
$$>pw&£ for ptt'Jbli-ß release? 

Reproduced From 
Best Available Copy 

Page 1 

FINAL REPORT 
ONR    GRANT#    N00014-96-1-0584 

GRANT TITLE: Space-Time Adaptive Processing of Electromagnetic Waves: A First- 
Principles Approach Based on Extended Physical Wavelets 

PROJECT PERIOD: April 10,1996 to April 9,1998, Extended to September 30,1998 

PI   NAME:    Gerald Kaiser 

ADDRESS    (current):  The Virginia Center for signals and Waves,   1921  Kings Road, 
Glen Allen, VA 23060 

PHONE  (current numbers):     Home (804) 262-5505, Office (804) 262-3777 

FAX: (804) 262-3511 

EMAIL   ADDRESS:   kaiser@wavelets.com 

OBJECTIVES: 
1. Formulate   mathematically   a  class   of electromagnetic   wavelets,   defined   in 
spacetime,   possessing   good   directivity and capable of being focused. 

2. Apply     such  wavelets  to  radar imaging  and  target  recognition. 

NEW  FINDINGS: 
At the end of my book A  Friendly  Guide  to  Wavelets,  I derived causal acoustic and 
electromagnetic   wavelets   which   are  exact   solutions   of  the  wave  equation   or 
Maxwell's   equations   with   compact   sources   consisting  formally   of points   located   in 
complex  spacetime.   However,  due  to  time  constraints,  only  the  case  of nonzero 
imaginary  time  was   there  investigated,   and  it  was  found  that  the  imaginary  time 
represents   a   scale  parameter  giving   the  pulse   duration.   Since  then   I  discovered   that 
for  nonzero   imaginary   space   coordinates,  these  wavelets  are  closely  related to  the 
complex-source   pulsed   beams     (CSPB)  studied extensively  in  the engineering 
literature by E. Heyman, L.  Felsen and others. These pulsed beams are emitted by a 
real  disk  whose  radius  and  orientation  are  specified  by  the  imaginary  space  vector 
giving  the  source   location.   Thus   what  appears   mathematically  as   a point  source 
located in complex  spacetime is  reinterpreted as  an  extended   source   in real 
spacetime.   The  advantage  is   that  the  formal  description   in   terms   of complex-point 
source   is   much   simpler   and   economical,   both   conceptually   and   computationally. 

I have proposed  using  such  CSPB   to  formulate  a  very  general radar scheme  allowing 
an   arbitrary   number   of   transmitting   antennas,   an   arbitrary   number   of   receiving 
antennas,   and   an   arbitrary   number  of  targets,   with   each   platform   and   target   allowed 
an   arbitrary   motion   including   rotations   and   accelerations.   (Of  course   the   more 
larger   the   number   of  platforms   and   targets,   the   more   impractical   the   resulting 
computations;   but   in   principle,   the  model  is  physically correct for any number of 
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platforms  and  targets.)  This  idea is  explained in  my paper Short-pulse   radar  via 
electromagnetic    wavelets, -published  in  the  Proceedings   of the  Third  Ultrawideband 
Short-Pulse  Electromagnetics   Conference,   Plenum  Press,   1997   (attached).   The  basic ' 
idea  is  to  generalize  the  "ambiguity  functional"  formalism  for  radar  I  first proposed 
in the February  1996 issue of IEEE Antennas  and  Propagation   Magazine    from point 
transmitters,   point  receivers  and point targets to extended   transmitters,   receivers 
and  targets  using  CSPB   combined  with  the  analytic-signal    transform as defined in 
Section 9.3 of my book. 

This   formulation   is   potentially   useful   because  it  is   intuitively   clear   and   physically 
correct   (within   the   obvious   limitations   of the  chosen   model,   e.g.   dispersionless 
propagation   through   a   homogeneous   medium).   The   conceptual   simlicity   results   from 
the  fact that the  theory is  based directly  in  space-time,  hence  lends  itself to  intuitive 
interpretation.   The   usual   time-frequency   (narrowband)   and   time-scale   (wideband) 
formalisms   make   unnecessary   assumptions   and   are,   moreover,   less   clear  because 
they  depend  on  a  "dictionary"   related  to  these  assumptions,  for example  that  the 
Doppler  effect  translates   to   a  frequency   shift   (narrowband)   or  a   scaling   factor 
(wideband).  In such a restricted context, it is not obvious how to deal  with new 
situations   not   originally   built   into   the   model,   such   as   accelerations,   rotations, 
multistatic   configurations,   multiple   reflections,   etc.     Such   situations   appear  in   the   old 
models  as  distortions  which  can  be  corrected  (if at all)  only  by  using  computationally 
intensive    schemes. 

In May  1998 I was invited to teach a 4-day course at the European Space Agency in 
Noordwijk,  Holland  on  the  applications  of pulsed-beam  wavelets  ro  radar.  In 
preparing   the   lecture   notes,   I   made   further  progress   in   understanding   these 
wavelets,   in   particular  deriving  their  far  fields   and  time-domain   radiation   patterns. 
The  usual  definition  of radiation  patterns  is  geared  to  narrowband  fields,  hence 
cannot  be  applied  in  this   case.   When  a  proper  time-domain  definition  is'formulated, 
it is found that the pulsed-beam fields have no   sidelobes and can be focused and 
collimated  to  an   arbitrarily  high  degree,   in  principle.   (The  ESA  notes   are  available 
on    request.) 

I  have  also  found  a  method  for  filtering  signals  in  scale  rather  than  frequency.   This 
is described in my paper Wavelet filtering  in  the  scale  domain  (attached).   Thus 
operations   usually   performed   in   the   frequency   domain   (filters,   convolutions,   etc.) 
can also  be performed in the  wavelet domain:  Take the wavelet transform  of the 
signal,   multiply   it  by   a  scale-dependent   "transfer  function,"   then   apply   the   inverse 
wavelet   transform.   A   one-to-one   correspondence   was   established   between   certain 
"admissible"   convolution   operators   and   such   scale   transfer   functions,   based   on 
Mellin   convolutions   and   Mellin   transforms. 

One  application  of scale  filtering  would be  to  Doppler processing  of wideband  signals, 
where   the   Doppler   effect   is   more   properly   represented   by   scaling   rather   than 
modulation. 
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RELATED ONGOING WORK 

As a result of the progress made in the past two years, I am now engaged in a project 
investigating  how   pulsed-beam   wavelets   can   be   realized  physically   in   hardware.   This 
work is  being done jointly  with Ehud Heyman  (one of the originators  of CSPB)  under 
contract  with  AFOSR.  We  are  investigating the precise  nature  of a real  source 
distribution  in  space  (supported  on  the  source  disk)  which  will  produce  the  same 
effect  as  the  (unattainable)   single  complex   source  point.   We  have  also   computed  the 
4D  (space-time)  Fourier transform  of the beams,  which  is  needed  to  find  the  source 
power and total energy as  well  as  simplify many of the computations.  This  work is  in 
progress. 

