WL-TR-96-1142

CAD TOOLS FOR THE DEVELOPMENT
AND REUSE OF MODELS OF SIGNAL
PROCESSING SOFTWARE AND
HARDWARE

VOLUME 1 - FINAL REPORT

G. A.FRANK
B.E. CLARK

CENTER FOR DIGITAL SYSTEMS ENGINEERING
RESEARCH TRIANGLE INSTITUTE

3040 CORNWALLIS ROAD

RESEARCH TRIANGLE PARK NC 27709

F.G. GRAY
J. R. ARMSTRONG

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
BLACKBURG VA 24061

JANUARY 1997

FINAL REPORT FOR PERIOD 01 SEP 93 - 01 SEP 96

Approved for public release; distribution unlimited

INFORMATION DIRECTORATE

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

R

790 92018661

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

. \ e
QZM % M Nithia M @rpg
LUIS M CONCHA WILLIAM K McQUAY, Chief
Program Manager Avionics Simulation Technology Branch

Avionics Directorate

STANLEY E WAGNER, Chief

System Concepts & Simulation Division
Avionics Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including time for reviewing instructions, searching existing data
sources, gathering and maintaining data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or other
aspect of this collection of information, including suggestions for reducing the burden to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway., Suite. 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188),

Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

January 1997

3. REPORT TYPE AND DATES COVERED

Final

09/01/93 — 09/01/96

4. TITLE AND SUBTITLE

CAD Tools for the Development and Reuse of Models of Signal Processing Software

5. FUNDING NUMBERS
C F33615-93-C-1310

PE 63739
and Hardware Volume | - Final Report PR A268
TA 02
6. AUTHOR(S) wu 08
G. A. Frank, and B. E. Clark
**F. G. Gray, J. R. Armstrong,
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Center for Digital Systems Engineering
Research Triangle Institute

3040 Comwallis Rd.

Research Triangle Park, NC 27709

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7623
POC: Louis Concha, AFRL/IFSD, 937-255-1902, ext 3578

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

WL-TR-96-1142

11. SUPPLEMENTARY NOTES

“*Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words})

As part of the Rapid Prototyping of Application Specific Signal Processors (RASSP) programming, proof of concept/prototype toolsets

were developed to automate:

- Adaptation of signal processing algorithm data fiow graphs to fit different hardware architectures
- Creation of high-level VHDL test benches that can be reused as a signal processor evolves

The report describes the toolsets and their construction. Volume 11 contains user manualis for the toolsets.

14. SUBJECT TERMS

Signal processing, modeling, simulation, VHDL, signal processor, test bench

15. NUMBER OF PAGES 94

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 2:9:18

Table of Contents

1 Introduction

... 1
1.1 PIOJECE OBDJECHIVESccuerrieurierrieiineneesreeeenaeessteetestestesstanaseesasesseenseeostesanessessnesrenstssessseasssesssesnssarers 1
1.2 Team and ROIES......cccooiieireeieieiecicrcerer et ree st ettt ce e s ee e besbee e e b s mae e s s e bbb sat s e e s mesnenen 2
1.3 Technology Transfer RESUILSccccccciieiiiiiieerreciiiirteeceereeeseeeeteeseeseesseeesesseesse e seesenesenseascsnessnes 2

2. Overview of the RASSP System Developed for this Project...........ccovvvievrinininiiiiiiiicciicnniienens 5
2.1 The Algorithm Partitioning Toolcciieiiriinininiretec et e cen e er e s es e e ceneses 5

2.1.1 Using the APT System for HW/SW CodeSigNcocciirmiieciereicernceeceneceereneeeeeessnessnssensnes 5
2.1.2 Tool Components 0f APTcccooiirniiirrreenieeiie et reeeeserreset e s e st s srasese s s messaesssmsssnaes 7
2.1.2.1 The Algorithm Capture Tool of APTccccerieeriieeiirerrnreeteeeeneteerseneseeenseesseesaesoesanas 8
2.1.2.2 Hardware Schematic Capture Tools of APT T o9
2.1.2.3 The Architecturé Sizing and Algorithm Mapping Tools 6f APT....iene N 10
2.1.2.4 Performance Simulation TOOISccccoveririiieenicinrerreetrec e seemsee e s enenes 11
213 APTLIDIATIES ...ttt 12
2.1.4 APT INEIFACEScuciieeeeeniriieer e sateeneneeanesseesecntentonsesaseneseersessestencsessnssnsonsensasssarassess 14
2.1.4.1 Algorithm Model to Spreadsheet Interface R 15
2.1.4.2 Hardware Models to Spreadsheet Interfaces...........ccceeveirerrercreencrccecinireecteese e enneens 15
2.1.4.3 Spreadsheet to Perforrnance Models INtErfacesccceceevieeccinecnnerneninenceersnnessneseeenees 16
2.2 Test BENCh GENETALOTc..ccciiiieecrcenceee e rceresenees e e e e s e se s e me et sse e s s em st s sasmn s et vaens 17
2.2] INEOAUCHIONoeeiriiireeiereeeeeete e rreesee e st secaaesaesateesseseareentsasesane e ne e msentereeseratesmntssnnenancenernes 17
2.2.2 Problem StatemENt........c..ciiieiiiiiiiicccereneectnsteeeee e serrsae st st s see et nesesacs e e e e sme e ssresean 18
2.2.2.1 Complexity of Test Bench Generation..............cc.ccoeeeeeeeeeieneeeeieereie e sesres e saeeeseeseeeens 19
2.2.2.2 Linkage of Test Benches to System Specifications............ccceceveeevererieveniesiescereeeressaniesennes 19
2.2.3 Test BENCh CONCEPLS.......cciirviiriiireritriereriesseesiesieeessaessessensernsessssessassssesssrrssesssesansaressesaessasns 19
2231 ABasic TESt BENCh.......ccooeiiiiic ettt st 19

iii

2.2.3.2 Test Bench CONfIZUIAIONSccooivieriiiiiierieeeeresteeetees e eveas et etese et aes e s enreners e eeesenee 21

2.2.3.3 VHDL Test BENCRES........ccooiiiiiiiieee ettt e 22
2.2.3.4 Behavioral Test GENETation............cccoveviieieiirieniieiieceeie e ste e eie ettt e e e e eseenteeesserenas 23
2.2.4 Approach to Test Bench Developmentcccocoiiiiiiiiciinieniieieeee et 24
225 MOGELINE «..c..coeeieecee ettt ettt ettt e s et e s e e n s e eb e ae b ne et eaas 26
2.2.5.1 Application Area 1 IRST ..ottt sttt 26
2.2:5.2 IRST Model Development With Ilogix Express VHDL..........cccooecvevneiieeneeseniee e, 28
2.2.5.3 Model Complexity And Efficiencycccocoovviiiiieceeeeeece et 32
2.2.5.4 Modeling SARoocviiiiiiieeec ettt et e re e e a s s r b et 33
2.2.5.5 Library Based Model DevelOpmEnt...............cocoveveiiereeeiiireete et es s eenens 39
2.2.5.6 Model Simulation Efficiency Studi€s............cccocoiieiieieicicee e 41
2.2.5.7 Domain Specific Environment Modeling Softwarecccccccoviveveieeeei e, 42
2.2.6 Linkage to System REQUITEIMENLScccueeiiiiieiiiiicierceirecteeneerneeeeneeeessseneesnesesssseessesseseesnne 44
2.2.6.1 Specification REPOSITOTYcccoouriiiirieinreieieectreiereesresrereesessesssessssasnassessssesesssesensens 45
2.2.6.2 Requirements INLEIfACESc..cooviieiiiriiiee ettt se bbbt vene e 46
2.2 T TESEPIAN.......oouiiiicriite ettt ettt ee b se b e ne s e st b se s easa s sens et renans 49
2.2.7.1 Tterative TEStIMOAEcomiiieiciee sttt re bbb rets et b et r s b een s sesene 51
2.2.8 System Integration........... eeteteeeetenet e aeeteeateeateas e ataat st eaat e e s et enstaenraestestestentaeatsentsontesaeeteaen 54
2.2.8.1 Systems INtegration WOTKc.ccieeviiriiriiceeiiceeeeecteteeete et e se e tese s 55
2.2.8.2 DemonStration SYSLEIMcccccceirrierereriereererestisiesseseetsseeeeseseeeesrsnessesssessssssssessssssssenees 57
2.2.9 CONCIUSIONSovveuemieniniirniiticceieecetes et et e st sbeseeaese et esseasseseessssassensssesessessasantesbestesesseresees 63
3. ACCOMPHSRIMENES ..ottt ettt teas et te s baesa st aeebe et seseesesseseanenesreste s anensaeeses 64
3.1 TOOI CONSLIUCHUOM.cvuereireecermrecaeteteetrteteeen et i aeseteeescsaese et esassstasesse st sessnssssesanseseasanssensstasons 64
3.1.1 Algorithm Partitioning Toolc.cocioriiriiiiiiieieecete et 64
3.1.1.1 Selection of Tools and Available Librariescccceveevuiririreceieiiiiceeeeeee e 64
3.1.1.2 Development of Target MOdEIS..............c.oooiiviiiiiiieiieceeceeceeee et 65
3.1.1.3 Development of Interfaces to Generate Target Models............cceooeeveirivceeveevicnerieinen. 67

iv

3. 1.2 Test BENCh GEMEIAtOrcuoiiiiiieiece ettt et eeeee et eeeeseennans 70
3.1.2.1 Use of Commercial Tools to Generate Test Benches............ccocooevvevvvveimvneioniiniee v 70
3.1.2.2 Requirements Captures and Use in Test Benches............cccocooeeveeeeeieieeeeeeeeveeeeeenn. 70
3.1.2.3 Use of Configuration Declarations to Reuse Test Bench Components.c....ceoun....... 71

