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Abstract 

This paper describes a new technology that can provide a global VME memory 
management in supporting the need of strong partitioning among multi-processor 
applications on the VME backplane. The technology allows each VME board to maintain 
a fault containment region on board level and prohibit fault propagation through the bus. 
The described techniques do not require any modification in the standard and the existing 
boards, and consequently, maintains the plug-and-play advantage of the VMEbus 
hardware products. The approach is to use a message passing mechanism for 
multiprocessing instead of shared memory. A software layer has been developed to 
support message-based inter-module communications using the available features 
provided by any standard VME card and still detect errors and prevent fault propagation. 

1.  Introduction 

Advancements in technology have enabled the avionics industry to develop new design 
concept, which results in highly integrated software-controlled digital avionics. The new 
approach, referred to as Integrated Modular Avionics (IMA), introduces methods which can 
achieve high levels of reusability and cost effectiveness compared to earlier implementations 
of avionics [1]. The IMA approach encourages partitioning and using standardized building 
blocks in building environmental and functional components of avionics. Strong functional 
partitioning facilitates integration, validation and FAA certification. Following the IMA 
guidelines, the cost of both development and maintenance is expected to decrease because of 
large quantity production of the building blocks, lower levels of spares, and reduced 
certification costs. 

The goal of this work is to develop a fault tolerant architecture that encourages functional 
partitioning and use of commercial-off-the-shelf (COTS) technology in implementing 
integrated control systems for both commercial and military aircraft. Integration of 
electronic controls is highly demanded by OEMs to reduce weight and maintenance costs. In 

DTIC QUALITY INSPECTED 4 



addition, the integrated approach allows sharing of common resources such as power supplies, 
cooling system, data bus, etc. The use of a fault tolerant architecture for the integrated 
control is a necessity to minimize the risk of loosing multiple control functions due to some 
hardware or software failure in the unified environment. 

The airborne backplane bus is one of the most important components in integrated modular 
avionics. While much backplane bus designs have been proposed, only a few are actually used. 
Selecting the backplane bus is affected by many design and engineering factors, such as 
performance, reliability, and fault-tolerance. Although, such issues are very important to 
ensure certain level of safety of commercial jet aircraft and high availability of military 
aircraft, the cost of the bus and associated line replaceable modules is a major concern. 

Most of the currently available dependable backplane bus systems are expensive and supplied 
by very few vendors, such as ARINC 659[2]. It is clear that there is a need for an affordable 
bus system that provides the required levels of dependability for an integrated utility control 
and complies with the IMA design methodology. This paper shows how to enhance 
functionality and overcome inefficiencies in commonly used and widely manufactured low- 
cost buses to make them suitable for an integrated control. Since the trend in implementing 
today's real-time embedded applications is toward the use of commercial-off-the-shelf open 
architecture to reduce costs and facilitate system integration, the VMEbus system [3] is a 
prime candidate because it is both rigorously defined and widely supported. In addition, there 
is an expanding selection of VMEbus boards and vendors that guarantee competitive prices 
and continuous support. Moreover, the VMEbus offers an open architecture that facilitates 
the integration of multiple vendors' boards. Such features make the VMEbus an attractive 
choice for integrated utility control. 

However, the VMEbus standard does not impose strong functional partitioning and allows 
fault propagation from one board to another, as we discuss in Section 3. Such weakness 
limits the use of the VMEbus in an integrated control system. This paper presents 
techniques for strong partitioning of multi-processor applications that maintain fault 
containment on the VMEbus. The suggested techniques do not require any modification in 
the standard and the existing boards, and consequently maintain the cost advantage of the 
VMEbus hardware products. In addition, a fault tolerant architecture is proposed for an 
integrated control system. The architecture includes commercial-off-the-shelf hardware and 
software components and other AlliedSignal- developed products to provide a reliable and 
cost-effective integrated control platform. 