PUBLICATIONS SUPPORTED BY THE GRANT 

• G.  Kaiser,  Wavelet  analysis   as   a   wideband  generalization   of time-frequency 
analysis,   Invited paper,   136th Meeting of the Acoustical Society of America, JAS A Vol 
104 #3, September 1998. 

• G. Kaiser, Electromagnetic   pulsed-beam   wavelets  for   radar,  Invited paper, 28th 
European   Microwave  Conference,   Amsterdam,   October  5-9,   Miller  Freeman,   1998. 

• G. Kaiser, The fast Haar transform:  Gateway to  wavelets,  IEEE Potentials Magazine 
April/May,   1998. 

• G. Kaiser, L. Rossi and D. Washburn, Recovery  of Kolmogorov statistics  in  thermal 
mixing  in  the  troposphere:   The  hazards  of real data,   in  Airborne  Laser Advanced 
Technology,  SPIE  Conference Proceedings #3381,  Orlando,  FL,  April,   1998. 

• G. Kaiser, Short-pulse   radar   via   electromagnetic   wavelets,  in Proceedings of the 
Third   Ultrawide   Band,   Short-Pulse   Electromagnetics   Conference,   Plenum   Press,   1997. 

• G. Kaiser, Scale filtering  in   the   wavelet domain,  in Proceedings  of the 30th Asilomar 
Conference on Signals,  Systems,  and  Computers,  Pacific  Grove,  CA,  November,   1996. 

• G. Kaiser, Filtering  in  scale,  in Wavelet Applications in Signal and Image 
Processing,  IEEE Conference Proceedings #2825,  Denver,  CO, August,   1996. 

• G. Kaiser, Wavelet filtering   in  the  scale  domain,   invited paper,  in Wavelet 
Applications  III,  SPIE Conference Proceedings  #2762,  Orlando,  FL,  April,   1996. 

• Wavelet  filtering  with  the  Mellin  transform, Applied   Mathematics   Letters 9 #5   69- 
74, 1996. 

• E.  Heyman and G.  Kaiser, Real   source   realization   of complex-source  pulsed  beams, in 
preparation. 
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SHORT   COURSES   GIVEN   BY   INVITATION   DURING   4/10/96-9/30/98 

• 5/16/96:  Applications   of Electromagnetic  Wavelets   to  Radar  and  Sonar  (3  hours) 
IEEE   1996 National Radar Conference, Ann Arbor,  MI. 

• 6/4-6/96:   Mathematics   and  Physics   of Wavelets   (12  hours),   Applied  Technology 
Institute,  College Park,  MD. 

• 7/21/96:  Electromagnetic  Wavelets  in Radar and  Sonar (6  hours),  IEEE-AP-S 
International  Symposium  and  URSI  Radio  Science  Meeting,  Baltimore,  MD. 

• 8/4/96:   Wavelet  Transforms:   Theory   and  Applications     (4   hours),   SPIE  International 
Symposium   on   Optical   Science,   Engineering,   and   Instrumentation,   Denver,   CO 

• 12/17-19/96:  Mathematics  and     Physics  of Wavelets  (12 hours),  Applied Technology 
Institute,   Brookline,   MA. 

• 2/10/97:   Wavelet  Fundamentals   (6  hours),     Internat.   Soc.   for  Optical  Engineering 
(SPIE) Photonics West, San Jose, CA 

• 3/21/97:     Radar via Physical Wavelets  (6  hours),  Applied  Computational 
Electromagnetics   Society   (ACES),   Monterey,  CA 

• 4/21/97:     Remote Sensing via Physical Wavelets  (6 hours),     Internat.  Soc.  for Optical 
Engineering   (SPIE)   AeroSense,   Orlando,   FL 

• 7/30/97:     Introduction  to  Radar via Physical Wavelets  (6  hours),  Internat.   Soc.  for 
Optical Engineering  (SPIE)  Annual  Meeting,  San  Diego,  CA 

• 12/16-18/97:  Mathematics  and    Physics  of Wavelets  (12 hours),  Applied Technology 
Institute,   Brookline,   MA. 

• 5/11-14/98:   A  Detailed  Introduction  to  Mathematical  and  Physical  Wavelets 
(18  hours),  ESTEC/ESA  (European  Space Agency),  Noordwijk,  The  Netherlands. 

SEMINARS   AND   TALKS    (Recent   samples): 

• Nov  8,   1996:  Seminar on  scale filtering  at Stanford University Mathematics  Dept. 

• Jan 5,  1997:    Talk on scale filtering in the wavelet domain at AFOSR Electromagnetics 
workshop in San Antonio,  TX. 

• Jan 31,   1997:     Seminar on wavelet  scale filtering at Tufts  University Mathematics 
Dept. 

• Feb  18,  1997:     Seminar on wavelet analysis  of atmospheric intermittency at UMass 
Amherst ECE Dept. 

• Nov 20,  1997:  Talk given at Schlumberger on using Complex-Source pulsed beams in 
radar. 
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CONSULTATIVE AND ADVISORY FUNCTIONS TO LABS    AND AGENCIES 
•Dec   9,   1996:   Seminar  given   on   wavelet  analysis   of atmospheric   intermittency   at 
NOAA.  I was invited by Bob Weber, who is heading a project to develop clear-air radar 
for the  Air force.  The  detection  and  analysis  of intermittent  events   (such  as   the 
passing of a flock of birds)  is  an  important issue. 

• Dec   11,   1996:     Talk given on  wavelet analysis of atmospheric  intermittency at the 
Atmospheric   Modeling   and   Laser  Propagation   Workshop,   Phillips   Laboratory 
(PL/LI),  Kirtland AFB.  This  work later developed into a joint project with Lou Rossi 
and   Don   Washburn. 

• April  10,   1997:     Seminar on wavelet analysis  of atmospheric intermittency at MIT 
Lincoln   Laboratory   (invited   by   the  IEEE   Geophysics   Remote   Sensing   Society). 



