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EXECUTIVE SUMMARY 

With support from the Defense Modeling and Simulation Office and the National Imagery and 
Mapping Agency's (NIMA) Terrain Modeling Program Office, the Digital Mapping, Charting, and 
Geodesy Analysis Program (DMAP) has investigated an extension to NIMA's current Vector Product 
Format (VPF) that would benefit the Modeling and Simulation community. In its current form, 
VPF's winged-edge topology is documented as not being capable of modeling a wide range of 
three-dimensional (3D) objects that may be transmitted and received through the Synthetic Environment 
Data Representation and Interchange Specification (SEDRIS). This range of objects includes 
non-manifold objects found in integrated, 3D synthetic environments. DMAP therefore proposes 
VPF+, an extension to VPF that provides for georelational modeling in 3D and that is SEDRIS 
capable. VPF+ adds a new level of topology called Level 4 Full 3D Topology (Level 4). The 
topologic information encompasses the adjacencies involved in 3D manifold and non-manifold 
objects, and is described using a new, extended Winged-Edge data structure. This data structure is 
referred to as "Non-Manifold 3D Winged-Edge Topology." Level 4 also adds a new 3D_Object 
feature class that is intended to capture a wide range of 3D objects. These features are further 
defined to be either Well Formed or Not Well Formed, with Well Formed 3D_Object features 
having additional optional topologic information to improve software performance. Finally, Level 4 
implements no changes that alter VPF's Level 0 through Level 3 topology. 

E-l 



VPF+: A VECTOR PRODUCT FORMAT EXTENSION SUITABLE FOR 
THREE-DIMENSIONAL MODELING AND SIMULATION 

1.0 INTRODUCTION 

This report describes the data structures and data organization of VPF+ (Vector Product Format+). 
VPF+ is an extension to traditional VPF [1] that provides three-dimensional (3D) georelational 
modeling and that is SEDRIS (Synthetic Environment Data Representation and Interchange Speci- 
fication) capable. That is, VPF+ is designed with the capability of modeling a wide range of objects 
that can be encountered in a SEDRIS transmittal (App. A). VPF+ is not, however, limited by 
SEDRIS. VPF+ does, for example, allow for the definition of specific various relationships in 
explicit 3D topology that SEDRIS does not. 

Modeling in 3D in VPF+ is provided by a new level of topology called Level 4 Full 3D 
Topology. Level 4 full 3D topology (or simply Level 4) uses a boundary representation (B-rep) 
method. B-rep models 3D objects by describing them in terms of their bounding entities and by 
topologically orienting them in a manner that enables the distinction between the object's interior 
and exterior. 

Consistent with B-rep, the representational scheme of Level 4 includes both topologic and 
geometric information. The topologic information encompasses the adjacencies involved in 3D 
manifold and non-manifold objects, and is described using a new, extended winged-edge data 
structure. This data structure is referred to as "Non-Manifold 3D Winged-Edge Topology." The 
geometric information includes node coordinates and face and edge orientation. Although we restrict 
ourselves to planar geometry, curved surfaces can also be modeled through the inclusion of 
parametric equations for faces and edges as associated attribute information. 

The remainder of this report is organized as follows. Section 2.0 describes non-manifold 
objects and explains why a new data structure is needed to represent these objects. Section 3.0 
explains non-manifold 3D winged-edge topology. Section 4.0 pictorially represents this new data 
structure in both a relational diagram and object model. Section 5.0 provides an example of the 
workings of the data structure through an illustration with related data tables. Section 6.0 covers 
the topological sufficiency of the data structure. Section 7.0 discusses the feature level including, 
in particular, the introduction of 3D_Object Features and the definition of these as being either 
Well Formed or Not Well Formed. It is shown that this distinction allows for the storage of optional 
topologic information to improve software performance. Cross-tile topology is discussed in Sec. 8.0 
and Sec. 9.0 provides a 3D spatial indexing scheme. The results and future work are discussed in 
Sec. 10.0. 

The research on which this report is based is provided in the appendices. Appendix A 
summarizes the features of three data structures capable of resolving some of the ambiguities found 
in the representation of non-manifold objects. Appendix B provides an overview of SEDRIS by (1) 
introducing the SEDRIS project and explaining those portions of the SEDRIS object model relevant 
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to this research and (2) discussing significant differences between VPF and SEDRIS. Appendix B 
has been provided not only for completeness of the research conducted, but also as an aid to those 
of the VPF community who may not be familiar with SEDRIS. It is anticipated that many who 
review this research will be familiar with the VPF standard [1]. For that reason, a summary of the 
salient features of VPF has not been provided. Appendix C offers a summary of the modified 
Raumbaugh notation used in the SEDRIS object model, a tool that should prove helpful in understanding 
App. B. 

2.0 NON-MANIFOLD OBJECTS 

A non-manifold object is one in which the neighborhood around some of its points is not 
homeomorphic to a disk [4]. The surface cannot be locally deformed into a plane without tearing 
it [2,4]. The non-manifold objects given consideration in Level 4 are ones with non-manifold edges 
and ones with non-manifold nodes. Figure 1 shows three examples of non-manifold edges. Figure 1(a) 
represents three faces connected along a common edge (more than three are possible). Figure 1(b) shows 
a "dangling" edge (an edge adjacent to no faces). Figure 1(c) shows a face "dangling" from an open 
box (three of its edges are adjacent to no face). Finally, Fig. 1(d) shows a non-manifold node in 
which two objects are connected solely at a common node. The node connecting the dangling edge 
in Fig. 1(b) is also an example of a non-manifold node. 

Non-manifold objects are necessarily included in Level 4 topology since this class of objects 
may be encountered in a SEDRIS transmittal (see App. B). SEDRIS would allow, for example, the 
representation of the objects shown in Fig. 2(a) and (b). Figure 2(a) shows a building on a terrain 
surface with an antenna attached to the roof. Two non-manifold conditions are present. First, 
each edge along the base of the building is connected to three faces. Second, the antenna is a 
"dangling" edge, not adjacent to any faces. 

Figure 2(b) shows a building with an internal face dividing the building into two floors. Each 
edge bordering the second floor is adjacent to three faces - the face forming the second floor and 
two faces making up the bounding walls of the building. 

VPF's winged-edge data structure is insufficient to maintain all adjacency relations present in 
the objects shown in Fig. 1. With non-manifold objects, an edge may not be adjacent to exactly two 
faces. Instead, it may be adjacent to more than two faces (Fig. 1(a)), no faces (the dangling edge 

Fig. 1 — Four non-manifold objects 
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Fig. 2 — (a) Example of object with two non-manifold conditions and (b) 
identifies a double-sided face inside a 3D object (bold-face line) 

in Fig. 1(b)), or one face (one of the outer edges of the dangling face in Fig. 1(c)). Additionally, 
a connected node may be adjacent to edges in two or more different objects (Fig. 1(d)) or an object 
and a dangling edge (Fig. 1(b)). 

Several alternate data structures capable of maintaining the adjacency relationships found in 
manifold and non-manifold objects were examined but could not be directly implemented in Level 4 
(App. A). Our primary area of concern is modeling synthetic environments. These other data 
structures have a different application area, solid modeling, making them inconsistent with the 
winged-edge topology concepts found in the VPF standard [1]. However, they did provide a theoretical 
basis for the primitives and structures necessary to make Level 4 a logical extension of the VPF 
standard [1]. 

3.0 DATA STRUCTURE OVERVIEW 

The non-manifold 3D winged-edge data structure introduces a new structure called Efaces to 
resolve the ambiguities resulting from the absence of a fixed number of faces adjacent to an edge. 
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Efaces describe a use of a face by an edge and allows maintenance of the adjacency relationships 
between an edge and 0, 1, 2, or more faces incident to an edge. An edge's left and right edges are 
replaced by the Next_Edge_on_EFace, which is always ordered to provide the next edge around the 
face. Additionally, VPF's connected node table is modified in Level 4 to allow for non-manifold 
nodes (Fig. l(b, d)). This requires that a node point to one edge in each object connected solely 
through the node and to each dangling edge, and it allows the retrieval of all edges and all faces 
in each object and the retrieval of all dangling edges connected to the node. 

Unlike VPF's Level 3 topology, the "universe face" is absent in Level 4 since Level 4 is 
primarily intended for 3D modeling. Additionally, since Level 4 topology is intended to model in 
3D, faces may be one-sided or two-sided. A two-sided face, for example, might be used to represent 
a building with one side used for the outside of the building and the other side for the inside of 
the building. Feature attribute information would be used to render the two different surface tex- 
tures and color. A one-sided face might then be used to represent the terrain surface adjacent to the 
building. Additionally, orientation of the interior and exterior of 3D objects is organized in relation 
to the normal vector of faces forming the surface boundary of closed objects. 

Faces are also allowed to be embedded within a 3D object in Level 4. Figure 2(b) shows an 
example of a building with an embedded double-sided face dividing the building into two floors. 
Other double-sided faces could also be inserted to divide each floor into separate rooms. 

Level 4 is a full 3D topology that is capable of representing comprehensive, integrated 3D 
synthetic environments. Such an environment can include objects generally associated with the 
terrain surface (buildings, roads, and motor vehicles for example). Additionally, it can include 
objects that are not attached to the terrain but are rather anchored at some significant elevation 
point above the terrain surface (weather systems and satellites, for example) or below a water 
body's surface (such as suspended acoustic objects). 

3.1 Non-Manifold 3D Winged-Edge Topology 

This portion of Sec. 3.0 describes the structures used by non-manifold 3D winged-edge topology 
in Level 4. The Level 4 topologic structures are eface, face, edge, connected node, entity node, ring, 
and text. Figure 3 shows the VPF+ primitive directory for Level 4 topology. Since Level 4 treats 
ring, entity node, and text similar to traditional VPF Levels 0 through 3, further discussion of these 
is omitted. The remainder, eface, face, edge, and connected node are described below. 

