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ABSTRACT 

Prototype devices that use pulse-power techniques to generate an intense acousti- 
cal field in water have fostered a renewed interest in applying finite-amplitude sound 
to the mine-neutralization problem, particularly in a littoral region. A simple intu- 
itive description of acoustical mine neutralization includes three basic processes: (1) 
generation of the acoustical field at the source; (2) nonlinear wave propagation; and 
(3) neutralization mechanisms at the target. This document focuses on the second 
issue, the propagation of an intense acoustical field from a source to a target. The 
research discussed here provides a theoretical foundation for a modeling effort, de- 
scribes several case studies, and gives empirical rules for establishing the material 
parameters of fresh and sea water required by the theory. Several key issues are 
presented, including the breakdown of using linear superposition of the results for 
discrete sources in an array, phasing an array of discrete sources for beam steering, 
and peak positive and negative pressures. 
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1.   INTRODUCTION 

Before intense acoustic fields can be employed as a means of neutralizing mines 
remotely, several critical issues regarding nonlinear wave propagation need to be ad- 
dressed and clarified. When a finite-amplitude wave propagates in a fluid, four basic 
physical phenomena affect the wave propagation. These phenomena are nonlinearity, 
thermoviscous absorption, relaxation, and diffraction. A brief description of each is 
given below. Other critical issues for the neutralization of mines with finite-amplitude 
waves include environmental conditions, beam forming (phasing an array of discrete 
sources), expected peak pressure amplitude (acoustic saturation), and signal dura- 
tion. To date, no comprehensive study has considered these issues as they relate 
to nonlinear wave propagation in an ocean environment and a mine countermeasure 
(MCM) scenario. 

Nonlinearity has important implications for finite-amplitude waves. Nonlinear- 
ity causes steepening of the pulse, which ultimately leads to shock formation. The 
propagation velocity of the finite-amplitude wave depends on the local sound pres- 
sure. A higher positive pressure produces a higher speed. Thus, a wave crest moves 
faster than a trough, causing the wave to steepen. As a consequence, energy from 
lower-frequency components is repartitioned to higher-frequency components. Thus 
nonlinearity is not a direct mechanism of energy loss; however, the pumping of en- 
ergy to higher frequencies leads to energy loss through thermoviscous absorption and 
relaxation processes. 

Energy loss through thermoviscous absorption results in a heating of the fluid. 
A finite-amplitude wave imparts some momentum to a "parcel" of fluid. As adja- 
cent parcels of fluid "rub" against one another, energy is converted to heat through 
frictional forces. This mechanism is directly related to the thermal and viscose prop- 
erties of the fluid through the attenuation coefficient. This coefficient is frequency 
dependent such that higher-frequency components of a pulse will be more strongly 
attenuated than lower-frequency components. For fresh and sea water, the thermo- 
viscous attenuation coefficient goes as /2, where / denotes frequency. 

Although relaxation is an energy loss mechanism, it differs from thermoviscous 
absorption because it depends on the presence of impurities. In the ocean, the two 
primary sources of relaxation are magnesium sulfate [1], MgSO,*, and boric acid [2], 
H3BO3, which dissipate energy through chemical activity (e.g., chemical dissociation 
or increased vibrational or rotational energy of a molecule). In addition, relaxation 
processes give rise to dispersion (frequency-dependent phase velocity) which leads to 
temporal spreading of the pulse. Higher-frequency components of a pulse typically 
propagate with a faster phase velocity, stretching the pulse. 
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Diffraction is associated with the finite aperture of a directive source. Its main 
contribution to the wave propagation problem is a spatial spreading of the energy. 
Although geometric focusing, beam forming, and amplitude shading can reduce the 
spreading for a bounded beam source, diffraction eventually sets in beyond the focal 
zone. 

The environment has severe implications for finite-amplitude-wave neutralization 
of mines. Bubbles are present in sufficient quantity in shallow and very shallow water 
such that even linear acoustics is altered [3,4]. These bubbles may be entrained 
from breaking waves in the surf zone or advected from deeper water by currents. 
Bubbles can be stabilized by a thin coating of surfactant, and the lifetime of such a 
bubble can greatly exceed the lifetime of a similar, clean bubble in fresh water. With 
respect to nonlinear wave propagation, bubbles cause a significant increase in ß, the 
coefficient of nonlinearity. For fresh and sea water without bubbles, ß is nominally 
3.5 and 3.6, respectfully. The addition of even a small number density and bubble size 
distribution can increase ß by several orders of magnitude, with values reported as 
large as 31,000 [5]. With this increase in nonlinearity, one might assume that finite- 
amplitude wave propagation will become "easier"; however, the bubbles affect the 
dispersion and attenuation of sound in water as well. Thus, the presence of bubbles 
complicates the analysis such that they cannot be ignored. 

Bubbles in the presence of an intense acoustic field provide sites for cavitation. 
For a transient-type shock pulse, a region of negative pressure (relative to the ambient 
hydrostatic value) follows the large compressional shock. During this negative pres- 
sure, any bubbles present will experience rapid growth from their initial equilibrium 
size. After the negative pressure passes, the bubbles will collapse, with subsequent 
acoustic radiation. This radiation may be beneficial or detrimental to MCM, but 
proper analyses is beyond the scope of this document. 

Nonlinear wave propagation in shallow and very shallow water necessarily implies 
that one must consider the air-sea and sea-sediment boundaries. For a transient 
excitation, ray tracing provides sufficient information to determine if multipaths will 
(or will not) affect the direct arrival at a target. For example, if a source and target are 
5 m below the air-sea interface and separated by 100 m, then the first surface bounce 
will have a 0.5 m longer pathlength than the direct ray in a homogeneous ocean. This 
implies that the surface bounce will arrive at the target approximately 0.3 ms after 
the direct pulse. If the pulse duration exceeds 0.3 ms, then the direct arrival and the 
multipath arrival will interfere. Furthermore, the reflection of a pressure pulse from 
the air-sea interface will invert the phase of the pulse. Water cannot sustain a large 
negative pressure (relative to the hydrostatic pressure) without cavitation. Hence, 
the negative portion of a pressure pulse may cause a local increase in the bubble 
number density, leading to additional dissipation near the interface. 
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When linear acoustics applies, beam forming is a well-known method for focusing 
and directing acoustic energy. With properly designed sources, the air-sea and sea- 
sediment boundaries are no longer an issue. Unfortunately, when the source levels of 
individual elements of an array are sufficient for nonlinearity to become an issue, the 
degree to which beam forming can be achieved is unknown. Only a limited investi- 
gation has been conducted of the nonlinear behavior of two discrete point sources in 
the quasilinear approximation [6, 7, 8]. A generalization of that analysis to an array 
of point sources appears possible; however, an array of discrete spark-gap sources, 
though point-like, will produce source levels that invalidate some assumptions re- 
quired by the quasilinear approximation. Applying ordinary linear acoustics with 
absorption, relaxation, and diffraction to a finite-amplitude wave propagation prob- 
lem will lead to an erroneous result. Proper inclusion of nonlinearity is essential to 
correctly model nonlinear wave propagation from a distribution of discrete, intensive, 
sound sources. This claim will be substantiated in the following discussion. 