SHORT-PULSE RADAR VIA ELECTROMAGNETIC WAVELETS * 

Proceedings of the Third Ultra-Wideband, Short-Pulse Electromagnetics Conference 
Albuquerque, NM, May 27-31, 1996 

To be published by Plenum Press 

Gerald Kaiser 

Department of Mathematical Sciences 
University of Massachusetts Lowell 
Lowell, MA 01854, USA 
Email: gkaiser@cs.uml.edu 

INTRODUCTION 

The new theory of physical wavelets makes it possible to perform radar and sonar 
analysis directly in the space-time domain, based on fundamental principles underlying 
the emission, reflection, and reception of electromagnetic and acoustic waves1'2. Being 
independent of the Fourier transform and even of the usual (affine) wavelet transform, 
this formalism is therefore equally well suited for ultrawideband or short-pulse radar as 
for narrowband or continuous-wave radar. However, Fourier analysis does have a natural 
place in this theory and can be used easily when spectral questions are of interest. 

A transmitting antenna following an arbitrary (possibly accelerating or nonlinear) 
space-time trajectory a(t) emits a physical (acoustic or electromagnetic) wavelet which is 
propagated in space by the appropriate Green function. This defines an emission operator 
Ea which, acting on any time signal ip(t), gives the emitted space-time wave (Eatp)^^). 
The reception operator RQ is dual to Ea , measuring any incident space-time wave F(r, t) 
along the given antenna trajectory a(t) to produce the received time signal (RaF)(t). 
Reflection is modeled as reception followed by re-emission, i.e., by the operator EaRa 

transforming any incident space-time wave to the reflected space-time wave. Let the re- 
ceiving antenna follow another arbitrary space-time trajectory j(t) (possibly different from 
the trajectory a(t) of the transmitter), let the target follow a third arbitrary space-time 
trajectory ßT(t), and let the transmitted and received signals be tjj(t) and x(£), respectively. 
The objective is to estimate the target trajectory ßT(t) from a knowledge of a(t), 7(2), tp(t) 
and x(t)- This is achieved by maximizing the modulus of the the normalized ambiguity- 
functional XN(P)I obtained by matching the actual return x(t) with the computed return 
due to a trial trajectory ß(t). When the radar is monostatic and the target is assumed to 
move uniformly in the radial direction, then XN(P) reduces to the usual wideband ambi- 
guity function, which is just the ordinary time-scale (wavelet) transform of x(t) with i(}(t) 
as the basic wavelet. In the narrowband approximation, it reduces further to the usual 
time-frequency ambiguity function, which is a windowed Fourier transform of the video 
signal of the return. This shows that our "physical wavelet analysis" is a generalization 
of the usual ("mathematical") wavelet analysis, which is in turn a generalization of time- 
frequency analysis.  In particular, our analysis applies equally well to bistatic wideband 

Supported by AFOSR grant F4960-95-1-0062 and ONR grant N00014-96-1-0584. 



radar, where the Doppler effect can no longer be represented simply by scaling and hence 
the usual affine wavelet analysis breaks down. 

In Reference 2, the transmitting and receiving antennas and the target were all as- 
sumed to be points, so that the trajectories a(t), ß(t), and j(t) fully describe their motions. 
Consequenctly, the emitted and reflected waves are omnidirectional and hence are not very 
useful in practice. In this paper we generalize the above model to include extended an- 
tennas and targets, follwing an idea introduced by Heyman and Felsen3. The associated 
radar beams are much more useful since they have a measure of directivity. 

EXTENDED PHYSICAL WAVELETS AND 
AMBIGUITY FUNCTIONALS 

Suppose we are given an antenna located at the space point x, emitting the response 
to an impulse at time t. Ignoring polarization for simplicity, the resulting wave at the 
observation point x' at time t' can be represented by a solution of the scalar wave equation, 
which we write as 

K(x',t'\x,t), 

with a source distribution appropriate to the antenna. If the antenna is very small (essen- 
tially a point) and omnidirectional, then K(x', t' | x, t) is well approximated by the retarded 
Green function 

47T|X/ — X| 

where c is the speed of light. Following Heyman and Felsen3, a simple model can be 
formulated for an extended antenna by allowing complex antenna space-time coordinates 
x —> z = x + iy and t —► u = t + is and taking K(x', t' | z, u) to be an analytic extension 
of the above retarded Green function.* Heyman and Felsen showed that for |y| < cs, 
K(x',t'\z,u) can be interpreted as a pulsed beam field emitted by a circular disk of 
radius |y| in the direction of y. Thus y is a convenient "handle" by which the radius and 
orientation of the antenna can be controlled, without having to construct a messy model 
for the antenna involving a continuous distribution of point sources. More complicated 
extended antennas and arrays can be modeled by a distribution (continuous or discrete) 
of such complex source points. 

To keep the notation uncluttered, we combine the space and time coordinates into a 
single symbol: 

x' = (-x',t')eH4,        z = {z,u)=x + iyeCA, 

where 
x = (x,t)   and   y = (y,s). 

* Note that our convention differs from that of Reference 3 in that our positive- 
frequency time-harmonic waves vary as eiuJt rather than e~lut. For this reason, the analytic 
continuation of the retarded Green function (using the analytic signal of the delta func- 
tion) is to the upper-half time plane (s > 0) rather than the lower-half time plane. This is 
consistent with the convention used in Reference 1. 



The condition |y| < cs means that the imaginary space-time four-vector y belongs to the 
future cone, so that z actually belongs to the complex future tube1'4 

zeT+== {x + iye C4 :xeR4 and y = (y, s) with |y| < cs}, 

which is a four-dimensional generalization of the upper-half complex time plane. 
Suppose now that our antenna executes an arbitrary motion, including possible rota- 

tions and accelerations. Using the complex source coordinates, this can be parameterized 
as 

z = a(t) = x(t) + iy(t),   where x(t) = (x(t),t) € R4 and y(t) = (y(t), s). (1) 

It is reasonable (but mathematically unnecessary) to assume that the radius of the antenna 
remains constant during the motion, so that |y(t)| = |y(0)| = R < cs, although the 
direction of y(t) may vary to allow tracking, scanning, etc. While executing this motion, 
the antenna is fed an input time signal ip(t). Then the output beam is 

/oo 

dtK(x'\a(t))1>(t). 
•oo 

For reasons explained in Reference 2, we call \J>Q(z') the extended physical wavelet gener- 
ated by iß(t) along the antenna motion a(t). Given a(t), we define the emission operator 
Ea as the operator transforming the time signal ip(t) to the space-time wave tya(x'), i.e., 

/oo 

dtK(x'\a(t))ff,(t). (2) 
•oo 

Thus Ea takes a function of one variable (the input signal) to a function of four variables 
(the output beam). On the other hand, if the antenna is used as a receiver, it converts 
space-time waves into time signals. Again, assume that the complex antenna motion a(t) 
is given as in (1). Then the simplest model for the received signal due to an incident wave 
Fix') is 

(RaF)(t)=gaF(a(t)), (3) 

where ga is a "gain factor." Thus Ra simply measures the field along the complex tra- 
jectory a(t). More complicated receivers can be formulated which measure derivatives of 
F along ct(t). (In the full electromagnetic formalism, for example, Ra could measure the 
induced current rather than the field.) Since a(t) is complex, the "evaluation" of the field 
F(x') at x' = a(t) must be defined in (3). For this we use the analytic-signal transform of 
F, which extends F to complex space-time1'4: 

i     r°°   /IT 
F(x + iy) = —  /      : F(x + ry). 