Primitives (such as shells, typically associated with 3D topology) have been intentionally excluded 
from Level 4. The addition of shells as topological primitives would have been a logical extension from 
2D to 3D objects since a shell is a generalization of the notion of ring as used in VPF. Whereas 
a ring is a mechanism that models disconnected graphs within a surface, a shell is a mechanism 
that models disconnected graphs between surfaces. Shells have advantages such as logically organizing 
adjacency relationships in 3D objects. However, these advantages are outweighed by additional 
complexities that arise in connection with tiling in VPF. Tiling requires that a primitive that crosses 
tile boundaries be split into two new primitives. Cross-tile topology is then used to retrieve the 
original primitive. Splitting a shell that crosses a tile boundary would create two new shells with 
the addition of multiple faces, edges, and nodes, making the cross-tile topological retrieval more 
complex and time consuming. To avoid these difficulties, a new feature is introduced, referred to 
as the 3D_Object Feature. 3D_Object Features maintain adjacencies yet also model real "things." 
Additionally, the omission of shells is in keeping with the spirit of SEDRIS, which does not define 
3D topological primitives such as shells (App. A). 
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Fig. 3 — VPF+ primitive directory contents, Level 4 full 3D topology 

3.2 EFace 

An eface describes a use of a face by an edge (Table 1). Efaces maintain the adjacency 
relationship between an edge and multiple faces connected along that edge. This is accomplished 
by linking each edge to all faces connected along the edge through a circular linked list of efaces. 
Each eface in the list identifies the face it is associated with, the next eface in the list, and the 
Next_Edge_on_Eface. The Next_Edge_on_Eface makes it possible to find the "next" edge on a face 
from a given edge. Each face can also be found in more than one eface. With the observer looking 
in the same direction as the edge direction, efaces are radially ordered in the linked list in a 
clockwise direction about the edge as shown in Fig. 4. The purpose for the ordering is to make 
traversal from one face to the radially closest adjacent face a simple list operation. 

Each eface in the eface table has an entry for face id, eface id, and edge id. Each of these serves 
as a foreign key into the face, eface, and edge tables, respectively. The face id indicates the face 
that the eface is identified with. The eface id points to the Next_Eface following the current 
eface in the ordered, circularly linked list of efaces adjacent to a particular edge. The edge id points 
to the Next_Edge_on_Eface. The Next_Edge_on_Eface is always determined by a clockwise ordering 
of edges about the eface and is always the next edge on the eface clockwise from the current edge. 
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Table 1 — EFace Table Definition 

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN 

ID 

Face 

Next_Eface 

Next_Edge_on_Eface 

Row id 

Face id 

Eface id 

Edge id 

I 

I 

I 

I 

P 

N 

N 

N 

M4 

M4 

M4 

M4 

DIRECTED EDGE 

ef = eface 

Fig. 4 — Ordering of efaces about a directed edge 

In both cases, the reference point is the observer standing above the face that the referenced edge is 
adjacent to. For all efaces generated on each edge about a given face, the reference point must 
remain static in reference to the face. For edge el, Fig. 5 identifies each face/eface and shows the 
Next_Edge_on_Eface for each eface. 

3.3 Edge 

In VPF's winged-edge topology [1], each edge is related to one start node, one end node, one 
left face, one right face, one left edge, and one right edge. However, these relationships may not 
hold in a non-manifold domain. 

In the non-manifold 3D winged-edge topology, edges are topologically linked to start and end 
nodes and to the first and last efaces in a circularly linked list of efaces. As mentioned, each eface 
in turn points to the face it is associated with, the next eface, and the Next_Edge_on_Eface. 

The entries in the edge table (Table 2) for start and end node id are foreign keys to the 
connected node table referencing the edge's start and end nodes. The entries for the eface id are 
foreign keys to the eface table referencing the first and last efaces adjacent to the edge. Following 
the links in the eface table identifies each eface in the ordered, circularly linked list of efaces 
around the edge. 
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next_edge_on_ef2 

next_edge_on_ef3 

next_edge_on_ef1 

f = face 
ef = eface 

next_edge_on_efn = next_edge_on_efacen 

Fig. 5 — Relationship of face, eface, and Next_Edge_on_Eface for edge el 

Table 2 — Edge Table Definition 

COLUMN NAME DESCRIPTION FIELD TYPE KEY TYPE OP/MAN 

ID Row id P M 
**.LFT_ID Feature id N OF 
Start_Node Start Node id N Ml-4 
End_Node End Node id N Ml-4 
First_Eface Eface id N M4 
Last_Eface Eface id N M4 
Coordinates Coordinates Z/Y,* N M 

Note: (**) indicates a place holder for the Line Feature class name; the (Z/Y,*) 
identifies a three-coordinate string. 

Figure 6 shows a cross-section of three adjacent faces, fl, f2, and f3, adjacent to common 
edge el. Edge el is oriented in the direction noted by the arrow on the edge. Three efaces are 
identified by efl, ef2, and ef3. The relationship of edge el to each of the adjacent faces is shown 
by the arrows from el to the first eface, efl, and the last eface, ef3. Eface efl points to face fl and 
the next eface, ef2; eface ef2 points to face f2 and the next eface, ef3. Finally, eface ef3 points to 
face f3 and to the first eface, efl, completing the cycle. 

When the first eface equals the last eface and both are null, a dangling edge is defined. When 
the first eface equals the last eface and neither is null, an edge coincident with only one face is 
defined. 
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e = edge 
f = face 

ef = eface 

f2 

1 
f3^ 

L£'        ef2     -•••... N^^fi 
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K^T 
..X, \^s f1 

Fig. 6 — Cross-sectional view of faces sharing an edge 

3.4 Face 

In Level 4, faces remain planar regions as in traditional VPF [1]. The entry in the face table 
(Table 3) for ring id is a foreign key to the ring table identifying the ring associated with the face. 
The ring, in turn, identifies a starting edge, allowing the retrieval of all edges about a face when 
starting with only a face id. 

As more fully defined in the section on features, faces can be part of either 3D_Object Features 
or Area Features. The entry in the **.FFT column is 1 for 3D_Object Features and 0 for Area 
Features. The next column gives the feature id that the face primitive is associated with. 

Table 3 — Face Table Definition 

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN 

ID Row id P M3-4 
Ring_Ptr Ring id N M3-4 
**.FFT Feature Type N OF4 
Feature_ID Feature id N OF4 
Sides Single/Double Sided N M4 
Side_Use Pos/Neg/Both Sides N M4 
Face_Class In/Out/Boundary*** N 04 
Out Exterior of Object**** N 04 
Normal_Vector Face Orientation Z/Y,* N M4 

Note: (**) indicates a place holder for the 3D_Object or Area Feature class name; the (***) 
indicates null values for faces part of Area Features and Not Well Formed 3D_0bject Features; 
the (****) indicates null values for faces part of Area Features, non-boundary faces of 
Well Formed 3D_0bject Features, and all faces of Not Well Formed 3D_0bject Features; the 
(Z/Y,*) identifies a three-coordinate string. 
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A face may be single-sided or double-sided. Only one side of a single-sided face is used, while 
both sides of a double-sided face may be used. An entry of 1 in the sides column indicates double- 
sided and 0 indicates single-sided. The SideJUse column indicates which side of a face is used: +1 
for the side facing the normal vector, -1 for the opposite side, or 0 for both sides of a double-sided 
face. 

The Face_Class column will contain null values for faces that are part of Area Features and Not 
Well Formed 3D_Object Features. The Out column will contain null values for faces that are part 
of Area Features, non-boundary faces of Well Formed 3D_Object Features, and all faces of Not 
Well Formed 3D_Object Features. 

Face_Class indicates whether the face is inside the 3D_Object, outside the object, or part of the 
surface boundary of the object. The Face_Class column may contain values of-1, 1, or 0 for inside, 
outside, or boundary, respectively. The Out column records the orientation of the interior and 
exterior of the closed portion of the object with respect to the normal vector of the boundary face. 
An entry of 1 indicates that the exterior of the object is in the direction of the normal vector and 
0 indicates that it is in the direction opposite to the normal vector. 

In addition to permitting the characterization of each side of a double-sided face, face normals 
have other uses. For instance, face normals are typically needed at run time for shading calculations. 
Therefore, the availability of a face normal vector will obviate the need for calculation at run time, 
thereby improving performance. 

Level 4 topology imposes several restrictions on faces that are comparable to those of Level 3. 
While surfaces and objects are allowed to be non-manifold, individual faces of surfaces are required 
to be manifold. This prevents a face from self-intersecting, except along its boundary. Edges may 
only intersect faces at their boundary. 

3.5 Connected Node 

In Level 4 topology, Connected_Nodes may be topologically linked to more than one edge 
connected to the Connected_Node. When the Connected_Node is non-manifold (e.g., two or more 
objects or an object and dangling edge connected solely at the single Connected_Node), then the 
Connected_Node is related to one edge in each object connected at the connected node and to each 
dangling edge. 

The connected node normal vector is included as an optional feature in Level 4. Some graphics 
formats such as VRML (Virtual Reality Modeling Language) allow the option of binding normals 
on a per-vertex basis to create shading effects that decrease the faceted nature of an object. Calculating 
these vertex normals as a preprocessing step can improve run time performance. 

The edge id in the edgen column of the connected node table (Table 4) is a foreign key to 
the edge table and identifies each edge that the connected node is related to as described above. The 
subscript is used to indicate that there may be more than one edge related to a given connected 
node. 

An example of a representation requiring multiple edge entries for a given connected node is 
given in Fig. 7. In Fig. 7, node p is related to edge el in object A and e7 in object B. The 
corresponding edge table would record both edges related to node p. 
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Table 4 — Connected Node Table 

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN 

ID Row id I P M 
**.PFT_ID Feature id I N OF 
Containing_Face Null X N O 
Edgen Edge id of One Edge in 

Each Object & Dangling Edge 
Connected at the Node 

K/I N M4 

Normal_Vector Node Normal Vector I N 04 

Coordinate Coordinate Z/Y,* N M 

Note: (**) indicates a place holder for the Point Feature class name; the (Z/Y,*) identifies a 
three-coordinate string. 

Fig. 7 — Two objects "A" and "B" connected at non-manifold node "p" 

3.6 Minimum Bounding Box 

Traditional VPF requires a minimum bounding rectangle record for each record in an edge or 
face primitive table [1]. Level 4 requires a minimum bounding box record (Table 5) for each edge 
or face primitive. This table adds ZMIN and ZMAX values to the minimum bounding rectangle 
table of traditional VPF. 

Table 5 — Minimum Bounding Box Table 

COLUMN NAME DESCRIPTION COLUMN TYPE KEY TYPE OP/MAN 

ID Row id I P M 

XMIN Minimum x Coordinate F/R N M 

YMIN Minimum y Coordinate F/R N M 
ZMIN Minimum z Coordinate F/R N M4 

XMAX Maximum x Coordinate F/R N M 

YMAX Maximum y Coordinate F/R N M 

ZMAX Maximum z Coordinate F/R N M4 
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4.0 DATA STRUCTURE RELATIONSHIPS AND OBJECT MODEL 

The data structure relationships of the non-manifold 3D winged-edge topology are summarized 
in Fig. 8 and an object model is provided in Fig. 9. References to geometry are omitted. 

