signals received by the boundary element
relevant for the estimation, whether a point and the central element both focussed
T contributes to the image of an object at relative to point F is composed as follows:
the focus point F or not. W(x)RoT+TSo -RoF-FSo

-R 1 T- TS, +R1F +FS1

RS R s, In linear approximation for x this path

length difference becomes:
x*L"'-. ; " '"".............W (x) /h2 + a2

Ta•rgetP o plane h h2 L2 5a2 - h h2 (5)

La2+h2 +8(2+h2)2j

Fig.3: Cut in longitudinal direction: central The factor which multiplies the distance x
and boundary rays of the synthetic aperture; in equation (5) corresponds to the
Ro and R1  central and boundary receiver 'numerical aperture' in optics. For a rough
antenna position, respectively, So and S, estimate one may neclect non-linear
source central and boundary source position,
respectively, T target position , F focus corrections in the longitudinal aperture
position dimension L. The contribution of the target

point to the signal as received by the
Here and in the figures below we synthetic aperture focussed at point F
distinguish the rays types by the vanishes if the path length difference W is
convention: equal to half a wave length ,. This gives an

estimate of the smallest longitudinal scale
central rays -- fat lines, xi,, which can be resolved by the the
boundary rays - normal lines, bistatic synthetic focused aperture system:
rays scattered - solid lines, X- • h2 +a 2 /(L.COB) (6)
at the target

reference rays-- broken lines. Except for an additional cosOB factor in

passing the the denominator, this is just what is known

focus from synthetic apertures used in radar
applications. Note the factor 1/2 which is a

The distances R.~ R, and S0 S, are both bonus not valid for real apertures.

equal to half of the longitudinal dimension
L of the synthetic aperture. Let x denote
the distance from the target T to the chosen
focus F. The horizontal distance between
the receiver array and illuminating horn is
2a. Following Figure 3 one identifies
Ro T+TSo as the path length for the
central ray scattered at the target, similarly
Ro F+FSo is the path length for the
associated reference ray. The length of the
boundary ray scattered at the target is
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R, Ro W(y),Y y. B (2Nra2 +h 2 + Y, B 2 ) (8)

The analogous reasoning as for the
"longitudinal case implies a lateral
resolution:

Ymin "a 2 + h 2 /B (9)
Non-linear contributions of the lateral
apertur dimension B have been ignored in
this estimate.

Ro R,

F: T * K

F T

Fig. 5: Longitudinal direction: central and
boundary rays in the synthetic aperture; the
illumination is by a remote spatially fixed

S source. Ro receiver antenna central position,
Fig. 4: Lateral direction: central and R1 receiver antenna boundary position, T
boundary rays of the bistatic imaging system; Target point , F focus point
Ro and R1 central and boundary receiver array
element, respectively, S position of the The lateral resolution changes if the
illuminating source. illumination occurs by a spatially fixed

transmitting antenna, i.e., if the horn
In the lateral direction the synthetic antenna does not follow the forward
aperture is actually a real aperture given by stepping of the receiving array. Figure 5
the length of the receiving array line. Figure shows the situation if the ground gets
4 sketches the ray geometry as seen from illuminated by a remote spatially fixed
above. transmitting antenna.
The linear receiving array antenna has a In this environment the path length
length 2 B. The relevant distance scales in difference between the signal received by
Figure 4 are: the lateral boundary element and the central

R1 R0 = YB; element both focussed relative to point F is:

R0 F F= S a 2 +h 2 ; F T=y (7) 1 xaL h2

Remember that R1 and Ro keep a distance W")h2 (
h to the target plane. The focus point F and F 3 a.L
the target point T lay in that target plane. 1--4 -a-+h2

The path length difference between the L

signal received by the lateral boundary This leads to the following estimate for the

element and the central element both longitudinal resolution:

focussed relative to point F one obtains: Xmn -.-a 2 + h 2 / (L-cos2 9) (11)
W(y) =Ro T + TS - RoF This is twice as coarse as what is obtained

with the comoving illuminating antenna.Finally the depth of fields for the bistatic
The source position cancels exactly in the imaging system has to be determined. If the
path length difference. Up to non-linear receiving antenna focusses at objects in a
terms in the lateral target distance from the chosen target plane (parallel to the ground
focus point one gets:
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surface) it displays also objects which lay This results expresses the limits of the
somewhat above or below that target plane. depth of field which are due to the
The depth range for which targets are longitudinal aperture dimension L. The
reasonably well mapped by the bistatic lateral aperture dimension B causes a
imaging system (while focussing at a slightly different bound for the depth of
chosen target depth) is the 'depth of fields'. field:

Zmin -42"(h2 +a 2 )/(B2 .cosOB) (15)

Actually the formal depth of field is not

"•. .. particularly relevant for a ground
penetrating microwave system. In general

-/ the penetration depth of 3.5 GHz
T. / microwaves in soil is much shorter ( 3 X)

Target plane/
than the formal depth of field which was

T estimated by eqs. (13) and (14).
Figure 7 shows the calculated intensity
distribution caused by a single pointlike

Fig.6: Depth of fields: central and boundary target as seen by a bistatic imaging sytem

rays for a synthetic aperture; actual target T is focussed at the target plane. The intensity
below focus point F. is given by the modulus squared of the

amplitude in eq. (3). The pointlike target is
Figure 6 shows the central rays and the modelled as an isotropical scattering center
boundary rays for a target point laying in a in the target plane at coordinates (x' y)
different depth than the chosen focus. which gets illuminated by a comoving
If the antenna is focussed at point F and the transmitting antenna at a horizontal
scattering occurs at target T, then the path distance 2a from the receiving array line
length difference becomes: position x,

W(z) = R 1T + TS 1 - R, F - FS, A(m,n) = expij, k

-ROT- TS° +RoF +FSo .[•h2 + (xn _ x (y, _y,) 2  (16)

The distance F T of the actual target from + h2 + (x + 2a - x')2 ]
the assumed target plane is called z.

Keeping only linear terms in z one finds: No approximations have been made in the

W(z) = h. z. [1 / (a + YL)2 + 2 evaluations of the square roots.
(12)

+ 1 / F(a- YL)
2 +h 2 - a2 +h2 ]

Neglecting quartic and higher terms in the °A
longitudinal aperture dimension L one
gets: 02

z L2
WWz -.-.2 2 cos0B• J2 - 3 cos2 0B ]ý4 a2 +h2

(13)
The contribution of an actual target to the I,,

assumed target plane can be ignored, if the
distance of the- actual target to that plane is Fig. 7: Image of a pointlike target at position
larger than: (1.2,0) in the target plane, 0.75 m below the

Zmin • 21. (h 2 +a 2 )/" [L 2 • COSO9  aperture plane of a bistatic synthetic aperture(14) imaging system, illuminating antenna moves
(2 - 3 cos OB)] together with the receiving array.
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The longitudinal resolution shown is about The analysis of resolution power was based
0.3 m, whereas the lateral resolution is 0.06 solely on the array pattern characteristics.
m. According to the eqs. (6) and (9), an The directional pattern of the individual
aperture size of 40 cm by 120 cm allows a elements in the receiving antenna array was
resolution of 48 cm by 9 cm (longitudinal not taken into account. Furthermore the
by lateral), at a target plane 0.75 m below isotropic scatterer model of the buried tar-
the receiving array. get is a severe over-simplification. The
Consider now a bistatic system where the bistatic scattering cross-section of a buried
illuminating horn remains fixed while the target tends to concentrate the scattering
receiving array is sweeping the synthetic field around the reflection direction. Both
aperture. If the illuminating horn is not too directional gains would reduce the aperture
close to the surface, the illumination can be dimensions which are required in order to
modelled as a portion of a plane wave inci- obtain a desired resolution.
dent on the surface under the angle 9 B. One
obtains an expression similar to equation 4. Signal to Clutter Ratio
(3) for the total amplitude received by the As important as the resolution power is the
focussed aperture of that system. The targets contrast relative to the background
elementwise received amplitudes now take for the imaging device. Since an ideally flat
the form: ground surface would cause no reflection

A(m,n) = expaj, k the background is produced solely by sur-
2 + Xface structures and inhomogeneities in the

[4h + (x, -x'2 + (yin - y,' (17) soil. To get a feeling for realistic signal to
- x'. sinO.f]} clutter ratios when the bistatic imaging

The focussing phase shift is system is applied to mine searching, we

expf-j, k. [y h2 + (x_ -X,)2 + (Yin -y,)2 display first the signals of mine-like objects
buried under an ideal overburden, e.g. ho-

-x'. siflOB]} (18) mogeneous sand with a smoothly raked
The intensity received by this system design surface. Next we compare this ideal case
from the same pointlike target is now dis- with the image produced by a distinctively
played in Figure 8. Note that the structured soil surface without any buried
longitudinal resolution is now at least twice mines.
as coarse as for the system with comoving
illumination. This behaviour is predicted by
eq. (11) as compared to eq. (6). 4.1 Scattered Fields of Buried Mines and

of Soil Surface Structures
0.6 In this paragraph we display the scattering
0•. fields which are caused by various buried

targets and soil surfaces when the surface
0. gets illuminated by an incident plane wave.

The incident angle for the illumination is
always QB = 58'. The incident field is nor-

2, malized to 1 V/m, the frequency is 3.5
GHz.
The scattering fields are obtained by em-Fig. 8: Image of a pointlike target at position ploying numerical simulation method as

(1.2,0) in the target plane 0.75 m below the

aperture plane of a bistatic synthetic aperture provided by a well established finite dif-
imaging system; the illuminating antenna is ferences time domain code [5].
spatially fixed
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Two types of soil are investigated: . ... ...........
metallic anti-tank mine 0.23

* very dry sand with dielectric constant in dry sand
big plastic mine in dry 0.065

6':2.55 and specific conductivity sand
=O. 001 Sm, rough terrain surface in 0.35

* wet clay with dielectric constant c'-10 dry sand

and specific conductivity K'=O. 1 Sm. square metallic mine in 0.055
dry sand
metallic anti-tank mine 0.038

For both soil types inhomogeneities are not in wet clay
included in the model. However, the model rough terrain surface in 0.35
for the plastic mine also may be taken as a wet clay

hint of the kind of echo that is to be ex-
pected from a natural inhomogeneity in the Tab. 1: Peak values of scattered fields at
soil. The mine models are buried under a 10 0.65 m above ground level

cm deep uniform soil layer. The scattered
fields are plotted in the plane of incidence Table 1 summarizes the peak values of the
and in a horizontal cut 0.65 m above microwave scattering signals as seen by a

average ground level. The horizontal plot probe 0.65 m above average ground level

displays only one half of the scattering field for the scattering objects which have been

which is symmetric relative to the incident examined in this study.

plane, since all targets in this study have The modelling data of the employed mine

this symmetry and the polarisation is paral- types are as follows:
lel to the incident plane. metallic anti-tank mine: cylinder, 0 24

The contour plots (Figs. 9 and 10 to 15) cm, height 8 cm, ideally conducting,
linearly map the intensity of the scattered big dielectric mine: cylinder, 0 24
field into gray values. White corresponds to cm, height 8 cm, non-conducting, e'= 3.7,
the maximum intensity, black to zero inten- metallic square mine: 10 cm squared,
sity. The scales at the plot axis state the height 4 cm, ideally conducting.
longitudinal, the vertical and the lateral The modelling of the rough surface is
distances in meter. The mines are indicated represented in Figure 11. The displayed
in the incident plane plots, close to longitu- surface segment is 3 m long.
dinal coordinate 0. The plots display the
scattered fields only, the incident field
coming from top right has been filtered out.
The concentration of the scattering in the
reflection direction is clearly visible. Due to
available computer resources the modelled
soil layer was limited to 0. 5 m in depth. For
the dry sand this is somewhat less than ... . ..

what is desirable. Therefore the displayed (a) rnax-1.2 V/rn
field distribution in the lower part of the
dry sand layer has to be taken with some
care. The scattered field in the airspace,
however, is believed to be simulated
reliably.

(b) max=0.26 V/m

Fig. 9: Scattered field produced by a
metallic cylindrical mine, 0 24 cm, height 8
cm buried in dry sand; (a) incidence plane, (b)
horizontal plane.
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........ ..... :

(a) max-- 1. 8 V/rn (a) max -0.76 V/m

. ... .... .. ,.

(b) max=0.06 Vim
(b) max=O.072 Vim

Fig. 13: Scattering field produced by metallic
Fig. 10: Scattered field produced by a 10 cm square mine, height 4 cm buried in dry
dielectric cylindrical mine, 0 24 cm, height 8 sand; (a) incidence plane, (b) horizontal plane
cm, F.'=3.70, buried in dry sand; (a) incidence
plane, (b) horizontal plane

Fig. 11: Coputer modell of a rough terrain
surface with sharp relief structures ±5 cm.

(a) max:.. 18 V/rn

.. ..... ..... ..... ..--:, --- --

(amx_.V/ (b) max=0.04 V/m

Fig. 14: Scattered field produced by a
(a) maxdl2.8 V/r metallic cylindrical mine, 0 24 cm, height 8

cm buried in wet clay; (a) incidence plane, (b)
horizontal plane

Fig. 2: Scttere max=0.6 Vim
Fig 12 Sctteedfield produced by a rough

terrain surface in dry sand; (a) incidence
plane, (b) horizontal plane

(a) -... 1.4 Vim .::.:.