At the higher source levels expected of pulse-power discrete arrays, beam forming 
may become more difficult. Consider a two-source array where the field from source 1 
is time delayed relative to that from source 2, and the fields from 1 and 2 are sufficient 
for shock formation. The Rankine-Hugoniot conditions for source 1 suggest that its 
shock front will propagate with a higher velocity than the shock front from source 2. 
This implies that the shock front from source 1 may overtake the shock front from 
source 2 prior to their arrival at a target unless the initial delay properly accounts 
for the higher propagation speed of the shock front from source 1. The subsequent 
interaction of the fields from sources 1 and 2 may not produce the desired effect at 
the target. 

The peak pressure achievable from conventional source technology appears to be 
limited to less than 200 MPa except for explosive sources (higher peak pressures 
may be achieved from focusing). This suggests nonlinear acoustics, where cubic and 
higher-order terms in the standard acoustic field variables are neglected, can be used 
to analyze the field produced by these sources. Nonlinear acoustics applies when the 
acoustic Mach number satisfies e = Po/Po^o ^ 1> where p0, Po, and c0 are the peak 
positive pressure, the ambient density of the fluid, and the small-signal sound speed, 
respectively. The definition of the Mach number given here assumes that the energy 
is propagating primarily in one direction and a progressive plane wave approximation 
of p0 = poCoUo holds, where u0 is a typical acoustic particle velocity. Hence, a peak 
pressure of 200 MPa gives e = po/pocl « 0.1, and the theoretical treatment discussed 
here can be used. However, if the peak pressure is expected to exceed 200 MPa, then 
nonlinear acoustics may not yield reliable results. The only recourse is a numerical 
solution based on the fundamental equations of fluid dynamics (conservation of mass, 
momentum, and energy, and an appropriate equation of state for the fluid). 
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Initial computations for the nonlinear wave propagation can be based on either 
the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation or the nonlinear progressive 
wave equation (NPE). Both the KZK and NPE are parabolic wave equations which are 
valid within a small angle along the axis of propagation. Methods for the numerical 
computation of the KZK or NPE model are easily found in the recent acoustics 
literature [9, 10, 11, 12]. An augmented KZK equation explicitly includes quadratic 
nonlinearity, thermoviscous absorption, relaxation, and diffraction, which permits 
independent investigation of each physical mechanism. This document concentrates 
on theoretical results produced by a numerical implementation of an augmented KZK 
equation [13]. 

Acoustic saturation is normally associated with continuous wave (CW) radiation 
from a source at a fundamental frequency with sufficient intensity to cause nonlinear 
processes to be important [14, 15]. However, acoustic saturation may affect a field 
from a source with a finite, but long, pulse with a fundamental frequency (e.g., a 
tone burst from a magnetostrictive piston source). A simple explanation of acoustic 
saturation is that energy in the fundamental frequency is pumped into higher harmon- 
ics. That is, once the fundamental frequency component has reached saturation, any 
further attempt to increase the energy in the fundamental frequency dumps energy 
into the higher harmonics. Thus, the pulse undergoes nonlinear distortion, leading 
to shock formation. Acoustic saturation may not be an important effect for the tran- 
sient fields expected from pulse-power systems because quadratic nonlinearity is a 
cumulative effect. 
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2.   CASE STUDIES 

2.1    Boston University Experiments 

The first case study considers conditions that are well suited to test the robustness 
of the theory and numerical algorithms discussed in greater detail in Sections 3 and 4. 
Edson and Roy at Boston University (BU) conducted several experiments involving 
nonlinear wave propagation from an eight-element annular array [16]. Equipment 
failure in the generation of eight independent source waves prevented the use of the 
outermost annular element of the array, and thus the simulations discussed here are 
limited to a seven-element annular array. 

The BU experiments were conducted in filtered, deionized water. The dissolved 
gas content of the water was reduced to 85% of saturation to inhibit cavitation. The 
ambient pressure was approximately 1 atm, and the salinity of the water throughout 
the experiments was 0 ppt (i.e., fresh water). Attempts to maintain a constant am- 
bient temperature were not implemented. Each experiment started with an ambient 
temperature dictated by the room temperature of the laboratory (nominally, 17°C). 
Edson and Roy reported an upward drift of the temperature of no more than 5°C 
over the duration of an experiment. They attributed the drift to the proximity of the 
water tank to the seven power amplifiers used to drive the individual elements of the 
array. For the computations included here, the ambient pressure, temperature, and 
salinity are set to 1 atm, 17°C, and 0 ppt. All required material parameters for the 
water are then computed via the empirical rules in the appendix. 

The array consisted of a center circular element and six concentric rings. Each 
element was constructed from a 1-3 piezocomposite, the center frequency of the array 
was 480 kHz, and the bandwidth was 210 kHz. The surface area of an element was 
18.85 cm2, and the radius of the innermost element was 2.45 cm. In the progressive 
wave approximation for a given source amplitude, the energy flux from any one ele- 
ment is equivalent to that from any of the others. A 0.03-cm gap separated adjacent 
elements, which were coplanar. The elements (and auxiliary electronics) were inde- 
pendent and isolated to reduce cross-talk and permit phasing of the array to adjust 
the depth of focus. 