2.   An Overview of the VMEbus 

The VMEbus design is highly influenced by the development of the Motorola MC68000 
microprocessor, although nowadays VME boards are available for many other processors. 
The VMEbus allows multi-processing, expandability and adaptability by many design and 
processors. It handles data transfer rates at speeds in excess of 40 Mbytes/sec using parallel 
data transfer. 

The VMEbus is asynchronous and non-multiplexed. Because it is asynchronous no clocks are 
used to coordinate data transfer. The system clock is 16Mhz and has no relation to the other 
bus activities. Typical uses of it include bus timers, memory refresh circuits, serial I/O time 
bases and synchronous state machines. Data is passed between modules using interlocked 
handshaking signals where cycle speed is set by the lowest module participating in the cycle. 
Using asynchronous protocol, in the VMEbus, provides reasonable compatibility to integrate 
products from various vendors. 



Master-slave architecture is used in the VMEbus. Modules can be designed to act as master, 
slave or both, although some modules can be configurable. Before a master can transfer data 
it must first acquire the bus using a central arbiter. This arbiter is part of a module called the 
system controller. Its function is to determine which master gets the next access to the bus. 
The bus arbiter grants the bus according to prioritized requests handling or simply using round 
robin. Bus grant signals are propagated back to the requester through a daisy chain over all 
modules between the requester and the system controller. Four levels of arbitration are 
provided, each with its own daisy chain. Every module has a set of jumpers to select the 
arbitration level. The bus arbiter may prioritize requests according to its arbitration level. 

All interrupt service routines are user defined. The daisy chain again is used to propagate the 
acknowledgement signal from module to module until it reaches the interrupter. The 
interrupter then places a STATUS/ID on the bus to notify the handler of which card initiates 
the interrupt. 

Due to the daisy chaining used for bus mastership requests and interrupt, modules are 
position-sensitive. The first slot is reserved for the system controller. The closer the module 
to the system controller, the higher the privilege of getting the data bus and the higher the 
priority of this modules interrupts. 

The VMEbus provides support for multiprocessing using shared memory. To avoid 
inconsistency while updating shared memory, read-modify-write bus cycles are to be used. 
The read-modify-write cycle allows updating shared memory as an atomic transaction and 
prevents race conditions. 

Although the VMEbus does provide reasonable compatibility to integrate products from 
various vendors, fast parallel data transfer, and a wide support by many manufactures, fault- 
tolerance in VMEbus based systems is very limited. The next section discusses fault detection 
mechanisms in the VMEbus and elaborates weaknesses in fault containment and fault- 
tolerance. 

3. Fault-Tolerance Challenges in the VMEbus 

The VMEbus relies on modules for detecting and reporting faults on a specific failure control 
line. VMEbus modules are expected to have on-board firmware diagnostics to detect faults. In 
response, the system controller polls every module by reading its status register to identify 
the faulty module. Generally, the build-in-test and transmission time-out provides limited 
fault coverage for only permanent faults. 

The VMEbus master (sender) monitors the time for data transfer. If the receiver does not 
acknowledge the message, the master times out data transfer and retransmit. The bus does not 
provide error detection or correction for the transferred data. There is no redundancy in 
either the transmission lines or the transferred data on the bus. In addition, the VMEbus 
system allows a single point of failure by using a centralized mastership control of the bus. 
The system controller organizes all communications between modules. Moreover, the system 
controller is responsible for monitoring the failure control line and for tracing the faulty 
module, which derived the failure line. Faults in the system controller can bring down the 
whole system. 

The shared memory model used by the VMEbus for multiprocessing makes the modules 
tightly coupled. In the absence of message verification, faults can propagate from one module 
to the others. Errors cannot be contained within the faulty module and can jeopardize the 
behavior of the whole system. 



