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Abstract 

MODELNET is a modeling and simulation environment for running legacy codes on 
UNIX platforms. It 
provides a user shell to organize and run a set of related models and exchange data 
between them. MODELNET assists the model user by providing GUI input, visual 
model linking tools, context sensitive help, integrated documentation, and shared I/O 
utilities. It assists the model developerby organizing model directories, compilation 
tools, and shared libraries. It supports collaborative engineering environments where 
model and data sharing are important. While MODELNET components are available at 
essentially no cost, Science Applications International Corporation (SAIC) offers model 
integration services and integration training. 

Background 

Over many years engineering software models have been developed by industry, 
government and university with varying degrees of quality and utility. We are all familiar 
with programs that are superbly documented, have a handsome interface, but whose 
technical capabilities are limited or give wrong answers, and other models which are 
poorly documented, riddled with untrapped errors, clumsy inputs, but which give highly 
accurate answers, and, with hundreds or thousands of users, are considered standards. 

Each model has a history from concept through marketing of that concept, prototype 
development, development, delivery and maintenance and user support. Generally, the 
models which "rise to the top" and are still in widespread use after many years are 
technically accurate and solve useful, persistent problems. But there are many models 
abandoned along the way not because of deficiency of quality, but for political, 
organizational or personal reasons. If a government program is canceled, if a key 
developer retires, or if a developing company fails, good technical software and technical 
information disappears or is filed away out of view.   Ironically, after a few years have 
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passed, there is often a new requirement in a new program office who funds a new 
contract to a new contractor to rediscover and redevelop the old technology.    Developers 
who have spent a lifetime in this environment are often painfully aware of how few of 
their products were widely used and valued. Others take advantage of the quick 
obsolescence to resell the same technology repeatedly to different customers causing 
inflated costs and wasted effort. 

Ignoring the political, organizational and personal aspects of software obsolescence, there 
are technical reasons why legacy software ceases to be used. As computer technology 
progresses, users are reluctant to use programs that seem outmoded. Younger users 
familiar and trained on software developed in the Age of Microsoft will be impatient and 
frustrated at older methods of input based on the 80 column punched card or even the 
menu driven inputs of the 1970's and 80's. They are not comfortable with poorly 
defined or complicated input instructions. MODELNET addresses these problems. 

Where there used to be teams of analysts working on a problem, now fewer, less 
experienced users are expected to get answers often without the expert advice and 
oversight present in the past. MODELNET also addresses this problem. 

Then there is the multiplicity of models. If more than one legacy model is available for 
solving a particular problem, the user must choose between them based on the usual 
speed/accuracy tradeoff. How does the accuracy of model results affect the results of 
subsequent model calculations using those results as inputs? MODELNET addresses 
these problems. 

Expanding problem domains may require several models to be linked in sequence. Thus 
data passing between models becomes a real issue. Much effort is spent interfacing data 
between models. This becomes a difficult and error-prone process when the data source 
and destination work in differing units, resolutions, or datatype. Often inputs require 
calculating a combination of outputs from one or more models requiring sequential control 
over the models. MODELNET addresses these problems. 

In modern software engineering, there is an emphasis on model reuse, distributed 
processing and model decomposition. In some cases, a set of existing sub calculations 
need to be integrated into a single aggregate model. In other cases, an existing complex 
calculation requires breaking up into a set of components which may further be required 
to be reassembled in a new configuration. This aggregation / disaggregation may occur at 
several levels: procedural level, subroutine level, or in modern software, object level. 
MODELNET addresses these issues. 

Finally, MODELNET supports the collaborative engineering environment. As models 
are developed by different developers at different locations, even using different 
platforms, they can share their work easily. The MODELNET development process has 



sufficient documented standards that guarantees portability to other MODELNET 
systems running on other UNIX platforms. 

MODELNET is not the first attempt at a modeling and simulation environment / system 
to address these various issues Some of these have come and gone and others are on hold 
awaiting funding. MODELNET is different in that the framework is made up of 
components which are either public domain or ubiquitous off the shelf existing products 
which have life independent of MODELNET; the system can grow and evolve as the 
components grow. 

MODELNET components 

MODELNET is a development and user framework; a block diagram is shown in Figure 
1.   It consists of Khoros 2.2, Browser, CLIPS6 (C Language Integrated Production 
System) Expert System tool from NASA, and a library of Freeware utilities. By using 
only freely available components, MODELNET is basically free.   By using components 
which are common off-the-shelf and supported by many thousands of users, 
MODELNET works today, is maintained by the component developer, and will leverage 
advancements of these components to advancements in MODELNET. Furthermore, 
users will see familiar user interfaces and not have to learn yet another one. What users 
are not familiar with Netscape Browsers, spreadsheet programs, and point and click 
GUI's? MODELNET uses the components unmodified so that, as new backward 
compatible versions appear, all implemented models will be compatible. 

Khoros 2.2 component in MODELNET 

Khoros 2.2 is a major part of MODELNET. It is developed by Khoral Research Inc. in 
Albuquerque, NM as an image processing environment. It has a graphical programming 
user interface called Cantata which allows icons ("glyphs") to be moved around the screen 
using the mouse, much like arranging boxes using a graphics draw program. Each glyph 
represents a program process. There are handles on the glyph which can be connected to 
handles from other glyphs indicating that data will flow between them. Figure 2 shows a 
Cantata screen containing five glyphs representing, from left to right, an input scene image 
file as generated by GTRENDER, a noise addition process, a jitter process which uses a 
vibration power density function, and an output viewer. This set of five glyphs is 
referred to as a "glyph (or model) network". When the "RUN" button is pressed, 
Cantata starts the first process and when it is finished, the second process starts 
automatically. Data is passed between the glyphs only when calculation of that data is 
complete. 

In addition to a large library of image processing and image data handling processes 
included with Cantata, control glyphs can be embedded in the network. For example, 
there can be "if - then - else" branches, where completion of a process can trigger one of 



two succeeding processes depending on some user specified or other process specified 
condition. Repetition loops can be added to repeat sequentially running a network 
systematically varying user specified parameters. The network has intelligence so that in 
multiple runs it will not repeat running processes if the inputs have not changed. 

In Khoros, integrated program modules are called "objects" (not to be confused with 
"object oriented"). Each object contains an executable, source code, supporting code for 
data manipulation, GUI data and help files. One of the Khoros development modules 
(Composer) sets up development directories, make files, and writes code shells for 
integration software. Figure 3 shows the modules of Khoros which we use in 
MODELNET. Included in Composer is a GUI builder and an implicit GUI visual 
structure which is the same for all integrated models. A set of objects is called a Toolbox 
which is managed by another Khoros development module called Craftsman. This allows 
groups of models for specific application areas to be collectively turned on or off, or 
delivered to different customers, or shared by an authorized community of users. 