3.2 Library CONSLIUCHONcueuvivieeerieiitenrenrereseeeeieeceesterete et st eeseseesessnssneesaseeeseaesaessnsenensessessessassseseaes 71

3.2.1 Conversion of SPW Test Benches to VHDLccoououiveivereereeteereeresneeeeeesiesesereeesseseneeens 71

3.2.2 Use Of IRAMP Data Basescccovuruiuerreieriniinieneeee et mseesees s eeseseseessensssssssessseesesessens 71

3. 23 IRTOOL MOGEIS.........c.coomimieiieeinieetenercresietninstste et sens st s s nsas s et ee s ssnesesssenenees 71

3.2.4 XPACh MOEIS ...ttt ettt e st b e e e e e e e s eteseneeneas 71

3.2.5 Use of Honeywell/Omniview Performance Model Libraryc.c.ooveveveeececececieeeenen. 71
3.2.5.1 Packages Subdirectory (apt/data/PML_02a/packages).............ceevereereeivmneeeeeeeeeneeeeeseneeeees 72
3.2.5.2 Processor SUBGITECOTYcccceirueiirieieiiteteterereteeen e resete s eseessssssssesnessssssenseseasssenesnenes 73
3.2.5.3 Leaf_cells SUBAIreCtornyc.c.cooceieiiierieeietce vttt sne st — 73
3.2.5.4 Compilation (Analysis) of Library Components for VHDL Simulation............................ 74
3.2.5.5 Compilation (Analysis) of the Library Components for VITP Usecccoeveererervrrennnene 75

3.2.6 Use of SPW Libraries to Generate Performance Modelsooeveeeieevvenieemeeeeeeereeeeeeeenes 75

3.2.7 Development of VHDL DSP Library of Primitives and Applications................cccccoveveveveunene.. 76

3.3 Applcations Of TESt BENCHES..........cc..luuuiuerueesieeeceeieneees e eeesee et seesess e eeeseseesessesees s s seees)

3.3.1 SAR TeSt BENCRESoceo oo, T, 77

3.3.2 IRST TeSt BENCRESovveieereiicceieietstcien ettt sss bt s aese s senane e seeeneeseseens 77

3.3.3 SAR Performance MOGEINEcceoreereeerieieeerieect et tte e seeeeesesteesesesesseasesesssseessssnens 77
3.3.3.1 SPW SAR Algorithm Modelc.coouoimiiiiieieceee e 78
3.3.3.2 Spreadsheet Hardware Tradeoffsocoouvevimieemoeeeeeeeer e eee e et seseseseneeas 78
3.3.3.3 VHDL Performance MOdeLSc.ccovrviuriireeiiiriiee et eesenesaens 79
3.3.3.4 BONeS Performance MOGE!cc.ooouvioiiiieeiieieeeeceeee et 80
3.3.3.5 Network IL.5 Performance MOGELS............o.cuerueuinieriiieiiiiteee e eeeeeeeeseseeeeeeenesenenas 81

3.3.4 JAST Performance MOAEINGccovueuiumuririeieee ettt e e seneeenseere s 82

3.3.4.1 Tradeoff Space EXPIOTedcccvmimiiiiiiiiiicec ettt 82

3.3.4.2 Use of Spreadsheet to Narrow the Design Space...............oooovvvevevieioiieiiieieeeee oo, 83

3.3.4.3 Use of Performance Model to Identify Bottlenecks...........coovveveeeeiereeeeeeeeeeeeeeeeeeeeeeeeeeaina 83
4. FULUIE DITECUOMSouiiiiiieeciieteteiee ettt ettt ae ettt e e et seeae e e e e e seseeeneeaes 85
5. LessOnS LEamed.cooviiiiiiic ittt et e e eeeneee 88
6. PUDIISREA PAPETS ...ttt ettt et et et e e ee e e et e et e eseerasenean 89
T. MASEEIS TRESISoeiieiiiiceieiiet ettt ettt b s e ae s st es s en s as ettt eees st e enonenesenen 90
REFEICINCES. ...ttt et s sttt s e e s st sttt et ee s seeeemoneee 91

vi

List of Figures

Figure 1.
Figure 2:
Figure 3:
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

Figure 23

RASSP Technology TIanSTer.........c...oceueueuiuiiiiiee e ecteeeier et eeee et et eee e 3
Algorithm Partitioning Tool and INterfaces..............ccocooivueiveeinrireeiereeeee et 5
COTS Components of the Algorithm Partitioning ToOL...........c.cccecvuererecerrieeeenrere e 8
Dataflow in the TOOISELcccimiiiirreierieteinieteteeee st e seas e bese st st e s e e nsenseans 14
A Basic TESt BENCh...........c.couiiiiiiiiiiecee ettt ettt 20
Off-Line Test Bench CONfIgUIAtONc.ceuiiiiieiieieicecc ettt secae et eeeens 21
On-Line Test Bench CONfIGUIAtON.ceeveeieieeeeeieicceceiieesee et eteesseee e eeaeses e meeeeeesaneses 22
Basic Approach to Test Bench Developmentc.ccccuoeiecreceveeeeciceerereeese e 25
Physical Structure of an IRST SENSOTc.ociveveiiriieeiiceeeerereee et sastese st s e e nesesaen 27
Nlustration of IRST AIGOTItAINc.cciiimriirieeete ettt as 27
RASSP SHMUIUS GENETRLOTeocuereuereeeeaenteieteeteteasetese s essese s s e sess e secssesssasassssseesens 28
IRST - Overall StateChartocoueuiiiieireetee ettt st seaes 29
IRST - InitialiZation STALEcccoeuruereirieieiiriec ettt ee st eesessaeessee s s sneston e semena 30
RUN_O State Computed Target POSIION........c..cooveueeeereveeeerceinereeseieseie s vesssne e seeeemeeneenenes 30
RUN_1 State - Target Position Read From A File.............ccovviiieiieceieeeeeeeeseeeeeeeeeeennn 31
Express VHDL Code Template EXample...........c.c.coveuvuiirerireeereoenaeeesceeeeeeeeeseoeseseeseessesesneas 31
Code EffiCIiency TSt Case......c.cccvvueueuieeeeerericrereei ettt rsseeeresssesseeesreesraceseseseeseeeseeeeeseens 32
Deramp Compression PIOCESSING............oveueuiieieiiiiieeeieieieteer et eesss e eeseeee s 34
SPW Real Number Model............ccocooviiiriniineeee ettt ses et seness st ss s 35
Transmitted Signal.............cc.ocoieiniiiiirre ettt st 36
Downconverted Received SIgNal.............c.ooicicicuiuinieieeriiececcee ettt n s 36
FFT of Deramped SigNal.........ccoooiiiieiiriiiieerceereee et eee e seeeeeeeseee s e e v sssesesans 37
Real Number Model SPW To VHDL INEETfACEvovvevereiiceceeeeveecee ettt 38

vii

Figure 24. Activity Chart Model of SARccocviiiiiiiceeceeeeceee ettt 39

Figure 25. Structural Test Bench for IRSTccocooviiiiiiriiee et 40
Figure 26. SAR Structural Test BENCh...........ccccociiiiiiiici et 41
Figure 27. IRST INPUt FTAMES........coooviiiiiiiiiiieic ettt ettt e et r et s enanas 43
Figure 28. SAR Radar Return From Two Point Targets..........c....ccooveverveveninneveereeriereeeeete et 44
Figure 29. Changing An IRST System Parameter.............ccccocveviviuiivireeieereeeereee e seeesenne 45
Figure 30. SAR System Schematic DIagrami.............c..ccoooiviiiiiiiiiieiicecece et eeees 46
Figure 31. Requirements Interface for IRSTccoiuiiiiieiiieicceereeceeeee et 47
Figure 32. Math Model for IRST Requirements INterface................ccccovvviveeriiceieeeeceeeeeeeees e 47
Figure 33. Math Model for the Requirements Interface (Cont’d)ccooveevueveecrmeeviceeceeeeeeeeeeeens 48
Figure 34. Requirements Interface for SAR ...t 48
Figure 35. Math Model for SAR Requirements INterfaceoooviiiieiieeeeeeeiieeeereereeereeeeeseeene e 49
Figure 36. A Test Case of Test Group IL.........ccooiiiiiiercccerceee ettt 50
Figure 37. A Test Case of Test Group ITL.........cccoouiimiiiiier et ene e er e 50
Figure 38. A Test Case of Test Group IV........cccooiiiiiniieiiccecereceee e sb e 51
Figure 39 SAR Test Groups of Iterative TeSt MOc.coveuiviieviiieieciceeeeeeee et 52
Figure 40. Results of Iterative Mode for SAR Test Group Ilccooooveieuiiiieieeeeeeeeeeeeee e 52
Figure 41. Results of Iterative Mode for SAR Test Group Io.eoveereeieeeeeseeeeeseeseeeeseeserseeeeee 53
Figure 42. SAR Test Group IV Evaluation of Noise Sensitivity ... 53
Figure 43. Results of Iterative Mode fOr IRSTc.ocoiiiiiiiieiiceeeee st ee e 53
Figure 44. A High-Level Test Bench Generation System with Test Plan Interface.............ccocoovevineeen.... 54
Figure 45. Test Bench Generation SYStEIN........cc...c.iuiiiiiiuiiiiieieeeceeeetee et e eeenenenen 56
Figure 46. The VHDL Test Simulation CONtroller.................ccouoeveiieiiiiieciiieeeeeesieeeee s et eeeeeeseeeenes 56
Figure 47. User Interface Menu Structu‘re FOFIRST ..ot 58
Figure 48. Test Displays: Test Vectors Used in the File /O Test Case...........ocveeveveeireeeeeeeeeeeeeereenns 58
Figure 49. Test Displays: MUT Outputs for the File /O Test Casecccuoveviuiieeieeieeeeeeeeeeeeieeanns 59

Figure 50. Test Displays: Comparator Outputs for the File I/O Test Casecoeueeevveeeeeeeereeeeenene. 59

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.

