
Lessons Learned Using COTS in Real-Time
Embedded Systems

Presented to the Joint Avionics and Weapons Systems Support
Software and Simulation Conference

June 1998

Robert Rosenberg
Sabre Systems, Inc.

Pine Hill Technology Park
48015 Pine Hill Run Road, Building C

Lexington Park, MD 20653

DTIC QUALITY INSPECTED 4

Lessons Learned Using COTS in Real-Time
Embedded Systems

Presenter: Robert Rosenberg, Sabre Systems, Inc.

Track: SDT1

It is certainly not news that the use of commercially-available-off-the-shelf (COTS)
hardware and software is revolutionizing the acquisition process for new real-time
embedded systems. Designs using COTS hardware and software can be the only
approach to meeting today's aggressive schedule and cost budgets, while lowering
production risks. Using Open Systems is an attractive approach to inexpensively
incorporate increased performance as technology improves. It is hard to imagine a
program manager who would not want to try to take advantage of these benefits.

DOD is not only encouraging, but also mandating the use of COTS hardware and
software in the development of new and replacement (sub) systems to meet current
budget constraints.

However, the use of COTS must be carefully managed or the results of these
benefits will disappear into a life cycle maintenance nightmare. There are several lessons
that have been learned about the use of COTS that should be considered before planning a
new program.

1.0 Introduction

Historically there were sound reasons not to use COTS. Today technology has
evolved and many of the historic problems have been overcome.

The use of Commercial-Off the Shelf (COTS) hardware and software in real-time
systems is not new. I have been involved in developments using COTS in real-time
systems since 1983 and I was hardly a pioneer. The use of COTS in real-time systems in
the past was limited by technical considerations, operational suitability issues, and life
cycle concerns. The lower cost of COTS was always attractive, but for most programs
these limitations made its use impractical.

The major performance hurdle to using COTS in Command and Control (C2) real-
time applications was always that COTS hardware and its shrink-wrapped operating
systems were not designed to handle the quantity of interrupts that C2 systems need to
process in a timely fashion. As technology developed, it was possible to use intelligent

Controller cards to solve this technical issue. There were only a handful of vendors who
started to design their products for the real-time market. Today there is a wider range of
hardware and operating system products available from a growing number of vendors
whose systems handle frequent interrupts in a fashion that will support demanding real-
time requirements.

In the past, COTS was designed to operate in a temperature and humidity
controlled environment. That made it unsuitable for many real-time applications, which
were required to operate reliably in more extreme environments. Today many hardware
manufacturers are designing their equipment to be more tolerant of environmental
conditions with improved reliability.

One of the largest management reasons for not using COTS was the lack of control
of parts availability. If a program manager (PM) was willing to pay to operate an
assembly line, he could guaranty the continued availability of spare parts. When it was
necessary to close a line, that PM could purchase a life time supply of spares before
closing the line. When using COTS, programs could try to obtain a commitment from the
manufacturer to provide notice before making a part unavailable, but I can recall more than
one case when such an agreement was in place and the vendor either failed to honor it or
forgot about it. Parts obsolescence issues remain one of the largest challenges in the use
of COTS.

Another reason that COTS was not used in the past was economic. Programs did
not want to incur the expense to re-host and maintain standard software that was already
hosted in a MIL-SPEC computer. Sometimes, it was less expensive to purchase an
identical MIL-SPEC computer to re-host that function. The C2P hosted on an UYK-43
processor that decoded Link 11 and Link 16 messages was a good example of a function
that did not make economic sense to re-host, several years ago. Software reuse is still a
sound approach to saving money and is one alternative that should still be considered
when designing new systems.

Sometimes it made little sense to re-host software on COTS if a program already
had a design tightly coupled to an existing processor. If that processor became obsolete
and if its replacement had a compatibility mode, it became very inexpensive to re-host on
the replacement MIL-SPEC computer. Many UYK-7 applications were re-hosted on
UYK-43s for that reason. Today's faster processors require less tightly coupled designs
to meet performance requirements.

Sometimes the use of COTS in the past was not considered for other reasons. For
example, Congress mandated the use of the UYS-2 common signal processor on several
programs. Other times it was prudent for a program manager to use a "MIL-standard"
computer to widen the logistics base for those processors and take advantage of their
existing logistics infrastructure. Top level policy has changed and the use of "MIL-

Standard" computers is not required or encouraged for new applications. The concept of
controlling logistics costs is still valid and can be applied to COTS systems.

Since most of these reasons are no longer valid, the use of COTS is being driven
by an effort to substantially reduce development cost and reduce the time required to
develop new systems by leveraging off of the extremely large commercial base of COTS
hardware and software development tools.

This paper presents lessons derived from my experience related to the use of
COTS and how it can be successfully used in real-time systems. It is presented primarily
from a government program manager's point of view, but provides information useful to
others involved in developing real-time systems. It only addresses acquisition initiatives,
policies, development techniques, and practices to the extent that they are uniquely
applied to COTS procurement and development. The references are not the source of the
information presented; they have been included to provide the reader with additional
background on the many topics discussed.

2.0 Methods Used to Reduce the Risk of Initial COTS
Developments

The development of new systems using COTS can be successful if the proper
approach is taken.

To utilize COTS hardware and software, changes are required to the way that real-
time systems have been traditionally developed. These changes affect the entire range of
the project and include both the buyer and developer. To achieve an accelerated low cost
development, it is necessary to modify the approach to system acquisition from system
specification through design, testing, acceptance and maintenance.

Successful COTS developments require a new mind set for both the buyer and the
systems integrator1. In the past the buyer defined requirements and then ensured that the
developer properly designed, built and tested a system to meet those requirements. The
developer closely held many of the design tradeoffs and cost issues (in fixed price
contracts). For COTS developments, roles need to be redefined. For systems that
consist entirely of COTS hardware, the role of the developer is closer to that of a
"system integrator". For systems that consist of a mixture of COTS and custom
hardware, the roles need to be appropriately tailored.