The source waveform reported by Edson and Roy was a 10-cycle sine wave tone 
buist with temporal shading. No amplitude shading across the array was used in the 
experiments. The pressure in the source plane for the nth element was 

pn{R, a = 0,r)=p0 exp{-[(r + i>n)/Nn}2m} sin(r + ^B), (1) 

where ipn is a phase relative to that of the center element and is adjusted to focus 
the array at 24 cm from the face of the array. Equation (1) is expressed in a form 
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such that R and a are dimensionless radial and z coordinates and r is a dimensionless 
retarded time. The coefficient m controls the rise time of the temporal envelope and 
N is the number of cycles, which governs the total length of the pulse. When m = 1, 
the envelope defined by the exponential factor in (1) becomes the familiar Gaussian 
envelope. A sequence of experiments was performed in which p0 was set to 20, 44, 
200, 300, 400, and 465 kPa. For the computations reported here, the pulse contains 
five'cycles and p0 has been set to 25, 125, 225, and 325 kPa. These choices were 
dictated by limitations on the available computational facilities (see Section 4 for 
further comments). 

In the computations, the phase of each element must be set to an appropriate 
value relative to the phase of the center element to cause the desired focusing. This 
is accomplished by setting ^o = 0 and ipn = GRn(n > 0), where G is the focusing 
gain (proportional to the ratio of the outer radius of the_ array to the focal length) 
and R is the mean radius of an element. The choice of R is somewhat arbitrary; it 
could have been set, for example, to either the inner or outer radius of each ring. 

Figures 1-4 correspond to retarded time traces at various locations, a, along 
the acoustic axis of the array for source amplitudes of 25, 125, 225, and 325 kPa, 
respectively. These locations are (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.0, and (f) 1.2 
where the normalization is the focal length of 24 cm. Although not apparent in all the 
figures, panels (a)-(d) and (f) contain two curves, a solid curve showing the results 
when all array elements are driven simultaneously with the proper phase, and a long 
dashed curve showing a linear superposition of the possibly nonlinear acoustic field 
when each element is driven independently (but with the proper phase). Panel (e) 
in each figure is similar to the other panels except a third curve is included: a short 
dashed curve that shows the time trace produced by a single continuous element 
that is spherically focused at 24 cm (i.e., a focused circular piston transducer). The 
significance of this curve is that it is the upper limit on the expected field when the 
number of array elements becomes large. Finally, as a side note, the shape of the 
pulse in Figure 1(d) is essentially the shape of the pulse in the initial source plane as 
given by (1). 

Clearly, Figure 1 demonstrates that at a low source amplitude linear superposition 
may be applied to the acoustic fields produced by an array of discrete sources. This 
permits a substantial reduction in the computational complexity and allows more 
general array geometries. As the source amplitude is increased, however, the effects of 
nonlinearity become important, particularly in the vicinity of the focus. To illustrate 
this point, the center two cycles of Figures 1(e), 2(e), 3(e), and 4(e) are reproduced in 
Figure 5 without the additional third curve. To reiterate, the solid curve represents 
the acoustic field when all elements are operated simultaneously, and the dashed 
curve depicts the linear superposition of the fields from the individual elements when 
nonlinear wave propagation is permitted for those fields. 
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Figure 1. Retarded time traces along the acoustic axis of a seven-element annular 
array at the following a locations: (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.0, and (f) 
1.2. The pressure amplitude in the source plane is po = 25 kPa. 
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Figure 2. Retarded time traces along the acoustic axis of a seven-element annular 
array at the following a locations: (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.0, and (f) 
1.2. The pressure amplitude in the source plane is po = 125 kPa. 
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Figure 3. Retarded time traces along the acoustic axis of a seven-element annular 
array at the following a locations: (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.0, and (f) 
1.2. The pressure amplitude in the source plane is p0 = 225 kPa. 

-30      -20      -10        0 10        20        30 

8 

UAÄÄA/W^ 0 — V \    \    \    \    ^ 
-4 V V V v 

I         1    '    1'     . .1  1  

-30       -20 -10 10 20 30 

Figure 4. Retarded time traces along the acoustic axis of a seven-element annular 
array at the following a locations: (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.0, and (f) 
1.2. The pressure amplitude in the source plane is po = 325 kPa. 
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Figure 5. The center two cycles from (a) Figure 1(e), (b) Figure 2(e), (c) Figure 
3(e), and (d) Figure 4(e). The solid curve is the results when driving the array 
elements simultaneously (with the proper phase). The dashed curve corresponds to 
a linear superposition of the acoustic fields from the individual elements. 

Inspection of Figure 5 shows that three important features occur as the source 
amplitude is increased. First, the expected peak positive pressure, P+, is underpre- 
dicted by linear superposition of the independent nonlinear fields. At the highest 
source level, P+ from a properly phased array is approximately 65% greater than the 
simple linear superposition predicts. The second feature involves the peak negative 
pressure, P_. Linear superposition overpredicts P_ although the severity of the error 
is only about 20%. The importance of P+ and P_ with respect to mine neutralization 
has not been established. The third and final feature is the shape of the two wave- 
forms in each panel of Figure 5. It is well known that nonlinear wave propagation 
shifts energy from the fundamental frequency, 500 kHz for this case study, to higher 
harmonics. The degree of waveform distortion is directly related to the content of 
the higher harmonics produced such that a more distorted pulse contains more har- 
monics. When the acoustic fields are propagated independently and then linearly 
summed, the shifting of energy to higher harmonics is artificially quenched. 

Although the source amplitudes used to produce Figure 1-5 differ from those 
reported by Edson and Roy, these computations support their conclusions because 
their source levels of 20, 100, 200, and 300 kPa are close to those used here. In fact, 
Figures 1(e) and 3(e) agree fairly well with Figures 5 and 7 given by Edson and Roy 
for their 20 and 200 kPa experiments [16]. 
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Figures 1 through 4 provide information at selected locations along the acoustical 
axis of the array. These locations may not provide the best choice with respect to local 
maxima in P+ and |P_|. Treating P+ and |P_| as a function of a is appealing; however, 
as Figure 1(b) suggests, complicated constructive and destructive interference may 
obfuscate these waveform features. Thus, a time-average energy flux density in the 
direction of propagation seems to provide a good measure. The energy flux vector 
is defined as j = pu, and within the progressive wave approximation this reduces to 
jz = PoP2/PoCo, where here p0 is the source amplitude and P is a normalized pressure. 
The time average is computed across the entire retarded time window, 

{h) = 
Pi 

PQCQ{TM  —Tm)   Um 

rTM    „ 
/     P2dr', (2) 

such that Tm and rM are the minimum and maximum of the time window. Figure 
6 depicts (jz) for the seven element annular array (dashed curve) and a spherically 
focused piston transducer (solid curve). As a reminder, the outer radius of the piston 
source and the array are equivalent, and the relatively small separation between 
adjacent elements means the piston transducer and array deposit the same amount 
of energy into the total acoustic field. 

