
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/FR/7441--98-9683

VPF+: A Vector Product Format
Extension Suitable for Three-Dimensional
Modeling and Simulation
Sponsored by the Defense Modeling & Simulation Office

MAHDI ABDELGUERFI
ROY LADNER

University of New Orleans
New Orleans, LA

KEVIN B. SHAW
MIYI J. CHUNG
RUTH WILSON

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

August 14, 1998

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 14, 1998
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

VPF+: A Vector Product Format Extension Suitable for Three-Dimensional
Modeling and Simulation

5. FUNDING NUMBERS

Job Order No. 574-5908-08

Program Element No. 0603832D

Project No.

Task No.

Accession No.

6. AUTHORfS)

Mahdi Adbelguerfi*, Roy Ladner*, Kevin B. Shaw, Miyi J. Chung,
and Ruth Wilson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/FR/7441-98-9683

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Imagery and Mapping Agency
Mail Stop P-23
12310 Sunrise Valley Drive
Reston, VA 20191-3449

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

* University of New Orleans, New Orleans, LA

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

With support from the Defense Modeling and Simulation Office and the National Imagery and Mapping Agency's
(NIMA) Terrain Modeling Program Office, the Digital Mapping, Charting, and Geodesy Analysis Program (DMAP)
has investigated an extension to NIMA's current Vector Product Format (VPF) that would benefit the Modeling and
Simulation community. In its current form, VPF's winged-edge topology is documented as not being capable of
modeling a wide range of three-dimensional (3D) objects that may be transmitted and received through the Synthetic
Environment Data Representation and Interchange Specification (SEDRIS). This range of objects includes
non-manifold objects found in integrated, 3D synthetic environments. DMAP therefore proposes VPF+, an extension
to VPF that provides for georelational modeling in 3D and that is SEDRIS capable. VPF+ adds a new level of
topology called Level 4 Full 3D Topology (Level 4). The topologic information encompasses the adjacencies
involved in 3D manifold and non-manifold objects, and is described using a new, extended Winged-Edge data
structure. This data structure is referred to as "Non-Manifold 3D Winged-Edge Topology." Level 4 also adds a new
3D_Object feature class that is intended to capture a wide range of 3D objects. These features are further defined
to be either Well Formed or Not Well Formed, with Well Formed 3D_Object features having additional optional
topologic information to improve software performance. Finally, Level 4 implements no changes that alter VPF's
Level 0 through Level 3 topology.

14. SUBJECT TERMS

modeling and simulation, 3D, data base, object oriented, topology

15. NUMBER OF PAGES

60
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Same as report

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

CONTENTS

1.0 INTRODUCTION 1

2.0 NON-MANIFOLD OBJECTS 2

3.0 DATA STRUCTURE OVERVIEW ..: 3

3.1 Non-Manifold 3D Winged-Edge Topology 4
3.2 EFace 5
3.3 Edge 6
3.4 Face 8
3.5 Connected Node 9
3.6 Minimum Bounding Box 10

4.0 DATA STRUCTURE RELATIONSHIPS AND OBJECT MODEL 11

5.0 LEVEL 4 TOPOLOGY EXAMPLE 11

6.0 TOPOLOGICAL SUFFICIENCY 14

7.0 FEATURES 16

7.1 3D_Object Features 17
7.2 Face Classification and Object Orientation 18
7.3 Join Table Definition 18
7.4 Examples 19
7.5 3D_Object Feature Classification 21
7.6 Area Features 21

8.0 CROSS-TILE TOPOLOGY 22

8.1 Cross-Tile Constructs, Traditional VPF 22
8.2 Cross-Tile Constructs, Level 4 22

9.0 SPATIAL INDEXING 25

9.1 Spatial Index Creation 25
9.2 Spatial Index File Format 27

10.0 RESULTS AND FUTURE WORK 27

iii

11.0 ACKNOWLEDGMENTS 29

12.0 REFERENCES 29

APPENDIX A—Representing Non-Manifold Geometric Models 31

APPENDIX B — SEDRIS Overview 41

APPENDIX C — Modified Raumbaugh Notation 55

IV

EXECUTIVE SUMMARY

With support from the Defense Modeling and Simulation Office and the National Imagery and
Mapping Agency's (NIMA) Terrain Modeling Program Office, the Digital Mapping, Charting, and
Geodesy Analysis Program (DMAP) has investigated an extension to NIMA's current Vector Product
Format (VPF) that would benefit the Modeling and Simulation community. In its current form,
VPF's winged-edge topology is documented as not being capable of modeling a wide range of
three-dimensional (3D) objects that may be transmitted and received through the Synthetic Environment
Data Representation and Interchange Specification (SEDRIS). This range of objects includes
non-manifold objects found in integrated, 3D synthetic environments. DMAP therefore proposes
VPF+, an extension to VPF that provides for georelational modeling in 3D and that is SEDRIS
capable. VPF+ adds a new level of topology called Level 4 Full 3D Topology (Level 4). The
topologic information encompasses the adjacencies involved in 3D manifold and non-manifold
objects, and is described using a new, extended Winged-Edge data structure. This data structure is
referred to as "Non-Manifold 3D Winged-Edge Topology." Level 4 also adds a new 3D_Object
feature class that is intended to capture a wide range of 3D objects. These features are further
defined to be either Well Formed or Not Well Formed, with Well Formed 3D_Object features
having additional optional topologic information to improve software performance. Finally, Level 4
implements no changes that alter VPF's Level 0 through Level 3 topology.

E-l

VPF+: A VECTOR PRODUCT FORMAT EXTENSION SUITABLE FOR
THREE-DIMENSIONAL MODELING AND SIMULATION

1.0 INTRODUCTION

This report describes the data structures and data organization of VPF+ (Vector Product Format+).
VPF+ is an extension to traditional VPF [1] that provides three-dimensional (3D) georelational
modeling and that is SEDRIS (Synthetic Environment Data Representation and Interchange Speci-
fication) capable. That is, VPF+ is designed with the capability of modeling a wide range of objects
that can be encountered in a SEDRIS transmittal (App. A). VPF+ is not, however, limited by
SEDRIS. VPF+ does, for example, allow for the definition of specific various relationships in
explicit 3D topology that SEDRIS does not.

Modeling in 3D in VPF+ is provided by a new level of topology called Level 4 Full 3D
Topology. Level 4 full 3D topology (or simply Level 4) uses a boundary representation (B-rep)
method. B-rep models 3D objects by describing them in terms of their bounding entities and by
topologically orienting them in a manner that enables the distinction between the object's interior
and exterior.

Consistent with B-rep, the representational scheme of Level 4 includes both topologic and
geometric information. The topologic information encompasses the adjacencies involved in 3D
manifold and non-manifold objects, and is described using a new, extended winged-edge data
structure. This data structure is referred to as "Non-Manifold 3D Winged-Edge Topology." The
geometric information includes node coordinates and face and edge orientation. Although we restrict
ourselves to planar geometry, curved surfaces can also be modeled through the inclusion of
parametric equations for faces and edges as associated attribute information.

The remainder of this report is organized as follows. Section 2.0 describes non-manifold
objects and explains why a new data structure is needed to represent these objects. Section 3.0
explains non-manifold 3D winged-edge topology. Section 4.0 pictorially represents this new data
structure in both a relational diagram and object model. Section 5.0 provides an example of the
workings of the data structure through an illustration with related data tables. Section 6.0 covers
the topological sufficiency of the data structure. Section 7.0 discusses the feature level including,
in particular, the introduction of 3D_Object Features and the definition of these as being either
Well Formed or Not Well Formed. It is shown that this distinction allows for the storage of optional
topologic information to improve software performance. Cross-tile topology is discussed in Sec. 8.0
and Sec. 9.0 provides a 3D spatial indexing scheme. The results and future work are discussed in
Sec. 10.0.

The research on which this report is based is provided in the appendices. Appendix A
summarizes the features of three data structures capable of resolving some of the ambiguities found
in the representation of non-manifold objects. Appendix B provides an overview of SEDRIS by (1)
introducing the SEDRIS project and explaining those portions of the SEDRIS object model relevant

Shaw et al.

to this research and (2) discussing significant differences between VPF and SEDRIS. Appendix B
has been provided not only for completeness of the research conducted, but also as an aid to those
of the VPF community who may not be familiar with SEDRIS. It is anticipated that many who
review this research will be familiar with the VPF standard [1]. For that reason, a summary of the
salient features of VPF has not been provided. Appendix C offers a summary of the modified
Raumbaugh notation used in the SEDRIS object model, a tool that should prove helpful in understanding
App. B.

2.0 NON-MANIFOLD OBJECTS

A non-manifold object is one in which the neighborhood around some of its points is not
homeomorphic to a disk [4]. The surface cannot be locally deformed into a plane without tearing
it [2,4]. The non-manifold objects given consideration in Level 4 are ones with non-manifold edges
and ones with non-manifold nodes. Figure 1 shows three examples of non-manifold edges. Figure 1(a)
represents three faces connected along a common edge (more than three are possible). Figure 1(b) shows
a "dangling" edge (an edge adjacent to no faces). Figure 1(c) shows a face "dangling" from an open
box (three of its edges are adjacent to no face). Finally, Fig. 1(d) shows a non-manifold node in
which two objects are connected solely at a common node. The node connecting the dangling edge
in Fig. 1(b) is also an example of a non-manifold node.

Non-manifold objects are necessarily included in Level 4 topology since this class of objects
may be encountered in a SEDRIS transmittal (see App. B). SEDRIS would allow, for example, the
representation of the objects shown in Fig. 2(a) and (b). Figure 2(a) shows a building on a terrain
surface with an antenna attached to the roof. Two non-manifold conditions are present. First,
each edge along the base of the building is connected to three faces. Second, the antenna is a
"dangling" edge, not adjacent to any faces.

Figure 2(b) shows a building with an internal face dividing the building into two floors. Each
edge bordering the second floor is adjacent to three faces - the face forming the second floor and
two faces making up the bounding walls of the building.

VPF's winged-edge data structure is insufficient to maintain all adjacency relations present in
the objects shown in Fig. 1. With non-manifold objects, an edge may not be adjacent to exactly two
faces. Instead, it may be adjacent to more than two faces (Fig. 1(a)), no faces (the dangling edge

Fig. 1 — Four non-manifold objects

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation

Fig. 2 — (a) Example of object with two non-manifold conditions and (b)
identifies a double-sided face inside a 3D object (bold-face line)

in Fig. 1(b)), or one face (one of the outer edges of the dangling face in Fig. 1(c)). Additionally,
a connected node may be adjacent to edges in two or more different objects (Fig. 1(d)) or an object
and a dangling edge (Fig. 1(b)).

Several alternate data structures capable of maintaining the adjacency relationships found in
manifold and non-manifold objects were examined but could not be directly implemented in Level 4
(App. A). Our primary area of concern is modeling synthetic environments. These other data
structures have a different application area, solid modeling, making them inconsistent with the
winged-edge topology concepts found in the VPF standard [1]. However, they did provide a theoretical
basis for the primitives and structures necessary to make Level 4 a logical extension of the VPF
standard [1].

3.0 DATA STRUCTURE OVERVIEW

The non-manifold 3D winged-edge data structure introduces a new structure called Efaces to
resolve the ambiguities resulting from the absence of a fixed number of faces adjacent to an edge.

Shaw et al.

Efaces describe a use of a face by an edge and allows maintenance of the adjacency relationships
between an edge and 0, 1, 2, or more faces incident to an edge. An edge's left and right edges are
replaced by the Next_Edge_on_EFace, which is always ordered to provide the next edge around the
face. Additionally, VPF's connected node table is modified in Level 4 to allow for non-manifold
nodes (Fig. l(b, d)). This requires that a node point to one edge in each object connected solely
through the node and to each dangling edge, and it allows the retrieval of all edges and all faces
in each object and the retrieval of all dangling edges connected to the node.

Unlike VPF's Level 3 topology, the "universe face" is absent in Level 4 since Level 4 is
primarily intended for 3D modeling. Additionally, since Level 4 topology is intended to model in
3D, faces may be one-sided or two-sided. A two-sided face, for example, might be used to represent
a building with one side used for the outside of the building and the other side for the inside of
the building. Feature attribute information would be used to render the two different surface tex-
tures and color. A one-sided face might then be used to represent the terrain surface adjacent to the
building. Additionally, orientation of the interior and exterior of 3D objects is organized in relation
to the normal vector of faces forming the surface boundary of closed objects.

