
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN IMPLEMENTATION OF SECURE
FLOW TYPE INFERENCE FOR A

SUBSET OF JAVA

by

Ismail Okan Akdemir

September 1998

Thesis Advisor: Dennis Volpano

Approved for public release; Distribution is unlimited.

OWC qOAUTY IM8PBCTID 4

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collect.on of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reduc.ng this burden,
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,
Arlington Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1998

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE AN IMPLEMENTATION OF SECURE FLOW
TYPE INFERENCE FOR A SUBSET OF JAVA

6. AUTHORS Akdemir, Ismail Okan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ll. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(maximum 200 words)

Smart cards play an important role in a digital society. A smart card contains memory or an embedded
microprocessor with the capability of enabling a wide variety of services, such as electronic cash in the case of
memory cards and digital signature computation in the case of processor cards. A processor card can require
a cardholder to authenticate herself in order to prevent others from using the card's services, from forging the
cardholder's signature, for example. Authentication can be done by storing a personal identification number
(PIN) or digitized fingerprint of the cardholder on the card itself. The PIN or fingerprint must always remain

confidential no matter how the card is (ab)used.
This thesis addresses the problem of preserving the privacy of information stored on smart cards. Volpano
and Smith have developed a static analysis for analyzing source code for information flow violations. This
technique is developed further here for a language called Java Card, in which smart card applications are
written. A prototype analyzer is presented for a subset of Java Card and applied to a sample card application
to demonstrate its utility in protecting private information stored on smart cards.

14. SUBJECT TERMS Java Card, Smart Cards, Secure Flow Analysis,

Type System

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES

50
16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

AN IMPLEMENTATION OF SECURE FLOW TYPE
INFERENCE FOR A SUBSET OF JAVA

Ismail Okan Akdemir
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Author:

Approved by:

n At.

Dennis Volpano^Thesis Advisor

to.
Craig Hi Craig Rlasmussen, Sep/md/fteader

Dan Boger, Chairman
epartment of Conj^uter Science

in

IV

ABSTRACT

Smart cards play an important role in a digital society. A smart card contains

memory or an embedded microprocessor with the capability of enabling a wide variety

of services, such as electronic cash in the case of memory cards and digital signature

computation in the case of processor cards. A processor card can require a cardholder

to authenticate herself in order to prevent others from using the card's services, from

forging the cardholder's signature, for example. Authentication can be done by storing

a personal identification number (PIN) or digitized fingerprint of the cardholder on

the card itself. The PIN or fingerprint must always remain confidential no matter

how the card is (ab)used.

This thesis addresses the problem of preserving the privacy of information

stored on smart cards. Volpano and Smith have developed a static analysis for ana-

lyzing source code for information flow violations. This technique is developed further

here for a language called Java Card, in which smart card applications are written.

A prototype analyzer is presented for a subset of Java Card and applied to a sample

card application to demonstrate its utility in protecting private information stored

on smart cards.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THE ARCHITECTURE OF A SMART CARD 2

B. SCOPE OF THESIS 4

II. JAVA CARD AND THE VIRTUAL MACHINE 5

A. CARD PROGRAMMING CONCEPTS 6

B. THE JAVA CARD FRAMEWORK . 7

1. Applets 7

2. Objects 8

3. Virtual Machine 8

4. Transactions 9

5. Applet Isolation and Object Sharing 10

6. Applet Lifetime and Runtime Environment 10

7. The APDU 11

III. THE LANGUAGE AND TYPE SYSTEM 13

A. THE LANGUAGE 13

B. TYPING RULES . 14

C. CONFINEMENT 17

IV. THE SECURE FLOW TYPE INFERENCE ALGORITHM . . 19

A. THE TYPE INFERENCE ALGORITHM 19

B. AN IMPLEMENTATION IN JAVACC 22

V. APPLICATION OF THE SECURE FLOW ANALYZER ... 25

A. THE CLIENT APPLET 25

B. THE TYPE ENVIRONMENT FOR THE API 28

VI. CONCLUSION 31

A. FUTURE WORK 32

LIST OF REFERENCES 35

Vll

INITIAL DISTRIBUTION LIST 37

vm

LIST OF FIGURES

1. Command APDU Format 12

2. Response APDU Format 12

3. Typing Rules for Expressions 15

4. Typing Rules for Commands 16

5. Algorithm W 20

6. Algorithm W, continued 21

7. Algorithm W, continued 22

8. Client.java 26

9. Decrypt.java _• 27

10. Results of the Analysis 29

IX

X

ACKNOWLEDGMENTS

I would like to thank Dr. Dennis Volpano for his help and guidance during

this thesis. His deep knowledge helped me to learn how to question and explore a

subject.

I would also like to thank Dr. Craig Rasmussen for his assistance and contri-

butions to this thesis.

I also want to express my appreciation to Rena Henderson for her prompt

responses and careful editing.

XI

xn

I. INTRODUCTION

Magnetic-stripe cards with an embedded microprocessor have been around for

many years. They are typically called smart cards and come in two varieties: memory

cards and processor cards. A processor card has roughly the computing equivalent of

a vintage 1980 personal computer with an 8-bit microprocessor, 512 bytes of RAM

and 16K bytes of ROM. It can run applications and make decisions, unlike plain

magnetic-stripe cards.

The first smart cards in wide-spread use were simple "memory", or stored-

value, cards that served as electronic "purses" for small purchases. French banks were

the first to introduce these cards, and the European telephone companies used them

in place of coins in public telephones. Some stored-value cards cannot be recharged

and are discarded after they are depleted. Others can be replenished with cash value

at ATM-like stations. Fast-food giant McDonalds (tm) of Germany, for instance,

allows customers to purchase food with rechargeable, stored-value cards. And if

your card needs to be recharged, McDonalds provides automated tellers within its

restaurants for this purpose. Smart cards have also been adopted for use in Europe's

Global System of Mobile Communications (GSM). GSM cell-phone manufacturers

have decided to equip handsets with smart-card readers. Users store their identity

on smart cards and are able to use any such equipped cell phone. This is in contrast

to having phones with their own identities, say a transmission frequency fingerprint,

which, if intercepted, can lead to cell-phone cloning.