-•:i (a) max=01.18 V/m
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models with those of the surface models
one may predict a signal to clutter ratio for
the imaging of mine-like targets achieveable
within the considered system-design. As

(b) max=0.45 V/m one learns from a glance at Tab. 2. even for
dry sand the results do not look too

Fig. 15: Scattering field produced by a rough promising. Of course, one cannot discuss
terrain surface in wet clay; (a) incidence plane, the identification capability solely on the
(b) horizontal plane basis of the global signal to clutter ratio.

Preknowledge on the mine shapes would

4.2 Microwave Images of Buried Mines help to discriminate clutter against a real

and of Soil Surface Structures mine target if the resolution power of the

The scattered field as displayed in the imaging is good enough. Unfortunately, a

previous section is the input data for the resolution of 5 cm seems not sufficient to

computational image formation as outlined support pattern recognition methods in

in Section 3. Note that in the numerical mine identification.

simulation the illumination was mounted at
afixed position in space during the ...........

recording of the scattered field. The reason metallic anti-tank mine 1.26
for this set-up was purely technical: It is big plastic mine 0.22
much cheaper (i.e. faster) to simulate a square metallic mine 0.21

spatially fixed illumination, since it requiresthe computation of just one scattered field Tab. 2: Signal to clutter ratio for targets buried
in dry sand under a surface with sharp relief

configuration. The original bistatic, structures
synthetic aperture imaging system uses a
comoving illuminating horn antenna. This
implies for every single step forward a
separate computation of the scattered field,
even though this field is evaluated only at ....

the corresponding position of the receiving .'.':
array elements.
For the signal to clutter ratio the two
different methods are expected to give the
same results. As to the resolution power it
was argued in Section 3 , that the spatially
fixed illumination needs a longitudinal

aperture roughly twice as large as the I
comoving illumination in order to produce
the same longitudinal resolution. The .....

images in this section are obtained with the
following aperture dimensions: 0.8 m Z I - "- . ...0

lateral, 0.32 m longitudinal. Fig 16 Image produced by a metallic
To evaluate the following images of targets cylindrical mine 0 24 cm, height 8 cm, buried
as produced by the studied bistatic imaging in dry sand
system-design one has to refer to the gray
values scales given on the left side of the
plots. The contrast produced by the
metallic anti-tank mine is almost 6-times
stronger than that of the big plastic mine.
Comparing the gray values of the mine
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5. Conclusions

The efficiency of an electomagnetic
imaging principle applied to buried mine
searching and identifaction is analysed
without worrying much about details of its
technical realisation. The usable frequencies
for the technique lay in the S-band around
3.5 GHz. This implies that the spatial
resolution cannot be much finer than 5 cm.
"Numerical simulation shows that for

.favourable soil conditions, e.g. dry sand
with a smooth surface, big metallic anti-

Fig. 17: Image produced by a dielectric tank mines and even big plastic mines will
cylindrical mine 0 24 cm, height 8 cm, buried actually produce reasonable images with
in dry sand the expected resolution. Pronounced sharp

S.relief-type surface structures, however, may
X. . blur the mine images such that only big

metallic anti-tank mines could be identified
safely under a 10 cm dry sand overburden.

01 :In the case of wet clay, mine identification
seems to become almost impossible.
Attempts to overcome the poor signal to
clutter ratio by pattern recognition

: :' techniques are hampered by the coarse
spatial resolution of the images.
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while others use a 2-D version of the Fourier transform.
-1. SUMMARY If the increments are (or can be made) uniform and equal
This paper will discuss radar target imaging using model (often including a transformation to Cartesian frequency

based spectral analysis applied to synthetic aperture radar space, f, and fy), then the fast Fourier (or inverse Fourier)
(SAR) data or inverse synthetic aperture radar (ISAR) algorithm (FFT or IFFT) can be used [29]. (We will
data. The techniques are based on the realization that ignore backprojection and tomographic-type
radar target SAR/ISAR scattering can be modeled as transformations for now.)
autoregressive. This permits an autoregressive radar
scattering model, where the parameters of the model To clarify, a schematic representation of the
permit model-based imaging. transformation from a measurement (raw) data set to an

image is shown in Figure 1. The raw data is shown in the
Finally, we will show a number of different example upper left, where complex radar scattering voltages have
images where the model based resolution greatly exceeds been measured as a function of both angle and frequency.
the resolution available from Fourier based techniques. If we take an inverse (fast) Fourier transform of each

row, we can obtain the data set in the upper right, where
2. INTRODUCTION each row (and thus each aspect angle) is now a time

domain (or down range domain) complex impulse
Wide band radar scattering from a target is often used to domain (or ma is complexfimplse

forman mag ofthe argt. he mag is sualy efered response. (We may call this a waterfall plot of the
forms n image of the target. The image is usually referred target.) If we take a (fast) Fourier transform of each
to as a synthetic aperture radar image (SAR image) or an column of this data set, then we produce a cross range
inverse synthetic aperture radar image (TSAR image) transformation for each down range column. The data set
becausee transformation behaves as if a very large in the lower right is thus a down range versus cross range
aperture radar antenna is synthesized from a set of iae aheeeti opebtw fe ipa

incremental data taken over the domain of the (synthetic) image. Each element is complex, but we often display
this image by taking the magnitude of each imageaperture. The SAR image is formed by moving the radar element and plotting it using a gray scale or color scale

system while the target remains stationary, and the ISAR proportional to the value of the magnitude.
image is formed by holding the radar at a fixed location
while the orientation angle of the target changes. Note that we may also form the image by taking a (fast)

Conceptually, the transformation involves first Fourier transform of each column of the raw data set.

transforming the frequency domain data to the time This forms the Doppler (or cross range) value for each

domain (and thus the down range domain) using an frequency as shown in the lower left corner of the plot.

inverse spectral estimation usually based on an inverse We then take an inverse (fast) Fourier transform of each
row to obtain the image domain data set in the lower

Fourier transform. Then the complex down range data for right.

each down range value is transformed to the Doppler

domain using another spectral estimation, also usually a Finally, note that it is possible to transform directly from
Fourier transformation [48]. For a rotating target, some the upper left to the lower right by using a two
points on the target are moving toward the radar (positive dimensional (fast) Fourier transform (the image must be
Doppler) and some are moving away (negative Doppler). flipped left to right to correct for the need for an inverse
The magnitude of the speed that each point on the target Fourier transform from the left side to the right side of
(at each particular down range increment) is moving the figure.
relative to the radar is proportional to the cross range
location of the point. Thus the Doppler domain is the It is important to realize that all of these transformations
cross range domain. When the down range and cross are linear and thus reversible. This is emphasized in
range data are combined, we have the image domain of are l and thu rrs .s is emasi in
the target. Note that there are many implementations of figurel by the two-way arrows between domains. Many
this concept. Some use the two independent Fourier types of image processing techniques involving image
transformations as described (possibly in reverse order), domain gating and transformations back to the

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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measurement domain. The autoregressive techniques transform. A large class of model-based modern spectral
discussed later are non-linear, however, and thus not estimation techniques have recently been developed
reversible in all cases. Although the reader should keep [54,55], and these so called superresolution
these reversing concepts in mind, a discussion of these transformations in the context of SAR/ISAR imaging will
reversible transformations and the impact with respect to be discussed next.
superresolution techniques is beyond the scope of this
paper and will not be specifically discussed here.

3. MODEL BASED SPECTRAL ESTIMATION IN
One requirement for such imaging algorithms is that there THE SARIISAR CONTEXT
must be sufficient information about the trajectory of the Superresolution SAR/ISAR imaging techniques are based
radar or the target so that the aspect angle is well known. on an important radar target scattering characteristic.
Phase variations due to motion other than simple rotation That is that in most radar scattering situations, the radar
(e.g. translation) must be removed by compensation target behaves as if it were a relatively small number of
based on the known trajectory (this is called motion point scatterers. This means that as the frequency is
compensation). Also, the frequency increment and the scanned over the observation band of frequencies, each
angle increment must be small enough so that subcomponent scatterer scatterers a signal that is constant
unambiguous (not aliased) transformations to the image in amplitude and has a phase associated only with its
domain can be done. range delay. Since the phase of the scattering from each

subcomponent is determined by the round-trip radar
Finally, the frequency band and the angle span must be range delay distance in wavelengths, a linear scan in
large enough to provide range and cross range resolution frequency results in a linear sweep in radar wavelength
that is meaningful for the target of interest. That means and thus a linear phase variation as a function of
that the range or cross range increment must be small (in frequency. We can see that as the radar frequency is
some sense) with respect to the extent of the target. This scanned, the subcomponent signal is constant in
paper is about the case where the last criterion is not met. amplitude and varies linearly in phase. It has a complex
Either the frequency band or the angle span (or both) is sinusoidal variation as a function of frequency.
too small to yield sufficient resolution in the image.

As a function of aspect angle, each subcomponent
There are a number of situations that can limit the appears to be moving in a circle. Over a "small enough"
frequency band. First, a simple component limitation sector of angles, the motion can be approximated as a
(antennas, signal sources, receiver bandwidth) is possible straight line. The apparent speed of each subcomponent
for the radar. Alternatively, the propagation medium may depends on the distance from the center of rotation. Thus
be limiting the resolution. (Ground penetration, building the subcomponent scatterers appear to have a linear
penetration, foliage penetration and plasma penetration phase variation as a function of aspect angle, with the
radars suffer from this limitation.) Finally, the radar phase change rate proportional to cross range distance.
target itself may limit the useful observational radar band. Thus, the cross range distance is proportional to the
It may be a narrow band resonant structure such as a (spatial) spectral frequency of the subcomponent
cavity, an active device or a periodic structure. scatterer.

There are also a number of things that can limit the The overall target appears to the radar as a relatively
aspect angle span. The radar platform may not be able to small number of such subcomponent scatterers and thus
move in an optimum trajectory for SAR, or in the case of the total received radar signal is a finite linear sum of
an uncontrolled ISAR target, the target simply may not such terms. The overall signal is a linear sum of a
move in such a way as to yield sufficient angle span. In relatively small number of terms, each one of which is a
many cases for ISAR, the target is an aircraft or a ship, complex sinusoid as a function of frequency.
and it will be undergoing radial motion, pitch, roll and
yaw as well as non-uniform angular rotation. These We have thus moved from the general situation where
uncontrolled motions limit the useful regions of the angle there is no restriction on the behavior of the scattered
span to those where the effects are small, or known, signal to the situation where we have a model that says
Finally, it is also important to observe that the useful we have a relatively small number of complex sinusoids
angle span may be limited by the degradation in the as a function of frequency and angle. We can use this
Doppler versus cross range linear relationship model to restrict the class of possible solutions for the
approximation for large aspect angle domains, scattering behavior and thus use a very powerful set of

algorithms that take advantage of the a-priori knowledge
It can be seen that the basic steps in the imaging we have of the radar scattering behavior as a function of
transformations require spectral estimation. So far, we frequency and angle.
have only mentioned Fourier transformations. The
requirements of limited angle or frequency span imaging, We start out by modeling the scattered signal as a sum of
however, require that we develop techniques for spectral complex sinusoids [56,63]. Thus in the frequency
"-esolution that exceed that available with the Fourier domain (at each fixed aspect angle), we have
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S,= Ak -.exp(-j 2,'* dk f)1 )T T
k c 1-1:.- a ak" exp(-jir • 2t / T) 2 2(4

(4)

where
Ak is the amplitude of the kh sub-scatterer where h(t) is the power profile (actually the square of the

impulse response). Note that with no loss of generality a,
dk is the down-range distance between the phase can be set equal to one. Examination of this equation

zero reference and the kth sub-scatterer shows that there is no inherent limit in the resolution of
f, is the nth frequency the time domain estimate. This is due to the fact that the

N. is the noise associated with the data at the nth model has perfect knowledge of the signal once the

frequency parameters of the model have been estimated. Of course,

c is the speed of light if the parameters are poorly estimated, the model has

and perfect knowledge of the wrong system and thus we will
S, is the total complex scattering from the target at have a very high resolution estimate of the wrong value

for the spectral estimate. Never forget, we must

the nh frequency. distinguish between resolution and accuracy!