As shown in Fig. 8, each Connected_Node is related to one edge in each manifold object to 
which the node is attached and to each dangling edge connected to the node. Each edge is related 
to its start and end nodes and to its first and last efaces. Each eface is related to its face, the 
NextJEface in the ordered, circularly linked list of efaces that the eface is a member of, and to 
the Next_Edge_on_Eface. The face, in turn, is linked to a ring that is related to its starting edge. 
An object model for non-manifold 3D winged-edge topology is given in Fig. 9. The SEDRIS 
modified Raumbaugh notation is used. 

5.0 LEVEL 4 TOPOLOGY EXAMPLE 

An example of the Level 4 topology is given using Fig. 10. Two non-manifold conditions are 
shown in Fig. 10: each edge forming the base of the building is connected to more than two faces 
and there is a dangling edge representing an antenna extending from the roof of the building. 

Tables 6-10 illustrate some of the adjacency relationships for Fig. 10. References to geometry 
are omitted. Additionally, not all table entries use id's for the sake of clarity. 

The sample edge table, Table 6, contains entries for the edge, Start_Node, End_Node, 
First_Eface, and Last_Eface id's for some of the edges. Edge el, for example, has a reference to 
a First_Eface, efl, and to a Last_Eface, ef3. Following the pointer from edge el to the sample eface 
table, Table 7, identifies the first face adjacent to edge el as face f3. The Next_Eface is identified 
as eface ef2, and the Next_Edge_on_Eface as edge e8. The identity of each face adjacent to edge el 
can be found by following the links in the eface table. 

next_edge_on_eface 

next_eface 
r 

EDGE EFACE 
* 1 

ONE IN EACH 
MANIFOLD 
OBJECT & EACH 
DANGLING EDGE 

start, 
end 

first, last_eface 

■ ' 

CONNECTED NODE FACE 

starting_edge   \ 
' 

RING 

Fig. 8 — Non-manifold 3D winged-edge structure relationships 
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Fig. 10 — Non-manifold 3D winged-edge example 

Table 6 — Sample Edge Table for Fig. 10 

EDGE START_NODE END_NODE FIRST_EFACE LAST_EFACE 

el C D efl ef3 
e2 D B ef4 ef5 
e3 B A ef6 ef6 
e4 C A ef7 ef8 
e5 C G omitted omitted 

e7 D H omitted omitted 
e8 C E efll efl 2 
e9 F E efl3 efl4 

elO D F ef9 eflO 
el3 F J null null 

Table 8 shows the sample face table for some of the faces shown in Fig. 10. The face table 
contains columns for the Face_ID and Ring_ID. Each face points to the ring related to that face. 

Table 9 contains entries for some of the rings for Fig. 10. The ring table has columns for the 
Ring_ID, Face_ID, and Start_Edge for the ring. Each ring points to its face and one starting edge. 
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Table 7 — Sample EFace Table for Fig. 10 

EFACE FACE NEXT_EFACE NEXT_EDGE_ON_EFACE 

efl f3 ef2 e8 

ef2 fl ef3 e2 

ef3 f2 efl e5 

ef4 f4 ef5 e7 

ef5 fl ef4 e3 

ef6 fl ef6 e4 

ef7 fl ef8 el 

ef8 f5 ef7 omitted 

ef9 f3 eflO el 

eflO omitted ef9 el4 

efll omitted efl 2 omitted 

efl 2 f3 efll e9 

efl 3 omitted efl 4 omitted 

e!4 f3 efl 3 elO 

Table 8 — Sample 
Face Table for Fig. 10 

Table 9 — Sample Ring Table for 
Fig. 10 

FACEJD RINGJD RINGJD FACEJD STARTJZDGE 

fl 2 1 f3 elO 
f2 3 2 fl e2 
f3 1 3 f2 e5 
f4 4 4 f4 e2 
f5 omitted ... 

Some of the entries for the connected node table are shown in Table 10. For example, Table 10 
shows a connected edge of node D to be el. The other edges connected to node D can be obtained 
by navigating through the edge and related tables. For node F, however, Table 10 shows two 
connected edges, e9 and el3, since edge el3 is a dangling edge. 

6.0 TOPOLOGICAL SUFFICIENCY 

As described in [2,3], nine adjacency relations can be defined between the node-face-edge 
primitives shown in Fig. 11. The directed arcs in Fig. 11 represent ordered relations between primitives. 
For example, the Edge -> Node relation implies the storage of the start and end nodes with each 
edge. 
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Table 10 — Sample Connected 
Node Table for Fig. 10 

15 

NODEJD EDGEj EDGE2 

A e3 - 

B e2 - 

C el - 

D el - 

E e8 - 

F e9 el3 
G e6 - 

H e7 - 

I ell - 

J el3 — 

Fig. 11—The nine relations between the three primitives 

Table 11 lists nine access primitives that were also identified in [2,3]. These access primitives 
describe the retrieval of all topological adjacencies for each of the face, node, and edge primitives. A 
data structure that stores only a subset of all possible adjacency relations, yet can satisfy queries 
to all nine access primitives, is said to be topologically sufficient. 

VPF's winged-edge data structure satisfies queries to all nine access primitives. The 
non-manifold 3D winged-edge data structure also satisfies queries to all of the access primitives 
shown in Table 11 as explained below. Many solutions may exist for some queries. The solutions 
mentioned below do not purport to be the most efficient, as all formal issues related to space 
considerations and time efficiencies are currently being investigated. 

• API: First, all edges around a face are identified (AP2). Then the nodes around the face are 
directly retrievable from the edge table as the start and end nodes for each edge. 

Table 11 — The Nine Basic Access Primitives 

ACCESS 
PRIMITIVES 

(AP) DESCRIPTION 

API Given face i find all n; nodes around it 

AP2 Given face i find all e; edges around it 

AP3 Given face i find all fj faces around it 
AP4 Given node i find all fj faces around it 

AP5 Given node i find all nj nodes connected to it 
AP6 Given node i find all ej edges connected to it 
AP7 Given edge i find its two extreme vertices 

AP8 Given edge i find the e; edges connected to it 

AP9 Given edge i find the f; faces intersecting at it 
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• AP2: The face and ring tables are traversed to identify a starting edge. The edge and eface tables 
are then traversed. Using face f3 in Fig. 10 as an example, the face table, Table 8, identifies 
ring 1. The start edge for ring 1 is edge elO (Table 9). The first eface about edge elO is ef9 
(Table 6). Table 7 identifies ef9 as related to face f3 and the Next_Edge_on_Eface as edge el. 
Following the links from edge el yields edges e8 and e9. All edges around face f3 are, therefore, 
identified as elO, el, e8, and e9 in that order. 

• AP3: First all edges around the face are identified (AP2). Then all faces intersecting at each edge 
are found (AP9). 

• AP4: All edges connected to the node are first identified (AP6). Then all faces intersecting at 
each such edge are found (AP9). 

• AP5: All edges connected to the node are identified (AP6). The edge table identifies each node 
that is opposite the given node. 

• AP6: The connected node table identifies one edge in each manifold object and each edge dangling 
from the given node. The eface and edge tables are traversed to identify all remaining edges. 
Giving node D in Fig. 11 as an example, the connected node table identifies edge el and the 
algorithm described for AP8 identifies edges el, e2, e7, elO, e4, e5, and e8. Edges e4, e5, and 
e8 are discarded since the edge table establishes that they are not connected to node D. This 
leaves edges el, e2, e7, and elO. 

• AP7: The two extreme vertices of an edge are directly retrievable from the edge table listing of 
the start and end nodes. 

• AP8: All edges connected to an edge are found by traversing the edges of each face intersecting 
the search edge and also of each face intersecting any additional edges identified in the connected 
node table. Each edge with a start or end node identical to the original search edge is selected. 
When the connected node table identifies more than one edge connected to the original search 
edge's start or end nodes, the additional edges not previously identified would also be included 
as connected edges. Using edge el in Fig. 10 as an example, the faces intersecting at it are fl, 
f2, and f3 (AP9). The edges bordering face f3 are identified as elO, el, e8, and e9. Edge e9 is 
discarded since it does not have a common start or end node with edge el. Repeating the process 
for faces fl and f2 yields edges e2, e7, elO, e4, e5, and e8 as all of the edges connected to edge 
el. 

• AP9: Finding all faces intersecting at an edge is obtained from the eface table by following the 
links in the linked list of efaces. Using edge el in Fig. 10 as an example, the edge table together 
with the eface table identifies faces fl, f2, and f3 as adjacent faces. 

7.0 FEATURES 

Traditional VPF defines five categories of cartographic features: point, line, area, complex, and 
text. Point, line, and area features are classified as simple features, composed of only one type of 
primitive. Each simple feature is of differing dimensionality: zero, one, and two for point, line, and 
area features, respectively. Unlike simple features, complex features can be of mixed dimensionality 
and are obtained by combining features of similar or differing dimension. 

For Level 4 topology, VPF+ adds a new simple feature class of dimension three. The newly 
introduced feature, referred to as 3D_Object Feature, is composed solely of face primitives. This 
new feature class is aimed at capturing a wide range of 3D objects. The eface table is also added 
to the structural scheme. While the ring table provides a relationship between a face and all of the 
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edges that the face's rings are composed of, the eface table provides a relationship between an edge 
and all of the faces that meet at that edge. VPF+ feature class structural schema is shown in Fig. 12. 

Although 3D_Objects are restricted to primitives of one dimension, 3D_Objects of mixed 
dimensionality can be modeled through complex features using simple features of similar or 
mixed dimensionality as building blocks. The building with the antenna extending from the roof 
shown in Fig. 2(a) is an example of such a complex feature in Level 4. The building is a simple 
3D_Object Feature and the antenna is a simple line feature. 

Face primitives in Level 4 are the building blocks of Area and of 3D_Object Features. Face 
primitives comprising both types of features can be double- or single-sided, with Area Features 
generally using only one side of a double-sided face. A face in Level 4 may be part of either a 
3D_Object Feature, an Area Feature, or both. 

7.1 3D_Object Features 

3D_Object Features are topologically 3D and are intended to model real 3D objects such as a 
building or a motor vehicle. Since a 3D_Object Feature is a simple feature, objects being modeled 
at this level are restricted to be composed of faces connected along incident edges or at non- 
manifold connected nodes. 3D_Object Features are allowed to meet along adjacent faces, edges, 
and non-manifold connected nodes. Additionally, containment among 3D_Object features is allowed. 