Smart cards obviously must store private information to be useful. For in-

stance, a smart card user typically authenticates herself using a personal identifica-

tion number (PIN) entered by a keypad attached to a card reader. The number is

compared with a PIN stored on the card by code that is part of the card's operating

system. This code and any other application running on the card that can inspect

the stored PIN may (covertly) leak the PIN without knowing it. This occurs through

what are called covert channels, and there are many different kinds of such chan-

nels. Volpano and Smith address limiting the bandwidth of these channels through

statically analyzing the source code of smart-card applications. This thesis explores

extending their work to Java Card, a particular programming language embraced by

some smart-card vendors for writing portable smart-card applications.

A. THE ARCHITECTURE OF A SMART CARD

Smart cards come in two basic flavors, memory and processor cards. They are

the size of conventional magnetic stripe cards, but each carries a chip, which makes it

smarter and more valuable. A card's architecture is given in terms of its hardware and

software. On the software side, there is the runtime environment afforded applications

running on the card. Hardware characteristics across cards tend to vary far less

than do the runtime environments. Below are some examples of different hardware

configurations.

1. Integrated Circuit(IC) Microprocessor Card: a card with 8-bit processor, 16
KB read-only memory (ROM),and 512 bytes of random access memory (RAM)

2. Integrated Circuit(IC) Memory Card: a card with 1-4 KB of data storage

3. Optical Memory Card: a card combined with a Compact Disk that can hold
4 MB of data

Smart cards also vary according to their operating, or runtime, environments.

A runtime environment provides an interface between the card and the card termi-

nal known as the card acceptance device (CAD). A CAD inputs requests from a

card holder and is the card's interface to the outside world. Runtime environments

typically vary across smart card vendors. Examples include the following.

1. PS/SC is one of the proprietary runtime environments supported by Microsoft.
This environment currently supports only the Win32-based platforms.

2. OpenCard Framework is an other specification for the runtime environment.
It is an open standard designed to provide interoperability of smart card ap-
plications across network computers, desktops, laptops, set tops, and so on.

3. JavaCard is another runtime environment. It was introduced by Schlumberger
and submitted as a standard by JavaSoft. JavaCard is a set of standard classes,
which is a subset of standard Java. JavaCard is designed to develop secure
and hardware-independent applications. These applications consist of Applets
that are quite similar to the Applets that run within a web browser.

Smart cards have the potential for a wide range of applications. For example,

today we use different cards for different purposes, such as shopping and on-line

transactions. A smart card can integrate these different areas and serve as a bridge

between consumer electronic devices and the card holder. It might seem that such a

tiny card would not have much functionality, but the point is not what the card does,

but rather the kinds of services it enables. The idea is not to run big applications,

but to provide access to them. We call these applications services. Other examples

of the services enabled by smart cards include:

• Cable TV authentication

• Storage Internet addresses as bookmarks

• USPS certified e-mail

• Subscriptions to several advanced news services

• Subscriptions to some pay-per-view video streaming channels

• Ticketing

A smart card can provide a single interface to many services; however, there

are security risks. Quite often a smart card must handle personal information in

order to enable the services listed above. Depending on the service, some of this

information may be stored on the card. It is important that the privacy and integrity

of such information be preserved. As a simple example, suppose a program running

on a smart card has the property that it throws a particular kind of exception if

and only if some private bit is on (By the way, this property may be unkown to the

programmer.). If the exception is not caught and handled, it will reach the card's

interface and will be observable by any card user. So its presence, or absence, reveals

the private bit.

B. SCOPE OF THESIS

This thesis explores an approach to enforcing privacy in software using a type

system, an idea originating with Volpano and Smith [Ref. 1]. It is concerned with

adapting an earlier type system of theirs to Java Card 2.0, an object-oriented language

for smart card applications. Java Card is interesting because applications (Applets)

can run on any card with the Java Card Runtime Environment (JCRE) installed.

This is a much more open framework. The new type system requires changes to their

original type inference algorithm. This thesis addresses these changes. Obviously,

there are other security issues for smart cards, such as the integrity of information

stored on the card. This thesis focuses on privacy only. In an earlier thesis, Harvey

[Ref. 2] adapted the type system of Volpano and Smith to address some features

of Java Card 2.0. However, his thesis does not treat objects nor consider function

methods.

We begin by exploring Java Card 2.0 and the Java Card Virtual Machine

specifications. Then, in Chapter III, we give the core language for which the type

system is developed. It is close to full Java Card 2.0. The type system for enforcing

privacy is also given. In Chapter IV, we give a type inference algorithm for deciding

whether programs have types in the system of Chapter III. It is called the secure flow

analyzer. An application of the secure flow analyzer is given on a small Applet in

Chapter V.

II. JAVA CARD AND THE VIRTUAL
MACHINE

The widespread use of smart cards has been hampered by the traditional

practice of smart card vendors. Each would embed its card's operations in its own

proprietary operating system (OS), making it difficult to extend a card's functionality

or to port that functionality to another card. There was a need to separate the card's

OS from its applications and to develop those applications in a way that would allow

them to be portable across a wide variety of smart cards. Recognizing this need,

Visa International teamed up with Integrity Arts to design an open platform for

smart cards in 1995. Simultaneously, the French smart-card maker Schlumberger was

developing an architecture for the same purpose. The Schlumberger architecture re-

sembled Sun's Java platform, which was being released as JDK 1.0 at the time. There

was enough of a similarity that Visa and Schlumberger convinced Sun Microsystems

to develop a specification of the smart card open platform. Java Card was born. The

Java Card 1.0 specification was released in October 1996, and version 2.0 was released

a year later. Version 2.1 is expected to be publicly available by October 1998.