Buyers and system integrators need to work closely to consider the cost and
technical tradeoffs. Many system developers have a traditional business base developing
custom hardware. Those organizations need to overcome relying on those skills and need
to become more adept at doing market surveys and evaluating existing products. A

successful COTS development will define the developer's role in many respects as a
system integrator providing services. Product responsibility should be defined as a joint
buyer and system integrator responsibility.

It is critical that some of the traditional boundaries between buyer and developer
be reformed into a closer team approach. One example of this type of team currently in
use in many projects is the Integrated Product/Process Team (IPT). By working together,
the buyer and developer can work the technical tradeoffs to obtain the best affordable
technical solution. However, to make IPTs work effectively, both buyer and developer
need to modify their methods of system development. Initial training in the planned team
organization can be held separately prior to contract award. After source selection,
additional training should be held jointly to help form an effective team. Periodically
during project execution, each IPT should take some time out from the daily issues to
evaluate how well the team is operating and how it might improve."

There is always resistance to using new methods. Most of us tend to rely on
methods that have been successful for us in the past. To overcome this natural tendency,
there needs to be incentives for the buyer and developer to cooperate. Proper use of
Award Fee and Incentive Fees usually provide a substantial incentive for developers. One
aspect of each award fee period should be an evaluation of each IPT's operation as a
team. Spot awards are an effective way to incentivize members of the buyer's team to
reward teamwork.

Lessons Learned:

1. Customize your acquisition approach. Make it clear to all parties that it is a
team effort. Make it to everyone's benefit to work as a team.

2. Define ways to reward those team members who find innovative cost effective
solutions.

2.1 Modifying the Approach to Defining Requirements

A flexible approach to defining system requirements is necessary to
 take full advantage of COTS in a system's development.

Traditional system developments have defined acceptance criteria and then have
provided those requirements to one or more vendors to propose the "best" design to meet
the requirements. Cost and schedule were usually a key factor in determining the "best"
value. However, this approach was flawed since sometimes a small change in a
requirement value could cause a large increase in cost.

This is especially true when using COTS. A small change in a requirement can
eliminate all available products. A good example of this is operating temperature. Many
COTS vendors design and qualify their products to 50 degrees C. Many traditional real-
time systems required operating temperatures to 55 degrees C. Since many requirements
define a standard of suitability, it is necessary to consider whether that standard is
absolute or whether a minor variation would be acceptable.

There are many other examples of requirements that are quantified to establish
acceptance criteria, but the specific value is not absolute. Examples of these items are
Reliability (MTBF), Fault detection, Fault isolation etc. These values are specified
because we want to buy systems that are reliable and maintainable. However, one of
those values can be adjusted slightly to achieve significant cost savings.

There are several ways to avoid inadvertently driving cost. One of the most
frequently used methods for reducing costs is the use of draft Request for Proposals
(RFPs) and systems specifications. This process is very good for avoiding the most
obvious problems early in the development cycle, but usually does not identify all of the
issues. Other cost drivers may be identified later as the developer's design matures and
he is able to identify other factors that reduce the size of the candidate hardware domain.

The use of Alpha Contracting is also a good way of early identification of cost
driving requirements1'1. Alpha Contracting is a process where the buyer and system
integrator work together to write the statement of work and specification to define a
product that meets the buyer's needs without inadvertently adding cost drivers.

An innovative way for dealing with cost driving requirements is the use of
placeholder requirements. A fair competition can be held since all vendors are required to
bid to the place holder requirements' value. After the contract is awarded, the developer
is required to study each placeholder value to determine whether small reductions in any
of the values can result in cost savings. The buyer can pool savings to deal with contract
changes and the developer will eagerly participate if the identification of these savings
results in incentive fees. My experience has been that very few of the requirements
actually change. After considering all of the candidates, both buyer and system integrator
subsequently agreed that only a few changes to the original placeholder requirements were
desirable.

Another important way to keep requirements achievable using COTS is to avoid
imposing requirements at too low a level. Why should you impose board level
requirements at all? Requirements for performance at the board level should be allocated
based on operational need. For example, the operational need is that a system may need
to operate anywhere in the world within 30 minutes after the application of power. Let
the vendor allocate the specific temperature and humidity requirements to the boards; the

ambient temperature and humidity might be controllable. Low level requirements too
often prohibit the system integrator from finding other preferable solutions.

To successfully use top level requirements, the IPT needs to develop a close
working relationship when deriving the lower level requirements. This is especially
important for User System Interface (USI) functions. Prototyping has always proven to
be an effective technique to allow users to see what the system will do and allow them to
contribute to the fine-tuning of the detailed requirements. In the past, it was prudent to
abandon the software developed for prototypes after the requirements were established.
However, now there are COTS tools that allow the reuse of prototype Graphics User
Interface (GUI) code that defines the appearance of a screen into a real-time application.

This whole concept of evaluating requirements and schedule in relation to their
costs is embraced in another current DOD initiative called Cost-as-an-Independent-
Variable (CAIV)1V. Encourage team members to suggest adjustments to requirements that
reduce system development, operation or maintenance costs. This encouragement needs
to be explicit, such as incentive fee awards for the developer or spot awards for members
of the buyer's team. Public recognition of these awards is also a great motivator.

Many COTS boards manufactured can meet most of the traditional requirements,
but most vendors will not go to the expense to formally qualify the boards to demonstrate
that they do.

To continue with the 50 vs. 55 degree example, one possible impact might be that
the environment would need some conditioning (cooling) before operation for a very small
percentage of days in the hottest places in the world. The buyer and systems integrator
need to decide whether avoiding a short delay for cooling before the system is operational
is worth the additional cost and time to develop a custom board. Since many board
vendors are very conservative in the testing and rating of their boards, another option is
for the team to consider testing the boards at the higher temperature to determine whether
it will operate at the required temperature.

Lessons Learned:

Define requirements at as high a level as possible. Try to keep
requirements operationally oriented.

Work with the vendor to identify cost driving requirements. Do not be
afraid to reconsider requirements that force a custom board and adjust
those requirements for an affordable solution.