Faces are also allowed to be embedded within a 3D object in Level 4. Figure 2(b) shows an
example of a building with an embedded double-sided face dividing the building into two floors.
Other double-sided faces could also be inserted to divide each floor into separate rooms.

Level 4 is a full 3D topology that is capable of representing comprehensive, integrated 3D
synthetic environments. Such an environment can include objects generally associated with the
terrain surface (buildings, roads, and motor vehicles for example). Additionally, it can include
objects that are not attached to the terrain but are rather anchored at some significant elevation
point above the terrain surface (weather systems and satellites, for example) or below a water
body's surface (such as suspended acoustic objects).

3.1 Non-Manifold 3D Winged-Edge Topology

This portion of Sec. 3.0 describes the structures used by non-manifold 3D winged-edge topology
in Level 4. The Level 4 topologic structures are eface, face, edge, connected node, entity node, ring,
and text. Figure 3 shows the VPF+ primitive directory for Level 4 topology. Since Level 4 treats
ring, entity node, and text similar to traditional VPF Levels 0 through 3, further discussion of these
is omitted. The remainder, eface, face, edge, and connected node are described below.

Primitives (such as shells, typically associated with 3D topology) have been intentionally excluded
from Level 4. The addition of shells as topological primitives would have been a logical extension from
2D to 3D objects since a shell is a generalization of the notion of ring as used in VPF. Whereas
a ring is a mechanism that models disconnected graphs within a surface, a shell is a mechanism
that models disconnected graphs between surfaces. Shells have advantages such as logically organizing
adjacency relationships in 3D objects. However, these advantages are outweighed by additional
complexities that arise in connection with tiling in VPF. Tiling requires that a primitive that crosses
tile boundaries be split into two new primitives. Cross-tile topology is then used to retrieve the
original primitive. Splitting a shell that crosses a tile boundary would create two new shells with
the addition of multiple faces, edges, and nodes, making the cross-tile topological retrieval more
complex and time consuming. To avoid these difficulties, a new feature is introduced, referred to
as the 3D_Object Feature. 3D_Object Features maintain adjacencies yet also model real "things."
Additionally, the omission of shells is in keeping with the spirit of SEDRIS, which does not define
3D topological primitives such as shells (App. A).

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation

TABLED
EDGE
TABLE

EFACE
TABLE

NARRATIVE
TABLE

THEMATIC
INDEX

EDGE
BOUNDING
BOX
TABLE

VARIABLE
LENGTH
INDEX

EDGE
SPATIAL
INDEX

NARRATIVE
TABLE

THEMATIC
INDEX

ENTITY
NODE TABLE

ENTITY
SPATIAL
INDEX

NARRATIVE
TABLE

THEMATIC
INDEX

pÖNNECTED:

INODE TABLE
TEXT
TABLE

CONNECTED
SPATIAL
INDEX

TEXT
J SPATIAL

INDEX

NARRATIVE
TABLE

THEMATIC
INDEX

VARIABLE
M LENGTH

INDEX

NARRATIVE
TABLE

THEMATIC
INDEX

o
MANDATORY

OPTIONAL

NEW LEVEL 4 TABLE

MODIFIED VPF TABLE j |

Fig. 3 — VPF+ primitive directory contents, Level 4 full 3D topology

3.2 EFace

An eface describes a use of a face by an edge (Table 1). Efaces maintain the adjacency
relationship between an edge and multiple faces connected along that edge. This is accomplished
by linking each edge to all faces connected along the edge through a circular linked list of efaces.
Each eface in the list identifies the face it is associated with, the next eface in the list, and the
Next_Edge_on_Eface. The Next_Edge_on_Eface makes it possible to find the "next" edge on a face
from a given edge. Each face can also be found in more than one eface. With the observer looking
in the same direction as the edge direction, efaces are radially ordered in the linked list in a
clockwise direction about the edge as shown in Fig. 4. The purpose for the ordering is to make
traversal from one face to the radially closest adjacent face a simple list operation.

Each eface in the eface table has an entry for face id, eface id, and edge id. Each of these serves
as a foreign key into the face, eface, and edge tables, respectively. The face id indicates the face
that the eface is identified with. The eface id points to the Next_Eface following the current
eface in the ordered, circularly linked list of efaces adjacent to a particular edge. The edge id points
to the Next_Edge_on_Eface. The Next_Edge_on_Eface is always determined by a clockwise ordering
of edges about the eface and is always the next edge on the eface clockwise from the current edge.

Shaw et al.

Table 1 — EFace Table Definition

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN

ID

Face

Next_Eface

Next_Edge_on_Eface

Row id

Face id

Eface id

Edge id

I

I

I

I

P

N

N

N

M4

M4

M4

M4

DIRECTED EDGE

ef = eface

Fig. 4 — Ordering of efaces about a directed edge

In both cases, the reference point is the observer standing above the face that the referenced edge is
adjacent to. For all efaces generated on each edge about a given face, the reference point must
remain static in reference to the face. For edge el, Fig. 5 identifies each face/eface and shows the
Next_Edge_on_Eface for each eface.

3.3 Edge

In VPF's winged-edge topology [1], each edge is related to one start node, one end node, one
left face, one right face, one left edge, and one right edge. However, these relationships may not
hold in a non-manifold domain.

In the non-manifold 3D winged-edge topology, edges are topologically linked to start and end
nodes and to the first and last efaces in a circularly linked list of efaces. As mentioned, each eface
in turn points to the face it is associated with, the next eface, and the Next_Edge_on_Eface.

The entries in the edge table (Table 2) for start and end node id are foreign keys to the
connected node table referencing the edge's start and end nodes. The entries for the eface id are
foreign keys to the eface table referencing the first and last efaces adjacent to the edge. Following
the links in the eface table identifies each eface in the ordered, circularly linked list of efaces
around the edge.

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation

next_edge_on_ef2

next_edge_on_ef3

next_edge_on_ef1

f = face
ef = eface

next_edge_on_efn = next_edge_on_efacen

Fig. 5 — Relationship of face, eface, and Next_Edge_on_Eface for edge el

Table 2 — Edge Table Definition

COLUMN NAME DESCRIPTION FIELD TYPE KEY TYPE OP/MAN

ID Row id P M
**.LFT_ID Feature id N OF
Start_Node Start Node id N Ml-4
End_Node End Node id N Ml-4
First_Eface Eface id N M4
Last_Eface Eface id N M4
Coordinates Coordinates Z/Y,* N M

Note: (**) indicates a place holder for the Line Feature class name; the (Z/Y,*)
identifies a three-coordinate string.

Figure 6 shows a cross-section of three adjacent faces, fl, f2, and f3, adjacent to common
edge el. Edge el is oriented in the direction noted by the arrow on the edge. Three efaces are
identified by efl, ef2, and ef3. The relationship of edge el to each of the adjacent faces is shown
by the arrows from el to the first eface, efl, and the last eface, ef3. Eface efl points to face fl and
the next eface, ef2; eface ef2 points to face f2 and the next eface, ef3. Finally, eface ef3 points to
face f3 and to the first eface, efl, completing the cycle.

When the first eface equals the last eface and both are null, a dangling edge is defined. When
the first eface equals the last eface and neither is null, an edge coincident with only one face is
defined.

Shaw et al.

e = edge
f = face

ef = eface

f2

1
f3^

L£' ef2 -•••... N^^fi

/ e1 ',

'f efl

K^T
..X, \^s f1

Fig. 6 — Cross-sectional view of faces sharing an edge

3.4 Face

In Level 4, faces remain planar regions as in traditional VPF [1]. The entry in the face table
(Table 3) for ring id is a foreign key to the ring table identifying the ring associated with the face.
The ring, in turn, identifies a starting edge, allowing the retrieval of all edges about a face when
starting with only a face id.

As more fully defined in the section on features, faces can be part of either 3D_Object Features
or Area Features. The entry in the **.FFT column is 1 for 3D_Object Features and 0 for Area
Features. The next column gives the feature id that the face primitive is associated with.

Table 3 — Face Table Definition

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN

ID Row id P M3-4
Ring_Ptr Ring id N M3-4
**.FFT Feature Type N OF4
Feature_ID Feature id N OF4
Sides Single/Double Sided N M4
Side_Use Pos/Neg/Both Sides N M4
Face_Class In/Out/Boundary*** N 04
Out Exterior of Object**** N 04
Normal_Vector Face Orientation Z/Y,* N M4

Note: (**) indicates a place holder for the 3D_Object or Area Feature class name; the (***)
indicates null values for faces part of Area Features and Not Well Formed 3D_0bject Features;
the (****) indicates null values for faces part of Area Features, non-boundary faces of
Well Formed 3D_0bject Features, and all faces of Not Well Formed 3D_0bject Features; the
(Z/Y,*) identifies a three-coordinate string.

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation

A face may be single-sided or double-sided. Only one side of a single-sided face is used, while
both sides of a double-sided face may be used. An entry of 1 in the sides column indicates double-
sided and 0 indicates single-sided. The SideJUse column indicates which side of a face is used: +1
for the side facing the normal vector, -1 for the opposite side, or 0 for both sides of a double-sided
face.

The Face_Class column will contain null values for faces that are part of Area Features and Not
Well Formed 3D_Object Features. The Out column will contain null values for faces that are part
of Area Features, non-boundary faces of Well Formed 3D_Object Features, and all faces of Not
Well Formed 3D_Object Features.

Face_Class indicates whether the face is inside the 3D_Object, outside the object, or part of the
surface boundary of the object. The Face_Class column may contain values of-1, 1, or 0 for inside,
outside, or boundary, respectively. The Out column records the orientation of the interior and
exterior of the closed portion of the object with respect to the normal vector of the boundary face.
An entry of 1 indicates that the exterior of the object is in the direction of the normal vector and
0 indicates that it is in the direction opposite to the normal vector.

In addition to permitting the characterization of each side of a double-sided face, face normals
have other uses. For instance, face normals are typically needed at run time for shading calculations.
Therefore, the availability of a face normal vector will obviate the need for calculation at run time,
thereby improving performance.

Level 4 topology imposes several restrictions on faces that are comparable to those of Level 3.
While surfaces and objects are allowed to be non-manifold, individual faces of surfaces are required
to be manifold. This prevents a face from self-intersecting, except along its boundary. Edges may
only intersect faces at their boundary.

3.5 Connected Node

In Level 4 topology, Connected_Nodes may be topologically linked to more than one edge
connected to the Connected_Node. When the Connected_Node is non-manifold (e.g., two or more
objects or an object and dangling edge connected solely at the single Connected_Node), then the
Connected_Node is related to one edge in each object connected at the connected node and to each
dangling edge.

The connected node normal vector is included as an optional feature in Level 4. Some graphics
formats such as VRML (Virtual Reality Modeling Language) allow the option of binding normals
on a per-vertex basis to create shading effects that decrease the faceted nature of an object. Calculating
these vertex normals as a preprocessing step can improve run time performance.

The edge id in the edgen column of the connected node table (Table 4) is a foreign key to
the edge table and identifies each edge that the connected node is related to as described above. The
subscript is used to indicate that there may be more than one edge related to a given connected
node.

An example of a representation requiring multiple edge entries for a given connected node is
given in Fig. 7. In Fig. 7, node p is related to edge el in object A and e7 in object B. The
corresponding edge table would record both edges related to node p.

10 Shaw et dl.

Table 4 — Connected Node Table

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN

ID Row id I P M
**.PFT_ID Feature id I N OF
Containing_Face Null X N O
Edgen Edge id of One Edge in

Each Object & Dangling Edge
Connected at the Node

K/I N M4

Normal_Vector Node Normal Vector I N 04

Coordinate Coordinate Z/Y,* N M

Note: (**) indicates a place holder for the Point Feature class name; the (Z/Y,*) identifies a
three-coordinate string.

Fig. 7 — Two objects "A" and "B" connected at non-manifold node "p"

3.6 Minimum Bounding Box

Traditional VPF requires a minimum bounding rectangle record for each record in an edge or
face primitive table [1]. Level 4 requires a minimum bounding box record (Table 5) for each edge
or face primitive. This table adds ZMIN and ZMAX values to the minimum bounding rectangle
table of traditional VPF.

Table 5 — Minimum Bounding Box Table

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN

ID Row id I P M

XMIN Minimum x Coordinate F/R N M

YMIN Minimum y Coordinate F/R N M
ZMIN Minimum z Coordinate F/R N M4

XMAX Maximum x Coordinate F/R N M

YMAX Maximum y Coordinate F/R N M

ZMAX Maximum z Coordinate F/R N M4

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 11

4.0 DATA STRUCTURE RELATIONSHIPS AND OBJECT MODEL

The data structure relationships of the non-manifold 3D winged-edge topology are summarized
in Fig. 8 and an object model is provided in Fig. 9. References to geometry are omitted.