Though based on Java, Java Card 2.0 differs from Java in many ways. The

Java Card 2.0 language is used basically to program smart cards that implement the

Java Card Runtime Environment (JCRE). The language and runtime environment

are based on the Java programming language and the Java Virtual Machine (JVM).

Java Card and the JCRE are described in [Ref. 3]. The most important ways that

Java Card differs from Java are highlighted below:

1. Dynamic class loading: A Java Card System is not capable of loading classes
dynamically. The transfer of the class files is done statically either during or
after production of the card.

2. Security Manager: The security model of Java Card is considerably different
from standard Java. There is no customizable security manager. Security
policies are encoded in the virtual machine.

3. Threads: There is only one thread of control in a Java Card System. Neither
Thread class in Java nor any structure about threads can be used in Java
Card.

4. Cloning: Objects in a Java Card system are not cloneable. The base Object
class does not implement the clone () method, and there is also no Cloneable
interface.

5. Garbage Collection and Finalization: Java Card does not require garbage
collection. It also does not allow explicit deallocation of the objects as Java
does. Finalization also is not required. The virtual machine will not call a
finalize method automatically.

A. CARD PROGRAMMING CONCEPTS

Programming in Java Card is quite different from other applications. The

following list of concepts is important in understanding a Java Card application [Ref.

4]. Some of the concepts come from a smart card standard promulgated by the

International Standards Organization (ISO). In particular, they are part of the ISO

7816 standard.

1. Applications have unique identifiers as defined in ISO 7816-5. Each is called
an AID, which stands for Application Identifier.

2. The card interfaces with the outside world via a data structure called the
Application Protocol Data Unit, or APDU. It is described in ISO 7816-5.

3. The basic unit of execution on a Java Card is the Applet. It is the entry point
for a service provided by the card.

4. Applet Execution Context. The JCRE keeps track of the currently selected
Applet as well as the currently active Applet. The environment of the currently
active Applet is referred to as the Applet Execution Context. When a virtual
method is invoked on an object, the Applet execution context is changed to
correspond to the Applet that owns that object. When the method returns, the
previous context is restored. Invocations of the static methods have no effect
on the Applet execution context. The Applet execution context and sharing
status of an object together determine if access to that object is permitted.

5. Card Acceptance Device. A Java Card, like any smart card, gets inserted into
a card terminal for its power supply and interface. This terminal is often called
the Card Acceptance Device, or CAD.

6. Atomic Operation. This is an operation that can never be partially executed.
Either it executes to completion or does not execute at all. The property is
needed in order to guarantee invariant conditions in the presence of unexpected
behavior, such as loss of power to the card after being removed from the CAD.

7. Transaction. A transaction is an atomic operation where the programmer
defines the extent of the operation by indicating in the program code the
beginning and end of the transaction.

8. Java Card Runtime Environment. This environment consists of the Java Card-
Virtual Machine and the core classes in the Java Card API.

9. Persistent Object. A persistent object is one whose state persists between card
insertions. Objects are persistent by default. Persistent object state is updated
atomically using transactions. The term persistent does not mean there is an
object-oriented database on the card or that objects are serialized/deserialized,
just that the objects are not lost when the card loses power.

10. Transient Object. A transient object is one whose state is not saved across
card insertions. Its state is reset to a default state at specified intervals.
Updates to the state of transient objects are not atomic and are not affected
by transactions.

B. THE JAVA CARD FRAMEWORK

ISO 7816 or EMV (Europay, MasterCard, Visa) is the underlying standard on

which Java Card 2.0 stands. ISO 7816 defines the standards for Integrated Circuit

Cards (ICCs) with contacts, also known as smart cards. It covers the various aspects

of the Smart Cards, and consists of six parts. The Java Card framework is designed

to handle most of the low-level details specified in ISO 7816, parts 1-3. It also

provides classes and methods that assist developers in being compatible with parts 4-

6. The EMV standard, which is defined by the members of the international financial

community, consists of a subset of ISO 7816 Part 1-6, with additional proprietary

features which are required to meet the specific needs of the financial industry.

1. Applets
Applets in Java Card correspond to the application in ISO 7816. They are

the basic unit of selection, context, functionality, and security [Ref. 4]. They are

identified by an Application Identifier (AID) and selected by a CAD on demand. A

CAD sends formatted commands as APDU buffers to Applets. Applets reply to each

APDU command with optional data and indicate the results of the operation using

a status word (SW) as defined in ISO 7816 Part-4. Applets define the behavior of an

object when they are instantiated. They are a subclass of javacard.system.Applet,

which defines the common behavior of all Applets. A package is a collection of Applets

as in Java.

2. Objects

Objects in Java Card have the same behavior as in Java. They are used to

represent, store, and manipulate data by the Applets. An Applet which instantiates

the object is able to use and modify the object. Objects created by an Applet can be

shared with other Applets as long as the owner of the Applet permits sharing. The

rules defining the lifetime of an object and its creation are as follows:

• The lifetime of an object depends on the existence of a pointer pointing to it.
The pointer can be stored in a local or parameter variable or field of another
object.

• Once an object is instantiated, all the fields of the object are set to their
default values. For example, if the data type of a field is int, then its default
value will be 0 as in Java.

An object is persistent if 1) the object is the subclass of the Applet class

and registers itself, 2) the JCRE stores the reference to these objects to make them

persistent, or 3) the object is a part of another persistent object. If the object is

not registered or not referenced by any other persistent object, it can be discarded or

garbage collected.

3. Virtual Machine

In a PC or workstation, the Java Virtual Machine is a regular process. When

the process dies, the resources of the object are deallocated. But the execution lifetime

of the Java Card Virtual Machine is the lifetime of the card. The virtual machine does

8

not depend on any other power source and uses persistent memory technology (such

as EEPROM). During the card initialization stage, the framework and the JCRE

are installed and exist for the lifetime of the virtual machine [Ref. 4]. The execution

lifetime of the JCRE and the framework span CAD sessions. Therefore, the execution

lifetime of the objects created by the Applets of the framework spans CAD sessions

as long as there is a reference to them.