Use placeholder requirements to conduct fair and open competition for
those items that may be inadvertently large cost drivers.

2.2 COTS System Design

3%e design methodology for COTS is different than for
custom developed components.

The requirements for traditional MIL-SPEC design and its reviews evolved over
many years for the review of custom built hardware and software. Today's acquisition
initiatives promote a much more flexible approach to systems development. COTS
system developments need to take advantage of that flexibility. Systems that use COTS
require some modification to the traditional processes. The general approach for
Preliminary Design should be "What is the top level architecture and what are its
candidate parts" and for Detailed Design: "What parts should we buy?"

In general this makes the design process leading up to a Preliminary Design
Review (PDR) an industry survey process which may also identify CAIV issues (as
previously discussed). The preliminary design process may revert to a more traditional
approach, if it is determined that there are no acceptable COTS products to meet key
operational requirements.

This proposed philosophy necessitates a rework to the traditional design time line
for systems using COTS items. In general, some of the activities needed to answer those
questions were traditionally done later in the process.

Stressing system requirements should be identified. The top-level system
architecture should isolate the cause of the stress from the remained of the system. For
example, a device that requires frequent interrupts or very time acknowledgement of
interrupts can be serviced by a separate microprocessor to protect the remaining system
functions from the demands of a single device.

By forming teams consisting of hardware engineers, systems engineers and
software engineers, requirements can be allocated without creating insurmountable hurdles
for other activities. The allocation of requirements to the components can be an iterative
one. As the evaluation proceeds, reallocation may be prudent if it defines a wider range of
components. The entire system should be modeled to validate the top-level architecture.
This process may identify cost driving requirements that should be worked within the
framework established for that project.

Any placeholder requirements should be defined by the completion of the
preliminary design phase, unless there is a very specific reason to continue a tradeoff
study during the detailed design.

Lessons Learned:

1. Multi-disciplinary teams and modeling are important tools in allocating
requirements.

2.2.1 Software Preliminary Design

The more requirements that COTS software can fulfill, the less custom software
will need to be developed. COTS software makes sense if it substantially reduces the
amount of custom software that needs to be developed. Without these potential savings,
it is better to develop software and maintain control of the source and data rights/

More than technical factors need to be considered when selecting COTS software
candidates. The financial stability of the vendor, the vendors ability and history of
solving user problems and their willingness to establish a long term support arrangement
are also key qualifying factors. This long-term support is necessary to correct problems
that are discovered later in the system's life cycle. Some developers have made
arrangements to obtain the data rights for each product's source code, if a product's
developer abandons the product or goes bankrupt.

For COTS software packages, generally there is not enough data available from the
vendor in sufficient detail to determine whether the product can meet the basic need. The
vendor data can be augmented with data collected from current users; but given the
frequency of change of many software products, most user data available will be for older
releases and will be of limited value. This requires the system integrator to obtain single
copies of each product to be considered. Using the actual software, an evaluation can be
conducted to determine how applicable the package is to the requirements. This initial
evaluation should also consider gross compatibility issues with other software packages
being considered for other requirements and some code generated from the software
development environment (at least the compiler) that will be used. If the software
development environment is also being selected, that selection process increases the
combinations of possibilities to be evaluated.

One scenario for this phase could be a project that wants to try to select a COTS
operating system, a COTS data manager, and a COTS Graphics User Interface (GUI).
The range of candidate COTS operating systems could be narrowed by the real-time
response requirements of the system. Then only those data managers and GUIs
compatible with at least one of the remaining candidate operating systems need be
considered further. The remaining candidates can be incorporated into strawman systems
to evaluate how well these packages meet the requirement and whether they can work
together.

8

Obviously, this phase can be streamlined if the system integrator can identify
bundles of COTS software that already have been integrated by other projects. Any
previously integrated bundles can be tested against project requirements. Less time can be
spent evaluating the compatibility of those bundles. Even if a bundle has been used
successfully for many years in another project, the compatibility issue is not totally
resolved. Hidden compatibility issues or disqualifying bugs may still exist if the features
your project needs are not the same features previously used.

Clearly, the quicker the range of candidates can be reduced; the fewer
combinations need to be considered. While this task imposes a large effort during the
preliminary design phase, it completes some tasks traditionally performed much later
during software component integration and test phase. This "early" software integration
helps to reduce development risk by identifying integration problems early.

Award fee during this phase should be partially based on the system integrator's
success at identifying candidates that will minimize development cost and risk.

Lessons Learned:

1. Select only COTS software candidates that will result in substantial savings in
the amount of software that will need to be developed.

2. Balance any potential savings against the risks and loss of control that will
result in using COTS software.

3. Consider more than just technical issues when selecting candidates.

2.2.2 Hardware Preliminary Design

The preliminary design of COTS hardware is more of a paper exercise. The
process for laying out the overall size, power, and cooling is fed from data collected from
the individual card candidates balanced against the overall physical limitations.
Developing the list of candidates requires surveying the market to identify potential
candidate items and requesting detailed information on those items. The process of sizing
the backplane, memory, storage, and processor speed does not vary much from custom
design; however, sometimes the allocation of requirements between components may be
affected by what is available on the market.

When conducting market surveys, there will be gaps in the data available to form a
candidate list. Many times this initial survey activity will be frustrating since the
compliance matrix will identify more questions than definitive answers. Even if a
manufacturer claims compliance, the product may not meet the requirement. Marketing
claims are often only true from a limited viewpoint. For example, a board may claim

100% fault detection capability, but detection data may reside only in internal registers
that may not be accessible by application software. Another possibility is that the
100% claim may only include the board itself and not its interface to the chassis.

Another key point is that Non Development Item (NDI) hardware is not as
mature as COTS. These items have been developed by vendors in an attempt to find a
market for the item. Several programs have treated NDI similarly to COTS with poor
results. NDI products have proven that too often only a single item was able to be hand
built by engineers to perform a subset of requirements in an extremely controlled
environment. Usually, NDI has no logistics support, has not yet considered
manufacturing issues, and needs further development. If you become the only user of an
NDI product, you will also need to assume all of its life-cycle support costs. The
transition of NDI hardware for use is similar to the effort required to go from a successful
demonstration and validation program to a full engineering development. NDI should
only be considered as a strawman design approach when custom development is required.