While Khoros was developed for integrating image processing applications, it has the 
facility for integrating much more complex applications. The Khoros training courses 
(which are very good) only deal with software development of simple models and do not 
address issues arising from complex model integration. SAIC has developed a 
methodology for integrating such complex models for two toolboxes described below, and 
the methodology appears to be applicable to a large class of application areas. 

Browser component in MODELNET 

The browser component brings to MODELNET the capability of hypertext 
documentation and context sensitive help systems. We have used Netscape, although 
Mosaic or HotJava browsers work similarly. We have linked Khoros objects and 
Netscape so that they can call each other. Thus, if a user clicks on the help button of a 
glyph's GUI, the help page is brought up in the browser window. All the hypertext 
features of the browser are brought to bear on providing the level of help required. Links 
to the complete documentation system are possible making a truly integrated system. 
The documentation can be in HTML accessible by the browser directly, and in PDF, also 
accessible by most browsers. Since these formats are readily editable, the user can tailor 
documentation and hypertext to his own needs.   Figure 4 shows the uses of the Browser 
in MODELNET. 

If the platform is connected to the internet, all those features are available to the 
MODELNET system. For example, sources for many kinds of data are then available to 
MODELNET users. E-mail contact to model developers (presumably for a small fee) is 
available on the same platform. The browser also provides a client-side interface to other 
servers for distributed computing applications. 



CLIPS component in MODELNET 

Figure 5 shows the uses of CLIPS 6.0 in MODELNET. Prototypes for CLIPS 
integration have been produced, but no delivered examples have been implemented to 
date. The design for CLIPS integration includes checking input variables, output variables 
(for obvious errors), and most importantly, intermodel consistency of inputs and outputs 
to assure compatible units and ranges of validity. The rule database is also be editable by 
the user. 

Multiple Levels of Model Aggregation 

MODELNET supports multiple levels of model aggregation depending on user need. 
Typically, an experienced user must set up a network of model components validating all 
input variables, and setting up the required databases. However, using a Khoros feature 
called encapsulation, the set of data and models can be combined into one process with a 
reduced set of inputs (typically scenario definition variables such as range, altitude. The 
encapsulated model can then be run easily by a relatively unsophisticated user who is 
protected from worrying about unfamiliar inputs and processes. 

MODELNET also facilitates disaggregation. For example, many engineering codes 
already contain calls to subprocesses. These are very easy to separate in MODELNET, 
allowing substitution of alternative models for one or more of the subprocesses. Of 
course, data translation of inputs and outputs may be required. There is also a trend in 
the M&S community to componentize existing legacy models, that is, functionally 
decompose the models into components which are often rewritten as object oriented code. 
We are also looking at adapting MODELNET to these types of modules as well, but we 
have not yet demonstrated that capability. 

Current MODELNET applications 

SAIC has integrated two major toolboxes using MODELNET. One, the Advanced 
Electromagnetic Model for Aerial Targeting (AEM*AT), developed for AFRL, integrated 
a set of IR signature and sensor codes for aircraft. Models integrated included SPIRITS 
4.2, an IR aircraft signature model; EMBED, a target embedding model for combining 
target and textured background scenes; LASERX, an active signature model using solids 
models; EOSSIM, a sensor model, and XPATCH version 1, a radar cross section code. A 
preliminary integrated version of Georgia Tech's scene generation programs GTRENDER 
and GTSIG is also included. This simulation can be run in an animation, moving the target 
and sensor according to a detailed flyout trajectory. 

The second toolbox developed by SAIC was NEOTAM, the NATO Electro-Optical 
Target Model specializing in missile plume signature models developed for the Research 



Study Group RSG-18. Models from the participating NATO countries were integrated 
to provide a common model set for predicting missile signatures. 

Evolutionary Integration into MODELNET 

The integration procedure SAIC has developed for MODELNET is a multi-step process 
which allows basic integration with very little effort, and increasing utility with increasing 
integration. This accommodates customers who have limited resources or who want 
frequent review and control over the final product.   The process may be broken into the 
following levels: 

Level 1 - porting the legacy model to the desired platform and verifying its 
operation. This can be done either by the integrator or by the customer. 

Level 2 - calling the model from the Khoros Cantata workspace as a standalone 
process; use legacy input method / files and data. 

Level 3 - developing a Quick GUI for changing frequent inputs such as scenario 
variables, or inputs depending on other models already integrated into 
MODELNET, or input variables for which multiple values are routinely 
run (batch runs). The user would enter all inputs using the legacy input 
methodology, and only the variables in the Quick GUI would be changed 
at network runtime. Quick GUIs consist of only one page of point and 
click inputs. This level includes writing the software for model data 
integration. 

Level 4 - developing a comprehensive GUI for most of the inputs for the model. 
This can result in many (tens of) pages of inputs which are organized 
according to the Khoros GUI paradigm. SAIC has extended the Khoros 
capability of using either Athena or Motif widgets to include Java based 
widgets as well. User documentation is also rewritten to accommodate the 
new GUI inputs. 

Level 5 - completing documentation and expert system. This final level will best 
be completed after the familiar user has been working with the 
MODELNET implementation of the model and can write the 
requirements. Hypertext online documentation is provided and integrated 
with other documentation in the toolbox. The expert system rules are 
defined by the user and formatted by the developer to assist the 
inexperienced user and to help all users avoid and correct mistakes. 



Levels 1 and 2 integration typically take only a few days. Level 3 requires development 
of software to parse and write the legacy input file formats. The other levels of 
integration require correspondingly more effort. 

Model and toolbox documentation are done both in HTML and Adobe Acrobat (PDF) 
formats. Both of these formats are commonplace and allow the user to modify the 
documentation for his own purposes. Documentation forms can include written reports, 
color graphics, AVI or QuickTime movies, sound, and internet sources as well as e-mail. 