As shown in Fig. 8, each Connected_Node is related to one edge in each manifold object to
which the node is attached and to each dangling edge connected to the node. Each edge is related
to its start and end nodes and to its first and last efaces. Each eface is related to its face, the
NextJEface in the ordered, circularly linked list of efaces that the eface is a member of, and to
the Next_Edge_on_Eface. The face, in turn, is linked to a ring that is related to its starting edge.
An object model for non-manifold 3D winged-edge topology is given in Fig. 9. The SEDRIS
modified Raumbaugh notation is used.

5.0 LEVEL 4 TOPOLOGY EXAMPLE

An example of the Level 4 topology is given using Fig. 10. Two non-manifold conditions are
shown in Fig. 10: each edge forming the base of the building is connected to more than two faces
and there is a dangling edge representing an antenna extending from the roof of the building.

Tables 6-10 illustrate some of the adjacency relationships for Fig. 10. References to geometry
are omitted. Additionally, not all table entries use id's for the sake of clarity.

The sample edge table, Table 6, contains entries for the edge, Start_Node, End_Node,
First_Eface, and Last_Eface id's for some of the edges. Edge el, for example, has a reference to
a First_Eface, efl, and to a Last_Eface, ef3. Following the pointer from edge el to the sample eface
table, Table 7, identifies the first face adjacent to edge el as face f3. The Next_Eface is identified
as eface ef2, and the Next_Edge_on_Eface as edge e8. The identity of each face adjacent to edge el
can be found by following the links in the eface table.

next_edge_on_eface

next_eface
r

EDGE EFACE
* 1

ONE IN EACH
MANIFOLD
OBJECT & EACH
DANGLING EDGE

start,
end

first, last_eface

■ '

CONNECTED NODE FACE

starting_edge \
'

RING

Fig. 8 — Non-manifold 3D winged-edge structure relationships

12 Shaw et al.

o
LU
er
LU

-iö Q
<2 er
Z —
ccoc O
UJLU '" +
><<
LLIU_

>" z
er

LU

LU

_iCD

Z<

LU

— ÜL

>-
<3

. o <H +
O T-
_j
O / —-

*S

LU

T3

i
£

o
—1
r>

•
LU

LULU
CDO
Q<
LUU-

. lUJ|

LU
o

o
N

Q
LU

—• ic1

o *
■* CC xz LU
_J LU LUO
LU > + Z o
LU
—1 LU

o D.
O

O
Q
LU

O-
LU
n

Q

o —
z 3

Q
**■

2
LU

>
_J

LU
n

1
o z
. 1 LU tZ

LU 1— D
n er o
O
2 CO

z
Q
LU

o
LU
Z
z
o
o

y
s

LU LU
Q o
O z if
>-
1—
1—

•—»C
C3

-<-
LU

. o
z
LU £

o
C_>

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 13

Fig. 10 — Non-manifold 3D winged-edge example

Table 6 — Sample Edge Table for Fig. 10

EDGE START_NODE END_NODE FIRST_EFACE LAST_EFACE

el C D efl ef3
e2 D B ef4 ef5
e3 B A ef6 ef6
e4 C A ef7 ef8
e5 C G omitted omitted

e7 D H omitted omitted
e8 C E efll efl 2
e9 F E efl3 efl4

elO D F ef9 eflO
el3 F J null null

Table 8 shows the sample face table for some of the faces shown in Fig. 10. The face table
contains columns for the Face_ID and Ring_ID. Each face points to the ring related to that face.

Table 9 contains entries for some of the rings for Fig. 10. The ring table has columns for the
Ring_ID, Face_ID, and Start_Edge for the ring. Each ring points to its face and one starting edge.

14 Shaw et al.

Table 7 — Sample EFace Table for Fig. 10

EFACE FACE NEXT_EFACE NEXT_EDGE_ON_EFACE

efl f3 ef2 e8

ef2 fl ef3 e2

ef3 f2 efl e5

ef4 f4 ef5 e7

ef5 fl ef4 e3

ef6 fl ef6 e4

ef7 fl ef8 el

ef8 f5 ef7 omitted

ef9 f3 eflO el

eflO omitted ef9 el4

efll omitted efl 2 omitted

efl 2 f3 efll e9

efl 3 omitted efl 4 omitted

e!4 f3 efl 3 elO

Table 8 — Sample
Face Table for Fig. 10

Table 9 — Sample Ring Table for
Fig. 10

FACEJD RINGJD RINGJD FACEJD STARTJZDGE

fl 2 1 f3 elO
f2 3 2 fl e2
f3 1 3 f2 e5
f4 4 4 f4 e2
f5 omitted ...

Some of the entries for the connected node table are shown in Table 10. For example, Table 10
shows a connected edge of node D to be el. The other edges connected to node D can be obtained
by navigating through the edge and related tables. For node F, however, Table 10 shows two
connected edges, e9 and el3, since edge el3 is a dangling edge.

6.0 TOPOLOGICAL SUFFICIENCY

As described in [2,3], nine adjacency relations can be defined between the node-face-edge
primitives shown in Fig. 11. The directed arcs in Fig. 11 represent ordered relations between primitives.
For example, the Edge -> Node relation implies the storage of the start and end nodes with each
edge.

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation

Table 10 — Sample Connected
Node Table for Fig. 10

15

NODEJD EDGEj EDGE2

A e3 -

B e2 -

C el -

D el -

E e8 -

F e9 el3
G e6 -

H e7 -

I ell -

J el3 —

Fig. 11—The nine relations between the three primitives

Table 11 lists nine access primitives that were also identified in [2,3]. These access primitives
describe the retrieval of all topological adjacencies for each of the face, node, and edge primitives. A
data structure that stores only a subset of all possible adjacency relations, yet can satisfy queries
to all nine access primitives, is said to be topologically sufficient.

VPF's winged-edge data structure satisfies queries to all nine access primitives. The
non-manifold 3D winged-edge data structure also satisfies queries to all of the access primitives
shown in Table 11 as explained below. Many solutions may exist for some queries. The solutions
mentioned below do not purport to be the most efficient, as all formal issues related to space
considerations and time efficiencies are currently being investigated.

• API: First, all edges around a face are identified (AP2). Then the nodes around the face are
directly retrievable from the edge table as the start and end nodes for each edge.

Table 11 — The Nine Basic Access Primitives

ACCESS
PRIMITIVES

(AP) DESCRIPTION

API Given face i find all n; nodes around it

AP2 Given face i find all e; edges around it

AP3 Given face i find all fj faces around it
AP4 Given node i find all fj faces around it

AP5 Given node i find all nj nodes connected to it
AP6 Given node i find all ej edges connected to it
AP7 Given edge i find its two extreme vertices

AP8 Given edge i find the e; edges connected to it

AP9 Given edge i find the f; faces intersecting at it

16 __^____ Shaw et al.

• AP2: The face and ring tables are traversed to identify a starting edge. The edge and eface tables
are then traversed. Using face f3 in Fig. 10 as an example, the face table, Table 8, identifies
ring 1. The start edge for ring 1 is edge elO (Table 9). The first eface about edge elO is ef9
(Table 6). Table 7 identifies ef9 as related to face f3 and the Next_Edge_on_Eface as edge el.
Following the links from edge el yields edges e8 and e9. All edges around face f3 are, therefore,
identified as elO, el, e8, and e9 in that order.

• AP3: First all edges around the face are identified (AP2). Then all faces intersecting at each edge
are found (AP9).

• AP4: All edges connected to the node are first identified (AP6). Then all faces intersecting at
each such edge are found (AP9).

• AP5: All edges connected to the node are identified (AP6). The edge table identifies each node
that is opposite the given node.

• AP6: The connected node table identifies one edge in each manifold object and each edge dangling
from the given node. The eface and edge tables are traversed to identify all remaining edges.
Giving node D in Fig. 11 as an example, the connected node table identifies edge el and the
algorithm described for AP8 identifies edges el, e2, e7, elO, e4, e5, and e8. Edges e4, e5, and
e8 are discarded since the edge table establishes that they are not connected to node D. This
leaves edges el, e2, e7, and elO.

• AP7: The two extreme vertices of an edge are directly retrievable from the edge table listing of
the start and end nodes.

• AP8: All edges connected to an edge are found by traversing the edges of each face intersecting
the search edge and also of each face intersecting any additional edges identified in the connected
node table. Each edge with a start or end node identical to the original search edge is selected.
When the connected node table identifies more than one edge connected to the original search
edge's start or end nodes, the additional edges not previously identified would also be included
as connected edges. Using edge el in Fig. 10 as an example, the faces intersecting at it are fl,
f2, and f3 (AP9). The edges bordering face f3 are identified as elO, el, e8, and e9. Edge e9 is
discarded since it does not have a common start or end node with edge el. Repeating the process
for faces fl and f2 yields edges e2, e7, elO, e4, e5, and e8 as all of the edges connected to edge
el.

• AP9: Finding all faces intersecting at an edge is obtained from the eface table by following the
links in the linked list of efaces. Using edge el in Fig. 10 as an example, the edge table together
with the eface table identifies faces fl, f2, and f3 as adjacent faces.

7.0 FEATURES

Traditional VPF defines five categories of cartographic features: point, line, area, complex, and
text. Point, line, and area features are classified as simple features, composed of only one type of
primitive. Each simple feature is of differing dimensionality: zero, one, and two for point, line, and
area features, respectively. Unlike simple features, complex features can be of mixed dimensionality
and are obtained by combining features of similar or differing dimension.

For Level 4 topology, VPF+ adds a new simple feature class of dimension three. The newly
introduced feature, referred to as 3D_Object Feature, is composed solely of face primitives. This
new feature class is aimed at capturing a wide range of 3D objects. The eface table is also added
to the structural scheme. While the ring table provides a relationship between a face and all of the

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 17

edges that the face's rings are composed of, the eface table provides a relationship between an edge
and all of the faces that meet at that edge. VPF+ feature class structural schema is shown in Fig. 12.

Although 3D_Objects are restricted to primitives of one dimension, 3D_Objects of mixed
dimensionality can be modeled through complex features using simple features of similar or
mixed dimensionality as building blocks. The building with the antenna extending from the roof
shown in Fig. 2(a) is an example of such a complex feature in Level 4. The building is a simple
3D_Object Feature and the antenna is a simple line feature.

Face primitives in Level 4 are the building blocks of Area and of 3D_Object Features. Face
primitives comprising both types of features can be double- or single-sided, with Area Features
generally using only one side of a double-sided face. A face in Level 4 may be part of either a
3D_Object Feature, an Area Feature, or both.

7.1 3D_Object Features

3D_Object Features are topologically 3D and are intended to model real 3D objects such as a
building or a motor vehicle. Since a 3D_Object Feature is a simple feature, objects being modeled
at this level are restricted to be composed of faces connected along incident edges or at non-
manifold connected nodes. 3D_Object Features are allowed to meet along adjacent faces, edges,
and non-manifold connected nodes. Additionally, containment among 3D_Object features is allowed.

TABLE
COMPLEX
FEATURE P

JOIN

NEW MODIFIED
JOIN TABLE

JE

TEXT
FEATURE

JE

3D_OBJECT
FEATURE

JOIN TABLE

X

AREA
FEATURE

X

LINE
FEATURE

JOIN TABLE

TEXT

JOIN TABLE

X

POINT
FEATURE

JOIN TABLE

JZT
FACE

EFACE *~L
«—► RING

TABLE

«—»

JOIN TABLE

EDGE NODE

CONNECTED ENTITY

Fig. 12 — Level 4 feature class structural schema

18 Shaw et al.

Software performance can be improved by identifying characteristics of real 3D objects that
will allow storage of optional, unambiguous topological information that may otherwise require
considerable processing time to derive. Clearly, portions of numerous 3D objects form closed
volumes that divide 3D space into interior, exterior, and surface regions. Optional topological
information in these cases includes the classification of faces as either inside of, outside of, or part
of the boundary of the 3D_Object and the orientation of the interior and exterior of the object.

3D_Object Features are, therefore, defined to be either Well Formed or Not Well Formed.
A Well Formed 3D_Object Feature is structured such that:

• The 3D_Object may be manifold or non-manifold.

• One or more subsets of its composing faces forms a closed 3D volume that clearly divides 3D
space into interior, exterior, and surface regions.

• This closed volume may contain internal faces.

• This closed volume may have external dangling faces.