The lack of suitable COTS candidates is not immediately a reason to go to custom
development. The rate that COTS hardware is evolving is remarkable and the lack of
candidates may be solved by waiting. At the rate that processor performance, storage,
memory, and data transfer capabilities are increasing, the lowest risk (and cost) approach
to requirement's shortfall may be to wait for the natural evolution of the required
capability. This option should only be selected if the vendors are predicting the planned
capability within an acceptable time frame and there is an acceptable backup approach if
the planned capability does not become reality when needed.

Award fee during this phase should be partially based on the system integrator's
success at identifying candidates that will meet requirements and minimize development
cost and risk. It should also consider how open the architecture is and how it will affect
life cycle maintenance costs.

10

Lessons Learned:

1. Continually follow up on data requests to try to get as much information as you
need to assess a product's ability to meet the requirement. Try to get past the
marketing department to the design team to get the answers that you need.

1. If a product meets almost all of your needs and has no disqualifying
restrictions, you may want to carry it on the candidate list for further
consideration.

2. If no products meet your needs, try to find out what planned products are
available. Waiting for a planned product to mature may be preferable to
embarking on a custom development.

3. NDI is not COTS. If you want to (or need to) include NDI hardware, you need
to plan the additional activities required to turn it into a product.

2.2.3 Detailed Design

In order to complete the selection of hardware components and software
packages, perform a detailed requirements evaluation of each candidate product.
Configure those items that seem best suited to form a candidate architecture. Next,
evaluate the compatibility of all the components in the candidate architecture. When
those two steps are successfully completed, validate the real-time response of the
resulting architecture. Plan on obtaining loaner hardware parts and evaluation copies of
software packages. To complete these steps, plan on developing a mini
hardware/software testbed to complete the following activities:

11

Requirements Evaluation. Data obtained when conducting the market survey is
usually not accurate or complete. Plan on verifying key parts of the requirements with
the actual hardware/software. One common example is products that claim to meet SCSI
standards. While most products can typically handle data within the median range of
SCSI standard limits, many products claiming to meet the standard will not operate
properly if pushed to the edge of the standards (e.g. products that are close to the SCSI
line length limits). Plan on evaluating each product to obtain missing data needed for the
product evaluations. Most vendors do provide BIT, but do not have traditional MIL-
SPEC fault detection or isolation data. Plan on evaluating and testing each potential
vendor's BIT capabilities as part of the parts selection process. Plan on augmenting the
BIT to meet the overall requirement.

Compatibility Evaluation. Selection of individual components to meet
requirements is not enough. An important part of the design process is to ensure that all
of the software and hardware components do not conflict. Plan on putting those parts
together and executing COTS software and hardware together to confirm that the design is
sound before purchasing components. Include software compiled using the planned
development toolset, BIT software, drivers and utilities to confirm that they will all work
together.

Real-Time Validation. Most COTS operating systems and utilities are not
primarily designed for real-time applications. They may optimize performance for
relatively small data sets using cache or memory, but may substantially slow down when
operational loads are encountered. Plan on conducting performance tests with realistic
operational data loads as part of the design process. Be prepared to alter hardware
selection to accommodate COTS software limitations. A good example of this issue is
that some versions of UNIX may provide an acceptable real-time operating system until
Virtual Memory paging begins. By sizing memory large enough to keep all programs
memory resident, the performance of UNIX is greatly enhanced to meet the real-time
response requirements. Data collected on this testbed should be used to update system
architecture models to project performance of the full system.

Life Cycle Costs. - Balance life cycle cost issues with technical concerns. Unit
Production Costs, sparing costs, software licenses costs may offer different solutions to
minimize cost for a single program phase (development, production, or over the system's
life cycle). The system integrator should be required to show how his proposed
approach affects each phase of system costs. It should consider the parts reliability,
proposed maintenance plan and include both the spare and labor costs associated with
repair. For example, parts that have a higher MTBF may be a better value than those that
may fail more frequently, especially if those parts are time consuming to remove and
replace.

12

Award fee for this period should be based on an evaluation of the costs and risks
associated with the system integrator's proposed design solutions.

Lessons Learned:

1. Confirm the compatibility of selected components.

2. Confirm that the candidate items meet the requirements. Do not rely on
vendor claims if it is possible to confirm them.

3. There may not be an exact fit. In some cases programs may want to conduct a
Cost as an Independent Variable (CAIV) analysis to consider using the best
available COTS product versus the development of a custom board.

4. Most vendors do not have traditional MIL-SPEC reliability data. Plan to
customize the reliability program for each vendor's inputs.

2.3 Modifying what Should be Expected at Design Reviews

The criteria for design reviews must be modified to reflect the
changes introduced into the design methodology.

Professionals in the acquisition of systems must evaluate whether the proposed
design will meet the requirements, as well as, the technical, cost, and schedule risk
associated with the selected approach. In the past, there were two key contractually
defined formal design evaluations, PDR and Critical Design Review (CDR). The criteria
for these reviews were defined in MIL-STD 1521, which has been canceled as part of the
acquisition reform process. While the formal definition of these activities has been
eliminated, these reviews are still important milestones in the top-level DOD management
review process.

Especially for systems incorporating COTS hardware and software, it is
important to plan what needs to be accomplished by each review. These reviews need to
be tailored to the specifics of each program. The expectation of what needs to be
accomplished at each review needs to be defined early in the development cycle. If these
expectations are not clearly defined in detail, the data available may not support the
mandated management evaluation or may result in a less than satisfactory review result.
This is another item that should be arranged between buyer and system integrator as part
of the IPT process. Each IPT should define the entry criteria, presentation topics, and
exit criteria for each review. Since some parts of the systems may not be COTS, different
topics may be required for the non-COTS items. Incremental reviews are a good way to
manage the differences between COTS and non-COTS items. After the completion of all
of the increments, a capstone review is an excellent approach to summarize the result of

13

all of the increments and to show how the increments come together to meet the overall
need, and to evaluate risks at the system level.