TABLE 
COMPLEX 
FEATURE P 

JOIN 

NEW MODIFIED 
JOIN TABLE 

JE 

TEXT 
FEATURE 

JE 

3D_OBJECT 
FEATURE 

JOIN TABLE 

X 

AREA 
FEATURE 

X 

LINE 
FEATURE 

JOIN TABLE 

TEXT 

JOIN TABLE 

X 

POINT 
FEATURE 

JOIN TABLE 

JZT 
FACE 

EFACE *~L 
«—► RING 

TABLE 

«—» 

JOIN TABLE 

EDGE NODE 

CONNECTED ENTITY 

Fig. 12 — Level 4 feature class structural schema 
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Software performance can be improved by identifying characteristics of real 3D objects that 
will allow storage of optional, unambiguous topological information that may otherwise require 
considerable processing time to derive. Clearly, portions of numerous 3D objects form closed 
volumes that divide 3D space into interior, exterior, and surface regions. Optional topological 
information in these cases includes the classification of faces as either inside of, outside of, or part 
of the boundary of the 3D_Object and the orientation of the interior and exterior of the object. 

3D_Object Features are, therefore, defined to be either Well Formed or Not Well Formed. 
A Well Formed 3D_Object Feature is structured such that: 

• The 3D_Object may be manifold or non-manifold. 

• One or more subsets of its composing faces forms a closed 3D volume that clearly divides 3D 
space into interior, exterior, and surface regions. 

• This closed volume may contain internal faces. 

• This closed volume may have external dangling faces. 

All 3D_Object Features that do not meet these criteria are defined as Not Well Formed. 

7.2 Face Classification and Object Orientation 

Based on this description of Well Formed 3D_Object Features, faces may be classified 
unambiguously as either Boundary, Inside, or Outside. The subset of faces of the object forming 
the surface of a closed 3D volume are the boundary faces. Faces embedded within the closed 
portions of the 3D volumes are classified as inside. External dangling faces are classified as out- 
side. Additionally, the interior and exterior of the closed portions of Well Formed features may be 
unambiguously oriented. Orientation is provided with respect to the normal vector of its boundary 
faces. No distinction is made in VPF+ between two or more closed 3D volumes forming part of a 
Well Formed 3D_Object Feature. This is left to the product specification. 

Figure 13 shows an example of all three kinds of faces, as well as the interior and exterior of 
the 3D_Object. The inside face is delineated by the highlighted lines. 

7.3 Join Table Definition 

Face classification as either boundary, inside, or outside, and the orientation of the interior and 
exterior of the closed portion of the 3D_Object, may be found in the appropriate columns of the 

BOUNDARY FACE ■>.      EXTERIOR 

INTERIOR 

{- 
OUTSIDE FACE 

INSIDE FACE 

Fig. 13 —A Well Formed 3D_Object Feature 
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face table. In the case of one face primitive used by more than one feature or type of feature, this 
information may be found in the join table. The join table definition, used for both 3D_Object 
Features and Area Features, is shown in Table 12. An entry in the Face_Class column may be either 
-1, 1, or 0, indicating inside, outside, or boundary, respectively. An entry in the Out column of 
1 indicates that the exterior of the object is in the direction of the normal vector of the boundary 
face, and 0 indicates that it is in the direction opposite of the normal vector of the boundary face. 
Entries in the Face_Class column are null for faces that are part of Area Features and Not Well 
Formed 3D_Object Features. In the Out column, entries are null for faces that are part of Area 
Features, non-boundary faces of Well Formed 3D_Object Features, and all faces of Not Well 
Formed 3D_Object Features. 

7.4 Examples 

Figure 14 shows an example of the use of the Well Formed 3D_Object Feature classification. 
In Fig. 14, two features share a common face indicated by the highlighted lines. The direction of 
the normal vector of the common face is given by the arrow. Since the face is found in both 
features, it will be listed twice in the join table. One listing will record the outside of feature "A" 
as being in the opposite direction from the normal vector of the shared face. The other will record 
the outside of feature "B" as being in the same direction as the normal vector of the shared face. 

Table 12 — Face-3D_Object/Area Feature Join Table Definition 

COLUMN NAME DESCRIPTION COLUMN TYPE KEY OP/MAN 

ID Row id I P M 
**_ID Table 1 id I N M4 
TileJD Tile id S N MT/O 
FacelD Table 2 id I/S/K N M 
Face_Class In/Out/Boundary * I N 04 
Out Exterior/Interior* * * I N 04 

Note: (**) indicates a place holder for either 3D_0bject Feature or Area Feature; 
(*) indicates null values for faces part of Area Features and Not Well Formed 
3D_0bject Features; (***) indicates null values for faces part of Area Features, 
non-boundary faces of Well Formed 3D_0bject Features, and all faces of Not Well 
Formed 3D_0bject Features. 

\    N    ;\ 
«—5— 

FEATURED" FEATURE V 

COMMON FACE — 
NORMAL VECTOR «- 

Fig. 14 — Two features sharing a common face 
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The simplest Well Formed 3D_Object Features are closed, orientable 3-manifolds. A feature of 
this type divides 3D space into three regions: interior, exterior, and surface. The feature's surface 
region is restricted to be finite, but the interior and exterior regions are allowed to be infinite. The 
object is also oriented with respect to its interior and exterior regions. If the exterior region of 
the feature is infinite and the interior region finite, then the feature is a Regular one. Otherwise, the 
exterior is finite and the interior infinite, and the feature represents a Void within a 3D object. In 
Fig. 15, for example, the exterior feature is classified as regular. The internal one is classified as 
a void. 

The object shown in Fig. 16 is Not Well Formed. The distinction between interior and exterior 
is not clearly defined, since a closed 3D volume is not formed. The object shown in Fig. 17 is Well 
Formed. A subset of its faces forms a closed 3D volume. 

Figure 18 shows an example of a 3D_Object Feature that is Not Well Formed. Portions of three 
faces joining at a single edge are illustrated. All edges except the incident connected edge are 
adjacent to only one face. No subset of the object's faces forms a closed 3D volume dividing 3D 
space into interior, surface, and exterior regions. 

REGULAR OBJECT 

INTERNAL VOID WITHIN THE OBJECT 

INDICATES DIRECTION OF EXTERIOR     ► 

Fig. 15 — A regular object with internal void 

Fig. 16 —A Not Well Formed 3D_Object Feature Fig. 17 —A Well Formed 3D_Object Feature 
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Fig. 18 — A Not Well Formed 3D_0bject Feature 

3D OBJECT FEATURES 

X 
WELL FORMED 

I 
NOT WELL FORMED 

REGULAR VOID NON-MANIFOLD 

Fig. 19 — 3D_Object Feature classifications 

7.5 3D_Object Feature Classification 

The classification of 3D_Object Features previously described is summarized in Fig. 19. Shaded 
boxes are used to indicate abstract classifications. 

7.6 Area Features 

Though Area Features may geometrically exist in 3D space, they are topologically 2D and are 
intended to model surface area. As with 3D_Object Features, Area Features are simple features and 
objects being modeled at this level are restricted to be composed only of faces connected along 
incident edges or at non-manifold connected nodes. The faces, as mentioned, may be single-sided 
or double-sided, but an Area Feature will generally make use of only a single side of a double-sided 
face. The join table definition is shown in Table 12. Note that the entries in the Face_Class and Out 
columns are null for faces that are associated with Area Features. 
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8.0 CROSS-TILE TOPOLOGY 

Tiling is the method used in VPF [1] to break up large geographic data into spatial units small 
enough to fit the limitations of a particular hardware platform and media. Primitives that cross-tile 
boundaries are split in VPF. Cross-tile topology is maintained by replacing the primitive's integer 
key with a triplet id. The triplet id consists of an internal reference to the primitive in the current 
tile and external references to the neighboring tile and a primitive within that tile. The two external 
references allow network navigation across tile boundaries using VPF's winged-edge topology. 
Level 4 employs a similar cross-tile scheme. Additionally, in Level 4 as in Level 3, the tiling 
scheme and the handling of features that lie on tile boundaries and text primitives that cross-tile 
boundaries are left to the product specification. 

8.1 Cross-Tile Constructs, Traditional VPF 

When tile boundaries are created, four occurrences requiring primitives to be split are possible 
in traditional VPF [1]: 

• An edge intersects the tile boundary. 

• The edge is coincident with the tile boundary. 

• A face is broken by a tile boundary. 

• Connected nodes occur on the tile boundary. 

When primitives are split, triplet id's are created for left/right faces and left/right edges in the 
edge table and for first edge in the connected node table when there is a cross-tile primitive in 
the neighboring tile. 

8.2 Cross-Tile Constructs, Level 4 

Tile boundaries in Level 4 consist of planar divisions. The cross-tile constructs of traditional 
VPF are extended in Level 4 in accordance with the organizational scheme of non-manifold 3D 
winged-edge topology. Five occurrences requiring primitives to be split are possible when tile 
boundaries are created in Level 4 topology: 

• An edge intersects the tile boundary. 

• The edge is coincident with the tile boundary. 

• A face is broken by a tile boundary. 

• A face is coincident with the tile boundary. 

•Connected nodes occur on the tile boundary. 

The only new situation encountered in Level 4 is that of a face coincident with the tile boundary. The 
remaining four occurrences, though also encountered in Level 3, are treated differently in Level 4. 
When Level 4 primitives are split, a triplet id is defined for the Next_Eface and Next_Edge_on_Eface 
columns in the eface table and the edge column of the connected node table when there is a 
corresponding cross-tile primitive in the neighboring tile. The rules involved are discussed below. 

• An edge intersects the tile boundary - An edge is always broken when it intersects a tile boundary 
by placing a connected node at the intersection in both tiles. The efaces related to the original 
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edge are also broken between the two tiles, and the efaces within each tile are circularly ordered 
in separate tables. All edges terminated by this connected node will have cross-tile topology if 
an edge exists in the neighboring tile. The cross-tile topology consists of triplet id's in the 
Next_Edge_on_Eface column of the eface table. The triplet id identifies the edge id of 
the Next_Edge_on_Eface of the present eface in the current tile, the neighboring tile id, and the 
id of the cross-tile edge in the neighboring tile. The cross-tile edge will be the first edge in 
the adjacent tile, counterclockwise from the referencing edge at the node. 

Figure 20(a) shows an object consisting of three faces connected along a common edge that is 
divided by a tile boundary. The intersection of the faces and tile boundary is represented by the 
dashed lines in Fig. 20(a). Two new objects are formed as a result, one in each tile shown in 
Fig. 20(b) and (c). Nodes and edges have been inserted where the tile boundary divides the edges 
and faces of the object. These are represented by the highlighted lines and vertices. Edges el and 
e2, for example, are the result of dividing one former edge that intersected the tile boundary. For 
edge el, Bl is the start node, and edge e3 is the Next_Edge_on_Eface for the eface related to 
face x. The cross-tile edge is edge e4 in tile 2. Table 13 gives a sample eface table entry for edge 
el in Fig. 20. 

