
WL-TR-96-1142 

CAD TOOLS FOR THE DEVELOPMENT 
AND REUSE OF MODELS OF SIGNAL 
PROCESSING SOFTWARE AND 
HARDWARE 

VOLUME 1 - FINAL REPORT 

G. A. FRANK 
B. E. CLARK 

CENTER FOR DIGITAL SYSTEMS ENGINEERING 
RESEARCH TRIANGLE INSTITUTE 
3040 CORNWALLIS ROAD 
RESEARCH TRIANGLE PARK NC 27709 

F. G. GRAY 
J. R. ARMSTRONG 

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY 
BLACKBURG VA 24061 

JANUARY 1997 

FINAL REPORT FOR PERIOD 01 SEP 93 - 01 SEP 96 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 



NOTICE 

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA 
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN 
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US 
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR 
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT 
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR 
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL 
ANY PATENTED INVENTION THAT MAY RELATE TO THEM. 

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL 
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE 
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS. 

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION. 

LUIS M CONCHA 
Program Manager 

WILLIAM K McQUAY, Chief 
Avionics Simulation Technology Branch 
Avionics Directorate 

STANLEY E WA STANLEY E WACNER, Chief 
System Concepts & Simulation Division 
Avionics Directorate 

Do not return copies of this report unless contractual obligations or notice on a 
specific document requires its return. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including time for reviewing instructions, searching existing data 
sources, gathering and maintaining data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or other 
aspect of this collection of information, including suggestions for reducing the burden to Washington Headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway., Suite. 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), 
Washington, DC 20503  

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 
January 1997 

3. REPORT TYPE AND DATES COVERED 

Final     09/01/93-09/01/96 

4. TITLE AND SUBTITLE 

CAD Tools for the Development and Reuse of Models of Signal Processing Software 
and Hardware   Volume I - Final Report 

6. AUTHOR(S) 

G. A. Frank, and B. E. Clark 

"F. G. Gray, J. R. Armstrong, 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Center for Digital Systems Engineering 
Research Triangle Institute 
3040 Comwallis Rd. 
Research Triangle Park, NC 27709 

S. FUNDING NUMBERS 

CF33615-93-C-1310 
PE   63739 
PR   A268 
TA   02 
WU   09 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Information Directorate 
Air Force Research Laboratory 
Air Force Materiel Command 
Wright-Patterson AFB OH 45433-7623 
POC: Loins Concha, AFRL/IFSD, 937-255-1902, ext 3578 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

WL-TR-96-1142 

11. SUPPLEMENTARY NOTES 

"Virginia Polytechnic Institute and State University 
Blacksburg, VA 24061 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

As part of the Rapid Prototyping of Application Specific Signal Processors (RASSP) programming, proof of concept/prototype toolsets 
were developed to automate: 

- Adaptation of signal processing algorithm data flow graphs to fit different hardware architectures 
- Creation of high-level VHDL test benches that can be reused as a signal processor evolves 

The report describes the toolsets and their construction. Volume II contains user manuals for the toolsets. 

14. SUBJECT TERMS 

Signal processing, modeling, simulation, VHDL, signal processor, test bench 

15. NUMBER OF PAGES      94 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 754041-2804500 
Standard Form 298 (Rev 2-88) 
Prescribed by ANSI Std 2:8:18 



Table of Contents 

1 Introduction 1 

1.1 Project Objectives 1 

1.2 Team and Roles 2 

1.3 Technology Transfer Results 2 

2. Overview of the RASSP System Developed for this Project 5 

2.1 The Algorithm Partitioning Tool 5 

2.1.1 Using the APT System for HW/SW Codesign 5 

2.1.2 Tool Components of APT 7 

2.1.2.1 The Algorithm Capture Tool of APT 8 

2.1.2.2 Hardware Schematic Capture Tools of APT     9 

2.1.2.3 The Architecture Sizing and Algorithm Mapping Tools of APT 10 

2.1.2.4 Performance Simulation Tools 11 

2.1.3 APTLibraries 12 

2.1.4 APT Interfaces 14 

2.1.4.1 Algorithm Model to Spreadsheet Interface 15 

2.1.4.2 Hardware Models to Spreadsheet Interfaces 15 

2.1.4.3 Spreadsheet to Performance Models Interfaces 16 

2.2 Test Bench Generator 17 

2.2.1 Introduction 17 

2.2.2 Problem Statement 18 

2.2.2.1 Complexity of Test Bench Generation 19 

2.2.2.2 Linkage of Test Benches to System Specifications 19 

2.2.3 Test Bench Concepts 19 

2.2.3.1 A Basic Test Bench 19 

m 



2.2.3.2 Test Bench Configurations 21 

2.2.3.3 VHDL Test Benches 22 

2.2.3.4 Behavioral Test Generation 23 

2.2.4 Approach to Test Bench Development 24 

2.2.5 Modeling 26 

2.2.5.1 Application Area 1: IRST 26 

2.2.5.2 IRST Model Development With Ilogix Express VHDL 28 

2.2.5.3 Model Complexity And Efficiency 32 

2.2.5.4 Modeling SAR 33 

2.2.5.5 Library Based Model Development 39 

2.2.5.6 Model Simulation Efficiency Studies 41 

2.2.5.7 Domain Specific Environment Modeling Software 42 

2.2.6 Linkage to System Requirements 44 

2.2.6.1 Specification Repository 45 

2.2.6.2 Requirements Interfaces 46 

2.2.7 Test Plan 49 

2.2.7.1 Iterative Test Mode 51 

2.2^8 System Integration 54 

2.2.8.1 Systems Integration Work 55 

2.2.8.2 Demonstration System 57 

2.2.9 Conclusions 63 

3. Accomplishments 64 

3.1 Tool Construction 64 

3.1.1 Algorithm Partitioning Tool 64 

3.1.1.1 Selection of Tools and Available Libraries 64 

3.1.1.2 Development of Target Models 65 

3.1.1.3 Development of Interfaces to Generate Target Models 67 

iv 



3.1.2 Test Bench Generator 70 

3.1.2.1 Use of Commercial Tools to Generate Test Benches 70 

3.1.2.2 Requirements Captures and Use in Test Benches 70 

3.1.2.3 Use of Configuration Declarations to Reuse Test Bench Components 71 

3.2 Library Construction 71 

3.2.1 Conversion of SPW Test Benches to VHDL 71 

3.2.2 Use of IRAMP Data Bases 71 

3.2.3 IRTOOL Models 71 

3.2.4 xpatch Models 71 

3.2.5 Use of Honeywell/Omniview Performance Model Library 71 

3.2.5.1 Packages Subdirectory (apt/data/PML_02a/packages) 72 

3.2.5.2 Processor Subdirectory 73 

3.2.5.3 Leaf_cells Subdirectory 73 

3.2.5.4 Compilation (Analysis) of Library Components for VHDL Simulation 74 

3.2.5.5 Compilation (Analysis) of the Library Components for VTIP Use 75 

3.2.6 Use of SPW Libraries to Generate Performance Models 75 

3.2.7 Development of VHDL DSP Library of Primitives and Applications 76 

3.3 Applications of Test Benches ; 77 

3.3.1 SAR Test Benches , 77 

3.3.2 IRST Test Benches 77 

3.3.3 SAR Performance Modeling 77 

3.3.3.1 SPW SAR Algorithm Model 78 

3.3.3.2 Spreadsheet Hardware Tradeoffs 78 

3.3.3.3 VHDL Performance Models 79 

3.3.3.4 BONeS Performance Model 80 

3.3.3.5 Network II.5 Performance Models 81 

3.3.4 JAST Performance Modeling 82 

v 



3.3.4.1 Tradeoff Space Explored 82 

3.3.4.2 Use of Spreadsheet to Narrow the Design Space 83 

3.3.4.3 Use of Performance Model to Identify Bottlenecks 83 

4. Future Directions 85 

5. Lessons Learned 88 

6. Published Papers 89 

7. Masters Thesis 90 

References 91 

VI 



List of Figures 

Figure 1. RASSP Technology Transfer 3 

Figure 2: Algorithm Partitioning Tool and Interfaces 5 

Figure 3: COTS Components of the Algorithm Partitioning Tool 8 

Figure 4. Dataflow in the Toolset 14 

Figure 5. A Basic Test Bench 20 

Figure 6. Off-Line Test Bench Configuration 21 

Figure 7. On-Line Test Bench Configuration 22 

Figure 8. Basic Approach to Test Bench Development 25 

Figure 9. Physical Structure of an ERST Sensor 27 

Figure 10. Illustration of ERST Algorithm 27 

Figure 11. RASSP Stimulus Generator 28 

Figure 12 ERST - Overall Statechart 29 

Figure 13. ERST - Initialization State 30 

Figure 14. RUN_0 State Computed Target Position 30 

Figure 15. RUN_1 State - Target Position Read From A File 31 

Figure 16. Express VHDL Code Template Example 31 

Figure 17. Code Efficiency Test Case 32 

Figure 18. Deramp Compression Processing 34 

Figure 19. SPW Real Number Model 35 

Figure 20. Transmitted Signal 36 

Figure 21. Downconverted Received Signal 36 

Figure 22. FFT of Deramped Signal 37 

Figure 23. Real Number Model SPW To VHDL Interface ..38 

vn 



Figure 24. Activity Chart Model of SAR 39 

Figure 25. Structural Test Bench for IRST 40 

Figure 26. SAR Structural Test Bench 41 

Figure 27. IRST Input Frames 43 

Figure 28. SAR Radar Return From Two Point Targets 44 

Figure 29. Changing An ERST System Parameter... 45 

Figure 30. SAR System Schematic Diagram 46 

Figure 31. Requirements Interface for ERST 47 

Figure 32. Math Model for ERST Requirements Interface 47 

Figure 33. Math Model for the Requirements Interface (Cont'd) 48 

Figure 34. Requirements Interface for SAR 48 

Figure 35. Math Model for SAR Requirements Interface 49 

Figure 36. A Test Case of Test Group II 50 

Figure 37. A Test Case of Test Group III 50 

Figure 38. A Test Case of Test Group IV 51 

Figure 39 SAR Test Groups of Iterative Test Mode 52 

Figure 40. Results of Iterative Mode for SAR Test Group II 52 

Figure 41. Results of Iterative Mode for SAR Test Group III 53 

Figure 42. SAR Test Group IV Evaluation of Noise Sensitivity 53 

Figure 43. Results of Iterative Mode for ERST 53 

Figure 44. A High-Level Test Bench Generation System with Test Plan Interface 54 

Figure 45. Test Bench Generation System 56 

Figure 46. The VHDL Test Simulation Controller 56 

Figure 47. User Interface Menu Structure for ERST 58 

Figure 48. Test Displays: Test Vectors Used in the File I/O Test Case 58 

Figure 49. Test Displays: MUT Outputs for the File I/O Test Case 59 

Figure 50. Test Displays: Comparator Outputs for the File I/O Test Case 59 

viii 



Figure 51. SAR Simulation Result Using File I/O Mode 60 

Figure 52. SAR TBGUI Base Window Showing Code Generated Mode and Parameter Entering 61 

Figure 53. Code Generated Mode of Test Group II: Range of Multiple Targets 62 

Figure 54. Target Report 62 

Figure 55. Top-Level Graph in SPW 78 

Figure 56. Top-Level Model of RASSP Benchmark Algorithm 80 

Figure 57. Range Compression Diagram 81 

Figure 58. Network Model 82 

IX 



1 Introduction 

1.1 Project Objectives 

This project has two objectives: 

1. Reduce the cost and risk of model year upgrades by automating the process for adapting signal 

processing algorithms to different signal processor architectures. 

The ability to adapt legacy software for signal processors to operate on new hardware 

configurations is an important part of the model-year concept. Partitioning and allocation are 

essential steps in successfully adapting signal processing software to different hardware 

architectures to obtain maximum performance and improved system reliability. Our approach 

concentrated on the use of representation transformations in order to adapt signal processing 

algorithm data flow graphs to fit different hardware architectures. Automatic transformation of 

these algorithms can improve productivity and reduce the number of induced design errors. The 

automation of the partitioning process also provides the potential for increasing the reusability of 

libraries of high-performance signal processing algorithms. 

2. Reduce the cost and risk of verifying VHDL virtual prototypes of signal processing systems by 

automating the process for generating high-level test benches. 

Our approach focused on automating the creation of high-level VHDL test benches that can be 

reused as a signal processor evolves through its model-year upgrades. During this evolution, 

system requirements will change. Consistent with the RASSP concept of virtual prototyping, we 

constructed high-level VHDL test benches that captured the essential system requirements in 

ways that are easy to change as the system evolves. 



RASSP applications were employed as driving benchmark problems for tool design and test. 

1.2 Team and Roles 

The Research Triangle Institute (RTI) and Virginia Polytechnic Institute and State University (Virginia 

Tech) were teamed in this project. The RTI team, under the leadership of Dr. G. A. Frank, brought over 

ten years of experience in signal processor architecture performance evaluation and CAD tool 

development. In addition to overall responsibility for the program, the RTI team was responsible for 

development of the Algorithm Partitioning tool (APT), its interfaces and its libraries. 

The Virginia Tech team, under the leadership of Dr. J. R. Armstrong and Dr. F. G. Gray, brought 

extensive experience with VHDL, hardware design at the chip and system levels, and system performance 

design and assessment. The Virginia Tech team was responsible for development of the test bench 

generation tool and for the VHDL interfaces of the APT. 

Captain Edmund Gieske and Lieutenant Richard G. Bishop of Wright Laboratory were the project 

monitors. 

1.3 Technology Transfer Results 

During the contract, we have established a working relationship with Northrop-Grumman. They used 

APT toolset to model the signal processing component of their JAST avionics architecture. The trade 

studies conducted with the APT tools were the primary component of their benchmarking and resource 

utilization report. Edited versions of their descriptions of the tool set and of the analysis results were 

included in Volume 2 of the second report, titled "APT Tool Description" and "Edited Extracts from the 

Northrup-Grumman JAST Avionics Benchmarking Report," respectively. The below paragraph and 

figure are extracted from the Northrup-Grumman report: 



The benchmarking and resource utilization task results were derived from the process and 

procedures developed in the RASSP program. The first step was to evaluate the RASSP 

benchmark algorithms using the JAST hardware concepts as shown in Figure 1. The MIT strip 

SAR algorithm was used for this purpose. This approach accomplished several things. First, the 

analysis technology and procedures used in the RASSP program were transferred to the JAST 

program. Second, the RASSP benchmarking algorithm provides a quantifiable comparison of 

the performance of the RASSP hardware (current technology) with the projected JAST hardware. 

Third, a high confidence estimate of the JAST resources required to perform the new radar 

algorithms were obtained by using the verified and validated analysis approach developed in the 

RASSP program. 

Model JAST 
Hardware 
Concepts 

Map 
Algorithm 
to JAST 
Hardware 

Select JAST 
Radar Al gos 
for Evaluation 

Hardware 
Performance 
Evaluation 

Model Algos 
with RASSP 
Process 

i 
Map Algos 
to JAST 
Hardware 

Evaluate JAST 
Hardware 
Requirements 

Figure 1. RASSP Technology Transfer 



We have had close cooperation in our tool development from CACI. the vendors of the Network II.5 

performance modeling tool, and Mercury Computer Systems. Inc. We have also shared models with 

Cadence Alta Group, the vendors of SPW. 

Our test bench generator work has led to several publications and a tutorial on test bench development at 

the Fall 1996VHDL International Users Forum. The publications and Master Theses which resulted from 

this project are listed in Sections 6 and 7. 



2. Overview of the RASSP System Developed for this Project 

2.1      The Algorithm Partitioning Tool 

The Algorithm Partitioning Tool (APT) is designed to facilitate the transition from functional algorithm 

description and VHDL or schematic hardware architecture and component description to a dynamic 

performance model of the algorithm partitioned and mapped onto the architecture. 

2.1.1  Using the APT System for HW/SW Codesign 

Codesign is done by using APT with a five-step process that is illustrated in Figure 2. 

Ifcraiy of SPW 

Hardware Architeeto« 
Structural Mode] 

Hard 
Datasheetlibrary 

Figure 2: Algorithm Partitioning Tool and Interfaces 



1. A functional algorithm model is built and tested using SPW. These models are extensively 

parameterized to allow rapid functional verification on small test sets. These models are also built 

hierarchically so that they can be tested in a bottom-up fashion and so that components can be reused 

in different algorithms. 