4. Transactions
Transactions are among the most important concepts in Java Card. The

atomic transaction model of Java Card requires that the updates to the fields of

an object take place correctly and consistently or else all fields are restored to their

previous values. An Applet has the ability to mark the beginning and end of an

atomic transaction. It also has the ability to undo all updates in the middle of a

transaction if it encounters an internal problem or decides to cancel the transaction.

The current transaction model allows one transaction in progress at a time.

If an attempt is made to enter a transaction within another transaction, then an

exception is thrown. Java Card allows Applets to inspect whether a transaction is still

in progress. If power should fail while a transaction is in progress, all fields updated

since the start of the transaction are restored to their previous values. The restoration

is done during re-initialization after the failure or reset by the JCRE. Transient objects

are not restored upon re-initialization following an aborted transaction. In the case of

an internal problem, an Applet can decide to abort the transaction by a method call.

All the values updated since the beginning of the transaction are restored to their

previous values, and the transaction flag is reset. If a select, deselect or process

method is invoked while in a transaction, the JCRE will automatically abort the

transaction.

Finally, the resources of a Java Card system are limited. The number of

bytes of conditionally updated objects that can be accumulated during a transaction

cannot exceed this limit. Java Card provides functions to query how much commit

capacity is available on the current platform. Exceeding the commit capacity causes

an exception. The JCRE can choose to either mute the exception or make it visible

to the interface.

5. Applet Isolation and Object Sharing

Applet isolation is provided by an Applet firewall which prevents one Applet

from accessing objects owned by other Applets. The Applet that was active when the

object was created owns the object. All the privileges to use and to modify the object

belong to the owner. An Applet can have a reference to the object which is created

by another Applet but it cannot invoke methods on the object or set the contents of

its fields. On the other hand, the JCRE must be able to invoke methods on Applets,

and Applets must be able to use objects owned by the JCRE. If an Applet does not

have sharing privileges for an object, any attempt to invoke an instance method or

access the objects's contents will throw a Security Exception.

The JCRE can modify any object on the card whether or not that object is

shared. An Applet may permit unrestricted sharing of any of its objects. Once the

object is shared, it is shared for its remaining lifetime. An Applet may also permit

restricted sharing of any of its objects. Restricted sharing can be used when one wants

to share an object with a certain Applet. An Applet can call the share method more

than once to share the object with different Applets.

6. Applet Lifetime and Runtime Environment

An Applet lives as long as the card since it is loaded onto the card during card

production. Applets are a subclass of the Applet class, as mentioned above. The

JCRE interacts with the Applet via the Applet's public methods install, select,

deselect, and process. The Applet must implement the install method. If the

install method is not implemented, the Applet's objects cannot be created or ini-

tialized [Ref. 4].

After installation (calling the install method), an Applet is responsible for

10

its own state, which it determines by the way it responds to the invocation of its

select, deselect, and process methods. Basically, Applets are completely respon-

sible for their internal state. The mechanics of the Applet invocation are as follows.

Any select APDU with the Applet's AID will cause this Applet's select method to

be invoked. Any select APDU with another Applet's AID will cause this Applet's

deselect method to be invoked. Any APDU other than select will cause this Ap-

plet's process method to be invoked. Once an Applet is selected, it stays selected until

power is lost, the card is reset, or another Applet is selected. When the Applet is

selected, its process method can maintain its own state (including states like blocked

or expired), reference (read and write) its own objects, reference shared objects, share

its objects with other Applets, enclose multiple updates in a transaction, create new

objects (if the policy allows this), and invoke services provided by the Java Card

Application Programming Interface, such as Personal Identification Number (PIN),

cryptography, and file system services.

Power loss occurs when the card is withdrawn from the CAD. When power is

re-supplied to the card , the JCRE ensures that all transient object fields are reset

to their default state, the transaction in progress, if any, is aborted, and the Applet

becomes deselected but the deselect method is not called.

7. The APDU
A Smart Card uses data units to communicate with the outside world. These

units, called APDU buffers, contain either a command or a response message. A

smart card system follows the master-slave model in which the smart card plays the

passive role. In other words, a smart card always waits for a command APDU from

a terminal. It then executes the action specified in the APDU and replies to the

terminal with a response APDU. The command APDU has the format in Figure 1.

The header contains the coding of a command. It has four fields:

1. CLA Class byte. In many Smart Cards, this byte is used to identify an appli-
cation.

11

Command APDU
Mandotary Header Conditional Body

CLA INS PI p2 Lc Data Field Le

Figure 1. Command APDU Format

2. INS Instruction byte. This byte indicates the instruction code.

3. P1-P2 Parameter bytes. These provide further qualification of the APDU
command.

The conditional body has two fields other than the data field:

1. Lc denotes the number of bytes in the data field of the command APDU.

2. Le denotes the maximum number of bytes expected in the data field of the
response APDU.

The response APDU has the format in Figure 2.

Response APDU
Conditional Body Mandatory Trailer
Data Field SW1 SW2

Figure 2. Response APDU Format

The status bytes SW1 and SW2 denote the processing status of the command

APDU in a card. The Java Card APDU class provides methods to handle APDUs

which conform to the ISO 7816 Part-4. It is also carefully designed to abstract the

underlying transport protocol changes. We can summarize the responses of Java Card

to the different APDU commands as follows. In the first case, there are no command

data and no response data. In the second case, there are no command data, but there

are response data. The details of these cases can be found in [Ref. 4].

12

III. THE LANGUAGE AND TYPE SYSTEM

The secure flow type system covers a subset of Java Card 2.0. The major

structures of the language are treated, however, some features have been omitted. For

example, transactions have not been considered. Although committing a transaction

is done through a method call, the implications of it, from a privacy standpoint, need

to be investigated.

A. THE LANGUAGE

In the following grammar, e denotes an expression, c a command, and b a

function body. We use a:, y,... to denote identifiers and n to stand for an arbitrary

integer.

