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ABSTRACT: 

Sonars used to count migrating salmon in the Pacific Northwest must operate in a 

complicated and variable acoustic environment. This paper discusses the acoustic 

properties which affect the performance of salmon enumeration methods. The methods 

used must be able to take into account variable site geometry and river bed 

characteristics. From this information, a background and target reverberation levels can 

be calculated. Using this information, guidelines for sonar site selection and 

configuration can be established. 

INTRODUCTION: 

As the numbers of North American Pacific salmon (Oncorhynchus spp.) dwindle 

in the Pacific Northwest, a greater emphasis is being placed on the proper management 

of the species. A primary management objective is determining and maximizing the 

numbers of salmon that escape from local fisheries into individual spawning areas. 

These spawning objectives are reached by varying commercial harvest areas and times. 

In order to implement a management scheme that can maximize the catch while 

sustaining the species, daily counts of escapement need to be determined (Gaudet). 

Traditional techniques used to determine the escapement include erecting towers 

along the banks or rivers or constructing weirs in the stream. These techniques are very 

labor intensive and are in many places impractical due to clarity of water and remote 

locations which are difficult to travel to. The use of gjllnets or fish wheels also provide 



escapement numbers, but these methods are limited by the uncertainty offish catchability 

(Thome). 

To provide another tool for determining daily estimates of escapement, research 

began in the 1960's to design and build sonar counters capable of counting salmon. The 

use of conventional vessel mounted echo sounders proved to be limited due the small 

sonar sampling volume beneath the boat and boat avoidance behavior exhibited by the 

fish, especially in shallow rivers in which salmon typically spawn. Another enumeration 

technique consisted of using upward looking multiple transducers. This method proved 

bulky and difficult to operate. Then in 1974, a single horizontally mounted transducer 

was used to replace the upward looking models. This single transducer looked 

perpendicularly from shore along the bottom and initially obtained relatively accurate 

results as compared to manual fish counts (Trevorrow). In the last twenty five years, 

these techniques have been refined to produce very accurate escapement counts. 

However, in order to obtain accurate results using acoustical methods, the sonar 

signal to noise ratio of the system must equal or be greater than the detection threshold. 

One of the major contributing factors which often prevents this from happening is the 

background reverberation level. This reverberation level must take into account the 

acoustical backscatter of the insonified river cross section. The components of 

backscatter include interaction with the river surface and bottom sediments. 

The scope of this paper is to explain the basic acoustical equations and develop 

these equation into a model. This paper discusses the acoustic properties that affect the 

performance of salmon enumeration counters. The methods used must be able to take 

into account variable site geometry and river bed characteristics. From this information, 



a background and target reverberation levels can be calculated. Using this information, 

guidelines for sonar site selection and configuration can be established. 

BASIC CONCEPTS: 

Sound consists of a repetitive motion of the molecules of an elastic substance 

such as air or water. Because of the materials elasticity, motion of the particles of the 

material, such as the motion initiated by the movement of a piston in a tube, propagates 

to adjacent particles. The sound wave is propagated outward from the source at a velocity 

equal to the velocity of sound in the material, in fisheries this material is always a fluid. 

Therefore, a sound wave is a sinusoidal oscillation in the fluid which results in regions of 

compression and rarefaction relative to the mean pressure (Johanneson and Mitson). 

These changes in pressure can be detected by a pressure sensitive device such as a 

transducer. This device converts the acoustical wave into an equivalent electric 

sinewave. 

In a plane wave of sound the pressure p is related to the velocity of the fluid 

particles u by 

p = pcu (1) 

where p = fluid density [kg/m3] 

c = propagation velocity of wave [m/s] 

The proportionality factor pc is called the specific acoustic resistance 

(impedance) of the fluid. The relationship between pressure, particle velocity and 

specific acoustic resistance is similar to the relationship that exists between voltage, 

current and resistance (Urick). Therefore, equation 1 is called Ohm's law for acoustics 



where particle velocity is analogous to electric current and pressure is analogous to 

electric voltage. Note: the speed of acoustical waves, c, is dependent on temperature, 

salinity and depth of the water. For riverine measurements, salinity and depth are not 

usually significant factors (Johanneson and Mitson). 

Sound waves carry mechanical energy with it in the form of the kinetic energy of 

the particles in motion plus the potential energy of the stresses and strains in the fluid. 