2. The sizing spreadsheet is used to roughly determine the number of components required and to 

identify the critical segments of the algorithm. The sizing spreadsheet is a valuable tool for 

preliminary tradeoffs. Sizing spreadsheets are used to determine processor and memory requirements 

(or required algorithm modifications) and to compare possible processor instruction set and clock rate 

assumptions. The APT system generates the sizing spreadsheet automatically from information 

extracted from the SPW functional model and the processor characteristic library. The user allocates 

all or part of the algorithm functions to any of the candidate DSPs, and the spreadsheet makes a static 

calculation of the processor utilization. If the utilization is greater than 100%, then the sizing 

spreadsheet indicates that multiple processors are required to execute the part of the algorithm 

allocated to the processor. Similarly, the user allocates the memory requirements for the algorithm 

functions to memories in the system, and the spreadsheet makes a static calculation of the memory 

occupancy. 

3. Once an appropriate system configuration has been selected based on sizing analysis, a hardware 

architectural model is constructed. This model is built using either a VHDL structural model with 

components from an augmented Honeywell/Omniview Performance Modeling Library (PML) or the 

Network II.5 graphics interface, netgen. 

4. Next, a mapping spreadsheet is constructed from the algorithm model developed in Step 1, and the 

hardware model developed in Step 3. APT automatically generates the spreadsheet from information 

extracted from the SPW algorithm and either the VHDL or the Network II.5 hardware model. The 

user then maps the algorithm functions to processing and memory components in the hardware 

model. If an algorithm function is mapped to multiple processors, then the SPW single execution 

thread is converted into a multi-thread version for faster execution. 



5.   When all algorithm functions have had their processing requirements mapped to processors and all 

their memory requirements mapped to memories, and the utilization of all components is satisfactory, 

(based on a static model), a performance model can be generated. Simulation of the performance 

model provides memory and interconnection utilization information, as well as dynamic and more 

accurate processor utilization information. 

2.1.2 Tool Components of APT 

As shown in Figure 3, APT consists of libraries and interfaces that surround six Commercial Off-The- 

Shelf (COTS) tools: an algorithm design tool (SPW), a spreadsheet (2020), a VHDL simulator (Optium 

5.2, by Viewlogic, previously Vantage 5.2), a VHDL parser (VHDL Tool Integration Platform (VTIP) 

from CAD Language Systems, Inc.), an enhanced library of performance models (Performance Model 

Library (PML_02a) by Honevwell/Omniview), and a performance simulation tool (Network II.5). APT 

uses the Signal Processing WorkSystem (SPW) of the Cadence ALTA Group to capture the algorithm and 

verify its functionality. APT captures hardware component characteristics from VHDL processor 

characteristic files. These characteristic files can be generated by APT from the PML_02a library 

components using the VTIP VHDL parser or can be generated by hand from spec sheets. APT captures 

hardware component connectivity from either a VHDL structural model or from a Network II. 5 generated 

schematic. APT uses the 2020 spreadsheet from Access Technology for sizing an architecture from 

algorithm requirements, and for partitioning and mapping an algorithm onto a specific architecture. Once 

a mapping spreadsheet has been generated, APT generates a VHDL or Network II.5 performance model 

from the spreadsheet output and the component connectivity data. APT uses the Network II. 5 

performance simulator from CACI Products Company or the Optium 5.2 VHDL simulator from Viewlogic 

to perform a dynamic simulation. 



Periodic 
Signal Processing 
Requirements 

Figure 3: COTS Components of the Algorithm Partitioning Tool 

2.1.2.1 The Algorithm Capture Tool of APT 

SPW is a software package for developing, simulating, debugging, and evaluating digital signal 

processing (DSP) and communications system algorithms. SPW provides libraries of DSP and 

communications primitive "blocks" that can be combined in the block diagram editor (BDE) to represent 

an algorithm. The BDE functions hierarchically with a symbol at the higher level representing an entire 

schematic or sub hierarchy of schematics. Properly constructed models can be simulated, using the Signal 

Flow Simulator. With other components of the SPW an algorithm can be thoroughly tested for functional 

correctness. In addition to the built in simulator, the system provides a code generation system (CGS) that 

will generate C code from the schematic targeted to the host machine or various signal processors from 

TI, Motorola, or AT&T. The Cadence Alta Group provides a Tool Interface Language (TIL) with the 



SPW package. TIL can be used to develop user-specified custom tools accessing the BDE database. The 

Signal Flow Simulator and CGS are both TIL applications. 

The APT tools employ TIL programs to capture algorithm size and dataflow characteristics from a BDE 

database (model of the algorithm). This, combined with control flow data from the simulator or CGS, 

provides the workload characterization necessary to map the algorithm onto a hardware architecture 

and conduct both static and dynamic performance analyses. An algorithm designer employs SPW to 

graphically capture and functionally validate the design of a signal processing algorithm. If the SPW 

model is to be used for performance analysis, it must be constructed (at the "leaf node" level) from 

primitives that have the RTI developed extract TIL programs attached. Currently, a subset of the standard 

libraries (sufficient for the DSP applications being investigated) included in a special library, 

"apt_lib", are employed for this purpose. 

2.1.2.2 Hardware Schematic Capture Tools of APT 

APT uses two forms of input to describe the hardware: 

• A processor characteristic library that is used to capture information about the instruction sets and 

clock rates of processors, input devices (such as sensors), and output devices (such as displays); and 

• A structural model of the components, their interconnects, and their parameters (such as processor 

type). A structural model is composed of components selected from five types: input devices, output 

devices, storage devices (e.g., memories), processors, transfer devices (e.g., buses), and gateways 

(which represent nodes in multistage interconnection networks). 

The structural model also describes the interconnections among the components. 

APT uses either a VHDL structural model with components from the enhanced PML_02a library or the 

schematic capture tool netgen, which is part of the Network II.5 tool set from CACI, to represent 



structural information. The enhanced PML_02a library and the Network II.5 library both contain a basic 

set of components, which include processors and memories. In the VHDL structural model, a bus is 

represented by a signal and a set of Bus Interface Units (BIUs). with one BIU for each device on the bus. 

Network II.5 treats the bus and the BIUs as a single component. We have developed a hierarchical 

approach to capture the BIUs attached to a common signal so that the BIUs and their signal are 

represented as a single component in the top-level structural model. This approach also ensures that all 

the BIUs connected to a common signal receive the same generics. 

2.1.2.3 The Architecture Sizing and Algorithm Mapping Tools of APT 

APT uses the 2020 spreadsheet from Access Technology to develop gross sizing budgets and to analyze 

alternative partitionings of the algorithm onto the architecture. This spreadsheet provides a facility for 

creating and modifying spreadsheets with externally produced ASCII files. The spreadsheet is employed 

in two modes which are referred to as "sizing" and "mapping". 

Sizing mode is employed in early trade studies when architectures have not yet been defined. Sizing mode 

uses a static performance analysis to address issues such as how many processors of a given type and how 

much memory are required to execute a primitive, a section of the algorithm, or the entire algorithm 

within the allotted time. In sizing mode, two performance metrics are calculated: average processor 

utilization, and maximum memory occupancy. 

For initial trades where one is comparing different processors, memory requirements, and comparing 

alternative partitioning strategies a much smaller spreadsheet suffices and is desirable. A sizing analysis 

of the RASSP SAR algorithm on a Mercury Raceway architecture produced a spreadsheet where the 30 

processors are represented by 4 columns for: (a) range compression processors, (b) corner turn processors, 

(c) azimuth compression processors, and (d) image formatting processors. 

10 



Mapping mode is employed to perform static analysis of a specific architecture, to create alternative 

mappings onto a specific architecture, and to create performance models for dynamic analysis of an 

algorithm/architecture configuration. During mapping, the same static performance metrics are used as in 

sizing analysis: average processor utilization and maximum memory occupancy. In this mode, spreadsheet 

output is used to produce a dynamic performance simulation model that can be used to assess additional 

issues such as latency and resource contention. The same algorithm data is used for both modes, but 

different hardware descriptions are used. In the mapping mode, a column for each processor and two 

columns for each memory are required. The processor and algorithm descriptions are stored 

in separate input files. Thus, any algorithm in the user's library can be mapped or sized with any 

hardware architecture. 

2.1.2.4 Performance Simulation Tools 

The APT employs either Optium 5.2 or Network II.5 for performance simulation. One of the main 

considerations in the design of a computer system is the effect of conflicts over access to computing 

resources. These effects are not readily determined by the use of analytical models. Because both VHDL 

simulators and Network II.5 model the interactions between all devices in the system, the effects of 

resource conflicts are identified. 

The PML_02a library contains VHDL packages that monitor performance parameters and display the 

information in graphical format that is easy to read. 

Network II.5 supports separate representations of hardware and software, making it possible to reuse 

hardware models in the evaluation of multiple algorithms on the same architecture. Network II.5 provides 

an extensive statistical report on each simulation, and also generates strip charts of the utilization of 

components over time. Network II.5 also provides animation of a simulation, so that the user can 

visualize the behavior of the computer system being modeled. 

11 



2.1.3 APT Libraries 

The Algorithm Partitioning Tool (APT) libraries consist of: 

• A library of SP W primitives designed for extraction of algorithm characteristics from the SP W 

functional model. This library is delivered in a SPW dump file, apt.dmp. When retrieved it will 

reside in SPW as the library, aptjib. This is accompanied by a library of TIL source files in the 

directory $aptsys/til which can be used to recompile, if necessary, the extraction programs. 

• A library of 2020 command files for constructing a spreadsheet that can be used either for static 

analysis of resources required by the algorithm or for mapping the algorithm onto a specific 

architecture. This library resides, along with command files for support of sizing and mapping, in the 

apt/tools/cmds directory. 

• A library of processor characteristics in the form of 2020 command files. This library has been 

extracted from the PML library and processor datasheets. APT includes tools to update this library as 

additional processors are added to the PML library. APT also allows processor characteristics to be 

created manually (e.g., for notional architectures) and added to the library. This library resides in the 

apt/data/proc directory. Processors currently characterized in the library are shown in Table 1. 

Table 1: Digital Signal Processors in the Processor Characteristics Library 

Manufacturer Processor identifier 

Analog Devices SHARC 21062 

Hughes DSPE 

Intel i860 

Intel i960MX 

Intel i386 

Intel Pentium 

12 



Motorola 96002 

Texas Instruments TMS320C40 

Texas Instruments TMS320C80 

AMD 29050 

MIPS R4000 

• Four SPW libraries of benchmark algorithms, apt_3_pol and apt_l_pol, the RASSP benchmark I and 

a single polarity version respectively, apt_rbgm, a real beam ground map algorithm modeled under a 

JAST support contract, and test_sys, a small test system using the functions of the RASSP benchmark 

I algorithm with small vectors that was used to verify the SPW modeling with apt_lib blocks and for 

initial interface development. These libraries are delivered in the SPW dump file apt.dmp along with 

apt_lib. The SPW algorithm models are extensively parameterized so that by changing a few 

parameters on the top level diagram one can automatically adjust data structure sizes, number of 

subswaths, FFT sizes, decimation rates, FER filter sizes, etc. This parameterization allows rapid 

tradeoffs between functional characteristics and computational resources. Data sets extracted from 

these models are included in the apt/data/sw directory. These data sets can automatically produce 

sizing or mapping spreadsheets for any architecture represented in the apt/data/hw directory. 

• A library containing the VHDL structural model (and derived performance model with the test_sys 

algorithm mapped onto it), contained in the models/vhdl/vpiracel6 directory, and a library of data 

sets extracted from this model and from netgen schematics, contained in the apt/data/hw directory. 

• An enhanced library of performance modeling components suitable for use in VHDL structural 

performance models. The Honeywell PML_02a component library was enhanced by adding 

additional components. Also, some of the leaf cells were modified for this application. This library is 

delivered in the apt/data/PML_02a directory. 

13 



2.1.4 APT Interfaces 

The Algorithm Partitioning Tool includes several interfaces that support the transformation of data from 

one COTS tool representation to another. Figure 4 shows the flow through and between COTS tools and 

interfaces. 

Figure 4. Dataflow in the Toolset 

14 



2.1.4.1 Algorithm Mode! to Spreadsheet Interface 

The next to the right hand column along with the "BUILD_SS PROGRAM" bubble of Figure 4 shows the 

interface from the algorithm model to the spreadsheet. Having built the model in SPW using the apt_lib 

library, the user runs the custom netlister using the master tool, extract, from aptjib and executes CGEN. 

This produces three data files with a common name and suffixes of par (parameters), seq (sequencing), 

and rat (rates). A call to the C program extract reads these three files and produces two shell scripts with 

the same name and suffixes of ssp (parameters) and ssq (data-flow predecessor and successor 

relationships). These two files are called by the build_ss spreadsheet building script to insert into the 

2020 command file the calls that will produce the function rows and predecessor/successor data. 

Instructions are provided in the User Guide for manual production of the ssp and ssq files. Thus, the user 

can produce a spreadsheet for sizing or mapping without building a SPW model. This procedure will 

produce a performance model from spreadsheet output if the architecture data was extracted from a 

structural model or schematic. 

2.1.4.2 Hardware Models to Spreadsheet Interfaces 

The top two bubbles in the two outside columns in Figure 4 show the interface from the hardware models 

to the spreadsheet. Both gethw and getvhdl produce a shell script with a suffix of ssh. This file is called 

by the build_ss spreadsheet building script to insert into the 2020 command file the calls that will produce 

the processor and memory columns. Both extraction programs also produce composition and connectivity 

data that are used with the spreadsheet output to build the performance model. 

The script getvhdl analyzes the partially configured structural model using VTIP. It then calls a C 

program, acet, that produces the .ssh shell script for spreadsheet construction. This is followed by a call to 

the C program conet that produces an interim "connectivity" file. Getvhdl then calls the shell script 

15 



Bld_Route which employs a series of three awk scripts to produce routing tables for the VHDL 

performance model. This file, with suffix rtbl, is stored in the apt/data/hw directory. 

Another script, get_proc. calls the C program, pcet. which uses VTIP to extract the necessary information 

from the PML models and produces the 2020 command file for a processor in the apt/data/proc directory. 

The shell script gethw calls an awk script that produces the .ssh shell script for spreadsheet construction 

and decomposes the Network II.5 schematic into a subdirectory of component files in the apt/data/temp 

directory. 

Instructions are provided in the User Guide for manual production of the ssh file. Thus, the user can 

produce a spreadsheet for sizing or for static analysis of a mapping without building a structural model or 

schematic. This procedure will not provide sufficient architecture data to produce a performance model. 

2.1.4.3 Spreadsheet to Performance Models Interfaces 

The bottom bubbles on the two outside columns in Figure 4 show the interfaces from the spreadsheet to 

the performance models. Both the bldvhdl and bldnet scripts take the two spreadsheet output files as 

input. 

The bldvhdl script also employs a standardized vhdl configuration file and the rtable routing file 

produced by getvhdl. It calls two nawk scripts: 

bv_pass 1 .awk     translates Intermediate Form into VHDL application sw 

bv_pass2.awk     creates a configuration file for the VHDL performance model 

16 



The bldnet script also employs the files in the temp directory produced by gethw and calls a series of 6 

awk scripts: 

mem.awk processes the <modelname>.mem file and creates an 

auxiliary file describing the memory mapping, 

pass 1.awk generates multiple auxiliary files and a first 

pass translation of the spreadsheet: <modelname>.mac. 

pass2.awk edits the predecessor and successor information based 

on the loop structures in the spreadsheet. 

pass3.awk edits the predecessor and successor information based on the parallel loops. 

pass4.awk generates a final translation of the .mac file and the 

auxiliary files into the .out file, a final intermediate form. 

pass5.awk generates the network II.5 processor instruction sets 

and the network II.5 modules and files. 

2.2 Test Bench Generator 

2.2.1 Introduction 

In this section of the report, we describe the results of the test bench generation research carried out under 

the RASSP program. We will show that this research developed methodology for the: 

• Rapid development of test benches for VHDL [EEE88] models of DSP algorithms. 