Now we make a very important realization. We note that Note that the expression in (4) is an evaluation of (2 or 3)
any finite sum of sinusoids is autoregressive. This means along the unit circle in the complex plane. As a result,
that the no' data point of the sequence can be accurately the location of the poles and zeros of (4) determine the
predicted by the previous (or future) N data points (N behavior of (2 or 3).
relatively small). Thus for a sum of L complex sinusoids,
we have an autoregressive process of order L. In general, The entire field of model based spectral estimation
we can write depends on the process used to find the coefficients that

must be inserted in the z-transform (4). This process can
L abe understood for FLP by expanding equation (2) into a

x= -_a• x + .(2) matrix equation (un = 0).i=1

(forward linear prediction (FLP) equation of order L) X P1  Xp- 2  -. X [Lal 1 XP
where [ XP, 1 - a2  X +
a, is the ithprediction coefficient[ .[x I
x__i is the (n-i) t term in the data series _Xn-...........X-P1 _aX
u. is the noise (or error) in the prediction for term n (5)

and This matrix representation of the forward linear
xn is the predicted value in the series. prediction (FLP) equation helps to show that the

equation simply represents an overdetermined set of
Similarly, we also have the backward linear prediction linear equations. There are N+1 equations in p unknowns
(BLP) equation where the size of the measurement set is N+J and the

number of sinusoids is p. The solutions for the a's thus
L involve methods of finding efficient and effective

x= - ai • x+i + U, solutions to this set of equations.
i=l (3)

Similar representations are also available for the
where * indicates the complex conjugate. backward linear prediction (BLP) equations and the

forward-backward linear equations (FBLP) [34].
Note that the ai's are unchanged. We note that in general,
there is a similar form for the forward-backward linear 4. MATRIX SOLUTIONS
prediction (FBLP) equation. This takes advantage of the Using either the FLP or the FBLP approach thus involves
unchanged nature of the ai's. solving a set of overdetermined linear equations based on

a set of measured values. There are two main methods
Once we are able to determine the coefficients of these used to solve these equations. The first is the least

prediction equations, we can obtain a power spectral squares method and the second is the total least squares

estimation of the original data series by a z-transform. In method [54i55].

this example, where the original data is a set of scattering

measures as a function of frequency, this represents a The underlying assumption of a least square solution is
transformation from the frequency domain to the time (or that the errors in the set of equations are imbedded in the
down range) domain.



9-4

prediction column. In fact, if the elements of the matrix especially in the case where the elements of the matrix Y
are noisy, the column space of the matrix is only an are assumed to have noise associated with them. A
approximation of the solution space for the equations. detailed discussion of the TLS method is beyond the
(The total least squares method is used to improve on this scope of this paper, and can be found elsewhere.
assumption.)

5. THE BURG METHOD
The matrix (5) equation can be written in general as A third method of finding the model parameters of a

FBLP model is called the Burg Method [54,56]. Burg
Y a = g. (6) said that the parameters should be selected in such a way

as to maximize the entropy of the signal outside the
If the matrix Y represents data values of a perfect measurement window. (In fact, the method is often
autoregressive (AR) process, the matrix would have rank called the Maximum Entropy Method.) Using this
p. In practice, the matrix is full rank because there is approach, and a modified version of the Levinson
always some noise present. As a result, all rows of the algorithm, the model parameters can be found. The
matrix are linearly independent and there is no exact details of the Burg algorithm are found in the references.
solution to the set of equations.

6. APPLICATIONS OF SUPERRESOLUTION
The consequence of there being no exact solution to the TRANSFORMATIONS
set of equations is that the vector g is not in the vector A number of specific imaging examples will next be used
space that is spanned by the columns of the matrix Y. to demonstrate these techniques, moving from one-
The nature of the least squares solution is to consider a dimensional imaging to two dimensional imaging.
vector g+r, where r is a small perturbation vector. If r is
chosen so that g+r is in the column space of Y so that r is 6.1 Angle Domain Estimation Example
minimized, the associated a is called the Least Squares Radar scattering measurements are often done in a
solution of Ya=g. compact RCS measurement range [57]. This system uses

a large reflector in the near field of the test area to
In more geometric terms, the vector g is projected onto transform a spherical wave from a small feed to a plane
the column space of Y and the vector r is the wave in the test area. Problems arise from spurious
perpendicular error vector between the column space and scatterers in the neighborhood of the reflector that
the g vector. The solution vector then represents the produce spherical (near-field) signals in the test zone.
linear combination of the column vectors in the column Locating the source of such error terms can be done by
space that exactly equal the projections. measuring the field received in the test zone and then
It is known from linear algebra that the pof the transforming to a direction of arrival map to trace signals

tprojection back to their origin. This is especially difficult in this
vector g onto the column space of Y can be represented situation because the error signal is a spherical (or
as yH g (where H represents the Hermetian transpose). cylindrical) wave and thus if one attempts to increase the
Therefore, multiplying both sides of Ya=g by yV yields resolution of the direction of arrival estimate by using a

yH larger aperture scan, the spherical nature of the signal
ynya = yng (7) causes defocusing.

It follows that the least squares solution of (6) can be As a study of this type of problem, vertical scan was
represented as taken in the Ohio State University (OSU) compact RCS

measurement range, and small increments of
a = (yny)-l yng (8) displacements were used to compute the direction of

fH arrival [41]. One result is shown in figure 2a. Note that
The inverse of V is known to exist because Y is full the response due to the main beam gives a large signal
rank. lobe at zero aspect, but the smaller error terms are not

seen. If we take larger spans over the test zone, the
And there we have it; a least Squares solution to the previously mentioned defocusing also hides the effect
overdetermined set of equations given in (5). due to the spurious error signal. If an autoregressive

model-based spectral estimation technique is used to
Note that the underlying assumptions of a Least Squares compute the direction of arrival spectrum at a set of
solution are that the errors are in the g vector. That is, vertical increments in the test zone, we can obtain the
the elements of the matrix Y are perfectly known. This is plot shown in figure 2b. A low order autoregressive
the assumption made when the g vector is projected onto model was used here. Note that the spurious signal is now
the column space of Y. In fact, if the elements of the visible. The direction of arrival varies depending on the
matrix are noisy, which they are in practice, the column location of the scan in the test zone. This can be made
space of the matrix is only an approximation of the meaningful, if directional lines are plotted from each sub-
solution space for the equation. The Total Least Squares scan region in the test area back toward the compact
method is then used to improve on this assumption, range main reflector as shown in figure 3. Note that the
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lines converge at the junction where the parabolic 1800 only), it is possible to obtain the image shown in
curvature of the main reflector transitions into a figure 5b. Note that the vertical blade, the wing tips, and
cylindrical skirt. We can estimate the amplitude of the both edges of the trailing end of the cylinder can be seen
error signal with respect to the main beam signal for each in this image with much greater resolution than the
directional line, and these are shown on the plot. Fourier based image.

This is a specific example where model based spectral 6.3 Hybrid Image Domain Estimation
estimation is very effective at extraction of spurious If the measurement data set (such as is shown in the
signals in an environment where it would otherwise not upper left of figure 1) is constrained in only one
be possible. dimension, then we need only use the model based

spectral estimation technique in the transformation along
the dimension that is constrained. Two examples, based

6.2 Range domain estimation on this constraint will be given below.
The previous example showed that model based spectral
estimation techniques can be used to estimate direction of 6.3.1 Small aircraft target
arrival by processing spatial domain data. It is also Consider the example from a x-band radar imaging test
possible to use these techniques to transform from the series on a small private aircraft as shown in figure
frequency domain to the time and thus down-range 6.[39,31,28,20]. In this radar test, the radar was fixed in
domain [28,34,53,56]. An example case is shown in location and operating with a radar wavelength of
figure 4. This example was done for a generic missile approximately 3 cm. The radar operated from 9150 to
shape consisting of a cylinder with a frustum (nose cone) 9898.8 MHz in 128 steps of 5.85 MHz. The small
and rounded edge wings and a vertical blade. The overall propeller driven aircraft was flying in a small diameter
length was 153 cm. Data over the frequency band from 5 circle while several miles from the radar. Frequency
to 6 GHz will be shown here. Now, since we have only I scans were taken every 25.6 ms. For this set of data, 128
GHz of radar bandwidth, our range resolution (-3dB main such scans corresponds to approximately 4.9 degrees
time domain response width) using Fourier transforms is azimuth change. The raw data was first phase shifted in
I ns. (the inverse of the bandwidth). An example down such a way as to remove the radial component of velocity
range profile is shown in figure 4 as a dashed line. If we from the data. The result is a data set that behaves as if
use an autoregressive algorithm applied to the set of the aircraft is fixed in location, but rotating about a point.
complex frequency domain values to estimate the down (The process is called motion compensation.) The image
range profile, we can obtain the solid line. This line can shown in figure 6a is the result of a two- dimensional
now show (1) the tip of the frustum, (2) the frustum- Fourier transform using only 32 data points from the
cylinder junction, (3) the leading edge of the wings and angle span. The full frequency set was used (thus no
blade, (4) the wing and blade tips, (5) the trailing edge of special limitation in the down range domain). The data
the blade, (6) the cylinder end, the discontinuity and (7) were cosine windowed and zero padded to 128 points in
the across the rear caustic term. Remember that one of both down range and cross range. Note the image of the
the most important characteristics of these model based aircraft (flying away from the radar in a turn to the left).
techniques is not the increase in time accuracy of a single Note also the diagonal lines near the top of the image.
scattering term, but the ability to distinguish between two This is propeller modulation effects producing false
closely space scatterers such as found at the end of this image terms (an image alias). The image shown in figure
cylinder. 6b was produced by first transforming to the down-range

domain using an inverse fast Fourier transform (IFFT)
We can form a backprojection or tomographic image of (top left to top right in figure 1). This effect has the
this target if we sum up the contribution of each down benefit of reducing the number of scattering terms in each
range profile across the image domain at each aspect subsequent transform because there is only a small
angle. For the Fourier based profiles (equation 4), we number of scattering terms at each down range location.
have a signed (positive and negative voltage The upper right data matrix (shown in figure 1) was then
contributions) summation where small error terms will transformed column-by-column to the image domain by
average out in regions where there is no target. This using an FBLP spectral transform with an autoregressive
result (only over 1800 of observation domain) is shown in order of only 4. (I.E.: it allowed at most 4 scatterers in
figure 5a. For the autoregressive down range profiles, it each down-range cut.) Note the highly resolved image of
is the nature of the spectral estimation that only power the aircraft near the center of the image. Also note the
estimates are available. This means that small error terms propeller modulation terms manifested as diagonal lines
will add coherently, rather than integrating to zero. On near the top of the image.
the other hand, we note that there are in fact, no "noise"
terms as such in the down range profiles. Each profile is This entire process can be done again, but with only 8
deterministic (although the terms may have errors) and aspect angles included. The FFT-based image for this
thus there is no random noise type behavior in the no- case is shown in figure 7a while the FBLP based image
target regions of the image. Thus when the tomographic (also order 4) is shown in figure 7b. Note that the image
summation over the target image domain is done (also of the aircraft has significantly degraded in the FFT
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based image, but that the basic aircraft size and shape can required, then the ai's can be used to extrapolate outside
still be seen as well as the propeller modulation terms in the measurement space. Once this has been done, the
the FBLP based image. typical Fourier based imaging algorithm can be applied to

the expanded data set [22,29,30].
6.3.2 Target large in wavelengths
One of the criticisms of these model based spectral The process, thus is to extend the experimental
estimation techniques is that the number of spectral terms measurement data set (the upper left matrix in figure 1)
must be relatively small for the technique to be successful and then form the image using Fourier based techniques.
(only relatively low model order will work). We include
an example of 3 cm wavelength imaging of a 122 meter One limitation of this technique is that there may be
long ship to demonstrate the capabilities of the hybrid measurement errors in the original data set that cause
image in this application [1, 6]. inaccuracies in the ai's. This will lead to degradation of

the predicted values as the extension distance increases.
In this exercise, we obtained RCS scattering data for a
ship that was moving in a 1 mile diameter circle Also, this is a model based technique, and if the physical
approximately 3 miles out to sea. The radar was on the situation is such that the data do not fit the model
shore. There was a limitation in the ability to image this (especially outside the measurement domain), then the
ship using Fourier techniques because the pitch, roll and prediction will be inaccurate as the domain of the
yaw effects tended to dominate and defocus the image if prediction increases. As an example, note that the phase
data were collected over a time long enough to permit progression (the distance between the radar and the target
significant motion in those dimensions. On the other subcomponent) does not change linearly as a function of
hand, if only a short data sequence was used, the aspect aspect angle. This means that the cross range behavior of
angle span was too short for useful cross range resolution the model based extrapolation will not be effective in
in the image. Motion compensation was also an issue and predicting the values beyond the measurement angle
angular perturbations caused estimation of the angular span. To avoid this problem, one can "polar format" the
velocity of the vessel to be in error, scattered field data and can then extrapolate the polar

formatted data along the two Cartesian components of
One of the FFT based images is shown in the upper left frequency that result (see [28,29,34]). (Note that this
plot in figure 8 for this ship. The down range transform property is not always a disadvantage. We are attempting,
used the full 9.10 to 9.228 GHz band and thus realized a after all, to increase the spectral resolution in the
down range resolution of 1.2 meters. The angle domain observed data set only in most cases.)
span used to form the image was only from 156 to 158.7',
however, and this limited the cross range resolution so An example where this has been done is given in figure
that the image of the ship was quite "smeared out" in 9(taken from [29]). The example data set is an air to air
cross range. The result of the hybrid model based spectral VHF/UHF ISAR measurement set on a KC 135 jet [39].
estimation for cross range imaging (model order only 7) The frequency band was originally measured from 160 to
is shown in the right hand plots of this figure. (Note the 360 MHz and the angle span from -20 to 20'. For the
scaled drawing of the ship in the lower left hand portion analysis shown here, we used only the frequency band
of the figure.) With proper motion compensation from 240 to 280 MHz and the angle data only from -2 to
applied, the overall length and shape of the ship can be 20. Figure 9a shows the FFT based ISAR image.
seen in the image.