Because the wave is propagating, a certain amount of energy per second will flow across 

a unit area oriented normal to the direction of propagation. This amount of energy per 

second (power) is called the intensity of the wave (Clay and Medwin). Acoustical 

intensity is analogous to electrical power on the basis of the amount of energy and the 

time if flows or is used. In a plane wave, described in fisheries acoustics as a wave 

which exhibits no significant curvature of its wavefront, the intensity is related to the 

time average acoustic pressure using the equation: 

I = p2/pc(2) 

Another important term which is vital in understanding fishery acoustics is the 

term decibel (dB). The decibel is not a unit of measured quantity such as meters, 

kilograms, or seconds. It is the logarithm to base 10 of a ratio, giving the relationship 

between quantities. In the field of acoustics, large differences occur in intensity and 

pressure due to propagation losses. By converting these changes to decibels using 

logarithms it is possible to simplify figures and calculations of these differences. 

Additionally, since the decibel is based on logarithms, multiplication and division are 

converted to addition and subtraction. 



SONAR EQUATIONS: 

Various phenomena and effects associated with underwater acoustics produce 

quantitative effects on the design and operation of sonar equipment. These effects can be 

logically and conveniently grouped together quantitatively in a small number of units 

called the sonar parameters which are related by the sonar equations. These equations 

relate the various effects of the medium, the target, and the sonar equipment. 

The sonar equations are founded on a basic equality between the desired and 

undesired portions of the received acoustical signal at the desired instant of time when a 

sonar function is performed. In fisheries acoustics, this function is the detection of a fish 

target. This function involves the reception of the acoustical wave occurring in a natural 

acoustic background The acoustical field received by the transducer can be broken 

down into two portions: the desired portion is called the signal and the undesired portion 

is called the background The background is either noise, the steady state portion not due 

to sonar insonification, or reverberation, the slowly decaying portion of the background 

representing the return of the sonar insonification output by scatters in the fluid medium. 

The goal of setting up a sonar system is increasing the overall response of the sonar to the 

signal and decreasing the response of the sonar to the background, thus increase the 

signal to background ratio (Urick). 

For a sonar system designed for fish detection, there will be a certain signal to 

background ration which depend on the desired performance level in terms of "hits" and 

"false alarms," such as an apparent detection of a fish target when no target is present. If 

the signal slowly increases in a constant background, fish detection will occur when the 



signal level equals the level of the background which just "hides" it. In other words, 

when the sonar's purpose is just accomplished, 

Signal Level = background masking level (3) 

Note: the equality just stated will exist at only one instant in time when the target 

approaches the sonar. At short ranges, the signal level will exceed the background 

masking level and at long ranges the reverse is true (Clay and Medwin). 

Equation 3 is expanded in terms of the sonar parameters determined by the 

equipment, medium and the target. They are listed as follows: 

Equipment Parameters 
Projector Source Level: SL 
Self-Noise Level: NL 
Receiving Directivity Index: DI 
Detection Threshold: DT 

Medium Parameters 
Transmission Loss: TL 
Reverberation Level: RL 
Ambient Noise Level: NL 

Target Parameters 
Target Strength: TS 
Target Source Level: SL 

Two pairs of the parameters, SL and NL, have the same designation because they are 

essentially the same term. The chosen parameters were arbitrarily selected, however, 

those listed above are the parameters conventially used in underwater sound. The units 

of these parameters is decibels and are combined together in forming the sonar equations 

(Urick). 
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Figure 1: Diagram Showing Sonar Parameters (Urick) 

The physical meaning of these parameters can be illustrated in figure 1. For an 

active sonar, a transducer produces an source level of SL decibels at a unit distance, 

usually 1 m, on its axis. When the sound wave reaches the target, if the source level is 

pointed towards the target, its level will be reduced by the transmission loss, and 

becomes SL-TL. On reflection by the target of target strength TS, the reflected or 

backscattered will be SL-TL+TS at a distance of 1 m from the acoustic center of the 

target in the direction back toward the source. The sound wave then is again reduced by 

transmission loss when traveling back to the source and becomes SL-2TL+TS. This is 

the echo level at the transducer (Urick). 

Assuming the background to be isotropic noise rather than reverberation, it is 

determined that the background level is simply NL. This level is reduced by the 

directivity index of the transducer acting as a receiver so that the terminals of the 

transducer the relative noise power is NL-DI. Since the axis of the transducer is pointing 



in the direction from which the echo is coming, the relative echo power is unaffected by 

the directivity index. Therefore, the echo to noise ratio is 

SL-2TL+TS-(NL-DI) (4). 