Ttl J_00 T - i 

When y = (0, s) with s > 0, F(x+iy) reduces to the usual Gabor analytic signal F(x, t+is) 
corresponding to F(x, t), with x regarded as an external parameter; this function is analytic 
in the upper-half complex time plane. It is further shown in Reference 1 that if F(x') is any 
solution of the homogeneous wave equation (or Klein-Gordon equation4), then F(x + iy) 
is analytic in the future tube T+ (i.e., |y| < cs). The reception operator then evaluates the 
analytic-signal transform F(x + iy) in its region of analyticity. 



With emission and reception modeled by (2) and (3), we are almost ready to formulate 
a general radar problem. The only missing element is a model for reüecüon. In the spirit 
of regarding a scattered electromagnetic wave as being emitted by the current induced 
on the scatterer by the incident wave, we propose the following model: Suppose we are 
given an oriented circular "target" disk executing a motion described by a complex space- 
time trajectory a(t) = x(t) + iy{t) as in (1). Again, we interpret the imaginary position 
vector y(t) as defining the radius and orientation of the disk. (To say that the disk is 
"oriented" means that its two sides are not equivalent; for example, one side could be 
reflective while the other side is not. Then every unit vector y = y/|y| corresponds to a 
unique orientation of the disk. This is useful if, for example, we approximate a complicated 
target by patching together disks of various sizes and orientations, as in Section 10.2 of 
Reference 1; their non-reflecting sides should then be oriented towards the interior.) A 
given space-time wave F(x') will now be assumed to be reflected from the disk as follows: 
First the disk acts as a receiver, then as a transmitter. Thus the reflected wave is 

refl 

/oo 

dtK(x'\a(t))F(a(t)). 
-oo 

Note that in the present context, the original "gain factor" ga is re-interpreted as a re- 
flection coefficient. When a complicated target is patched together from circular targets 
of various radii and orientations, the reflection coefficient becomes a function defined over 
the target surface as desired. 

The ambiguity functional formalism developed in Reference 2 generalizes easily and 
naturally to the present setting of extended physical wavelets. Given the outgoing time 
signal V and the motions a, ß, and 7 of the transmitter, target, and receiver (all complex), 
our model for the time signal received at 7 is 

il>ß(t") = (RyEßRßEeiPW) 
rr (4) 

= fh9ß JJ dt' dt KW) I ß(t')) K(ß(t') I <*(*)) m- 

Of course, the received signal depends functionally on all three trajectories a, ß, 7, as is 
evident from the right-hand side of (4). But to simplify the notation, we have suppressed 
the dependence on the known trajectories a and 7 and displayed only the dependence on 
the target trajectory ß. To estimate the actual target trajectory ßT(t), we compute ipß(t) 
for a trial trajectory ß(t) and match the result with the actual return x(*) by taking the 
inner product of the two time signals. We denote the result by x(ß)> which we call the 
ambiguity functional of the return: 

/oo 

dt"x(t")MO 
(5) 

= Jfj dt" dt' dt X(t") KW) I /?(*')) K(ß(t') I a(t)) m- 

(We assume that tp{t) and x(*) are real; if they are complex, then x(*) should be replaced 
by its complex conjugate in (5).) Assuming that ijjß{t) and x(t) have finite energies \\if}p\\ 
and ||xl|2! tne Schwarz inequality implies that 

\x{ß)\ = \(x,1>ß)\<\\x\\\\1>ß\\ (6) 

\x(ß)\ = llxll HiMI<=>x(*) = c-iM0- 



Therefore, to estimate the true target trajectory ßT(t), we need to maximize the normalized 
ambiguity functional 

By (6), 

|X*G9)|<||X||    and    \Xs(0)\ = \\x\\ <=* x(t) = CM*)- 

Equivalently, we can minimize the error functional defined by 

8(8) = l-    lx(fll 

since the Schwarz inequality states that 

0<S(ß)<l    and   £{ß) = 0 <^> x(t) = Cipß(t). 

Thus \XN(P)\ and £(ß) attain their maximum and minimum values, respectively, only 
when the trial return is indistinguishable from the actual return. Of course, this does not 
guarantee that the trial trajectory ß(t) coincides with the actual target trajectory ßT(t), 
since the return does not, in general, uniquely determine the target trajectory. That is, the 
functionals XN iß) and £{ß) are generally not one-to-one. The class of all trajectories ß such 
that XN(ß) — Xtiißr) or, equivalently, S(ß) = £(ßT), represents the inherent ambiguity 
of the radar problem. A problem of obvious importance is to find outgoing signals ip(t) 
which minimize this ambiguity class. 

We have assumed above that the return is due to a reflection from a single target. If 
N distinct targets are involved, then we can approximate the return as a superposition 

^ßuß2,..,ßN ~ ^ßi + • • ■ + fa» ■ (<0 

As noted, (7) is an approximation because it ignores multiple reßections. Although these 
can often be ignored, they can also cause resonances (ringing), hence must sometimes be 
taken into account. This can be easily done, in principle. For example, the signal received 
by the doubly-reflecting path a —> ßm —► ßn —> 7 is 

V^m ,ßn   = RlEßn Rßn Eßm Rßm ECc^ i 

which can be immediately converted to a triple integral by using the definitions (2) and 
(3). Sums of contributions from various "trial" scattering paths may then be matched with 
the actual return, defining a generalized ambiguity functional 

X(ßuß2,---,ßN) = (X,1Pßuß2,..,ßN), 

and the Schwarz inequality may be used as in the case of a single path to optimize the 
match. 