0      0.2    0.4    0.6    0.8      1      1.2    1.4 

Figure 6. The time-averaged energy flux along the acoustic axis of the transducer, 
(a) po = 25 kPa; (b) p0 = 125 kPa; (c) Po = 225 kPa; and (d) Po = 325 kPa. The 
solid curve shows the results for a spherically focused piston transducer and the 
dashed curve shows the results for a phased array. 
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Two important features are immediately evident in Figure 6. First, the curve for 
the array contains a strong peak near a = 0.3. The peak is due to a combination of the 
small number of elements and their finite dimensions. The ratio of this peak's value 
to the peak value at the focus appears to be weakly dependent on p0. This suggests 
that a prefocal "hot spot" may be a feature of an annular array source; its magnitude 
is expected to diminish with an increasing number of elements. The second, and 
perhaps most important, feature is the significant difference between a focused piston 
transducer and a phased array at all source amplitudes. This difference is due to the 
finite dimensions of the individual array elements. With a phase of ipn = GRn, it is 
clear that the energy allotted to the portion of the element with R < Rn has already 
arrived at and passed through the focus, while the energy allotted to the portion of 
the array element with R > Rn has not reached the focus. As the number of array 
elements is increased, the surface area of each element is reduced, and the phased 
array result approaches the upper limit for a spherically focused piston transducer. 
Hence, any simulation of an array of intense sources must be carefully performed. 

It is noteworthy to briefly discuss the peak values of P+ and |P_| although figures 
for this case study will not be presented. At a source amplitude of p0 = 25 kPa, the 
acoustic fields from the focused piston transducer and the array attain their largest 
values at a prefocal distance. That is, the geometric focus is at a = 1, but the peak 
values occur slightly before a = 1. As the source amplitude is increased, the peak 
values shift through the geometric focus and subsequently occur at a > 1. Averkiou 
and Hamilton discuss a shift of peak values from the geometric focus when P+ and 
\P-\ are measured along the axis of a focused circular piston operating at 2.25 MHz 
[17]. 

2.2    Fresh Water Lake 

The computations discussed above in Section 2.1 and their agreement with the re- 
sults of th BU experiments suggest that the KZK formalism is well suited to analyzing 
nonlinear wave propagation from a phased array. However, all previous work, both 
computational and experimental, has considered frequencies and source dimensions 
that are inappropriate for MCM applications. This section discusses the predicted 
nonlinear behavior of a phased array in a fresh water lake. 

The characteristics of the simulated phased array have been adjusted to a possible 
MCM system. The array contains 32 elements, and the surface area of each element 
is 0.0908 m2. The innermost element has an outer radius of 0.17 m, and the overall 
outer radius of the array is 1.004 m. The separation between adjacent elements is 
0.002 m.   The source condition is again given by (1), but the frequency has been 
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lowered to 100 kHz from the 500 kHz used in the BU experiments. The sine-wave 
tone burst contains five cycles. The source amplitude has also been lowered to 1, 10, 
20, and 30 kPa. A mine countermeasure system requires a standoff distance of tens 
of meters. Hence, the geometric focus of the array has been set to 50 m. 

The ambient water conditions have been adjusted to values that may occur in a 
fresh water littoral environment. The ambient pressure is 2 atm, which corresponds 
to an approximate depth of 10 m (i.e., the array is 10 m below the lake surface). The 
ambient temperature and salinity are 10°C and 0 ppt, respectively. Hence, relaxation 
processes are neglected in this simulation. Finally, the empirical rules for water are 
again used to determine the parameters required for the water. 

Figures 7 and 8 compare retarded time traces at a dimensionless axial location 
of a = 0.8, where the signals are near their maximum peak positive pressure. This 
corresponds to about 40 m from the array, and hence the peak response occurs at 
a prefocal region with respect to the geometric focus. Figure 7 demonstrates that 
linear superposition (dashed curve) of the fields from the array elements, when driven 
independently but with an appropriate phase delay, fails to reproduce the acoustic 
field from a properly phased array (solid curve) at high source amplitudes. The poor 
agreement shown in 7(b), 7(c), and 7(d) is due to the neglect of the nonlinear inter- 
action between the fields from the individual elements. Figure 8 compares the field 
produced by the 32 element annular array (dashed curve) with that produced by a 
focused piston transducer (solid curve) with comparable source parameters. Within 
the resolution of Figure 8, these results are essentially indistinguishable. Hence, the 
claim in Section 2.1 that better agreement between an annular array and focused pis- 
ton transducer will occur as the number of array elements increases is substantiated. 
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Figure 7. Linear superposition of the nonlinear fields from the independent array- 
elements (dashed curve) and the acoustic field from a properly phased array (solid 
curve), (a) p0 = 1 kPa, (b) p0 = 10 kPa, (c) p0 = 20 kPa, and (d) Po = 30 kPa. 
The dimensionless axial location is a = 0.8. 
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Figure 8. The acoustic fields from a properly phased array with 32 elements 
(dashed curve) and a focused piston source (solid curve). The sources produce 
similar results. The source amplitudes are (a) 1, (b) 10, (c) 20, and (d) 30 kPa. The 
dimensionless axial location is a — 0.8. 
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A comparison of the time-averaged energy flux density, (jz), is depicted in Figure 9. 
The dashed curve is the result obtained for the array, and the solid curve is the result 
produced by the focused piston source. Two features are immediately evident. First, 
the peak occurs near a = 0.7 for p0 = 1, 10, and 20 kPa, with a slight inward shift for 
p0 = 30 kPa. The prefocal maximum is similar to results reported by Hutchins et al. 
[18] for annular arrays and spherical bowl sources under linear acoustic conditions. 
However, the additional shift for p0 = 30 kPa is due to the nonlinearity of the fluid. 
A second feature is the narrowing of the main peak at the higher source amplitudes 
of 2C and 30 kPa. This suggests the focal volume is slightly compressed at the higher 
source amplitudes, and the compression localizes the energy to a smaller volume 
about the focus. To fully quantify the acoustic field in the vicinity of the focus, (jz) 
should be computed at off-axis locations along an axis transverse to the z-direction. 
This procedure has not been implemented; however, the peak positive pressure as a 
function of the radial coordinate at the focus (i.e., the beam width) has been found 
to be in agreement with linear acoustics. Finally, under ordinary linear acoustics 
when the source amplitude is doubled (or tripled), then the resulting change in (jz) is 
essentially a factor of 4 (or 9). Inspection of Figure 9 shows that a similar result does 
not hold. This behavior is due to the repartitioning of energy from the fundamental 
frequency to its higher harmonics and hence the subsequent higher energy loss from 
thermoviscous absorption. 