All 3D_Object Features that do not meet these criteria are defined as Not Well Formed.

7.2 Face Classification and Object Orientation

Based on this description of Well Formed 3D_Object Features, faces may be classified
unambiguously as either Boundary, Inside, or Outside. The subset of faces of the object forming
the surface of a closed 3D volume are the boundary faces. Faces embedded within the closed
portions of the 3D volumes are classified as inside. External dangling faces are classified as out-
side. Additionally, the interior and exterior of the closed portions of Well Formed features may be
unambiguously oriented. Orientation is provided with respect to the normal vector of its boundary
faces. No distinction is made in VPF+ between two or more closed 3D volumes forming part of a
Well Formed 3D_Object Feature. This is left to the product specification.

Figure 13 shows an example of all three kinds of faces, as well as the interior and exterior of
the 3D_Object. The inside face is delineated by the highlighted lines.

7.3 Join Table Definition

Face classification as either boundary, inside, or outside, and the orientation of the interior and
exterior of the closed portion of the 3D_Object, may be found in the appropriate columns of the

BOUNDARY FACE ■>. EXTERIOR

INTERIOR

{-
OUTSIDE FACE

INSIDE FACE

Fig. 13 —A Well Formed 3D_Object Feature

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 19

face table. In the case of one face primitive used by more than one feature or type of feature, this
information may be found in the join table. The join table definition, used for both 3D_Object
Features and Area Features, is shown in Table 12. An entry in the Face_Class column may be either
-1, 1, or 0, indicating inside, outside, or boundary, respectively. An entry in the Out column of
1 indicates that the exterior of the object is in the direction of the normal vector of the boundary
face, and 0 indicates that it is in the direction opposite of the normal vector of the boundary face.
Entries in the Face_Class column are null for faces that are part of Area Features and Not Well
Formed 3D_Object Features. In the Out column, entries are null for faces that are part of Area
Features, non-boundary faces of Well Formed 3D_Object Features, and all faces of Not Well
Formed 3D_Object Features.

7.4 Examples

Figure 14 shows an example of the use of the Well Formed 3D_Object Feature classification.
In Fig. 14, two features share a common face indicated by the highlighted lines. The direction of
the normal vector of the common face is given by the arrow. Since the face is found in both
features, it will be listed twice in the join table. One listing will record the outside of feature "A"
as being in the opposite direction from the normal vector of the shared face. The other will record
the outside of feature "B" as being in the same direction as the normal vector of the shared face.

Table 12 — Face-3D_Object/Area Feature Join Table Definition

COLUMN NAME DESCRIPTION COLUMN TYPE KEY OP/MAN

ID Row id I P M
**_ID Table 1 id I N M4
TileJD Tile id S N MT/O
FacelD Table 2 id I/S/K N M
Face_Class In/Out/Boundary * I N 04
Out Exterior/Interior* * * I N 04

Note: (**) indicates a place holder for either 3D_0bject Feature or Area Feature;
(*) indicates null values for faces part of Area Features and Not Well Formed
3D_0bject Features; (***) indicates null values for faces part of Area Features,
non-boundary faces of Well Formed 3D_0bject Features, and all faces of Not Well
Formed 3D_0bject Features.

\ N ;\
«—5—

FEATURED" FEATURE V

COMMON FACE —
NORMAL VECTOR «-

Fig. 14 — Two features sharing a common face

20 Shaw et ed.

The simplest Well Formed 3D_Object Features are closed, orientable 3-manifolds. A feature of
this type divides 3D space into three regions: interior, exterior, and surface. The feature's surface
region is restricted to be finite, but the interior and exterior regions are allowed to be infinite. The
object is also oriented with respect to its interior and exterior regions. If the exterior region of
the feature is infinite and the interior region finite, then the feature is a Regular one. Otherwise, the
exterior is finite and the interior infinite, and the feature represents a Void within a 3D object. In
Fig. 15, for example, the exterior feature is classified as regular. The internal one is classified as
a void.

The object shown in Fig. 16 is Not Well Formed. The distinction between interior and exterior
is not clearly defined, since a closed 3D volume is not formed. The object shown in Fig. 17 is Well
Formed. A subset of its faces forms a closed 3D volume.

Figure 18 shows an example of a 3D_Object Feature that is Not Well Formed. Portions of three
faces joining at a single edge are illustrated. All edges except the incident connected edge are
adjacent to only one face. No subset of the object's faces forms a closed 3D volume dividing 3D
space into interior, surface, and exterior regions.

REGULAR OBJECT

INTERNAL VOID WITHIN THE OBJECT

INDICATES DIRECTION OF EXTERIOR ►

Fig. 15 — A regular object with internal void

Fig. 16 —A Not Well Formed 3D_Object Feature Fig. 17 —A Well Formed 3D_Object Feature

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 21

Fig. 18 — A Not Well Formed 3D_0bject Feature

3D OBJECT FEATURES

X
WELL FORMED

I
NOT WELL FORMED

REGULAR VOID NON-MANIFOLD

Fig. 19 — 3D_Object Feature classifications

7.5 3D_Object Feature Classification

The classification of 3D_Object Features previously described is summarized in Fig. 19. Shaded
boxes are used to indicate abstract classifications.

7.6 Area Features

Though Area Features may geometrically exist in 3D space, they are topologically 2D and are
intended to model surface area. As with 3D_Object Features, Area Features are simple features and
objects being modeled at this level are restricted to be composed only of faces connected along
incident edges or at non-manifold connected nodes. The faces, as mentioned, may be single-sided
or double-sided, but an Area Feature will generally make use of only a single side of a double-sided
face. The join table definition is shown in Table 12. Note that the entries in the Face_Class and Out
columns are null for faces that are associated with Area Features.

22 Shaw et al.

8.0 CROSS-TILE TOPOLOGY

Tiling is the method used in VPF [1] to break up large geographic data into spatial units small
enough to fit the limitations of a particular hardware platform and media. Primitives that cross-tile
boundaries are split in VPF. Cross-tile topology is maintained by replacing the primitive's integer
key with a triplet id. The triplet id consists of an internal reference to the primitive in the current
tile and external references to the neighboring tile and a primitive within that tile. The two external
references allow network navigation across tile boundaries using VPF's winged-edge topology.
Level 4 employs a similar cross-tile scheme. Additionally, in Level 4 as in Level 3, the tiling
scheme and the handling of features that lie on tile boundaries and text primitives that cross-tile
boundaries are left to the product specification.

8.1 Cross-Tile Constructs, Traditional VPF

When tile boundaries are created, four occurrences requiring primitives to be split are possible
in traditional VPF [1]:

• An edge intersects the tile boundary.

• The edge is coincident with the tile boundary.

• A face is broken by a tile boundary.

• Connected nodes occur on the tile boundary.

When primitives are split, triplet id's are created for left/right faces and left/right edges in the
edge table and for first edge in the connected node table when there is a cross-tile primitive in
the neighboring tile.

8.2 Cross-Tile Constructs, Level 4

Tile boundaries in Level 4 consist of planar divisions. The cross-tile constructs of traditional
VPF are extended in Level 4 in accordance with the organizational scheme of non-manifold 3D
winged-edge topology. Five occurrences requiring primitives to be split are possible when tile
boundaries are created in Level 4 topology:

• An edge intersects the tile boundary.

• The edge is coincident with the tile boundary.

• A face is broken by a tile boundary.

• A face is coincident with the tile boundary.

•Connected nodes occur on the tile boundary.

The only new situation encountered in Level 4 is that of a face coincident with the tile boundary. The
remaining four occurrences, though also encountered in Level 3, are treated differently in Level 4.
When Level 4 primitives are split, a triplet id is defined for the Next_Eface and Next_Edge_on_Eface
columns in the eface table and the edge column of the connected node table when there is a
corresponding cross-tile primitive in the neighboring tile. The rules involved are discussed below.

• An edge intersects the tile boundary - An edge is always broken when it intersects a tile boundary
by placing a connected node at the intersection in both tiles. The efaces related to the original

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 23

edge are also broken between the two tiles, and the efaces within each tile are circularly ordered
in separate tables. All edges terminated by this connected node will have cross-tile topology if
an edge exists in the neighboring tile. The cross-tile topology consists of triplet id's in the
Next_Edge_on_Eface column of the eface table. The triplet id identifies the edge id of
the Next_Edge_on_Eface of the present eface in the current tile, the neighboring tile id, and the
id of the cross-tile edge in the neighboring tile. The cross-tile edge will be the first edge in
the adjacent tile, counterclockwise from the referencing edge at the node.

Figure 20(a) shows an object consisting of three faces connected along a common edge that is
divided by a tile boundary. The intersection of the faces and tile boundary is represented by the
dashed lines in Fig. 20(a). Two new objects are formed as a result, one in each tile shown in
Fig. 20(b) and (c). Nodes and edges have been inserted where the tile boundary divides the edges
and faces of the object. These are represented by the highlighted lines and vertices. Edges el and
e2, for example, are the result of dividing one former edge that intersected the tile boundary. For
edge el, Bl is the start node, and edge e3 is the Next_Edge_on_Eface for the eface related to
face x. The cross-tile edge is edge e4 in tile 2. Table 13 gives a sample eface table entry for edge
el in Fig. 20.

• The edge is coincident with the tile boundary - An edge coincident with a tile boundary occurs
in both tiles. Within a given tile, the edge is related to a list of efaces that identify faces occurring
within the tile. The eface in the list prior to the tile boundary has cross-tile topology if a face
adjacent to the referencing edge exists in the neighboring tile. The cross-tile topology consists of

(a)

FACEx

FACEy

INSERTED NODE •
INSERTED EDGE —

PLANAR TILE BOUNDARY

Fig. 20 — Object divided by planar tile boundary

24 Shaw et al.

triplet id's in the Next_Eface and Next_Edge_on_Eface columns. The triplet id in the Next_Eface
column identifies the eface in the list prior to the tile boundary in the current tile, the neighboring
tile id, and the next ordered eface in the linked list of efaces ordered about the coincident edge
in the neighboring tile. The Next_Edge_on_Eface column contains a triplet id identical to that for
an edge intersecting a tile boundary.

In Fig. 20, edges e3 and e4 are added by the division caused by the tile boundary and are
treated as coincident edges. Node Al is the start node for edge e3 and node A2 is the start node
for edge e4. The eface list for edge e3 will list only one eface identifying face x. The triplet id in
the Next_Eface column of the eface table will identify tile 2 and the next ordered eface (identifying
face y) about the corresponding edge, e4. The Next_Edge_on_Eface column will reference edge e5
as the next edge in the current tile, tile 2, and edge e2 as the cross-tile edge.

Table 14 gives a sample eface table entry for edge e3 in Fig. 20. Similar triplet id's would be
entered for all efaces adjacent to edges coincident with the tile boundary. These are the highlighted
edges in Fig. 20.

• A face is broken by a tile boundary - When a face is broken by a tile boundary, the face is closed
along the tile boundary creating multiple faces and efaces. The new edges used to close the face
are treated as mentioned above.

In Fig. 20, faces x and y, for example, resulted from the division of one face by the tile boundary.
Separate efaces relate to face x and face y. The edges used to close the faces are treated as
coincident edges.

• A face is coincident with the tile boundary - In Level 4, a face may be coincident with a tile
boundary. Face is coincident with a tile boundary when all edges bounding the face are on the
tile boundary. Each edge forming the boundary of the face is treated as a coincident edge.

• Connected nodes occur on the tile boundary - This is handled similarly to traditional VPF. Connected
nodes that occur on tile boundaries exist in both tiles. Each node has a triplet id for internal and
external edge if an edge exists in the neighboring tile. No special treatment is needed for
non-manifold nodes (see Fig. 21).

Table 13 — Sample EFace Table Entry for Edge el in Fig. 20

EFACE ID FACE* NEXT_EFACE* NEXT_EDGE_ON_EFACE*

1 X 2, - - e3, tile 2, e4

"Note: Names rather than id's may be used for clarity.

Table 14 — Sample EFace Table Entry for Edge e3 in Fig. 20

EFACE ID FACE* NEXT_EFACE* NEXT_EDGE_ON_EFACE*

1 X 1, tile 2, 1 e5, tile 2, e2

"Note: Names rather than id's may be used for clarity.

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 25

TILE1 TILE 2 TILE1 TILE 2

CONNECTED NODE ON TILE BOUNDARY.
EACH NODE REFERENCES A CONNECTED
EDGE IN THE NEIGHBORING TILE.