This method is reminiscent of Feynman diagrams5, where fundamental processes are 
represented by multiple integrals with corresponding intuitive diagrams. Because the 
physics is built into the formalism from the beginning through the Green functions, our 



model can handle such complications in a conceptually straightforward (if computation- 
ally nontrivial) way. The resemblance to Feynman diagrams is no coincidence, and the 
present formalism may be modified to include quantum (photonic) aspects of radar simply 
by using Feynman propagators in place of the retarded Green functions. 
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ABSTRACT 

For a given basic wavelet 4>(t), two distinct correspondences (called Cl and C2) are established between 
frequency ßlters, defined in the frequency domain through multiplication by a transfer function W(f), 
and scaie ßlters, defined in the wavelet domain through multiplication by a scaie transfer function w(a). 
W(f) is obtained by performing a scaling convolution of w(cr) with V>(/)* (for Cl) or its spectral energy 
density |V>(/)|2 (for C2). For a large class of transfer functions W(f), this relation can be solved for w{a) by 
applying the Mellin transform. We call such frequency filters and their associated time-domain convolution 
operators Cl- or C2-admissible with respect to ip. In particular, the identity operator (W(f) = 1) is C2- 
admissible if and only if the wavelet tp is admissible in the conventional sense. The implementation of 
the correspondence Cl is computationally simpler than C2, but C2 can be generalized to time-dependent 
filters. Applications are proposed to the analysis of atmospheric turbulence data and wideband Doppler 
filtering. 

Keywords: wavelets, filters, transfer functions, scale, Mellin transform, spectral smoothing, wideband 
Doppler filtering. 

1.    SCALE FILTERS AS TIME-DOMAIN CONVOLUTIONS 

The wavelet transform x(cr, r) of a real time signal %(£) with respect to a real wavelet tp(t) can be defined 
as the inner product of x(*) with the wavelet family 

ipajT(t) = ip(at-T),    a>0. 

That is, 
/oo 

dtiP(at-r)X{t). (1) 
-oo 

Since we consider only real time signals and filters (i.e., filters with a real-valued impulse response), it will 
suffice to use positive scales only. 

To be practical, the wavelet transform must have an inverse. The derivation of the inverse leads to 
the reconstruction formula giving x(*) in terms of X{CT,T), analogous to the inverse Fourier transform. 
However, one of the most useful applications of Fourier analysis is in frequency processing, i.e., performing 
certain operations in the frequency domain before applying the inverse transform. Our aim in this paper 
is to derive analogous techniques for the wavelet transform and suggest some of their applications. The 
standard reconstruction formula will then emerge as a special case, when no processing is performed in 
the wavelet domain before transforming back. 
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Towards this end, note that the Fourier transform oltpCiT(t) is 

/OO I 

dte-^ift^At) = -e-27ri/r/<T WAr). (2) 

Parseval's identity can therefore be used to rewrite the inner product (tpa,T , X) m *ne frequency domain 

1     Z"00 1    f°° 
x(a,T) = (^,T,X) = L  /     dfe2^/°iP(fM*x(f) = -  /     df e2**™* MfMxV),        (3) 

where the asterisk denotes complex conjugation and we have defined 

RM = ^(f)*- 

Our construction of scale filters will be motivated by a solid understanding of the meaning of the wavelet 
parameter (a, r) used in our convention. The next two paragraphs are therefore devoted to the extraction 
of this meaning directly from the expressions (1) and (3) for the wavelet transform in the time- and 

frequency domains. 

To understand a, note (as will be seen later) that for the wavelet transform to have an inverse, we 
need ^(0) = fdtip(t) = 0, which means that the wavelet must "wiggle" (hence the name). If ip(t) has 
compact support or rapid decay, then ip(f) is smooth, so i>(f) must also decay as / -» 0. In addition, 
we assume that tp(t) is reasonably smooth, so that ip{f) has rapid decay at infinity. Thus i^(/) must 
decay both as / -»• 0 and / ->• oo, and so it may be considered a bandpass filter. The reality of ip(t) 
implies V>(—/) = i>(f)*, and we may therefore restrict our attention to the positive frequencies. There, 
let R^j(f) be concentrated mainly on the frequency band F^ = [a,ß] with geometric mean f$ = y/aß. 
Then R^(f/cr) is concentrated mainly on the band crF^p = [aa, aß] with geometric mean / = af$ , and (3) 
shows that X(<T,T) contains information about the spectrum \{f) mainly in this band. Since fa is fixed 
for a given wavelet, we may identity the mean frequency a fa with a. In fact, by rescaling (a —> a/fa) 
we may assume, without loss, that /,/, = 1, so that x(o, r) contains information about £(/) mainly near 
/ = a. Therefore we may regard a as a "macroscopic" (blurred) frequency variable, representing the band 
(TF^ of the signal. Note, however, that the bands oF^ have proportional bandwidth, which is a trademark 
of wavelet analysis. (When the wavelet transform is discretized. this means that high-frequency bands get 
sampled at proportionately high rates. This makes wavelet analysis more efficient than windowed Fourier 
analysis, where all bands have the same width and are therefore sampled at the same rate.) 

To interpret r, we return to the time domain. If ip{t) is concentrated mainly in a time interval Tj, centered 
near t = 0, then (1) shows that X(CT,T) contains information about x(*) mainly in the time interval 
(r + T^)l<j centered near T/<T. Therefore r is interpretod ns a scaied "macroscopic" time variable, i.e., 
T ~ at-T-4,. Had we defined VV,T(/) = ip(cr(t - r)), which is closer to the usual convention, then r would 
have been an unsealed time variable. However, the present convention has the advantage of automatically 
slowing down high-frequency features of the signal and speeding up low-frequency features, so that r 
actually measures the phases of all frequency components uniformly across the frequency scales. That is, 
with the above interpretation of a, we have for a given increment AT: 

AT ~ crAt ~ fAt = phase shift. 



The advantage of using scaled time becomes especially clear in the discrete case, where orthogonal and 
biorthogonal dyadic wavelet bases have the form 

*m,n(i)=^(2mi-n)=^2m,n(i), 

showing that r is sampled uniformly since it is already adapted to the scale. (Note that with this normal- 
ization, the energies are ||*m,n||2 = 2~m.) 

Equations (1) and (3) lead to an interpretation of the wavelet parameters (a, r) as a 
pair of macroscopic time-frequency variables differing in two fundamental ways from the 
usual interpretation in "time-frequency analysis" using windowed Fourier transforms: 
(a) Equation (3) shows that the bandpass filter R1p(f/a) is "tuned" to / = a by 
scaling, whereas the corresponding operation for the windowed Fourier transform is 
sliding (modulation in the time domain). (b) The'time variable r is now scale-adapted, 
hence a given interval Ar measures the same phase shift in all frequency components. 

With this interpretation of the wavelet domain established, we are ready to proceed . The interpretation 
of a as a frequency variable will be used to construct scale filters. Taking the inverse Fourier transform of 
(3) with respect to rja gives 

/oo /-oo 

-oo J — oo 
(4) 

-oo •/ —oo 

which restates the above assertion that X(CT,T), in its dependence on r, contains localized spectral infor- 
mation about x- Now integrate both sides over a > 0 with an arbitrary weight function w(a)/cr: 

roada 
r—w(a)R^(f/a)x(f)= If     derate-™'* w(c)x{a,ot). 