When establishing criteria for the review of COTS items, it becomes obvious very
quickly that many of the traditional MIL-STD 1521 review items are not applicable. For
hardware, a key item on the CDR review was a measurement of how many drawings were
completed. For software, one of the key items was the completion of detailed design
documentation. Reviews of drawings and software detailed design documentation were
meaningful when evaluating custom developments, but do not add to an evaluation of a
COTS design activity.

The focus of the criteria for these reviews for COTS items should be tailored to
answer the guidelines for the design previously recommended; Preliminary Design -
"What are the candidate parts" and for Detailed Design: "What parts should we buy?"

These reviews should summarize the design and requirements tradeoff issues
performed to answer the question relevant to the applicable design phase. The review
should present operational performance design issues. It should also present an evaluation
of how the candidate design will affect production and life cycle cost issues. Traditional
detailed review items should be included to the extent that they support the spirit of the
design phase guideline.

Some desired data may not be available from the COTS vendors, as previously
discussed. This should not delay the design review. Instead, the system integrator
should identify what key data is missing, the approach to collecting that data, and the
backup approach if the data, when collected, identifies an issue.

Lessons Learned:

1. Tailor design review requirements to the specifics of each program and the
guidelines for each design phase.

2. Clearly define the expectations for the design reviews.

3. Don't be afraid to proceed if all the desired data is not available. Define a
plan to obtain any missing data and contingency arrangements if the data
identifies an issue.

14

2.4 After the Critical Design Review

After all of the COTS capabilities and limitations are well understood,
the remaining aspects of the system's development can proceed

on an accelerated pace with lower risk.

The major benefits for developments using COTS occurs after the completion of
detailed design. At this point, a testbed of the key hardware and software items has
already been assembled and most compatibility issues have been identified. Custom
application development can proceed using the established baseline and the lessons
learned from the detailed design testbed. There will be new issues identified as the
development proceeds, but the number of integration issues will be substantially smaller
than traditional custom hardware and software developments.

Another key benefit resulting from this approach is the ability to start
environmental qualification testing much earlier. Moving this testing earlier in the
schedule allows more options in dealing with any problems discovered.

Modifying COTS boards should not be considered as one of those options. It will
void the part's warranty and will create the requirement for an ongoing production
facility. Some system integrators who have traditionally been in the hardware
development business are uneasy with the pure unmodified COTS approach and may
design modifications (such as a unique interface or firmware) to help ensure their
continued existence. Buyers should word specifications accordingly to avoid this
problem and should be prepared to challenge any non-standard modifications.

Instead of modifying boards, there are often more attractive options. These
include selecting another board, asking the board's vendor for the necessary modifications,
or building custom enclosures to address environmental concerns. Proper enclosure
design can mitigate many vibration, shock, and temperature issues. The resulting
"custom" item does not create a difficult life cycle management problem.

The other post design activity affected by the use of COTS is the approach to
software testing. In the past, many projects used a combination of black box and glass
box testing. When using glass box, the tester takes advantage of his knowledge of the
software coding. Black box testing is designed and conducted without any knowledge of
the code. Traditionally, glass box testing was used by the software coder to test each
piece. After all the pieces were successfully integrated, major builds were turned over to
functional test teams who used black box testing to verify requirements. The lack of
insight into the design and coding of any incorporated COTS software prohibits
developers from using a glass box approach during software integrationvl.

15

Since the ultimate goal is to provide the end user with needed capabilities at an
affordable price, the program manager should keep his team focused on the end result.
Use a combination of a large final Award Fee/Incentive Fee increment to provide an added
motivation for timely delivery of a quality system.

Lessons Learned:

1. Avoid modifying COTS hardware (other than non-intrusive additions such
as board stiffeners or added software).

2. Plan to environmentally qualify at least some boards that have not tested to
the complete range of the operational requirements. Consider whether
testing a single item or whether a complete screening of each part is
required.

3. Plan on dealing with the shortfalls of individual cards. Some of the items
that may be required include custom enclosures to isolate vibration,
additional fans, or heat sinks to help control temperature.

4. Plan on Black Box approach to software integration teiting instead of Glass
 Box testing.

3.0 Methods to Help Control the Life Cycle Cost Impact

Controlling life cycle costs remains the largest challenge for systems using
COTS.

COTS obsolescence is the most significant challenge to the successful deployment
and operation of any real-time system. Since no program is large enough to ensure the
continued production of a COTS item, each item's obsolescence must be assumed. The
COTS vendors are driven by the substantially larger commercial market. As the vendors
focus on current market capabilities, spares availability and product support will
diminish, resulting in less control of hardware obsolescence. This is already a major issue
for the programs that are using COTS.

3.1 Issues that Drive Life Cycle Cost

Minimizing the impact of future changes is a very effective method
 for reducing life cycle costs.

Both software and hardware issues can become major life cycle cost drivers. To
help manage these issues, it is very important to know when changes to the product line

16

will occur and what impact the changes may have. Develop an ongoing relationship with
each COTS vendor to keep abreast of changes in the product line or its support.

One of the most important COTS software products to any real-time system is
the operating system. It can be very expensive to upgrade. The impact of any operating
system changes must be minimized by using a highly layered architecture. Prohibit direct
application interface to the operating system. If the layer interfacing to the operating
system is properly designed, it can be modified to update all the interfaces to a new
operating system. The use of layered architectures has always been an option, but until
recently this option was not viable since it imposed a performance penalty. Today's
much faster processors and substantially larger memories now allow this option to be
exploited.

When using other COTS software, use the layered design philosophy to insulate
that software from direct application callsvn. If possible, try to find a way not to allow
the COTS packages to interface directly with the operating systems. If the operating
system needs to be replaced, it may also force an update or change to these COTS
packages. Changes to the operating system will require a new evaluation of any COTS
software previously incorporated into earlier versions of the systems. Changing the
operating systems also imposes major cost and performance risks.