In fisheries acoustics, the function of the sonar is the detection fish, or in other 

words provide a response, such as graphically on a display, whenever a target is present. 

When the input signal to noise ratio is above a certain detection threshold taking into 

account probability criteria, a decision will be made using computer software or a human 

observer that a target is present (Urick). When the input signal to noise ratio is less than 

the detection threshold, the target is absent. For the case when the target is just detected, 

the signal to ratio is equivalent to the detection threshold, where 

SL-2TL+TS-(NL-DI) = DT (5). 

Rearranging terms into a more convenient form results in the equation 

SL-2TL+TS=NL-DI+DT (6) 

For equation 6, the echo level occurs on the left hand side of the equation and the noise 

masking background level occurs on the right. 

For the case when the background is reverberation rather than noise, equation 6 is 

modified. For this case, the term DI, defined in terms of an isotropic background, is 

inappropriate because reverberation is not isotropic. For the case of reverberation, the 

terms NL-DI are replaced by an equivalent plane wave reverberation level, RL, measured 

at the transducer terminals (Urick). Thus, the active sonar equation becomes 

SL-2TL+TS=RL+DT (7) 

Rearranging equation 7, redefining the "two way" transmission loss as TL, vice 2TL, and 

for the case where DT=0, results in the following form of the sonar equation: 



RL= SL-TL+TS (8) 

REVERBERATION LEVEL MODEL: 

Reverberation is the sum total of all scattering induced by the physical properties 

of the acoustic medium. Inhomogeneities form discontinuities in the physical properties 

and scatter a portion of the acoustic energy traveling through the medium. Two forms of 

reverberation are: 1) RL due to the background with "no targets" and 2) RL of a target 

such as a fish. Equation 8 governs both reverberation levels but they each have different 

components. 

Source Level is a function of the acoustic equipment used to insonify the body of 

water. Therefore, both the background RL and the target RL are going to have the same 

source level. Source Level is defined as: 

10 log (intensity of source/reverence intensity) (9) 

where the reference intensity is that of a wave of rms pressure luPa. This sonar 

equipment parameter relates how electrical power, when applied to a transducer becomes 

acoustic power. Acoustic power is an intensity (Source Level) as produced by the 

transducer. 

The source level in equation 8 can be calculated from this acoustic power using 

the following equation: 

SL=170.8+10logWa+DI (10) 

where 
Wa = acoustic power [Watts] 
DI = Directivity Index 

The directivity index can be approximated by the relation: 



DI*101ogl0(16/O2)(ll) 

There are two components of the transmission loss, TL, experienced by a 

traveling acoustic wave. The first component of TL is the decrease in acoustical intensity 

with distance. When acoustic beams are propagated through water they spread so that a 

constant power covers a continuously increasing area as the wavefront moves away from 

the sound source. The acoustic intensity is defined as: 

Intensity = power/area (12). 

The waves radiating from a transducer spread spherically from the transducer. Note: 

transducers which are designed to keep the acoustic wave in a beam, the beam area is 

still expanding spherically (Johanneson and Mitson). Knowing that the area of a sphere 

is 4nf, where r is the distance from the transducer, and using equation 12 a relationship 

can be developed for the decrease in acoustical intensity. This relationship is: 

47ir,2I1=47tr2
2I2(13) 

where ri is the reference distance of lm. This leads to the ratio 

Ii/I2 = r2
2(14) 

which in decibel notion is 

lOlog I,/T2 = 10 log r2
2 =201ogr2 (15) 

r2 is the distance relative to the reference (transducer) and is called R, the range from a 

source to a given distance. Thus the "two way" transmission loss due to spherical 

spreading is: 

TLs=401ogR(16) 



Absorption is another component of transmission loss. As acoustic waves travel 

through water, some of the energy is absorbed by chemical processes. The propagation 

of energy which is converted is an transmission loss. Absorption, a, is expressed in 

decibels per distance (Johanneson and Mitson). This loss is linear with distance and is 

determined using the relationship: 

TLa = 2ctR(17) 

Therefore, the total transmission loss is calculated using the equation: 

TL=401ogR + 2aR(18) 

Again, both background RL and target RL are going to have the same transmission loss. 

The final component of the reverberation level is the effective target strength. 

This appears in the form of reverberation producing scattering in the riverine system 

which interfere with fish echoes. These reverberation producing scatters are of two 

different classes: volume and surface reverberation. Volume reverberation occurs via 

inanimate matter distributed in the river such as entrained bubbles produced by wind and 

rain. Surface reverberation takes into account the reverberation produced by the water 

surface and the river bottom composition/roughness, i.e. the combination of sand, gravel, 

and rocks (Dahl). 