MODELNET Portability 

MODELNET applications are developed on either (or both) the Sun or Silicon Graphics 
workstations. When Khoros becomes available on the NT, our toolboxes can be ported 
easily to that platform as well. Portability of MODELNET depends on portability of 
Khoros and the Browser. Application toolboxes developed on one platform can typically 
be ported to one of the other supported platforms in a day or two. Supported platforms 
include: 

Platform Khoros Netscape CLIPS 
Sun ( > Solaris 2.4, > SunOS 5.4) X X X 

SGI (> IRIX 5.2) X X X 

LINUX(PC) (YRgdrasil, Redhat) X X X 

FreeBSD, BSD/05 (PC) X X X 

IBM RS/6000 X X X 

HP9000.(>700) X X X 

DEC Alpha AXP (OSF/1 > 3.0) X X X 

DG Aviion (DG/UX) X X X 

Macintosh X X 

DOS X X 

Windows 95 / NT X 

MODELNET Availability 

MODELNET is a software integration service sold by SAIC to military and industrial 
customers. Customers who have software which they would like to integrate under this 
system should contract with the MODELNET development team for all or some of the 
integration effort. SAIC also encourages teaming arrangements with similar companies on 
other software integration / development procurements.   If desired, SAIC will provide 
tutorial instruction and continuing user support on all phases of the integration process 
allowing customers to perform their own integration in the future. If integrated models 
are of interest to a wider community of users and the customer desires to market them 
commercially, SAIC can work with the customer to provide a distribution package. The 



customer will retain possession and distribution rights to any legacy models unless 
special agreements are made. 

Interested parties please contact Dr. John Schaibly at SAIC 
(john.h.schaibly@cpmx.saic.com) or call him at (619)646-4025 for information on the 
MODELNET system. 



Figurel - MODELNET Block Diagram. 
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Figure2 - Example of the Khoros Cantata Visual Programming Interface for a Sensor 
simulation. 
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Figure 3 - Use of Khoros in the MODELNET environment. 
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Figure 4 - Use of Browser in MODELNET. 
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Figure 5 - Design of CLIPS use in MODELNET 
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Abstract 

Two of the many problems confronting avionics developers today are the need to rapidly 
design, prototype, develop, and insert modern technology into avionics platforms and the 
need to support that technology under conditions where the pace of obsolescence is much 
smaller than the devices' required service life. SYMVIONICS' Complex System 
Information Fusion Tools (CSIFT) program is facing both of these issues. In this paper, 
we will present our findings and recommendations to-date as a case study of the goals, 
approach, and accomplishments of the program. 
The CSIFT program uses a Data Activated Operating System (commonly referred to as a 
Distributed Blackboard), in the context of an offboard/onboard information fusion 
application, to implement a version of the Information Dispatcher function of the USAF's 
Airborne Information Fusion Architecture (AIFA). Our approach provides an efficient 
environment for prototyping and developing data oriented avionics applications. 
The CSIFT program addresses the technology obsolescence issue by our use of the 
Continuous Electronics Enhancements Using Simulatable Specifications (CEENSS) 
methodology. This methodology provides for rigorous requirements modeling and formal 
verification, and promotes the use of vendor neutral, tool neutral simulatable 
specifications for electronic designs. 
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Background 
A multitude of problems confront modern military system designers. Few of the 

problems are new. There are always funding constraints. Force reduction cycles are 
common occurrences at periodic intervals. There are labor issues, requirements changes, 
scope changes, and others too numerous to mention. For the most part, these issues have 
been faced by system designers for centuries. The first of the great pyramids in Egypt 
was not finished as a true pyramid because halfway through the project it was discovered 
that the initial design could not support it's own weight. There was an OOPS! 

There is one issue facing modern system designers that has no apparent historical 
equivalent: the exponential rate at which information and technology are increasing and 
changing. More accurately, we all have been on an exponential curve. Current system 
designs are becoming very close to the section of the curve that is going vertical. Twenty 
years ago systems were planned for fifteen to twenty year life cycles. Today, at the 
completion of a three-year design cycle, up to half of the parts in system may be obsolete 
and unavailable. Software is not immune to the problem. The processor systems increase 
in capability, allowing new features, or become obsolete, requiring re-engineering. 

Without attempting to belabor the obvious, it is essential to provide systems that 
facilitate fast, responsive, efficient hardware and software development and economical 
hardware and software technology enhancements and reengineering. SYMVIONICS' 
Complex System Information Fusion Tools (CSIFT) project with the Sensor Directorate 
is developing a flexible software development environment, the Blackboard, and providing 
a test case for a developing methodology for reengineering support, CEENSS. 

In order to understand both the Blackboard and CEENSS, we must provide some 
additional information on the CSIFT project. The information provided about the CSIFT 
project and Sensor Fusion in this paper is presented to provide context for the 
Blackboard development tools and the CEENSS methodology. The sensor fusion 
technology being developed on the CSIFT project is a model application, the Information 
Dispatcher, to be the front end for a Sensor Data Fusion suite. 
2 Sensor Data Fusion 

What is Sensor Data Fusion? First, a caveat on this explanation. This discussion 
is not intended to be the authoritative history of Data Fusion, but to provide context, 
primarily with an Air Force bias. In general, Sensor Data Fusion initiatives are under the 
overall umbrella of Situation Awareness research and development. In modern air combat, 
pilots have more sources of data and information than ever before in history. In the early 
days of air combat, the pilots had some instruments and their eyeballs. However, 
technology marched on. Today pilots have the most sophisticated aircraft ever produced 
and they have more information than any person should need to sort through. They have 
voice data and AW ACS data and satellite data and real beam radar and Synthetic Aperture 
Radar and digital maps and IR data and camera data and and and _ If it wasn't so 
important to actually fly the aircraft, accomplish the mission, and stay alive, it might be 
possible for the pilot to spend all his time sorting through data to find just the right piece. 
Situation awareness research is focussed on providing tools to assist the pilot with his 
understanding of his highly dynamic environment. Sensor Data Fusion, in general, 



focuses on the aspects of situation awareness that relate to on-board and off-board sensor 
data collection, correlation, and display. 

Although all services are performing situation awareness and sensor data fusion, 
the CSIFT program traces it's roots to the Joint Directors of Laboratories (JDL) Data 
Fusion Group. The Joint Directors of Laboratories (JDL) Data Fusion Group produced 
the Data Fusion Process Model shown in Figure 1 as a reference for continued 
information fusion refinement and evolution. Significant efforts continue to improve the 
architecture, processor, and methods associated with information fusion for on-board and 
off-board avionics systems. 

Figure 1. Historical Reference: The JDL Data Fusion Process Model. 
A major impetus behind data fusion is the increasing numbers and effective range 

of weapons and sensor systems, resulting in an information war. The current 
international political climate will provide opportunities forever more fusion of this new 
and improved sensor gathered information. This information war and new political 
climate affects the strategy and tactics in the employment of systems, making data fusion 
a key and complex process, pervasive throughout all C3I systems. While the impact of 
data fusion is large, it must be recognized that fusion technology is implemented as a part 
of sensor, weapons, and C2 systems, and not as an independent entity. 