P

e

b

:= n | x | ex + e2 | x(e, e') \ x[e] | new int[e]

:= e; e' | ex := e2 | int x := e; e' \

int[] x := e; e' | if e then e\ else e2

c ::= ei := e2 | if e then c else c' |

Cx := new C(e, e'); c \ int x := e; c \ c; c' \

int[] x :— e; c | int 2;(int x, int[] y){b} c \

void z(int x, int[] y){c} d \ x(e,e')

Notice that the body & of a function

int z(int x, int[| y){b}

is not a command. This means that no procedure call is allowed in a function body.

A function body is an extension of the expressions that allows some commands to

be used and typed as expressions. Consequently, special consideration is needed in

typing function method declarations, as we shall see, in order to preserve an important

security property of well-typed programs called Confinement.

13

An array declaration

int[] x := e; c

declares an array reference variable x and initializes it to the reference value obtained

by evaluating expression e. The expression e has the form

new int[e']

for some expression e'. Array references are first-class values, whereas variables are

not. The declaration

C x := new C(e, e'); c

declares a reference re to a C object. The language differs from Java Card 2.0 in that

the right side of the declaration is not an expression. We couple object creation with

variable declaration. Objects cannot be created by executing an expression. They

can be created only in the context of an object variable declaration. Further, we allow

at most one object to be created for a given class. This means that methods are not

polymorphic like procedures in [Ref. 1].

B. TYPING RULES

The types of the secure flow type system are given below:

T

7V

P

L | H

T | r proc(r,r arr) \ r fun(r,r arr) . | r arr fun(r,r arr)

TV | r var \ r arr \ r arr var \ r cmd

Every integer has a type r which for our purposes is a security level high (H) or

low (L). A constant array reference has type r arr and is a single-dimensional array.

Functions return either an integer or an array reference and have types r fun and

r arr fun respectively. Variables have type r var and a variable that stores an array

reference has type r arr var. (Notice that we distinguish.an array reference from an

array reference variable.)

14

(iDENT) 7 h x : r j(x) = r

(VAR) jh X :T var 7(2;) = r var

(ARRREF) 7 h a; : r arr j(x) = r arr

(ARRREFVAR) 7 h x : T arr var 7(2:) = r arr war

(INT) 7 h n : r

(R-VAL) 7 h e : T var
7 h e : r

7 (- e : r arr var
7 h e : r arr

(SUM) 7 h e : r, 7 h e': T

7 h e + e' : r

(NEW) 7!- e : r
7 h new int[e]~: r arr

(RETURN) 7 I- e : T
7 h return e : r

(ARR-INDEX) 7 I- x : T arr, 7 h e' : r
7 h rc[e] : r var

(COMPOSE) 7 h e : T, 7 h e' : r
7 h e; e' : r

(ASSIGN) 7 h e : r var, 7 h e' : r
7 h e := e' : r

(LETVAR) 7 h e : r, 7 [3 : r var] h e' : T'

7 h int x := e ; e' : r'

(LETARRVARl) 7 h e : r arr, j[x : r arr var] h e' : T'

7 h int[] re := e ; e' : r'

(FUNCALL) 7(2:) = r fun(r,T arr)
7 h e : r
7 h e' : r arr
7 h x(e, e') : r

(IF) 7 h e : r, 7 h e': T, 7 h e" : r,
7 h if e then e' else e" : r

Figure 3. Typing Rules for Expressions

15

(RETURN)

(COMPOSE)

(ASSIGN)

(LETVAR)

(LETARRVAR2)

(LETFUN)

(LETPROC)

(PROCCALL)

(IF)

(WHILE)

(LETOBJECT)

7 h return : r cmd

7 h c : r cmd, 7 h c' : r cmd
7hc; c' : r cmd

7 h e r arr var, 7 he': tau arr
7 h e = e' : T cmd

7 h e T, j[x : r mr] h c :r' cmd
7 h int a; := e ; c : T' cmd

7 h e r arr, 7(2; : T arr yar] he: r' cmd
7 h int[] x := e ; c : r' cmd

7[a: : r',y : r' arr] \- b : T'

b is pure with respect to j[y : r' arr]
7[z : T' fun(r', r' arr)] h c : r cmd
7 h int z(int x, int[] y) {0} c : r cmd

7(2; : r',y : r" arr] h c : r'" cmd
j[z : T'" proc(r', r" arr)] h c' : r cmd
7 h void z(int x, int[] y) {c} c' : r cmd

7(rr) = T proc(r',T" arr)
7 h e : r'
7 h e' : r" arr
7 h rr(e, e') : r cmd

7 h e : r, 7hc:r cmd, 7 h c7 : r cmd,
7 h if e then c else c' : r cmd

7 h e : T, 7hc:r cmd
7 h while e do c : r cmd

7(C) = r proc(r', T" arr)
7 h e : r'
7 h e' : r" arr
7 h c:rcmd
7 h C x := new C (e, e') ; c : r cmd

Figure 4. Typing Rules for Commands

16

The typing rules are given in Figures 3 and 4. Notice how array indexing is

typed in rule ARR-INDEX. The security level of the index and the array reference

must be the same. That means that arrays can store only information whose security

level is equal to the array reference.

Array declarations have two different rules, one (LETARRVAR1) for expres-

sion contexts and the other (LETARRVAR2) for command contexts. These rules

introduce array references as first-class values. Function declaration has an unusual

typing rule. We require body b to be pure with respect to 7, which means that for

all y e dom{i), y is not updated in b if y is free in b and either j(y) — L var or

<y(y) = L arr. In other words, all assignments in a function body involve assignments

to local variables only unless their security levels are high.

C. CONFINEMENT

Java Card 2.0 inherits the assignment expression, pre/post increment/decre-

ment and conditional expressions from Java. These structures cause side effects in an

expression, which can violate an important property called Confinement if they are

not typed appropriately. Basically, Confinement says that the execution of any high

command does not result in updating any low variables. For example, suppose that

x is a high boolean variable and y is a low boolean variable, and consider

if x then x := (y := 1)

If the expression (y := 1) can be typed as a high expression and the command

x := (y := 1) can be typed as a high command, then the whole conditional can be

typed as a high command. But y is a low variable and the execution of the conditional

causes a low variable to be updated, which is a violation of Confinement. To preserve

Confinement, the type system demands that function bodies be pure. Other Java

Card expressions like pre/post increment/decrement could easily be added to the

language without affecting the type system as long as they are limited to function

bodies where the typing rule for function declarations comes into play.