An example that illustrates this point comes from one early real-time embedded
systems COTS development. UNIX operating on a SPARC 1 was selected as the
operating environment. Performance requirements were demanding and the applications
were optimized to maximize throughput. This system also utilized a data management
package that was tightly coupled with the operating system. As the development
proceeded, it became apparent that a faster computer was desired. Fortunately, the state
of the art had progressed and faster processors were available and compatible with the
rest of the hardware architecture. Unfortunately, the newer faster processors were not
compatible with that version of UNIX. Upgrading to a new version of the operating
system was expensive since its interface to application programs had changed. To
upgrade, all the operating system interfaces needed to be identified and changed, the data
management package needed to be replaced, and all the calls to the data management
package also needed to be identified and replaced.

Operating system upgrades may have other unplanned side effects, including
forcing compiler changes or driver changes for other system boards. Any upgrade to the
operating system will also require a major regression test effort. Since the operating
system or compiler changes are integral to the performance of a real-time system, an
extended regression testing effort will be required to re-verify the system's
functionality/1" Safety and security critical items will need to be reexamined.

17

The other major life cycle cost issue is the availability of replacement boards. As
boards need to be replaced, the original parts may no longer be available. Sometimes it is
even difficult to determine whether the boards have changed, because many commercial
vendors will change their boards without changing part numbers if the board's
functionality did not change. With an open systems design, it was envisioned that the
new boards would simply replace the older ones; however, this cannot be guaranteed and
replacement boards needed to be re-qualified (environmental testing) and operationally
tested in the target environment.

Some replacement boards come with new software drivers that are not compatible
with older versions of the operating system. These drivers may or may not be compatible
with the operating system version already in use. Unless a compatible driver is available,
replacing a board could force an operating system upgrade. Even if functional equivalent
replacement boards are available, it may be very expensive to environmentally re-qualify
boards and operationally test systems as part of a normal maintenance cycle.

Some program managers have envisioned that the commercial board vendors would
make provisions for the long-term support of their systems. Unfortunately, this has not
happened. Instead, COTS vendors typically offer each product for a relatively short
period of time (1-2 years). Traditionally, replacement parts for each product are only
available until the supply is exhausted1".

Lessons Learned:

1. Try to select operating systems vendors with a history of backward
compatibility. If the vendor continues that trend, the operating system
upgrade should be less expensive.

2. Design systems to minimize the changes required due to hardware or
operating system changes.

3. COTS compilers, software tools, and any COTS embedded software may or
may not be compatible with systems upgrades. Utilize these items in a
fashion that will minimize the impact of future changes.

4. When buying parts, require that every item is identical. Have QA verify
that all parts meet that requirement.

5. Establish very close relationships with your COTS suppliers.

18

3.2 Approaches to Manage Life Cycle Costs

Part of any COTS system development must be defining and planning
an approach to life cycle maintenance.

Replacing each part of a system when spares are no longer available is usually not
a sound approach to life cycle maintenance. There are two other approaches to better
manage this problem.

The first approach is to buy enough spares for the planned life of the system.
This approach can require a large initial investment in parts, but could be the lowest risk
and lowest overall life cycle cost to the program. For programs that will field multiple
copies of a system, this option ensures a single system configuration and reduces
configuration management issues. There are a number of scenarios that make this
stockpiling an unattractive option:

1. If program requirements later change and a basic system upgrade is required, then
the initially purchased spares will probably be scrapped.

2. If the spares requirements are underestimated or if the planned system life is
extended, there may not be enough spares to sustain operations.

3. If the number of units is large, available near term budgets may not support a large
initial buy.

4. There may be shelf life issues.

The second approach consists of regularly planned systems upgrades (Planned
Product Improvements (P3I)) throughout the systems life cycle. Only enough spares are
stockpiled to sustain the system until the planned upgrade is complete, thus minimizing
the up front cost while maintaining an acceptable risk. Spares for the out years can be
budgeted to coincide with the P3I updates. This approach is recommended for most
programs.

Evolving systems requirements can also be introduced at the planned upgrade.
Addressing obsolescence issues simultaneously with new requirements enables the design
to confirm sufficient resources to support the new requirements while renewing the
availability of spare parts. This approach allows the often substantial cost of system
testing to be shared between systems evolution and maintenance budgets.

Configuration management for the transition of fielded systems can be handled like
any traditional obsolescence solution.

However, the second approach also has its drawbacks. Each P3I cycle can be
very expensive. It may be necessary to replace all components - even if some of the

19

components remain functional, they may not be compatible with the newer components.
For example, many of us remember buying 486 computers with VESA bus display
controllers. When it was desirable to upgrade to Pentium processors, the VESA adapter
(and other cards) also needed to be replaced.

Either of the options can be modified to further reduce initial cost by requiring
suppliers to provide notification before they discontinue a product. The program
manager can then decided whether to stockpile spares, develop an additional source for
the item or initiate a P3I cycle. Experience has shown that this notification will not
always be provided.

Some programs have even encountered obsolescence problems in the midst of their
extended development cycles. If a program's development spans more than a couple of
years, many parts may be obsolete before the completion of the operational test. Since
most programs cannot purchase production parts before the successful completion of
operational test, it may be illegal to purchase parts for production during EDM. The first
system upgrade may be the transition from EDM to production!

Lessons Learned:

Select a life cycle approach as part of the system's development.

Plan for Planned Product Improvement (P3I) programs at regular intervals
to solve any compatibility problems created by forced operating system (or
fitliihr»! ttnaY*9f1ac other) upgrades.

4.0 Leveraging Off of Other Programs

The cost savings for COTS systems will be even greater when the
real-time community takes a few more steps to take advantage

of the common needs between systems.

Since the major reason for using COTS is to reduce cost, a few more methods for
helping to control the cost of COTS developments are recommended. These cannot be
accomplished by individual projects; rather they are concepts that will work when the
entire community participates.

20

4.1 Sharing Data

Since the key to COTS system design is the evaluation of products, sharing data
learned about the candidates with other programs will streamline design efforts.