The daisy chain reliability is questionable. Each module either accepts the bus grant or passes 
it over to the next module. Failure of one module may break the chain and affect other 
modules. Breaking the chain can prevent other modules from getting mastership of the bus 
and from reacting to interrupts. Communication between modules can be highly affected and 
the whole system can break down. 

From the former discussion we can conclude that the VMEbus needs enhancements to 
strengthen its fault-tolerance capabilities, specifically in containing errors and recovery from 
failure. The following issues need to be addressed in order to improve containment of faults in 
a VMEbus system: 

1. validating the inter-module data transfer. 
2. propagating faults through the use of shared memory. 
3. breaking the daisy chain because of a module failure. 

In addition, fault recovery mechanisms need to be added to: 

1. prevent having the system controller as a single point of failure. 
2. allow redundancy for the system critical functions. 

The next sections provide a discussion of our approach to address these issues starting with 
techniques for fault containment. 

4.  A Fault tolerant VMEbus 

Because low cost is an important feature of the VMEbus, enhancing the fault containment 
capabilities should avoid changing the design and the layout of the currently available cards. 
Changing the design a VME card will not only require reengineering and revalidation which 
increases the manufacturing cost, but also will again limit the number of vendors who agrees 
to do the modifications. Thus, the suggested approach should be constrained by preserving 
the current hardware design of the cards as much as possible. 

As illustrated in the previous section, both fault containment and failure recovery features 
need to be improved. In the following subsections, we present our approach to enhance these 
features. 

4.1 Fault Containment Techniques 

As illustrated in the previous section, fault containment on the VMEbus needs to be added. In 
the following subsections, our approach is discussed. 

4.1.1   Inter-module Data Transfer 

The VMEbus features parallel data transfer between modules. There are no error detection or 
correction bits associated with the transmitted data. Adding such bits will significantly affect 
the VME card design and, therefore, is not an option. As an alternate approach, an error 
detection code, e.g. cyclic redundancy check, can be appended to the end of the data. The 
message transmission module within the operating system kernel can generate the code. 
Although the software-generated error detection code is less efficient than the hardware-based 
implementation, no card redesign is necessary using the software approach.  For higher 



dependability, an error correction code can be appended. Because that error 
detection/correction code will reduce the efficiency of the data transfer on the bus and 
consequently the performance, it may be possible through the kernel to dynamically select 
either to append error detection or error correction code according to the length of the 
transmitted data. The receiver module should validate the data using the error 
detection/correction code before committing that received data. 

Using such information redundancy within the transferred data fits the multiprocessing 
scheme proposed in the next subsection. 

4.1.2   Multiprocessing 

Strong partitioning of modules is one the most important IMA requirements which the 
VMEbus lacks. Multiprocessing in the VMEbus uses a shared memory mechanism that allows 
faults in one module to cause errors in other non-faulty modules by writing to their 
memories. In our approach, we used a message-passing mechanism instead. The challenge is 
to support message-based inter-module communications using the available features provided 
by the VME cards and still detect errors and prevent fault propagation. 

To support messages, a buffer is to be declared and dedicated only for messages. A message 
buffer is the only globally visible memory of a module. Modules are not allowed to access the 
memory of other modules other than their message buffers. In addition, access to a message 
buffer is restricted to read-only for modules that do not own that buffer. No card is supposed 
to write to the memory of other cards. If a master wants to send data to a slave, it simply 
writes a message for the slave into the master's message buffer. The slave reads that message 
from the master memory and reacts to it. 

A specific message format can be imposed that contains the sender ID, receiver ID, error 
detection or correction code, and a message unique ID. The sender should perform error 
detection and correction encoding. The slave will check the contents of the message before 
reacting to it. The receiver can detect addressing errors in the message by verifying the 
sender ID and receiver ID. In addition, transmission errors can be detected or recovered using 
the information redundancy in the form of the error detection or correction code in the 
message. 