17

18

IV. THE SECURE FLOW TYPE
INFERENCE ALGORITHM

The secure flow type inference algorithm is based on the algorithm of Volpano

and Smith given in [Ref. 1]. It is given for the language and the type system described

in Chapter III.

A. THE TYPE INFERENCE ALGORITHM

The type inference algorithm W has the following inputs and outputs:

• Inputs

1. 7 : a type environment - maintains types of free identifiers and variables.

2. p : a program phrase - the phrase to be typed.

3. V : a set of stale type variables - empty initially.

• Outputs

1. C : a constraint set - consists of inequalities of the form r < r'. A
constraint r = r' is understood to mean T <r' and r' < r.

2. 7? : a 7T type with type variables - the result type of the phrase p.

3. V : a set of stale type variables - {V - V) is the set of type variables
generated during the typing of phrase p.

The algorithm is given by cases in Figures 5, 6 and 7. Each case corresponds

to a different phrase of the language.

Notice that the rule for an expression x[e] requires that the security level of the

index and the array reference be the same. Naturally, we add a constraint that forces

them to be equal, specifically f = ?i. Also notice the coercions in several places in the

algorithm. They have the form f < a or a < ? for some fresh type variable a. The

first is an upward coercion reflecting the idea that a low producer (expression) may

be regarded as a high producer. The second is a downward coercion and effectively

reflects the idea that a high consumer (command) can be a low consumer. Algorithm

19

Wfijp, V) = case p of

x : case j(x) of
T ■■{{?< a}, a, V U {a}) agV
T var : ({T < a}, «.FU {a}) a gV
T arr : ({ }, f arr, V U { })
f arr var : ({ }, r arr, V U { })
default : fail

n: ({},a,Vu{a}) a<£V

ei + e2 :
let(Ci,f1,n = Wr(A,7,c1,V

r)
\et(C2,T2,V") = W(X^,e2,V)
m(CiUC2U{r1=r2},rl,V")

x\c\ '.
\et(C',T1,V') = Wtf,e,V)
case 7(x) of

r arr var : (C'U {f = fi,r < a},a,yu {a}) a ^ V
T arr: (C'U{T = TUT < a},a,Vu{a}) agV
default : fail

ei := e2 :
case ei of

a; : if 7(0;) = f var then
let(C,f',y') = W(7,e2,^)m

(CU{T = T',a<T'},acmd,V'U{a}) a&V
elsif 7(2;) = f arr var then

let (C, r' arr, V) = W(j, e2, V) in
(CU{f = f',a;<r'},Q;cma',y'U{a}) a £ V

else fail
x[e] : if 7(3;) = f arr uar or 7(2;) = f arr then

let(C,T',V') = W(%e2,V)m
(Cö{r = r',a<f'},acmd,V'U{a}) a<£V

else fail
default : fail

new native[e] :
let native ::= short | boolean | byte

let(C, r, V) = W(7, e, F) in (C, r arr, V)

Figure 5. Algorithm W

20

if e then C\ else c2 :
let(C,r,V') = Wtf,e,V)
let(Ci,ficmdJV") = ^(7,ci,7')
let(C2,r2cmrf,y"') = W(7,c2,y")
in (C U Ci U C2 U {f = fi = ?2, a < f}, a cmd, V" U {a}) a <£ V

while e do c :
let(C,T,V') = W(j,e,V)
let {C',r' cmd,V") = W{j,c,V)
in (C U C U {r = f', a < r}, a cmrf, V" U {a}) a $ V"

ci; c2 :
let (Ci, fi cmrf, V) = W(j, cx, 7)
let (C2,?2 cmd,V") = Wtf,c2,V)
in (Ci UC2U {fi = r2},n cmd, V")

int x := e ; c :
let(C,f,y,) = Wr(7,e,V)
let (C, f cmd, V") = W(7^ : f war], c, V)
in (C U C", f' cmd, V")

int x := e ; e' :
let(C,T,V') = W(\,tf,e,V)
let (C, f', y") = W{\, i\x : f vor], e', V)
in(CuC",r',y")

int[] a; := e ; c :
let (C,r arr,V') = W(\,y,e,V)
let (C, r' cmd, V") = PV(A, i[x : f arr war], c, F')
in (C UC',f' cmd, V")

int[] x := e ; e' :
let (C,r arr,V') = W{\n,e,V)
let (C, f', V7') = W(X, ty[x : r arr var], e!, V)
m(CL\C',f',V")

int z(int x, int[] y) {6} c :
let (C,f, V") = W{\, j[x:?,y.T arr], b, V)
let (C, f cmd, V") = W(X, *y[z : f fun{r, f arr)], c, V)
in (C U C',f' cmd,V")

Figure 6. Algorithm W, continued

21

in

.void z(int x, int[] y) {c} c' :
let {C,r" cmd,V) = W(X,^[x: f,y:f arr],c,V)
let (C, f'" cmd, V") = W(X, j[z : r" proc(r, ?' arr)],c', V)
in (C U C, f'" cmd, V")

C x := new C (e, e') ; c :
if 7(C) = f" proc(f, r' arr)

let(C,f1,V') = W(X,j,e,V)
let (C, f2 arr, V") = W{\, 7, e', V")
let (C", r" cmd, V") = W(A, 7', c, V")
in (CUC'U C" U {f = Tt,T' = f2}, r" cmd, V™)

else fail

x(e, e') :
if j(x) = f" proc(f,r' arr)

et(C,n,V') = W(\,j,e,V)
let (C, f2 err, V") = W(A, 7, e', V)
in (C U C U C" U {f = ?!, f' = r2}, f" cmd, vw)

elsif 7(0;) = f fun{f, f arr)
\et(C,r1,V') = W(X,j,e,V)
let (C, f2 arr, F") = W{\, 7, e', f)
in (CUC'U C" U {f = n, fi = f2}, f, V™)

else fail

Figure 7. Algorithm W, continued

W on a function method call, where the function returns an array reference, is defined

like it is for functions returning integers. The return type becomes f arr. Therefore,

this case is omitted from the specification of W in Figure 7.