JO        a JJ <r>0 

Let us define W\{f) by 

/•OO    J 

W!(f)= —w(cr)R^f/cr), 
Jo     a 

(5) 

(6) 

so that (5) reads 

Wi 
J Jcr>0 

dadte-™}t w{a)x{cr,at). 

Applying the inverse Fourier transform to both sides gives our first main result: 

/OO /-oo 

dfe2^tW1(f)X(f)= /    daw(a)x(<r,crt). 
-oo JO 

(7) 

The left side displays Wi(f) as (the transfer function of) a frequency filter with impulse response 
/°° r°° r°° rJrr 

dfe™ftW1(f)= dfe™» —«/(*) iK//a)' 
-oo ./-oo Jo       a 

/•OO   J /-OO 

= /     -w{a) dfe™f^(f/ar 
JO        & J-oo 

(8) 

Jo 
daw{a)ij}{—cTt). 



Evidently, according to our conventions, ijj(t) must be supported in the negative time axis t < 0 to make 
wi causal (wi(i) = 0 for t < 0). This is also the condition for x(cr>T) to be causal, i.e., for it to depend on 
x{t) only for t < T/O. 

Equation (7) shows that the convolution of wi with x can De represented in the wavelet domain as a scaie 
filter with the weight function w(a): 

/OO /-CO 

duw1{t-u)x(u)= dcrw(a)x(o;crt). 
•oo Jo 

(9) 

If the integral in (6) converges, it therefore defines a correspondence 

Cl:u;(<r)-Wi(/) (10) 

from scale filters to frequency filters and their associated convolution operators. Note that since R,p{—/)* = 

Ätf (/), we have 
/•OO    J 

Wi(-f)*=        2£ «/(*)***(//*). (11) 
Jo     a 

Therefore wi(i) is real if w(a) is real: 

w{a)* = w(a)  =>  Wii-f)* = WrU)  => wx(*)* = wx(t). (12) 

In Section 2 we examine how the correspondence Cl can be inverted to find w(<r) for a given filter W\(f) 
and wavelet ip(t). But first we discuss an alternative correspondence which, although computationally 
more intensive, can be easily generalized to represent time-dependent filters. 

Returning to (4), multiply both sides by cr_1V'(//(7) and use (2) to obtain 

1   „ r°° 
-MfM\2x(f)= /     dr^,T(/)x(<r,r). 

Again we integrate over a > 0 with a weight function w(a): 

Jo        a JJa>0 

Let S^(f) be the spectral energy density of ip, i.e., 

(13) 

(14) 

S4f) = \i>(f)\2, (15) 

and define the frequency filter W2(f) separately for positive and negative frequencies by 

W2 

W2 

w(a)S^(f/a), />0 
/•CO 

(/)= / 
Jo 

/•OO   J 

(-/) = W2{f)* = /     — w{aY S«,(f/a), / > 0. 
Jo     a 

(16) 



Then (14) becomes 

W2{f)xU) = JJ     dadr4>ffAf)^)x(<r,r),     / > 0. (17) 

The reason for the two-folded definition (16) is that the top line alone would imply W2(-f) = W2(f), 
since S^(-f) = S^(f). Instead, we want the impulse response 

/oo 

dfe2^tW2(f) 
•00 

to be real, which is guaranteed by the bottom line. (As mentioned earlier, we must have ^(0) = 0, 
hence W2(0) = 0 and the definition (16) is complete.) Note that whereas we needed a real scale filter 
w(a) to make wx(£) real, w2(i) is real whether w(a) is real or not. This resembles the situation in the 
frequency domain, where transfer functions need not be real. In fact, we could extend our C2-formalism 
to include negative scales by defining w(-cr) = w{a)* in parallel with (16). The restriction to positive 
scales throughout this paper is closely tied to the practice of ignoring the {redundant) negative frequencies 
of real signals by using the corresponding "analytic signals." This will indeed be done next, for reasons to 
be seen later in connection with the Mellin transform. 

We want to take the inverse Fourier transform of (17) to obtain the action of the filter W2(f) in the time 
domain. But since (17) is restricted to / > 0, we integrate over positive frequencies only. On the right 
side, we need therefore to introduce the function 

/•OO 

Jo 

known as the analytic signal of Vv,r(*)- The reason for this name is that ip^r{t) is necessrily complex and 
extends analytically to the upper half of the complex time plane. It is related to ip^^it) by 

/•oo 

2Re^r(t)=/    df   e2,ri/t^,r(/)+e-2^^iT(-/)l=^iT(t). 
Jo L -I 

Similarly, 2Im^+T(t) is the Hubert transform of ^(i). (See [1], Sections 3.3 and 9.3 for a discussion of 
analytic signals and their multidimensional generalization.) Like ipffiT(t), the entire family V£T(*) can De 

obtained from a single 'basic wavelet' tp+(t). Namely, (2) implies that 

/•OO 

#,r(*)= /    dfe2*iH°t-^i>(f)=r(vt-T), 
Jo 

where i>+(t) is the analytic signal of ip(t). Furthermore, the wavelet transform x(a, r) can be expressed in 
terms of inner products with i>^T(t) by 

/OO 

dt[2ReiP+(at-T)*]X{t), 
■00 

/OO 

dtil>+{at-T)*x(t) 
•00 

= 2Re(Cr,x)=2Re(Vi+T,x) = 2Re(Vi+T,x
+> 

= 2Re(V£,T,X+)=2Rex>,7-), 



where x+(cr.r) is tne wavelet transform of x+ with respect to ip+. 

Returning to (17) and taking the inverse Fourier transform over 0 < / < oo, we obtain our second main 

result: 

r dfe2^tW2{f)x{f)= if     dadr^T(t)w(a)x(a,T). 
JO JJcr>0 

(18) 

The left side presents W2(f) as the transfer function of a positive-frequency filter, while the right side 
defines the action of w{a) as a scale filter operating in the wavelet domain. The full action, including the 

negative frequencies, can be obtained by taking real parts: 

/oo f00 

df^ift Wi{f) £(/) = /    df [e*rf/t W2(f)x(f) + e~2*ift w2(-M(-f)\ 
-oo JO 

/•oo 

= /    df[e2^tW2{f)x(f)+e-2'viftW2(frX(f)*} 
Jo 

= 2 Re //      dadTiplT{t)w(a)x(v,T). 
JJc>0 

Since x{a, r) is real, we have 

r dfe2"iftW2(f)x(f) = II     dadr2Re [^T(t)w(a)] x(<r,r). 
J-OO JJ (T>0 

(19) 

This is the "real-signal" representation of scale filters, compared with the analytic-signal representation 
(18). It is interesting to note that if w2(-t) ^ w2(i) (e.g., if the filter is causal!), then W2{-f) ^ W2{f); 
hence (16) implies that w{a)* ^ w(a), and (19) shows that the action of W2 on real signals necessarily 
involves the Hilbert transform of ip(t), as it does also in the analytic-signal representation (18). 