Synchronization can be achieved either by polling the message buffer of the sender for the 
required message, or by using the address monitoring feature provided by the VMEbus to 
interrupt the receiver as soon as a message is being written by the sender in the designated 
address. The message ID can be useful to overcome race conditions if the receiver tried to 
read the message before it is ready which may be is possible if the VMEbus has a higher 
priority than the local bus. The message buffer can be partitioned for various cards and slaves 
can expect a unique location for their messages. The adopted application execution- 
synchronization mechanism is a designer decision. 

Using this technique, errors in the sender can be isolated and prevented from propagation to 
the receiver. A fault in the sender may affect the receiver only through the message. As 
explained earlier, no write permission will be granted for a card to the memory of others. 
Errors in the message can be either in data, sender ID, receiver ID, Message ID, or message 
format. The receiver should be able to detect errors in the message body by validating the 
message format, error detection code, sender ID and the receiver ID. The message ID can be 
checked to guarantee the right message sequence. Any error in the message detected by the 
receiver will invalidate the entire message and a recovery action will be taken. An addressing 



fault in the receiver that may get it to read from the wrong card or the wrong address within 
the right card will affect the message format and the sender ID. Furthermore, the mapping of 
message buffers of cards in the global address space of the VME system should be widely 
distributed so that an addressing error can not change a valid global address into another valid 
address. Maintaining a suitable hamming distance can guard the system against permanent or 
transient stuck failure of one or more address bits. Thus, the system will be functionally 
partitioned. Faults can be within the faulty module and will not affect other modules. 

4.2  VMEbus failure 

The VMEbus relies on a centralized control for arbitrating the bus mastership among various 
cards connected to the bus. The centralized control is vulnerable to a single point of failure 
that can bring down the whole system. In addition, a daisy chain is used in the VME 
backplane to propagate bus grant and interrupt acknowledgment signal. A failure in one 
module may break the chain and affect the following modules in the chain preventing them 
from communicating over the VMEbus. 

One approach to tolerate failure of the VMEbus is to provide an alternate path for inter- 
module communication as shown in Figure 1. Many vendors include a secondary bus on their 
VME boards such as the VME Subsystem Bus (VSB) [5] and the RACEway Interlink [6] to act 
as a local subsystem extension bus. Both the VSB and the RACEway interlink allow the 
developer to reduce the VMEbus traffic by using the secondary bus for some DMA and I/O 
operations. Using either the VSB or the RACEway interlink to tolerate failures in VMEbus 
requires no modifications in the VME boards and allows the use of cost-effective off-the-shelf 
boards to develop avionics and other mission critical applications complying with the IMA 
specifications. 
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Figure 1: A Fault tolerant VME-based architecture using VSB secondary buses 

Another approach for tolerance of VMEbus failure is to use separate redundant VME 
backplanes that fail independently, as shown in Figure 2. The redundant backplanes host 
modules capable of performing the same functions on the primary backplane. 
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Figure 2: A Fault tolerant VME-based architecture using Separate VME backplanes 

Although using a secondary bus or a redundant VME backplane can tolerate a VMEbus failure, 
it is necessary to allow replication of critical system components and manage such 
redundancy. In the next subsection, we discuss an approach to managing redundancy. We 
propose the use of Redundancy Management System (RMS) [7], a fault tolerant executive 
developed by AlliedSignal, for detecting and masking errors and for redundancy management. 

4.3   Redundancy Management 

The use of redundancy is very common in fault tolerant systems. Spare units are usually 
included that can be either passive or active during normal operation. Redundancy 
management is required to coordinate the interaction between the primary and spare units. 
Managing redundancy typically needs to be considered during the design and the development 
of the application. 