B. AN IMPLEMENTATION IN JAVACC

The type inference algorithm has been implemented using a compiler-compiler

called JavaCC. JavaCC generates a top-down parser for a given syntactic/semantic

specification as input. For us, the semantic component is the secure flow type inference

algorithm. The generated parser implements the algorithm above. Starting with a

JavaCC specification for Java 1.0.2, a specification was built for the core language of

Chapter III. We needed to make many changes in the specification since the language

22

in Chapter III is a significant subset of Java 1.0.2. The result was a secure-flow

analyzer for most of Java Card 2.0. In Chapter V, we analyze a sample Card Applet

using the analyzer.

23

24

V. APPLICATION OF THE SECURE FLOW
ANALYZER

Now we shall take a look at a sample Java Card Applet using the Java Card

2.0 API and our secure flow analyzer in order to determine whether or not the Applet

leaks any information about a private crypto key. We have the following scenario. A

smart card comes with a preloaded decryption library and a crypto key. The sample

Applet's task is to receive encrypted data from the CAD and then submit it to a

decryption method in a library. The decryption method will use the key to decrypt

the data. To differentiate the tasks, we will refer to the sample Applet as the Client

Applet and the decryption library as the Decrypt class.

A. THE CLIENT APPLET
The Client Applet is given in Figure 8. It uses a variety of different methods

from the Java Card 2.0 API:

• install 0

1. Create the Applet's instance.

2. Register the Applet (by calling the constructor).

• select()

1. Select the Applet.

2. Return true to guarantee selection in this case.

• process()

1. Check that the correct commands are received from the CAD.

2. Send the encrypted data to the library.

25

import j avacard.framework.*;

public class Client extends Applet {

public static final byte CLIENT.CLA = (byte) 0x80;
public static final byte CLIENT.INS = (byte) 0x20;

private byte[] buffer;

private decrypt;

public Client() {

decrypt = Decrypt.getDecrypt 0;

registerO;

}

public boolean select0 { return true; }

public static void install(APDU apdu) throws ISOException {

new Client();

}

public void process(APDU apdu) throws ISOException {

buffer = apdu.getBufferO ;

if (CLIENT.CLA != buffer[ISO.OFFSET_CLA])
ISOException.throwlt(ISO.SW_CLA_NOT_SUPPORTED);

if (CLIENT.INS != buffer[ISO.OFFSET_INS])

ISOException.throwlt(ISO.SW_INS_NOT_SUPPORTED);

apdu.setIncomingAndReceiveO ;

decrypt.decrypt(buffer);

}
}

Figure 8. Client .Java

26

The Decrypt class is given in Figure 9. Its methods are described below.

• getDecryptO

1. Return the single instance of the Decrypt class.

• decrypt()

1. Check whether key is set or not.

2. Check whether the input data buffer size is bigger than the expected size.

3. Decrypt the data.

import j avacard.framework.*;

public class Decrypt -[

private static final short KEY_NOT_SET = OxFFOl;
private static byte[] buffer = new byte[50];

private Decrypt 0 {}
private static final Decrypt decrypt = new Decrypt 0;
public static Decrypt getDecryptO { return decrypt; }

public void decrypt(byte[] data) {

if (key == 0) {
ISOException.throwlt(KEY_N0T_SET);

} else {
if (data[ISO.OFFSET.LC] > buffer.length)

ISOException.throwlt(ISO.SW_WRONG_LENGTH);
// Start decryption - End decryption

}
}

}

Figure 9. Decrypt.java

27

B. THE TYPE ENVIRONMENT FOR THE API
In order to use the analyzer, we need to build an initial type environment that

gives the types of methods and identifiers occuring free in the Applet:

1. apdu.setlncomingAndReceiveO: L procQ- this is the primary receive met-
hodfRef. 5]. It returns the number of bytes that can fit in the APDU buffer
and also transfers the bytes from the CAD to the APDU buffer. Since we
assume all data from the CAD is low, this method is typed low. Also, this
method cannot be typed as a function, as in Java Card 2.0, since it has side
effects.

2. apdu.setOutgoingAndSendO: L proc(L,L)- this is the send method. It sends
len bytes in the APDU buffer, starting from off, to the CAD. Since the CAD.
is low, the method is low. The parameters of the method are also low, since
they can be observed in the response APDU.

3. apdu. getBuf f er (): L arr funcQ- this method returns a byte array containing
the APDU buffer. We always regard this buffer as low since it can be seen at
the CAD.

4. ISOException.throwIt(sw): L proc(L)- throws the JCRE instance of the
ISOException class with the specified status word sw. The parameter is typed
low since the status word can appear as swl and sw2 of a response APDU.

5. key: H- a private crypto key.

6. register (): H procQ- this method is final and inherited from Applet class.
It registers an Applet with the JCRE and appears not to involve any updates
of low data structures. Although this needs to be confirmed, we shall go ahead
and type its call as a high command.

The typings of the methods in the Decrypt class must be included in the

initial type environment since they are free in the Applet. Therefore, we first analyze

the Decrypt class and then merge the typings of this class with our initial type

environment in order to analyze the Client Applet. But the analyzer fails on the

Decrypt class and for good reason. In Java Card 2.0, user exceptions cause the

control of the program to be transferred to the JCRE. Such an exception arises if

the key is not set (key == 0) in our example. The exception KEY_N0T_SET reaches

the JCRE where it can be observed at the interface (card reader). The presence of

28

the exception reveals whether key is zero, a violation of secure information flow. The

secure flow analyzer requires the guard of the conditional, where key is checked, to

be low. But key is high, so the analyzer produces an unsatisfiable constraint set with

the inconsistent constraints

«= HIGH 8) (= 8 LOW)

The results of the analyzer are given in Figure 10. The analyzer generates a constraint

set and a typing for each field and method of the Decrypt class in Figure 9.