If the integrals (16) converge, then (18) and (19) establish a mapping 

C2 : w{a) - W2(f) 

from scale filters to frequency filters and their associated convolution operators. An examination of (18) 
reveals the following precise correspondence between objects in the positive-frequency Fourier domain and 

the positive-scale wavelet domain: 

Fourier 'basis functions'    e2nift <—► V£,T(*)    wavelet 'basis functions' 

frequency filter    W2{f)<—> w{a)        scale filter 

Fourier transform       x(f) *—" xfa T)     wavelet transform. 

To complete our frequency - scale "dictionary," we must also investigate the inverse problem: Given 
a frequency filter W{f), find equivalent scale filters wi(<r) and w2{a) corresponding to W(f) under Cl 
and C2, and the conditions under which they exists. The key is to observe that Equations (6) and (16) 



represent Wi{f) and W2(f) as scaling convolutions of w(a) with Rt(f) and S^(f), respectively. This 
means that instead of the difference t - u in the usual convolution (9), we have the ratio f/a in (6) and 
(16), and instead of the translation-invariant (Lebesgue) measure du in (9) we have the scaling-invariant 
measure da/cr. By analogy with (9), we write (6) and (16) as 

f°° r\n 
WM) = /     — w(a) R+if/a) = (w • R^)(f) 

Jo     v ,    s 

r°° da (2°) 
W2(f) = /     - w(a) S^f/a) = (w . S*)(/), 

Jo     a 

where we now assume / > 0 in both equations and define Wi(-f) = Wx{f)* and W2(-f) = W2{f)*. 
(Note that W^O) = W2(0) = 0 since ify(O) = 5^(0) = 0.). 

Definition. A given filter W(f) is Cl-admissible or C2-admissible with respect to a given wavelet 
ip if and only if the integral equations 

r°° dn 
Cl :     W(f) = (w, • R^)(f) = /     - Wl(a) R^f/a) 

Jo     a 

/•OO   J 

C2:     W(f) = (w2.S4,)(f)= —W2{O)SI,U/<T) 
Jo     ° 

can be solved (deconvolved) to give wi(a) or w2{a), respectively. 

If a frequency filter W is Cl- or C2-admissible with respect 
to ip, then there exists a Cl- or C2-equivalent scale filter w. 

We must therefore examine when and how the above scaling convolution equations can be solved. Just 
as ordinary convolutions are untangled by the Fourier transform, so are scaling convolutions untangled by 
the Mellin transform [2, 3]. The following definition will be convenient in our case: Given a function X(a) 
defined for cr > 0, its Mellin transform is a new function of the complex variable p, given by 

/•OO    J 

X(p)= — <T->X(<T). (21). 
Jq     a 

Of course, this integral will not converge in general. If X(a) is reasonable (say X(cr) is piecewise smooth 
for 0 < cr < oo, although more singular functions can be accomodated), then the convergence will depend 
on the behavior of X(a) as cr —> 0+ and a —► oo. Suppose that for some pair of characteristic exponents 
a, ß (which can be assumed to be real) we have 

Then the integral in (21) over the subinterval 1 < a < oo will converge if and only if Rep > a, and the 
integral over 0 < a < 1 will converge if and only if Rep < ß. Hence the Mellin transform X(p) exists in 
the vertical strip 

Sx = {peC:a<Rep<ß} = S(a,ß). (23) 



In particular, the integral converges nowhere if a > ß. It can be shown that when a < ß, X(p) is actually 
analytic in S(a,ß). In the limiting case a = ß, S{a,ß) is empty but X(p) can still exist as a generalized 
function on the vertical line Rep= a. See [4], and Section 2 of this paper. (When a < ß, the boundary 
values of X(p) on Rep = a and Rep = ß are distributions.) 

The Mellin transform can be related to the (inverse) Fourier transform by the substitutions 

a _ e
f, p - -2mt, X(a) - x(f), X(p) - x(i). (24) 

Consequently, the inverse Mellin transform can be represented by 

1 rr+ioo 

X(o-) = J-  / dp^X{p), (25) 

where a < r < ß so that the integration contour is inside the strip of analyticity. Since X{p) is analytic 
in S(a,ß), the value of the integral is independent of the particular choice of r within these bounds. (In 

the singular case a = ß, take r = a.) 

It is easy to see that under the substitutions (24), the scaling convolution X • Y becomes an ordinary 
convolution x * y. It follows that the Mellin transform maps X • Y to the pointwise product of the two 

Mellin transforms: 

Z(f)=  r—X(a)Y(f/a) = (X.Y)(f)  =►  Z(p) = X{p)Y{p), 
Jo     a 

(26) 

provided all the transforms exist. The inverse problem stated above (given W(f), find w(cr)) corresponds 
here to solving for X(a) in terms oi.Z(f) and Y(f). Let us define the function 

F(p) = Z(p)/Y(p), (27) 

which should, according to (26), be the Mellin transform of the solution X. A sufficient (but not necessary) 
set of conditions for X{a) to exist is: (a) The analyticity strips Sz and SY of Z(p) and Y(p) overlap, so 

that their nonempty intersection 
Sx = Sz n SY 

is a potential analyticity strip for X{p), (b) Y{p) ^ 0 in Sx, so that F(p) is analytic in Sx, and (c) 
F(p) decays sufficiently rapidly as |p|'-+ oo in Sx for the integral defining its inverse Mellin transform to 

converge. 

Given a filter W(f), the action of its Cl-equivalent scale filter is computationally simpler than that of 
its C2-equivalent scale filter since the representation (7) involves only an integration over scales whereas 
(18) and (19) involve integration over time as well. Does C2-equival'ence have any advantages over Cl- 
equivalence? This question needs further study, both numerical and theoretical. One such advantage may 
be that C2-equivalence can be easily generalized to time-dependent filters, whereas Cl-equivalence cannot. 
We need only replace w(a) by w(a,r) and define the operators W+ and W, acting on real signals x(*)> by 

(W+
X)(t)= ff     dadTi>+<T{t)w{<T,T)x{<r,T) 

JJ <T>0 

(Wx)W = 2Re(W+x)W. 