Figure 58.

SAR Simulation Result Using File /O Mode...........cccoururumirrinininincccinceeeece e 60
SAR TBGUI Base Window Showing Code Generated Mode and Parameter Entering............ 61
Code Generated Mode of Test Group II: Range of Multiple Targets..........cccccooeevreneenennennne. 62
TAFGEL REPOTL ...ttt et a e s e b e b b e st sbeessssasesnensensenseesasonan 62
Top-Level Graph in SPW . ..ottt sttt es et rernes 78
Top-Level Model of RASSP Benchmark AlgOrithm.............cccevevivireinneeneienreeee e eseeeeeneens 80
Range Compression DIagrami........c.ccooecceniniiierniines e esars e ass s vs e ene s 81
NEtWOrk MOGEL ...ttt sttt et st e st st r e nnasaesssnbens 82

ix

1 Introduction

1.1 Project Objectives

This project has two objectives:

1. Reduce the cost and risk of model year upgrades by automating the process for adapting signal

processing algorithms to different signal processor architectures.

The ability to adapt legacy software for signal processors to operate on new hardware
configurations is an important part of the model-year concept. Partitioning and allocation are
essential steps in successfully adapting signal processing software to different hardware
architectures to obtain maximum performance and improved system reliability. Our approach
concentrated on the use of representation transformations in order to adapt signal processing
algorithm data flow graphs to fit different hardware architectures. Automatic transformation of
these algorithms can improve productivity and reduce the number of induced design errors. The
automation of the partitioning process also provides the potential for increasing the reusability of

libraries of high-performance signal processing algorithms.

2. - Reduce the cost and risk of verifying VHDL virtual prototypes of signal processing systems by

automating the process for generating high-level test benches.

Our approach focused on automating the creation of high-level VHDL test benches that can be
reused as a signal processor evolves through its model-year upgrades. During this evolution,
system requirements will change. Consistent with the RASSP concept of virtual prototyping, we
constructed high-level VHDL test benches that captured the essential system requirements in

ways that are easy to change as the system evolves.

RASSP applications were employed as driving benchmark problems for tool design and test.

1.2 Team and Roles

The Research Triangle Institute (RTI) and Virginia Polytechnic Institute and State University (Virginia
Tech) were teamed in this project. The RTI team. under the leadership of Dr. G. A. Frank, brought over
ten years of experience in signal processor architecture performance evaluation and CAD tool
development. In addition to overall responsibility for the program, the RTI team was responsible for

development of the Algorithm Partitioning tool (APT), its interfaces and its libraries.

The Virginia Tech team, under the leadership of Dr. J. R. Armstrong and Dr. F. G. Gray, brought
extensive experience with VHDL, hardware design at the chip and system levels, and system performance
design and assessment. The Virginia Tech team was responsible for development of the test bench

generation tool and for the VHDL interfaces of the APT.

Captain Edmund Gieske and Lieutenant Richard G. Bishop of Wright Laboratory were the project

monitors.

1.3 Technology Transfer Results

During the contract, we have established a working relationship with Northrop-Grumman. They used
APT toolset to model the signal processing component of their JAST avionics architecture. The trade
studies conducted with the APT tools were the primary component of their benchmarking and resource
utilization report. Edited versions of their descriptions of the tool set and of the analysis results were
included in Volume 2 of the second report, titled "APT Tool Description" and "Edited Extracts from the
Northrup-Grumman JAST Avionics Benchmarking Report," respectively. The below paragraph and

figure are extracted from the Northrup-Grumman report:

The benchmarking and resource utilization task results were derived from the process and
procedures developed in the RASSP program. The first step was to evaluate the RASSP
benchmark algorithms using the JAST hardware concepts as shown in Figure 1. The MIT strip
SAR algorithm was used for this purpose. This approach accomplished several things. First, the
analysis technology and procedures used in the RASSP program were transferred to the JAST
program. Second, the RASSP benchmarking algorithm provides a quantifiable comparison of
the performance of the RASSP hardware (current technology) with the projected JAST hardware.
Third, a high confidence estimate of the JAST resources required to perform the new radar

algorithms were obtained by using the verified and validated analysis approach developed in the

RASSP program.

[Mode! JaST Hardware
Hardware Performance
Concepts Evaluation

Map
Algorithm
to JAST ‘
Hardware
Select JAST
Radar Algos

for Evaluation

Evaluate JAST
Model Algos

' > Hardware
with RASSP Requirements
Process

v

Map Algos
to JAST
Hardware

Figure 1. RASSP Technology Transfer

We have had close cooperation in our tool development from CACI. the vendors of the Network I1.5

performance modeling tool. and Mercury Computer Systems. Inc. We have also shared models with

Cadence Alta Group, the vendors of SPW.

Our test bench generator work has led to several publications and a tutorial on test bench development at
the Fall 1996 VHDL International Users Forum. The publications and Master Theses which resulted from

this project are listed in Sections 6 and 7.

2. Overview of the RASSP System Developed for this Project

2.1 The Algorithm Partitioning Tool

The Algorithm Partitioning Tool (APT) is designed to facilitate the transition from functional algorithm
description and VHDL or schematic hardware architecture and component description to a dynamic

performance model of the algorithm partitioned and mapped onto the architecture.

2.1.1 Using the APT System for HW/SW Codesign

Codesign is done by using APT with a five-step process that is illustrated in Figure 2.

Hardware

Figure 2: Algorithm Partitioning Tool and Interfaces

A functional algorithm model is built and tested using SPW. These models are extensively
parameterized to allow rapid functional verification on small test sets. These models are also built
hierarchically so that they can be tested in a bottom-up fashion and so that components can be reused
in different algorithms.

The sizing spreadsheet is used to roughly determine the number of components required and to
identify the critical segments of the algorithm. The sizing spreadsheet is a valuable tool for
preliminary tradeoffs. Sizing spreadsheets are used to determine processor and memory requirements
(or required algorithm modifications) and to compare possible processor instruction set and clock rate
assumptions. The APT system generates the sizing spreadsheet automatically from information
extracted from the SPW functional model and the processor characteristic library. The user allocates
all or part of the algorithm functions to any of the candidate DSPs, and the spreadsheet makes a static
calculation of the processor utilization. If the utilization is greater than 100%, then the sizing |
spreadsheet indicates that multiple processofs are required to execute the part of the algorithm
allocated to the processor. Similarly, the user allocates the memory requirements for the algorithm
functions to memories in the system, and the spreadsheet makes a static calculation of the memory
occupancy.

Once an appropriate system configuration has been selected based on sizing analysis, a hardware
architectural model is constructed. This model is built using either a VHDL .stmctural model with
components from an augmented Honeywell/Omniview Performance Modeling Library (PML) or the
Network I1.5 graphics interface, netgen.

Next, a mapping spreadsheet is constructed from the algorithm model developed in Step 1, and the
hardware model developed in Step 3. APT automatically generates the spreadsheet from information
extracted from the SPW algorithm and either the VHDL or the Network I1.5 hardware model. The
user then maps the algorithm functions to processing and memory components in the hardware
model. If an algorithm function is mapped to multiple processors, then the SPW single execution

thread is converted into a multi-thread version for faster execution.

5. When all algorithm functions have had their processing requirements mapped to processors and all
their memory requiremeﬁts mapped to memories, and the utilization of all components is satisfactory,
(based on a static model), a performance mode! can be generated. Simulation of the performance
model provides memory and interconnection utilization information. as well as dynamic and more

accurate processor utilization information.

2.1.2 Tool Components of APT

As shown in Figure 3, APT consists of libraries and interfaces that surround six Commercial Off-The-
Shelf (COTS) tools: an algorithm design tool (SPW), a spreadsheet (2020), a VHDL simulator (Optium
5.2, by Viewlogic, previously Vantage 5.2), a VHDL parser (VHDL Tool Integration Platform (VTIP)
from CAD Language Systems, Inc.), an enhanced library of performance models (Performance Model
Library (PML_02a) by Honeywell/Omniview), and a performance simulation tool (Network II;5). APT
uses the Signal Processing WorkSystem (SPW) of the Cadence ALTA Group to capture the algorithm and
verify its functionality. APT captures hardware component characteristics from VHDL processor |
characteristic files. These characteristic files can be generated by APT from the PML_02a library
components using the VTIP VHDL parser or can be generated by hand from spec sheets. APT captures
hardware component connectivity from either a VHDL structural model or from a Network II.5 generated
schematic. APT uses the 2020 spreadsheet from Access Technology for sizing an architecture from
algorithm requirements, and for partitioning and mapping an algorithm onto a specific architecture. Once
a mapping spreadsheet has been generated, APT generates a VHDL or Network 11.5 performance model
from the spreadsheet output and the component connectivity data. APT uses the Network I1.5
performance simulator from CACI Products Company or the Optium 5.2 VHDL simulator from Viewlogic

to perform a dynamic simulation.