• Use of high-level graphics based design tools to generate test bench VHDL code. 

• Use of test bench component libraries which allow construction of a range of test bench 

configurations. 

• Use of requirements capture, requirements interfaces, and test plans to link the test bench to the 

system specification. 

17 



This methodology has been applied to two sensor based systems: 1) Infrared Search and Track 

(IRST)[Cams93], and 2) Synthetic Aperture Radar (SAR)[ShaG94] and a demonstration test bench 

generation and simulation system was developed which generates model inputs for these two application 

domains. 

The Rapid Prototyping of Application Specific Signal Processors (RASSP) program [RicM94] is based on 

the model' year concept for hardware development where a design in the field is refined and updated 

from year to year instead of being fully replaced. In this situation, the system specification can change 

from year to year. Our test bench/ specification interface is designed to account for these model year 

changes. 

The results of this research are most beneficial to VHDL modeling in the digital signal processing 

domain. Mathematical models in this domain can be used to generate "normal system" inputs while 

working at a high level of abstraction. Other domains do not always have this property. However, since a 

high percentage of ASIC designs are for DSP systems [EurA93], the results are still important. And some 

of the techniques, e.g., the requirements and test plan interfaces, have wider application. 

2.2.2 Problem Statement 

The research is intended to solve to problems: 1) Complexity of the test bench generation task, and 2) 

Linkage of test benches to the system specification. 

1 In this specific sentence the word model refers to a version of the hardware, not to a VHDL model. One 

of course can have a VHDL model of a system for each model year! 

18 



2.2.2.1 Complexity of Test Bench Generation 

A simulation model must be thoroughly exercised to prove that it exhibits the correct behavior. However, 

generation of tests for a model is a labor intensive task rivaling that of developing the model itself. 

Moreover, tests generated manually satisfy no formal definition of completeness. What is required is 

method of test bench development that can be carried out at a high level of abstraction, e.g., in the 

mathematical domain of DSP systems, which relieves the modeler of the details of test bench 

development. One also needs a completeness criterion. We will show below that completeness is achieved 

by accurate modeling of the environment surrounding the system which the Model Under Test (MUT) 

represents. 

2.2.2.2 Linkage of Test Benches to System Specifications 

A major goal of the DOD is to have the test bench directly reflect the system specification. Then if the 

system model executes correctly in the test bench, one can assert that it satisfies the specification 

requirements. The RASSP program adds an additional requirement in that the specification may evolve 

from one model year to another and the test benches for a system model should track this evolution. Test 

benches that have usefulness through the life of a program are also a key to lowering life cycle support 

cost. Finally, it is important that specification information be stored in such a way that system engineers 

have easy access to it. In the section below on linking system requirements, we will discuss how these 

issues are addressed. 

2.2.3 Test Bench Concepts 

2.2.3.1 A Basic Test Bench 

Figure 5 shows a basic test bench[FraG91]. The Model Under Test (MUT) receives test vectors from a 

Stimulus Generator which also provides an expected (GOLD) response. The Comparator compares the 

MUT response with expected response and issues GO/ NO GO signals. A test bench can have two types of 

19 



feedback. First the model state can be fed back to the Stimulus Generator to model interaction between 

these two elements. Second, there can be feedback from the Comparator to the Stimulus Generator which 

allows adaptive testing, i.e.. the results of one test dictate what the next test will be. We will discuss below 

how we applied adaptive testing. 

Adaptive Testing 

Model State 

L 
Stimulus 
Generator 

IssL 
Vectors 

Model 
Under 
Test 

Response 

Expected Response 

-Comparator -*► Go/No Go 

Figure 5. A Basic Test Bench 

20 



2.2.3.2 Test Bench Configurations 

Test benches can be classified into a number of configurations. 

Figure 6 shows an off-line configuration, where stimulus data files, generated earlier, are read by the 

Stimulus Generator and applied to the MUT. The expected response is another data file which is feed to 

Comparator for comparison with the MUT response. The data files used by the off-line configuration are 

originally generated by an on-line configuration or can be real system data. 

Off-line Test Bench Configuration 

Expected 
Response 

Figure 6. Ofl-Line Test Bench Configuration 

Figure 7 shows an on-line test bench configuration. Here the Stimulus Generator is programmed to 

produce test vectors. The test vectors are fed to a gold model of MUT behavior which generates expected 

response. The MUT is simulated in the same simulation that generates the test vectors and expected 

response. In many cases, such as our RASSP work, there is no distinct gold MUT model. Rather, the 

Stimulus Generator uses the mathematics of the system model to generate the expected response directly. 

21 



Test 

Stimulus 
Generator 

VwtnrK ivopunse 

MUT 

\ 

Expected Response w 
Gold Modil 

of 
MUT 

Behavior 
^              J 

^ 

Comparator 
Go/No Go 

Figure 7. On-Line Test Bench Configuration 

Adaptive test benches are on-line test benches which react to feedback from the MUT or the Comparator 

(See Figure 5) to effect the generation of future test vectors. Below we will discuss how adaptive testing is 

an important concept in high-level approaches to system testing. 

2.2.3.3 VHDL Test Benches 

When the Model Under Test (MUT) is a VHDL model, the test bench is also coded in VHDL[ArmJ93]. 

The MUT is plugged into it and the test bench is the top level component in the model hierarchy, i.e., it is 

the entity that is simulated. For complicated MUTs, the development of a VHDL test bench is, when left 

to manual means, a complicated programming task rivaling that of developing the model itself. This 

problem can be complicated by the possible necessity for the Stimulus Generator to react to feedback from 

the MUT or Comparator in adaptive testing. 

In developing a VHDL test bench, one must develop: 1) A VHDL shell into which to plug the Stimulus 

Generator, MUT, and Comparator which allows application of test vectors via signal assignment 

statements or file I/O. 2) The test vectors to be applied by the Stimulus Generator. Task 1 is a 

22 



straightforward task and can be easily performed through the use of VHDL structural architectures and 

configuration bodies. Task 2 consists of test generation for VHDL behavioral models which we discuss 

next. 

2.2.3.4 Behavioral Test Generation 

There are two basic approaches to test vector generation, model based, and environment based. In model 

based test generation, the model itself is used to perform the test development. It is sometimes referred to 

as white box testing because knowledge of the internal nature of the model is required to develop the tests. 

Model based testing can be further divided into model perturbation and I/O path sensitizing. In model 

perturbation, faults are injected into the model and tests determined which detect these faults. 

Conventional Automatic Test Pattern Generation (ATPG) at the gate level fits in this category. 

Researchers at Virginia Tech and elsewhere have applied this approach to behavioral models[ChoC94]. 

In I/O path sensitizing, one develops tests which activate all paths through the model. No fault model is 

employed. We have been active in this area of research also, using NSF funding to develop tests based on 

a Process Model Graph representation of a behavioral model [KapS94, LiW96]. I/O path sensitizing is 

also a relevant technique for testing conventional software such as C programs. 

In environment-based testing, one uses a model of the environment surrounding the system being modeled 

to develop the tests. In a sense, one is developing normal system inputs. This type of testing is referred to 

as black box testing because one develops these tests without knowledge of the internal structure of the 

system. For the RASSP project which deals with DSP systems, we have employed environment-based 

testing because the system inputs are a mathematical function of the environment surrounding the DSP 

system and could not be derived from the Model Under Test. 

23 



2.2.4 Approach to Test Bench Development 

Our approach to test bench development is based on the following four principles: 

1. Test bench VHDL code elements are initially developed using graphics-based high-level system 

design tools. These code elements are developed primarily as behavioral models. Using these high- 

level tools allows one to construct models of the environment based on system mathematics, thus 

making it easy to establish their correctness. 

2. Code elements are refined in a library structure that allows construction of structural models. This is a 

key element in the RASSP model year concept which allows reuse of test bench code from one year to 

the next. 

3. Environmental Data Generators are used to prepare input files that can be read by the test bench. 

These data generators are programs specific to the DSP environment we worked with, i.e., IRST and 

SAR. This software has been integrated into the test bench generation system. 

4. Specification values are stored in a repository that is linked to the test bench through a requirements 

interface. 

Figure 8 shows the basic approach to test bench development. The system specification consists of general 

requirements and specific requirements. General requirements specify the class of systems being 

modeled. For example, a test bench for an IRST system must generate two dimensional arrays of pixels at 

a fixed clock rate to model the operation of the IRST sensor. Specific requirements select a particular 

member of the class. For IRST, the specific requirements might be a frame size of 256 X 256, pixel 

intensity range of 0 to 63, and a frame rate of 10 frames/sec. Below we will show how the specific 

requirements are stored in a Specification Repository that is easily accessed by system engineers and these 

values are fed automatically forward to the test bench system. 

24 



System 
General 
Requirements Design Tool 

General & 
Specific 
Requirements 

Specification 

rats 

Generic 
Values 

(Code Generator) 

Specific 
Requireme 

1 

Code 

r 

Requirements 
Capture 

Tool 

Simula table 
Test Bench 

i 

MUT 

Environmental 
Data 

VHDL 
1 ^> 

Generator Data 
Files 

Figure 8. Basic Approach to Test Bench Development 

General requirements are input to the design tools used for code generation. The resultant code is general 

in that it is parameterizable with VHDL generics. The specific requirements are fed to a math model 

which operates on them to produce derived specific requirements that are generic values. As shown in 

Figure 8, this math model can be implemented in a Requirements Capture Tool such as RD100 [Asc]. 

This was our original approach. It has the advantage that system managers may already be using such a 

tool for systems analysis. However, the math model can be implemented just as easily in MATLAB 

[MAT92], EXCEL, or a C program. Another possibility is to put the math model in the test bench code, 

but this adversely effects the generality of the test bench code library. Below we will add test plans to the 

generic value development interface which can override the nominal specific requirements coming from 

the system specification. 

Both general and specific requirements are fed to environmental data generators which develop data files 

that can be read by the test bench during simulation. The Model Under Test is selected from a VHDL 

25 



library. Given these four elements: test bench VHDL code, generic values, data files, and MUT, a test 

bench is fully assembled. 

2.2.5 Modeling 

In this section, we describe our approach to modeling. Although the models we developed were for the test 

bench code, the techniques employed apply to a wide range of modeling situations. Our approach to 

modeling has two main features: 

1. Use high level, graphics based design tools to create initial behavioral test bench models. In the DSP 

area, the mathematics of the environment is well defined. If we model at a high level, we can 

concentrate on applying the mathematics to the problem and ignore the language details, thus 

insuring model correctness. The high level tools have VHDL interfaces which allow us to dump 

simulatable VHDL code. We used this approach to develop our initial IRST test bench early in the 

RASSP project and were able to do so in less than a month. 

2. Develop a library of primitives which allow the creation of structural models. Here, the code elements 

originally developed as behavioral models are refined over time in a library structure. The test bench 

model is then constructed structurally using a schematic capture tool. The library structure supports 

code reuse which is a key element in RASSP model year design concept. 

2.2.5.1 Application Area 1: IRST 

Infrared Search and Track (IRST) systems are a class of passive military infrared sensor systems which 

can reliably detect and track targets that emit an infrared signature [CamS93]. The components of the 

system consist of an infrared sensor, IRST computer, track files data base, and display hardware. The 

inputs to the computer developed by the sensor consist of a continuous sequence of infrared image frames 

of targets superimposed on background clutter. Figure 9 shows an IRST sensor. 

26 



Target-*- 

Sensor 

Platform 

Background 
Clutter 

Sensor 
Capture 

Hoiizantal 

Vertical 

Figure 9. Physical Structure of an IRST Sensor 

The function of the IRST MUT which represents the computer is to find the best alignment of successive 

frames so that if two successive frames are differenced, the result is just the target movement. Figure 10 

shows this process. Figure 10 -d shows the result of differencing. 

Illustration Of IRST 
Algorithm 

00 

«On :    1888    : 

(b) (c) 

(e) (f)        (g) (h) (i) 

(d) 

Figure 10. Illustration of IRST Algorithm 

27 



Figure 11 shows the ERST stimulus generator model which consists of the following sub models: 

1. Target - Using information from a user interface, generates target signature of varying shapes, speed, 

and direction. 

2. Environment - Models the background scene, i.e.. the clutter against which the target will be super- 

imposed. 

3. Platform - Models the effect of platform motion, i.e., roll, pitch and yaw. 

4. Sensor - Combines the information from the target, environment, and platform to produce the 

stimulus generator output, i.e., a two-dimensional array of pixels depicting targets on a clutter back 

ground. 

MUT State IVI 

Platform Motion Platform 
Model 

Signal Proc. ( 

1 ' < ' 

Target 
Model 

Sensor 
Model 

Sensor Data 
Targe tlnfo 

Enviroi iment In fo 

Environment 
MO aei 

Figure 11. RASSP Stimulus Generator 

2.2.5.2 IRST Model Development With llogix Express VHDL 

Our initial model development for IRST was done using llogix Express VHDL [Ilog92], which is a CASE 

tool that uses state charts [HarD87] and activity charts as the graphical representation. Statecharts are 

used for control intensive models, activity charts model data flow. The ERST model was done using 

28 



Statecharts [HriS95,ArmJ94]. Figure 12 shows the top level state chart for IRST. State charts allow for 

concurrent states. Note that states FUNC and CLOCK are concurrent. 

IRST - Overall Statechart 
DEMO 

•-»  IINIT- 

@INIT 
FUNC 

IDLE 

tr(TRIG - 1 and 
MODE "=0) 

£ 
trfTRIG - 1 and 
MODE-1) 

1 
@RUN_0 @RUN_1 

I 
trCTRIG - 0) trfTRIG - 0) 

FINISHED 

CLOCK 
^ 

[INIT-l] 

RUN CLK 

IDLE CLK 

I |Wr>lVDO_ST_CLK 

ST CLK 

ta(«<EN CLK)J»E1V2V 
DO_Sr_ÖJC y  '   DO_EN_CUC 

EN CLK 

tr(TRIG - 0) 

DONE CLK 

Figure 12 IRST - Overall Statechart 

Nesting of states is also allowed. Thus states IDLE_CLK, ST_CLK, and EN_CLK are nested within the 

state RUN_CLK. State transitions can be triggered by events or elapsed time. States with their names 

preceded by an @ are super states which imply an underlying state chart. Thus INTT, RUN_0, and RUN_1 

are super states. Figures 13, 14, and 15 show the state charts for these super states. 

In addition to the state charts, one typically has to fill in code templates which define functions invoked 

when a transition is made. Figure 16 shows a template for a function DO_ALG_CALC which is invoked 

when the INIT state chart (Figure 13) is invoked. 

29 



INIT 

/DO ANG CALC 
ANG CALC 

/DO INIT1 

ARR INIT 

[COUNT=1025]/DO_VCOS_VSIN 

[COUNT<1025]/ 
DO ARR INIT 

CLUT INIT 

J /DO CLUT FELEIO 

CLUT READ 

RUN 0 

Figure 13. IRST - Initialization State 

•■sN/po_RUNjNrr 

^                      tI<aJC-•^xsT_^.G-■o•)/ 

RUN.INIT 
DOJJPDATE5ALT 

NEW_TAR4 

1    tr(CLK- 
J    DO UPI 

l'XST FLG-T]/ 
3ATE 

X   /DO_UP DATE5 

NEW_TAR NEW_TAR5 

1      [TEMP 
T     DO UE 

1 X<-32 or TEMPI Y<-32]/ 
DATEI 1 

[NEW TAR INDEX<1025]/ 
' DO CHANGE 

NEW_TAR1 CHANGE 

1 r /DO_UP DATE2 
1     [O0UN1 
T    DO CPJ 

• TEMP<1025]/ 
2ATE_FRAME 

NEW_TAR2 
CREATE_ 

FRAME 

1 r /DO_UP DATE3 
X   [COUN1 ■_TEMP-1025] 

AGAIN 
NEW TAR3 

/DO_UPDATE4 ^                      ' 

X 
lr(CLK-l) <DO UPDA re (NEW T> »iR INDEX ■1025] 

Figure 14. RUN_0 State Computed Target Position 

30 



RUN 1 

*\ 
RUN UNIT 

/DO FILE 10 

MODE ST 

/DO STEP1 

STEP1 

I /DO STEP2 

STEP2 

^ r   /DO JTRST 

FIRST 

[NEW TAR INDEX<1025) 
/DO_CHANGE 

" 

CHANGE I      ► STEP3 

1   [COUNT_TEMP<1025] 
T /DO CR FRAME 

1 /D0_STEP4 

CR_FRAME STEP4 

' 
1   /DO_STE 

F   [COUNTJTEMP=1025] 
P5 

AGAIN STEPS 

X=1025) 

o<CLK-lVD0_STEP3 

[NEW TAR INDE 
(NEWTAR INDEX<1025] 
/DO CHANGE 

OVER 

Figure 15. RUN_1 State - Target Position Read From A File 

The completed state chart model can be simulated in the graphics mode and when it is found to be correct, 

C, VHDL or Verilog can be dumped. 