EDGE ENDING ON TILE BOUNDARY. NODE IN TILE 1
REFERENCES EDGE IN SAME TILE ONLY. NODE IN
TILE 2 REFERENCES EDGE IN TILE 1 ONLY.

Fig. 21 — Cross-tile connected node rules [1]

9.0 SPATIAL INDEXING

This section describes the Spatial Index File in VPF+. VPF provides spatial indexing as an
optional means of improving query performance. An application can, for example, retrieve all
primitives found within a bounding region without exhaustively searching all primitive tables. The
VPF+ spatial index derives from a grid-based 3D binary tree. The Spatial Index File header and bin
data records are extended to include coordinates based on Level 4's Minimum Bounding Box (MBB).

9.1 Spatial Index Creation

In traditional VPF, a spatial index is created by dividing a tile into 2D areas that become cells
of a grid-based binary tree. The first split divides the area into right and left halves. The second
split is top and bottom halves, then right and left again, and so on. Multidimensional binary search
trees such as this were analyzed in [5]. The data structure was found to be efficient in handling
point, line, and area spatial queries with the user specifying conditions for multiple keys (here,
multiple coordinates). The traditional VPF method is, therefore, extended in VPF+ to a grid-based
3D binary tree, with cell splitting in a different dimension at each level of the tree.

The 3D binary tree is created as follows. The tile is divided into 3D regions that become cells
of the tree. Each division splits the parent cell into half. The division is made by a planar division of
the cell into two equal 3D regions. The dividing plane is perpendicular to and intersects one of the
x, y, and z axes at alternating levels of the tree. The first split divides the entire tile into right and
left 3D regions along the x axis. The second split is into rear and front 3D regions along the y axis.
The third split is into top and bottom 3D regions along the z axis. The process is then repeated.
Each 3D region resulting from the division becomes the right or left child of its parent cell. When
a split occurs, the primitives are distributed down into either child cell depending on the primitive's
MBB. A primitive remains with the parent cell only if its MBB intersects the boundary between
a parent's children cell.

The process for dividing a tile is partially illustrated in Fig. 22. In Fig. 22, the plane dividing
each cell is represented by bold-faced lines. Cells 2 and 3, the two children of cell 1, point to the
primitives in the right and left 3D regions of cell 1 (the entire tile). Cells 4 and 5, the two children
of cell 2, point to the primitives in the back and front 3D regions of cell 2 (the right-hand region of
the entire tile). Cells 8 and 9, the two children of cell 4, point to the primitives in the top and
bottom 3D regions of cell 4 (the right-rear region of the entire tile).

26 Shaw et al.

Fig. 22 — 3D spatial index cell decomposition

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 27

Each cell of the tree contains a list of primitive MBBs together with a list of the primitive id's
that are found at that level of the tree. Cells are split when the number of primitives exceed a bucket
size specified by the product specification. The criteria for splitting cells and for ending the splitting
process in VPF+ remain unchanged from traditional VPF.

VPF uses a 1-byte integer spatial index coordinate system to which primitive coordinates are
converted prior to indexing. The same conversion formula are utilized in VPF+ for minimum
(xl,yl,zl) and maximum (x2,y2,z2) coordinates.

9.2 Spatial Index File Format

The format of the VPF+ Spatial Index File consists of a header, a bin array of the tree, and bin
data records for each primitive in the tree. The header and data records files are extended to include
the coordinates of each primitive's MBB. The bin array record remains unchanged from traditional
VPF.

• Header - The header contains the number of primitives, the MBB of the entire spatial extent of
the tree, and the number of cells of the tree. The spatial index file header record layout is
described in Table 15.

• Data Records-There is one record for each primitive of the tree. Each record contains the
coordinates defining the MBB for a primitive and that primitive's id. The structure of the data
record is shown in Table 16.

10.0 RESULTS AND FUTURE WORK

This work has described the data structures and data organization of VPF+. VPF+ was designed
to provide for georelational modeling in 3D and with the capability of modeling a wide range of
objects that may be received or transmitted through SEDRIS.

The SEDRIS project, including the object model, its role in data interchange, etc., was examined
and the class of objects that may be encountered in a SEDRIS transmittal was identified to include

Table 15 — Spatial Index File Header Record Layout

BYTE OFFSET WIDTH TYPE DESCRIPTION

0 4 Integer Number of primitives
4 4 Floating Point MBB xl
8 4 Floating Point MBB yl

12 4 Floating Point MBB zl
16 4 Floating Point MBB x2
20 4 Floating Point MBB y2
24 4 Floating Point MBB z2
28 4 Integer Number of Cells in Tree

28 Shaw et al.

Table 16 — Structure of the Bin Data Record

BYTE OFFSET WIDTH TYPE DESCRIPTION

HDR + BIN + OS + c * 8 + 0 byte MBB xl

HDR + BIN + OS + c*8 + l byte MBB yl

HDR + BIN + OS + c*8 + 2 byte MBB zl

HDR + BIN + OS + c * 8 + 3 byte MBB x2

HDR + BIN + OS + c*8 + 4 byte MBB y2

HDR + BIN + OS + c*8 + 5 byte MBB z2

HDR + BIN + OS + c * 8 + 6 4 int Primitive id

Note: c is {0..(number of primitives for a cell - 1)}; the c value for
the first primitive is 0. HDR is the length of the index file header
record. BIN is the summed length of all the bin array records. OS is
the value of the offset variable in the corresponding bin array record.

non-manifold as well as manifold objects. The winged-edge topology of VPF was found to be
deficient to represent non-manifold objects. Several data structures capable of representing both of
these classes of objects were therefore studied. These data structures were not directly implementable,
but they did provide a theoretical basis for the data structure that was designed.

As a result of these investigations, a new, extended winged-edge data structure called
non-manifold 3D winged-edge topology was designed for a new level of topology, Level 4 full 3D
topology. A new structure called efaces was developed to resolve some of the ambiguities found
in non-manifold representations. This topology was designed to be a logical extension to the
winged-edge topology of traditional VPF, and no changes were made that alter traditional VPF's
lower levels of topology.

On the feature level, a new 3D_Object Feature class was introduced to capture a wide range
of 3D objects. These features were further defined to be either Well Formed or Not Well Formed,
with Well Formed 3D_Object Features having additional optional topologic information to improve
software performance.

Further investigation is continuing in several areas. First, and most obvious, are issues related
to data storage and to data structure efficiency. Second, since a synthetic environment should be
representable at various levels of resolution depending on the needs of the user, the implementation
of multi-scale surface and 3D object representation is being explored. Finally, how spatial tiling
should be addressed in VPF+ is at issue in light of the SEDRIS method of spatial organization. In
SEDRIS, tiles may be subdivided into smaller tiles. In traditional VPF, an entire coverage is tiled
according to a single tiling scheme and tiles may not be divided into smaller tiles. Implementation
of the SEDRIS spatial organizational scheme in VPF+ would make consumption of SEDRIS data
straightforward, but would constitute an extreme departure from the structural organization of
traditional VPF. Feedback is being sought from the VPF community on the benefits and disadvantages
of each approach.

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 29

11.0 ACKNOWLEDGMENTS

This research was funded by the National Imagery and Mapping Agency's Terrain Modeling
Program Office and the Defense Modeling and Simulation Office with Ron Magee and Jerry
Lenczowski, program managers, under program element number 0603832D.

12.0 REFERENCES

1. Department of Defense, "Interface Standard for Vector Product Format," MIL-STD-2407,
28 June 1996.

2. Woo, T. C, "A Combinatorial Analysis of Boundary Data Structure Schemata," IEEE Computer
Graphics and Applications 5(3), 19-27 (1985).

3. Abdelguerfi, M., E. Cooper, C. Wynne, and K. Shaw, "An Extended Vector Product Format
(EVPF) Suitable for the Representation of Three-Dimensional Elevation in Terrain Databases,"
International Journal of Geographical Information Systems 11(7), 649-676 (1997).

4. O'Rourke, J., "Computational Geometry in C," Cambridge University Press, 1995.

5. Bently, J. L., "Multidimensional Binary Search Trees Used for Associated Searching," Commun.
ACM 18(9), 509-517 (1975).

Appendix A

REPRESENTING NON-MANIFOLD GEOMETRIC MODELS

Three boundary-based data structures capable of modeling non-manifold objects are described
below. The three data structures to be described are the Radial Edge [2], the Tricyclic Cusp [1],
and the ACIS Geometric Modeler [3].

1.0 THE RADIAL EDGE STRUCTURE

The Radial Edge Structure [2] is an edge-based data structure that addresses topological ambiguities
found with two non-manifold situations—the non-manifold edge and the non-manifold vertex. Generally,
this is accomplished through a radial ordered list of faces connected along a common edge and a
radial unordered list of edges connected at a given vertex. Additionally, separate structures defining
the "use" of faces, loops, edges, and vertices are used to represent adjacency relationships rather
than the faces, loops, edges, and vertices themselves.

There are several topological restrictions on the domain of objects that can be represented by
the Radial Edge Structure. Among these, while a surface is allowed to be non-manifold, individual
faces are required to be manifold. This prevents a face from self-intersecting except along its
boundary. Additionally, edges may only intersect faces along or at their boundaries. Generally, any
two topological elements may intersect each other only at a level of hierarchy at least one level
down from the lowest of the two intersecting levels (i.e., different regions may intersect each other
only along their boundaries).

1.1 Topological Elements

The topological elements used by the Radial Edge Structure are organized in the following
order from top to bottom: model, region, shell, face, loop, edge, and vertex. Lower dimensional
elements in the hierarchy serve as boundaries for higher dimensional elements.

A model can be thought of as a 3D modeling space that holds all elements contained in a
geometric model. A model is technically not a topological element, but more of a bucket to hold
all of the topological elements of a geometric model. There is at least one region in a model. A
region is a volume of space. For example, a single cube requires two regions, one for the inside
and the other for the outside. Only the latter region would have an infinite extent. When there is
more than one region, all have a boundary.

A shell consists of an oriented boundary surface. It may be connected to form a closed volume
or it may be an open set of adjacent faces, a wireframe, a combination of faces and wireframe, or
a single point. A solid with an internal void would have more than one shell. No shell exists if all

31

32 _____^__ Shaw et al.

space exists as a single region. In that case, no modeling has yet been done or all models have been
deleted.

A face is the bounded portion of a shell excluding the boundary. Though a face is orientable,
it is not oriented since two region boundaries may use different sides of the same face. A loop is
a connected boundary of a single face. This can be either a single vertex or alternating sequences
of edges and vertexes. A face can have more than one loop (a face with a hole in it). Loops are
not oriented as they bound a face that may be used by two different shells. The use of a loop is
oriented. An edge is bounded by vertex at each end, possibly the same one. It is orientable, but
not oriented. The use of the edge, on the other hand, is oriented. A vertex is simply defined as a
unique point in space.

The Radial Edge Structure also defines face use, loop use, edge use, and vertex use as additional
topological adjacency elements associated with faces, loops, edges, and vertices. As mentioned,
these "uses" are the elements employed to represent adjacencies. Although this increases storage
costs, it simplifies traversing the structure by providing through the "usage" a unique identification
for each face, loop, edge, and vertex usage.

Face use represents the use of one of the two sides of a face by a shell and is oriented with
respect to face geometry. Loop use represents one of the uses of a loop associated with one of the
two uses of a face and is also oriented with respect to its associated face use. Edge use is the use
of an edge by a loop use. There is one edge use for each face side. Orientation is specified with
respect to edge geometry. Finally, a vertex use can represent the use of a vertex by an edge as an
endpoint. There can be a single vertex loop or a single vertex shell. In those cases, vertex use
represents use of the vertex by the loop or shell, respectively.

1.2 Data Structure Relationships

The Radial Edge Data Structure relationships are shown in Fig. Al. Generally, the root of the
data structure is a list of all models, with a pointer to the next and last models in the list and to
a list of regions in the modeling space. Each region has pointers to its parent model, to the next
and last regions in the list of regions, and to one node of a list of shells in the region. Each shell
points to its parent region, to the next and last shell in the list of shells, and to one of three

MODEL

I
REGION

I
SHELL

I
FACE USE FACE

LOOP USE LOOP

[
EDGE USE EDGE

VERTEX USE — VERTEX

Fig. Al — Radial Edge Structure relationships [2]

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 33

alternative topological adjacency use elements, face use, edge use, or vertex use. Faces, loops,
edges and vertices point to their own corresponding "uses" and to their own attributes, including
geometry.