Perlodic
Signal Processing

ST =

Hardware
Algorithm Congtraints

Block
Diagrams

Requirements
—_—

SPW

>

Algorithm)

Primitives
& Relationships

-

N—
HW

Component
Characteristics

Timing

Network
1.5

2.1.2.1 The Algorithm Capture Tool of APT

SPW is a software package for developing, simulating, debugging, and evaluating digital signal
processing (DSP) and communications system algorithms. SPW provides libraries of DSP and
communications primitive "blocks" that can be combined in the block diagram editor (BDE) to represent
an algorithm. The BDE functions hierarchically with a symbol at the higher level representing an entire
schematic or sub hierarchy of schematics. Properly constructed models can be simulated, using the Signal
Flow Simulator. With other components of the SPW an algorithm can be thoroughly tested for functional
correctness. In addition to the built in simulator, the system provides a code generation system (CGS) that
will generate C code from the schematic targeted to the host machine or various signal processors from

TI, Motorola, or AT&T. The Cadence Alta Group provides a Tool Interface Language (TIL) with the

A4

Timeline
Interface

Figure 3: COTS Components of the Algorithm Partitioning Tool

SPW package. TIL can be used to develop user-specified custom tools accessing the BDE database. The

Signal Flow Simulator and CGS are both TIL applications.

The APT tools employ TIL programs to capture algorithm size and dataflow characteristics from a BDE
database (model of the algorithm). This, combined with control flow data from the §imulator or CGS.
provides the workload characterization necessary to map the algorithm onto a hardware architecture

and conduct both static and dynamic performance analyses. An algorithm designer employs SPW to
graphically capture and functionally validate the design of a signal processing algorithm. If the SPW
model is to be used for performance analysis, it must be constructed (at the "leaf node” level) from
primitives that have the RTI developed extract TIL programs attached. Currently, a subset of the standard
libraries (sufficient for the DSP applications being investigated) included in a special library,

“apt_lib", are employed for this purpose.

2.1.2.2 Hardware Schematic Capture Tools of APT

APT uses two forms of input to describe the hardware:

e A processor characteristic library that is used to capture information about the instruction sets and .
clock rates of processors, input devices (such as sensors), and output devices (such as displays); and

¢ A structural model of the components, their interconnects, and their parameters (such as processor
type). A structural model is composed of components selected from five types: input devices, output
devices, storage devices (e.g., memories), processors, transfer devices (e.g., buses), and gateways
(which represent nodes in muitistage interconnection networks).

The structural model also describes the interconnections among the components.

APT uses either a VHDL structural model with components from the enhanced PML_02a library or the

schematic capture tool netgen, which is part of the Network II.5 tool set from CACI, to represent

structural information. The enhanced PML_02a library and the Network II.5 library both contain a basig
set of components, which include processors and memories. In the VHDL structural model. a bus is
represented by a signal and a set of Bus Interface Units (BIUs). with one BIU for each device on the bus.
Network I1.5 treats the bus and the BIUs as a single component. We have developed a hierarchical
approach to capture the BIUs attached to a common signal so that the BIUs and their signal are
represented as a single component in the top-level structural model. This approach also ensures that all

the BIUs connected to a common signal receive the same generics.

AN

2.1.2.3 The Architecture Sizing and Algorithm Mapping Tools of APT

APT uses the 2020 spreadsheet from Access Technology to develop gross sizing budgets and to analyze
alternative partitionings of the algorithm onto the architecture. This spreadsheet provides a facility for
creating and modifying spreadsheets with externally produced ASCII files. The spreadsheet is employed

in two modes which are referred to as "sizing" and "mapping".

Sizing mode is employed in early trade studies when architectures have not yet been defined. Sizing mode
uses a static performance analysis to address issues such as how many processors of a given type and how
much memory are required to execute a primitive, a section of the algorithm, or the entire.algorithm
within the allotted time. In sizing mode, two performance metrics are calculated: average processor

utilization, and maximum memory occupancy.

For initial trades where one is comparing different processors. memory requirements, and comparing
alternative partitioning strategies a much smaller spreadsheet suffices and is desirable. A sizing analysis
of the RASSP SAR algorithm on a Mercury Raceway architecture produced a spreadsheet where the 30
processors are represented by 4 columns for: (a) range compression processors, (b) corner turn processors,

(c) azimuth compression processors, and (d) image formatting processors.

10

Mapping mode is employed to perform static analysis of a specific architecture. to create alternative
mappings onto a specific architecture, and to create performance models for dynamic analysis of an
algorithm/architecture configuration. During mapping, the same static performance metrics are used as in
sizing analysis: average processor utilization and maximum memory occupancy. In this mode, spreadsheet
output is used to produce a dynamic performance simulation model that can be used to assess additional
issues such as latency and resource contention. The same algorithm data is used for both modes, but
different hardware descriptions are used. In the mapping mode. a column for each processor and two
columns for each memory are required. The processor and algorithm descriptions are stored

in separate input files. Thus. any algorithm in the user's library can be mapped or sized with any

hardware architecture.

2.1.2.4 Performance Simulation Tools

The APT employs either Optium 5.2 or Network I1.5 for performance simulation. One of the main
considerations in the design of a computer system is the effect of conflicts over access to computing
resources. These effects are not readily determined by the use of analytical models. Because both VHDL
simulators and Network I1.5 model the interactions between all devices in the system, the effects of

resource conflicts are identified.

The PML_02a library contains VHDL packages that monitor performance parameters and display the

information in graphical format that is easy to read.

Network II.5 supports separate representations of hardware and software, making it possible to reuse
hardware models in the evaluation of multiple algorithms on the same architecture. Network II.5 provides
an extensive statistical report on each simulation, and also generates strip charts of the utilization of
components over time. Network II.5 also provides animation of a simulation. so that the user can

visualize the behavior of the computer system being modeled.

11

2.1.3 APT Libraries

The Algorithm Partitioning Tool (APT) libraries consist of:

e Alibrary of SPW primitives designed for extraction of algorithm characteristics from the SPW
functional model. This library is delivered in a SPW dump file, apt.dmp. When retrieved it will
reside in SPW as the library, apt_lib. This is accompanied by a library of TIL source files in the
directory $aptsys/til which can be used to recompile, if necessary, the extraction programs.

e Alibrary of 2020 command files for constructing a spreadsheet that can be used either for static
analysis of resources required by the algorithm or for mapping the algorithm onto a specific
architecture. This library resides, along with command files for support of sizing and mapping, in the
apt/tools/cmds directory.

e Alibrary <;f processor characteristics in the form of 2020 command files. This library has been
extracted from the PML library and processor datasheets. APT includes tools to update this library as
additional processors are added to the PML library. APT also allows processor characteristics to be
created manually (e.g., for notional architectures) and added to the library. This library resides in the

apt/data/proc directory. Processors currently characterized in the library are shown in Table 1.

Table 1: Digital Signal Processors in the Processor Characteristics Library

Manufacturer Processor Identifier
Analog Devices SHARC 21062
Hughes DSPE

Intel i860

Intel 1960MX

Intel 386

Intel Pentium

12

Motorola 96002
Texas Instruments TMS320C40
Texas Instruments TMS320C80
AMD 29050
MIPS R4000

Four SPW libraries of benchmark algorithms, apt_3_pol and apt_1_pol, the RASSP benchmark I and
a single polarity version respectively, apt_rbgm, a real beam ground map algorithm modeled under a
JAST support contract, and test_sys, a small test system using the functions of the RASSP benchmark
I algorithm with small vectors that was used to verify the SPW modeling with apt_lib blocks and for
initial interface development. These libraries are delivered in the SPW dump file apt.dmp along with
apt_lib. The SPW algorithm models are extensively parameterized so that by changing a few
parameters on the top level diagram one can automatically adjust déta structure sizes, number of
subswaths, FFT sizes, decimation rates, FIR filter sizes, etc. This parameterization allows rapid
tradeoffs between functional characteristics and computational resources. Data sets extracted from
these models are included in the apt/data/sw directory. These data sets can automatically produce

sizing or mapping spreadsheets for any architecture represented in the apt/data/hw directory.

A library containing the VHDL structural model (and derived performance model with the test_sys
algorithm mapped onto it), contained in the models/vhdl/vpiracel6 directory, and a library of data

sets extracted from this model and from netgen schematics, contained in the apt/data/hw directory.

An enhanced library of performance modeling components suitable for use in VHDL structural
performance models. The Honeywell PML_02a component library was enhanced by adding
additional components. Also, some of the leaf cells were modified for this application. This library is

delivered in the apt/data/PML_02a directory.