Next, FBLP autoregressive techniques are used to
compute the prediction coefficients and extend the

6.4 Data Extrapolation Imaging available frequency band and angle span by a factor of
One other approach to superresolution SAR/ISAR approximately 3. In this case, a 2-D FBLP algorithm of
imaging will be discussed here. Note from equations 2 order 5 was used [34] to obtain the prediction
and 3 that these are prediction equations (the coefficients coefficients. The algorithm used the full 2-D
are called predictor coefficients) in the sense that autoregressive nature of the raw ISAR data in Cartesian
elements of the measurement data set, (the x,, values in space (fx andfy) [29].
the equation) are predicted based on a model based linear
extrapolation. The prediction coefficients, a , are Although there is no limit to the extrapolation extent, the
derived based on the errors between the predicted values studies reported here suggest that extending the domain
and the actual measurement values. Note that once the by a factor of three is a reasonable limit. Note that the
values of the predictor coefficients are available, data will be predicted over the entire measurement
however, it is possible to make a model based domain. In the method presented here, only the data
extrapolation of the data outside the measurement data outside the measurement domain is derived from the
set. In the diagram of the SAR/ISAR process given in prediction coefficients, the measurement data itself is
figure 1, this means that if one of the dimensions of the retained where available. Finally, the total span of
measured data set (either the frequency band or the angle (predicted and measured) data is windowed (e.g.,
span) is not large enough to permit the image resolution Hamming). The windowing reduces the transform
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Figure 3. Direction of arrival and relative (to main beam) amplitude of secondary signal for a set of sub-apertures from
figure 2.b. (from [41])
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Recognition of Buried Targets

Carl E. Baum
Air Force Research Laboratory

AFRL/DEHP, Building 909
3550 Aberdeen Avenue S. E.

Kirtland AFB, NM 87117-5776
U.S.A.

1. SUMMARY water). For metal targets there are scaling relation-
A difficult problem concerns the identification of ships for the natural frequencies, modes, and
buried mines and unexploded ordnance (UXO). coupling coefficients based on the constitutive
This paper reviews the use of the singularity ex- parameters of the external medium. For dielectric
pansion method and symmetry to identify such targets one can use the internal resonances with a
targets and distinguish them from other buried perturbation formula if the wave impedance of the
objects of comparable size. exterior medium is lower than that of the dielectric

target.
2. INTRODUCTION
In trying to locate and identify UXO and mines in 4. MAGNETIC SINGULARITY
soil, one is faced with a formidable problem. One IDENTIFICATION (MSI)
needs to discriminate these from rocks, tree roots, For highly, but not perfectly, conducting targets
shrapnel, etc. Otherwise one will have a large (metal) there is a very promising technique based
false-alarm rate. Here we emphasize electromag- on a set of natural frequencies corresponding to
netic techniques utilizing target signatures. (See C. diffusion in the target. The frequencies are quite
E. Baum, Signature Based Target Recognition, in low (kHz range) so that wavelengths in the exter-
this volume.) For small targets in soil adequate nal medium are large compared to distances to the
resolution in imaging can be very difficult due to exciting and measuring antennas (typically coils in
high-frequency attenuation and scattering in the the near field). Provided the soil is non magnetic
medium. For large targets (such as buried waste (permeability approximately that of free space), the
dumps) imaging may be more appropriate, but this natural frequencies are independent of the external
is not the case considered here. medium, a significant advantage. These natural

frequencies are on the negative real axis of the s
An important target signature in this case is the plane (Laplace-transform variable or complex fre-
natural frequencies in the singularity expansion quency) and correspond to decaying exponentials
method (SEM). This is manifest in more than one in time domain. Together with appropriate unit
form. vectors these natural frequencies can be used to

characterize the magnetic polarizability dyadic,
3. ELECTROMAGNETIC SINGULARITY and thereby the target.

IDENTIFICATION (EMSI)
In this case, a ground penetrating radar (GPR) Besides buried targets, this technique is being
illuminates the target with a pulse (or many applied to security systems such as airport metal
frequencies) with significant frequencies in the detectors.
general range of 100 MHz to 1 GHz so that wave-
lengths in the external medium are of the order of 5. ACOUSTIC SINGULARITY
the target dimensions, thereby exciting the reso- IDENTIFICATION (ASI)
nances. The target natural frequencies are signifi- Acoustic/elastodynamic scattering also has a sin-
cantly changed from their values in free space by gularity expansion representation with similar
the properties of the surrounding medium (soil, properties. However, in a medium such as water

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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which only supports p (pressure) waves with no (cross polarization) in the usual h,v radar coordi-
significant s (shear) waves, there is a lack of polar- nates. This has been observed with synthetic aper-
ization information, a disadvantage. Its great ture radar (SAR).
advantage applies in cases of external media with a
conductivity large enough to severely attenuate 7. CONCLUDING REMARKS
electromagnetic waves at frequencies of interest. The various techniques discussed above each have

advantages and limitations. As such, they are
6. SYMMETRY IDENTIFICATION complementary. For the three kinds of natural fre-
In conjunction with the above techniques, one can quencies one can look at these in a diagrammatic
use target symmetry as an identifier, both for EMSI way as in fig. 1. This has the properties of a matrix
and MSI. In the case of EMSI a target with the and a Venn diagram (as in Boolean algebra). Note
symmetry of a body of revolution with axial sym- in the bibliography the various "Notes" are pub-
metry planes, and with the rotation axis perpen- lished by AFRL/DEHP, C. E. Baum, editor.
dicular to the ground surface has no hv scattering

external

medium

water or
soil wet (saturated)

\target (dry)
medium soil

metal MSI

dielectric

EMSI ASI

Fig. 1. SEM-Based Buried-Target Identification.
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Mine-detection test facilities at TNO-FEL test location "Waalsdorp"

Jan Rhebergen and Peter Zwamborn
TNO Physics and Electronics Laboratory

PO Box 96864
2509 JG The Hague

The Netherlands

1. SUMMARY
As part of the TNO-FEL Ultra-Wide-Band Ground- 3.1 COOPERATION WITH DELFT UNIVERSITY
Penetrating-Radar (UWB-GPR) project, a test facility for OF TECHNOLOGY
controlled GPR experiments was planned. Construction of this The Delft University of Technology, is engaged in a ground-
sand-box test facility has recently been completed. At the same penetrating radar project called "Improved ground-penetrating
site another test facility, for evaluating various commercial of radar technology". This project started in January 1996 and
the shelf (COTS) sensors for the Dutch humanitarian de- will end in December 1999. It is supported by the Dutch
mining program HOM2000, has been realised. This article Technology Foundation STW, (Stichting voor de Technische
describes the test facilities themselves as well as the frame- Wetenschappen) under contract number DMB55.3649. The
work in which they were realised, objective of the project is the development of a new electro-

magnetic technique for the geological characterisation of the
2. INTRODUCTION shallow subsurface of the earth. In this particular STW project
In recent years the research into mine-detection systems at the four different parts are distinguished.
TNO Physics and Electronics Laboratory (FEL) has increased
substantially. Apart from establishing a firm knowledge base * The first part of the project comprises the design and
and experience through ambitious projects such as UWB- realization of a transportable ground-penetrating radar
GPR, the TNO-FEL has also been actively involved with the system. This subproject concentrates on the development
Dutch ministery of defence's, HOM2000, humanitarian of antennas in a frequency band that ranges from 200 MHz
demining project. Both the TNO-FEL de-mining/mine- up to 1 GHz. It consists of a transmitting and receiving
detection focus-program, of which UWB-GPR is a key device, in which time-domain signals (nanosecond pulses)
component, and the involvement in the HOM2000 humani- are generated, received and processed.
tarian program have spawned the need for good testing and & The second part of the project contains the construction of
experimenting facilities. Over the past year, two rather uniques a full-size testing site in order to perform controlled ex-
facilities have been developed and completed. The first is a periments with the ground-penetrating radar system.
facility specifically for testing UWB-GPR systems and for data 0 The third part of the project comprises the development of
acquisition. The second is a multi-sensor mine-detection test a fast and accurate electromagnetic modeling method. This
facility for evaluating systems under controlled but realistic modeling method provides the basis for the electromag-
conditions. netic imaging and furthermore provides a means to check

the performance of a field measurement over a known
3. TESTING FACILITY FOR CONTROLLED geological situation. Adequate measurements at the testing

UWB-GPR EXPERIMENTS site should provide the input data.
In this section we will describe the development of the first * The final part of the project comprises the development of
test facility which has been constructed at TNO-FEL for practical strategies and processing algorithms with the fi-
carrying out controlled experiments with a ground-penetrating nal goal, the realization of the actual image. Not only the
radar system. This test facility has been developed in coopera- test site will be used, also more realistic geological sites
tion with the Delft University of Technology, where a parallel will be investigated and a compared to existing ground-
project in the area of ground-penetrating radar is being carried penetrating tools and conventional techniques.
out. One of the principal goals was to perform the neccesarry
analytical and design work to support the construction of an The development of the new ground-penetrating radar system
experimental facility, where target objects can be buried in a at Delft University of Technology will take place in a coop-
sand medium and illuminated by an ultra-wideband electro- eration between the International Research Center for Tele-
magnetic field. The sand medium should be a realistic, yet communications Transmission and Radar (IRCTR) and the
controlled environment in which objects of interest can be Centre for Technical Geoscience (CTG), research school.
buried. The electromagnetic field scattered by the buried IRCTR is hosted by the Faculty of Electrical Engineering and
object has to be observed and diagnosed for the benefit of is directed by Prof. Dr. L.P. Ligthart. CTG is a cooperation
developing an computer database containing the responses of between the Laboratory of Electromagnetic Research of the
a large number of objects (i.e.landmines etc.) Faculty of Electrical Engineering (directed by Prof. Dr. P.M.

van den Berg) and the section Technical Geophysics of the

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
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Faculty of Mining and Petroleum Engineering (directed by 3.2 CONSTRUCTION OF THE TESTING FACILITY
Prof. Dr. J.T. Fokkema). Prof. Dr. J.T. Fokkema is also the Within the framework of the cooperation with the Delft
project leader of the STW project and as such the point of University of Technology, a full size testing facility has been
contact for TNO FEL. designed and constructed on the premisses of TNO FEL, in
The third part of the STW project (the development of a order to perform controlled radar experiments. The testing
electromagnetic modeling method) is partly sponsored by facility has been completed in July 1997. It is located in the
TNO-FEL. TNO-FEL has awarded a research grant for a post- dunes directly behind the TNO-FEL building, on a location
doc to participate in the project for one year. The second part that was formerly known as the "EMP site" where electromag-
of the STW project, which is the construction of the test netic pulse experiments were once carried out.
facility, is performed in cooperation with the Electromagnetics
Section of TNO FEL, since such a testing facility was also The test facility consists of a buried wooden box. The dimen-
needed for the another TNO FEL project namely,UWB GPR. sions of this box are 10 m x 10 m wide and 3 m deep (300
The test facility was built on the premisses of TNO FEL cubic meters). The box has been fully dug in into the ground,
(completed July 1997) and will be used for both projects. It is hence the bottom of the box located three meters below the
clear that a cooperative effort in the development of such a ground level. Special care has been taken not to use any metal
testing facility has many advantages, which not only includes parts in the construction of the box or in the vicinity thereof.
the sharing of the financial burden. The sandbox is filled with clean (homogeneous) river sand
The project at Delft University of Technology sponsored by from the (Dutch) Caland canal. In order to keep the condition
STW and the UWB-GPR project at TNO-FEL sponsored by of the sand in the box optimal and to prevent pollutions from
the Netherlands Army are complementary; knowledge and the outside (for example ground water) entering the box, a
experience that is gained in the projects can be exchanged as drainage system was installed and the inside of the box was
well as for example measurement data. Both projects differ in covered with a watertight plastic lining. To prevent the
signal processing; the STW project aims at detection only; weather from influencing the test conditions and to protect the
characterization or classification is postponed until the measuring equipment, a large tent covers the entire site.
imaging step can be satisfactorily performed. TNO-FEL aims Additionally, a wooden shed is available for storage of
at the exploitation of the singularity expansion method to personal computers and measurement equipment. While filling
perform detection and classification. Furthermore, since a the box with sand, special care was taken to get a homogene-
university is not a defence research institution, the goal of ous profile. Current tests indicate that this was not entirely
their ground-penetrating radar system is directed towards civil successful but should be good enough to work with. Later on
applications, like engineering activities and environmental and in this study we will probably empty the box and refill the box
archeological investigations. Examples are the detection of with a different ground composition. To facilitate the meas-
cables and pipes, the determination of the stability of dikes, urement of EM transmissions into the ground a square PVC
the detection of leakage and the and the spreading of tube running from the surface of one side to the bottom of the
(in)organic pollution and so on, and not primarily landmines. other side has been installed about one meter from the edge of

the sandbox.