ACTION DICTIONARY 
Project: IRST 

DO_ANG_CALC 
Defined in chart: INIT 
Definition: TAR_XCOORD:=XCOORD; 

TAR_YCOORD:=YCOORD; 
if (MODE_MOTION= 1) then 

RAD_ANGLE:=0; 
end if; 
if (M0DE_M0TI0N=2) then 

RAD_ANGLE:=(90*3.14)/180; 
end if; 
if (M0DE_M0TI0N=3) then 

RAD_ANGLE:=(ANGLE*3.14)/180; 
end if; 
R_VECTOR:=VELOCITY; 

Figure 16. Express VHDL Code Template Example 

31 



2.2.5.3 Model Complexity And Efficiency 

It is important to assess model complexity and model efficiency. The complexity data for the IRST Ilogix 

model is: 

1. State Charts: 43 nodes and 56 arcs. 

2. Templates: 520 lines of text. 

3. Resultant VHDL(Dumped Automatically): 948 lines. 

4. Programming Time: it took us about a month because we were learning the Ilogix software and the 

IRST specification. Assuming knowledge of both, a model of this complexity could be done in under 

a week. 

The efficiency of Ilogix models was compared with other approaches in a separate study. The test case 

involved modeling a handshaked exchange between a Computer and a Tester. The computer feeds words 

to the tester. If three successive words are equal, the tester asserts an EQU output. Figure 17 shows the 

system block diagram and a timing diagram for one data exchange. We modeled the tester completely, but 

only the bus interface of the computer was modeled. 

TESTER 

READY 

DATA 

COMPUTES 

EQ 

Equality Tester Block Diagram 

CLK JiJTJiJij~ij~LrLn_ 
READY 

DAV 

DATA zzzz ~y    0000    x      zz22~ 

Equality Tester Timing Diagram 

Figure 17. Code Efficiency Test Case 

32 



The results of the study are shown in Table 2. We compared flat (hand coded) VHDL models with models 

developed from Ilogix state charts and SPECCHARTS as implemented at UC Irvine [GajD94]. In terms of 

simulation speed, the hand code is markedly more efficient than the code generated by Ilogix in four 

different coding styles, and somewhat more efficient than code developed from SPECCHARTS. When 

synthesized, the Ilogix code required about 20% more cells than the hand code. We present these results 

not to criticize Ilogix and UC Irvine systems, for they are both very useful for high level modeling, but 

merely to illustrate that more research needs to be done on the transformations from these graphic 

representations to VHDL. 

Table 2 Model Efficiency Comparison 

Style              Simulation Cell Count 
Time 

Flat(PMG)       .47 sec. 216 
SPECCHARTs.60 sec. Not 
normal synthesizable 
SPECCHARTs.58 sec. Not 
flat synthesizable 
Ilogix Style 1   1.49 sec. Not 

synthesizable 
Ilogix Style 2  1.49 sec. Not 

synthesizable 
Ilogix Style 3  1.72 sec. 258 
Ilogix Style 4  1.66 sec. 258 

Style 1: behavioral/in line, Style 2: behavioral/procedural, 
Style 3: RTL/in line, and Style 4: RTL/procedural. 

In summary, our experience with Ilogix Express VHDL reinforced our belief that development of models 

with high-level graphics based tools is a very effective approach to model development. It allows the 

modeler to concentrate on the mathematical structure of the model without worrying about language 

details. The approach can markedly speed up the model development process. 

2.2.5.4 Modeling SAR 

In Synthetic Aperture Radar (SAR), an effectively long antenna is achieved by moving the antenna along 

a line and emitting pulses at regular intervals [XuZ95]. Then through signal processing means, the 

returns are combined to achieve the effect of an antenna with a wide aperture. The stimulus generator in 

the SAR model has to perform the following functions [ZueB94]: 

33 



1. Generation of the transmitted signal which is a pulse of the form s = cos 2ri(fc t + Kt2/2). i.e.. a 

"chirp" is emitted where the frequency is varied linearly over the duration of the pulse. 

2. Generation of the received signal which is the transmitted signal delayed by to which is proportional 

to target range, .i.e. r =cos2n (fc(t - to) + K(t - to)2) 

3. Down conversion. Here the value of fc is shifted down from the GHz to the MHz range. 

4. Deramping. The down converted received signal cannot be processed through conventional filtering. 

Thus it is "deramped" by multiplying it by its complex conjugate. This is better illustrated if the 

signal is represented in complex form. Figure 18 illustrates the process. 

Deramp Compression Processing 

Down-converted 
Received signal 

r _     A    eJl-2xfct,+xK(t-><,)1] R=A,e 

^R(t) 

,./l-2<*0+**:«J-2attr0] 

5  = A„e -JUKI' 

Conjugator 

s =   A.e 

Down-converted 
Transmitted signal 

Figure 18. Deramp Compression Processing 

In the final result (R) it is instructive to look at the term -2nfcto + IIKto2 - 2nKtot. Note that the first two 

terms are constants, and in the third term the frequency is Kto. Thus what we have produced is a 

monochromatic sine wave whose frequency is proportional to range. 

34 



In our SAR test bench work we developed the model of the transmission and return process using Signal 

Processing Worksystem (SPW) from Cadence [Cad94]. 

Figure 19 shows the schematic for the SAR test bench. Some of the primitives are basic SPW DSP 

primitives such as Complex Conj and Z"1 (delay). Other symbols such as Gen_chirp imply an underlying 

schematic which is made up of SPW primitives. Once the system schematic is developed, it can be 

simulated in the SPW environment to check for correctness. 

Figures 20, 21, and 22 show the transmitted signal, the received down-converted signal, and the FFT of 

the deramped signal. Note that it indicates a major response at a single frequency. The FFT is normalized 

to the sampling frequency (70 GHZ). When multiplied by 70 GHZ, this gives an actual peak frequency of 

10.1465 MHz. 

SPW Real Number Model 

Figure 19. SPW Real Number Model 

35 



CD 

3 
DI 
CO 

-0.5 

0J 
T3 

M c 
O) 

50 

Real Part of Transmitted signal 

100 150 200 250 
Time 

Imaginary Part of Transmitted signal 

150 200 
Time 

300 350 

350 

Figure 20. Transmitted Signal 

Real Part of the Down-converted Signal 

3   _        4 
Time 

Imaginary Part of the Down-converted Signal 

3   _.        4 
Time 

xlO 

xio 

Figure 21. Downconverted Received Signal 

36 



Frequency analysis of the output data 
Frequency Analysis of output data 

Frequency 

Figure 22. FFT of Deramped Signal 

SPW has a code generation interface which can be used to generate C and VHDL. However, the VHDL 

interface is limited to fixed point models, probably because these models can then be further processed by 

automatic synthesis tools to yield hardware implementations. In our case, though, we were interested in 

real number models. To solve this problem, we developed our own SPW to VHDL conversion tool which 

could convert SPW models to VHDL real number models. 

37 



Figure 23 shows the system. SPW inputs to the system are the files underlying the block diagram, such as 

the one shown in Figure 19. and a file of model parameters. The other inputs to the system are VHDL real 

number primitives corresponding to DSP primitives that SPW uses in its schematics. We developed this 

VHDL primitive library. Thus, we achieved the capability to develop VHDL real number models from 

SPW. 

SPW 
Model 

Parameter 

SPW to 
VHDL 

Conversion 
Tool 

VHDL 
Real 

Number 
Model 

Figure 23. Real Number Model SPW To VHDL Interface 

The data flow nature of the SAR also made activity charts an applicable modeling technique. Figure 24 is 

an activity chart model for SAR developed on Ilogix Express VHDL. The primitives used in this model 

are similar to the SPW primitives. 

38 



Ilogix Express VHDL Activity Chart 

ENVIRONMENT 

BW      SAMP_FREQ     FREQ   1 PW 

SAR  TB 

R« MR6 

CHDtP 

RC1 

COMPMULl 

COMPTPPS X- NEC5 

COMPMDL5 

R7 

-1 *- 

17 

1 
XI 

ASSIC 

COMPTFT1 
11 DM 

JC2 

V       1 
'    'i 

R2 NR2 ' 
COMPMVLf DECIMAT2 COMPTIT2 NEC 2 

COMPMVL2 

R4 

NEC4 CHANCE4    _ 
12 NU 

VIRV 

W         } 

VMV-—J 
NR4 KM 

t    t * VRRH 

CHANCE1 

VRBH 

ASSIC NX 
COMPMULl 

RJ 

IS 

COMPMDL4 

RRHl 

DECIMAT1 

COMPTFP) NEGJ 
CHANCE2 

K» 
IRK V1BK 

Figure 24. Acti\ity Chart Model of SAR 

2.2.5.5 Library Based Model Development 

In this approach to model development for VHDL test benches, the test bench architecture is constructed 

as a structural architecture to form the model [GowP95]. The model instantiates primitives from a 

primitive library. The structural architecture is built using a commercial schematic capture tool. This 

approach promotes reuse of test bench structure and library primitives, and thus is important to the 

RASSP model year concept [GraG94, FraG95]. 

In our work, we used the Synopsys Graphical Environment(SGE) [Sy92] as our schematic capture tool. 

SGE contains a Symbol Editor which can be employed to create library primitives, a Schematic Editor to 

interconnect the primitives, and a VHDL interface to generate the VHDL description of the structural 

model that is created. 

39 



Our work with the behavioral modeling tools resulted in libraries for SAR and IRST test benches which 

were refined over time in the library structure. The libraries we developed contained the following 

components: 

SAR Low-level components - chirp, complex tone, complex multiply, delay, complex conjugate, 

decimate, and type conversion. 

High-level components - Genchirp, delay, down converter, deramper, merge, and noise. 

IRST - target, clutter, sensor, clock 

The function of the primitives listed above is mostly evident based on previous discussion or common DSP 

terminology, but two require explanation. The SAR merge component merges multiple single point target 

returns into one signal. The noise primitive injects noise into the radar signal. In IRST only four 

primitive types are listed, but there are many versions of these. Figures 25 and 26 show the structural test 

benches constructed for IRST and SAR using SGE and the primitive library. 

<X_COOWD*>- 

<Y_COORDV- 

EB5ED- 
KtLocirrV 

RöocV 

hODEJWIoTTV 

rr»RGJ»«NGE >- 

EEB>- PER 
CLK 

ENVIRON22 

K_COORO 

.COORD 

«LOCITY 

*OOE_MOTION 

TARG_RANGC 

INIT  RUN 

SCKISOR22 

FROMC 

:LUT 

'ROME 
INIT 

Hl MÖGE > 

Figure 25. Structural Test Bench for IRST 

40 



Figure 26. SAR Structural Test Bench 

2.2.5.6 Model Simulation Efficiency Studies 

As models were refined in the library setting, it was important to assess the efficiency of various modeling 

approaches. An important question in this area is the relative efficiency of signal based models (built 

structurally) to variable based models using procedures. In the DSP application the data flow is 

unidirectional; thus it is straightforward to develop a procedure based equivalent of an entity based model. 

In our study, the entity based models were created via the SGE approach, the equivalent procedure based 

models were done by hand. 

Table 3 shows the simulation results. In the data the left column is the VHDL simulation time. The right 

two columns are wall clock time as measured by operating system probes. Note that procedure based 

models using variables are 10% to 20% faster than entity based models using signals. Other work done at 

41 



Virginia Tech [WicJ96] and other literature results agree with this [PauB92, BalA94]. Because of this, a 

schematic capture tool for procedure based models in which the procedure corresponds to a primitive 

would be useful. 

Table 3. Simulation Results 

Simulation 
Time in NS 

Entity based testbench 
model using signals 

Procedure based testbench 
model using variables 

10 NS 5158886 US 4427989 US 

14 NS 5881279 US 5183508 US 

16 NS 7513527 US 6047736 US 

20 NS 8130987 US 6541481 US 

2.2.5.7 Domain Specific Environment Modeling Software 

As part of our environmental modeling for RASSP test benches, we also employed domain specific 

software to develop model input data. It is very important to use this approach because the writers of this 

software typically have a better understanding of the application domain than the VHDL modeler would. 

One (manageable) problem with this approach though is that format conversion is typically required 

before the data can be used in the model. Also, these programs sometimes produce very large data files so 

efficient techniques for reading these files must be employed. Finally, the execution of these programs is 

frequently slow and so they may have to be run in an off line mode and the data read by the test bench 

later. 

For IRST we originally used MATLAB for generating two-dimensional arrays representing simple 

targets and simple background clutter. Later we developed a more realistic approach to modeling IRST 

sensor inputs. For target signatures we used a tool called IRTOOL [Are95], which was developed by 

Arete' for the Navy. It produces realistic IR signature of cruise missiles. For background, we used the 

IRAMP data base [ONR94]. This data base of clutter files maintained for NRL which contains ocean 

scenes consisting of sky, sea, and clouds. To produce an IRST input, we just combine the IRTOOL missile 

signature with an IRAMP background picture. Figure 27 shows an example of this. 

42 



An example of continuous frames generated by the 
testbench with artificial target(includes target motion, 

platform motion and sensor noise) 

Figure 27. ERST Input Frames 

For SAR environmental modeling, we used real data files of radar data from MET as data files in an off- 

line test bench generation mode. An example of this will be shown below. We also employed, to a limited 

extent, a program known as xpatch Pem93], which was developed by DOD to produce individual radar 

returns from and radar cross sections of various objects. However, our best success was with the use of 

SPW to model returns of single and multiple point targets. Figure 28 shows a radar return from two point 

targets where the two targets have been superimposed. This figure gives the time response of the returns. 

Below we will show the FFT of a similar case. Using SPW gave us the most control over return 

characteristics. 

43 



Radar return from two targets located 
at ranges of 7,260 meters and 7,261 meters 

Stimulus 

B   „       6.5 
Seconds 

x10 

£.   0 
at a 
£ 

liP^^WIff 
-4- 

^ijfF11 fUffT'ir W''ifpii 
5.5 

|Pp' 
6   „        6.5 

Seconds 
7.5 

X10 
-5 

Figure 28. SAR Radar Return From Two Point Targets 

2.2.6 Linkage to System Requirements 

In our approach to test bench generation, our linkage to system requirements has the following 

characteristics! ArmJ95, ArmJ96] : 

1. A specification repository holds primary specific requirements. 

2. A math model, known as a requirements interface, receives primary requirements and generates 

derived requirements. 

3. These derived requirements and some of the original primary specific requirements specify the values 

of test bench code generics. 

44 



2.2.6.1 Specification Repository 

The specification repository is a high-level system diagram where blocks in the schematic correspond to 

real system components. It is intended for use by systems engineers who are not VHDL literate, thus 

underlying VHDL is hidden. Our system diagrams are developed using a schematic capture tool, Synopsys 

SGE. With this approach, specification parameters are symbol attributes. A parser extracts the values of 

the attributes (specification parameters) and feeds them forward to the test bench system. Thus, if a 

specification value is changed, its new value is automatically fed forward to the test bench. Figure 29 

shows how a specification parameter is altered in the IRST system schematic. The systems engineer clicks 

on the block of the system component for which the specification values are to be changed. A window 

then pops up where specification values can be edited. In this example the frame time (the time between 

adjacent frames) is being edited. Figure 30 shows the system schematic for the SAR system. 

System Level Schematic Diagram Of IRST System Showing Specification 
Modification. 