13

2.1.4 APT Interfaces

The Algorithm Partitioning Tool includes several interfaces that support the transformation of data from

one COTS tool representation to another. Figure 4 shows the flow through and between COTS tools and

interfaces.
8UILD Septastarw BUILD
MAT!
STRUCTURAL COMPONENT 5%:5" u,s)C

MODEL

DESCRIPTIONS

(Manual)

Y.vhdl
Y-c.vhdl Y.net
Y vtip BUILD ATy R
fproj WY Y.ssh FUNCTIONAL P Y
— MODEL —_—Y
VHDL STRUCTURAL NETWORK It5
MODELS SCHEMATICS

Y.ssh

BUILD_SS
PROGRAM

Y-c.vhdl

BLOVHDL
PROGRAM
Sapisysin
Saptsyshawk

X-sw.vhd!
X-c.vhdi

fprojectsimodeismhdlY/X
Y

OuUTPUT

(MANUAL)

Y.r_tb!
Saptdgahw z (—X & Y)

—_— Saptagteremp/

COMPOSITION &
CONNECTVITY Kprojectsm@dels/ 2020/ COMPOSITION &
\ 4 CONNECTVITY

SPREADSHEET
MODELS

DIRECTORY Y

ALGORITHM
DESCRIPTIONS

Z.net

Iprojects/imogeis/N25/perf
4

VHDL PERFORMANCE A
MODELS Z.proc NETWORK 1.5
Z mem MODELS
Iorojectsihodels2020/Y/
—
SPREADSHEET Z.proc & Z.mem
OUTPUTS

Figure 4. Dataflow in the Toolset

14

2.1.4.1 Algorithm Model to Spreadsheet Interface

The next to the right hand column along with the "BUILD_SS PROGRAM" bubble of Figure 4 shows the
interface from the algorithm model to the spreadsheet. Having built the model in SPW using the apt_lib
library, the user runs the custom netlister using the master tool, extract, from apt_lib and executes CGEN.
This produces three data files with a common name and suffixes of par (parameters), seq (sequencing),
and rat (rates). A call to the C program extract reads these three files and produces two shell scripts with
the same name and suffixes of ssp (parameters) and ssq (data-flow predecessor and successor
relationships). These two files are called by the build_ss spreadsheet building script to insert into the

2020 command file the calls that will produce the function rows and predecessor/successor data.

Instructions are provided in the User Guide for manual production of the ssp and ssq files. Thus, the user
can produce a spreadsheet for sizing or mapping without building a SPW model. This procedure will
produce a performance model from spreadsheet output if the architecture data was extracted from a

structural model or schematic.

2.1.4.2 Hardware Models to Spreadsheet Interfaces

The top two bubbles in the two outside columns in Figure 4 show the interface from the hardware models
to the spreadsheet. Both gethw and getvhdl produce a shell script with a suffix of ssh. This file is called
by the build_ss spreadsheet building script to insert into the 2020 command file the calis that will produce
the processor and memory columns. Both extraction programs also produce composition and connectivity

data that are used with the spreadsheet output to build the performance model.
The script getvhdl analyzes the partially configured structural model using VTIP. It then calls a C

program, acet, that produces the .ssh shell script for spreadsheet construction. This is followed by a call to

the C program conet that produces an interim "connectivity" file. Getvhdl then calls the shell script

15

Bld_Route which employs a series of three awk scripts to produce routing tables for the VHDL

performance model. This file, with suffix r_tbl, is stored in the apt/data/hw directory.

Another script, get_proc. calls the C program. pcet. which uses VTIP to extract the necessary information

from the PML models and produces the 2020 command file for a processor in the apt/data/proc directory.

The shell script gethw calls an awk script that produces the .ssh shell script for spreadsheet construction
and decomposes the Network I1.5 schematic into a subdirectory of component files in the apt/data/temp

directory.

Instructions are provided in the User Guide for manual production of the ssh file. Thus, the user can

produce a spreadsheet for sizing or for static analysis of a mapping without building a structural model or

schematic. This procedure will not provide sufficient architecture data to produce a performance model.

2.1.4.3 Spreadsheet to Performance Models Interfaces

The bottom bubbles on the two outside columns in Figure 4 show the interfaces from the spreadsheet to
the performance models. Both the bldvhdl and bldnet scripts take the two spreadsheet output files as

input.

The bldvhdl script also employs a standardized vhdl configuration file and the r_table routing file

produced by getvhdl. It calls two nawk scripts:

bv_passl.awk translates Intermediate Form into VHDL application sw

bv_pass2.awk creates a configuration file for the VHDL performance model

16

The bldnet script also employs the files in the temp directory produced by gethw and calls a series of 6

awk scripts:
mem.awk processes the <modelname>.mem file and creates an
auxiliary file describing the memory mapping.
passl.awk generates multiple auxiliary files and a first
pass translation of the spreadsheet: <modelname>.mac.
pass2.awk edits the predecessor and successor information based
on the loop structures in the spreadsheet.
pass3.awk edits the predecessor and successor information based on the parallel loops.
pass4.awk generates a final translation of the .mac file and the
auxiliary files into the .out file, a final intermediate form.
pass5.awk generates the network I1.5 processor instruction sets

and the network II.5 modules and files.

2.2 Test Bench Generator

2.2.1 Introduction

In this section of the report, we describe the results of the test bench generation research carried out under

the RASSP program. We will show that this res;:arch developed methodology for the:

e Rapid development of test benches for VHDL {IEEE88] models of DSP algorithms.

e Use of high-level graphics based design tools to generate test bench VHDL code.

o Use of test bench component libraries which allow construction of a range of test bench

configurations.

e Use of requirements capture, requirements interfaces, and test plans to link the test bench to the

system specification.

17

This methodology has been applied to two sensor based systems: 1) Infrared Search and Track
(IRST)[Cams93], and 2) Synthetic Aperture Radar (SAR)[ShaG94] and a demonstration test bench
generation and simulation system was developed which generates model inputs for these two application

domains.

The Rapid Prototyping of Application Specific Signal Processors (RASSP) program [RicM94] is based on
the model ' year concept for hardware development where a design in the field is refined and updated
from year to year instead of being fully replaced. In this situation, the system specification can change
from year to year. Our test bench/ specification interface is designed to account for these model year

changes.

The results of this research are most beneficial to VHDL modeling in the digital signal processing
domain. Mathematical models in this domain can be used to generate “normal system” inputs while
working at a high level of abstraction. Other domains do not always have this property. However, since a
high percentage of ASIC designs are for DSP systems [EurA93], the results are still important. And some

of the techniques, e.g., the requirements and test plan interfaces, have wider application.

2.2.2 Problem Statement

The research is intended to solve to problems: 1) Complexity of the test bench generation task, and 2)

Linkage of test benches to the system specification.

! In this specific sentence the word model refers to a version of the hardware, not to a VHDL model. One

of course can have a VHDL model of a system for each model year!

18

2.2.2.1 Complexity of Test Bench Generation

A simulation model must be thoroughly exercised to prove that it exhibits the correct behavior. However,
generation of tests for a model is a labor intensive task rivaling that of developing the model itself.
Moreover, tests generated manually satisfy no formal definition of completeness. What is required is
method of test bench development that can be carried out at a high level of abstraction, e.g., in the
mathematical domain of DSP systems, which relieves the modeler of the details of test bench
development. One also needs a completeness criterion. We will show below that completeness is achieved
by accurate modeling of the environment surrounding the system which the Model Under Test (MUT)

represents.

2.2.2.2 Linkage of Test Benches to System Specifications

A major goal of the DOD is to have the test bench directly reflect the system specification. Then if thc;,
system model executes correctly in the test bench, one can assert that it satisfies the specification
requirements. The RASSP program adds an additional requirement in that the specification may evolve
from one model year to another and the test benches for a system model should track this evolution. Test
benches that have usefulness through the life of a program are also a key to lowering life cycle support
cost. Finally, it is important that specification information be stored in such a way that system engineers
have easy access to it. In the section below on linking system requi'rements, we will discuss how these

issues are addressed.

2.2.3 Test Bench Concepts

2.2.3.1 A Basic Test Bench

Figure 5 shows a basic test bench[FraG91]. The Model Under Test (MUT) receives test vectors from a
Stimulus Generator which also provides an expected (GOLD) response. The Comparator compares the

MUT response with expected response and issues GO/ NO GO signals. A test bench can have two types of

19

feedback. First the model state can be fed back to the Stimulus Generator to model interaction between
these two elements. Second, there can be feedback from the Comparator to the Stimulus Generator which
allows adaptive testing, i.e.. the results of one test dictate what the next test will be. We will discuss below

how we applied adaptive testing.

Adaptive Testing

Model State

v
Model

gtimuluts —\I,:ii;s—» Under ‘M-Comparator—> Go/No Go
enerator Test

Expected Response T

Figure 5. A Basic Test Bench

20

2.2.3.2 Test Bench Configurations

Test benches can be classified into a number of configurations.

Figure 6 shows an off-line configuration, where stimulus data files, generated earlier, are read by the
Stimulus Generator and applied to the MUT. The expected response is another data file which is feed to
Comparator for comparison with the MUT response. The data files used by the off-line configuration are

originally generated by an on-line configuration or can be real system data.

Off-line Test Bench Configuration

Figure 6. Off-Line Test Bench Configuration

Figure 7 shows an on-line test bench configuration. Here the Stimulus Generator is programmed to
produce test vectors. The test vectors are fed to a gold model of MUT behavior which generates expected
response. The MUT is simulated in the same simulation that generates the test vectors and expected
response. In many cases, such as our RASSP work, there is no distinct gold MUT model. Rather, the

Stimulus Generator uses the mathematics of the system model to generate the expected response directly.