Figure 2 makes it easier to conceptualize the development of an expression for the 

volumetric backscattering target strength. In this figure, the volume dV has an end face 

surface of R2dQ, where R is the range from the transducer and dQ is the solid angle in 

steradians subtended by dV at the transducer. 
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Figure 2: Elemental Insonified Volume (Johannesson and Mitson) 

The length of dV is sufficiently small that when insonified by a acoustic wave pulse, all 

scattering produced by its volume is received by the transducer at the same time. Thus 

the length of dV is 0.5ct. The volume, dV is therefore, 

dV=R2 0.5CT dQ (19) 

In order to determine the intensity of the acoustic backscattering from the volume a new 

term must be introduced. This new term is called the volumetric backscattering 

coefficient, Sy. It is defined as the ratio, of backscattered intensity in dB produced by unit 

volume at lm from the volume, to the intensity of the incident wave I, 

Sv = Ib/Ii and Sv= 101ogsv(20) 

Thus the intensity from dV is 

Ib = SvR20.5cxdQ(21) 

to include the whole beam we substitute <i> for dQ 

Ib = SvR20.5cxO(22) 



From equation 22, the target strength component of reverberation level due to 

volumetric scattering can be developed. If the intensity from the transducer is Ib, it will 

be reduced in proportion to R4,401ogR, by the journey to and from the volume dV 

(Urick). Therefore, in logarithmic terms, the target strength due to volume reverberation 

can be expressed as 

TSv=10 log(0.5cTa>R2) + Sv (23) 

Surface reverberation is reverberation produced by scatterers distributed over a 

nearly plane surface, rather than a volume. Examples of scattering surfaces are the 

surface of the water and the bottom of the body of water. Most of the reverberation 

resulting from the phenomena results from the bottom surface interface. The 

contribution by the surface contributes much less than other sources (Dahl). 

The development of the surface reverberation takes place much the same as in the 

volume reverberation except that you are interested in the insonified surface area of the 

acoustic pulse vice the insonified volume. The elemental area insonified can be written 

in the form 

dA = O.5cTR/cos0dQ(24) 

As in volume reverberation, in order to determine the intensity of the acoustic 

backscattering from the surface a new term must be introduced. This new term is called 

the surface backscattering coefficient, sb. It is defined as the ratio, of backscattered 

intensity in dB produced by unit surface at lm from the volume, to the intensity of the 

incident wave Ii. This coefficient is a strong function of the grazing angle, 0. 

sb (6)= yit and Sb(0)= I01ogsb (25) 



Thus the intensity from dA is 

Ib = O.5sbRcx/cos0 da (26) 

to include the whole beam we substitute <& for d£l 

Ib = O.5SbRcxO/cos0(27) 

From equation 27, the target strength component of reverberation level due to 

surface scattering can be developed. If the intensity from the transducer is I, it will be 

reduced in proportion to R4,401ogR, by the journey to and from the area dA (Urick). 

Therefore, in logarithmic terms, the target strength due to surface reverberation can be 

expressed as 

TSb=10 log(O.5ctOR/cos0) + Sb(0) (28) 

The target strengths due to volume and surface phenomena are not a part of the 

reverberation level due to the target. For the case where the target is a typical sized 

salmon, the target strength is generally assumed to be TS=-30 dB. 

Finally, plugging the various sonar parameters into both the background 

reverberation level equation and the target reverberation model leads to the following 

equations: 

RLb = 170.8 +10logWa+10Iogl0(16/O2)- 40logR - 2aR + lOlog(O.5cxOR/cos0) + Sb(0) + 

101og(0.5cT<DR2) + Sv(29) 

and 

RLf=170.8 +101ogWa+101ogl0(16/O2)- 401ogR - 2ccR-30 (30) 

Noting as the beam gets wider with increasing range, R, the wavefront area 

increases. The resulting decrease in intensity with range is compensated for by applying 



a variable amplification of the received signals according to the signals range from the 

transducer. This variable amplification is called the time varied gain, TVG (Johanneson 

and Mitson). For the case where the TVG function exactly matches spherical spreading 

loss, 401ogR, then the equation modeling the background reverberation level is: 