Identifier
Type
Constraint Set

Decrypt.KEY_NOT_SET
2

Identifier
Type
Constraint Set

Decrypt.buffer
4 arr var

Identifier
Type
Constraint Set

Decrypt
5 procO

Identifier
Type
Constraint Set

Decrypt.decrypt
5

Identifier
Type
Constraint Set

getDecrypt
5 funcO

Identifier
Type
Constraint Set

decrypt
16 proc(7 arr)
«= HIGH 8) (= 8 9) (= 8 LOW) «= 2 10) (= LOW 10)
(= LOW 15) (= 7 11) «= 11 12) «= LOW 11)
(<= LOW 13)(= 7 13)(= 7 L0W)(<= LOW 14)
(= LOW 14) «= 15 7) «= 16 8)

Figure 10. Results of the Analysis

29

30

VI. CONCLUSION

Protecting private information stored on smart cards is important to smart-

card manufacturers who would like to provide some sort of guarantees about privacy

to card issuers. The approach taken in this thesis is based on work by Volpano

and Smith, who introduced a type system for privacy in a procedural programming

language [Ref. 1]. Extensions of their type system are proposed to handle object

creation, function methods, and first-class array references in an object-oriented pro-

gramming language called Java Card. Java Card is gaining acceptance among major

smart-card manufacturers as an open platform for smart card applications. The type

system has been implemented as a Java Card program analyzer and demonstrated on

a sample smart-card application.

The type system approach to privacy depends heavily upon the correctness of

the inital type environment. The analyzer uses the initial type environment to get

the security levels of variables that are free in the source code. Setting up an initial

environment can be quite hard since you need to know the behavior of methods in

the programming library, especially their interactions with the underlying operating

system and hardware. The Java Card 2.0 specification strives to insulate card appli-

cations from low-level implementation details via a relatively abstract programming

interface called the Application Programming Interface (API). This leaves some free-

dom to implement the API differently among the manufacturers. But then one cannot

say for sure that these different implementations will preserve the semantic assump-

tions used in determining the initial type environment. One really does need details

of an underlying implementation in order to get the environment correct. Often,

though, such details are unavailable.

The type system approach also seems to be at odds with the ISO-7816 stan-

dard. It specifies the APDU as the interface between a smart card and a card reader,

or acceptance device. Since the APDU buffer can be observed by anybody who has

31

access to a card reader, it should be regarded as low. On the other hand, sometimes

it is used to hold private information entered via the reader by the card holder. So is

the APDU buffer high or low? In essence, it is simultaneously a high and low variable!

A more secure architecture would split the buffer into a private input channel and

a public output channel which are much easier to treat in the type system. Smart

cards with private LCD displays and private keypads seem more appropriate. This

view is consistent with work done in exploring how smart cards can be used securely

in a hostile environment [Ref. 6].

A. FUTURE WORK

The type system described in this thesis imposes some rather strong restric-

tions on Java Card Applets. First, function method bodies must be pure (no updates

of free variables are allowed unless the variables are high). This restriction is hard to

remove without giving up Confinement.

Second, object creation is restricted in that only one instance of a class can be

created by an Applet. Further, the type system does not assign types to objects and

object references are not typed as first-class references like arrays. The difficulty here

is assigning a security level to an object when its fields may need different security

levels. Taking the object's type to be the least upper bound of these levels might

be too coarse. Allowing more than one- instance of a class also means methods of

the class must be typed polymorphically, which is more difficult to implement [Ref.

1]. There is also a problem with introducing object creation as an expression in the

language since it involves executing a constructor that may have side effects. But

allowing more than one instance of a class may not be worth the effort. If you look at

the Java Card 2.0 specification, you will notice that the JCRE owns one instance of

each exception and programmers are advised to use these instances in order to save

on resources. Owning only one instance of a class is actually common in Applets. So

limiting Applets to one instance of a class doesn't look like it will be a problem in

32

practice.

Lastly, dynamic method dispatching is prohibited because the type system

needs to know the secure flow typing of a method call at compile time. Dynamic

dispatching has a major impact on the type system. More experience should tell

whether dynamic dispatching is really needed.

33

34

LIST OF REFERENCES

[1] Dennis Volpano and Geoffrey Smith. A type-based approach to program security.
Proc. Theory and Practice of Software Development, 1214:607-621, 1997.

[2] James D. Harvey. A static secure flow analyzer for Java programs. Master's thesis,
Naval Postgraduate School, 1998.

[3] Inc. Sun Microsystems. Java card 2.0 language subset and virtual machine speci-
fication, October 13 1997.

[4] Inc. Sun Microsystems. Java card 2.0 programming concepts, October 15 1997.

[5] Inc. Sun Microsystems. Java card 2.0 application programming interfaces, October
13 1997.

[6] J.D.Tygar Howard Gobioff, Sean Smith and Bennet Yee. Smart cards in hostile
environments. Proc. 2nd Usenix Workshop on Electronic Commerce, pages 23-28,
1996.

35

36

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Deniz Kuvvetleri Komutanligi 2
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

4. Deniz Harp Okulu Komutanligi 1
Kutuphane
Tuzla, Istanbul, TURKEY 81704

5. Chairman, Code CS 1
Naval Postgraduate School
411 Dyer Rd-
Monterey, CA 93943-5101

6. Dennis Volpano, Code CS/VO 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

7. Craig Rasmussen, Code MA/RA 1
Mathematics Department
Naval Postgraduate School
Monterey, CA 93943-5100

8. Ismail Okan Akdemir 2
Cumhuriyet Mahallesi
1. Yesil Sokak No:55/3
45400 Turgutlu/MANISA/TURKEY

37