£fcfcm2Slt*a_fi22SfiSES_ 

>**Cf»l140Nlnu4f»d 

Figure 29. Changing An IRST System Parameter 

45 



SAR    (fiirerift ) 

Trvrtami t ter 

NOI»C_OUT 

RX.IN2 
RMeiwei* 

RX_OUT 

RX_INi 

Sensor   D»ti   Bus 
SAR   processor 

^RROC_XN   RROC_OUTi 

RROC_OUT2 

Display 

DXSP_XN 

*NT_1N1       ANT_OUT2 

Antonna 
ANT_XNS 

AWT_OUT1       ANT_IN2 

TAR_XN   TAR_OUT 

T»rfe-t 

Rocitioning   Controt 

Figure 30. SAR System Schematic Diagram 

2.2.6.2 Requirements Interfaces 

As indicated above, a requirements interface is a math model that receives primary specific requirements 

from the specification repository and generates derived requirements. These derived requirements and 

some of the original primary specific requirements are the values of test bench generics. Figures 31, 32, 

and 33 show the requirements interface for IRST and its associated math model. The purpose of this 

model is to translate sensor properties and platform velocity into platform displacement and clutter motion 

measured in terms of pixels. 

46 



Target Speed 

Platform Type 

Sensor Resolution 

Revisit Period 

Range 

Primary Requirements 

IRST 
Requirements 

Interface 
Target Motion 

Clutter Motion 

Derived 
Requirements 

Figure 31. Requirements Interface for IRST 

List of equations 

- Sensor Res factor = 100/1000000   if Sensor Res = Hi 

- Sensor Res factor = 250/1000000   if Sensor Res = 
Low 

- Platform Velocity = 448 m/s if Platform type = VF-X 

- Platform Velocity = 256 m/s if Platform type = VF 

- Platform Velocity = 192 m/s if Platform type = VP 

- Clutter Range = 1609.344 * Range(200 miles) 

- Platform Disp = Platform Velocity * Revisit Period(l 
sec) 

- Clutter Motion = 2 *asin (Platform Disp/ (2 * Clutter 
Range)) / Sensor Res factor 

Figure 32. Math Model for IRST Requirements Interface 

47 



-M  — Platform Disp (PD) -  »- 

a1\ 
\ Range 1                / 

\     Range 2/ 

Ao. 

Clutter 

Total Angular Disp = a1 + a2 

Assume a1 = a2, Rangel = Range2 

Sinai = (1/2 *PD)/Rangel 
a1 + a2 = 2 * asin( PD/2 * Rangel) 

PAFOV = Pixel angular field of view 

Pixel Disp = (a1 + a2) / PAFOV 

Target Range = 1609.344 * Range(200 miles) 

Target Velocity = Mach to m/s(320) * Target speed 

Target Disp = Target Velocity * Revisit Period(1 sec) 

Target Motion = 2 * asin (Target Disp / (2 * Target Range)) / Sensor 
Res factor 

Figure 33. Math Model for the Requirements Interface (Cont'd) 

Figures 34 and 35 show the requirements interface and the math model for SAR. This math model is 

considerably simpler than the IRST math model. A case could be made for putting these calculations in 

the VHDL code. However, having them external makes them controllable by systems engineers. Also, 

putting them in the VHDL models may limit the generality of the modeling primitives. We did not 

explore this issue extensively, though. 

Squint Angle 
Carrier Frequency 

Swath Width 
Nominal Range 

Pulse Repitition Frequency 
Transmitted Signal Bandwidth 
Transmitted Signal Pulse Width 

Speed of Aircraft 
Resampling Frequency 

Primary Requirements 

SAR 
Requirements 

Interface 

Deramping Signal 
Pulse Width 

Deramping Signal 
Bandwith 

Sampling Frequency 

Derived 
Requirements 

Figure 34. Requirements Interface for SAR 

48 



•Pulse width of the signal used to do de-ramping 
Pulse width of transmitted signal +(swath width / speed of light) 

=30 us+2*(375m / 3* 108(m/s)) = 32.5 us. 

•Bandwidth of the signal used to do de-ramping 
Rate of change of frequency * pulse width of the signal 

= (600 MHz /30 us) * 32.5 us = 650 MHz 

•Sampling frequency 
Sampling frequency > 2 * carrier frequency 

= 70GHz>2*33.56GHz. 

Figure 35. Math Model for SAR Requirements Interface 

2.2.7 Test Plan 

A test plan is a document that organizes system requirements in terms of how the requirements will be 

tested. It divides requirements into test groups where one particular system requirement is left unspecified 

and other system requirements receive fixed values. A set of tests is then allocated to each group. 

The Test Plan Interface that we developed for the Test Bench Generator uses the following approach: 

1. For each application (SAR or IRST), the test bench is an unbound structural architecture. 

2. A VHDL configuration body specifies which library models to use and assigns values to generics. 

3. A test group corresponds to a partially specified configuration body. 

4. Each individual test corresponds to a fully specified configuration body. 

5. The library models are those described in 2.2.5.5. 

For the RASSP test program, demonstration test plans were developed for both SAR and IRST. 

For SAR the test plan consisted of four test groups with the following goals: 

1. Evaluate the range of a single point target. 

2. Evaluate the range of multiple point targets. 

3. Evaluate the discrimination of two point targets. 

4. Evaluate SAR Algorithm noise sensitivity. 

49 



Figure 36 shows the results of test Group II test in which seven targets were detected. The figure shows 

the FFT of the SAR algorithm output. Each target corresponds to a discrete frequency. Figure 37 shows 

the test results for a test from Group III. Here, two targets 0.25 meters apart can still be discriminated. 

Figure 38 shows the results of a noise test from Group IV where the correct target at 7260 meters was 

detected, but because of the noise, two "ghost" targets were also detected. 

7 targets applied 
All targets detected 
MSE 0.12 meters 

Figure 36. A Test Case of Test Group II 

• 2 targets applied (7,260 m and 7,260.25 m) 
• Spacing = 0.25 meters 
• Can be discriminated 

Output of the SAR Pr 

990 1OO0 1010 
Range Bin Number 

1020 1030 1040 

Figure 37. A Test Case of Test Group III 

50 



A Test Case of Test Group IV 
• One target applied (7,260 meters) 

• Gaussian noise standard deviation = 6.6 

• Three targets detected (7200.13, 7215.68, 7260.05 meters) 

PWWJWPP 

Figure 38. A Test Case of Test Group IV 

For IRST the test groups had the following goals [Kots96]: 

1. Target displacement detection 

2. Sensor frame displacement detection 

3. Noise sensitivity determination 

4. General test group 

The general test group allows the user control over all test parameters. The test combines target motion, 

platform motion, and sensor noise. 

2.2.7.1  Iterative Test Mode 

This mode involves repeated execution of the test bench generation and execution software. Its purpose is 

to use repeated execution to determine the limiting value of a system parameter such as noise sensitivity. 

51 



Figure 39 summarizes the application of the iterative mode to SAR. In the right-hand column are the test 

strategies. "Even division without end points" means that the single targets tested are equally spaced 

within a major interval and end points are excluded. "Constant increment" means that the number of 

multiple targets is incremented from one test bench iteration to the next. " Double increment and binary 

search" means that the test parameter is incremented until an upper and lower bound is found on the 

parameter. After which a binary search is used to determine where the value is within the two limits. 

Test Group 

Hange o( ifegte target 

targets 

IHsarHHHHktk» of hre 

targets 

Senjftfrity to nob« 

Adjustable Parameter 

Target trage 

Distance between tvw> 

Jfeee standard detoatioa 

TestStrstegies 

Coastaat increment 

Double iocnaaeat & 

binary search 

Figure 39 SAR Test Groups of Iterative Test Mode 

Figure 40 shows the results of the iterative mode for SAR Test Group II where the number of multiple 

targets is incremented from one to seven. MSE is the mean squared error in the range of the detected 

targets vs. the inserted targets. Figure 41 shows the results for SAR Test Group HI where eight iterations 

were used to determine that two targets can be detected as long as they are 0.23 meters apart. Figure 42 

gives the results of an iterative test sequence that determined that the maximum tolerable noise standard 

deviation is 6.1. 

Test No« 

No. of Applied Targets 

1 2 Illlll ■111 5 illlll 7 

,     I 
■   2 ■', llllill 4 5 6 7 

No* of Detected Targets 

MSE {meters) 

.\    1 mil illlll ;v:."4  ■■ Hy.Y,'5 . : 

6 7 

0.05 0.15 0.09 0.J4 0.13 0.16 0.09 

Pass/Fail iiiiiimii ps$s flffllH pass 11111 BEÜR: §§||§II1 

Figure 40. Results of Iterative Mode for SAR Test Group II 

52 



• Initial distance = 0.05 meters 

• Precision = 0.01 meters 

• Finished in 8 iterations 

• Discrimination capability = 0.23 meters 

Figure 41. Results of Iterative Mode for SAR Test Group III 

• Adjustable parameter: noise standard deviation 
• Test strategies: double increment & binary search 
• Initial noise standard deviation = 1 (normalized to the 

amplitude of chirp signal) 
• Precision = 0.1 
• Finished in 10 iterations 
• Maximum tolerable noise standard deviation = 6.1 

Figure 42. S AR Test Group IV Evaluation of Noise Sensitivity 

The results of the iterative mode tests for IRST are shown in Figure 43. In these tests an increment 

strategy was used to determine maximum value for target speed, platform speed, and noise level. 

Test Group Parameter Increment Limiting Value 

Target displacement detection Target Speed 25 m/s   • 450 m/s 

Sensor frame displacement Platform 15 m/s 225 m/s 
detection Speed 

Noise sensitivity Noise Level 10 110 

Figure 43. Results of Iterative Mode for IRST 

In a follow-on contract sponsored by the U. S. Air Force, we will combine the test plan with goal trees to 

develop a high-level approach to system testing. A goal tree will represent a test plan. The goal tree is 

given a grand goal such as "determine the system noise sensitivity." The grand goal is decomposed into 

53 



subgoals until primitive goals are reached. Primitive goals define a test group that would be applied to 

reach the grand goal. 

2.2.8 System Integration 

Figure 44 is a modification of the basic approach shown in Figure 8, as it shows a high level test bench 

generation system with test plan interface. Now default specification requirements are received from the 

Specification Repository. The Test Plan Interface can override these default requirements or modify them 

based on the test group to be employed. The Test Plan Interface produces the final specific primary 

requirements and forwards them to the Requirements Interface which employs a math model to produce 

derived requirements which are the generic values. The Test Plan Interface also produces model selection 

information which selects test bench primitive models to bind to the test bench structural architecture. 

General 
Specifications 

Design Tool 
(Code Generator) 

VHDL Primitives Primitives 
Library 

Specifications    f* 
Repository 

Default 
Specification 
Requirements Test Plan 

Interface 

I 
Model Selection 

Specific 
Requirements 

Requirements 
Interface 

General & 
Specific 
Requirements Environmental 

Data 
Generator 

Derived 
Requirements 
(generic values) 

Data Files 

Test Bench 
Primitives 

Simulatable 
Test 

Bench 

MUT 

Figure 44. A High-Level Test Bench Generation System with Test Plan Interface 

The other information flow paths are the same as in the basic system. General specification information is 

used by the Design Tool to develop VHDL primitives which are refined in the library structure. As time 

passes, the Design Tool is used infrequently and test benches are just developed structurally using the 

54 



primitive library. Both general and specific requirements are still used by the Environmental Data 

Generator to produce data files for test benches that use file I/O. 

2.2.8.1 Systems Integration Work 

Existing design and application area tools can be used to develop pieces of a test bench. However, two 

software systems are required to integrate the pieces. Figure 45 shows the Test Bench Generation System 

which produces the test bench. The top part of the diagram has been explained: Specification Repository, 

Design Tool, Requirements Interface, and Environmental Data Generator. Now three libraries are shown: 

Test Data Library, VHDL System Database, and TB VHDL Components. The Test Bench Generation 

User Interface (TBGUI) interacts with the user to select test plans, models, generic information and data 

files that make up a test bench. At each step, one can accept or override default values. TBGUI also allows 

one to edit the specification information in the Repository. The outputs of the Test Bench Generation 

System are: 1) the complete executable VHDL test bench, 2) test data files to be read by the test bench 

during execution, and 3) a file of simulation control information. This file is used to control the 

simulation and is peculiar to the VHDL simulator being used [Syn95,Van92]. 

Figure 46 shows the VHDL Simulation Controller. This system uses the VHDL test bench model, test data 

files, and simulation control files to perform the simulation. The Test Bench Execution User Interface 

allows the user to select the modes of execution and output display. 

55 



Test Bench Generation System 
Specific Requirements General Requirement* 

■-I  

Modal 
Generic  |      \ Selection 
Value» 

Requirements 
Interface 

Figure 45. Test Bench Generation System 

The VHDL Test Simulation Controller 

Figure 46. The VHDL Test Simulation Controller 

56 



2.2.8.2 Demonstration System 

For our laboratory demonstrations system, we combined the Test Bench Generation System and the 

VHDL Test Simulation System into one system with one menu driven user interface. The software is 

written in C using X-View layer libraries of the X-l 1 protocol. The interface prompts the user with a list 

of possible selections or prompts the user to key in certain values in a certain range. Figure 47 shows the 

menu structure for IRST (SAR is similar). The user first selects file I/O or a code generated (on-line). For 

the file I/O case one next selects the results of a particular test plan that were derived previously offline. 

Within the results of a particular test plan, the results of a particular test case are selected which results in 

the selection of data files to be read by the test bench. Finally one chooses either on-line or post processing 

of simulation output. With on-line processing, X windows show results as they are generated. With post 

processing, MATLAB is used to process the results after simulation. Post processing is generally faster. 

After this selection, simulation begins and results are displayed. Figures 48, 49, and 50 show input frames 

read from a file by a test bench, X window online displays, and final test displays which show the 

comparator output. Figure 51 shows the result of a SAR file I/O simulation. The three-dimensional figure 

depicts computed range and azimuth information in a received SAR signal. The input file was from MIT. 

57 



User Interface Menu Structure for IRST 
File I/O 

Stimulus Source 
Code-generated 

Select 
Test Plan 

Select 
Test Cue 

Output Processing 
On-Une Post 

Change 
System Requirements 

Single Test 

Select Test Plan 

Select Values of Input Parameters 

Select Clutter Flk 

Sattle Point 
Target Type 
 IRTool Generated 

IRTool Target Selection 
Database Create on-line 

Sim «tote 
Stlniuhit Generator Complete Tert Bench 

' t 
1 r 

Ou 
On-Hne 

tpttt Processing 
Post 

' V ♦ 
Start Execution 

Figure 47. User Interface Menu Structure for IRST 

Figure 48. Test Displays: Test Vectors Used in the File I/O Test Case 

58 



:::«2UTVtH*;-WfMftOW>:: 

SfEmHäg 

>S;:S'W1it:.:S>'ai>-><J i ?"'s.'s; ' Vv--:?": 
":• • ■*»<•■*»<< «so«5aMUH »s..•■■•■■.■ ■  ■:■.. ■ ■ 

• '&&!!'< #**■ ■■:•• ■ Ä;:S! *'■?£:?:: hf:-W>}:' :y'fy\^^xVf: -f£\ 

i 

JMHP 

: ttftftfc-ttom»« -few» :**wft:4rv«P«»*Ht*^ 

Figure 49. Test Displays: MUT Outputs for the File I/O Test Case 

Simulation Results 

Target Speed    : 225 "i":":":':-:":':":-^ 

Platform Speed: 75 

Noise Leyei      : 0 ii^ÄiMiiiiiiiiiiiiiiiiiiiHiHI 

Targ 

Platf 

Comparator Outputs 

et Motto« Detected        Correct 

or«t Motion ©etected fCara« 
:;:;:;:;:j:£>:j>:ö:j>>:^ 

et Signature detected ?C«fffert 

Figure 50. Test Displays: Comparator Outputs for the File I/O Test Case 

59 



Figure 51. SAR Simulation Result Using File I/O Mode 

The right side of the menu structure is for code-generated inputs (online) test benches. In this mode, one 

first has the option of changing information in the Specification Repository. Next, one selects the test plan 

and values of free parameters in that test plan. The next several choices relate specifically to IRST. One 

chooses a clutter file and whether to use a point target or an IRTOOL signature generated one. For the 

IRTOOL choice, the target can be read from a data base (fast) or generated online (slow). The final two 

selections are shared by the SAR system. One selects whether to simulate the test bench only or the test 

bench driving the MUT. Finally, the method of output processing is chosen. 