These generalize (18) and (19), respectively. They are no longer convolution operators since they are not 
time-translation invariant. Instead, they describe time-varying filters. 

2. EXAMPLE: SPECTRAL POWER LAWS 

Pure powers, i.e., functions of the form 

X{G) = a" 

with q a possibly complex exponent, play a special role in Mellin transform theory.   Note that since 
\aq\ = a  eq , the characteristic exponents are now equal: 

a = ß = Re q = r, 

and the analyticity strip S(a,ß) is empty. Actually, the Mellin transform X(p) exists in the generalized 
sense of distributions [4], namely 

X(p) = 2iri6(p - q). 

This means that in (25) we must integrate along the vertical line Rep = r and 

1 rr+vx 

—  / dp ap 2m6{p - q) = a" = X(a). (28) 

This is not surprising, since under the correspondence (24), av is mapped to e~2nift. Pure powers are, 
therefore, the Mellin version of complex exponentials. This means that although their Mellin transforms 
are singular, the computations become simple. 

We demonstrate this now by choosing a scale filter which is a pure power and computing the corresponding 
frequency filters W\ and W2. Thus let 

w(a) = aq, 

where q is an arbitrary complex exponent. Then for any fixed / > 0, the substitution a -> /'/cr in (20) 
gives 

Wx{f) = /     — aqMf/a) = /     - UI°)qR*{o) 
JO        & ./()        <7 

f°° fin 
= fq /    — *-'**(*) = /"/U9), 

Jo     a 

with a similar computation for W^(/)- Hence 

(29) 

'■2(f) = !"S^(q). 

We can invert (30) to go from the given frequency filter \\'(f) = f to the equivalent scale filters: 

(30) 

W(f) = f =►   < (31) 



The Cl- and C2-admissibility conditions now become 

Cl:/fy(g) ^0,oo 

02:5^,(9)^0,00. 

Theorem.  The frequency filter W(f) = f\ with q complex, is Cl- or C2-admissible if and only if the 

wavelet ip satisfies 

Cl:  0< 

C2:  0< 

\Rn>(q)\= f 
Jo 

&(9)l=   f 
Jo 

df 

df 
fq+i mm* 

< oo 

< op. 

(32) 

When this is the case, the action ofW can be represented'in the wavelet domain by 

/     df e2^ f *(/) = öTT  /     da aQ *{a>Ut) 

r df eMft f" x(f) = TT^  f l     dadr^^T(t)x(a,r), 
JO Jxp{Q)   JJcr>0 

respectively. For real q, we have 

I00 df e2*ift fq x(f) = -=-TT  //     dadT<Tqi;a,r{t)x(<7,T). 
J-oo Srl>{l)   JJ<r>0 

(33) 

(34) 

To connect with the usual admissibility condition and reconstruction formula, choose q = 0, so that 
W(f) = 1 and the associated convolution is the identity operator (w2 * X - x)- Then (32) becomes 

< oo 
r°° df  - 

Cl:  0< |^(0)|=  J     j- V(/)* 

C2:    0<S^q)=J°°^mf)\2<oc, 
(35) 

and (33) becomes 
1        f°° 

Taking the real part of the second equation gives 

x(t) = __—   //     dordrV«r,T(*)x(^iT 
AW      5^(0) JJa>0 

(36) 

(37) 

The second line in (35) is just the usual admissibility condition for the waveiet, and (37) is the usual 
reconstruction formula. Note that either of the conditions (35) imply the zero-moment condition ^(0) - 0 

to which we refered earlier. 

10 



The wavelet ip is admissible in the conventional sense if and only if 
the identity operator is C2-admissible as a convolution operator. 

3. SOME POSSIBLE APPLICATIONS 

The general advantage of scale filtering over frequency filtering is that it can be performed locally in 
time. Its advantage over time-frequency filtering (using windowed Fourier transforms instead of wavelet 
transforms) is that the spectral smoothing implied in the scale convolutions W = w R^ and W = w • S^ 
is performed with proportional bandwidth: long-duration or low-frequency components (represented by 
w(a) with 0 < a < 1) are smoothed over a narrow band (since R^(f/a) and 5^(//cr) are compressed 
versions of R^(f) and 5^(/)), while short-duration or high-frequency components (represented by w(cr) 
with a > 1) are smoothed over a Wide band (since R^(f/a) and S^{f /a) are stretched versions of R^,(f) 
and S^(f)). This is in the general spirit of wavelet analysis, as explained earlier. 

The above examples suggest that systems obeying spectral power laws (even if only asymptotically) may 
have an especially simple representation. An example occurs in the study of electromagnetic waves prop- 
agating through turbulence, where the power spectrum follows Kolmogorov's /_11/3 law between the 
"inner" and the "outer" scales. The Mellin transform has already found natural applications in this area 
[5], and it is hoped that the wavelet-based program proposed here can contribute by bringing time into 
the picture. In fact, there is solid empirical evidence that the analysis of atmospheric turbulence data in 
the scale domain is superior to the usual analysis in the frequency domain because it tends to smooth the 
spectrum without smearing the scales, so that the exponents in the power laws are clearly resolved [6]. 

Another potentially promising application is to Doppler filtering in wideband radar and sonar analysis. 
There, the usual representation of the Doppler effect as a uniform frequency shift breaks down. Instead, the 
Doppler effect must be represented by scaling in the time domain, the scale parameter a = (c — v)/(c + v) 
being directly related to the radial target velocity v. Therefore, the Doppler "frequency shift" is itself 
proportional to the frequency: 

c + v 

Only in the narrowband approximation can A/ be made uniform by replacing / with the carrier frequency 
in the above formula. The usual time-frequency analysis of the echo using the ambiguity function is 
generalized to a time-scale analysis using the so-called wideband ambiguity function. The latter is simply 
the wavelet transform of the echo, with the outgoing signal playing the role of basic wavelet [1,7]. Since 
the scale parameter a (but not the frequency!) now has a direct physical significance related to the 
velocity of the reflector, it is actually more natural to filter directly in scale rather than frequency when 
analyzing the motion. For example, when trying to identify the echo x(i) of a moving target embedded in a 
stationary background ("clutter"), one might simply multiply the wavelet transform x(cr)r) by a function 
w(a) concentrated on the scale interval corresponding to the velocity range of interest, thus eliminating 
the clutter. Our results then show that this is equivalent to using a particular frequency filter, with a 
more convoluted transfer function. Possibly this may be used to speed up the computation of the original 
scale filtering operation with the help of the FFT. 
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