• The edge is coincident with the tile boundary - An edge coincident with a tile boundary occurs 
in both tiles. Within a given tile, the edge is related to a list of efaces that identify faces occurring 
within the tile. The eface in the list prior to the tile boundary has cross-tile topology if a face 
adjacent to the referencing edge exists in the neighboring tile. The cross-tile topology consists of 

(a) 

FACEx 

FACEy 

INSERTED NODE     • 
INSERTED EDGE — 

PLANAR TILE BOUNDARY 

Fig. 20 — Object divided by planar tile boundary 
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triplet id's in the Next_Eface and Next_Edge_on_Eface columns. The triplet id in the Next_Eface 
column identifies the eface in the list prior to the tile boundary in the current tile, the neighboring 
tile id, and the next ordered eface in the linked list of efaces ordered about the coincident edge 
in the neighboring tile. The Next_Edge_on_Eface column contains a triplet id identical to that for 
an edge intersecting a tile boundary. 

In Fig. 20, edges e3 and e4 are added by the division caused by the tile boundary and are 
treated as coincident edges. Node Al is the start node for edge e3 and node A2 is the start node 
for edge e4. The eface list for edge e3 will list only one eface identifying face x. The triplet id in 
the Next_Eface column of the eface table will identify tile 2 and the next ordered eface (identifying 
face y) about the corresponding edge, e4. The Next_Edge_on_Eface column will reference edge e5 
as the next edge in the current tile, tile 2, and edge e2 as the cross-tile edge. 

Table 14 gives a sample eface table entry for edge e3 in Fig. 20. Similar triplet id's would be 
entered for all efaces adjacent to edges coincident with the tile boundary. These are the highlighted 
edges in Fig. 20. 

• A face is broken by a tile boundary - When a face is broken by a tile boundary, the face is closed 
along the tile boundary creating multiple faces and efaces. The new edges used to close the face 
are treated as mentioned above. 

In Fig. 20, faces x and y, for example, resulted from the division of one face by the tile boundary. 
Separate efaces relate to face x and face y. The edges used to close the faces are treated as 
coincident edges. 

• A face is coincident with the tile boundary - In Level 4, a face may be coincident with a tile 
boundary. Face is coincident with a tile boundary when all edges bounding the face are on the 
tile boundary. Each edge forming the boundary of the face is treated as a coincident edge. 

• Connected nodes occur on the tile boundary - This is handled similarly to traditional VPF. Connected 
nodes that occur on tile boundaries exist in both tiles. Each node has a triplet id for internal and 
external edge if an edge exists in the neighboring tile. No special treatment is needed for 
non-manifold nodes (see Fig. 21). 

Table 13 — Sample EFace Table Entry for Edge el in Fig. 20 

EFACE ID FACE* NEXT_EFACE* NEXT_EDGE_ON_EFACE* 

1 X 2, - - e3, tile 2, e4 

"Note: Names rather than id's may be used for clarity. 

Table 14 — Sample EFace Table Entry for Edge e3 in Fig. 20 

EFACE ID FACE* NEXT_EFACE* NEXT_EDGE_ON_EFACE* 

1 X 1, tile 2, 1 e5, tile 2, e2 

"Note: Names rather than id's may be used for clarity. 
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TILE1 TILE 2 TILE1 TILE 2 

CONNECTED NODE ON TILE BOUNDARY. 
EACH NODE REFERENCES A CONNECTED 
EDGE IN THE NEIGHBORING TILE. 

EDGE ENDING ON TILE BOUNDARY. NODE IN TILE 1 
REFERENCES EDGE IN SAME TILE ONLY. NODE IN 
TILE 2 REFERENCES EDGE IN TILE 1 ONLY. 

Fig. 21 — Cross-tile connected node rules [1] 

9.0 SPATIAL INDEXING 

This section describes the Spatial Index File in VPF+. VPF provides spatial indexing as an 
optional means of improving query performance. An application can, for example, retrieve all 
primitives found within a bounding region without exhaustively searching all primitive tables. The 
VPF+ spatial index derives from a grid-based 3D binary tree. The Spatial Index File header and bin 
data records are extended to include coordinates based on Level 4's Minimum Bounding Box (MBB). 

9.1 Spatial Index Creation 

In traditional VPF, a spatial index is created by dividing a tile into 2D areas that become cells 
of a grid-based binary tree. The first split divides the area into right and left halves. The second 
split is top and bottom halves, then right and left again, and so on. Multidimensional binary search 
trees such as this were analyzed in [5]. The data structure was found to be efficient in handling 
point, line, and area spatial queries with the user specifying conditions for multiple keys (here, 
multiple coordinates). The traditional VPF method is, therefore, extended in VPF+ to a grid-based 
3D binary tree, with cell splitting in a different dimension at each level of the tree. 

The 3D binary tree is created as follows. The tile is divided into 3D regions that become cells 
of the tree. Each division splits the parent cell into half. The division is made by a planar division of 
the cell into two equal 3D regions. The dividing plane is perpendicular to and intersects one of the 
x, y, and z axes at alternating levels of the tree. The first split divides the entire tile into right and 
left 3D regions along the x axis. The second split is into rear and front 3D regions along the y axis. 
The third split is into top and bottom 3D regions along the z axis. The process is then repeated. 
Each 3D region resulting from the division becomes the right or left child of its parent cell. When 
a split occurs, the primitives are distributed down into either child cell depending on the primitive's 
MBB. A primitive remains with the parent cell only if its MBB intersects the boundary between 
a parent's children cell. 

The process for dividing a tile is partially illustrated in Fig. 22. In Fig. 22, the plane dividing 
each cell is represented by bold-faced lines. Cells 2 and 3, the two children of cell 1, point to the 
primitives in the right and left 3D regions of cell 1 (the entire tile). Cells 4 and 5, the two children 
of cell 2, point to the primitives in the back and front 3D regions of cell 2 (the right-hand region of 
the entire tile). Cells 8 and 9, the two children of cell 4, point to the primitives in the top and 
bottom 3D regions of cell 4 (the right-rear region of the entire tile). 
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Fig. 22 — 3D spatial index cell decomposition 
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Each cell of the tree contains a list of primitive MBBs together with a list of the primitive id's 
that are found at that level of the tree. Cells are split when the number of primitives exceed a bucket 
size specified by the product specification. The criteria for splitting cells and for ending the splitting 
process in VPF+ remain unchanged from traditional VPF. 

VPF uses a 1-byte integer spatial index coordinate system to which primitive coordinates are 
converted prior to indexing. The same conversion formula are utilized in VPF+ for minimum 
(xl,yl,zl) and maximum (x2,y2,z2) coordinates. 

9.2 Spatial Index File Format 

The format of the VPF+ Spatial Index File consists of a header, a bin array of the tree, and bin 
data records for each primitive in the tree. The header and data records files are extended to include 
the coordinates of each primitive's MBB. The bin array record remains unchanged from traditional 
VPF. 

• Header - The header contains the number of primitives, the MBB of the entire spatial extent of 
the tree, and the number of cells of the tree. The spatial index file header record layout is 
described in Table 15. 

• Data Records-There is one record for each primitive of the tree. Each record contains the 
coordinates defining the MBB for a primitive and that primitive's id. The structure of the data 
record is shown in Table 16. 

10.0 RESULTS AND FUTURE WORK 

This work has described the data structures and data organization of VPF+. VPF+ was designed 
to provide for georelational modeling in 3D and with the capability of modeling a wide range of 
objects that may be received or transmitted through SEDRIS. 

The SEDRIS project, including the object model, its role in data interchange, etc., was examined 
and the class of objects that may be encountered in a SEDRIS transmittal was identified to include 

Table 15 — Spatial Index File Header Record Layout 

BYTE OFFSET WIDTH TYPE DESCRIPTION 

0 4 Integer Number of primitives 
4 4 Floating Point MBB xl 
8 4 Floating Point MBB yl 

12 4 Floating Point MBB zl 
16 4 Floating Point MBB x2 
20 4 Floating Point MBB y2 
24 4 Floating Point MBB z2 
28 4 Integer Number of Cells in Tree 
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Table 16 — Structure of the Bin Data Record 

BYTE OFFSET WIDTH TYPE DESCRIPTION 

HDR + BIN + OS + c * 8 + 0 byte MBB xl 

HDR + BIN + OS + c*8 + l byte MBB yl 

HDR + BIN + OS + c*8 + 2 byte MBB zl 

HDR + BIN + OS + c * 8 + 3 byte MBB x2 

HDR + BIN + OS + c*8 + 4 byte MBB y2 

HDR + BIN + OS + c*8 + 5 byte MBB z2 

HDR + BIN + OS + c * 8 + 6 4 int Primitive id 

Note: c is {0..(number of primitives for a cell - 1)}; the c value for 
the first primitive is 0. HDR is the length of the index file header 
record. BIN is the summed length of all the bin array records. OS is 
the value of the offset variable in the corresponding bin array record. 

non-manifold as well as manifold objects. The winged-edge topology of VPF was found to be 
deficient to represent non-manifold objects. Several data structures capable of representing both of 
these classes of objects were therefore studied. These data structures were not directly implementable, 
but they did provide a theoretical basis for the data structure that was designed. 

As a result of these investigations, a new, extended winged-edge data structure called 
non-manifold 3D winged-edge topology was designed for a new level of topology, Level 4 full 3D 
topology. A new structure called efaces was developed to resolve some of the ambiguities found 
in non-manifold representations. This topology was designed to be a logical extension to the 
winged-edge topology of traditional VPF, and no changes were made that alter traditional VPF's 
lower levels of topology. 

On the feature level, a new 3D_Object Feature class was introduced to capture a wide range 
of 3D objects. These features were further defined to be either Well Formed or Not Well Formed, 
with Well Formed 3D_Object Features having additional optional topologic information to improve 
software performance. 