Figures 52, 53, and 54 show setting up and results of a SAR multiple target simulation. In Figure 52, the 

user selects the multiple target test plan, the number of targets, and their ranges in meters. The rest of the 

specific requirements are provided by the Specification Repository. Figure 53 shows the FFT of the SAR 

algorithm output as displayed by MATLAB. Figure 54 gives X window target reports which list detailed 

numeric data on each of the targets detected and the mean squared error in their combined detection. 

60 



iül 6AR8as*W4l»«ow 

stimms^tf» C«*C*«»*»«                         w.» |C^ONHM 5«ft; 

Cfa»9» System-Parameters *■*«««« Primary Parameters »«■>»»>» 
:: 

ffctetffanuteters ;;S:^:;:^::^;:::^:::;:o::S:: :•:■: 

»VT •«adwlAbttfTKSisn«! <«♦«)*            600 
j On^tfm»»im# Carrier freausncr {GHr>                        aa.SE |;S;:i|::;::;s;i|ps;i | 

fcimivwr Sänge {in}                                JKO 

T»stM<Kkf »als» Sspatirisn Kate <XHi]                  15 gsSSSSJ^lHgj:; ;| 

j SiBSfe T*S» »»t«eWMBiof1^Sttfi»iti*tJ               30 

«tsratfc«     1 ftesamplhns fir«jtiBWcy-Ö*HÖ               1Z5 ^^w^^^^Ü^: &: 

JtstGrxtu? 
Swat»Wnft]><m>                                     373 

^|:::::^:^::|:::::-:!:::ä: £ 

j 2. ftttswof rtulifcrfs T»s*& 
A*|ittU&hi ?antaniart 

3, tasointw «f Tw» Twgstj. 
Saat* «i Target* W»>                           't?5-3^ 

: 
4 Hots* Swtsftfvfty 
£.£snais*£su 

Rft*s» «f tarnet 2 tm>                           7213.« 

Haag» «E Tarnet 3 f«i>                             7306.88 
79725 !—* ) 

707Z5 1      i  i 

:■••••:•  i7W.S 

87<M7S f 

Hvmbtr »f Target» 
*    2    3 f£~ H    S    7 

*a«8e«f Tarnst *<m>                         7400,63 7072,5 i — lllltlllll 1 

<««««« &«rlv«4 PttfBlMt«*« »»it?;»;»?' 

;illlillii§lllllllllilil PWts* WMtfc «fftecefwnt Sfeftai 6ts*       32.5 £8W:8:S:SH$:$£: S: 

Sa^wkKfe«*Ä«*{y«tS4a)Ntt{«KtJ      SSO lllltlllllll 1 
S*iWrl}n»»<«l«c«»eyiC»«i                  7fi llllllflllllll 1 
PwfiTMtW» Pwctw                                SSO ggigiglij^Ä:;:: |: 

N«»b«rflr9ectmat»4$»4iittt«5           *OOT V;. ': :1::'/'-\   ; 
JtefercnceSI&ist* Start Ttni« ins)       «0 Sisigi^slsSg; 1 

Ontetj Accept < 

Figure 52. SAR TBGUI Base Window Showing Code Generated Mode and Parameter Entering 

61 



fisw« No. 2 

Output of the SAR Processor Qufc 

I' 1 14.11 I » l>    I      . . I I .111 I , 

*»"■!■ i ■' 1 
ZOG  4ÜD  BÜ0  cClO 10Ü0 1200 1400 1600 1800 2000 

Range Ein Number 
Target Report after Postfiltering 

1500 
3) 

= 1000 
■c 

-   500 

0. 

i 

. r ■■            : z  T 1— 

■ i • 

iau f<_ua /JUU /JbU 

Figure 53. Code Generated Mode of Test Group II: Range of Multiple Targets 

rA Target Report 

*********** Target Report **•****♦*♦♦ 

Cold values: 
Bange of target ? is ?119<38 »stars 
Bangs of target Z is 7213.13 »etars 
Range of target 3 is ?36ß<88 aeters 
Bang* of target 4 1s 7430.63 aetars 

4 targets are detected 

detected Targets: 
1$    81» tftaber    ftange 

1 331 7113,33 
Z «11 7213-16 
3 1211 7306.94 
4 1628 7488,48 

All of the 4 targets are detected 

The «tea» square error * S.D8 »eters {: 
Figure 54. Target Report 

62 



The Test Bench Generator was written for execution on Sun workstations. To execute the program, 

Synopsys VHDL Analyzer and Simulator, and Synopsys Graphics Environment and MATLAB are 

required. 

2.2.9 Conclusions 

In our RASSP sponsored work we have shown that effective test bench generation requires: 

1. High level graphics design tools to develop initial test bench code quickly. 

2. A test bench component library to construct test benches structurally. 

3. Accurate environmental modeling using application domain specific software. 

4. Automatic linkage to the system specification. 

5. A test plan interface to configure the test bench structural model. 

And while commercial software can be used for generation of test bench pieces, system software having 

graphic user interfaces is needed to integrate the pieces into a working system. 

63 



3. Accomplishments 

3.1 Too! Construction 

3.1.1 Algorithm Partitioning Tool 

Development of the Algorithm Partitioning Tool consisted of three efforts conducted recursively: 

• Selection of tools and libraries, 

• Development of target models, and 

• Development of interfaces. 

Initially, simple models were constructed using candidate toolsets to determine toolset and library 

suitability and to provide specifications for interface inputs and outputs. This was followed by 

development of models of increasing complexity at each stage, algorithm, hardware, spreadsheet, and 

performance models, and determining if sufficient data was available from the predecessor stage to 

support the following stage. When not, "give and take" modifications were made to the models. In order 

to keep the interfaces simple and understandable, we decided at the start of the contract to make all 

interface inputs and outputs ASCII files. 

3.1.1.1 Selection of Tools and Available Libraries 

For VHDL modeling, it was decided at the outset to use the Honeywell developed PML library and the 

Synopsis compiler and simulator for both the APT and the test bench generator. However, the PML 

models were developed by Honeywell using the Vantage VHDL simulator (now Viewlogic Optium VHDL 

simulator). Even with extensive support from Honeywell personnel, we were unable to get even simple 

models to simulate using the Synopsis VHDL simulator. At the midpoint of our contract, we decided to 

adopt the Vantage VHDL simulator for APT VHDL simulation, and retain the Synopsis VHDL simulator 

for the test bench work. Since the VHDL performance model development was behind schedule due to 

64 



unanticipated problems with the VHDL simulator and to debugging problems with the PML models, we 

developed an extraction interface for schematics drawn with Network II.5 to allow work on the tool 

interfaces to progress in parallel with the PML model development. As PML models became available, 

we were able to use the Network II.5 experience to accelerate VHDL interface development. 

Team members attended early meetings at both RASSP prime contractors where it was determined that 

ComDisco's SPW and BONeS and U. C. Berkley's Ptolemy Synchronous DataFlow and Discrete Event 

Domains were prime candidates for functional and non-VHDL performance simulation respectively. We 

visited both U. C. Berkley and ComDisco and for the first 6 months of the contract, we did initial 

modeling with Ptolemy, SPW, and BONeS. At that time, our preference was to use Ptolemy. However, 

when we received the Lincoln Laboratories SAR specification and started modeling it, we found that the 

package was not robust enough (in Jan/Feb 1994) and refocused on SPW/BONeS. It was later found, and 

confirmed by Cadence Alta Group, that there is no way to generate a BONeS model other than through 

their graphical interface. We then turned to Network II.5 as our performance modeling tool because it 

was robust enough to support the SAR application and CACI was willing to work with us and their tool 

has an ASCII interface. 

A survey of all available spreadsheets was conducted at the outset of the project. The 2020 spreadsheet 

from Access Technology was adopted as it is the only one that provides a facility for creating and 

modifying spreadsheets with externally produced ASCII files. 

3.1.1.2 Development of Target Models 

Our approach was to build source and target models and then develop interfaces to transition from source 

to target. Also, we started with small, easily verified applications and simple architectures and worked 

our way up to real applications and architectures. The simple models were derived from the real 

target algorithms. 

65 



We started with a textbook SAR and notional IRST algorithms with which we were familiar and an 

architecture consisting of arrays of TI TMS320C40s. These models were used initially to familiarize 

ourselves with candidate tools, Ptolemy SDF, SPW. BONeS. and PML. We also started constructing 

exploratory spreadsheets to determine meaningful forms for presentation to the user. 

Upon receipt of the Lincoln Laboratories Benchmark I SAR specification, we focused on that algorithm. 

The first models were a small model of the range processing and corner turn for a single polarity pair with 

very small vectors so that we could verify the output of each block of the SPW model. This was followed 

by a single polarity pair model of the entire algorithm that treated the azimuth processing as a 

single subswath. We then incorporated the kernel set selection and subswath processing into the single 

polarity pair model. Finally, we modeled the entire algorithm as specified. All four functional models 

and BONeS performance models (on the C40 arrays) were completed along with a demonstration 

interface for generating a sizing spreadsheet for the small model by the first RASSP conference. 

At the first RASSP conference, it was determined that the prime contractors were both using the Mercury 

Raceway with i860 or share as their architecture. We focused or hardware and performance modeling on 

that architecture. 

By the second RASSP conference, we had developed four running VHDL models using the Honeywell 

PML library components along with some additional in-house components. 

1. Single processor, single global bus system. 

2. Four processor, single global bus system. 

3. Four processor, multiple local bus system interconnected by a crossbar switch. 

66 



The software tasks implemented were parts of the range processing and corner turn algorithms from the 

MIT Benchmark I SAR processing algorithm. The results of experiments performed on these models is 

reported in Hormazd P. Commissiariat's thesis (Performance Modeling of Single Processor and Multi- 

Processor Computer Architectures) and in a paper at the second RASSP Conference (Developing Re- 

usable Performance Models for Rapid Evaluation of Computer Architectures Running DSP Algorithms, 

pp. 103-108). 

The final model was a 16-processor Mercury Raceway architecture. Two algorithms were mapped onto 

this architecture: 1) the SAR range processing algorithm, and 2) the single polarity multi-swath SAR 

benchmark. This work was reported in Srilekha Vuppala's thesis (Methodology for VHDL Performance 

Model Construction and Validation). 

With these models available, we were able to finish the VHDL interfaces for APT. 

3.1.1.3 Development of Interfaces to Generate Target Models 

A key issue that drove interface design was maintaining information about predecessor/successor relations 

between functions (i.e., dataflow). For the SPW to spreadsheet interface, we needed to derive 

predecessor/successor relationships between our higher-level functions and the SPW primitive 

functions. This was required in order to determine iteration rates for spreadsheet functions. Within the 

spreadsheet, macros had to be developed to derive new predecessor/successor relationships as functions 

were mapped onto different processors requiring the insertion of data transfer functions. 

At the first RASSP Conference, we demonstrated spreadsheet command files and scripts to build a 

prototype spreadsheet from manually produced hardware and software description files. Work had 

commenced on extracting the data for the software description files from an SPW model. Specs had been 

developed for extraction of component characteristics and architecture data from VHDL models. 

67 



By the second RASSP Conference, the SPW to spreadsheet interface was maturing and the library was 

being improved and expanded. The command file library was being expanded in parallel. Very small 

VHDL models had been built but no VHDL to spreadsheet interface yet existed. The SPW to spreadsheet 

interface was developed in four steps. 

1. First, using the small (range processing and corner turn) algorithm we produced an SPW to 

spreadsheet interface. We were unable to extract control data, essential for performance modeling, 

with the SPW Tool Interface Language. 

2. We solved the control problem by collecting the necessary data from an SPW file (modelname.mseq) 

generated when the functional model is simulated or when it is used to generate a C program. With 

this interface, we were able to proceed to the full single polarity pair algorithm without subswaths. 

3. When we progressed to the single polarity pair algorithm with subswaths, we found a need to re- 

optimize the loop structures. The model_name.mseq file is optimized for a single, not multiple, 

processors. We were able to add loop re-optimization to the interface and produce satisfactory 

spreadsheets for the full single polarity pair algorithm with subswaths. 

4. Finally, it was found when we proceeded to the full benchmark algorithm, which is really three 

threads of the same algorithm, that it would be extremely difficult for the user to distinguish between 

threads. SPW has no way to differentiate between different instantiations of a function. This was 

solved by adding a parameter named thread to all of our library blocks. This completed our SPW to 

spreadsheet interface. 

We decided to extract HW data from a Network II.5 schematic in order to start development of the 

hardware model to spreadsheet and spreadsheet to performance model interfaces. This work paralleled 

the SPW to spreadsheet interface efforts and in most cases drove the requirement for changes in that 

interface. 

68 



Development of the Network II.5 interfaces provided structure and insights that supported rapid 

development of interfaces with VHDL models as soon as VHDL target models were developed. In the last 

year of the contract, the VHDL interfaces were developed. 

1. VHDL processor characteristic files to APT processor characteristic files interface. This interface was 

written using VTIP (VHDL Tool Integration Platform from CAD Languages, Inc.) to parse the 

processor characteristic files provided in the Honeywell PML library. Essentially, VTIP provides a 

set of callable C. 

2. Language subroutines that allow searching any VHDL language file for specific constructs. Priya 

Balasubramanian wrote a C program called PCET (Processor Characteristic Extraction Tool) that 

uses the VTIP C routines to extract processor parameters needed by the APT sizing spreadsheet. 

These parameters are stored in the Processor Characteristic Library described in Section 2.1.3. This 

tool is documented in her thesis entitled Interfacing VHDL Performance Models to Algorithm 

Partitioning Tools. 

3. VHDL structural model to APT Spreadsheet interface. Priya Balasubramanian also wrote a C 

language program called ACET (Architecture Characteristic Extraction Tool) using the subroutines 

in VTIP. This interface parses a VHDL structural model of the target architecture built using PML 

components in order to extract parameters from each component in the candidate architecture that are 

needed by the APT partitioning spreadsheet. This tool is also documented in her thesis. 

4. VHDL structural model to APT spreadsheet interface. Priya Balasubramanian also wrote a C 

language program called CONET (CONection Extraction Tool) using subroutines in VTIP to parse a 

VHDL structural model of the target architecture built using PML components in order to extract 

connection information needed by the APT partitioning tool. This tool is also documented in her 

thesis. 

5. APT Spreadsheet to VHDL Performance Model Interface. Dirk Ziegenbein wrote this interface using 

the standard Unix parsing tool, NAWK. This interface reads an ASCII file produced by the APT tool 

that describes the software to hardware mapping being studied, reads the file produced by CONET, 

69 



and reads the VHDL structural model of the target architecture built using PML components. The 

interface automatically generates an executable VHDL performance model including the required test 

bench. The test bench is executed to simulate the performance of the target architecture with the 

target algorithm mapped onto the architecture by the APT tool. This dynamic performance 

simulation will find system bottlenecks and under- or over-utilized components. 

3.1.2 Test Bench Generator 

3.1.2.1 Use of Commercial Tools to Generate Test Benches 

The following commercial tools were used in the test bench generation process: 

1. Illogix Express VHDL - See Section 2.2.5.2 for a discussion of using state charts with Express VHDL 

to model IRST test benches and Section 2.2.5.4 for an example of using activity charts with VHDL to 

model SAR test benches. 

2. Cadence Signal Processing Work System (SPW) - See Section 2.2.5.4 for a discussion of modeling 

SAR with SPW. 

3. Synopsys Graphical Environment(SGE) - See Section 2.2.5.5 for a discussion of how SGE was used 

to construct structural models of test benches. SGE was also used to capture the Specification 

Repository. See Section 2.2.6.1. 

4. RDD 100 was used to capture requirements for IRST. Its use is discussed in Section 2.2.4. 

3.1.2.2 Requirements Captures and Use in Test Benches 

Synopsys Graphical Environment (SGE) was used to capture the Specification Repository. See Section 

2.2.6.1. RDD 100 was used to capture requirements for ER.ST. Its use is discussed in Section 2.2.4. The 

system requirements are used to generate values of test bench generics. How this is done is discussed 

throughout Section 2.2. 