On the next page we show a small photo gallery which shows
the progress in the construction of the UWB-GPR test facility.
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Figure 3.1 Old situation. Location of the test site in the dunes near TNO EEL. This location was formerly known as 'EMP
site" where electromagnetic pulse experiments were carried out.

i0
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;' 

..

Figure 3.2 Start of the activities. Dismantling of the EMP site. The location is being prepared for construction activities. In

the background the (green) wooden storage shed, where the equipment is kept, is visible.
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Figure 3.3 Start of the construction of the wooden box. First, some wooden piles are driven into the ground. The piles are

used as a framework to strengthen the construction of the walls.

Figure 3.4 Construction of the walls of the box using wooden beams. The wood that was used to construct the box was

tropical hardwood from Central Africa.
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Figure 3.5 While the walls of the box were being constructed, the soil at the location was removed simultaneously.

Figure 3.6 Last part of the digging phase. The wooden box is almost finished.
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Figure 3.7 Closing of the wooden box.

Figure 3.8 The inside of the box is covered with a watertight plastic lining in order to prevent pollution from the outside (for
example ground water) entering the box.
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Figure 3.9 Installation of the drainage system in the wooden box.

F 31

Figure 3.10 Overview photo. The wooden box is now ready to be filled with sand.
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Figure 3.11 The wooden box is filled with clean (homogeneous) sand.

Figure 3.12 Installation of a square PVC tube running from the surface of one side to the bottom of the other side of the box,

facilitating measurements of EM transmissions into the ground.
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Figure 3.13 The wooden box is now ready to be used for ground-penetrating radar experiments. Presently the whole
sandbox is covered by a huge tent.

Figure 3.14 The TNO-FEL impulse radiating antennas (IRA) constructed as part of the UWB-GPR systems.
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lOin/minute. Braking is gentle but an emergency brake will
4. HOM2000 TEST FACILITY stop the trolley abruptly in case it is needed.
The other testfacility on the TNO test-site "Waalsdorp" is the
HOM2000 test facility. The main purpose of this facility is the To be able to record the position of the sensor acurately a laser
testing of commercial off the shelf (COTS) sensors that can be distance meter is mounted on the far side of the bridge. The
used for, and/or improved for mine-detection. Currently four laser beam is reflected off a reflector mounted on the trolley
sensor type are evaluated. Metal detectors, thermal infrared and an accurate position reading and time-stamp is registered
imaging detectors, and ground penetrating radars. For each so many times per second. This way an accurate record of the
sensor type, four systems are being tested position of the sensor is available for each sensor.

4.1 CONTRUCTION 4.3 SURROGATE LAND-MINES
The HOM2000 test facility consists of six test lanes. Each lane Inside every test-lane a number of surrogate land-mines and
has a length of 10m, width of 3m and a depth of 1.5m. Every potential false alarms are buried at different locations and
lane contains a different kind of soil representative of soil depths. These landmines are representative of what is typical
found in actual minefield locations. The kinds of soil used are, in a real minefield. The emphasis however is mainly on anti-
sand, clay, peat, soil with a high iron content, forrest soil, and personel mines although some anti-tankmines are also burried
rocky soil. (and of course a couple of false targets were also put in place).

Control of the whole test-site and testlanes is quite strict as not
The test facility was constructed in such a way as to minimize to disturb the measurement conditions. Not only this but also
external influences. No metal components are allowed inside a security is an important reason to impose strict access control.
zone of 5m around the whole test-rig. Of course the test lanes
themselves were also constructed without the use of any metal Once buried, the mines will not be dug up again. In fact a
whatsoever. The facility was constructed along a north-south certain time (months!) has to be allowed to let the mines settle
axis so that infra-red sensors would not have to take measure- in the ground because it takes quite a while before the ground
ments in their own shadow. A groundwater level management disturbance created when burrying the mines is deminished.
system was also installed to be able to keep the groundwater To be able to do some exprimenting a small area of each
table as a constant level. To facilitate accurate positioning of testlane was set aside. This area can be used to burry sensors
the sensors a non-metal measurement platform was designed or reference objects. To be able to determine the character-
and installed. sitics of the sensor with respect to "virgin" soil each test-lane

also contains a small areas devoid of any surrogate landmines

or false targets.
4.2 MEASUREMENT PLATFORM
The measurement platform is basically a big 10m long The construction of the surrogate landmines was done is such
pvc/glassfibre bridge (tubular). Wheels on either end of the a was as to optimise it's resemblance to actual live mines. The
bridge are running on rails located at the head and foot of the resemblance to real mines is not just visual but care was also
test lanes. In this way the whole bridge can be moved over one take to use materials whose electromagnetic and thermal
of the test lanes. Once in position the bridge can be locked properties closely match those of actual landmines. Details of
into place by a nylon bolt which fits in one of a series of holes the construction are not included here but could under certain
every 0.05m. The sensor is mounted on a small belt driven conditions (constrains) be made available to others.
trolley which is running on tracks over the full length of the
bridge. The trolley has a small platform with mechanical The following pictures show the construction of the measure-
adaptors to facilitate the mounting of the different sensors. At ment platform. In the picture you can see the antenna array
the end of the bridge, just outside the 5m metal-free zone, an and tick-wheel of a commercial GPR system which is mounted
electro-motor is connected to the belt pulling the trolley along on the platform. For actual measurements the tick-wheel
the bridge. The maximum speed of the trolley is about interface will be connected to the output of the laser position

indicator.
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Figure 4.1 A view of the HOM2000 measurement platform. In the background the tent covering the UWB-GPR test facility
can be seen. In the distance one notices the TNO-FEL radar tower.

. .

j

Figure 4.2 A view in the opposite (northerly) direction. The test lanes are just about visible. Due to the sensitive nature of
the test facility more detailed pictures are not allowed.
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1 Introduction The third example of the paper is based on a
range gated 3D laser radar system without scan-

This paper deals with three examples for pat- ner developed in our group. The design of the
tern recognition and an estimation of the com- system is explained and measurement results are
putational effort needed for the real time parts presented. This part of the paper explains, why
(predicition) of the following approaches: one can use very simple features and straightfor-

ward classifiers, if the hardware of the pattern
"* Discriminant Analysis recognition system is specially designed for clas-

sification purposes. To our knowledge it is the
"* Feedforward Neural Network first time that such an approach is published un-

classified.
"* Sugeno Fuzzy Classificator.

The first example is of the simple pattern match-
ing type. A satellite photograph of our university
from a freely distributed CD-ROM was used. We
extracted the clock tower of the building where 2 Pattern Matching in Satellite-
the chair for measurement and information tech-
nology is located and tried to find that place photographs
by correlation analysis. This pattern recognition
works without features. We found the location
of the clock tower with an accuracy of about ±1
pixel (±1 meter) in an photograph which actu-
ally displays 2 x 2 kilometers. The interesting Symbol Description
point is here however, that one can use data freely A, U matrices

available and a simple PC-platform with common G set
numerical software like MatLabTM. Rxx auto correlation function

E... ensemble expectation operator
In the second example we show our work in the P.. Fourier transformed R,.
field of in-situ inspection of high performance op- X (f) Fourier transformed x
tics (e.g. degradation of airborne surveillance sys- (... )* complex conjugated
tems) and supersmooth surfaces, like wafers, hard F(x) Fourier transformed x
discs and flat panel displays. F(x)-' inverse Fourier transformed x
In this case the extraction of the correct feature RY cross correlations function
variables and the appropriate classificators is of p6 Fourier transformed RxY
great importance for the performance of the pat- q5(fk, fl) coherency function
tern recognition system. k, 1, mx, ny signed integer
It is shown that empirical statistical moments and mx, ny signed integer
Discriminant Analysis perform best. fl, fk frequency

Paper presented at the RTO SET Lecture Series on "Advanced Pattern Recognition Techniques",
held in Bristol, UK, 14-15 September 1998; Rome, Italy, 17-18 September 1998;

Lisbon, Portugal, 21-22 September 1998, and published in RTO EN-2.
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2.2 A simple Application of Pattern and the cross power spectrum as
Matching

+00
The detection of object positions in images is one Pxy (f) = E Rxy (m) e-i 2rfm = F (R~y) (6)
of the basic problems in image processing. In m=-00
this section the simple method of pattern match-
ing will be discussed. if x(m, n) and y(m, n) are real valued. The equa-
A rectangular limited region U will be searched tions (1) to (6) apply for one - dimensional pro-
for in an image A. A and U are matrices with the cesses.
dimensions r x s and m x n such that A C Gm x GI The generalization for two - dimensional func-
and U E Gr xG' with r,s,m, nE N. Gis the tions x(m, n) and y(m, n) is simply given by
quantity of gray values with G {0, 1, 2, ... , 255}.
The matrix U is nearly a copy of a submatrix V Rxy(k,1)=E{x(n,m).y(n -k,m-±l)} (7)
in A, the searched object. Finding the position
of the submatrix V is an equivalent formulation
of the problem. In preparation of the solution it
will be assumed that A (the digitalized image) is a
discrete piece of a normally distributed, place de- P (fk, fl) = E {X (fk, fi) y* (fk, fi)} (8)
pending, 2- dimensional process (the real image).
With this assumption the cross correlation func- Finally the coherency function q(fk, fl) is defined

tion (CCF) can be used to detect the searched as

position. If two shifted images are similar, the
CCF will be maximized at shift coordinates [1]. o2 Py (fk, fl)12  (9)

Pxx (fk, fl) . Py (fk, fl)

2.3 Mathematical formalism Equation (9) contains mainly information about

The auto correlation function or sequence of a the similarity of two two - dimensional func-
stationary process x(n) is defined by tions or sequences. For instance, the coherency

function of two two - dimensional, identical but

Rxx (m) = Ef {x (n) . x (n ± m)} (1) shifted functions h(m, n) and g(m, n) with

where E f{... } denotes the ensemble expectation F (h)= F (g) e-i27 (fk ' mx + f -ny) (10)
operator and x (n) is real valued. The power spec-
trum is formally defined as is constant with the value one and leads to the

Pxx (f) = E {X (f) .X* (f)} (2) identity

where X(f) is the Fourier transformation of x(n) Pgh = Pygei27r (fk . m, + fl ny). (11)
with

Otherwise the shift my, ny can be calculated from+00

X (f) = E x(in)e ei 2 fm (X) (3) the phase term. In the other case the coherency

M( = (m function is nearly zero. This means that there is
a random relative phase distribution between the

According to Wiener Chintchine theorem it is the two functions [2]. If the functions h(m, n) and
Fourier transform (FT) of the auto correlation g(m, n) are stochastically distributed, without
function and may consequently be written as periodical components and mean value, the func-

tion Rgg(m, n) is globally maximized at the point

+=1 f(o m (0, 0). So the calculation of the shift my, ny can
Pxx (f Rxx (m) e F (Rxx) . (4) be done simply with the inverse Fourier transfor-

"=-c00 mation of equation (11)

Based on the basic definitions (1) and (4) the
cross correlation function is defined as Rgh (k, 1) = Rgg (k + mx, I + ny) (12)

Rxy (m) = E {x (n) . y (n ± m)} (5) and with a maximum search at Rgh (k, 1) [3].



12-3

with U' E Gm x G'. So the final equation can be
written as

100

RAU (k, 1) = F- (F (A - 'A) F (U' - U)) (14)

200 With the equation (13) the shift coordinates be-

tween the regions U and V are k m, and I =
300 which maximize RAU (k, 1).

400

Soo 1O00

600 200

100 200 300 400 500 600 700 800 900

Figure 1: Satellite photography

600

100 200 300 400 500 600 700 800 900

Figure 2: Satellite photography - searched region
Figure 3: CCF

2.4 A simple application
2.5 Application hints

With the assumptions given in section 2.2 a sim-
ple application will be shown. The image A is Equation (14) is easy to compute using the
shown in Figure 1 and the searched region U in MatlabTM computation system. The following
Figure 2. script (MatlabT M Version 5.2, image processing
Figures 1 and 2 are noncontinous, equidistant toolbox) shows the computation of Figure 3.
sampled regions. In section 2.3 it has been shown
that there are two ways to calculate function [bl mapl] = imread('campgray.pcx');
RAu(k, 1), see equation (7) and the inverse of [b2 map2] = imread('campgraypat.pcx');
equation (8). Equation (7) is simple to evaluate A = double(bl);
on A and U. It is a non causal convolution. With U = double(b2);
the assumption that the regions are periodically Er s] = size(b2);
continued in both dimensions, with a loss of ac- B = zeros(m,n);
curacy (ignoring bounding effects) the inverse of B(l:r,l:s)= U;
equation (8) can be used. To fit the smaller re- F1 = fft2(A - mean(mean(A)));
gion U in dimensions of A the simple zero padding F2 = fft2 (B - mean(mean(B)));
methode can be used, with U' as the zero padded C = real(ifft2(Fl .* conj (F2));
region U [vx vy] = find(max(max(C)) == C);

Ul1 Us 0 0 The variable C represents RAU (k, 1) and is the-
0 0 oretically real valued but numerical errors of the
o0 0 computation system produce small imaginary val-

= 0 0 (13) ues in C. The computation speed can be in-
Ur,1 Ur,s 0 0 creased, if m, n, r, s have the logarithmical base

0 0 0 0 0 0 2. So the computation of the Discrete Fourier
Transform (DFT) can be changed to Fast Fourier

0 0 0 0 0 0 0/ Transform (FFT) [3].
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The most accurate, but slower way to calculate Apart from a few limited scatter theories, pattern
RAU (k, 1) is equation (7) which is shown in the recognition methods must be employed to link the
next MatlabTM script. BRDF to surface properties.