Further investigation is continuing in several areas. First, and most obvious, are issues related 
to data storage and to data structure efficiency. Second, since a synthetic environment should be 
representable at various levels of resolution depending on the needs of the user, the implementation 
of multi-scale surface and 3D object representation is being explored. Finally, how spatial tiling 
should be addressed in VPF+ is at issue in light of the SEDRIS method of spatial organization. In 
SEDRIS, tiles may be subdivided into smaller tiles. In traditional VPF, an entire coverage is tiled 
according to a single tiling scheme and tiles may not be divided into smaller tiles. Implementation 
of the SEDRIS spatial organizational scheme in VPF+ would make consumption of SEDRIS data 
straightforward, but would constitute an extreme departure from the structural organization of 
traditional VPF. Feedback is being sought from the VPF community on the benefits and disadvantages 
of each approach. 
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Appendix A 

REPRESENTING NON-MANIFOLD GEOMETRIC MODELS 

Three boundary-based data structures capable of modeling non-manifold objects are described 
below. The three data structures to be described are the Radial Edge [2], the Tricyclic Cusp [1], 
and the ACIS Geometric Modeler [3]. 

1.0 THE RADIAL EDGE STRUCTURE 

The Radial Edge Structure [2] is an edge-based data structure that addresses topological ambiguities 
found with two non-manifold situations—the non-manifold edge and the non-manifold vertex. Generally, 
this is accomplished through a radial ordered list of faces connected along a common edge and a 
radial unordered list of edges connected at a given vertex. Additionally, separate structures defining 
the "use" of faces, loops, edges, and vertices are used to represent adjacency relationships rather 
than the faces, loops, edges, and vertices themselves. 

There are several topological restrictions on the domain of objects that can be represented by 
the Radial Edge Structure. Among these, while a surface is allowed to be non-manifold, individual 
faces are required to be manifold. This prevents a face from self-intersecting except along its 
boundary. Additionally, edges may only intersect faces along or at their boundaries. Generally, any 
two topological elements may intersect each other only at a level of hierarchy at least one level 
down from the lowest of the two intersecting levels (i.e., different regions may intersect each other 
only along their boundaries). 

1.1 Topological Elements 

The topological elements used by the Radial Edge Structure are organized in the following 
order from top to bottom: model, region, shell, face, loop, edge, and vertex. Lower dimensional 
elements in the hierarchy serve as boundaries for higher dimensional elements. 

A model can be thought of as a 3D modeling space that holds all elements contained in a 
geometric model. A model is technically not a topological element, but more of a bucket to hold 
all of the topological elements of a geometric model. There is at least one region in a model. A 
region is a volume of space. For example, a single cube requires two regions, one for the inside 
and the other for the outside. Only the latter region would have an infinite extent. When there is 
more than one region, all have a boundary. 

A shell consists of an oriented boundary surface. It may be connected to form a closed volume 
or it may be an open set of adjacent faces, a wireframe, a combination of faces and wireframe, or 
a single point. A solid with an internal void would have more than one shell. No shell exists if all 
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space exists as a single region. In that case, no modeling has yet been done or all models have been 
deleted. 

A face is the bounded portion of a shell excluding the boundary. Though a face is orientable, 
it is not oriented since two region boundaries may use different sides of the same face. A loop is 
a connected boundary of a single face. This can be either a single vertex or alternating sequences 
of edges and vertexes. A face can have more than one loop (a face with a hole in it). Loops are 
not oriented as they bound a face that may be used by two different shells. The use of a loop is 
oriented. An edge is bounded by vertex at each end, possibly the same one. It is orientable, but 
not oriented. The use of the edge, on the other hand, is oriented. A vertex is simply defined as a 
unique point in space. 

The Radial Edge Structure also defines face use, loop use, edge use, and vertex use as additional 
topological adjacency elements associated with faces, loops, edges, and vertices. As mentioned, 
these "uses" are the elements employed to represent adjacencies. Although this increases storage 
costs, it simplifies traversing the structure by providing through the "usage" a unique identification 
for each face, loop, edge, and vertex usage. 

Face use represents the use of one of the two sides of a face by a shell and is oriented with 
respect to face geometry. Loop use represents one of the uses of a loop associated with one of the 
two uses of a face and is also oriented with respect to its associated face use. Edge use is the use 
of an edge by a loop use. There is one edge use for each face side. Orientation is specified with 
respect to edge geometry. Finally, a vertex use can represent the use of a vertex by an edge as an 
endpoint. There can be a single vertex loop or a single vertex shell. In those cases, vertex use 
represents use of the vertex by the loop or shell, respectively. 

1.2 Data Structure Relationships 

The Radial Edge Data Structure relationships are shown in Fig. Al. Generally, the root of the 
data structure is a list of all models, with a pointer to the next and last models in the list and to 
a list of regions in the modeling space. Each region has pointers to its parent model, to the next 
and last regions in the list of regions, and to one node of a list of shells in the region. Each shell 
points to its parent region, to the next and last shell in the list of shells, and to one of three 

MODEL 

I 
REGION 

I 
SHELL 

I 
FACE USE    FACE 

LOOP USE      LOOP 

[ 
EDGE USE       EDGE 

VERTEX USE — VERTEX 

Fig. Al — Radial Edge Structure relationships [2] 
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alternative topological adjacency use elements, face use, edge use, or vertex use. Faces, loops, 
edges and vertices point to their own corresponding "uses" and to their own attributes, including 
geometry. 

In addition to having pointers to their corresponding faces, loops, edges, and vertices, the face 
use, loop use, edge use, and vertex use structures have additional pointers necessary to maintain the 
adjacency relationships. In particular, the face use structure contains pointers to its parent shell, as 
well as the next and last face uses in the shell's list of face uses. It also contains a mate pointer 
to the opposite side of the face and a pointer to a list of loop uses. 

The loop use structure has pointers to its face use parent, to the next and last loop use in the 
face use's list of loop uses, to the loop use on the other side of the face, and one pointer to a lower 
level in the hierarchy. That pointer is to a vertex use when the loop is comprised of only one vertex; 
otherwise, it is to a vertex in a list of edge uses in the loop use. 

The edge use has pointers to the starting vertex use of the edge use in the current orientation, 
to the edge use on the other face use of the face, and one pointer to a higher level in the hierarchy. 
That pointer is either (1) to its parent shell or (2) to the next and last edge use in an ordered edge 
use list, to the edge use on the radially adjacent face use, and to its loop parent. 

The vertex use has pointers to the next and last vertex use in a list of all vertex uses of the 
vertex. It also has a pointer to one of the following: (1) its parent shell when there are no face uses 
or edge uses on the shell, (2) its parent loop use when the loop consists only of the current vertex 
use, or (3) the edge use causing the current vertex use. 

1.3 Illustrations 

Some of the face use, edge use, and vertex use relationships are illustrated in Figs. A2, A3, and 
A4. Figure A2 shows a cross-section of three faces (fi, f2, f3) sharing a common edge (ei). Since 
each face has two face use structures, one for each side of each face, there are a total of six face 
use structures represented by fui, fu2,..., fu6- Each face use points to the face use on the opposite 
side of its own face. There are six edge use structures (eui , eu2,..., euö), one for each of the two 
sides of each of the three faces. Each edge use points to the edge use on the other 
side of the face and to the edge use structure on the face use radially adjacent to itself. For example, 
in Fig. A2, eui points to eu2 and to eu6- 

Figure A3 shows a vertex (vi) with five connected edges. Each of the five edges has an edge 
use (eui , eu2,..., eus, for example). Since there are five edges, the vertex has five vertex uses (vui, 
vu2,..., VU5). The vertex points to one of its vertex uses (vj points to VU5 through vvuptr). Each 
vertex use points to its neighboring vertex use (vus points to vui and to VU4, for example) and 
points to vertex vj (through vuvptr). Finally, each vertex use points to its connected edge use 
through the "vueuptr" pointer (vui points to eui) and each edge use points to its vertex use through 
"euvuptr" (eui points to vui). 

Fig. A4 shows the relationships involved in a loop of edge uses. The loop is given as a loop 
use (lui). Since there are four vertices and four edges, there are four vertex uses (vui through VU4) 
and four edge uses (eui through eu4). Each vertex use points to the edge use causing the vertex use 
(e.g., vui points to eu2). Each edge use points to its corresponding vertex use (e.g., eu2 points to 
vui), to its parent loop (lui), and to the next and last edge use (e.g., eui points to eu4 and to eu2) 
through "lueulast" and "lueunext." 
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Fig. A2 — Faces sharing an edge in the Radial Edge Structure [2] 

2.0 THE TRICYCLIC CUSP STRUCTURE 

The Tricyclic Cusp Structure [1] is a vertex-based data structure. This data structure addresses 
the topological relationships that the Radial Edge Structure addresses, and in addition, is specifi- 
cally intended to resolve ambiguities inherent in certain non-manifold representations that may not 
be easily eliminated by the Radial Edge Structure. An example is the situation depicted in Fig. A5 
in which two open cones (A and B) are joined at vertex "v." Vertex v is not connected to any edges. 
Traversal from the outside of cone A to the outside of cone B may not be guaranteed with the 
Radial Edge Structure. 

2.1 Topological Elements and Data Structure Relationships 

The topological elements of the Tricyclic Cusp Structure are the model, region, face, edge, 
vertex, shell, wall, edge orientation, zone, disk, loop, and cusp. The relations between these 
elements are shown in Fig. A6. 

The vertex, edge, face, shell, and region have meanings similar to their counterparts in the 
Radial Edge Structure. A wall is equivalent to the Radial Edge Structure's "face use"—one of 
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Fig. A3 — Edges sharing a vertex in the Radial Edge Structure [2] 
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Fig. A 5 — Representation rendered ambiguous in Radial Edge 
Structure [1] 
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the two oriented sides of a face (Fig. A7). The ordering of adjacent vertices defines an edge 
orientation. There are two possible orientations for each edge. 

The remaining topological elements can most easily be understood by starting with the cusp 
(Fig. A6). This term is used as an "entity" that is the representation of enhanced vertex use 
information or is descriptive of the neighborhood around a vertex. It can be thought of as the fusion 
of vertex use and edge use information. Cusps are depicted in Fig. A7. As shown in Fig. A7, a 
cyclic ordering of cusps about a wall forms a loop. The ordering is consistent with wall orientation. 
A loop bounding a face would have a mate loop—the wall on the opposite side of the face, called 
the mate wall. The mate cusp, also shown in Fig. A7, relates to the mate wall and same vertex. 

Three circular lists of cusps form the edge orientation, disk, and loop (Fig. A6). Figure A8 
shows the circular lists related to the edge orientations for three faces connected along one edge. 
An ordered list of all cusps associated with the first vertex indicated by the edge orientation make 
up one edge orientation cycle forming an edge. The second edge orientation is made up of the cusps 
associated with the vertex indicated by the opposite edge orientation. The mate edge orientation 
relationship is used in connection with the two ordered lists to locate each face connected at the 
common edge. As noted in Fig. A8, two possible edge orientations are associated with each "real" 
edge. Both oriented walls of a face point to the "real" edge, but an unoriented wall points to an 
isolated vertex. 