21

Test

Vector Response

Stimulus
Generator

MUT

Go/No Go
Comparator —>»

Expected Response >

Behavior

—

Figure 7. On-Line Test Bench Configuration

Adaptive test benches are on-line test benches which react to feedback from the MUT or the Comparator
(See Figure 5) to effect the generation of future test vectors. Below we will discuss how adaptive testing is

an important concept in high-level approaches to system testing.

2.2.3.3 VHDL Test Benches

When the Model Under Test (MUT) is a VHDL model, the test bench is also coded in VHDL[ArmJ93].
The MUT is plugged into it and the test bench is the top level combonent in the model hierarchy, i.e., it is
the entity that is simulated. For complicated MUTs, the development of a VHDL test bench is, when left
to manual means, a complicated programming task rivaling that of developing the model itself. This

problem can be complicated by the possible necessity for the Stimulus Generator to react to feedback from

the MUT or Comparator in adaptive testing.

In developing a VHDL test bench, one must develop: 1) A VHDL shell into which to plug the Stimulus
Generator, MUT, and Comparator which allows application of test vectors via signal assignment

statements or file I/O. 2) The test vectors to be applied by the Stimulus Generator. Task 1 is a

22

straightforward task and can be easily performed through the use of VHDL structural architectures and
configuration bodies. Task 2 consists of test generation for VHDL behavioral models which we discuss

next.

2.2.3.4 Behavioral Test Generation

There are two basic approaches to test vector generation, model based, and environment based. In model
based test generation, the model itself is used to perform the test development. It is sometimes referred to
as white box testing because knowledge of the internal nature of the mode! is required to develop the tests.
Model based testing can be further divided into model perturbation and I/O path sensitizing. In model
perturbation, faults are injected into the model and tests determined which detect these faults.
Conventional Automatic Test Pattern Generation (ATPG) at the gate level fits in this category.
Researchers at Virginia Tech and elsewhere have applied this approach to behavioral models{ChoC94].

In I/O path sensitizing, one develops tests which activate all paths through the model. No fault model is
employed. We have been active in this area of research also, using NSF funding to develop tests based on
a Process Model Graph representation of a behavioral model [KapS94, LiW96). /O path sensitizing is

also a relevant technique for testing conventional software such as C programs.

In environment-based testing, one usés a model of the environment surrounding the system being modeled
to develop the tests. In a sense, one is developing normal system inputs. This type of testing is referred to
as black box testing because one develops these tests without knowledge of the internal structure of the
system. For the RASSP project which deals with DSP systems, we have employed environment-based
testing because the system inputs are a mathematical function of the environment surrounding the DSP

system and could not be derived from the Model Under Test.

23

2.2.4 Approach to Test Bench Development

Our approach to test bench development is based on the following four principles:

1.

Test bench VHDL code elements are initially developed using graphics-based high-level system
design tools. These code elements are developed primarily as behavioral models. Using these high-
level tools allows one to construct models of the environment based on system mathematics. thus
making it easy to establish their correctness.

Code elements are refined in a library structure that allows construction of structural models. This is a
key element in the RASSP model year concept which allows reuse of test bench code from one year to
the next.

Environmental Data Generators are used to prepare input files that can be read by the test bench.
These data generators are programs specific to the DSP environment we worked with, i.e., IRST and
SAR. This software has been integrated into the test bench generation system.

Specification values are stored in a repository that is iinked to the test bench through a requirements

interface.

Figure 8 shows the basic approach to test bench development. The system specification consists of general

requirements and specific requirements. General requirements specify the class of systems being

modeled. For example, a test bench for an IRST system must generate two dimensional arrays of pixels at

afixed clock rate to model the operation of the IRST sensor. Specific requirements select a particular

member of the class. For IRST, the specific requirements might be a frame size of 256 X 256, pixel

intensity range of 0 to 63, and a frame rate of 10 frames/sec. Below we will show how the specific

requirements are stored in a Specification Repository that is easily accessed by system engineers and these

values are fed automatically forward to the test bench system.

24

General
System Requirements Design Tool
. . ——————
Specification (Code Generator)
General & Specific Code
Specific Requirements
Requirements
Generic
Requirements Values .
((lia ture L s Simulatable
Tp I Test Bench
00 >
MUT
Environmental VHDL
L Data Library
Generator Data
Files

Figure 8. Basic Approach to Test Bench Development

General requirements are input to the design tools used for code generation. The resultant code is general
in that it is parameterizable with VHDL generics. The specific requirements are fed to a math model

which operates on them to produce derived specific requirements that are generic values. As shown'in
Figure 8, this math model can be implemented in a Requirements Capture Tool such as RD100 [Asc).

This was our original approach. It has the advantage that system managers may already be using such a
tool for systems analysis. However, the math model can be implemented just as easily in MATLAB
[MAT?92], EXCEL, or a C program. Another possibility is to put the math mode! in the test bench code,
but this adversely effects the generality of the test bench code library. Below we will add test plans to the -
generic value development interface which can override the nominal specific requirements coming from

the system specification.

Both general and specific requirements are fed to environmental data generators which develop data files

that can be read by the test bench during simulation. The Model Under Test is selected from a VHDL

25

library. Given these four elements: test bench VHDL code, generic values. data files. and MUT, a test

bench is fully assembled.

2.2.5 Modeling

In this section, we describe our approach to modeling. Although the models we developed were for the test
bench code, the techniques employed apply to a wide range of modeling situations. Our approach to
modeling has two main features:

1. Use high level, graphics based design tools to create initial behavioral test bench models. In the DSP
area, the mathematics of the environment is well defined. If we model at a high level, we can
concentrate on applying the mathematics to the problem and ignore the language details, thus
insuring model correctness. The high level tools have VHDL interfaces which allow us to dump
simulatable VHDL code. We used this approach to develop our initial IRST test bench early in the
RASSP project and were able to do so in less than a month.

2. Develop a library of primitives which allow the creation of structural models. Here, the code elements
originally developed as behavioral models are refined over time in a library structure. The test bench
model is then constructed structurally using a schematic capture tool. The library structure supports

code reuse which is a key element in RASSP model year design concept.

2.2.5.1 Application Area 1: IRST

Infrared Search and Track (IRST) systems are a class of passive military infrared sensor systems which
can reliably detect and track targets that emit an infrared signature [CamS93]. The components of the
system consist of an infrared sensor, IRST computer, track files data base, and display hardware. The
inputs to the computer developed by the sensor consist of a continuous sequence of infrared image frames

of targets superimposed on background clutter. Figure 9 shows an IRST sensor.

26

Clutter
5
R H
e b e R | - == =« Sensor
1 H Capture
3 H
i I
13 ié
s i
Y g
E Id
i 8
W 27
8 7
3

3 V
- N —
: Horizantal
Sensor«----____*.-—-‘ /l
Platform < = = = = = = =]

Range

Vertical

Figure 9. Physical Structure of an IRST Sensor

The function of the IRST MUT which represents the computer is to find the best alignment of successive

frames so that if two successive frames are differenced, the result is just the target movement. Figure 10
shows this process. Figure 10 -d shows the result of differencing.

[llustration Of IRST
Algorithm

(@

)

(c)

(d

_Figure 10. Illustration of IRST Algorithm

27

Figure 11 shows the IRST stimulus generator model which consists of the following sub models:

1. Target - Using information from a user interface. generates target signature of varying shapes, speed.
and direction.

2. Environment - Models the background scene. i.e.. the clutter against which the target will be super-
imposed.

3. Platform - Models the effect of platform motion. i.e., roll, pitch and yaw.

4. Sensor - Combines the information from the target, environment, and platform to produce the

stimulus generator output, i.e., a two-dimensional array of pixels depicting targets on a clutter back

ground.
MUT State
\i
Platform Motion Platform |[__Signal Proc. Control
Model
Target ™ Sensor Sensor Data
Model Target Info Model

Environment info

Environment
— Model

Figure 11. RASSP Stimulus Generator

2.2.5.2 IRST Model Development With liogix Express VHDL

Our initial model development for IRST was done using Ilogix Express VHDL [Ilog92], which is a CASE
tool that uses state charts [HarD87] and activity charts as the graphical representation. Statecharts are

used for control intensive models, activity charts model data flow. The IRST model was done using

28

statecharts [HriS95,ArmJ94]. Figure 12 shows the top level state chart for IRST. State charts allow for

concurrent states. Note that states FUNC and CLOCK are concurrent.

IRST - Overall Statechart

[DEMO
/ .‘él;l}:::” FUNC | CLOCK N[NT’”
h! RUN_CLK
Y IDLE_CLK
IDLE + {porre1ypo,ST_C1x
tr(TRIG = 1 and tr(TRIG = 1 and —| ST_CLK
MODE =0) MODE =1)
‘m(en(EN_CLK).PER2Y te(e(ST_CLX) PER2Y
' ' DO_ST_CLX * DO_EN_C1LX
@RUN_0 @RUN_1 EN_CLK
| | ‘u(mm =0) .
t(TRIG = 0) tr(TRIG = 0)
DONE_CLK
K FINISHED : - /

Figure 12 IRST - Overall Statechart
Nesting of states is also allowed. Thus states IDLE_CLK, ST_CLK, and EN_CLK are nested within the
state RUN_CLK. State transitions can be triggered by events or elapsed time. States with Fheir names
preceded by an @ are super states which imply an underlying state chart. Thus INIT, RUN_0, and RUN_1

are super states. Figures 13, 14, and 15 show the state charts for these super states.
In addition to the state charts, one typically has to fill in code templates which define functions invoked

when a transition is made. Figure 16 shows a template for a function DO_ALG_CALC which is invoked

when the INIT state chart (Figure 13) is invoked.