Data fusion is fundamentally a process designed to enhance the value of 
information for decision support. It is an essential, enabling process to organize, combine 
and interpret information from various sources which may contain numbers of targets, 
conflicting reports, cluttered backgrounds, degrees of error, deception, and ambiguities 
about events or behaviors. A high level representation of the data fusion process, 
illustrating its major elements, is provided in Figure 1. Level 1 processing, Object 
Refinement, combines parametric data from multiple sensors to determine the position, 
kinematics, attributes or identity of low level entities. Level 2 processing, Situation 
Refinement, develops a description or interpretation of the current relationships among 
objects and events in the context of the operational environment. The result of this 
processing is a determination or refinement of the battle/operational situations. Level 3 
processing, Threat Refinement, provides estimates of enemy capabilities and enemy 
intent, identifies threat opportunities, and levels of danger. Level 4 processing, Process 
Refinement, monitors and evaluates the ongoing fusion process to refine the process 
itself, and to guide the acquisition of data to achieve optimal results. These functions 
interact with each of the data function levels and with external systems for the operators 
to accomplish their purpose. 

Based on the JDL model, the Air Force Research Laboratory (formerly Wright 
Laboratories) continued an effort to develop a generalized, open, non-proprietary avionics 
information fusion architecture. This architecture, the Avionics Information Fusion 
Architecture (AIFA), depicted in Figure 2, provided an architectural standard which 
defined the different functional areas, the underlying components/techniques for each 
functional area, and the high level interfaces between each component. This reference has 
since been advanced through various contracted efforts and the work of the Open 



Architecture Fusion Work Group (OAFWG). For our purposes here, though, and in the 
interest of a simpler example we will use the AIFA for our remaining discussion. 

Figure 2. Avionics Information Fusion Architecture (AIFA). 
The CSIFT project promotes concepts and solutions that will support the 

evolving fusion architecture standards and standard elements. Specifically, we are 
focusing directly on on-board/off-board information problem, the Information Dispatcher, 
utilizing a "Blackboard" approach. The Blackboard approach has the following 
characteristics: 
X        Architecture is Extensible 
X        Architecture in Scaleable 
X        Architecture accommodate multiple processes 
X        Additional processors are easy to integrate 
X        Architecture is data driven (explicit scheduling of algorithms is not required) 
X        Integration is "plug & play" 
X        No explicit communication required 
X        Architecture is hardware independent 
3 Blackboard Paradigm 

What is a "Blackboard"? Well they used to be big sheets of dark colored slate that 
you hung on the wall and wrote on with pieces of chalk. Then they became green 
"something " hung on the wall, but you still used chalk. Now they are white and you use 
dry erase markers. "Blackboarding" was also an early decision technique in Artificial 
Intelligence applications that used a software "panel of experts" to evaluate a problem, 
each expert suggested a solution, then the decision heuristic combined the results to obtain 
"the answer". 

The CSIFT Blackboard is not exactly any of the above but it makes use of some 
of the concepts displayed in the use of the above "Blackboards". The CSIFT Blackboard 
is a software operating system "extension" that provides a structure for developing and 
executing data driven software applications. We have based our work and initial software 
implementation on a Data Activated Operating System (DADS), developed by the 
Northrop Grumman Corporation. Extensions to the paradigm are being developed via our 
CSIFT project, with Northrop Grumman as a subcontractor. 
3.1       Blackboard Paradigm 

What is the Blackboard paradigm? Envision a large room with a traditional 
blackboard on one wall. The room has desks with "experts", all of whom have a small 
section of the blackboard that they watch diligently. Figure 3 illustrates the concept. 
Every so often, someone comes into the room and puts a sticky note with information 
(data), on the blackboard. The "expert" responsible for that section grabs the data, takes 
it to his desk, performs his function, writes new data on another sticky note, puts it on 
the blackboard in another section. At that point either another "expert" becomes active or 
someone grabs the note and takes it out of the room. None of the "experts" really need to 
know what anyone else does with the data. There is no explicit coordination of effort. 
Nobody really has to "schedule" each task. If a better "expert" becomes available to take 



over a desk, the process is not disrupted (as long the data remains in the same format). In 
the software implementation of this paradigm we rename the "experts" as Functional 
Elements and we identify the data as Data Elements. 

Figure 3. Generalized Blackboard Representation. 
It must be stressed that this simple concept does extend to multiple, distributed 

blackboards for more complex applications. Our current solution does not restrict their 
number or physical allocation and placement in a computing environment. In fact, as has 
been shared, one of the most exciting aspects of this approach is its natural extensibility 
and affinity for larger distributed configurations! 
3.2      Data Fusion Blackboard 

Now we can consider an example of one Data Fusion architecture - the AIFA 
(simplified to provide a manageable example) is depicted in Figure 4. We began with the 
following assumptions: A blackboard architecture exists which allows transparent 
distributed access to data. There are two essential components, the data objects, which 
are untyped, named byte arrays, and the functional elements, which consist of executable 
code which reads the data objects, as well as activation logic which determines when the 
functional element code is executed based on logical conditions which may exist in the 
data objects to which the functional element subscribes. The blackboard may be 
supplemented by intelligent agents, which in this context are dynamically created 
functional elements which are retrieved and instantiated from some persistent database. 
Functional elements do not care where a particular data object resides. Sufficient 
networking resources and abstraction in the API are assumed to make this possible. The 
basic philosophy is that the data objects capture all state1 information, and are accessible 
to any functional elements to be read. They are written by exactly one functional 
element. All procedures or operations are represented by the functional elements. We 
have established the candidate blackboard allocations (Figure 5) described in the following 
paragraphs. 

Figure 4. Simplified AIFA Example Architecture. 

Figure 5. AIFA Example Blackboard Allocation. 
3.2.1 Information Dispatching 

This is the functional process responsible for all interaction with the outside 
world of data. The Information Dispatcher receives all data, both from on-board and off- 
board sources, reconciles temporal discrepancies, and routes data into the fusion 
structure. The Information Dispatcher also handles the data being handed back to the 
outside world. 
3.2.2 Object Refinement (Level 1 data fusion) 

The basic question answered by level 1 data fusion is "who's out there?" The 
operations associated with level 1 fusion are hierarchically decomposed as detection, 



tracking and identification. This suggests a partitioning of a blackboard dedicated to level 
1 fusion into three sub-blackboards that are assigned to these three areas. 
3.2.3 Detection Sub-blackboard 

Functional elements assigned to particular sensors process reports, perform the 
appropriate coordinate transformations and post data objects to the detection sub- 
blackboard. As new reports come in the functional elements are free to prune the data as 
desired. For example, an FE may post the last three reports as separate data objects, or it 
might post the most current, replacing it as necessary. 
Tracking Sub-blackboard 