3.1 Sample data
[bi mapi] = imread('campgray.pcx');
[b2 map2] = imread('campgraypat.pcx'); The angle resolved BRDF data used in the fol-
A = double(bl) - mean(mean(bl)); lowing sections were taken from 11 surfaces, with
U = double(b2) - mean(mean(b2)); different microtopographies. Each surface repre-

C = conv2(A,flipud(fliplr(U))); sents one group. A group consists of two data sets

[vx vy] = find(max(max(C)) == C); with 50 observations each. One data set (recogni-
tion set) is necessary for the learning part of the
classification and the other set (prediction set) is
intended for testing the classification. In Figure

3 Classification of Surfaces by 5 the 11 group means are shown. Only the scat-
ui ter distribution in the plane of incidence (0, = 0)

using Backscattering is evaluated. The angle of incidence was fixed to

383.
Measuring the distribution of light scattering
back from a illuminated surface is a fast and non- 102 goup

-2contact approach to characterize surfaces [4], i.e. 101 -

measuring surface roughness, detection of defects 4.
10and contaminations, characterization of surface 1 -. 6

textures. The bidirectional reflectance distribu- .1o- .

tion function (BRDF) can be used to describe 2 -10-1

the scattering of light from a illuminated surface.
10"

The BRDF is defined as the ratio of scattered ra-
diance L, at an particular solid angle 0, to the 10

surface irradiance Ei. ,1
0 0.5 1 1.5

0, [rad]

LsF -L, (15) Figure 5: Plot of group means.BRD =Ei - OicosOQ,

As illustrated in Figure 4 the incident ray is de-
fined by its incident angle 0i and the scattered 3.2 Statistical moments
ray is defined by the azimuth angle 0, (measured
from plane of incidence), the scatter angle 0, and The advantage of using statistical moments as
the solid angle Q,. feature variables ist that they are easy and fast

to calculate. A drawback of statistical moments
Z is that they only describe the statistical distribu-

(DI ,tion of the BRDF independently of the function
SO.param eters 0,, ,s.

The computed statistical moments of the recog-
nition set are shown in Figure 6.
The statistical moments of group 8, 9 and 10 do
not show any significant difference, therefore clas-

- 7IS • _sification errors are very likely for these groups.S~y

3.3 Circular momentsx
To overcome the mentioned drawback of linear

Figure 4: Definition of BRDF. statistical moments, modern circular statistics
can be employed to define circular trigonometric
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- - - Or ~ ~ rminimum and maximum values of the BRDF

data, respectivly, ND is the number of elementary
events the intensity value of the BRDF is divided

0 I into, n, is the number of elementary events in the
sample data.

ý1 Now the sample mean direction 9 can be calcu-
lated

,0 ' , , I ! ..... C :•=E snj cos Oj S =E A.•lnj sin Oj

ig 5 (17)

2 taCi2(S/C)2 + <
10
40 1. tanr'(S/C)±2w C<o,>

C, 23 4056 78 9 oOfor aspcu BRDF. Bdfngthe mean re-
0rwhic s houldt bent eqa to0,1 the sangle ofincidenceri

10 1 spcuar-(IC 7 By 00>

groupsultant length R? E (0, 1) the sample circular vari-

Figure 6: Plot of linear statistical moments vs. ance V E (0, 1) and the sample circular standard

observations, deviation v can be calculated.

R = R/nu
(18)

moments. Circular statistic is based on vectorial V = 1 - ft v =sqrt-2 *log(1 - V)

or axial data on the unit circle [5]. Therefore, in From the centered sample trigonometric moments
order to employ circular statistics to BRDF data, mP
it is necessary to project the intensity values of No,

the BRDF on the unit circle. This can be done by
interpreting the intensity value of a certain solid m=/n * n cosp * (9j -9) (19)
angle as a summmation of elementary events, e.g.
number of photons reaching the detector. With the sample circular dispersion a (a measure of

this interpretation one can consider BRDF data spread)

as a circular distribution, as shown in Figure 7. L = (1 - m 2)/2 * f?2 (20)

BRDF Transformation circular data distribution and measures of skewness s and kurtosis k can be

defined [5].

"""_ . S = M2 * sin(I 2 - 2#)1(1 -- (21)
k = (M2 * cos(Pt2 - 20) -_ 4 )/(1 -(1 )2

.,10 0 , The value /P2 is calculated from the second un-
centered sample trigonometric moment

Figure 7: Interpretation of BRDF as circular data N = 1/n 8 * _.. csp 3

distribution, the triangles in the right figure sym- - (22)
bolize the number of elementary events. Sp = 1/n, * nj sin(pgj)

Mathematically, the transformation is given by f tan-'(S 2 /0 2 ) S 2 > 0, 02 > 0

the angular frequency value nj, Pz2 = tan- 1 (2/02) + 71r 2 < 0
tan-' (S 2/0 2 ) + 27r S 2 < 0, 02 > 0

B RDF(91j)-min( BRD F)
nj = max(BRDF)-min(BRDF) * The computed circular moments of the recogni-

(16) tion set are shown in Figure 8.

n. = EN" nj As one can see from the feature plot the circular
moments of group 8 and 9 do not show any sig-

where 9j is the j-th scattering angle 9, (j = nificant difference, therefore classification errors
1..No.), min(BRDF) and max(BRDF) are the are very likely for these groups.
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0.66 o

00

0.62

0.58 ...0.05

0.00

0 [ [rad] 0, [rad]

0001

. .0.01 Figure 9: Plot of two approximations with Phong
.18 model, 1. of a specular BRDF, r. of a smooth

BRDF.
z0 0.06

0.02
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0 t i

400

S200
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group

Figure 8: Plot of circular moments vs. observa-
tions.

1 2 3 4 5 6 7 8 9 10 11

group

3.4 Features based on BRDF models
Figure 10: Plot of coefficients of Phong model vs.Another approch to feature extraction of BJRDF observations.

data is based on the approximation of BRDF

models and using the estimated parameters as
feature variables. Quite a lot of BRDF models diffuse part a angle dependent diffuse part and awere suggested by the computer graphics commu-
nity. The definition of two models will be given, specular part.
One of the earlier and still quite popular mod- f2(0s, Oi) = ao+
els ist the Phong model [6]. A slightly modified
model was introduced by [7] and is defined as a al(02 + 02) + a 2 (Oi9s) 2 + a3OiOcos(O,)+ (24)
sum of a diffuse part and a specular part.

1 a 3 +2 ,
A ((Os1 Oi) = a,- + a 2 a3+ 2co(s - O)a3 (23) a 4 ea5(OiO)

2 ea6(, _)2

The coefficient a0 gives the constant diffuse part
The diffuse part depends on a, and the specular of the sample. The angle dependent diffuse part
part depends on a2 and a3. Two examples for the is modeled by the coefficients a,, a2, a3 and the
Phong approximation of a diffuse and a specular coefficients a4 , a5 describe the amplitude and a6
BRDF are shown in Figure 9. stands for the width of the specular part. Accord-
The least squares approximation was done with ing to the model the coefficients a0 , a4, a5 and a6
the Quasi-Newton algorithm. The computed fea- should be positive. Figure 11 shows two aproxi-
ture variables (a,, a2, a3) of the recognition set mations of the Meister model.
are shown in Figure 10. The least squares approximation was done with
The model of Meister [8] allows a more accurate the Quasi-Newton algorithm. The computed fea-
description of the diffuse part and the specular ture variables (al - a 6 ) of the recognition set are
part. It is defined as a summation of a constant shown in Figure 12.
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spline function)

tl <_tt2 <_ ... <_ tn+k

can be defined as recurrence relation, as follows:

0. [rad] 0. [rad] if k = 1

Figure 11: Plot of two approximations with Meis-
ter model, 1. of a specular BRDF, r. of a smooth Nij (t) = •" 1 if ti < t < ti+i

BRDF. 0 else

if k > 1 (26)

"L _.Ni,k(t) - , N (t)+

i i ~I V

. " i i ; • "ti+k-ti+i l k- W

[ . ,J A B-spline curve of order k is given as linear com-
.. bination of spline functions Ni'k"

i ! , , , , ,Bk(t) =EaiNi,k tW (27)

TiI IIi The coefficients ai are called the control points or
de Boor points for the curve. The smoothness of
the B-spline curve can be controlled by the knot

sequence T, i.e. for a jump in the first derivative
at t3 one would repeat the knot value t3 k - 1

r . .[ times in the knot sequence. This B-spline prop-

erty can be used to improve the approximation of
BRDFs with a strong specular part.
The approximation of a given set of points Pi (i.e.

a measured BRDF) can be expressed as the min-
imization of the sum of the square errors Di.

1 2 3 4 5 6 7 8 9 10 11

group n

Di = Bk(ti) - Pi D2 = ED -+ min (28)
Figure 12: Plot of coefficients of Meister model i=O
vs. observations.

Partially deriving D2 to ai leads to a linear sys-
tem of equations. Solving this system of equa-

3.5 Features based on spline approxi- tions gives the desired control points ai. An ex-

mation ample of two B-spline approximations of differ-
ently shaped light distributions are shown in Fig-

In the last section the BRDF was approximated ure 13.
by a certain function model. In the case of not The control points ai of the approximated B-
knowing the shape of the approximation function, spline curve can be used as feature variables when
spline - curves can be employed to approximate the knot sequence T and the order k are constant
the light distribution. For this example the B- for the data set. The computed feature variables
spline form is employed [9]. The basis functions of the lerning set based on a B-spline curve of or-
of a B-spline curve are called B-spline functions. der four with six intervals and one possible jump
A B-spline function of order k with the ordered in the first derivative at 0, = Oi are shown in
knot sequence T (the parameter values of the B- Figure 14.
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quality of the fit. If the value TSx2 is larger than
the corresponding quantile value the fit should
be considered non significant. The degree of free-

42
dom for the X2 quantile is given by the number

i ,of approximated data points minus the number of
.• _ .. , . free parameters. Figure 15 shows the TSX2 values

". [frad] ... [rad] . for the approximations applied to the recognition

Figure 13: Two approximations with fourth order set. The straight lines symbolize the correspond-
B-splines and six intervals, 1. with jump in the ing X2 quantile values. From the plot of Figure 15

first derivative at t3 , r. with continous derivates. it can be stated that the B-spline approximation
gives the best result according to the approxima-
tion errors. Apart from the observations of group
two and four the TSX2 values of the B-spline and

* the Meister approximations are below the quan-
tile values. Therefore they can be considered as
significant due to the X2 test. However, the real
discrimination performance of the features can
only be qualified by evaluating the classification

* results. Table 1 shows the summarized classifi-
,,. •cation results for different classification methods.

For each algorithm the classification results of the
recognition set and the test set are given. The
first three algorithms are based on neural net-
works with the following start configurations:

* The perceptron net was initialized with 11
neurons in the output layer.

* The feedforward net was initialized as two
layer configuration with the number of neu-

4 +rons in the input layer equal to the number

of feature variables and 11 neurons in the
4.*, i i • output layer. The position of the maximum

activation in the output layer is considered
as classification result.

1 2 3 4 5 6 7 8 9 10 11
group * The radial basis function network was initial-

ized in the same manner as the feedforward
Figure 14: Plot of coefficients of B-spline approx- network,
imation vs. observations.

3.6 Classification results

Now the ability of the defined BRDF features to
significant characterize a class of BRDFs is to be
investigated. A first impression of the quality of
the approximation based features can be obtained
by looking at the approximation errors. By ex-
pressing the approximation error as follows

TSx, (P' (29)

the statistical X2 test can be used to check the
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Figure 15: Plot of TSx2 approximation errors vs. observations.

Table 1: Table of classification results, shows the correct classifications in percent.

classification empirical circular Phong model Meister model B-spline all
algorithm moments moments coefficients coefficients coefficients features

Perceptron
recognition set 75.3% 30.0% 22.2% 52.2% 90.2% 80.4%
prediction set 73.3% 26.7% 22.5% 39.6% 82.9% 62.4%

Feed Forward
recognition set 92.4% 82.9% 62.5% 78.9% 94.7% 93.3%
prediction set 95.0% 86.5% 73.8% 93.6% 98.6% 99.3%

Radial Basis Function
recognition set 100.0% 98.4% 100.0% 100.0% 100.0% 100.0%
prediction set 82.2% 15.9% 51.5% 10.3% 44.4% 10.3%

Discra
recognition set 98.4% 86.6% 90.4% 81.8% 99.5% 99.8%
prediction set 99.1% 81.8% 88.4% 74.9% 97.7% 99.8%
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The following conclusions can be drawn from the What we will mainly examine here are imag-
classification results: ing laser radar systems, which are based on a

gated viewing camera. Figure 16 demonstrates
" The discriminant analysis and the feedfor- the principle of laser range gating. The scene is

ward neural network work best with the illuminated with a pulsed laser and synchronized
introduced features, whereas the discrimi- to a gated viewing camera. The delay of camera
nant analysis is slightly better, especially for exposure and the duration of the exposure can be
worse features. controlled with an accuracy of Ins. It is possible

"* The classification performance of the percep- to achieve exposure times Ate, of 3s. With

tron neural network is not sufficent.