The first of these cost savings concepts is the collection and sharing of detailed
requirements data collected during the design phase. In that phase, the relevant
characteristics of hardware components are evaluated using the actual hardware. COTS
software is evaluated for requirements compliance and compatibility. The real cost
savings are achieved when the data collected by these processes is captured and shared.
As the systems development progresses, additional lessons are learned about the COTS
and that information should also be captured and shared.

Many companies already capture a portion of this data. Most commonly
captured are some of the "non-technical" evaluation factors about the vendors. These
supplier databases are usually collected by the quality organizations and are used to
identify "preferred" suppliers.

This concept should be expanded to include all technical evaluation information.
If one program has gone to the time and expense of evaluating (or testing) any
characteristic of a component, that information should be shared with others considering
using that component. This is even more important for information learned about
product incompatibilities and successful workarounds.

Many companies have not formally captured this type of information in the past
because there was an informal technical network that effectively shared this kind of data.
However, today with more and more projects using COTS and with the large number of
mergers and reorganizations, these informal networks are losing their effectiveness.

This information, if collected, could be even more effective, if it could be shared
outside of the organization collecting the data. DOD could facilitate this sharing. If each
contract requires this information as a deliverable, it could be inexpensively posted to a
public database accessible from the web. Users could benefit from a service that would
automatically provide additional information when it becomes available for selected items.

Recently, I came across an example of how shared information could help after the
design phase. A friend of mine told me about problems that he discovered when mating 5
row connectors to a VME 64 backplane. When I asked another colleague who was also
using VME 64,1 discovered that he had also invested time identifying and solving the
same problem. This duplicate effort could have been avoided if a centralized information
facility existed.

21

4.2 Centers of Expertise

Funding common technology evaluation centers to monitor the evolution
of key technologies will provide information more quickly and less

expensively than having each program study those items individually.

There is another incentive that can result in large DOD wide savings. I
recommend that DOD fund centers of expertise to perform ongoing technical evaluations
for key evolving COTS technologies of interest to many programs. These proposed
activities could be successful if they work with interested programs to evaluate a
particular technology's potential capability to meet specific program requirements.

A good example of this kind of activity occurred recently. The Naval Air Warfare
Center performed a study of COTS 19" flat panel displaysx. Flat panel displays are
attractive to many aircraft programs because those displays weigh a lot less, require less
power and cooling, and require less space than current displays. This study evaluated the
functional suitability of the available displays to perform several different applications.
While this study was not centrally funded, and had a smaller scope, it did achieve many
of the benefits of the proposed activities.

Similar studies would be helpful to many programs especially if the scope is
expanded to include environmental and compatibility evaluations. These studies would
be most helpful if they are funded as ongoing activities, so that the evaluation data
remains current. New and upgraded products should be evaluated when available"1. The
core group performing these studies would be a very cost-effective avenue to evaluate a
range of products for any unique requirements.

These types of studies should not be blindly used to mandate a single common
item that all programs must use. Each program must consider the logistics as part of its
component selection criteria. Using items already in the supply system does decrease
cost and should be considered as a CAIV tradeoff issue.

4.3 A New Approach to Using Commonality to Control Life
Cycle Costs

DOD has always recognized the savings of common subsystems, but many common
programs have not been overwhelming successes. To overcome these past

problems, more control of common systems must be retained by the applications.

Another major way that programs can leverage off of other programs is by
developing common basic architectures. The more commonality that two programs have,

22

the more potential savings from common spares, shared development costs, and the
potential for common obsolescence solutions.

There are well known reasons why common systems are not attractive to
individual program managers:

1. Technical/Requirements - Common systems were force fit into applications where
they did not provide a sound engineering approach and /or did not meet key
operational requirements.

2. Schedule - The schedule for the development of common systems considered the
user base, but frequently provided additional constraints for the users to
incorporate into their program plans.

3. Funding - The budgets for the activities contributing to the development of the
common system were subject to change. When the budget for one participant
changed, it substantially changed the cost effectiveness for the other user(s).

All of these issues can be summed up to the primary aversion that program
managers have towards common systems - Lack of Control. Any new approach to
commonality must solve this control issue. It must incentivise the participants to find a
way to make it work in a cost-effective manner.

One approach is to "encourage" each program manager to negotiate commonality
with other programs. This encouragement could be as simple as only partially funding
each program's requirements. Each program would then need to find creative ways to
accomplish their needs. After arranging a potential partnership, a Memorandum of
Agreement should be established between all parties defining what each party will
provide to their joint effort.

Any partnering arrangement should be contingent on a successful design review
approved by all parties. This design review needs to address a sound engineering
approach showing how the operational and support needs of all parties are addressed.
This design review should demonstrate also how the planned development would be
integrated into the schedule of all applications.

To be successful, the commonality approach must include technical support from
the system integrators of each application. To eliminate conflicts and keep competing
organizations focused, use an independent government agent to direct the design activity
and coordinate the tasking of each application's system integrator.

DOD should protect innovative program managers who are able to design cost
effective common systems. Allocating independent funding for each common system will
protect the participating program from any changes in budget allocations for the other

23

partners in the common system. Each program identifies the amount of funding that it is
committed to provide and then that money is reallocated to a DOD level budget line item
not available for reallocation without the consent of all parties. This type of protection is
necessary to provide a reasonable measure of cost control. In the past, programs have not
been able to reliably project the cost of common systems, since frequently their partners
have either pulled out or delayed their participation. With today's lean budgets, it is
especially important to mitigate this cost risk or PMs will refuse to participate in the
development of any common systems.

5.0 Ongoing Trends

It is important for the real-time community to monitor ongoing trends
and promote those that will facilitate the use of COTS.

Both hardware and software trends will affect real-time systems using COTS.
The trends having the largest potential impact affect software portability. Since it is
unlikely that any COTS hardware will be used for the entire life of many real-time
systems, the ease or difficulty of re-hosting software will contribute significantly to life
cycle costs.