29

ﬂNIT

-

o>
/DO_ANG_CALC

ANG_CALC

l/DO_INITl

ARR_INIT

[COUNT=1025]/DO_VCOS_VSIN

I

CLUT_INIT

CLUT_READ

B m——

*/DO_CLUT_FILEIO

| [COUNT<1025}/
PO_ARR_INIT

\

J

Figure 13. IRST - Initialization State

RUN_0

/DO_RUN_INTT
w(CLK="1"{ST_FLG='0"}/

[NEW_TAR_INDEX<1025)/

r‘__]

/

DO_UPDATESALT
RUN_INIT —| NEW_TAR4
t(CLK~='1"}{ST_FLG="1"}/
DO UPDATE * /DO_UPDATES
1 NEW_TAR #1 NEW_TARS
[TEMP!_X<=32 or TEMP]_Y<=32)/
DO_UPDATE! DO_CHANGE
NEW_TARI1 CHANGE
‘ * [COUNT_TEMP<1025)/
/DO_UPDATE2 DO _CREATE_FRAME
CREATE_
NEW_TAR2 FRAME
+ * {COUNT_TEMP=1025)
/DO_UPDATE3
/DO_UPDATEA AGAIN
NEW_TAR3
I OVER
(CLK=1)/DO_UPDATE [NEW_TAR_INDEX=1025)

Figure 14. RUN_O State Computed Target Position

RUN 1 ' NEW_TAR_INDEX<1025}

N -

RUN_IINIT _»| CHANGE —P STEP3
/DO_FILE_IO [COUNT TEMP<1025]
* /DO _CR FRAME ‘ /DO_STEP4
MODE_ST CR_FRAME STEP4
/DO_STEP! /DO_STEPS
¥ [COUNT TEMP=1025)
STEP1 AGAIN STEPS
* /DO_STEP2
STEP2 w(CLK=1¥DO_STEP3
+ NEW_TAR_INDEX=1025]
/DO_FIRST {NEW_TAR_INDEX<1025]
/DO_CHANGE
FIRST OVER

Figure 15. RUN_I State - Target Position Read From A File

The completed state chart model can be simulated in the graphics mode and when it is found to be correct,

C, VHDL or Verilog can be dumped.

ACTIONDICTIONARY
Project: IRST

DO_ANG_CALC
Defined in chart: INIT
Definition: TAR_XCOORD:=XCOORD;
TAR_YCOORD:=YCOORD;,
if MODE_MOTION=1) then
RAD_ANGLE:=0;
end if;
if MODE_MOTION=2) then
RAD_ANGLE:=(90%*3.14)/180;
end if;
if (MODE_MOTION=3) then
RAD ANGLE:=(ANGLE*3.14)/180;
end if;
R_VECTOR:=VELOCITY,

Figure 16. Express VHDL Code Template Example

31

2,2,5.3 Model Complexity And Efficiency

It is important to assess model complexity and model efficiency. The complexity data for the IRST Ilogix

model is:
1. State Charts: 43 nodes and 56 arcs.

2. Templates: 520 lines of text.

3. Resultant VHDL (Dumped Automatically): 948 lines.

4. Programming Time: it took us about a month because we were learning the Ilogix software and the

IRST specification. Assuming knowledge of both, a model of this complexity could be done in under

a week.

The efficiency of Ilogix models was compared with other approaches in a separate study. The test case

involved modeling a handshaked exchange between a Computer and a Tester. The computer feeds words

to the tester. If three successive words are equal, the tester asserts an EQU output. Figure 17 shows the

system block diagram and a timing diagram for one data exchange. We modeled the tester completely, but

only the bus interface of the computer was modeled.

READY
TESTER | av | comPuTER
DATA
4
EQ
Equality Tester Block Diagram

READY ___] \ w
DAV

DATA zzzz

X 000 X =z

Equality Tester Timing Diagram

Figure 17. Code Efficiency Test Case

32

The results of the study are shown in Table 2. We compared flat (hand coded) VHDL models with models
developed from Ilogix state charts and SPECCHARTS as implemented at UC Irvine [GajD94]. In terms of
simulation speed, the hand code is markedly more efficient than the code generated by Ilogix in four
different coding styles. and somewhat more efficient than code developed from SPECCHARTS. When
synthesized, the Ilogix code required about 20% more cells than the hand code. We present these results
not to criticize Ilogix and UC Irvine systems, for they are both very useful for high level modeling, but
merely to illustrate that more research needs to be done on the transformations from these graphic

representations to VHDL.

Table 2 Model Efficiency Comparison

Style Simulation Cell Count
Time

Flat(PMG) 47 sec. 216

SPECCHARTS.60 sec. Not

normal synthesizable

SPECCHARTS.58 sec. Not

flat synthesizable

llogix Style 1 1.49 sec. Not

synthesizable
llogix Style 2 1.49 sec. Not

synthesizable
llogix Style 3 1.72 sec. 258
llogix Style 4 1.66 sec. 258

Style 1: behavioral/in line, Style 2: behavioral/procedural,
Style 3: RTL/in line, and Style 4: RTL/procedural.

In summary, our experience with Ilogix Express VHDL reinforced our belief that development of models
with high-level graphics based tools is a very effective approach to model development. It allows the
modeler to concentrate on the mathematical structure of the model without worrying about language

details. The approach can markedly speed up the model development process.

2.2.5.4 Modeling SAR

In Synthetic Aperture Radar (SAR), an effectively long antenna is achieved by moving the antenna along
a line and emitting pulses at regular intervals [XuZ95]. Then through signal processing means, the
returns are combined to achieve the effect of an antenna with a wide aperture. The stimulus generator in

the SAR model has to perform the following functions [ZueB94] :

33

1. Generation of the transmitted signal which is a pulse of the form s = cos 2I1(f.t + Kt*/2) . i.e..a

“chirp” is emitted where the frequency is varied linearly over the duration of the pulse.

2. Generation of the received signal which is the transmitted signal delayed by t, which is proportional

to target range, .i.e. r =cos2IT (fc(t - to) + K(t - to)°)
3. Down conversion. Here the value of f; is shifted down from the GHz to the MHz range.

4. Deramping. The down converted received signal cannot be processed through conventional filtering.
Thus it is “deramped” by multiplying it by its complex conjugate. This is better illustrated if the

signal is represented in complex form. Figure 18 illustrates the process.

Deramp Compression Processing

Down-converted
Received signal

R(t)

_ Aoe A=2nf g 4Kt} —27Ktt]

_ J=2nf 1g 42K (1-25)7]
r=A.e

Conjugator

Ts = A‘,e’“"x

Down-converted
Transmitted signal

Figure 18. Deramp Compression Processing

In the final result (R) it is instructive to look at the term -2ITf.t, + ITKto? - 2ITKtct. Note that the first two
terms are constants, and in the third term the frequency is Kt,. Thus what we have produced is a

monochromatic sine wave whose frequency is proportional to range.

34

In our SAR test bench work we developed the model of the transmission and return process using Signal

Processing Worksystem (SPW) from Cadence [Cad94].

Figure 19 shows the schematic for the SAR test bench. Some of the primitives are basic SPW DSP
primitives such as Complex Conj and Z" (delay). Other symbols such as Gen_chirp imply an underlying
schematic which is made up of SPW primitives. Once the system schematic is developed, it can be

simulated in the SPW environment to check for correctness.

Figures 20, 21, and 22 show the transmitted signal, the received down-converted signal, and the FFT of
the deramped signal. Note that it indicates a major response at a single frequency. The FFT is normalized

to the sampling frequency (70 GHZ). When multiplied by 70 GHZ, this gives an actual peak frequency of

10.1465 MHz.

SPW Real Number Model

LI tal
ML
COrPLEX COMPLEX TOMPLEX
o f ol T
TONE CONJ X o
ha_tine
<
N UweyTiie
M * e iptwen*
-1 COMPLEX ™ COPLER
\anan 2 » T — SIG;hL
CONJ SINK
s [o | o gt
COMPLEX remeaiing
LN/
A NA conPLEX SIENAL
TONE % 10 [SINK
Inag ey
ReAL,JaG El-ax o

Figure 19. SPW Real Number Model

35

Magnitude

|
—t

) o
i (4]
o n o

Magnitude

Magnltude

Magnltude

—_

Real Part of Transmitted signal

—

180 _, 200 250 300 350
Time

imaginary Part of Transmitted signal

[}
] o o
-t wn (= (42
° ==

S0

100 150 _ 200 250 300 350
Time

Figure 20. Transmitted Signal

Real Part of the Down-converted Signal

U_; H‘ll'!}‘ | '”‘ I}“‘H‘.""[le. 'llllwulrrin l"“f
D-s‘o . 5 - .‘\.iilll.‘l;‘.\u{.\u il " .H IHIMI“LLI
of - l!lll“‘ll‘\‘ll'|‘|‘|ll'i‘I‘y‘!‘1'||||*\"|It|"ws!
cfo— 3 s i il‘l!l‘. ” j! IHl ” :‘l | || I‘ |!.|I l‘ 1”| [t.‘.t‘“l.l‘ l

x10

Figure 21. Downconverted Received Signal

36

Frequency analysis of the output data

Frequency Analysis of output data
0 T

Mangnitude(dB)

=180

=200 -

=05 0.5

0
Frequency
Figure 22. FFT of Deramped Signal

SPW has a code generation interface which can be used to generate C and VHDL. However, the VHDL
interface is limited to fixed point modéls, prc;bably because these models can then be further processed by
automatic synthesis tools to yield hardware implementations. In our case, though, we were interested in
real number models. To solve this problem, we developed our own SPW to VHDL conversion tool which

could convert SPW models to VHDL real number models.