This sub-blackboard may be further decomposed into two sub-sub-blackboards: 
data association and alignment and track maintenance. Functional elements associated 
with data association scan the detection sub-blackboard and decide which data elements 
might belong together. At this point, hard or soft decisions may be made. In a hard 
decision, new data objects are immediately output which represent several aggregated 
detection reports. In a soft decision, a matrix might be output which represents pairwise 
scoring. An optimization algorithm (e.g. Munkres) could be used by another functional 
element to solve for the best possible pairings. The data objects involved in the pairing 
could be the detection reports only, or the detection reports plus the ongoing tracks 
(assignment of reports to tracks for updating tracks). The track maintenance sub- 
blackboard, reads the output of the data association (data objects with assignments to 
tracks) and updates the track data objects, which are then posted on it's blackboard. With 
the track maintenance sub-blackboard are functional elements associated with estimation. 
These would be used in two ways: to produce a synthesis of measurements from various 
sensors (for example a radar capable of range and azimuth only with measurement from a 
height finder radar), or to time align data (this is necessary in track filtering) by 
propagating state information. The estimation functional elements would not only be 
used by the track filters, but by any functional element requiring their functions. 
Identification Sub-blackboard 

The functional elements associated with this blackboard implement model based 
detection. They scan the track sub-blackboard. Each functional element is looking for a 
specific pattern with it's activation logic. For example, an FE might be looking for tracks 
that might correspond to fighter jets, based on platform dynamics. When a track object 
fits the particular pattern searched for, the ID-FE declares a hit and posts a data object to 
the identified track sub-blackboard. As in data association, at this point either hard 
decisions or soft decisions (possibilities which have some score) may be made at this 
point. This sub-blackboard represents the output of the level 1 data fusion blackboard. 
3.2.4 Situation Assessment (Level II data fusion) 

This consists of three identically structured blackboards: one each for enemy force 
refinement, neutral force refinement and friendly force refinement. The basic questions 
answered at this stage are "what are the groupings?" and "what do they seem to be 
doing?" The basic paradigm used here is model-based detection. Each functional element 
scans all of the identified track objects at the output of level 1 fusion and looks for a 
particular grouping. As such, each embodies a hypothesis to be tested such as "there is a 



squadron of planes flying in the same direction at location xyz". The geo-force refinement 
logic could be implemented as a sub-blackboard whose FE's get to score and vote on 
associations produced in the situation assessment blackboard, based on geographical 
properties, These could be instantiated dynamically as agents which correspond to what 
is possible for a given geographic region. For example, a situation assessment FE, reading 
a group of tracks, triggers and outputs a data object corresponding to a hypothesized tank 
formation at location xyz. An agent responsible for location xyz notes that the location 
corresponds to the middle of a swamp and that heavy vehicles such as tanks are unlikely. 
It, therefore, does not post an output data object or assigns a very low score. 
3.2.5 Threat Assessment (Level 3 data fusion) 

The threat assessment or level 3 fusion blackboard takes inputs from the level 2 or 
situation assessment blackboard. These consist of data objects that describe the friendly, 
neutral, and hostile force structures and activities. The purpose of the functional 
elements used by the treat assessment blackboard is to reason about the possible 
outcomes of these activities, based on weapons characteristics, rules of engagement and 
orders of battle. Probably the most realistic way of mapping this into a blackboard 
architecture is to have a controlling functional element corresponding to the conflict 
wargaming module which spawns agents as necessary to play out scenarios. The 
weapons models, tactics, rules of engagement, and strategy would be resident in a long 
term database accessible to and used to structure the creation of agents who play roles in 
simulations. The wargaming module would pose situations, create the participant agents, 
play out scenarios, and analyze the outcomes. The output would represent the likely 
outcomes and would give an estimate of threat intent. One possible advantage to 
approaching this as a simulation (set of simulations) is that tactics and weapons used by 
friendly forces may be evaluated as well and improvements suggested. The blackboard 
would be partitioned into three parts, an input section, with annotated objects from 
situation assessment, a scratch pad" section, used by the conflict wargaming module used 
to run scenarios, and an output section with likely outcomes and intents. Since the 
conflict wargaming module can execute evaluations in parallel, it would be able to answer 
"what if?" type queries posed by functional elements elsewhere in the system. One 
possible concern is the computational resources used to run simulations. There are 
several possible ways to address this. First, the hardware cost of computing is declining 
extremely rapidly. Faster processors and new techniques such as reconfigurable logic are 
making this so. Second, simulations may be run at many levels of fidelity and detail. 
Several functional elements corresponding to the conflict wargaming module could exist, 
to run the simulations at the appropriate level, or to use either heuristic or analytical 
models to save time. 
3.2.6 Planning Object 

The purpose of the planning object is to make recommendations that improve 
situation awareness. The most logical way to implement this in a blackboard architecture 
is to spawn agents which get to snoop the operations on the level 1,2 and 3 blackboards 
and post their findings on a blackboard associated with planning. Functional elements 
would then read these data objects containing synopses of the other blackboards and 



generate plans. As in other places, methods based on model based recognition could be 
used to look for specific situations and propose a plan. The planning object is one place 
where considerable effort could be expended. The nature of the operations here implies a 
goal matching mechanism that seeks to optimize use of resources to satisfy a particular 
user need. 

At the output of the planning blackboard, a final set of FE's would score these 
plans and output a final set which would meet some threshold criterion. One advantage 
of doing this is that the set would be presented as options with tradeoffs. 
3.2.7    Dynamic Integrated Situation Representation 

This seems very straightforward to map to a blackboard architecture. The output 
data objects of the planning, aircraft status, threat intent and situation assessment 
blackboards would be read by an FE (or hierarchical set of FE's) that would determine 
what to display and how to display it. 
3.3      Key Attributes for the Blackboard Method - a User's Perspective 

We have just discussed how a representative portion of the Avionics Information 
Fusion Architecture (AIFA) could be implemented as a Blackboard system. Due to the 
nature of the Blackboard, any expert processes can be substituted to create any fusion 
architecture. Given this ability, then, a critical aspect concerns the benefits to be gained 
from such an implementation, in the context of the user of the IF system. In this sense, 
the user can assume several roles: human or machine, actively interacting with or merely 
monitoring the IF system. Furthermore, these roles may be set in the context of different 
activities, such as designing or developing the IF system, upgrading it, maintaining it, and 
dynamically interacting with it under mission conditions. 