70 



3.1.2.3 Use of Configuration Declarations to Reuse Test Bench Components. 

VHDL configurations were used to bind the test bench structural architecture to library components, thus 

promoting code reuse between model years. Details of this are given in Sections 2.2.5.5 and 2.7 and 2.8. 

3.2 Library Construction 

3.2.1 Conversion of SPW Test Benches to VHDL 

(see Section 2.2.5.4) 

3.2.2 Use of IRAMP Data Bases 

(see Section 2.2.5.7) 

3.2.3 IRTOOL Models 

(see Section 2.2.5.7) 

3.2.4 xpatch Models 

(see Section 2.2.5.7) 

3.2.5 Use of Honeywell/Omniview Performance Model Library 

We used components from the Honeywell/Omniview Performance Model Library, version PML_02a, to 

construct VHDL performance models. We modified some models and added new ones to satisfy our 

needs. This library is delivered in subdirectory apt/data/PML_02a. There are three main subdirectories: 

packages, processors, and leaf_cells. 

71 



3.2.5.1  Packages Subdirectory (apt/data/PML_02a/packages) 

5 
Subdirectory packages contain package declarations and package bodies for a variety of uses. The original 

PML packages include packages of constants, packages of routines to collect statistics, etc. 

3.2.5.1.1 Additions to the Packages Subdirectory 

We added a package of constants called constants.vhdl to the packages subdirectory that includes all of the 

constants used in our models. 

We also added a package of subroutines that are used by the tool that automatically creates the final 

executable VHDL performance model. These subroutines, described in the following table, are delivered 

as file subroutines-p.vhdl (package declarations) and file subroutines-b.vhdl (package body). 

Subroutine Name Description 
readp Sends a read token from a processor to a memory 

device 
writep Sends a write token from a processor to a memory 

device 
controlp Sends a control token from one processor to 

another processor 
distributep Distributes tokens from a single source to multiple 

destinations on a round robin basis 
splitp Distributes tokens from a single source to multiple 

destinations on a first available basis 
split_initp Initializes a split operation by starting tasks in each 

of the destination processors 
broadcastp Broadcasts received tokens to all processors in a set 

of destination processors 
donep Procedure used to end all tasks 
hostcheckp Procedure used at the beginning of each task to 

detect errors in task mapping and to verify that the 
target processor is a valid processor 

72 



3.2.5.2 Processor Subdirectory 

The processors subdirectory (apt/data/PML_02a/processors) includes all of the original PML processor 

components needed to develop performance models. These components are delivered under our 

government use license. Distribution outside the government is not permitted. 

3.2.5.2.1 Additions to the Processor Subdirectory 

The VTIP analyzer would not recognize certain constructs used in the Honeywell processor models. 

Therefore, in order to parse the models using the VTIP tool, we were forced to modify certain components 

in the processor library. These modified components were used only for VTIP parsing, and never for 

actual VHDL simulation. The modifications were relatively minor and are detailed in Priya 

Balasubramanian's Masters thesis. To differentiate between the modified models and the original models, 

we named the modified model files with the same name as the original model file but used an extension of 

*.vtip instead of the original extension of *.vhdl. The following modified files are delivered in 

subdirectory processors. 

procapplication-a.vtip 

processor-c.vtip 

3.2.5.3 Leaf_cells Subdirectory 

The leafcells subdirectory (apt/data/PML_02a/leaf_cells) contains all of the original PML components 

except the processor components. These components include input devices, output devices, bus interface 

units, etc. 

3.2.5.3.1 Additions to the leaf_cells subdirectory 

We needed to modify certain leafcells for our purposes. We added an h to the filename of each model 

that we modified to distinguish our modified models from the original models. For example, the original 

filename comm_int-a.vhdl became comm_inth-a.vhdl. The following models were modified: 

73 



comm_inth-a.vhdl 
comminth-e.vhdl 
globalinth-a.vhdl 
globalinth-e.vhdl 
indeviceh-a.vhdl 
indeviceh-e.vhdl 
memoryh-a.vhdl 
memoryh-e.vhdl 

We also added additional components that were not in the original PML_02a library. The following table 

describes the added components. 

Table 4. Added Components and Their Description 

Component Name Description 

biu_four-a.vhdl Cluster of 4 bus interface units connected to a 
biufour-e.vhdl common bus 

biustar-a.vhdl Cluster of 3 bus interface units connected to a 
biu_star-e.vhdl common bus 

crossblock-a.vhdl Crossbar component that connects an input port to 
crossblock-e.vhdl each output port 

crossbar-a.vhdl Six port crossbar consisting of six crossblock 
crossbar-e.vhdl components 

3.2.5.4 Compilation (Analysis) of Library Components for VHDL Simulation 

Prior to initial use, all of the components in the enhanced PML library must be analyzed by the Vantage 

analyzer. Also, occasionally, these components must be re-analyzed if they become corrupted. The 

subdirectories must be analyzed in the following order: Packages, Processors, Leafcells. Each directory 

contains an executable script file named vcomp* that can be executed to analyze a single file. The 

command form is: vcomp filename.vhdl. Also, each directory has an executable script file named van- 

comp* that can be executed to analyze all of the components in the directory in the proper order. Van- 

comp calls vcomp repeatedly. 

74 



3.2.5.5 Compilation (Analysis) of the Library Components for VTIP Use 

Before calling any of the C language subroutines provided by VTIP, all component files must be analyzed 

by the VTIP analyzer. Again, the files in the three subdirectories must be executed in the following order: 

Packages, Processors, Leaf_cells. Each directory contains an executable UNIX script file named vtipc* 

that can be executed to analyze all of the files in the subdirectory in the proper order. The VTIP analyzer 

creates a new file in the directory apt/data/dls for each file analyzed. The name of the new file is the same 

as the name of the original VHDL file but with extension *.vhdlview instead of the original extension of 

*.vhdl. The files in the dls library are used by VTIP subroutine calls to find constructs in the VHDL 

program. 

3.2.6 Use of SPW Libraries to Generate Performance Models 

Our initial SPW models were constructed in the normal manner from standard libraries. These models 

were extensively parameterized to allow rapid functional verification on small test sets. As we 

commenced construction of the TIL programs for data extraction, we developed our initial candidates for 

the APT library. These were composite hierarchies of standard library blocks. An example is the FIR 

filter of a vector input (we named it fir_vector) which required conversion of the input vector to a string, 

filtering the string, conversion of the output string to a vector, and discarding the "startup" components. 

We also found the need for copies of a block that represent different functions, such as a vector source to 

represent sensor input and one to represent a file access. This was first accomplished by constructing a 

higher level model consisting only of the required block (i.e., an encapsulated block) with TIL attached at 

the higher level. 

As cited in paragraph 3.1.1.3, we found that we were unable to extract control data, essential for 

performance modeling, with the SPW Tool Interface Language and had to copy the model_name.mseq file 

which is generated when the functional model is simulated or when it is used to generate a C program. 

When an extraction is made using TIL, the netlister flattens the hierarchy to the level where it first 

75 



encounters a TEL file for that program and considers that to be a leaf block. The model_name.mseq file 

contains data for the standard library blocks at the bottom of the model. This required modifying our 

composite blocks to contain two components, a standard block with TIL that extracts nothing and the 

remainder of the function with TIL that will produce the spreadsheet row. This way, the rate (number if 

iterations of the function for one iteration of the algorithm) can be captured from the rate of the standard 

library block as reflected in the modelname.mseq file. With this expansion, we generated running 

Network II.5 models of the simple model and the single polarity pair SAR. 

When we generated a spreadsheet for the full four polarity pair (three pairs processed) SAR, we found it 

extremely difficult for the user to determine which of three identical functions was associated with which 

pair. (In the SPW model, the three pairs use the same identical model.) This problem was corrected by 

adding another parameter to the model named thread. This parameter was set to HH, HV, and W in the 

three threads and extracted and placed next to the function in the spreadsheet. Introducing this parameter 

to all blocks, including those in standard libraries, required us to make a complete copy of all blocks used 

rather than using some in the standard libraries. While this introduced some redundancy, it removed the 

need for encapsulated blocks since we could make multiple copies of the same block with different names 

and TEL attached. 

3.2.7 Development of VHDL DSP Library of Primitives and Applications 

This library was developed to provide the test bench generator tool with MUTs to test. It consists of 

several packages and the final MIT SAR Benchmark 1 model. These models were developed by Ram 

Gummadi. His Master's thesis, Methodology for Structured VHDL Model Development, explains the 

models and the process used to construct them. 

The package DSP_PRIMS contains the following primitive DSP functions. 

76 



FFT SIG Fast Fourier Transform with signals 
FILT SIG Filter with signals 
CONV SIG Convolution with signals 
FFT VAR Fast Fourier Transform with variables 
FILT VAR Filter with variables 
CONV VAR One dimensional convolution with variables 
CON VAR Two-dimensional convolution with variables 

Package IEEEmath contains trigonometric functions with real data types. 

Package types_pkg contains declarations of all of the data types. 

Package PRIMS contains the major functions in the SAR algorithm, summarized in the following table. 

Function Name Description 
VBIQ Video to Baseband IQ Conversion 
RG COMPR Range Compression 
CORN TURN Corner turn operation 
AZI COMPR Azimuth Compression 

3.3 Applications of Test Benches 

3.3.1 SAR Test Benches 

(see Section 2.2.5.4) 

3.3.2 IRST Test Benches 

(see Section 2.2.5.1) 

3.3.3 SAR Performance Modeling 

The RASSP benchmark algorithm and derivatives of it was the primary algorithm employed in developing 

the APT tool. 

77 



3.3.3.1 SPWSAR Algorithm Model 

The SPW SAR models, both single polarity pair and the full model, were completed early in the project. 

Figure 55 is the top-level graph in SPW. Each of the SAR PROCESS and OUTPUT blocks are the same 

single polarity pair model. The only thing unique to the full model is the LOAD AND DISTRIBUTE 

block. The three models, aptexample, apt_l_pol, and apt_3_pol, are included with the library, aptlib. 

in the apt.dmp file delivered with this report. 

SAR SYSTEM MODEL PARAMETERS 

Pulse Size  2832   Header Size   20       Number_Subsuaths  IE Number of Pulses per Update  512 

Number of Range Bins  2048   Number of FIR Coefficients 3 Number of Pulses per  Image 1021 

Sequence File  'projects'p2'rassp/HOrk.'ap1.'data'SM-'apt_3_pDl.seq    AUX SizeS?     Thread  10 X 

Parameter Fi le   ^projects/p2^rassp/uork/apt/dala^su/'apl_3_pol .par    Numb«-.Kernels      32 

LCWO 

RND.,^ 

DISTRIBUTE 

PROCESS 

Figure 55. Top-Level Graph in SPW 

3.3.3.2 Spreadsheet Hardware Tradeoffs 

During the period prior to the first RASSP conference we experimented with numerous spreadsheet 

layouts. As stated in paragraph 3.1.1.2, initial efforts used a textbook SAR and a notional IRST 

algorithm. Later in the period we focused on the RASSP benchmark SAR We discovered that much 

insight can be gained in early design stages through static analysis comparing processor clock speeds and 

instruction architectures and analyzing memory requirements. This led to development of sizing as well 

as mapping spreadsheets, and to the eventual incorporation of the ability to change processor types in a 

spreadsheet from a menu. These analyses quickly showed that the large memory requirement for the 

78 



overlapped comer turn was a critical issue. Results were passed to the prime contractors and to the 

benchmark contractor. When the Mercury Raceway architecture was selected, the memory issues were 

amplified. The sizing models allowed rapid comparison of the desired SHARC and fallback i860 

processors. The value of the sizing analysis followed by simulation of selected architectures was proven in 

the JAST analyses reported in the second interim report and summarized in paragraph 3.3.4. Spreadsheets 

for the 

simple model and the one polarity pair generated with Network II.5 and VHDL generated .ssh files along 

with output for performance model generation are included in the models directory of the delivered 

software in the 2020 subdirectory in subdirectories race_15 and vpiracel6, respectively. 

3.3.3.3 VHDL Performance Models 

We are delivering one VHDL architecture model located in directory apt/models/vpiracel6. This is a 16- 

processor raceway architecture. There are three files: 1) vpiracel6.vhdl is a VHDL structural model of 

the architecture using components from the enhanced PML library, .2) vpiracel6-c.vhdl is a configuration 

file with all of the hooks needed to map software tasks to the processors. However, there are no software 

tasks specified. Each processor is assigned an idle task that will be replaced by application tasks by the 

automated APT tool, and 3) vpiracel6.vtip is the modified version of the architecture file suitable for 

VTIP analysis. 

Subdirectory rangel6 (apt/mc)dels/\TIDL/vpiracel6/rangel6) contains the output of the APT tools when 

the range processing and corner turn segments of the MIT SAR Benchmark algorithm are mapped onto 

the architecture. 

Subdirectory apt/data/PML_02a/test contains the executable file simvpiracel6* that will execute the 

VHDL performance model created by the APT tool. 

79 



3.3.3.4 BONeS Performance Model 

As stated in paragraph 3.1.1.2, before we abandoned BONeS as the performance modeling tool we 

completed BONeS models of our three versions mapped onto arrays of TMS320C40 processors. Figures 

56 and 57 show the top level and the range compression graph for the full SAR model. The BONeS 

models are included in the models directory of the delivered software in the bones subdirectory. 

SAR       [1*Oul--SB»a07:14) 

TOP LEVEL MODEL OF RASSP BENCHMARK ALGORITHM 
Hardware Parameters Architecture Parameters                           Algorithm Parameters 

fP  Pp.*»«»*                      fP  Loo»L»m.R—d fP  »3P1co.Bosp.rADM f Svip(«j»r.Puta             f *"<*>•'Sibmnt* 

fP R«»U*V.AM_Cyd«       fP Ur»LMm_Wf1» fP At Pram» p»rADU fP B»««_r«r_Pi*«_Wo«       tP P™ 

fP «uwiV-Cyel«                tP Ga»L«m."«a tP J*»*tGmtarU>U fP Ktm.S—                       fP No_RR_0<*t 

fP Oarpte!_Mp/_Cye*3        tP OttiLMm.»'* fP UulDnayS*e fP PuBBperfcraje               f Pi*ejp«Up<»« 

fP Ad»w_0»\_0>««« tP <3ct»l_U«>i_S«i fP WMLUno*.                      fP DFT_Sk« 

Calculated Parameters 

[3 lr**i_Ada_Th» H Ca<iptaJ*>)'_Tn« 

Puka     O 
Tnh 

»■pm > 

Dimensioned Shared Resources 
rj] <fci»Lkfa* W   fj] ADMOenwIPiocraort« Qj] AdtassOreMxttH fj Si?»l P«X»K» HH ffi] lflc.1 U«w t* 

[g OctaLUm MW   O AD«ICatr>IPio>«McrMK fj] MM Onmr t« fj§ Sig»l PBOMOS HV [HJ uxalUmjryt« 

fJB) CttiLIk» W   [gADMCtn»IPiM««>rW [H) MtnOnmrW Qj Si?»l PKMBOS W fHJ l«»l Umoty W 

Figure 56. Top-Level Model of RASSP Benchmark Algorithm 

80 



RaroComJMCt     [ 20-JuM99<S14SZI 

I    "V     I. _      «HÖH 

RANGE COMPRESSION DIAGRAM 
(Single Polarity Pair) 
Main Algorithm Flow 

t>    Ml t*-EStSr—■FJsT? 

~*    f>a»i) 

Allocate Comer Turn Memory 

V    D, v ^H» SB«, H-gäBF^"" 
_CJEJ! 

•<! Moaa 
pjrai) 

Architecture Parameters 

| P ng PmoesaoBper ADM 
|P AOMBOaipafADM 

Calculated Parameters 
fp ecnpacjapy.Tim      ftp  Bay.lui» 

ftp MwJtodjrn» 

Pra* 
PKW 

Dimensioned Shared Resources 
t« actM.M>n    t" AdOMfGxaaty 
fit tocatuawoiy   fR ADM ccnwi Pmoassor 

tft ajnil PKxaooa 

Hardware Parameters 
fp dkM_M«n_Wi«    TP um_Mnt.wra 

fp auni_M«Ti_paM    fi* tom.Mn.Mu 

Algorithm Parameters 
ftp NCL^angK_8inf fp PtMftsp*rmga 
ftp wod_LBngri   ftp pusosper upas« 

ftp ormjm.nmjma 

ftp 3wpesjier_Puae    tr PüÄ^a 
■ftP  No_HR_Oc«I 

Figure 57. Range Compression Diagram 

3.3.3.5 Network 11.5 Performance Models 

Target performance models were constructed for all three target algorithms mapped onto the Mercury 

Raceway architecture. The model for the full SAR algorithm is included in the models directory of the 

delivered software in the N25/target subdirectory. Schematics for three architecture variations are 

included in the models directory of the delivered software in the N25/schem subdirectory. Generated 

models of the l_pol and simple models mapped to the race_15 architecture, are included in the models 

directory of the delivered software in the N25/generated subdirectory. All three performance models are 

accompanied by a .lis file containing standard output from simulation. Figure 58 is a printout of the 

network model. 