Zones and disks are utilized to elaborate the vertex uses around a given vertex. A zone is a 3D 
region around a vertex bounded by a disk. In Fig. A9, a disk cycle is represented. The cycle of 
cusps is for the vertex of the cube as seen from the outside and simulates one side of an open disk. 
Each vertex has one or more zones and each zone has one or more disks. A shell is composed of 
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Fig. A8 — Edge orientation cycle in the Tricyclic Cusp Structure [1] 

a list of walls, and a region is made up of a list of shells. Finally, a model serves to incorporate 
all elements of an object and more than one model can exist. 

3.0 THE ACIS GEOMETRIC MODELER 

The ACIS Geometric Modeler [3,5] is a component-based package consisting of a kernel and 
various application-based software components. The topology-related data structures are found in 
the kernel. The ACIS Geometric Modeler can model ID, 2D, and 3D objects, including those with 
non-manifold edges and non-manifold vertices. 

3.1 Topological Elements 

The hierarchy of elements comprising ACIS topology are shown in Fig. A10. At the highest 
level, a body models a solid object, which can consist of more than one disjointed body treated as 
one. Next is the lump, which represents a connected portion of space bounded by one or more 
shells. A shell can refer to the boundary of a void internal to an object or can refer to the peripheral 
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boundary of a lump. Shells are made up of a collection 
of faces, and shells can be subdivided into subshells. 
A face is a surface bounded by loops of edges. A face 
can be single- or double-sided. When single-sided, the 
points on one side of a face are considered inside of 
the shell and the points on the other side are on the 
outside. When double-sided, all points on either side 
of the face are either all inside or all outside. Loops 
are connected portions of the boundary of a face and 
consist of a list of co-edges. 

Co-edges in the ACIS Geometric Modeler are 
comparable to, but not exactly like, edge uses in the 
Radial Edge Structure and cusps in the Tricyclic Cusp 
Structure. In addition to relating edges with adjacent 
edges, co-edges make it possible for edges to occur in 
more than one adjacent face. This is because each edge 
has one co-edge for each adjacent face (Fig. All). In 
Fig. All, three faces of a solid are shown. The line 
with arrows indicate the loops of co-edges for each 
face. 

Next, edges are represented as physical edges 
bounded by two vertices. If either vertex is null, then 
the edge is unbounded in that direction, and if both 
vertices are identical, then the edge is considered an 
isolated point, such as the apex of a cone. 

3.2 Data Structure Relationships 

In the ACIS Geometric Modeler, the body contains 
a pointer to the first lump's shell in the body. The 
lump points to the next lump in the body, the first 
shell in the lump, and the body that contains the lump. 
The shell has pointers to the next shell in the 
lump, the first subshell, if any, the first face in 
the shell, and the lump containing the shell. 

The relationships of the faces, loops, co-edges, 
edges, and vertices are shown in Fig. A12. References 
to geometric information are omitted. Generally, each 
face points to the next face in the shell, the first loop 

bounding the face, and the shell containing the face. Each loop points to the face that the loop 
bounds, the next loop in the face boundary, and the first co-edge in the loop. The co-edges point 
to the next and previous co-edges in the loop, the partner co-edge on the edge (to allow for more 
than two faces connected along a common edge), the edge on which the co-edge lies, the 
co-edge direction, and the owning loop. Co-edge direction is significant because the co-edges are 
oriented such that the face is always on the left when the observer is looking along the co-edge with 
the outward pointing face normal upward. Each edge points to its starting and ending vertex and the 
first co-edge on the edge. Finally, a vertex points to the edge using the vertex. In the case of two 
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Fig. All —Co-edges in loops [5] 
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Fig. A12 — Some of the Data Structure Relationships in ACIS [5] 

non-manifold situations (two objects connected only at a single vertex or a dangling edge), the 
vertex can point to the multiple edges to allow access to all edges at the vertex. 
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Appendix B 

SEDRIS OVERVIEW 

This appendix is organized as follows. Sec. 1.0 introduces the SEDRIS project and covers the 
portions of the SEDRIS object model relevant to this research. Section 2.0 covers significant 
differences between VPF and SEDRIS. All references to the SEDRIS object model are to [1] and 
all references to VPF are to [2]. 

1.0 INTRODUCTION 

The Synthetic Environment Data Representation & Interchange Specification (SEDRIS) is a 
project funded by the Defense Modeling and Simulation Office for the development of a standard 
mechanism for interchanging synthetic environment data. "Synthetic Environment Data" includes 
a diversity of digital data used to represent varied aspects of the real world environment. Some of 
the data that can be considered synthetic environment data includes data about the terrain, ocean, 
atmosphere, natural and man-made models, features, and associated sounds. As an interchange 
mechanism, SEDRIS is intended to allow a user to access, extract, and interpret this data exactly 
as a producer intended without changes to the data that would alter the characteristics of the 
information as intended by the producer. The SEDRIS project includes the development of a format 
independent data model, a data format, and an Application Program Interface (API) [3]. The data 
model should become stable in the near future once issues involving the representation of topology, 
color, atmospheric, and oceanic data have been resolved. Though an interim data format has recently 
been suggested, a final format will probably await stability of the data model. Since the SEDRIS 
object model is not yet stable and there is no SEDRIS format, the API currently provides for "read 
only," allowing conversion only between a native data base model and the SEDRIS object model 
held in RAM. Once the SEDRIS project is complete, the API will enable conversion between major 
native data base models and formats and the SEDRIS model and format. 

1.1 The Data Model 

The SEDRIS data model is an object-oriented data representation model [1]. The model is 
generally organized around five classes: Synthetic_Environment, Features, Geometry, 
Feature_Topology, and Geometry_Topology. These five classes and related subclasses illustrate the 
general organization and structure of SEDRIS and also provide a foundation for the comparison of 
SEDRIS to other models such as VPF [2]. The entire SEDRIS model is not presented in detail here. 
The omitted portions are not considered significant to an overall understanding of the structure of 
the SEDRIS object model and its relationship to the VPF relational model. All diagrams use the 
modified Raumbaugh notation employed by SEDRIS, which is explained in App. C. 
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1.2 Synthetic_Environment 

The Synthetic_Environment class is the minimum object required in a SEDRIS transmittal and 
is the object around which the data base is organized. Figure Bl shows some of the relationships 
from Synthetic_Environment. As shown in Fig. Bl, a Synthetic_Environment has zero or more 
Color_Tables, at most one Base, Sound_Library, Texture_Library, Symbols_Library, and 
Model_Library, and exactly one TransmittalJEncoding and A&L (Accuracy and Lineage). 

Transmittal_Encoding and A&L are conceptually grouped as subclasses of the abstract Metadata 
class because each lets the user know something about the data contained in the transmittal. 
Transmittal_Encoding, for example, might identify those parts of the Synthetic_Environment that 
are and are not available. A&L, on the other hand, might include such information as the source 
of the data and date of last modification. 

The libraries are optional, but if they exist, they organize all of the sounds, textures, symbols, 
and models that can be instanced in the synthetic environment. A model may be something as 
simple as a generic building that will be instanced multiple times in a single data base or something 
as complex as a VPF coverage. 

The base object shown in Fig. Bl organizes the Feature and Geometry data that is not found 
under model. A SEDRIS feature generally corresponds to traditional VPF-type data, while geometry 
is used to describe things that have substance. 
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Fig. Bl — Synthetic environment and related classes [1] 
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1.3 Features 

A feature is used to conceptually organize "feature data," and as with all abstract classes, it is 
never instanced. Figure B2 depicts the feature class along with some of its descendants and rela- 
tionships. A feature can be related to other features and to Geometry_Hierarchies. A feature is 
either a Primitive_Feature or FeatureJHierarchy. The basic data that describes a feature is organized 
in the Primitive_Feature abstract class as either a Point_Feature, Linear_Feature, or Areal_Feature. 
These are defined by the SEDRIS data dictionary as follows: 

• Point_Feature - a point referencing a cultural feature; 

• Linear_Feature - a feature located along an edge; 

• Areal_Feature - feature located in a bounded area. 

As Fig. B2 shows, each of the feature primitives is related to its topological counterpart: Feature_Node, 
Feature_Edge, and Feature_Face classes. 

A Feature_Hierarchy is either a Feature_Connection (Fig. B2) or an Aggregate_Feature (Fig. B3). 
The Feature_Connection class relates a particular instance of a feature model to the Feature_Model 
class (Fig. Bl). This is an example of a one-way relationship in which the Feature_Model_Instance 
knows the model it is related to, but the model does not know what Feature_Model_Instances may 
be related to it. 

The Aggregate_Feature class shown in Fig. B3 provides 10 concrete subclasses within which 
feature data can be grouped. For example, a spatial tiling scheme could be implemented through 
the Spatial_Index_Related_Features class or multiple levels of resolution could be grouped in the 

FEATURE • • GEOMETRY HIERARCHY : i 
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1 POINT FEATURE LINEAR_FEATURE AREALFEATURE 

FEATURE MODEL 
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r t 
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Fig. B2 — Abstract feature classes, feature primitives, and feature model [1] 
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Level_of_Detail_Related_Features class. There can also be a mixture of different classes at 
different levels of the Feature_Hierarchy. For example, a Feature_Hierarchy can be composed of 
multiple levels of Aggregate_Features with each Aggregate_Feature grouping in the hierarchy con- 
sisting of a Level_of_Detail_Related_Feature. Alternatively, one Aggregate_Feature grouping in 
the hierarchy can consist of a Level_of_Detail_Related_Feature, and another grouping at a 
different level of the hierarchy can consist of Quad_Tree_Related_Features. Additionally, two dif- 
ferent Aggregate_Feature class groupings can exist at the same level of the Feature_Hierarchy 
through Union_of_Features. 

1.4 Geometry 

The abstract geometry class and subclasses are shown in Fig. B4. A geometry is either a 
Primitive_Geometry or a Geometry_Hierarchy. Geometry_Hierarchies can be related to other 
Geometry_Hierarchies and to features. 

1.5 Primitive Geometry 

The Primitive_Geometry class specifies the basic data necessary to describe "geometry" objects. 
This type of data is divided into four classes defined by the SEDRIS data dictionary as follows: 

• Linear_Geometry - geometric linear representations; 

• Surface_Geometry - geometric surface representations; 

• Volume_Geometry - volumetric representations; 

• Point_Geometry - a specialization of primitive geometry in which all components have a Location_3D 
as a component, such as a light source or camera point. 