In addition to having pointers to their corresponding faces, loops, edges, and vertices, the face
use, loop use, edge use, and vertex use structures have additional pointers necessary to maintain the
adjacency relationships. In particular, the face use structure contains pointers to its parent shell, as
well as the next and last face uses in the shell's list of face uses. It also contains a mate pointer
to the opposite side of the face and a pointer to a list of loop uses.

The loop use structure has pointers to its face use parent, to the next and last loop use in the
face use's list of loop uses, to the loop use on the other side of the face, and one pointer to a lower
level in the hierarchy. That pointer is to a vertex use when the loop is comprised of only one vertex;
otherwise, it is to a vertex in a list of edge uses in the loop use.

The edge use has pointers to the starting vertex use of the edge use in the current orientation,
to the edge use on the other face use of the face, and one pointer to a higher level in the hierarchy.
That pointer is either (1) to its parent shell or (2) to the next and last edge use in an ordered edge
use list, to the edge use on the radially adjacent face use, and to its loop parent.

The vertex use has pointers to the next and last vertex use in a list of all vertex uses of the
vertex. It also has a pointer to one of the following: (1) its parent shell when there are no face uses
or edge uses on the shell, (2) its parent loop use when the loop consists only of the current vertex
use, or (3) the edge use causing the current vertex use.

1.3 Illustrations

Some of the face use, edge use, and vertex use relationships are illustrated in Figs. A2, A3, and
A4. Figure A2 shows a cross-section of three faces (fi, f2, f3) sharing a common edge (ei). Since
each face has two face use structures, one for each side of each face, there are a total of six face
use structures represented by fui, fu2,..., fu6- Each face use points to the face use on the opposite
side of its own face. There are six edge use structures (eui , eu2,..., euö), one for each of the two
sides of each of the three faces. Each edge use points to the edge use on the other
side of the face and to the edge use structure on the face use radially adjacent to itself. For example,
in Fig. A2, eui points to eu2 and to eu6-

Figure A3 shows a vertex (vi) with five connected edges. Each of the five edges has an edge
use (eui , eu2,..., eus, for example). Since there are five edges, the vertex has five vertex uses (vui,
vu2,..., VU5). The vertex points to one of its vertex uses (vj points to VU5 through vvuptr). Each
vertex use points to its neighboring vertex use (vus points to vui and to VU4, for example) and
points to vertex vj (through vuvptr). Finally, each vertex use points to its connected edge use
through the "vueuptr" pointer (vui points to eui) and each edge use points to its vertex use through
"euvuptr" (eui points to vui).

Fig. A4 shows the relationships involved in a loop of edge uses. The loop is given as a loop
use (lui). Since there are four vertices and four edges, there are four vertex uses (vui through VU4)
and four edge uses (eui through eu4). Each vertex use points to the edge use causing the vertex use
(e.g., vui points to eu2). Each edge use points to its corresponding vertex use (e.g., eu2 points to
vui), to its parent loop (lui), and to the next and last edge use (e.g., eui points to eu4 and to eu2)
through "lueulast" and "lueunext."

Shaw et al.

Fig. A2 — Faces sharing an edge in the Radial Edge Structure [2]

2.0 THE TRICYCLIC CUSP STRUCTURE

The Tricyclic Cusp Structure [1] is a vertex-based data structure. This data structure addresses
the topological relationships that the Radial Edge Structure addresses, and in addition, is specifi-
cally intended to resolve ambiguities inherent in certain non-manifold representations that may not
be easily eliminated by the Radial Edge Structure. An example is the situation depicted in Fig. A5
in which two open cones (A and B) are joined at vertex "v." Vertex v is not connected to any edges.
Traversal from the outside of cone A to the outside of cone B may not be guaranteed with the
Radial Edge Structure.

2.1 Topological Elements and Data Structure Relationships

The topological elements of the Tricyclic Cusp Structure are the model, region, face, edge,
vertex, shell, wall, edge orientation, zone, disk, loop, and cusp. The relations between these
elements are shown in Fig. A6.

The vertex, edge, face, shell, and region have meanings similar to their counterparts in the
Radial Edge Structure. A wall is equivalent to the Radial Edge Structure's "face use"—one of

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 35

Fig. A3 — Edges sharing a vertex in the Radial Edge Structure [2]

vueuptr eueuptr eu-i

vu4
w ^

lueulast lueunext %. p
* M

eii4 b li

r euluptr

' 11 1 * eii2

i i

4\ S
t \

Vllo A ■

eu3

Fig. A4 — Loop of edges in the Radial Edge Structure [2]

36 Shaw et al.

Fig. A 5 — Representation rendered ambiguous in Radial Edge
Structure [1]

LEGEND

(

(

(

1

A 1 > r B)

)

)

)

)

1

_J * L LIST OF A FORMS B

A D-p-*C B CYCLIC LIST OF A FORMS B r
A D-CD-C B TWO MATING As FORMS B

A

1
L

B SINGLE A FORMS B

POINT SET ELEMENTS

TOPOLOGICAL SUPPORT ELEMENTS

Fig. A6 — Tricyclic cusp data structure [1]

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 37

the two oriented sides of a face (Fig. A7). The ordering of adjacent vertices defines an edge
orientation. There are two possible orientations for each edge.

The remaining topological elements can most easily be understood by starting with the cusp
(Fig. A6). This term is used as an "entity" that is the representation of enhanced vertex use
information or is descriptive of the neighborhood around a vertex. It can be thought of as the fusion
of vertex use and edge use information. Cusps are depicted in Fig. A7. As shown in Fig. A7, a
cyclic ordering of cusps about a wall forms a loop. The ordering is consistent with wall orientation.
A loop bounding a face would have a mate loop—the wall on the opposite side of the face, called
the mate wall. The mate cusp, also shown in Fig. A7, relates to the mate wall and same vertex.

Three circular lists of cusps form the edge orientation, disk, and loop (Fig. A6). Figure A8
shows the circular lists related to the edge orientations for three faces connected along one edge.
An ordered list of all cusps associated with the first vertex indicated by the edge orientation make
up one edge orientation cycle forming an edge. The second edge orientation is made up of the cusps
associated with the vertex indicated by the opposite edge orientation. The mate edge orientation
relationship is used in connection with the two ordered lists to locate each face connected at the
common edge. As noted in Fig. A8, two possible edge orientations are associated with each "real"
edge. Both oriented walls of a face point to the "real" edge, but an unoriented wall points to an
isolated vertex.

Zones and disks are utilized to elaborate the vertex uses around a given vertex. A zone is a 3D
region around a vertex bounded by a disk. In Fig. A9, a disk cycle is represented. The cycle of
cusps is for the vertex of the cube as seen from the outside and simulates one side of an open disk.
Each vertex has one or more zones and each zone has one or more disks. A shell is composed of

C1
i

^—CUSP

C2

WALL "

C3

/

1

^
/

^C4

— FACE

——■
C3

^
C1'

WALL

C4'

(

1
MA It
CUSP C3' L /

/

i

Fig. A7 — Cusp, face, and wall description [4]

38 Shaw et al.

Fig. A8 — Edge orientation cycle in the Tricyclic Cusp Structure [1]

a list of walls, and a region is made up of a list of shells. Finally, a model serves to incorporate
all elements of an object and more than one model can exist.

3.0 THE ACIS GEOMETRIC MODELER

The ACIS Geometric Modeler [3,5] is a component-based package consisting of a kernel and
various application-based software components. The topology-related data structures are found in
the kernel. The ACIS Geometric Modeler can model ID, 2D, and 3D objects, including those with
non-manifold edges and non-manifold vertices.

3.1 Topological Elements

The hierarchy of elements comprising ACIS topology are shown in Fig. A10. At the highest
level, a body models a solid object, which can consist of more than one disjointed body treated as
one. Next is the lump, which represents a connected portion of space bounded by one or more
shells. A shell can refer to the boundary of a void internal to an object or can refer to the peripheral

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 39

^
/ / X?

'A
CUSP

t J

yy

Fig. A9 — Disk cycle forming a disk
around a vertex [1]

BODY

LUMP

SHELL

SUBSHELL

FACE

LOOP

CO-EDGES

EDGE

I
VERTEX

Fig. A10 —ACIS topology
hierarchy [5]

boundary of a lump. Shells are made up of a collection
of faces, and shells can be subdivided into subshells.
A face is a surface bounded by loops of edges. A face
can be single- or double-sided. When single-sided, the
points on one side of a face are considered inside of
the shell and the points on the other side are on the
outside. When double-sided, all points on either side
of the face are either all inside or all outside. Loops
are connected portions of the boundary of a face and
consist of a list of co-edges.

Co-edges in the ACIS Geometric Modeler are
comparable to, but not exactly like, edge uses in the
Radial Edge Structure and cusps in the Tricyclic Cusp
Structure. In addition to relating edges with adjacent
edges, co-edges make it possible for edges to occur in
more than one adjacent face. This is because each edge
has one co-edge for each adjacent face (Fig. All). In
Fig. All, three faces of a solid are shown. The line
with arrows indicate the loops of co-edges for each
face.

Next, edges are represented as physical edges
bounded by two vertices. If either vertex is null, then
the edge is unbounded in that direction, and if both
vertices are identical, then the edge is considered an
isolated point, such as the apex of a cone.

3.2 Data Structure Relationships

In the ACIS Geometric Modeler, the body contains
a pointer to the first lump's shell in the body. The
lump points to the next lump in the body, the first
shell in the lump, and the body that contains the lump.
The shell has pointers to the next shell in the
lump, the first subshell, if any, the first face in
the shell, and the lump containing the shell.

The relationships of the faces, loops, co-edges,
edges, and vertices are shown in Fig. A12. References
to geometric information are omitted. Generally, each
face points to the next face in the shell, the first loop

bounding the face, and the shell containing the face. Each loop points to the face that the loop
bounds, the next loop in the face boundary, and the first co-edge in the loop. The co-edges point
to the next and previous co-edges in the loop, the partner co-edge on the edge (to allow for more
than two faces connected along a common edge), the edge on which the co-edge lies, the
co-edge direction, and the owning loop. Co-edge direction is significant because the co-edges are
oriented such that the face is always on the left when the observer is looking along the co-edge with
the outward pointing face normal upward. Each edge points to its starting and ending vertex and the
first co-edge on the edge. Finally, a vertex points to the edge using the vertex. In the case of two

40 Shaw et al.

Fig. All —Co-edges in loops [5]

NEXT —*| FACE 1

II
NEXT L— |LOOP

I PREVIOUS

VERTEX

EDGE
START, END

Fig. A12 — Some of the Data Structure Relationships in ACIS [5]

non-manifold situations (two objects connected only at a single vertex or a dangling edge), the
vertex can point to the multiple edges to allow access to all edges at the vertex.

4.0 REFERENCES

1. Gursoz, E. L., Y. Choi, and F. B. Prinz, "Vertex-Based Representation of Non-Manifold
Boundaries," Geometric Modeling for Product Engineering, Elsevier Science Publishers B.V.
(North-Holland), 1990.

2. Weiler, K. J., "Topological Structures for Geometric Modeling," Ph.D. Thesis, Rensselaer
Polytechnic Institute, Troy, NY, 1986.

3. Spatial Technology, Inc., Format Manual, 2425 55th Street, Building A, Boulder, CO, 80301,
1996.

4. Leonidas, B. and N. Patrikalakis, "Topological Structures for Generalized Boundary
Representations," Sea Grant College Program, Massachusetts Institute of Technology,
Cambridge, MA, 02139, 1994.

5. Spatial Technology, Inc., Applications Guide, 2425 55th Street, Building A, Boulder, CO,
80301, 1996.

Appendix B

SEDRIS OVERVIEW

This appendix is organized as follows. Sec. 1.0 introduces the SEDRIS project and covers the
portions of the SEDRIS object model relevant to this research. Section 2.0 covers significant
differences between VPF and SEDRIS. All references to the SEDRIS object model are to [1] and
all references to VPF are to [2].

1.0 INTRODUCTION

The Synthetic Environment Data Representation & Interchange Specification (SEDRIS) is a
project funded by the Defense Modeling and Simulation Office for the development of a standard
mechanism for interchanging synthetic environment data. "Synthetic Environment Data" includes
a diversity of digital data used to represent varied aspects of the real world environment. Some of
the data that can be considered synthetic environment data includes data about the terrain, ocean,
atmosphere, natural and man-made models, features, and associated sounds. As an interchange
mechanism, SEDRIS is intended to allow a user to access, extract, and interpret this data exactly
as a producer intended without changes to the data that would alter the characteristics of the
information as intended by the producer. The SEDRIS project includes the development of a format
independent data model, a data format, and an Application Program Interface (API) [3]. The data
model should become stable in the near future once issues involving the representation of topology,
color, atmospheric, and oceanic data have been resolved. Though an interim data format has recently
been suggested, a final format will probably await stability of the data model. Since the SEDRIS
object model is not yet stable and there is no SEDRIS format, the API currently provides for "read
only," allowing conversion only between a native data base model and the SEDRIS object model
held in RAM. Once the SEDRIS project is complete, the API will enable conversion between major
native data base models and formats and the SEDRIS model and format.