0.16 

0     0.2    0.4    0.6   0.8     1      1.2    1.4 0      0.2    0.4    0.6    0.8      1       1.2     1.4 
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/         \ 
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——■v V    i      i     i 1 1— 

0      0.2     0.4    0.6    0.8      1       1.2     14 

Figure 9. Comparison of the time-averaged energy flux density for a properly 
phased array with 32 elements (dashed curve) and a focused piston transducer (solid 
curve). The results agree, (a) p0 = 1 kPa, (b) p0 = 10 kPa, (c) pQ = 20 kPa, and 
(d) po = 30 kPa. The dimensionless axial location is a = 0.8. 
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3.   THEORETICAL DEVELOPMENT 

3.1    Augmented Khokhlov-Zabolotskaya-Kuznetsov Equation 

Cleveland et al. discuss a KZK nonlinear parabolic wave equation which has been 
augmented by including the relaxation processes within the fluid [13]. One form for 
the augmented KZK equation for pressure fluctuation, p, is 

d2P      Co_2   ^  6 d3p        ß   dV ,~    1    -.&p 
dt'dz    2   ±F   24 at*   2p0c

3
0dt'2   ^2pQcV"dt'^ 

where J_ denotes directions transverse to the propagation direction z [19], If = t—z/co 
is a retarded time (that facilitates defining a temporal window which moves with a 
pulse), t is time, and S is the diffusivity of sound; ö = [£+4T)/3+K(C~

1
 -c~l)]/p$. The 

bulk and shear viscosity of the fluid are ( and rj, K is the thermal conductivity, Cy is 
the specific heat at constant volume, and Cp is the specific heat at constant pressure. 
The relaxation operator for the vih relaxation process is 

^1/ = PoC01        _g_; (4) 

tv is a relaxation time, and m„ is a dimensionless quantity characterizing the disper- 
sion of the relaxation process [20]. 

Although a progressive wave assumption, p = poCoUz, is required to arrive at (3), 
the first term on the right-hand side accounts for diffraction. That is, some energy 
propagates in the transverse direction, whereas it has been assumed that propagation 
primarily occurs along the z axis. The second term accounts for thermoviscous ab- 
sorption. It does not include relaxation processes, which are explicitly included by the 
last term. The third term represents quadratic nonlinearity. Harmonic generation, 
leading to shock formation, is accounted for by this term. Finally, the last term in 
(3) is a summation over all relaxation processes in the fluid. For clean fresh water, 
tyv = 0, and (3) reduces to the standard KZK equation [21]. 

3.2    Axisymmetric Circular Source 

When the source condition in the z = 0 plane corresponds to an axisymmetric, 
circular region such as a piston transducer or annular array, then (3) can be written 
as 

d2
P      co (a2   1 a \     5 d3

P    ß ay 
dt'dz 2 \dr2     rdr)F    2q) dt'3   ' 2p0c

3
0 dt'2 
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where r is the radial coordinate. There are no known analytic solutions to (5), so it 
must be solved numerically. It is convenient to reduce this equation to a dimensionless 
form. Introduce the following scaling transformations: 

P' = p/po,     r' = w0f,     R' = r/a, (6) 

dr2 ^ rdr      a? \dR2     R dR) ' V 

where u0 is a characteristic angular frequency of the source waveform, and a is the 
radius of the circular source. These transformations lead to 

d2pf  _   i / d2    ±JL\p,     d3p'    1 d2p'2 

d?d~z   "   4TT [dR2 + RdR'J      + a° dr« + 2zs dr'2 

^^ mvoj0 (     rv      \ d3P' ,g, 
+   \   2co    {l + T„£) dr«' {) 

Equation (9) introduces three new constants that characterize an axisymmetric cir- 
cular source and the nonlinear wave propagation. The first, zr = uj0a /2c0, is the 
well-known Rayleigh distance for a circular aperture. This distance is approximately 
the axial location where a linear acoustic field transitions from the so-called nearfield 
to the farfield. The second, a0 = 5u2/2cl, is the thermoviscous attenuation coeffi- 
cient. For an inhomogeneous plane wave and linear acoustics, a0 is the distance the 
plane wave must travel for it to attenuate to e"1 of its original amplitude. The third 
constant, zs = p0cl/ßcü0po, is the plane-wave shock formation distance. This is the 
distance an initially sinusoidal disturbance must propagate in order for the cumula- 
tive effects of the quadratic nonlinearity to produce shock formation. In addition, the 
dimensionless relaxation time is r„ = uJoU. 

All quantities in (9) have been scaled by an appropriate value except the z coor- 
dinate. Previous researchers have used either the Rayleigh distance for a flat piston 
source or the focal length of a weakly focused source for this scaling. A third possible 
choice for the length scale is the shock formation distance. To accommodate each of 
these choices, an arbitrary length scale / will be introduced such that 

8       1 d , _ z  
° ~V    dz~* Ida'' 

(10) 

and (9) becomes 

82P' I    ( d2        1    9L ,d3P'  ,    /   d2P'2 

P  + QQ/       ■      + 
dr'do*   ~   AzT\dR2     RdR) ° Ör'3      2zs dr'2 
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v^ mvU0l (       Tv       \ dzP' . 

For a given pulse excitation in the a' = 0 plane as a function of r' and R', (11) can 
be solved numerically by finite-difference and operator-splitting methods (see below). 