GEOMETRY 
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PRIMITIVE GEOMETRY 

1 
I    j GEOMETRY HIERARCHY 
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FEATURE 

ncniirrov rraikicrTiniii PROPERTYGRID - ttÜÜtttVJt>YlE_ UtUWIttKY 

A 

LINEAR_GEOMETRY SURFACEJ3E0METRY roiNT.GEOMETRY VOLUME.GEOMETRY 

Fig. B4 — Abstract geometry class and subclasses [1] 
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Volume_Geometry may typically be utilized in oceanographic and possibly atmospheric 
applications. For example, a cold water eddy (in a sonar simulator application) would be represented 
as a "volume." Point_Geometry is not significant to this discussion and is omitted from further 
discussion. 

Figure B5 shows the subclasses and interrelationships of Linear_Geometry and Surface_Geometry. 
The core primitives are line, vertex, and polygon or patch. The following points are noteworthy. 
A line is defined in SEDRIS as a set of ordered vertices. A vertex is the end of a line segment or 
the point of intersection of two polygons. A polygon differs from a patch in that the former is the 
bounded portion of a plane while the latter is a manifold defined by a parametric equation. 
The SEDRIS data dictionary gives an example of a patch to be the hood of a car. The normal can 
be used to determine the slope or orientation around an area. 

The remainder of the geometric information is attached to vertex, and with the exception of 
Morph_Point, consists of primitive data. A Morph_Point is a location in 3D space significant to the 
transition of an object when morphing between levels of detail. For example, at one distance a 
building roof may look flat, but transition to the appearance of a peaked roof at a closer distance. 
Location_3D is the coordinate location of the vertex in 3D space. Location_3D is required while 
all other geometric information is optional. The conformal class indicates how a point will be 
forced to conform to another object. The example given in the SEDRIS data dictionary is that a 
conformal will determine whether a building floor will be coplanar with the surface below. Color 
and Color_Coefficient relate to the color and operations on that color. Texture_Coordinate maps a 
texel from an image to a vertex. 

Unlike feature-related topology, geometry-related topology is optional in SEDRIS. This topo- 
logic information should be derivable from the geometric primitives. Line topology can optionally 
be found in the Geometry_Edge class, vertex topology in the Geometry_Node class, and polygon 
or patch topology in the Geometry_Face class. Topology is more fully discussed in a separate 
section. 

1.6 GeometryJHierarchy 

Geometry_Hierarchy (Fig. B4) serves two functions. It captures associations with features. If 
there is an association with a feature, the geometry side can be considered an alternate represen- 
tation of the feature. Additionally, Geometry_Hierarchy conceptually organizes geometric data as 
either Aggregate_Geometry, Property_Grids, or Geometry_Connection. 

Figure B6 shows the subclasses and relationships of Aggregate_Geometry. As with the 
Aggregate_Feature class discussed above, each of the subclasses provides a different method of 
grouping geometric data, and different methods can be found at different levels in the 
Geometry_Hierarchy. 

Property_Grids are shown in Fig. B7. There can be one-, two- or three-dimensional grids. 
Grid_lD is a ID matrix of grid vertices and references such primitive data as spacing units (meters, 
seconds, millibars). Grid_2D is a 2D matrix of evenly spaced vertices used to store such properties 
as elevation. Grid_3D is a 3D matrix adding "z" spacing such as an array describing a 3D volume 
of a bounded region. Feature_Node, shown in Fig. B7, relates to topology, described below. 

Details of the transformation class are not shown in Fig. B7. This class organizes the data 
necessary for the rotation, scale, or translation to be applied to an object.  It also holds 
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Fig. B7 — Property grids [1] 
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Fig. B8 — Geometry connection [1] 

data necessary to orient objects in the environment. For example, this data might be used to face 
a building in a certain direction at a certain location. 

The final element of Geometry_Hierarchy is Geometry_Connection, shown in Fig. B8. 
Overload_Priority_Index ranks priority of a model, Stamp_Behavior provides a mechanism for 
automatically rotating an object to the viewer, and Algorithmic_Control is the function that 
governs the representation or actions of an object, usually a file name referencing source code. 
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1.7 Topology 

SEDRIS distinguishes Feature_Topology (Fig. B9) and Geometry_Topology (Fig. BIO). Both 
classes are, however, organized around the relationships of nodes, edges, and faces. SEDRIS topology 
is more fully discussed in Sec. 2.0. 

2.0 VPF - SEDRIS DIFFERENCES 

This section covers differences between VPF [2] and SEDRIS [1] that are significant to this 
research. These areas include spatial organization of data (Sec. 2.1), topology (Sec. 2.2), and the 
class of objects that may be encountered in a SEDRIS transmittal (Sec. 2.3). 

2.1 Spatial Organization of Data 

VPF, at the coverage level, spatially organizes data into "tiles" that are not subject to further 
division into smaller tiles. Additionally, all coverages within a library are tiled according to the 
same tiling scheme. The product specification defines the tiling scheme. 

SEDRIS' spatial organization scheme is found under the Aggregate_Geometry and 
Aggregate_Feature abstract classes through the Spatial_Index_Related_Features 
and Spatial_Index_Related_Geometry classes (Figs. B3 and B6). Unlike VPF, SEDRIS' spatial 
index objects are subject to further division into smaller tiles. For example, a 
Spatial_Index_Related_Feature object can be related to a FeatureJHierarchy, which can have as its 
children additional Aggregate_Feature objects including further spatial index objects (Fig. B3). 
This is also true of Spatial_Index_Related_Geometry objects (Fig. B6). 

2.2 Topology 

Consistent with its division of feature and geometry, SEDRIS distinguishes its treatment of 
feature topology and geometry topology. Features are required to have topology, but topology is 
optional for geometric objects. 

In VPF as well as in SEDRIS, topology consists of nodes, edges, faces, and their relationships. 
There are similarities and differences in the way VPF and SEDRIS approach those 
relationships. 

Nodes - In VPF, a node is either a connected node or an entity node. The connected node is 
related to first edge, and the entity node is related to one containing face. In SEDRIS, a node 
is not defined to be either "connected" or "entity." Instead, the node can have zero, or at most, one 
"contained_within" face and zero or more "connected" edges. The contained_within face is then 
related to one face, and the connected edge is related to one or more ordered edges. The effect is 
that a node can be an entity node in the sense that it is contained within a face, but also connected 
to one or more edges. 

Edges - VPF's winged-edge topology relates an edge specifically to one left and one right face, 
to one left and one right edge, and to one start and one end node. SEDRIS topologically relates an 
edge to one start and to one ending node. The two models topologically diverge beyond that. If 
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an edge has a bordered face in SEDRIS, then that bordered face is related to one or more ordered 
faces. There is no explicit relationship for a left or a right face. Similarly, SEDRIS provides no 
explicit relationship for a "left" or a "right" edge. 

Faces - VPF relates a face all internal and to one external face ring and then relates each ring 
to its first edge. SEDRIS similarly relates a face to zero or more internal rings and to one external 
ring. Each ring is then related to one or more ordered edges. SEDRIS, in addition, relates a face 
to zero or more contained nodes. 

Finally, a node, edge, or face in SEDRIS can be related to a "same as" node, edge, or face. That 
would allow, for example, the topologies that two identical faces are part of to be joined together 
by an application. 

VPF uses internal and external face rings to topologically organize feature primitives. SEDRIS 
uses the same tools to topologically organize feature and geometry face primitives. SEDRIS does 
not provide for a topologic class to describe a 3D volume (such as a "shell" [4]) enclosed by a 
collection of faces. 

2.3 Non-Manifold Objects 

Related to topologic considerations of nodes, edges, and faces is the issue of the domain of 
objects that can be represented by SEDRIS. There is nothing in the SEDRIS data model to prevent 
the four non-manifold representations shown in Fig. Bll. 

• Non-manifold edges: 

• Figure Bll(a) represents three faces connected along a common edge (more than three are 
possible); 

• Figure Bll(b) shows a "dangling" edge (an edge adjacent to no faces); 

• Figure B 11(c) shows an example of a face "dangling" from an open box (three of its edges are 
adjacent to only one face). 

• Non-manifold nodes: 

• Figure Bll(b) - the node connecting the dangling edge to the object; 

• Figure B 11(d) - the node forming the sole connection between the two objects. 

Fig. Bll—Four non-manifold representations 
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While the topologic organization of SEDRIS would preserve the adjacencies seen in Fig. Bll, 
the edge-based constraints of VPF's winged-edge topology would not. Since VPF's topology spe- 
cifically relates an edge solely to one left and one right face, a third, fourth, or fifth face would 
not be retrievable (Fig. Bll(a)). Additionally, the edge adjacent to no face (Fig. Bll(b)) and the 
edges adjacent to only one face (Fig. Bll(c)) would fail to have the left/right face dichotomy. 
Finally, VPF only relates a connected node to one "first edge." To find all other edges connected 
to a node, the topology of that edge is followed until the first edge reappeared. All edges can be 
located due to face adjacency relationships. If the non-manifold node in Fig. Bll(b) were related 
solely to the dangling edge in the connected node table, then starting from that node, the other three 
connected edges would not be retrieved. The same would be true given solely the relationship 
between the non-manifold node and one of the adjoining edges in the box. Similarly, if the non- 
manifold node in Fig. Bll(d) were related solely to one edge in one of the connected objects, then 
starting from that node, the edges in the other object would not be retrieved to faces. 
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Appendix C 

MODIFIED RAUMBAUGH NOTATION 

This appendix summarizes the modified Raumbaugh notation used by the SEDRIS object model 
and is taken from [1].   . 

A concrete class showing only its class name. 
Concrete classes are instantiated. 

A 

Shaded boxes indicate abstract classes that are not instantiated. 

A 
B                         C 

Inheritance (is-a) is shown by the triangle. 
Class A is either an object of class B or an object of class C. 

B 

Every class A object is related to exactly one class B object. 

B 

Every class A object is related to zero or more class B objects. 
Every class B object is related to zero or one class A object. 

55 
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2+ {ordered}       2 
B 

Every class A object is related to two class B objects. 
Every class B object is related to two or more ordered class A objects. 

LA B 

Each (A,B) object pair is associated with one class C object. 

o- ■>- B 

The diamond shows an aggregation (has-a) relationship. 
The arrow indicates a one-way relationship. 

An object of class A is composed of one object of class B. 
An object of class A knows what object of class B it is associated with. 

An object of class B does not know what object of class A it is associated with. 

REFERENCES 

1. The SEDRIS Team, Slide Presentation, spring 1996. 