The strength of the Blackboard lies in its ability to serve the user in all these roles 
and within all these activities. The primary benefit is derived from the consequential 
ability to provide the user with a consistent view of the system from cradle to grave, in all 
phases of design development, testing and use under mission conditions. This allows the 
IF system implemented in the blackboard paradigm to be totally user-driven. 
3.3.1    What Blackboarding Achieves for an IF Architecture 

The whole notion of Blackboarding is to provide a data-driven viewpoint of a 
processing system, without disrupting the effectiveness or efficiencies to be gained 
through a structured or Object-Oriented (O-O) implementation of the actual processing 
software. Blackboarding extracts the functional-flow perspective from within, for 
example, the hierarchical and inheritance-driven structure of an 0-0 design. By extracting 
this perspective, as illustrated in Figure 6, and by making the key components of such a 
viewpoint (functional elements and data objects) accessible. Blackboarding provides three 
critical benefits to an IF system, or to any system for that matter: 
X        Interfacing Flexibility and State Saving 
L        User's context Processing, and 
X        Robustness 

Although these components already exist in the 0-0 implementation of the 
system software and communications structures, their extraction into the Blackboard 
paradigm provides these three additional benefits, which we now discuss individually. 
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Figure 6. A general Blackboard, indicating key components. 

Interfacing Flexibility and State Saving - These two capabilities are illustrated in 
Figure 7. As shown, the state saving is accomplished by the functional elements and the 
interfacing flexibility is inherent in the data objects. Although the functions and their 
states certainly already exist within the system 0-0 implementation, by assimilating 
several functions to post data to a Blackboard, we capture the relational context of these 
functions, their states and the particular data as some functionality of interest to a user, 
which we will then make available to that user through an interface. In other words, this 
aggregation of state, function and data has relevance to a using system, intelligent agent, or 
human, so we make it available easily for interfacing and understanding of the relational 
context that matters, in a much more direct fashion than instrumenting the 0-0 structure 
to capture such information. 
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Figure 7. Capturing function, state, and data relational relevance in a Blackboard. 

The myriad relational relevances of sets of function, state and data, are the very 
heart of an IF system. Hence, the ability to capture any number of these relational views 
is exactly one-third of the key to realizing a truly user-driven IF system under all the roles 
and activities we defined earlier. The second one-third has to do with maintaining the 
user's context, as we discuss next. 

Processing in the User's Context - In an IF system, as well as many other 
complex systems, the user's view is not necessarily that of the software designer or 
system designer. It is, however, the user's view which should drive design, 
implementation or modification decisions. Obviously it is the user's view which applies 
to the use of the system. 

Requiring the user to penetrate or understand the nuances of the software design 
or the computing system design is unreasonable. Especially in IF, where the fusion 
processing is complex in itself, we should not require the user to place their view of the 
functional flow and process sequencing in the framework of the software or system 
design. Whether the user is human or machine, active or passive, their view of the system 
should be the only view they need to deal with. The Blackboard technique provides such 
a view. 

Consider the simplification of the blackboard view of some arbitrary functional 
elements and data objects of Figure 8. Here, we have overlayed the basic functional view 
of this particular system segment over the shadowed data object and function structure. 
This is precisely the view the user requires, with emphasis on functional flow, visibility 
of data, and access to functional state. This view is relevant to the user, without the 
encumbrance of the software or system representations. In the context of this view, the 
user may view, capture, or interface the IF system within the data-driven and 
functionally-concise view of importance. 

Figure 8. Capturing the concise functional view through the Blackboard. 



Now, having the ability to interface easily, maintain state, and view relevant 
portions of the IF system in the user's context, we have two-thirds of what we need for 
an effective, user-driven IF system under all the roles and activities we defined earlier. 
The final one-third has to do with robustness, as we discuss next. 

Robustness - In the IF context, robustness has to do with improving design or 
development effectiveness, easing future modifications and upgrades, and custom-tailoring 
the IF system to a particular mission need. In all of these areas, the IF system needs to 
permit the addition, deletion, or re-organization of functional elements and the data 
objects relevant to the activity in a simple and intuitive manner. As illustrated in Figure 
9, the Blackboard system permits such ease of change. 
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Figure 9. Robustness of the Blackboard system. 

Here, we note that adding (or deleting) functional elements, rearranging 
connectivity, or posting additional data objects to the Blackboard may all be done easily 
and in the user's context. Whether for design, testing, operational optimization, or any 
other reason, the changes can be done purely in the user's functional context. Hence, the 
user's needs, whether for human or machine interface, interactivity, or simple monitoring, 
are always clear in the view of the system which is to satisfy these needs. 

In summary of the Blackboard's ability to support the general task of IF system 
implementation and application, the ease of interface, state saving, view in the user's 
context, and robustness make this technique especially beneficial. Fundamentally, 
Blackboarding extracts the appropriate view or views, whatever they may be, for the 
user, whatever or whoever that may be, in the user's particular activity. As Figure 10 
shows, it extracts the concise, relevant process view from the "clutter" of the (typically) 
0-0 software system executing upon some processing system or systems. Optimal 
software system design is not being trivialized here, and the benefits to the overall quality 
of a software design from 0-O's hierarchical, modular, inheritance-driven paradigm are 
valid and necessary. However, these issues are the domain of the software designer, not 
the IF user. The Blackboarding technique permits both systems to co-exist efficiently, 
and provides a means for the user to extract the proper view of the system functions and 
their important relational aspects. 
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Figure 10. 0-0 and Blackboarding - an effective separation of view. 
3.4      Blackboarding as a Design Aid 

Consider the design representations of Figure 11. Here, we see the division of 
viewpoints for the different design disciplines. The Application Designer, in the IF 
situation, is mission-conscious and process-oriented. This designer seeks to organize 
some arrangement of processes to refine source information such that information critical 
to the mission is most effectively handled in a decision support role. The Application 
Designer is conscious of the need for efficient and cost-effective software and system 
design, but is usually more in the role of setting requirements for such endeavors than 
actually considering them. The Software Designer lives in the world of modularity, 
reusability, and 0-0 design methods by which these, and other cost-effectiveness goals, 



may be accomplished. The process and data flow of the Application Designer exists in 
this realm, but the Software Designer concentrates more upon vertically integrating 
processes, through nested methods and inheritance aspects under the 0-0 paradigm. The 
System Designer works in the realm of databusses, processors, and physical constraints. 
This designer must support the requirements of the Software Designer through effective 
organization of processing and storage elements and their communications links. The 
process and data flow of the Application Designer is remote to this area, where the 
requirements from the Software Designer drive the system implementation. 
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Figure 11. Multiple perspectives of the design process. 