Previous researchers have found that an additional coordinate transformation is 
useful, especially when diffraction becomes important. This change of coordinates is 
sometimes referred to as a "stretched coordinate" transformation because a rectan- 
gular grid in the transformed coordinate space (a, R) corresponds to a grid that has 
been stretched in the original coordinate space (a1, R'). A complete discussion of this 
transformation is given by Lee [22]. A convenient form for the "stretched coordinate" 
transformation is 

o = o\   P=(l + to')P>,   R=Yf^,   T = T'-^, (12) 

where the significance of the parameter f s discussed below. The differential operators 
in (11) become 

d_ d_ 
dr' dr' 

(13) 

d d £R    d       2   2d 
w ~* d^-TT^dR + tR--' (14) 

d2        1   d 1        ( d2 

+ 
dR'2     R'dR' {l + £a)2\dR2     RdRJ     1 + ^adr 

«*     «"    + 4^|1 (15) 
l + frdRdr      s      dr2' 

Substitution of (12) to (15) into (11), integration with respect to r', and some tedious 
algebraic manipulations give 

dP I r   ( d2       1  9\„,,        ß2P r   ( d2       1  0 \ _ , ,        ,i 
^L{m2 + Rm)PdT+a«1- da   ~   4zr(l + £a)2 J-oo \dR2     RdRJ u dr2 

I dP    v muu0l (     TV     \ d2P 

If £ = 0, then (16) reduces to essentially an identity transformation where the primes 
in (11) are dropped. When diffraction effects are expected to be minimal, as with 
a weakly focused source, then (11) can be used directly and I is the focal length. If 
£ = i and I — zr, the transformation leads to the "stretched coordinate" system. 
Equation (16) is appropriate when diffraction is expected to be important. Finally, 
the last two terms in (16) can be ignored under these conditions on £ and I. 
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3.3    Rectangular Source 

When the source is rectangular with dimensions x0 and yQ, (3) can be written in 
the following dimensionless form: 

82P      I „dP 

(17) 

The distances xr = uox
2

0/2co and yr = w0yo/2c0 are defined in a manner consis- 
tent with the definition of the Rayleigh distance zr, and X and Y are dimensionless 
Cartesian coordinates. Although the terms accounting for thermoviscous absorption, 
quadratic nonlinearity, and relaxation processes in (17) are similar to those terms 
in (16), these terms have implicit dependence on the Cartesian coordinates through 
P(X, Y, a,r). A transformation to a "stretch coordinate system" could be performed, 
but it has not been pursued. Baker et al. describe a transformed beam equation for 
a rectangular aperture that is based on a standard KZK equation [23]. Their result 
is essentially the "stretched coordinate" transform of (17) without relaxation. 
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4.   NUMERICAL SOLUTION 

There are no known analytic solutions to (3). Thus numerical solutions are the 
only available means to investigate nonlinear wave propagation from a bounded beam 
source. For a given pulse source condition F(R,a = 0,r), the axisymmetric source 
in Section 3.2 is a two-dimensional problem in (R, r) of forward marching from a to 
<7 + ACT. If ACT is small, then (16) can be solved via an operator-splitting method [24]. 
That is, the following system of equations is equivalent to (16): 

dP 1 
da ~ 4G(l + £tf)2 

dP_ _      d2P 
da ~      or2' 
dP_ _     NP  dP 
~dä ~ l + Zadr' 

Pdr', (18) 
-^aj"J-oo \usi~      ixunj 

2*   =   A**, (19) da or2' V    ' 
(20) 

dP   -   C^- (21) 

(subject to the above conditions on i and /). In these equations, G = zr/l is known 
as the focusing gain, A = a0l is a thermoviscous absorption constant, N = l/zs is a 
nonlinearity constant, and Cv = ml>Tl/üü0l/2c0 is a dimensionless parameter. Equation 
(21) is applied to each relaxation process. 

Numerical integration of (18)-(21) requires the specification of a discrete, finite 
domain in (R, r) and appropriate conditions at the edge of this domain. The finite 
domain is R € [0,RM] and r G [rm,rM]; RM is chosen large enough to eliminate a 
possible reflection from the nonabsorbing boundary. The minimum and maximum 
dimensionless retarded time, rm and rM, are chosen such that a zero-amplitude pe- 
riod of time precedes and follows the finite pulse, permitting the pulse to propagate 
without edge effects from the finite domain. Furthermore, the following conditions 
are imposed: 

dP 
P(a,R,rm) = 0,     P(a,R,rM) = 0,     P{a,RM,r)=0,     —        =0.        (22) 

jR=0 

The last condition is essentially a symmetry condition along the axis of the circular 
source. Introduction of the fixed increments AT and AR allows a discrete grid to be 
defined such that r <= [Tm,TM] <==> i € [0,1] and R G [0,RM] «=> 3 € [0, J], where 
P(a, R, r) = P(ak,jAR, Tm+iAr) = Pfy and the first three conditions in (22) reduce 
to /*  = 0, P*j = 0, and P*j = 0. 

Standard finite-difference (FD) techniques can be implemented to solve (18), (19), 
and (21).  The integration in (18) is first approximated with a standard trapezoid 
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quadrature. The details of reducing these equations to FD algorithms are given by 
Lee [22] and therefore are omitted from the present report. Under source conditions 
of interest to Lee, it was observed that implicit backward FD algorithms were re- 
quired near the source plane. At a sufficient distance from this plane, the numerical 
integrations could be switched to Crank-Nicolson algorithms. The numerical advan- 
tages of the Crank-Nicolson scheme with respect to an implicit backward method are 
discussed at length in standard texts on FD techniques [25]. Finally, analyses of the 
truncation errors show that the following algorithms are accurate in A<r, AR, and 
Ar to at least first order. 

The equation governing nonlinear steepening, (20), yields an analytic solution. If 
the dimensionless pressure is P(a,R,r), then it can be shown by direct substitution 

that 
P(a + A<7, R, T) = P(a, R,r + NPfo) (23) 

is a solution to (20). The factor <j>a in our notation is 

+ = iiMi+(&)> £>°> (24) 
9a     \ A<7, £ = 0. 

Again, the details are given by Lee [22]. The numerical algorithm is described below. 
Furthermore, a single algorithm suffices through the entire a domain. 

4.1    Diffraction Algorithm 

The diffraction integral, the symmetry condition along the axis of the source, 
and the nonabsorbing boundary condition at R = RM suggest that the FD algorithm 
should give explicit expressions for j = 0,1 < j < J-1, and j = J-1 for i G [1,1-1). 
The implicit backward FD (IBFD) algorithm is 

(l-D2)C+^,+1   =   1%-D^-So), (25) 

DiffI*£1 + (l-DA)P?+1 + DBf;Pt3}1   =   Pfj + DtSj 
-   D4(//5j+1 + /-5j-1),      (26) 

DsfJ-rP^-2 + (1 - D,)Ptßi   =   Pt-i-DAfJ-^j-2 
+   D2Sj-U (27) 

when 
t-i 

n ArA^a        f±_1+ !        c. _ v pfc+i (OR) 

nG(AK)2(l + C<7fc+i) ZJ m=i 
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The first equation of (28) is a constant for a given A^cr step. The subscript k on 
A indicates that an adaptive step-size is possible in a. In fact, in the vicinity of a 
strong, rapid, change in pressure, Aa needs to be small to prevent the occurrence 
of an unphysical multivalued waveform during the nonlinear step described by (20). 
The second and third equations in (28) arise from the diffraction integral in (18) and 
its subsequent approximation by trapezoid quadrature. (Note: The values P^ ■ in the 
summation occur at previous moments in time.) The Crank-Nicolson FD (CNFD) 
algorithm is 