RLb = 170.8 +101ogWa+101ogl0(16/O2) + 10Iog(0^cxOR/cos9) + Sb(0) + 

10 log(0 JCT^»R2) + Sv - 2aR (31) 

and 

RLf=170.8 +10IogWa+101oglO(16/02) - 2aR -30 (32) 

where, 

Wa= transducer acoustic power [Watts] 
c=sound speed [m/s] 
T=sonar pulse length [seconds] 
O=nominal beamwidth of transducer [degrees] 
9=grazing angle for bottom scattering [degrees] 
a=freshwater attenuation [dB/m] 
Sb=scattering strength coefficient for the river bottom [dB] 
Sv=volumetric scattering strength coefficient for wind and rain generated 
bubbles [dB] 

In order for a target to detected against the background reverberation level, there 

needs to be some separation between the two components. Generally, 10 dB is an 

acceptable difference between the background and target reverberation levels to ensure 

the equipment can differentiate between the 'loud' background and the target. Putting 

this into equation form: 

RLb=RLf+10 (33) 



MODEL RESULTS: 

In order to simulate to the relationship of the background and target reverberation 

levels, equations 31 and 32 were programmed into MATLAB (See Appendix 1). In 

addition to estimates of the variables in these equations, implementing the program 

required information on a particular site such as water depth, bottom slope and 

transducer height above bottom. Therefore, the calculated reverberation levels were 

based on an actual sonar set up from an Alaskan river. Figure 3 shows the approximate 

sonar set up. The underwater system consisted of a 420 kHz transducer located 20cm off 

the river floor. The beam width of the sonar was 4.7°. Additionally, the slope of the 

river bottom, 9S, was determined to be 8.53° and the grazing angle, 6, was calculated to 

be 6.18°.   Freshwater attenuation coefficient is 0.0109 dB/m and the sound of speed in 

water is 1500 m/s. 

HQk* 

Figure 3: Schematic of Simulated Test Case 

To better understand the occurrences of the sonar system several parameters were 

varied. Such variations included changing the scattering coefficients associated with 



differing bottom compositions, changing the volumetric coefficients associated with a 

windy or calm day, and changing sonar acoustic power. 

Values for the scattering strength coefficient for the bottom, Sb, were obtained off 

figure 4. This graph was developed by applying a cubic spline fit to experimental data 

provided from actual measurements. For a grazing angle of 6.18° the coefficients were 

determined to be -12 dB for a rough rock bottom and -30 dB for both cobble and sandy 

gravel. Additionally, two coefficients of volumetric scattering were used. They were -40 

for a calm day and -20 for a windy day. 

Figure 5 illustrates case 1. The values of the variables selected for this case were 

Wa=l, Sb = -12 (rocky bottom) and Sv = -40 (calm day). The background and fish 

reverberation levels intersected at about 420 meters. The intersection point is also about 

140 dB. 

Figure 6 illustrates case 2. The only difference between case 1 and 2 is the sonar 

wattage, i.e. power put into the body of water, 1 watt and 100 watts respectively. As 

expected, if you put more power into the water you will get more backscattering, or a 

higher reverberation level. This is shown by noting that the point of intersection is now 

at 160 dB, versus 140 dB for the case of 1 Watt. The intersection point still occurs at 420 

meters. Therefore, for more power input, the performance of the system is no better than 

a low power system. This is evident by looking at both the background and target 

reverberation levels. This result is due to the equivalent source level in both equations. 

Therefore, the source level is essentially a constant which cancels out. 

Figure 7 shows case 3. Case three is under the most ideal of circumstances. The 

bottom composition is sandy gravel or cobble which is much more quite than a rough 
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rock bottom composition leading to a bottom scattering coefficient of-30 dB. 

Additionally, this case is for a calm day with no wind This leads to a volume scattering 

coefficient of-40 dB. Simulating this data with a sonar with 1 watt of power, the fish 

and background reverberation models intersect at 1600 meters and 115 dB. This is a 

significant improvement in detection range of the previous cases. In fact this is the best 

case of all as far as detection range is considered. 

Figure 8 is a graphical representation of case 4. This case simulates the most 

severe reverberation case. The volume scattering coefficient is for a windy day, -20 dB, 

and the bottom coefficient is for rough rock, -12 dB. This coefficients lead to high 

background reverberation level which severely reduces the target detection range of the 

sonar system. The background and fish reverberation levels intersect at 100 meters and 

145 dB. This is a significant decrease in performance from all previous cases, especially 

case 3. 