1.1 The Data Model

The SEDRIS data model is an object-oriented data representation model [1]. The model is
generally organized around five classes: Synthetic_Environment, Features, Geometry,
Feature_Topology, and Geometry_Topology. These five classes and related subclasses illustrate the
general organization and structure of SEDRIS and also provide a foundation for the comparison of
SEDRIS to other models such as VPF [2]. The entire SEDRIS model is not presented in detail here.
The omitted portions are not considered significant to an overall understanding of the structure of
the SEDRIS object model and its relationship to the VPF relational model. All diagrams use the
modified Raumbaugh notation employed by SEDRIS, which is explained in App. C.

41

42 Shaw et al.

1.2 Synthetic_Environment

The Synthetic_Environment class is the minimum object required in a SEDRIS transmittal and
is the object around which the data base is organized. Figure Bl shows some of the relationships
from Synthetic_Environment. As shown in Fig. Bl, a Synthetic_Environment has zero or more
Color_Tables, at most one Base, Sound_Library, Texture_Library, Symbols_Library, and
Model_Library, and exactly one TransmittalJEncoding and A&L (Accuracy and Lineage).

Transmittal_Encoding and A&L are conceptually grouped as subclasses of the abstract Metadata
class because each lets the user know something about the data contained in the transmittal.
Transmittal_Encoding, for example, might identify those parts of the Synthetic_Environment that
are and are not available. A&L, on the other hand, might include such information as the source
of the data and date of last modification.

The libraries are optional, but if they exist, they organize all of the sounds, textures, symbols,
and models that can be instanced in the synthetic environment. A model may be something as
simple as a generic building that will be instanced multiple times in a single data base or something
as complex as a VPF coverage.

The base object shown in Fig. Bl organizes the Feature and Geometry data that is not found
under model. A SEDRIS feature generally corresponds to traditional VPF-type data, while geometry
is used to describe things that have substance.

COLOR TABLE

SYNTHETIC.ENVIRONMENT ^

—Ö

SOUND_LIBRARY [>

TEXTURE LIBRARY

SYMBOL_LIBRARY O

MODEL LIBRARY

<>

J
BASE

I
GEOMETRY,
HIERARCHY

FEATURE.
HIERARCHY

META DATA

A
TRANSMITTAL_
ENCODING

A&L

1 +

MODEL

Y GEOMETRY MODEL

I
FEATURE_MODEL

GEOMETRY.
HIERARCHY

I
FEATURE.
HIERARCHY

Fig. Bl — Synthetic environment and related classes [1]

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 43

1.3 Features

A feature is used to conceptually organize "feature data," and as with all abstract classes, it is
never instanced. Figure B2 depicts the feature class along with some of its descendants and rela-
tionships. A feature can be related to other features and to Geometry_Hierarchies. A feature is
either a Primitive_Feature or FeatureJHierarchy. The basic data that describes a feature is organized
in the Primitive_Feature abstract class as either a Point_Feature, Linear_Feature, or Areal_Feature.
These are defined by the SEDRIS data dictionary as follows:

• Point_Feature - a point referencing a cultural feature;

• Linear_Feature - a feature located along an edge;

• Areal_Feature - feature located in a bounded area.

As Fig. B2 shows, each of the feature primitives is related to its topological counterpart: Feature_Node,
Feature_Edge, and Feature_Face classes.

A Feature_Hierarchy is either a Feature_Connection (Fig. B2) or an Aggregate_Feature (Fig. B3).
The Feature_Connection class relates a particular instance of a feature model to the Feature_Model
class (Fig. Bl). This is an example of a one-way relationship in which the Feature_Model_Instance
knows the model it is related to, but the model does not know what Feature_Model_Instances may
be related to it.

The Aggregate_Feature class shown in Fig. B3 provides 10 concrete subclasses within which
feature data can be grouped. For example, a spatial tiling scheme could be implemented through
the Spatial_Index_Related_Features class or multiple levels of resolution could be grouped in the

FEATURE • • GEOMETRY HIERARCHY : i

«A
1 1

FEATURE
HIERARCHY

FRIMITIVE_FEATURE

A
f •EATURE CONNECTIO! *J AGGREGATE_FEATURE

s \

1 POINT FEATURE LINEAR_FEATURE AREALFEATURE

FEATURE MODEL
INSTANCE

5 * *
FEATURE ,
EDGE
DIRECTION y

<
FACE
DIRECTION

r t

i

FEATURE.MODEL 1+{ ORDERED} (» 1 + < »
FEATURE_NODE | FEATURE_EDGE FEATURE_FACE

Fig. B2 — Abstract feature classes, feature primitives, and feature model [1]

44 Shaw et al.

cc
■=>

LU

< o
LU
OC
a a <

<

co
LU

I OC

£ iti
■Z LL LU
30LL

•o

a:1

LU I CO
h- Q LU
LU LU tX

oc _i <c
LU UJ LU a. oc LL.

•o-

ICO
Q LU

| LU CC
W fc? P
< —' <
P LU LU
CO EC LU •o-

co S

|CO
Q UJ
LU CC •o-

oc <:
LU DC
b ty
< X

ICO
Q LU
LU CC
b: =>

•o-
ICO

Q LU
I .tU OC

gtu1!*?.
< LU _l <
—J EC LU LU
O I- OC UT

•o-

ICO
Q UJ
LU OC

o a: Lu Lu »/N. O £ cc tr »O

ICO
Q LU
tu oc _>^

• !?? *°~
O UJ LU
_l CC U-

I CO
,1 Q LU

5* LU OC

CC I
er t" _
LU P <
LL. CO Q

Z=5

-'I
Sty!«

<c
LU
CC
Z3
1— . LU
<■ h UJ UJ o OC
U- O t—

1 •<
LU 1—
0C_| «t
Z3 <C o
I— m
<c o UJ
LU _1
LL. O 1—

—1 S LU LU »O ' 1- O |- CC \Z ^^

<
o ICO

^ tu a- CO (— 3
CO < h-
3—3 <

LU LU
ÜCCLL

1

O
H- «r

LU o
OC U.
Z3 <r> (— tn «T <.
Ill ^ £
U. O Q

•o- ^3

•^777

OC LU

LU LU <
U. Q. O

"VT7-

LU Q_
LL. CO

LU <C

+
CM

•^"7
i

LU
OC

tu 2 u. a 'S.a.

Uli

I— ■<
< OC
LU LU

CO

^-^

<9s LU O < u. r! a

00
60
<

CO

oo

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 45

Level_of_Detail_Related_Features class. There can also be a mixture of different classes at
different levels of the Feature_Hierarchy. For example, a Feature_Hierarchy can be composed of
multiple levels of Aggregate_Features with each Aggregate_Feature grouping in the hierarchy con-
sisting of a Level_of_Detail_Related_Feature. Alternatively, one Aggregate_Feature grouping in
the hierarchy can consist of a Level_of_Detail_Related_Feature, and another grouping at a
different level of the hierarchy can consist of Quad_Tree_Related_Features. Additionally, two dif-
ferent Aggregate_Feature class groupings can exist at the same level of the Feature_Hierarchy
through Union_of_Features.

1.4 Geometry

The abstract geometry class and subclasses are shown in Fig. B4. A geometry is either a
Primitive_Geometry or a Geometry_Hierarchy. Geometry_Hierarchies can be related to other
Geometry_Hierarchies and to features.

1.5 Primitive Geometry

The Primitive_Geometry class specifies the basic data necessary to describe "geometry" objects.
This type of data is divided into four classes defined by the SEDRIS data dictionary as follows:

• Linear_Geometry - geometric linear representations;

• Surface_Geometry - geometric surface representations;

• Volume_Geometry - volumetric representations;

• Point_Geometry - a specialization of primitive geometry in which all components have a Location_3D
as a component, such as a light source or camera point.

GEOMETRY

X
PRIMITIVE GEOMETRY

1
I j GEOMETRY HIERARCHY

2
M-Jk

FEATURE

ncniirrov rraikicrTiniii PROPERTYGRID - ttÜÜtttVJt>YlE_ UtUWIttKY

A

LINEAR_GEOMETRY SURFACEJ3E0METRY roiNT.GEOMETRY VOLUME.GEOMETRY

Fig. B4 — Abstract geometry class and subclasses [1]

46 Shaw et al.

Volume_Geometry may typically be utilized in oceanographic and possibly atmospheric
applications. For example, a cold water eddy (in a sonar simulator application) would be represented
as a "volume." Point_Geometry is not significant to this discussion and is omitted from further
discussion.

Figure B5 shows the subclasses and interrelationships of Linear_Geometry and Surface_Geometry.
The core primitives are line, vertex, and polygon or patch. The following points are noteworthy.
A line is defined in SEDRIS as a set of ordered vertices. A vertex is the end of a line segment or
the point of intersection of two polygons. A polygon differs from a patch in that the former is the
bounded portion of a plane while the latter is a manifold defined by a parametric equation.
The SEDRIS data dictionary gives an example of a patch to be the hood of a car. The normal can
be used to determine the slope or orientation around an area.

The remainder of the geometric information is attached to vertex, and with the exception of
Morph_Point, consists of primitive data. A Morph_Point is a location in 3D space significant to the
transition of an object when morphing between levels of detail. For example, at one distance a
building roof may look flat, but transition to the appearance of a peaked roof at a closer distance.
Location_3D is the coordinate location of the vertex in 3D space. Location_3D is required while
all other geometric information is optional. The conformal class indicates how a point will be
forced to conform to another object. The example given in the SEDRIS data dictionary is that a
conformal will determine whether a building floor will be coplanar with the surface below. Color
and Color_Coefficient relate to the color and operations on that color. Texture_Coordinate maps a
texel from an image to a vertex.

Unlike feature-related topology, geometry-related topology is optional in SEDRIS. This topo-
logic information should be derivable from the geometric primitives. Line topology can optionally
be found in the Geometry_Edge class, vertex topology in the Geometry_Node class, and polygon
or patch topology in the Geometry_Face class. Topology is more fully discussed in a separate
section.

1.6 GeometryJHierarchy

Geometry_Hierarchy (Fig. B4) serves two functions. It captures associations with features. If
there is an association with a feature, the geometry side can be considered an alternate represen-
tation of the feature. Additionally, Geometry_Hierarchy conceptually organizes geometric data as
either Aggregate_Geometry, Property_Grids, or Geometry_Connection.

Figure B6 shows the subclasses and relationships of Aggregate_Geometry. As with the
Aggregate_Feature class discussed above, each of the subclasses provides a different method of
grouping geometric data, and different methods can be found at different levels in the
Geometry_Hierarchy.

Property_Grids are shown in Fig. B7. There can be one-, two- or three-dimensional grids.
Grid_lD is a ID matrix of grid vertices and references such primitive data as spacing units (meters,
seconds, millibars). Grid_2D is a 2D matrix of evenly spaced vertices used to store such properties
as elevation. Grid_3D is a 3D matrix adding "z" spacing such as an array describing a 3D volume
of a bounded region. Feature_Node, shown in Fig. B7, relates to topology, described below.

Details of the transformation class are not shown in Fig. B7. This class organizes the data
necessary for the rotation, scale, or translation to be applied to an object. It also holds

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 47

s'g
UJ

fee
Z

1 UJ 2 S O

2 UJ
<X
C_>

=> a r+ o
o

1
UJ 4k u.

c IT < ->
LL I—

V >■
X
UJ
h-

>-
i-
UJ

a
•<

LL

^ vJ r
Q UJ in

? e Q
O T5 o Z
Hi
C3

ui'

IT

y z
>.'
1—
UJ

o

Ü

o
s

2 o •< S ? ^^ 1—->
a ,

2>
CO •< ^ UJ UJ

CO DC
i— z
UJ
o
U_
LL.
UJ
O
Ü

a. •< V Q
cr o
+

CO

o

-«

<L>
?

i
E
o

u
o

,ra _Q
< ' •

UJ •o- CC o
_J o

3
Cfl

o z 1 •
UJ > o CO

* cr
CO

e

>- -« o
_i

J

tr
i—
UJ £ a

UJ
a:
UJ

o
o 1

03
O
UJ

i

^1 UJ
Z
_J K

a
cc bh

^J ? y. —1 B.