" The feedforward neural network gives a very AR = c* (Atexp + Atpuls) (30)
good classification result for the learning step 2
but for the test set the classification perfor- where c is the velocity of light and Atpuls is the
mance is very poor. This might be improved pulse width of the laser, it can be recognized that
by changing the network configuration, i.e. the camera frame includes only the scene at a
by including additional hidden layers. given range with a depth AR of 1.5m with a pulse

" The empirical statistical moments and the width Atpuls of 7ns. The very fast shutter speed

B-spline coefficients give the best classifica- of 3ns can be achieved with a MCP (Multi Chan-

tion results independent of the classification nel Plate), Generation 11. The frame is generated

algorithm used. only from the reflected photons from the target
slice T5 (Figure 16). The photons of the scat-

"* The Phong and Meister approximation tered light outside the target slices T1-T4,T6-T9
based features do not show the desired dis- (Figure 16) do not reach the camera inside the
criminatory power. A possible cause is that exposure time and will therefore not be added to
the nonlinear optimization might lead to dif- the image.
ferent parameter configurations for almost The timing can be controlled at every laser shot
indentical BRDFs. This could be improved and consequently one gets illuminated slices at
by applying better start parameters and by different ranges with different depths. The com-
checking the parameter configuration during bination of all slices gives a 3D-image. But nor-
the optimization process for validility due to mally it is not useful to combine the range gated
the BRDF model. images because an image processing system can

extract faster more information out of the single

4 Recognition of Objects in 3D range gated images.

Laser Radar Images 4.2 Eye-safety

4.1 Basics of Laser Range Gating The laser radar system mentioned in section

There are different possibilities to generate 3D- 4.1 has one big disadvantage. It is operating in
images at a long range (> 100m) with a pulse the visible region at a wavelength of 532nm. For
laser: an 'all weather" long range imaging laser radar

with the requirement of high laser power it is use-
* scanning camera system that combines a less due to the extreme eye-hazard near the max-

scanning system (rotating mirror) with a sin- imum sensitivity of the human eye. These laser
gle detector (Avalanche Photodiode APD) radars working with a MCP are nowadays only
[10], practical for underwater applications like mine

detection or controlling of autonomous underwa-
* APD array receiver [11, 12], ter robots.

* gated viewing camera [13, 14]. Achieving more laser power without an eye-
hazard is only possible beyond a wavelength

These systems could be used in automatic tar- 1.4pm. In this spectral region there is hardly any
get recognition, aimpoint selection, target track- transmission between the cornea and the retina,
ing and obstacle avoidance [15, 16, 17, 18]. so that the incoming light is not focussed on the
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retina. The laser power limits beyond 1.4jpm are video rate of 25Hz and triggers the laser. At this
nearly the same for the eye and the skin. Pro- rate the laser achieves a pulse energy of 60mJ
viding a class 1 laser radar system means not to and a pulse width of 7ns. The pump energy of
exceed the AEL (Accessible Emission Limit) out- the flashlamp pumped laser can be controlled via
side the transmitter optic. A class 1 system can RS232, so that it is possible to increase or de-
operate without any safety rules [19]. crease the laser output energy every laser shot.
For laser radar systems the AEL depends on the The Q-switch sync output is used to get the time
number of pulses N that could reach the cornea of laser start and to trigger the delay genera-
inside a time period of 100s: tor which gets the delay time and pulse duration

via RS232. The electrical output impulse with
a given delay and pulse width opens the EOM

AELmrutipuilse N-'AELsinglepulse. (31) shutter for a duration between 18ns and 500ns

Table 2 shows that the permitted laser power in corresponding to the input pulse width. Opening

the eye-safe spectral region beyond 1.4pm can be the EOM shutter means that the dc voltage level

much higher than in the visible, at the variable dc voltage supply provides the half

For an "all weather" long range imaging laser wave voltage. The EOM shutter we use here is of

radar system it is absolutely necessary that it op- the transverse field type with the material lithium

erates in the eye-safe region. High power laser tantalate. For the EOM shutter we have calcu-

sources like Raman shifted Nd-YAG-, Nd-YAG lated and designed a special objective. It includes

OPO(Optical Parametric Oscillator)- or Erbium an analyzer, a polarizer and an IR bandpass fil-

doped fiber lasers are available on the market, but ter with the FWHM optical bandwidth of 30nm.

imaging receiver working beyond 1.1,um are very The focal length of the objective is 400mm.

rare. The whole system design integrates an eye-safe
rangefinder working with an InGaAs APD as

4.3 Design of an eye-safe, imaging detector, which communicates with the control

laser radar computer via centronics. The rangefinder does
not work with last pulse technique, but we can

The development of an eye-safe, imaging, scan- set a range gate of any size and manage to get
nerless laser radar based on gated viewing re- the range also at bad weather conditions as heavy
quires another shutter principle because the use rain or fog. The laser radar control software could
of a MCP in the eye-safe region of 1.5,um [20] use the range information from a target to set the
seems not realistic in the near future [21]. The corresponding delay of the delay generator. The
requirements for such a system are: observation of the target per range gating system

"could start at this location.
s high power eye-safe laser source for single We have finished the system design yet, but it was

not possible to provide outdoor experimental re-

" high sensitive detector at a wavelength of sults. Therefore we use for the example of object
1.5ptm, recognition and classification section 4.5 a range

gating sequence provided with a gated viewing
" very fast shutter in the nanosecond region, system including a MCP.

"* precise delay generator with a stability in the
picosecond region. 4.4 Long range experiments with a

gated viewing system at the wave-
The whole system design is shown in Figure 17. gth of sysn m

We built a complete computer controllable sys-

tem including a BigSky Nd:YAG laser CFR 400 The target used for the long range experiments
OPO, an InGaAs camera SU128-1.7RT CCIR was a truck (Figure 18(a)) with a special wire
from Sensor Unlimited [22], a delay generator rack (Figure 18(b)). These two images were taken
EG&G model 9650A and an electro-optical mod- with a video camera Sony CCD-TRV101E. The
ulator EOM from Conoptics. truck painted with olive green drab is standing in
The InGaAs camera has a quantum efficiency of a distance of 740m to the measurement house. It
68% at a wavelength of 1.5/im and a detectiv- is nearly a Lambertian target with a reflectivity
ity D* of 1 0 13cmv'. * The camera works at a p = 0.1. The wire rack consists of a wooden frame
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including following crossbars from top to buttom: choosen MCP gain on the image noise. A high
gain provides a very strong excess noise as it can

type diameter [mm] be seen in Figure 20(a). This is a corresponding
copper wire 3.3 single image to the mean value image (20 single
cable 6 images) of Figure 19(b). The system works here
cable 13 with maximum MCP gain of 18000.
aluminum pipe 20
aluminum pipe 30 4.5 Example of Object Recognition
aluminum pipe 60 with a Laser Radar Range Gated

Figure 19 shows a sequence of range gated images. Sequence
Every image in the sequence is a mean value im- 4.5.1 Introduction
age of 20 single range gated images with the same
delay and duration of the gate. The whole se- In the example it will be shown that object recog-
quence consists of 8 range slices corresponding to nition in a laser radar image sequence has a lot
the 8 range values (grey scale bar in the range of advantages in comparison to normal grey value
image Figure 20(b)). Because the images were images. That means that in a lot of cases an auto-
taken with 25Hz it took 6.4s to get the sequence matic object detection, the classification of these
and the resulting range image Figure 20(b). objects and the assignment to different classes is
Only 6 of the whole 8 images presented in Figure only possible while using range gating.
19 because the range slices starting at 0.58km and The nature of range gating is that only a spe-
1.47km range do not contain information. The cial object is illuminated and the background and
duration of the gate was 993ns for every image foreground are both black. For digital image pro-
slice that means with (30) a range depth AR of cessing that means that the first step of an ob-
150m. Table 3 displays the corresponding system ject recognition algorithm, object segmentation,
parameters for the image sequence of Figure 19. can be done by simple thresholding. While look-
There are some discernible peculiarities in the im- ing at the image sequence in Figure 19 it can be
age sequence. In the first image of the sequence imagined that the normal grey value image of this
the plants are blurred, because the focus is set to scene does not allow to detect the truck because
the truck in the range of 740m. Consequently the the grey values of the bush in the foreground and
visible shadow of the plants in the second image the forest in the background include nearly the
is sharp. The solution of this problem is the in- same scope.
tegration of a focus control or image processing The next big advantage is the knowledge of the
like an image restauration with a Wiener filter. distance of a range slice. With the distance and
The next peculiarity can be seen in Figure 19(e). the main parameter of the objective and the cam-
The image has a lot of overlight in the left top side era it is no problem to calculate the real size of an
which causes scattered light in the objective. The object. The same target in different ranges has
reason for this is a retroreflector in the middle of always a different size in pixel in the image. In
the target. But the existence of such a hot spot the range gated images the correct size in meter
illustrates the effective of range gating. The range of the target can be calculated and therefore for
slice of the truck is not influenced by the hot spot. an object recognition algorithm the object size is
Consequently, the truck can be detected clearly, range independent.
The different range slices are combined to a range In the next subsection we want to discuss the nec-
image. The range image Figure 20(b) is calcu- essary steps of an object recognition algorithm for
lated with a simple threshold of 20. Every grey the automatic detection of the truck in the range
value is corresponding to a range as it can be gating sequence of section 4.4 in detail. It can be
seen in the grey scale bar in the right side of the imagined that the same algorithm is also capa-
image. The grey value of 0 (black) at a location ble to distinguish different types of trucks, tanks,
(pixel (x,y)) is used if there is no grey value in the helicopters or different weapon systems. The ob-
sequence higher than the threshold. The choice of ject features we use here are only a small choice of
a threshold depends on the maximum noise value the possible features. Especially for the classifi-
after building the mean value image. cation of geometric similar objects the signature
For the computer controllable system it is impor- moments could be a promissing choice. In the
tant to consider the enormous influence of the example we do not use the object signature.
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rain snow fog haze
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Figure 16: Principle of laser range gating

laser type frequency-doubled Nd-YAG Nd-YAG Nd-YAG OPO
wavelength [nm] 532 1064 1574

pulsewidth At[ns] 9 9 9
pulse frequency [Hz] 30 30 30
pulses N in 100s 3000 3000 3000

CLASS 1 LIMITS
AELsinglepulse[J] 2 * 10- 7  2 * 10-6 8 * 10-3

AELmutipuise[J] 2.7 * 10-8 2.7 * 10- 7  1.1 * 10-3

laser peak power [W] < 3 < 30 < 120000

Table 2: Comparison of the class 1 AEL (Accessible Emission Limit) for different Nd-YAG lasers
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Figure 17: Design of an eye-safe laser radar

image number range [km] gate delay Ins] gate duration Ins] pulse energy [mJ] maximum
(Figure 19) grey value

(a) 0.43 2721 993 90 70
(b) 0.73 4705 993 90 224
(c) 0.88 5697 993 90 47
(d) 1.02 6689 993 90 52
(e) 1.17 7681 993 90 255
(f) 1.32 8673 993 90 97

Table 3: System parameters for the image sequence of Figure 19
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(a) (b)

Figure 18: Video image of the truck target (a) and the special wire rack (b)

(a) (b)()

(d) (e) (f)

Figure 19: Sequence of range gated images at different ranges between 0.43km (a) to 1.32km (f)

I i 0,43 km

S.........0,58 km

0,88 km

1,02 km

liiii1,17 km

i 1,32 km

1,47 km

(a) (b)

Figure 20: (a) Single range gated image (false color), high gain of 18000 and therefore a lot of excess
noise; (b) Range image calculated with a threshold of 20
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4.5.2 Preprocessing and Segmentation to overlap. Therefore the exposure time At,.p is
calculated to

Before executing the segmentation step it is al-
ways recommendable to concentrate on prepro-
cessing. For laser radar image sequences there are 4 * ATR
a lot of different possiblities to enforce the qual- c
ity of the single images of the 'sequence. Laser and the exposure delay step Atd~l has to be fixed
radar systems which are working with a MCP of- to
ten generate a lot of excess noise as it can be seen
in Figure 20. The excess noise depends on the
MCP gain which depends mainly on the weather, Atdd * 2, ATR Atpuls (33)
the choosen range and the maximal possible laser c
output power. The system parameters imply the The combination of the laser radar system control
necessity of a special gain and therefore we have and the digital image processing of the laser radartodthliveta withproestheof hnoise.rda
to live with the noise. image sequences provides a very high effficiency
In the literature a lot of different noise removal of the object recognition and classification.