Without evolving into a debate over the Ada requirement, the elimination of that
requirement does leave each system with the possibility that the selected high order
language (HOL) may face obsolescence. This is a major issue that could drastically affect
the cost to re-host custom applications. The software support activity (either
government or contractor) should develop a strong relationship with the compiler vendors
actively planned support for the compiler and its supporting software environment.

The C4I community is trying to establish a rating system to evaluate the
"openness" of real-time software architectures. This is a good concept and should be
expanded into the definition of an "open systems standard" for software. I believe that
this kind of standard could be very helpful in defining an approach to allow software
packages to become as interchangeable as "open system" hardware boards.

Evolving hardware standards are also a potential life cycle cost driver. Many
supposed Industry standards do not stay standard for long. Many real-time embedded
systems have life cycles that will exceed the life of existing standards. One key example
of this issue is the SCSI standard that has evolved through many names and revisions
(SCSI, SCSI 2, fast SCSI, narrow SCSI, wide SCSI, and ultra wide SCSI). In open
systems, the VME standard is evolving. VME 64 is already in use and is likely to replace
the older slower standard very quickly. Industry needs to consider the impact of
proposed standards changes as part of its change process.

24

6.0 Summary

Most of the historical reasons for avoiding COTS have been overcome by
advances in technology. The remaining COTS concerns can be successfully addressed by
modifications to the methods by which systems are developed and managed throughout
their life cycle.

The systems development and its life cycle management are not independent.
Part of the development must be the selection of a life cycle management approach. Each
system's design needs to be evaluated for development costs and risk and also needs to
tradeoff those concerns with life cycle cost and risk issues.

Although COTS can be effectively used today, more can be done to increase its
benefits. Since DOD is committed to using COTS in real-time systems wherever
possible, DOD should provide some basic common support services to facilitate the use
of COTS. The real-time community also should take an active role in establishing
methods that will promote this policy.

About the Author:

Mr. Rosenberg is currently an Operations Director at Sabre Systems, Inc. He
manages Sabre's contributions to several Advanced Technology programs. Mr.
Rosenberg has over 20 years experience developing real-time computer systems and its
supporting software for a wide range of DOD programs providing expertise in software
engineering, Software Independent Verification and Validation, systems engineering,
acquisition management and life cycle management and planning. Mr. Rosenberg can be
reached at buzzr@erols.com

iii

The Commandments of COTS: Still in Search of the Promised Land, David J.
Carney and Patricia A. Oberndorf, Crosstalk, The Journal of Defense Software
Engineering, May 1997

Chapter 4.4 Using IPTs in Performance-Based Contracting, Writing Performance
Based RFPs, Center of Acquisition Research Technology and Education
(CARTE) Inc., December 1996

Alpha Acquisition Presentation, "Reinventing Negotiations" Lessons Learned
from the Lamps Block II EMD Contracting Effort, Unpublished Handout

25

iv Cost As An Independent Variable (CAIV) Policy Guidance, Memorandum for
Distribution, John H. Dalton, Office of the Secretary, Department of the Navy,
16 April 1998

v Chapter 13 Contracting for Success, Guidelines for Successful Acquisitions and
Management of Software Intensive Systems: Weapons Systems, Command and
Control Systems, Management Information Systems, June 1996, Volume 1,
Department of the Air Force, Software Technology Support Center

vi

vii

viii

xi

A Software Development Process for COTS-Based Information System
Infrastructure, Part II Lessons Learned, Greg Fox, Steven Marcom, and Karen
Lantner, Crosstalk, The Journal of Defense Software Engineering, April 1998

An Architectural Approach to Building Systems from COTS Software
Components, Dr. Mark Vigder and John Dean, Canadian National Research
Council Report Number 40221

The Problems Imposed by Commercial-Off-the Shelf Tools in a Multi-Baseline
Software Engineering Environment — A Laboratory Manager's Perspective,
Douglas Reichl and Linda Evans, Presented to the Joint Avionics and Weapons
Systems Support Software and Simulation Conference, June 1997

Engineering Off The Shelf Solutions: A Life Cycle View, Doug Belaire and Mike
Eagan, Naval Engineers Journal, May 1996

The Liquid Crystal Display (LCD) Evaluation (A Performance Assessment by
Military Users), NAWCADPAX-98-79-TM, 13 March 1998 (draft)

The Opportunities and Complexities of Applying Commercial-Off-the-Shelf
Components, Lisa Brownsword, David Carney and Trica Oberndorf, Crosstalk,
The Journal of Defense Software Engineering, April 1998

26

PLEASE CHECK THE APPROPRIATE BLOCK BELOW.

D

D

D

D

D

D

D

D

D

D

D

 copies are being forwarded. Indicate whether Statement A, B, C. D. E, F. or X applies

/

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

ONLY; (Indicate Reason and Date). OTHER REQUESTS FOR THIS
DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT C:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND

THEIR CONTRACTORS; (Indicate Reason and Date). OTHER REQUESTS
FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT D:
DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS

ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO
(Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT E:
DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate

Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT F:
FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER

DoD AUTHORITY.

DISTRIBUTION STATEMENT X:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

AND PRIVATE INDIVID' IALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED
TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25. WITHHOLDING OF
UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE. 6 Nov 1984 (Indicate date of determination).
CONTROLLING DoU Oi tiCE IS (Indicate Controlling DoD Office).

This document was previously forwarded to DT1C on (date) and the
AD number is .

In accordance with provisions of DoD instructions, the document requested is not supplied because.

It will be published at a later date. (Enter approximate date, if known)

Other. (Give Reason)

DoD Directive 5230.24, "Distribution Statements on Technical Documents,"' 18 Mar 87, contains seven distribution statements, as
described briefly above. Technical Documents must be assigned distribution statements.

AFRL/ESD
T™ M;™-;^ - 22A1 Avicnic Circle
Tern Munich _, ^ ^ ^ ^^ -fetter9cn m> (H 4543>7Sli

Print or Type Name

per phone call with cfTTänp 10/22/98 ■; ^ y y y r y / ^ // 75/^?

Authorized Signature/Date Telephone Number