Figure 9 illustrates the final case, case 5. This simulation uses volume scattering 

coefficient of-20 dB which represents a windy day. This model also uses a bottom 

composition coefficient of-30 dB which represents sandy or cobble bottom. This 

background and fish target reverberation levels intersect at about 350 meters and 140 dB. 

This closely matches the performance of case 1, with coefficient of-40 dB and -12 dB. 

This similarity is due to the equivalent total contribution of the scattering coefficients, - 

50 dB for case 5 versus -52 dB for case 1. 
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EXPERIMENTAL DATA: 

The purpose of this research was to develop the reverberation model and then 

compare the results with data obtained from a site in Alaska. From here, corrections 

and/or recommendations could be made to increase the accuracy of the reverberation 

model Unfortunately, the data proved difficult to obtain. 

CONCLUSIONS: 

This paper aimed at investigating the components of reverberation which affect 

the range of target detection. Results from a simulation were originally going to be 

compared with data from an actual acoustic insonification of a river. Unfortunately, this 

goal was not realized. However, several important conclusions can be made by looking 

at the data obtain from modeling the background versus target reverberation levels. The 

first of these conclusions is that using sonars which insonify part of the river surface are 

strongly susceptible to interference from wind, boat wakes, or other disturbances of the 

water surface. Therefore, when implementing this type of device in actual practice it 

may be best to steer the acoustic beam so that it does to intersect the surface inside of the 

expected target detection range. Also, meteorological conditions should be closely 

measured to determine the impact on the surface conditions. 

Additionally, bottom composition had a strong affect on the performance of the 

sonar system in detecting fish. The performance of such systems was noticeably less 

when the bottom composition consisted of a "noisy" surface such as large rocks. 

Therefore, when implementing this type of sonar system it would be best to set this 



system up in areas with a bottom composition which would allow optimal performance. 

Such sites would consist of sandy or cobble bottoms. 

Finally, wattage was not a good indicator of sonar performance. One might 

automatically think that if you use a higher power system, higher performance will result 

Unfortunately this is not true. The more power you put into the system the more 

background reverberation, and target reverberation, that the sonar system will receive. 

Therefore, it is not an advantage is increase the power of the system. 

In all, this paper has discussed the possibility of using sonar systems to detect 

targets such as fish in riverine environments. If the system is properly set up allowing 

optimal performance, fish targets can be detected at great ranges. This would allow a 

much more accurate technique of counting migrating salmon. This would have a great 

impact on how the various species of salmon were managed by the fisheries departments 

of the Pacific Northwest. 
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APPENDIX 1: MATLAB Program 



% Model Acoustical Reverberation in Underwater Riverine Sys. 

SDefined Variables at 420kHz 
f=420; %kHz 
N=10; %number cycles transmitted 
Wa=10; %acoustic power of sys-Watts 
W=1000 %width of stream [m] 
a=0.0109; %db/m -acoustic absorption 
c=1500; %m/s sound speed 
t=l/(f*1000)*N; % seconds sonar pulse length 
L=c*t; %[m]  pulse length 
phel=4.7; %beamwidth degrees 
phe=4.7*pi/180;  %beamwidth radians 
Sv=-50; %dB 
Sb=-30 %dB Cobble and Sandy Gravel 
%Sb=-12 %dB Rough Rock 
thetap=phe/2; %half angle of beam width radians 
ml=-.75/5; 
m2=-tan(thetap); 
B=((m2-ml)/(l+ml*m2));  %grazing angle radians 
thetag=atan(B); %*180/pi%grazing angle in degrees 
TSf=-30; %target str of fish 

%Directivity Index 
DI=10*logl0(10*(16/phelA2)); 

R=0.1:0.5:W; 
time=R/1500; 

%Target Strength of Bottom Reverb 
TSb=10*loglO(c*t*0.5*phe*R/cos(thetag))+Sb; 

%TS of Volume Reverb 
TSv=10*loglO(R.A2*c*t*0.5*phe)+Sv; 

%freshwater attentuation factor 
attn=2*a*R; 

%source level 
SL=170.8+10*logl0(Wa)+DI; 

%Background RL and 
%Sonar Eqn where TVG=40*logR 
RLb=SL-attn+TSb+TSv; 

%Fish RL where TVG=401ogR 
RLf=SL-attn+TSf; 

%plot 
plot (R,RLb,'-',R,RLf, ':') 
xlabel('Cross-River Range (m)') 
ylabel ('Backscatter RL (dB)') 
legend (»RLb\ 'RLf) 