filters are mentioned, which concentrate on one
single image. In our case there is a much easier
and more effective way. Because the process of
image capturing can be controlled, we can take The result of the segmentation is a binary image.
more images of the same range slice. Now there The next step is the filtering of the generated bi-
are three ways to combine the images: nary image to delete single pixels. The single pix-

els, i.e. pixels with the value 1 with no other pixel
* geometric averaging, in the direct neighbourhood including this value,

are just set to 0 and so the number of objects
* median averaging or stays small. The next filter is a closing filter to
* robust averaging, merge objects which are in the direct neighbour-

hood. It is probable that these different objects

In the example we use the geometric averaging of are in fact the same, because the overlapping from

20 single images for evety range slice. The robust objects in different ranges is minimal because of
averaging would be more effective if the aim is the range gating.toeraminimize lhe numbrer ofetimges if there are i Different objects in range gating sequences areoutliers in the rows or in a whole image. most often connected only through the back-Nouterml the rwse tion of wobject ismagvery ground, if the range slice depth is too large. InN orm ally the segm entation of objects is a very t e e a p e t e r n e d p h A s 1 0 n
simple step in range gating sequences, namely a th e e amp e th r e depth is p 5lm and
simple thresholding. The threshold only depends this is very large, so we get this problem. The
on the system noise and the noise removal filter or separaion of the obje f th eckod is
the image averaging process. Since the treshold only possible if the grey values of all detected ob-
is known, every pixel with a grey value above the jects are analysed. But in the most cases it is notthreshold is an object pixel. The threshold value necessary to do this.
in the example is fixed to 22. The last step to separate the object is the genera-The correct choice of a range slice depth AR (30) tion of an object image, which has different num-
in combination with the depth of the target ATR bers for every corresponding area. Two objectsin cmbiatio wih te deth f te tagetATR are distinguished when no pixel of one object is
to detect is important for minimizing foreground are distingisheduwhen o pixel of o b e
and background pixels which are in connection ithe directn
with the pixels of the target. If the possible dis- The object.
tance of the target is unknown and the range slice the object ima thes i
depth is nearly the same as the target depth, the
target could be splitted in two different image
slices. To be sure that one image slice of the 4.5.4 Object Features

range gated sequence includes the whole target, The choosen object features for the example are
the range slice depth AR has to be two times
the target depth ATR and the range slices have 1. Area A[m 2],
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2. Major Axis Length maA [in], often coupled with the CCD chip through a fiber

3. Minor Axis Length miA[m], taper.
At this moment it is possible to integrate an-

4. Eccentricity (<1), other image processing step to reduce the num-ber of objects. Before the calculation of the 10

5. Major Axis Orientation, object features for every object in the sequence,
an elimination of small objects with a pixel area

6. Solidity (<1), Apix < Amin, with the threshold area Amin, is

7. Mean of the object grey values, useful to decrease the computation time and in-
crease the uniformity of the classes. In our exam-

8. Standard Deviation of the object grey values, ple the threshold is fixed to Amin = 100.

9. Skewness of the object grey values, 4.5.5 Classes and Classification

10. Kurtosis of the object grey values The choice of the classes depends on the problem

The features are separable in three groups: to solve. For the example we define 4 classes:

* class 1: hotspot,
e feature 1 - 3: special laser radar form fea-
tures, * class 2: truck,

* feature 4 - 6: normal form features and * class 3: background,
* class 4: bush (foreground).

* feature 7 - 10: statistic moments of the grey

values of each object. Working with laser radar includes always the
problem of hotspots, where the laser light has

The calculation of the first three features presup- a strong reflection. In the laser radar sequence
pose knowledge of the laser radar system design. here, it is a retroreflector, however it also can be

The real size of an object pixel a windscreen or a window of a house.
The classes 3 and 4 are choosen to show the prob-
lem of an object classification. The similarity of

Sopix = f * R, (34) these two classes are high and so it can be ex-
f pected that there will be errors in the classifica-

with the physical width of the camera pixel dpij, tion.

the focal length f and the object range R, can be The method of classification used here is a

used to calculate weighted distance classificator, because the train-
ing set, that means the number of observations for
every class, is to small for a statistical classifica-

A = Apix * sopix, (35) tor. The training set is used to calculate for every

maA = maApi* Sopix, (36) class i, i = 1...g of the given c classes, the mean

miA = miApi * sopix. (37) matrix Xik and the standard deviation Matrix alk
for every feature k of the given ff features.

Apix, miApix, maApix are the corresponding pixel The object feature matrix Yjk for the objects j

values to the special laser radar form features includes all object features of the o objects of the

A, miA, maA. For a gating viewing camera in- whole laser radar image sequence.

cluding a MCP with a diameter dMCP of 18mm The weighted distances

and a detector field of 768x572 pixel, the physical If If
width of the camera pixel dij ik * Z 1-(Xik - Yk) 2  (39)

k=1 k=- 1ik

dMcP can be used to find the class m of an object j
dpix 7 5(38) while determining the minimum distancev/7682 + 5722

can be calculated to 18.81Im. It is supposed that dini = min(d 2j) V i= I...c. (40)

the diameter of the MCP is corresponding to the The object j is consequently classified to class

diagonal of the CCD chili because the MCP is dminj = m, m E 1...c.
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Figure 21: Object 14 to 18 of the laser radar sequence in detail
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Figure 22: Image features of all 20 objects of the laser radar sequence
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object image class image

lkiOO.tif 34

100 2.5 100

_ ~202• 0 200

1.5 2
30O0 300

1
40. 400

500 500
200 400 600 200 400 600
size x [Pixel] size x [Pixel]

Iki01 .tif
•'••"::10, 0 1O00

. 20 0 200

>'300 300

400 400

500 500

200 400 600 200 400 600
size x [Pixel] size x [Pixel]

Iki02.tif Y a

100 100vT10U0 4.5 3

"J5 13.5 400

500I 500

30
200 400 600 200 400 600
size x [Pixel] size x [Pixel]

IkiO3.tif 8 4

100 7.5 100
3

200 200FL

306.5 302

400 4001
5.5

500 500
200 400 600 200 400 600
size x [Pixel] size x [Pixel]

Figure 23: Corresponding orginal, object and class images of the laser radar sequence, part I
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object image class image
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Figure 24: Corresponding orginal, object and class images of the laser radar sequence, part II
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4.5.6 Results 5 Real- Time Considerations

The rows in Figure 21 show 5 objects out of the 5.1 List of symbols

whole laser radar image sequence, which should Symbol Description
demonstrate the digital image processing step of C# number of stored constants
the object segmentation. The first column in Fig- f ideal classificator
ure 21 shows the binary images of object 14...18 of FADD# number of additions
the laser radar image lki06.tif after threshold- FDIV# number of divisions
ing and filtering with the closing filter. The single FMUL# number of multiplications
binary images are printed in quadratic form, but k number of groups
the real pixel size can be found at the axis. mnd number of discriminant functions

The second column in Figure 21 shows the grey mi number of neurons in hidden layer

values of the object areas with the range of the mr number of rule in fuzzy model

grey values fixed in the bar on the left side of the n dimension of input vectors

image and the third column only the grey values X inputvector

of the objects. Pixels which do not belong to the Y outputvector

object in column three are set to zero. These

images are in their size real parts of the orginal 5.2 Basic Considerations

laser radar image lkiO6.tif. In this section the usefullness of pattern recogni-

After the segmentation and the binary image pro- tion methods in real time applications will be dis-

cessing 20 objects in the whole sequence are sep- cussed. The methods discussed in "Approaches

arated. The 10 diagrams of Figure 22 show the to pattern recognitions" section 4. as they are

10 object features for all 20 objects. The object 1. discriminant analysis
number at the x axis is corresponding to the num-
ber of the objects 14...18 of Figure 21. In the most 2. feedforward neural network (one hidden
diagrams of Figure 22 there are 2 peaks for ob- layer)
ject 4 and object 13. These objects are suspicious 3. first order Sugeno fuzzy model
and it should be possible to classify them easily.
In fact object 4 is the truck and object 13 is the will be examined. Based on the section 4 of
hotspot. "Approaches to pattern recognitions" a black box

All images of the sequence, all objects and the function f is defined as

whole classification result can be seen in Figure 23
and Figure 24. The first column shows the range
gated images of the whole sequence. Each of the Function f is the ideal classification operator

orginal images is contrast enforced to see every which separates given input vectors x into groups
detail. That means that also the noise seems to be labeled y. It will be assumed that the applica-
stronger if the grey value region of the individual tions of the three discussed pattern recognition
image is small. The second and third column of methods approximate function f for the same
Figure 23 and Figure 24 show the object and the process. The comparison of the three pattern
class image to each orginal image in the same recognition methods will be done regarding the
row. The bar next to the object images includes following two quantities:
the object number and the bar next to the class
images the class of each object. The lowest values * number of floating point operations
in the bars mark the value for the background. * number of stored constants.

The classification result is relatively good, there The number of floating point operations is a cri-
are only 2 faults. The bushes in the first image terion to compare the run time of numerical algo-
of the sequence are difficult to classify, so that rithms independently of computation platforms.
objects 1 and 3, which are in reality bushes are The comparison will be splitted in floating point
marked as background. additions (FADD), floating point multiplications

The classification of the truck and the hotspot is (FMUL), and additionally floating point divi-
no problem. sions (FDIV), because the run time of an FADD,
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FMUL and FDIV is depending on the used hard- method FMUL# FADD# C#
ware processing system for instance ([24],[25]). A discriminant 22 20 22
sufficiently good approximation is counting the analysis
FADD and FMUL operations, all other floating feedforward 77 79 91
point operations will be neglected. In addition neural network
to the number of floating point operations the first order Sugeno 195 164 210
memory usage (number C of stored constants) fuzzy model (+20)
is an indicator of necessary number of memory
accesses. Be k the number of groups, n the di-
mension of the input vector x, md the number of Compared to the first order Sugeno fuzzy model
discriminant functions, mi the number of neurons the discriminant analysis needs only about ten
in the hidden layer of a feedforward network, mr percent and the feedforward neural network less
the number of used rules in a first order Sugeno than fifty percent of run time. This result is con-
fuzzy model. Then the number of FADD, FMUL, vincing so that we prefer the discriminant analy-
FDIV and stored constants C for the three differ- sis to perform single classifications.
ent pattern recognitions method are given by:

5.3 Practical Considerations

method FMUL# For practical considerations the computation
time of different classification algorithms will

discriminant md(k + n) be compared. The reference computation
analysis system was a Pentium Pro 200 MHz Win-

feedforward mi(n + k) dowsNT PC workstation with 256 MB RAM.
neural network The classification algorithms were built using

first order Sugeno mr(n + kn + k) the MATLABTM computation system, and the
fuzzy model (+ mrk FDIV#) MATLABTMCompiler version 5.2.

Table 4 shows the computation time of 20 classi-
fications using the example of section 4 in "Ap-

method FADD# proaches to pattern recognitions".

discriminant md(k + n - 1)
analysis method run time (ms)

feedforward mi(n - 1) + n discriminant 0.8
neural network +k(mi - 1) + min analysis

first order Sugeno krnr(n - 1) + kn feedforward 2.5
fuzzy model +(Mr - 1)k neural network

first order Sugeno 3.9
fuzzy model

method C#
Table 4: Run time

discriminant md(k + n)
analysis

feedforward min + n + kmi + mi Compared to the first order Sugeno fuzzy model
neural network the discriminant analysis needs only twenty per-

first order Sugeno 2 mrn + kmrn cent and the feedforward neural network less than

fuzzy model sixty six percent of run time.

Additional a PCI board with four neurochips was
used to perform the classification task. This PCI

In the case of examples in "Approaches to pattern board achives a peak performance of 800 MCPS
recognitions" section 4 the constants were defined (mega connections per second). Running feedfor-
asn=7,k = 4 ,od = 2, mi = 7, and mr =5. The ward neural network based classifications on the
table below shows results of FMUL#,FADD#, neurochip hardware gives a computation time of
and C# for a single classification. 0.28ms per 20 classifications.
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6 Conclusions [9] DeBoor. A Practical Guide to Splines. Carl
Springer, 1978.

Practical applications of pattern recognition are
possible with very different approaches and the [10] H. L. Richard, "Low cost, aircraft collision-
use of numerous varying feature variables. How- avoidance system," in Applied Laser Radar
ever, one has to pay attention to the fact that Technology, G. Kamerman and W. E. Ke-
the hardware of the pattern recognition system icher, eds., Proc. SPIE 1936, pp. 31-43,
is designed to meet the needs of the classification 1993.
approaches.
Simple statistical descriptors and more or less [11] K. Dinndorf and D. Hayden, "Compact
complicated statistical classifiers should be cho- multichannel receiver using InGaAs APDs
sen for first experiments. Often it turns out for single-pulse eye-safe laser radar ima -
that they provide as well superior overall per- agery," in Laser Radar Technology and Ap-
formance with respect to correctness of classifi- plications II, G. W. Kamerman, ed., Proc.
cation as minimal computational power require- SPIE 3065, pp. 22-29, 1997.
ments (time, storage capacity). [12] T. Steiner, "Compact, 625-channel, scan-

nerless imaging laser radar receiver," in
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