\(1 - DJQti1 + DsQit1   =   P*o-D4(S[-S'0),        (29) 

032^^ + 1(1-DsW^ + Dvf+Q^   =   1% + DsSi 

-   Du{f?S'j+1 + ffS,
j_1), (30) 

+   DsS'j^, (31) 

where 

Qü1=P&1+P&, 3=i:<£s- (32) 
ra=l 

Inspection of (25)-(27) and (29)-(31) shows that the IBFD and CNFD algorithms 
form tridiagonal systems of equations. A standard matrix method, known as the 
Thomas algorithm, permits a rapid solution to these equations. 

4.2    Thermoviscous Absorption Algorithm 

The IBFD algorithm for the equation governing thermoviscous absorption can be 
written as 

A'PtSi + (1 - 2A')Pi^ + A'*t£i = Ptv (33) 

where A' = -AAfccr/(Ar)2. The corresponding CNFD algorithm is 

Ypi-ij + a - A')pttl + y*ft& = {1 + A')P^ ~ Y{p^ + p^]-     (34) 

When edge conditions P0
fcj and PJJ are introduced into (33) and (34), it is seen that 

tridiagonal systems of equations are recovered. 

TR 9803   21 



. UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY 

4.3    Quadratic Nonlinearity Algorithm 

As stated previously, the quadratic nonlinearity manifests an analytic solution. 
The numerical implementation of (23) and (24) involves two steps. First, the wave- 
form for each radial value j is distorted onto a nonuniform f grid. This is accomplished 

by 
ffc. = r*■ - NFf46ffL. (35) 

Here, rf • are the uniformly spaced dimensionless retarded time points such that Ar = 
rk- - r/Li •, and f *■ are the new retarded time points which are not uniformly spaced. 
Both if'and ^'are evaluated at the current ak location. As can be seen in Figure 
10, this phase distortion "slides" the pressure amplitude values to new retarded times. 

m-l m+1 

Figure 10. The curve on the right is the discrete pressure at ak and the curve on 
the left results from applying the nonlinear algorithm. The asterisk on the left curve 
is the final value of pressure, Pkfl, after the resampling step. 

The second step entails a resampling of the distorted waveform back onto the uniform 
retarded time grid. This step is necessary because the finite-difference algorithms for 
diffraction, thermoviscous absorption, and relaxation assume a uniform grid. Simple 
linear interpolation is used to resample the waveform; 

pfc+i 
■pk 
im+l,j m,j 

'm+l,j •m,3 
(^ T"   •) + Pk -k 

'm,3> m,j> (36) 
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where P^j is the pressure amplitude corresponding to f^. A pictorial description 
of these steps is contained in Figure 10. 

Physically, a valid solution of (23) is constrained to be a single-valued function of 
retarded time. The algorithm here does not guarantee this requirement, and hence 
application of (35) means that a strict ordering of f£j < f£+1 • must be maintained. 
The desired ordering can be imposed by selecting Afccr to be an appropriately small 
value; in fact, an adaptive step-size in a can be implemented by requiring 

9P      )'\ (37) Afca < 12N Qf 

where the subscript "max" denotes the maximum slope in the newly distorted wave- 
form. 

As a final note, the nonlinear steepening of a waveform shifts energy from lower- 
frequency components to higher frequencies. The algorithm in (35) is essentially exact 
(to within numerical round-off errors) and is certainly more accurate than the finite- 
difference algorithms. However, the resampling step produces an artificial smoothing 
of the waveform because Ar is always larger than some step sizes on the nonuniform 
f* • grid. The smoothing acts as a low-pass filter. Hence for accurate numerical 
simulations AT must be chosen to accommodate the highest frequency of interest. 

4.4    Relaxation Algorithm 

The IBFD algorithm for the vt\i relaxation process is 

-KP^j + (1 + 2Cv)P#l - KPfrii = P& + <(PUj - PUi)> (38) 

where C'v = Cl/(Aa)fe/(Ar)2, r'v = T„/2Ar, and A± = C'v ± r'u. The Crank-Nicolson 
method yields 

-A^-+i + 2(i + CDPt;1 - KP&)i = 2(1 - ci)P?d + A;;^ + A+Jftu, (39) 

such that A^ = Ai^ ± r' 
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APPENDIX 

Empirical Material Parameters for Water 

In Section 3, several symbols are introduced to represent physical properties of 
the fluid. Standard handbooks provide limited tables for these properties for water; 
however many are restricted to small ranges of temperature, ambient pressure, and 
salinity [26]. One is forced to scour the literature to obtain a complete set of param- 
eter for any given computation. The purpose of this appendix is to compile several 
empirical relationships for these parameters. An empirical rule for the parameter of 
nonlinearity, B/A, for water is not available, so a table of values from the literature 
is provided. The table permits linear interpolation for values not contained explicitly 

in the table. 

The small-signal sound speed, c0, can be approximated from the Chen-Millero- 
Li equation [27], which is an empirical fit to a large range of data. It has explicit 
dependence on temperature, ambient pressure relative to 1 atm, and salinity. These 
quantities are denoted respectively by T, P, and S. The Chen-Millero-Li equation is 

Co = cw(P, T) - cc(P, T) + a(P, T)S + b(P, T)S3/2 + d(P)S2, (40) 

where the auxiliary functions are 

cw(P,T)   =   1402.388 + 5.03711T - 0.0580852T2 + 3.3420xl(T4T3 

- 1.4780 xlO-6T4 +3.1464 xlO-9T5 +(0.153563 +6.8982 xlO-4T 

- 8.1788 x 10"6T2 + 1.3621 x 10-7r3 - 6.1185 x 10-10T4)P 
+ (3.1260 xlO-5 - 1.7107xl0-6r +2.5974 xl0-8T2 - 2.5335 xlO"10!* 

+ 1.0405 xHT12T4)P2 - (9.7729 xl0~9 - 3.8504xHr10T 

+ 2.3643 xl0-12T2)P3, (41) 
cc(P,T)   = (0.0029-2.19xlO-4T +1.4xl0-5r2)P-(4.76xlO"6 