Since the Application Designer needs an understanding of the process and data 
flow as the design is producing, but not necessarily the 0-0 structure of system 
configuration, the Blackboard provides an ideal means to separate and present that view. 
The Blackboarding can capture the relevant processes and data objects to an aspect of 
interest to the Application Designer, who can view this process and data flow 
perspective as the design matures. All the Application Designer requires is a concurrent 
development of the Blackboarding elements (Blackboard, interfaces) with the software 
and system development. Since software development is generally conducted in a spiral 
fashion, with iterative and progressively complete implementations at all levels of the 
design, concurrent implementations of the Blackboard and its interfaces will keep the 
Application Designer focused precisely upon the relevant aspects of the design to 
satisfying the IF requirements. 

From this example, we can draw some conclusions. The Blackboard interfacing 
must do only one thing: configure the design data for its intended application as a design 
visualization tool. Unlike the dynamic application situation, there is no need for any kind 
of "state" information, as the state of the design IS the design. We can extrapolate this 
simple example to the other aspects of life-cycle as well. If the Blackboard can interface 
to the supplier system in any of its manifestations, design, prototype, multi-iteration 
versions, pre-production, and final, then the Blackboarding system can be the Application 
Designer's tool universally, from cradle to grave. In the test manifestations, state-saving 
once again becomes relevant. Basically, we can use the Blackboarding technique as the 
designer's viewer, subject to the same two requirements we defined in testing the flexible 
interface and state-saving hypothesis: 
X        The input and output interfaces to and from the blackboard must be possible, and 
Z        State information must be provided along with control or information data. 

We can conclude from this simple example and its extrapolation to the more 
complete life-cycle, that our hypothesis regarding the ability to provide a consistent 
user's view of the AIFA is valid, and that such a view has value to all aspects of an IF 
system's life-cycle, subject to the requirements we asserted. Again we defer more 
comprehensive discussions of the requirements to the conclusion of this section, and 
continue into the application aid case. 
3.5       Blackboarding as an Application Aid 



To optimize some facet or facets of an IF engine, visualization or AI-processing 
systems (intelligent agents) need to capture process and data information precisely into 
their particular user's view of the system and data. Our studies revealed that the user, 
which could be an intelligent agent (machine or human), could test hypotheses based upon 
the data presented through the blackboard, to optimize the IF system via control 
functions. For example, assume a mission manager function in the AIFA architecture, 
which includes an intelligent agent whose purpose is to optimize the probability of 
optimal sensor mixing. 

Here, similar to the case we considered under the flexible interfacing and state- 
saving proof, our Blackboard includes a posting interface and some output interfaces. 
The Blackboard captures several information and control data objects, including: 
X        The Resource Manager commands to the Information Sources which reveals how 
these resources are being commanded, 
L        The information output of these sources, which reveals the results of executing the 
commands, 
X The information provided to the Enemy Force Refinement from the Information 
Dispatching, which reveals the information upon which it is acting, and the result of the 
Threat or Target Intent processing, which is the conclusion of this processing sequence. 

In other words, the Blackboard captures what we are commanding, what 
information we are getting from the sources, and what our intent processing is deciding 
based upon such information. We may then provide some or all of this information, with 
its associated state, in whatever format we choose to the human user, by interfacing it to 
the PVI interface function. We may also provide this information, via a system interface, 
to some intelligent agent operating under the Mission Manager to optimize this sub- 
processing sequence within the AIFA. Hence, we have the ability to form the user's view 
from the AIFA, in a particular context for a particular reason, and could easily do so for 
myriad other context and reasons, subject to the same requirements we have seen for the 
previous tests: 
£        The input and output interfaces to and from the Blackboard must be possible, and 
X State information must be provided along with control or information data. 

We can conclude from this example and its extrapolation to the more general case, 
that our hypothesis regarding the ability to provide a user's view as a dynamic application 
aid is valid, subject to the requirements we asserted. An once again we defer our 
discussions of the specifics of these requirements to the conclusion of this section. Next, 
we look into the robustness issues. 
3.6      Implementing Future Modifications 

The Blackboard approach is essentially "made to be modified." As illustrated in 
Figure 12, upgraded or new processing entities can be integrated with a process and 
function view (application designer), as well as the necessary software and system 
implementation views (software/system designers). Any new processes and their 
associated data appear in the process and data flow view to the Application Designer, as 
methods and data in the inheritance of the 0-0 structure to the Software Designer, and as 
processing, storage, and communications loads to the system designer. 



Another aspect of robustness which our investigations revealed is that the 
consistency in user's view provided by Blackboarding can not only extract the proper 
perspective in the design stages, but can actually enhance the whole process. The 
Blackboard perspective remains consistent across all portions of a software designer's 
iterative development paradigm: design, implementation, testing, assessment, revision, 
and so forth. This consistency of view ensures that the Application designer is 
responding to issues raised in the various iterative development stages with the proper 
understanding. 
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Figure 12. Upgrading with the multiple-perspective views. 
3.6.1    Providing Customized, Interactive User Interfaces 

This capability can build directly on top of the blackboard context, again leaving 
the specific implementation of the software and hardware system functionality to their 
respective domain specialists. We basically proved this capability in the context of the 
previously discussed Intelligent Agent addition to the AIFA. The only additional issue is 
if we wish to implement such customized interfaces in-mission. Then we must determine 
whether the user's view of the system can actually be reconfigured in a manner that it 
does not disrupt ongoing IF functions critical to mission performance. The issue is not 
whether or not it can be done, but how to synchronize such an action into the dynamic 
mission execution. Hence, we see an additional requirement: the customized interfaces, if 
they are to be dynamically reconfigured in-mission, must not disrupt ongoing IF or other 
mission processing functions. 

Basically, ignoring the in-mission aspects, the ability to customize the IF system 
for the user through the Blackboarding technique can be thought of as a layered system, 
with each layer in a particular specialization domain, and the focus of the whole 
implementation is upon consumer (user)-driven IF system optimization to satisfy diverse 
and changing mission needs. This is illustrated in Figure 13. As we disclosed earlier, the 
entire blackboard concept is also made to be modified, since the same consumer-driven 
paradigm for application also holds true for design, implementation and modification. By 
providing the user a consistent view of the system in all phases - design, implementation, 
modification, and application, we ensure a complete, user-driven system. Since it is an 
open architecture, data-driven, and object-oriented, ease of enhancement is built-in right 
from the beginning. 
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Figure 13. A layered perspective of the Blackboard as applied to IF. 
3.7      Blackboarding and an Information Fusion Testbed 

We have discussed three principal features of Blackboarding which demonstrate 
its support within an Information Fusion architecture. These same three attributes also 
permit the Blackboarding technique to serve as a common integration framework for the 
purpose of implementing a Distributed IF Testbed - which can serve all developers, 
testers, and users of IF technology in their particular missions and endeavors. In this 
section, we describe how this support for an Information Fusion Testbed can be achieved. 