One or more backup unit is used in active redundancy. A backup will be activated in case of 
primary unit failure. The backup needs to be updated frequently with changes in the primary 
internal state (processor execution state and program store). When activated, the backup will 
resume execution from the last update (checkpoint). The more the frequency of sending of 
checkpoints to the backup, the shorter the time needed for recovery. However, 
checkpointing increases the load on the primary unit and may affect its performance during 
normal operation. Active replication on the VMEbus does not require multiple backplanes. 
The application software may need careful design to accommodate checkpointing without 
dramatic effects on the performance. In addition, checkpoints needs to be safely scheduled so 
that it would not introduce contention on the bus and delay other essential traffic. Another 
challenge in active replication is related to fault coverage. The activation of a backup 
depends heavily of the detection of an erroneous condition within the primary processor. 
The fault coverage within the boards needs to be comprehensive which is hard to guarantee 
while using commercial-of-the-shelf boards. 



Using passive redundancy, the spare units perform the same function performed by the 
primary unit. The output of all units is subject to voting to tolerate erroneous output from 
some faulty units. One way of applying this approach to the VMEbus requires the use of 
multiple backplanes, as the case in the vehicle management computer of the X-33 
(experimental prototype for the single step to orbit space shuttle). Alternatively, voting can 
be performed internally within the same backplane using multiple modules, as shown in 
Figure 2. We intend to use the RMS for redundancy management. RMS ensures a 
synchronized and consistent execution for a module and its replicas. In addition, it is possible 
to support different levels of criticality by the number of replicas. For example, using triple 
redundancy, it is possible to mask permanent, intermitted and transient faults by RMS. For 
lower criticality functions, a dual redundancy can be used while RMS will provide error 
checking and will allow fail save operation. In addition, RMS will provide a homogenous error 
detection capability and fault coverage for all boards in the system regardless their vendor. 

5. Fault-Tolerant Architecture 

We propose the fault-tolerant architecture shown in Figure 2 for an integrated control 
system. Modules that need to communicate with each other are grouped together, Groupl 
and Group2 in Figure 2. Groups are replicated by providing similar modules running the 
same programs. RMS is used for redundancy management and error detection for the 
replicated groups. RMS consists of two major components; the Fault- Tolerance Executive 
(FTE) implemented in software, and the Cross Channel Data Link (CCDL) implemented as a 
daughter (mezzanine) board. 

The VMEbus standard raises important issues in the location of replicated modules. As 
mentioned in Section 2, the priority of bus mastership and interrupt will be granted to the 
left-most module when multiple requests are made on the same arbitration or interrupt 
request line. Thus, a replica of a module needs to be assigned the same arbitration and 
interrupt request line of that module. This will allow predicting the bus schedule. In addition, 
groups of the highest criticality needs to be inserted in the left-most slots of the VME 
backplane, so as not to be affected by a failure of a low criticality group which breaks the 
daisy chain of the VMEbus. The message-passing inter-processor communication mechanism, 
presented in Section 4, will guarantee fault containment for modules within the same group 
using the VME bus. 

The use of RMS in this architecture makes it possible to support different levels of criticality 
within the same integrated platform. Using dual redundancy with RTEM allows a fail-safe 
mode of operation. Increasing the number of replicas to three allows the fault masking, while 
the use of four replicas enable the handling of Byzantine disagreement between replicas. On 
the other hand, the use of independent backplanes, it is possible to tolerate a VMEbus bus 
failure. It should be noted that the fault-tolerance issues related to the power supply of the 
VME backplane is orthogonal and is beyond the scope of this project. 

6. Summary 

A proof-of-concept prototype has been built using COTS components as shown in Figure 3. 
The prototype includes three VME backplanes, each of them hosts two PowerPC processor 
boards. VxWorks, the real-time operating system from WindRiver Systems, is purchased and 
integrated with the hardware. The strong partitioning inter-processor communication 
protocol has been implemented and integrated within VxWorks. Initial testing has been 
performed and currently fault injection experiments are being conducted. In addition, the 



performance of multi-processing communication using the protocol is being measured. A 
software design document and a user manual have been prepared for application desingers. 

8: ..   B 
Figure 3: A proof-of-concept demonstration prototype 
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