- 3.47xl0-7r +2.59 xlO~8r2)P2 +2.68 xlO-9P3, (42) 

a(P,T)   = 1.389 -0.01262T + 7.164xl0-5T2 + 2.006xl0-6T3- 3.21 xHT8T4 

+   (9.4742 xlO"5-1.2580 xlO-5T-6.4885 xl0-8T2 + 1.0507xl0-8T3 

- 2.0122 x 10"10r4)P - (3.9064 x 10"7 - 9.1041 x 1(T9T 

+   1.6002 x 10-10T2 - 7.988 x 10~12r3)P2 + (1.100 x 10"10 

+   6.649 xlO'12T- 3.389 xlO~13T2)P3, (43) 
b(P,T)   =   -0.01922-4.42xlO-5T+(7.3637xl0"5 +1.7945xlO-7T)P,       (44) 

d{P)   =   0.001727- 7.9836 xlO~6P. (45) 

Equations (40) to (45) are subject to the following restrictions:   0 < T < 40°C, 
0 < S < 40 ppt, and 0 < P < 1000 bar. Within the applicable ranges on T, P, and 
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5, the Chen-Millero-Li formula is claimed to be accurate to ±0.05 m/s, where CQ has 
units of meters per second. Finally, it is restated that P has units of bar. 

The density of the ambient fluid, specific heat at constant pressure, specific heat 
at constant volume, and the thermal conductivity are determined by the following 
empirical equations [28]: 

/ 999.7 + 0.048 x 10~5P - 0.088AT - 0.007(AT)2, .   , 
p0   ~   { 1027 +0.043 xl0-5P-0.16AT-0.004(AT)2 + 0.75A5, {   ' 

j 4192 - 0.40 x 10~5P - 1.6AT, (   , 
^   ~   \ 3988 -0.23 x 10-5P + 0.54AT - 5AAS, [   ' 

j ^[1-0.0011(1 + AT/6 + 0.0024xlO"5P)2], .    . 
^   ~   \ Cp[l- 0.0041(1 + AT/20 + 0.0012 xlO"5P +0.012AS)2], l    j 

K   =   0.597+ 0.0017AT-7.5 xlO_6(AT)2. (49) 

The upper expressions for p0, Cp, and Cy apply to fresh water, and the lower expressions 
apply to sea water. The salinity is taken relative to 35 ppt (i.e, AS = 5-35), and 
the relative temperature is AT = T- 273.16 K. Unlike the Chen-Millero-Li equation, 
P is absolute pressure in units of pascal and T is specified in kelvin. The units are 
kilograms per cubic meter for p0, joules per kilogram per kelvin for Cp and cv, and 
watts per meter per kelvin for K. Finally, Pierce states that the thermal conductivity 
is essentially constant with respect to changes in salinity and pressure. Hence, (49) is 
sufficient for both fresh and sea water, and it should deviate by no more than a few 
percent from the actual value for K. 

The shear viscosity of water appears to be insensitive to changes in salinity and 
ambient pressure but varies with temperature. A standard handbook [26] containing 
physical properties for water gives the following empirical formulae: 

log 77 

 1301 o QflOQo       n < T < 20 
998.333+8.1855AT+0.00585(AT)2       O.OU/OÖ,        U ^ 1   ^ ZU, 

_L32^ATH^01053iAIli +8.6772x10-3,    20 < T < 100, 
(50) 

AT+125 

where temperature is given in Celsius such that AT = T - 20. The bulk viscosity of a 
fluid is often ignored because of assumptions of irrotational flow and incompressible 
fluid dynamics. Pierce states that £ is relatively constant for changes in P and S and it 
has a weak dependence on temperature. Bulk viscosity for water can be approximated 

by 
C/ry = -0.29T/60.0 + 3.01, (51) 

where the temperature range is 0 < T < 60°C. The units for rj and C are centipoise. 
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The parameter of nonlinearity, B/A, is related to the coefficient of nonlinearity 
by ß = 1 + B/2A for a fluid. Limited data inhibit an accurate empirical formula 
to estimate B/A for either fresh water or sea water [29, 30]. Estimates of B/A are 
obtained via linear interpolation from the values listed in Table 1. Pierce states 
that nearly 99.5% of sea water falls into a salinity range from 33 to 37 ppt. Hence, 
estimating B/A from this table is adequate for the numerical computations. 

Table 1. B/A values for fresh and sea water. 

T(°C) 
5 = 0 
5 = 33 
5 = 35 

0     10     20     30    40    60    80    100 
4.2 
4.9 5.1 

5.0 
5.2 
5.25 

5.4   5.7   6.1    6.1 
5.4 

The empirical models for sea water are completed once formulae for the di- 
mensionless relaxation time, r„ = UJ0U, and dimensionless dispersion parameter, 
C„ = m„TuuJol/2co, are determined for the various relaxation processes. As stated 
in Section 1, the presence of H3B03 and MgS04 in sea water provides the dominate 
energy loss through relaxation mechanisms. Francois and Garrison give the following 
empirical formula for the attenuation coefficients: 

OLv p+n 
(52) 

where /„ is the relaxation frequency and Av and Pv are coefficients that depend on 
P, 5, and T as well as the pH for H3B03 [1, 2]. Hence tu and m„ can be related to 
av via consideration of (21) and an inhomogeneous plane-wave exp(ikz - tut), where 

3f(fc). Simple algebraic manipulations lead to a 

tv = l/27r/„,     m„ = A„Pvco/ir (53) 

and 
T„ = u/2irfv,     Cv = (1 + rl)avL (54) 

The units of /„ and Av are, respectively, hertz and nepers per meter per hertz while 
Pv is unitless. For H3B03, the parameters are 

h = 2800(5/35)1/210(4"1245/ö), 

Ai = 1.0200 x 10(0-78pH_11)/c, 

Pi = 1, 
c = 1412 + 3.21T + 1.195 + 0.0I67D, 

(55) 

(56) 

(57) 

(58) 
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where 6 = T + 273 and T, S, and D (depth) have units of Celsius, parts per thousand, 
and meters, respectively. For MgS04, these parameters are identified as 

f2   =   [S.lTxlO^-^^l/ti + O-0018^-35)]. (59) 
A2   =   2.4683xl(T6S(l + 0.0025T)/c, (60) 
P2   =   l-(1.37xl(T4-6.2xl(r9r>)J9, (61) 

where c in (60) is given by (58). 
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