We begin with an abstraction of the view of Blackboarding for IF we presented at 
the conclusion of the previous section. Basically, this is a layered view of the Blackboard 
and its interfaces implemented upon some set of applications executing upon some array 
of processing systems. The interfaces basically provide users, or consumers, in-context 
access to the application/system sets, or suppliers. If we wish to make such a structure 
compatible with many different consumers or suppliers, we need only to implement the 
appropriate interfaces, as illustrated in Figure 14. 
,EINVALID_FIELD: Object0 
Figure 14. Multiple consumer/supplier interaction via the Blackboard. 

The general strategy for the evolution and optimization of IF technology is to 
continue developing complementary Air-to-Air (A-A) and Air-to Ground (A-G) IF 
technology, by implementing on the ground first, and then transitioning these technologies 
to the air. An critical aspect of this paradigm is that it requires the development of a 
testbed, that is, an infrastructure and technology base to permit the development and 
testing with maximal use of real-world data and cooperation and collaboration of world- 
class talent. A distributed IF Testbed is the framework by which such talent, data, and 
technology may be organized collaboratively to develop the IF we need for the next 
century. The Blackboarding technique can provide that framework, through its ability to 
interface myriad applications, systems, and users, and to provide these users their 
necessary viewpoint and context. We will demonstrate this concept by beginning with a 
snapshot of a real-time embedded IF architecture, set in the Blackboarding framework. 
Then we will show how this system's development, testing, and implementation may be 
achieved under a Blackboard-supported testbed concept. 

Consider a Fusion Manager function, as illustrated in Figure 15. Typically, and 
consistent with the AIFA or JDL fusion paradigms, such a function would be engaged in 
gathering information from source objects such as sensors and CNI systems, and invoking 
stages of object and threat refinement to provide a threat or target assessment to the 
Mission Manager. In this subsystem of the overall IF process, the consumer is the 
Fusion Manager, which receives information in a Fusion Manager's view of the situation, 
through an interface to the Blackboard. Information from the sources each have their own 
interfaces to post data (information and state) to the Blackboard, in an active mission, the 
Fusion Manager would also direct a sensor manager to reconfigure the source (sensor) mix 
and modes, although we do not show that aspect in the figure. 
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Figure 15. Blackboard supporting a Fusion Manager - real-time application. 

Now, consider how this Fusion Manager might have been developed and tested, 
using Avionics Laboratory Assets. Assume that the MBV (Model-Based Vision) 
Laboratory had some sensor models which would serve well as test benches for the 
sensors, and that JMASS included environment and CNI models which would provide 
realistic simulation of these aspects. An IF Testbed would need to integrate these two 
resource laboratories (MBV and JMASS), and maintain the Fusion Managers view, to 
permit development and testing. 



Figure 16 shows how the Blackboarding can support this activity. Here, the 
Blackboard provides the means to permit the KHOROS-framed MBV Lab sensor models 
and tools to interact with the JMASS-framed environment and CNI models. The 
Blackboard also extracts the Fusion Manager's viewpoint, and can support multiple 
subscribers (consumers) in a situation where different individuals or organizations may be 
responsible for, or interested in, different aspects of the Fusion Manager design, 
development or testing. The MBV Lab is not concerned about the fact that they operate 
in a KHOROS framework upon Unix systems, and that JMASS operates in a Solaris 
environment. The JMASS facility is similarly unconcerned about inter Lab particulars. 
The developers, designers, or testers (subscribers) viewing the simulation results are 
unconcerned with any of these inter-lab application or system issues, and concentrate on 
the function and flow in the context of their needs. The Blackboard enables all of this. 
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Figure 16. Blackboarding managing lab assets for subscribers in a development or testing 
application. 

Now we can extend this concept to a distributed situation. Let us now assume 
that we are using not only Avionics Laboratory assets, but contractor's or other 
government facility assets at geographically-dispersed facilities. We might also consider 
that the development or testing is a collaborative effort, involving users (consumers) at 
geographically-dispersed locations. Implementation of a Distributed IF Testbed, under 
the Blackboarding paradigm, is again merely a matter of proper interfacing, as shown in 
Figure 17. 

In this situation our interfacing has two classes - local and remote. Here, a 
CORBA (Common Object Request Broker Access) implementation would serve well as 
the local interfacing paradigm. Our figure is of course a simplified view, as CORBA shells 
and other CORBA structures would permeate into the applications in a fashion more than 
a simple interface "block." A Java-based remote interfacing construct would serve the 
remote users very well, as the Java applet and byte coding capabilities would provide 
browser-based consumer-supplier interaction as well as visualization of the testbed 
operation and execution. In fact, a Java-based, "Intranet" implementation, using CORBA 
at the intermediate levels, might be a good, common access paradigm for the IF Testbed in 
general. 
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Figure 17. Blackboarding to enable local and remote access to a geographically-distributed 
IF Testbed. 
4 A Word About CEENSS 

The Continuous Electronics ENhancements using Simulatable Specifications 
(CEENSS) program seeks to establish methods and tools for stable, repeatable, 
manufacturable electronics designs by focusing on formal requirements modeling, 
requirements verification through mathematical proof, and a complete, unambiguous, 
executable specification - called the SimSpec. The overall concept, depicted in Figure 18A, 
has shown outstanding improvements in overall design and design maintenance time - 
especially over a life-cycle of change, reducing risk and cost-to-market. A composition of 



a SimSpec is shown in Figure 18B. The CEENSS approach also centers on the use of 
'Design Shelving' as a critical aspect of its Product Development Process. This 
framework is summarized in Figure 18C. 

Figure 18. The CEENSS Concept. 

Figure 18B. The CEENSS SimSpec. 

Figure 18C. The Design Shelving Framework. 
SYMVIONICS has successfully applied the CEENSS Spiral Development 

Methodology and many of the projects' tools during the CSIFT program. These "lessons 
learned" have been shared through involvement in the CEENSS Industry Review Board 
(IRB). For more information about the CEENSS program, and its current status and 
progress, refer to the web-site at http://www.ececs.uc.edu/~kbse/ceenss/. 
5 Summary 

In conclusion, the CSIFT Blackboard represents an exciting step in high 
performance distributed operating environments, with potential applications well beyond 
its information fusion roots. We have seen outstanding characteristics in both 
development (rapid, expressive, extensible, partitionable) and execution (behavior, 
performance) references. Our work will result in a set of open architecture tools and 
hardware demonstrating the initial off-board/on-board fusion information dispatcher, but 
also suitable for experimentation and application to other domains. We welcome any 
opportunity for discussion, critical analysis, additional research, or transition into 
developmental applications. Contact either author at (937) 426-4504, or through 
psalchak@symvionics.com. 
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