81 



Figure 58. Network Model 

3.3.4 JAST Performance Modeling 

As stated in paragraph 1.3, the benchmarking effort at Northrop-Gmmman commenced with analyzing 

the requirements and performance of the RASSP SAR algorithm on their candidate architectures, 

discarding non-contenders and then analyzing additional algorithms on the remaining 

architecture variations. We also did some initial modeling of a Real Beam Ground Map (RGBM) 

algorithm [RGBM]. 

3.3.4.1 Tradeoff Space Explored 

The basic architecture consisted of signal processing groups consisting of four DSPs, memory, and an 

interface. We varied processor characteristics over four different DSP instruction sets and clock rates 

from 25 to 200 MHz. We analyzed variations with local DSP RAM, Global RAM for the array, and 

both. We examined different bus structures and characteristics for access to local and global memories. 

82 



3.3.4.2 Use of Spreadsheet to Narrow the Design Space 

A series of sizing spreadsheet studies were conducted on four radar algorithms with various instruction 

sets and clock rates. These reduced the set of processor characteristics to be considered to a few and 

provided estimates on processing and memory requirements. 

3.3.4.3 Use of Performance Model to Identify Bottlenecks 

Extensive trade studies were conducted using dynamic performance models of the RASSP SAR algorithm 

on numerous variants of the JAST architecture. These studies addressed questions provided by weapon 

system contractor system engineers. 

The RASSP SAR algorithm can be considered as three groups of functions that are processed in parallel, 

one group for each of the three polarity pairs. Each polarity pair is composed of a range processing and 

an azimuth processing segment separated by a matrix transpose (corner turn) operation. Mappings 

were investigated with each of three signal processing groups processing a single polarity pair and with all 

of the processing conducted in two groups. Within these approaches, we simulated mapping the range 

processing on a single DSP and the azimuth processing on both a single DSP and on two DSPs. The 

latter mapping roughly equalized the processor utilization on the range and azimuth processors. 

Memory requirements provided to be a key issue in the trade studies leading to a shift away from the 

initial processor/architecture. Some of the initial memory organization variations that we considered were 

DSPs with and without local memories. 

Studies were conducted of required bus widths and rates in conjunction with memory/cache combinations. 

Even though the utilization of the buses was well below 100%, contention for the buses caused the loss of 

some incoming pulses in the initial simulation of the no local memory alternative. This necessitated a 

83 



complex hierarchy of priorities and interrupt restarts to ensure all pulses and range bins were processed. 

This loss of data indicated that the design was close to saturation. This was an indication of a high 

risk that this design, when fully implemented, would not be able to meet the processing requirements of 

the algorithm. 

84 



4. Future Directions 

The APT toolset is a "proof of concept" system. Employment by JSF avionics system engineers to analyze 

concepts proved its value. However much improvement is required to evolve a fully commercialized 

toolset. 

Among these are the following extensions of the toolset: 

Extending the seamless design environment. The SPW tool set can generate codes for a single 

processor. Combining the APT capabilities with the SPW code generators would allow the 

partitioning to be done once in the resource utilization environment and then have the code 

generated for the target multiprocessor system automatically. 

Integration of the resource utilization analysis tools with man in the loop (MTTL) simulations. 

The JSF project started efforts to link the performance models generated by the APT to high load 

segments of MTTL simulation traces. 

Integration of the signal processor resource utilization analysis tools with the system architecture 

analysis tools used in high level trade studies. The APT system can be used to generate detailed 

timing estimates for the signal processing modules that can be factored into the complete 

avionics architecture simulations. 

Developing a complete suite of benchmark algorithms and associated library expansion. This 

suite should encompass memory demanding algorithms such as the SAR algorithms used in the 

RASSP and JSF efforts with processing demanding algorithms such as multiple PRF search- 

while-track algorithms. 

85 



Validating the models against actual systems. The development of the APT system has focused 

on the verification issue, developing tools that automatically provide traceability of performance 

model events and parameters back to algorithm primitives and parameters and hardware 

structures and parameters. In order to increase the comfort level in the simulations and analyses, 

a model of existing software and hardware must be generated and the timing of the performance 

model should be compared with timing of the actual system. The timing measures of the SPW 

primitives used in the spreadsheet have been compared with timings for the same primitives 

provided in hardware manufacture application notes. 

Developing a graphical user interface to activate the various tools and select input sources and 

output locations. 

In addition several revisions would be in order. These are associated with the lessons learned described in 

paragraph 5. 

Rewrite the tools for extraction of data from the VHDL structural model in awk. This would 

eliminate the need for VTIP and the attendant need to develop a separate model for extraction. 

The new extraction routines would extract only the required data. 

Modify the target models and the VHDL to spreadsheet and spreadsheet to VHDL interfaces to 

employ the latest (commercialized) version of PML. 

The current version of the bldroute program uses Moore's Algorithm to compute one shortest 

path (corresponding to the route) between each pair of components. Because the components are 

ordered, the network traffic might not be distributed well enough. The Algorithm should be 

86 



modified to compute all shortest paths (routes) between each pair of components and select a 

route randomly or to select routes during simulation based on real traffic. 

A test plan can be combined with goal trees to develop a high approach to system testing. A goal tree will 

represent a test plan. The goal tree is given a grand goal such as "determine the system noise sensitivity." 

The grand goal is decomposed into subgoals until primitive goals are reached. Primitive goals define a test 

group that would be applied to reach the grand goal. 

87 



5. Lessons Learned 

Several lessons were learned in the course of this project. 

Building target models using an under development library requires much time devoted to library 

debugging. This led to completion of extraction programs before working target models were completed. 

The result is that much unnecessary data was extracted from the structural model and one item (INST = 

PML instantiation name) that should have been extracted was not. Correction of this would eliminate 

artificial constraints on component names in the structural model. 

VTIP was harder to learn than expected. It also could not analyze PML files as delivered. This required 

modified PML files and a redundant structural model. In retrospect, direct extraction of data from the 

VHDL files with awk would be more efficient and would provide an easier to use toolset. 

In our RASSP sponsored work, we have shown that effective test bench generation requires: 

1. High-level graphics design tools to develop initial test bench code quickly. 

2. A test bench component library to construct test benches structurally. 

3. Accurate environmental modeling using application domain specific software. 

4. Automatic linkage to the system specification. 

5. A test plan interface to configure the test bench structural model. 

And while commercial software can be used for generation of test bench pieces, system software having 

graphic user interfaces is needed to integrate the pieces into a working system. 

88 



6. Published Papers 

1. James R. Armstrong, Geoffrey Frank, Srinivasan Hrishikesh, Prabhakar Gowrisankaran. Zhen Xu. 

"Test Bench Development for RASSP DSP Models," Proceedings of the First Annual RASSP 

Conference, Arlington, VA, August 15-18, 1994, pp. 91-96. 

2. R. Armstrong, G. Frank, et al., "High Level Generation of VHDL Test Benches," Proceedings of the 

Spring VHDL International Users Forum. April 1995, pp. 6.23-6.34. 

3. A. Frank, J. R. Armstrong, and F. G Gray, "Support for Model Year Upgrades in VHDL Test 

Benches," Proceedings of the 2nd Annual RASSP Conference, July 1995. 

4. Gray and J. R. Armstrong, "Reutilizaton of VHDL Test bench and Library Components," Proceedings 

of the 1994 American Institute of Aeronautics and Astronautics.. San Antonio, Texas, March 28-30, 

1995, pp. 691-700. 

5. R. Armstrong, G. A. Frank, and F. G. Gray, "Efficient Approaches to Testing VHDL DSP Models," 

Short Paper Presented to ICASSP 95. Full journal article to appear in the Journal on VSLI Signal 

Processing. 

6. G. A. Frank, B. E. Clark, and W. G. Ransdell. "Adapting algorithms to architectures through 

transformations," Proceedings of 1st Annual RASSP Conference, August 15-18, 1994, pp. 171-178. 

7. H. P. Commissariat, F. G. Gray, J. R. Armstrong, G. A. Frank, "Developing Reusable Performance 

Models for Rapid Evaluation of Computer Architectures Running DSP Algorithms," Proceedings of 

the 2nd Annual RASSP Conference, July 24-27, 1995, pp. 103-108. 

8. G. A. Frank and B. E. Clark of Research Triangle Institute, and B. Schaming and W. Kline of 

Lockheed Martin Advanced Technology Laboratory.   "Hardware/Software Codesign from the RASSP 

Perspective." Journal article to appear in the Journal of VLSI Signal Processing. 

89 



7. Masters Thesis 

1.) P. Gowrisankaran. "Structural test bench development for DSP models." Masters Thesis . Bradley 

Department of Electrical Engineering, Blacksburg, VA. March 1995. 

2.) S. Hrishikesh, "Behavioral Test Bench Development For DSP Models." Masters Thesis . Bradley 

Department of Electrical Engineering, Blacksburg, VA, March 1995. 

3.) Z. Xu, "Modeling SAR signals and sensors using VHDL," Masters Thesis. Bradley Department of 

Electrical Engineering, Blacksburg, VA, February 1995. 

4.) Sailesh Kottapalli. "A Test Plan Driven Test Bench Generation System" Masters Thesis. Bradley 

Department of Electrical Engineering, Blacksburg, VA, July 1996. 

90 



References 

[Are95] Arete' Associates, IRTOOL Reference Manual. February 1995. 

[ArmJ93] J.R. Armstrong and F.G. Gray, Structured Logic Design With VHDL. Prentice Hall, Englewood 

Cliffs, NJ, 1993. 

(ArmJ94] James R Armstrong, Geoffrey Frank, Srinivasan Hrishikesh, Prabhakar Gowrisankaran, Zhen 

Xu, "Test Bench Development for RASSP DSP Models," Proceedings of the First Annual RASSP 

Conference. Arlington, VA, August 15-18, 1994, pp. 91-96. 

[ArmJ95] J. R. Armstrong, G. Frank, et al., "High Level Generation of VHDL Test Benches," 

Proceedings of the Spring VHDL International Users Forum. April 1995, pp. 6.23-6.34. 

[ArmJ96] J. R. Armstrong, G. A. Frank and F. G. Gray, "Efficient Approaches to Testing VHDL DSP 

Models," Short Paper Presented to ICASSP 95. Full journal article to appear in the Journal on 

VSLI Signal Processing. 

[Asc] Ascent Logic Corporation, RDD-100 User's Guide. Release 4. 

[BalA94]Balboni, A., Mastretti, M., and Stefanoni, M., "Static Analysis for VHDL model Evaluation," 

EURO VHDL, 1994. 

[Cad94] Cadence, Inc., SPW-The DSP Framework. User's Guide. March 1994. 

[CamS93] S. Campana, "Passive Electro-optical Systems," The Infrared & Electro-Optical Systems 

Handbook. ERIM, Ann Arbor, MI, 1993. 

[ChoC94] C. H. Cho and J.R. Armstrong, "The B Algorithm: A Behavioral Test Generation Algorithm," 

Proceedings of the International Test Conference. Fall 1994, pp. 968-979. 

91 



[Com92] Comdisco Systems. Inc.. Signal Processing WorkSvstem/The DSP Framework. 1992. 

[Dem93] Demaco, Inc.. User Manual for x-patch. September 15. 1993. 

[EurA93] Proceedings of EURO ASIC 93. 

[FraG91] G. A. Frank, "The Evolution of External Models For Simulation," Proceedings of the Systems 

Design Synthesis Technology Workshop. Naval Surface Warfare Center, Silver Spring, MD, 

Sept. 10-13, 1991. 

[FraG95] G. A. Frank. J. R. Armstrong, and F. G Gray, "Support for Model Year Upgrades in VHDL Test 

Benches," Proceedings of the 2nd Annual RASSP Conference. July 1995. 

[GowP95] P. Gowrisankaran, "Structural test bench development for DSP models," Masters Thesis. 

Bradley Department of Electrical Engineering, Blacksburg, VA, March 1995. 

[GraG94]   F. G. Gray and J. R. Armstrong, "Reutilizaton of VHDL Test bench and Library 

Components," Proceedings of the 1994 American Institute of Aeronautics and Astronautics.. San 

Antonio, TX, March 28-30, 1995, pp. 691-700. 

[GajD94] D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and Design of Embedded Systems. 

Prentice Hall, NJ, 1994. 

[HarD87] D. Harel, "STATECHARTS: A Visual Formalism for Complex Systems," Science of Computer 

Programming 8. 231-274, North-Holland, 1987. 

[HriS95] S. Hrishikesh, "Behavioral Test Bench Development For DSP Models," Masters Thesis . 

Bradley Department of Electrical Engineering, Blacksburg, VA, March 1995. 

[IEEE88] IEEE Standard VHDL Language Reference Manual. IEEE. New York. 1988. 

[Ilog92] i-Logix, ExpressV-HDL Reference Manual. i-Logix, Inc., Burlington, MA, Vol. I, Version 3.0, 

December 1993. 

92 



[KapS94] S. Kapoor, J. R. Armstrong, and S. R. Rao, "An Automatic Test Bench Generation System.'" 

Proceedings of the VHDL International Users Forum, Spring 1994, pp. 8-17. 

[KotS96] Sailesh Kottapalli, "A Test Plan Driven Test Bench Generation System," Masters Thesis. 

Bradley Department of Electrical Engineering, Blacksburg, VA, July 1996. 

[LiW96]W. Li and J. R. Armstrong, "Test Generation from VHDL Behavioral Models," Proceedings of 

the VHDL International Users Forum, Fall 1996. 

[Mat92] The Math Works Inc., MATLAB Reference Guide. Oct., 1992. 

[ONR94] Office of Naval Research, "Infrared Analysis Measurements and Modeling Program-Data 

Catalog," January 1994. 

[PauB92] Paulsen, B. and Levia, O., "Techniques for Writing High Performance and High Quality VHDL 

Models," EURO VHDL, 1992. 

[RicM94] M. A. Richards, "The RASSP Program: Overview and Accomplishments," Proceedings of the 

1st Annual RASSP Conference. Arlington VA, August 15-18, 1994, pp. 1-8. 

[RBGM] AFWAL-TR-86-1017 "Generic Signal Processor Architecture (GSPA)" Vol. I "Requirements" 

AT&T Bell Laboratories February 1986. 

[ShaG94] G. A. Shaw, "Synthetic Aperture Radar Image Processor - RASSP Benchmark," M.I.T. Lincoln 

Laboratory, January 1994. 

[Syn92] Svnopsvs Graphical Environment User Guide. Version 3.0, December 1992. 

[Syn95] Svnopsvs VHDL System Simulator - Command Reference Manual. Version 3.3b, Sept. 1995. 

[Van92] Vantage Analysis Systems, Inc., Vantage Spreadsheet User's Guide Volumes I and II. 1992. 

[Wav92] IEEE Standard 1029.1-1992- Wave Form and Vector Exchange Specification. 

93 



[WicJ96 ] Wicks. J. A., Jr. and Armstrong, James. R.. "VHDL Model Efficiency." Asian Pacific 

Conference on Hardware Description Languages, Bangalore, India. January 1996. 

[XuZ95]    Z. Xu, "Modeling SAR Signals and Sensors Using VHDL." Masters Thesis. Bradley 

Department of Electrical Engineering, Blacksburg, VA, February 1995. 

[ZueB94] B. Zuerndorfer and G.A. Shaw, "SAR Processing for RASSP Application," Proceedings of the 

1st Annual RASSP Conference, Arlington VA, August 15-18, 1994, pp. 253-268. 

94 