CC + 2
CC o u_

<
UJ
z

CM o
_r f

h-
—J Z o

1—

> >-UJ

z
o
0-

z o o
J:

cccc Q.

O

oo
_1L

UJ
CO
o
UJ

>■'

(T
t—
UJ
>
O
UJ
o

48 Shaw et al.

er
LU
2
O
LU
CD

<
CD
LU
er
es
CD <

<

LU UJ
.1 ^6

2 LU LU
i- er CD

•0- 's ^
<r
h-

,_1 <
,J< O
2 m 1
oo
UJ ~l 2
CD C5 l—

,>-
-J er
Q h-

l 1 LU LU
LU

IN
D

E
X

R

E
LA

T
G

E
O

M

!<
CO

•o-

£FR3O
CL LU UJ LU w i c o

•o- ^31

LU UJ •o-
LJ CC UJ LU
< i— er CD

o1*
j .M

Q UJ <t < uj 5 o
3 CC UJ LU o i- er CD ■o- 7~T

LU LU

cl'^O ü LU LU
O er CD

•o-

g1

io'i
LL LU UJ

O _i LU UJ
j o er CD

CD O Q

~r~s

CD

er
253c!M
LU _J LU LU
co o. er CD

CD

LU LU _i LU
CD co Q. er

1
_J

■*;
< ^

O
LU SF

LU
Q 5

CD CO O

s ^
<t
1— <

1 Q,
2 o i

O < LU
LU =3 er
CD O i—

•o

E
o

<

m

E

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 49

PROPERTY_GRID

? ?
r> n

TRANSFORMATION

)

FEATURE_NODE

k
GRIDJD GRID_2D GRID_3D

Fig. B7 — Property grids [1]

ARTICULATION

GEOMETRYCONNECTION

IP
CONNECTION
NAME

_A
ATTACHMENT_SPECIFICATION

I
VALID_GEOMETRY MODEL

GEOMETRY MODEL

1
TRANSFORMATION

OVERLOAD_PRIORITY_INDEX

STAMP BEHAVIOR

ALGORITHMICCONTROL

GEOMETRY MODEL INSTANCE

GEOMETRY MODEL

Fig. B8 — Geometry connection [1]

data necessary to orient objects in the environment. For example, this data might be used to face
a building in a certain direction at a certain location.

The final element of Geometry_Hierarchy is Geometry_Connection, shown in Fig. B8.
Overload_Priority_Index ranks priority of a model, Stamp_Behavior provides a mechanism for
automatically rotating an object to the viewer, and Algorithmic_Control is the function that
governs the representation or actions of an object, usually a file name referencing source code.

50 Shaw et al.

1.7 Topology

SEDRIS distinguishes Feature_Topology (Fig. B9) and Geometry_Topology (Fig. BIO). Both
classes are, however, organized around the relationships of nodes, edges, and faces. SEDRIS topology
is more fully discussed in Sec. 2.0.

2.0 VPF - SEDRIS DIFFERENCES

This section covers differences between VPF [2] and SEDRIS [1] that are significant to this
research. These areas include spatial organization of data (Sec. 2.1), topology (Sec. 2.2), and the
class of objects that may be encountered in a SEDRIS transmittal (Sec. 2.3).

2.1 Spatial Organization of Data

VPF, at the coverage level, spatially organizes data into "tiles" that are not subject to further
division into smaller tiles. Additionally, all coverages within a library are tiled according to the
same tiling scheme. The product specification defines the tiling scheme.

SEDRIS' spatial organization scheme is found under the Aggregate_Geometry and
Aggregate_Feature abstract classes through the Spatial_Index_Related_Features
and Spatial_Index_Related_Geometry classes (Figs. B3 and B6). Unlike VPF, SEDRIS' spatial
index objects are subject to further division into smaller tiles. For example, a
Spatial_Index_Related_Feature object can be related to a FeatureJHierarchy, which can have as its
children additional Aggregate_Feature objects including further spatial index objects (Fig. B3).
This is also true of Spatial_Index_Related_Geometry objects (Fig. B6).

2.2 Topology

Consistent with its division of feature and geometry, SEDRIS distinguishes its treatment of
feature topology and geometry topology. Features are required to have topology, but topology is
optional for geometric objects.

In VPF as well as in SEDRIS, topology consists of nodes, edges, faces, and their relationships.
There are similarities and differences in the way VPF and SEDRIS approach those
relationships.

Nodes - In VPF, a node is either a connected node or an entity node. The connected node is
related to first edge, and the entity node is related to one containing face. In SEDRIS, a node
is not defined to be either "connected" or "entity." Instead, the node can have zero, or at most, one
"contained_within" face and zero or more "connected" edges. The contained_within face is then
related to one face, and the connected edge is related to one or more ordered edges. The effect is
that a node can be an entity node in the sense that it is contained within a face, but also connected
to one or more edges.

Edges - VPF's winged-edge topology relates an edge specifically to one left and one right face,
to one left and one right edge, and to one start and one end node. SEDRIS topologically relates an
edge to one start and to one ending node. The two models topologically diverge beyond that. If

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 51

V

-<

.1
I

OC z» I
LU I— LU C5 t- < o y
XU1<±
LU LU LU OC

^ LU < Ä
5 LL. LU or

s1 ,
oc
Z 5 O
oSo
o u. z

>-

j: C3
Ul'Z
tr cc,
?LU'
'« o
LU <
LL LU

LU or
o LU o

LU O CD
Q

•o- ~^-y -*••

H i < o
< CO LU <
CO < LL. LU

O
LU
oc
LU
Q
LT
O

o
LU
QC
LU
a
ÜC
o

i«3

5C3ÜÜ
LU O Z O

LU1 ^

= Ul'fc UJ

^ «3 < 9 UJ Q p O
LU LU CO Z

LU Q

gg
£§
LU LU
U. h-

•o-

I

I

LUPC
S ^ LU
°C < O o ■•■ -
CO 2

a
LU
OC
LU
o
oc
o

ID

o
CO

< o
o

o
o a. o

0\
CO

60

to
■■•*.'.

, cc
LU 2 LU

< co Lu a
CO < LU LU

■>

k
Ls>

o
LU

Z r^ LU

S !< «3
O LU O
O LU LU

Q
DC
O

"►«

LU
CC
CD.

Sc
LU

s
z ."J
ZOC S — CD

u§u.2

coV
< oc
U1?UJ
S 5 <=>
CO LU Z

52 Shaw et al.

>- er
h-
LU
2 o
LU
CD

o .<

er

o
LU
CD

>-■

CD

3
o
CL.

er

5
O
LU
CD

"<-

CD
Q
LU

>-' er
UJ
s o
LU
CD

tr s' i
LU i? LU C£3
I— O o -^
X Ä < — Lu CD u. er

-l£gü/s

ZOO
O LU O
O CD 2

CD
Z

in:,

z
ü

1 i-
■p c_>
o
LU z CD n

LU

CD tr LU Q

7^\

i
LU

I
^ LU

tco'2^
CO < CD UL

m,c3
S LU
o£
LU O
O

I ,CD

OüüO
LU Q -z. O
CD UJ LU Z

I
CD

2 LU fc LU
O CD 5 S WüpO
CD UJ CO z

>-

LU
Q

IO
UJ Z
CO 1
r>
LU <L z
2 ■p
O er
LU LU
CD i—

•o-

J

-C tu i

er O o O LU 2
m CD 2:

o
er
O

-+••

i i
LU 2 LU
2 lO CD
< CO LU O
CO < CD LU

o o z
V1

er

s
o
LU
CD

O

Z O CD
O LU Q
O CD UJ

Q er
O

Q
LU

oäc2

CO < I
LU 2 LU
2 O O
< LU O
CO CD z

LU
CD
Q
LU

>' . ü
n LU
in CD
er
Q
er
O

UJ
Q o
z O
2
O
LU

l
2
O

CD LU
CD

>

00
o

"3
CL
o

E
o
u
Ü

o
ffl
ab
E

VPF+: A VPF Extension Suitable for 3D Modeling and Simulation 53

an edge has a bordered face in SEDRIS, then that bordered face is related to one or more ordered
faces. There is no explicit relationship for a left or a right face. Similarly, SEDRIS provides no
explicit relationship for a "left" or a "right" edge.

Faces - VPF relates a face all internal and to one external face ring and then relates each ring
to its first edge. SEDRIS similarly relates a face to zero or more internal rings and to one external
ring. Each ring is then related to one or more ordered edges. SEDRIS, in addition, relates a face
to zero or more contained nodes.

Finally, a node, edge, or face in SEDRIS can be related to a "same as" node, edge, or face. That
would allow, for example, the topologies that two identical faces are part of to be joined together
by an application.

VPF uses internal and external face rings to topologically organize feature primitives. SEDRIS
uses the same tools to topologically organize feature and geometry face primitives. SEDRIS does
not provide for a topologic class to describe a 3D volume (such as a "shell" [4]) enclosed by a
collection of faces.

2.3 Non-Manifold Objects

Related to topologic considerations of nodes, edges, and faces is the issue of the domain of
objects that can be represented by SEDRIS. There is nothing in the SEDRIS data model to prevent
the four non-manifold representations shown in Fig. Bll.

• Non-manifold edges:

• Figure Bll(a) represents three faces connected along a common edge (more than three are
possible);

• Figure Bll(b) shows a "dangling" edge (an edge adjacent to no faces);

• Figure B 11(c) shows an example of a face "dangling" from an open box (three of its edges are
adjacent to only one face).

• Non-manifold nodes:

• Figure Bll(b) - the node connecting the dangling edge to the object;

• Figure B 11(d) - the node forming the sole connection between the two objects.

Fig. Bll—Four non-manifold representations

£4 Shaw et al.

While the topologic organization of SEDRIS would preserve the adjacencies seen in Fig. Bll,
the edge-based constraints of VPF's winged-edge topology would not. Since VPF's topology spe-
cifically relates an edge solely to one left and one right face, a third, fourth, or fifth face would
not be retrievable (Fig. Bll(a)). Additionally, the edge adjacent to no face (Fig. Bll(b)) and the
edges adjacent to only one face (Fig. Bll(c)) would fail to have the left/right face dichotomy.
Finally, VPF only relates a connected node to one "first edge." To find all other edges connected
to a node, the topology of that edge is followed until the first edge reappeared. All edges can be
located due to face adjacency relationships. If the non-manifold node in Fig. Bll(b) were related
solely to the dangling edge in the connected node table, then starting from that node, the other three
connected edges would not be retrieved. The same would be true given solely the relationship
between the non-manifold node and one of the adjoining edges in the box. Similarly, if the non-
manifold node in Fig. Bll(d) were related solely to one edge in one of the connected objects, then
starting from that node, the edges in the other object would not be retrieved to faces.

3.0 REFERENCES

1. SEDRIS Object Model, Release 1.02d.

2. Department of Defense, "Interface Standard for Vector Product Format," MIL-STD-207,
28 Jun 1996.

3. Birkel, P., C. Chiang, S. Farsai, F. Mamaghani, D. Pratt, and J. Smith, "Synthetic Environment
Data Representation and Interchange Specification (SEDRIS)," Version: Draft 0.2, 3 Mar 1995.

4. Weiler, K. J., "Topologic Structures for Geometric Modeling," Rensselaer Polytechnic Institute,
1986.

Appendix C

MODIFIED RAUMBAUGH NOTATION

This appendix summarizes the modified Raumbaugh notation used by the SEDRIS object model
and is taken from [1]. .

A concrete class showing only its class name.
Concrete classes are instantiated.

A

Shaded boxes indicate abstract classes that are not instantiated.

A
B C

Inheritance (is-a) is shown by the triangle.
Class A is either an object of class B or an object of class C.

B

Every class A object is related to exactly one class B object.

B

Every class A object is related to zero or more class B objects.
Every class B object is related to zero or one class A object.

55

56 Shaw et al.

2+ {ordered} 2
B

Every class A object is related to two class B objects.
Every class B object is related to two or more ordered class A objects.

LA B

Each (A,B) object pair is associated with one class C object.

o- ■>- B

The diamond shows an aggregation (has-a) relationship.
The arrow indicates a one-way relationship.

An object of class A is composed of one object of class B.
An object of class A knows what object of class B it is associated with.

An object of class B does not know what object of class A it is associated with.

REFERENCES

1. The SEDRIS Team, Slide Presentation, spring 1996.