37

Figure 23 shows the system. SPW inputs to the system are the files underlying the block diagram. such as

the one shown in Figure 19. and a file of model parameters. The other inputs to the system are VHDL real

number primitives corresponding to DSP primitives that SPW uses in its schematics. We developed this

VHDL primitive library. Thus, we achieved the capability to develop VHDL real number models from

SPW.

SPW
BDE

O

SPW

— Block

Diagram

SPW

L] Model

J

Parameter

SPW to
VHDL
Conversion
Tool

l

Figure 23. Real Number Model SPW To VHDL Interface

The data flow nature of the SAR also made activity charts an applicable modeling technique. Figure 24 is

an activity chart model for SAR developed on Ilogix Express VHDL. The primitives used in this model

are similar to the SPW primitives.

38

llogix Express VHDL Activity Chart

ENVIRONMENT
BW SAMP_FREQ JFREQ |PW PRF N
vy YT vty
SAR_TB
R& NReé
P - nMo comrrrrs [P necs ’ L
. =2 3 16 Ni¢ |COMPMULS
€1 JcompmoLt ASSIGN1 > "
rC2 - L
cCOMPTFPI " ul' on o j
ic2

j \ ‘ v VRRV
R2 NR2 V g; jfipn CHANGES

-
comprrR: xeer [et COMPMUL DECIMATZ
s—jcomrmoL: NEG4 - CHANGE4
1 NIz V1
14 VIRV
wre e visv Lvasy
v * * VRRH VRBH
RRH1 CHANGE1 [P
-
s pilg) -1
NRY e —i
jd coMPMUL3 COMPMUTLY DECIMATL ABSIGN2
comrrres [NEG3] P o
18 helll CHANGE2 [P
" IRH!
- VIR visn

Figure 24. Activity Chart Model of SAR

2.2.5.5 Library Based Model Development

In this approach to model development for VHDL test benches, the test bench architecture is constructed
asa sirucfural architecture to form the model [GowP95]; The model instan‘u'ates primitives from a
primitive library. The structural architecture is built using a commercial schematic capture tool. This
approach promotes reuse of test bench structure and library primitives, and thus is important to the

RASSP model year concept [GraG94, FraG95].

In our work. we used the Synopsys Graphical Environment(SGE) [Sy92] as our schematic capture tool.
SGE contains a Symbol Editor which can be employed to create library primitives, a Schematic Editor to
interconnect the primitives, and a VHDL interface to generate the VHDL description of the structural

model that is created.

39

Our work with the behavioral modeling tools resulted in libraries for SAR and IRST test benches which
were refined over time in the library structure. The libraries we developed contained the following

components:

SAR Low-level components - chirp, complex tone, complex muitiply, delay, complex conjugate,
decimate, and type conversion.
High-level components - Genchirp, delay, down converter, deramper, merge, and noise.

IRST - target, clutter, sensor, clock

The function of the primitives listed above is mostly evident based on previous discussion or common DSP
terminology, but two require explanation. The SAR merge component merges multiple single point target
returns into one signal. The noise primitive injects noise into the radar signal. In IRST only four
primitive types are listed. but there are many versions of these. Figures 25 and 26 show the structural test

benches constructed for IRST and SAR using SGE and the primitive library.

ENVIRON22
cLuT
LK bandd SENSOR22
- LUT
CLK LK IMAGE }—{THAGE
TaroET22
_cooro - S _ccomo |
{¥_CooRrD > _COORD RANE
INTT
BRELED GLE P
BEtociTy > ELOCITY
FRAME
oL ooE Frane
OB _RSTYON ODE_MOTION
LK K
[FARC_RANGE > ARG_RANGE
INIT RUN
osczz
EED>—Per
LK
m— INIT
I_4a

Figure 25. Structural Test Bench for IRST

40

To simutste the recioved sipnal

g
"

'
1
[
=4
'
Gown Convertane i
Section |
)
1
H T
! 1
I ‘
1 [!
1 [1
1 ['
1 "o '
' '
1 [:
! RS smg ROUT fonmiun 23 TouT
ny [e il o CE LY
! BN T 2 Nig v »i¢ LY, S & | 3382 :
: Nz : : >y H
lm i
[APRPIPE S o= | upupupngupupapup Ft ... TC [y .| —v-J g J o) ,
______________ 3
:,_..-.._______. ==c=———=
vE)
! = SOUT —EED
' vl ‘ 2ad2 :
R 2
'
: - sour =D
] PR S :
'
] n <>
IDECIMaTE m] '
: |8 ourh— =
]
: 134 ‘ 12z I !
'
(A=
Decamating mection | N =D
]
' »oUT—}—— >
: 1.2s ¢
R e e " T=D

Figure 26. SAR Structural Test Bench

2.2.5.6 Model Simulation Efficiency Studies

As models were refined in the library setting, it was important to assess the efficiency of various modeling
approaches. An important question in this area is the relative efficiency of signal based models (built
structurally) to variable based models using procedures. In the DSP application the data flow is
unidirectional; thus it is straightforward to develop a procedure based equivalent of an entity based model.

In our study, the entity based models were created via the SGE approach, the equivalent procedure based

models were done by hand.

Table 3 shows the simulation results . In the data the left column is the VHDL simulation time. The right
two columns are wall clock time as measured by operating system probes. Note that procedure based

models using variables are 10% to 20% faster than entity based models using signals. Other work done at

41

Virginia Tech [WicJ96] and other literature results agree with this [PauB92, BalA94). Because of this. a
schematic capture tool for procedure based models in which the procedure corresponds to a primitive
would be useful.

Table 3. Simulation Resuits

Simulation | Entity based testbench | Procedure based testbench
Time in NS | mode! using signals model using variables

10 NS 5158886 US 4427989 US
14 NS 5881279 US 5183508 US
16 NS 7513527 US 6047736 US
20 NS 8130987 US 6541481 US

2.2.5.7 Domain Specific Environment Modeling Software

As part of our environmental modeling for RASSP test benches, we also employed domain specific
software to develop model input data. It is very important to use this approach because the writers of this
software typically have a better understanding of the application domain than the VHDL modelér would.
One (manageable) problem with this approach though is that format conversion is typically required
before the data can be used in the model. Also, these programs sometimes produce very large data files so
efficient techniques for reading these files must be employed. Finally, the execution of these programs is
frequently slow and so they may have to be run in an off line mode and the data read by the test bench

later.

For IRST we originally used MATLAB for generating two-dimensional arrays representing simple
targets and simple background clutter. Later we developed a more realistic approach to modeling IRST
sensor inputs. For target signatures we used a tool called IRTOOL [Are95], which was developed by
Arete’ for the Navy. It produces realistic IR signature of cruise missiles. For background, we used the
IRAMP data base [ONR94]. This data base of clutter files maintained for NRL which contains ocean
scenes consisting of sky, sea, and clouds. To produce an IRST input, we just combine the IRTOOL missile

signature with an IRAMP background picture. Figure 27 shows an example of this.

42

AAn example of continuous frames generated by the
testbench with artificial target(includes target motion,
platform motion and sensor noise)

Figure 27. IRST Input Frames

For SAR environmental modeling, we used real data files of radar data from MIT as data files in an off-
line test bench generation mode. An example of this will be shown below. We also employed, to a limited
extent, a program known as xpatch [Dem93], which was developed by DOD to produce individual radar
returns from and radar cross sections of various objects. However, our best success was with the use of
.SPW to model returns of single and multiple point targets. Figure 28 shows a radar return from two point
targets where the two targets have been superimposed. This figure gives the time response of the returns.

Below we will show the FFT of a similar case. Using SPW gave us the most control over return

characteristics.

43

Radar return from two targets located

at ranges of 7,260 meters and 7,261 meters
Stimulus

Imaginary

6 6.5
Seconds -5
x10

Figure 28. SAR Radar Return From Two Point Targets

2.2.6 Linkage to System Requirements

In our approach to test bench generation, our linkage to system requirements has the following

characteristics| ArmJ95, ArmJ96] : |

1. A specification repository holds primary specific requirements.

2. A math model, known as a requirements interface, receives primary requirements and generates
derived requirements.

3. These derived requirements and some of the oriéina.l primary specific requirements specify the values

of test bench code generics.

44

2.2.6.1 Specification Repository

The specification repository is a high-level system diagram where blocks in the schematic correspond to
real system components. It is intended for use by systems engineers who are not VHDL literate. thus
underlying VHDL is hidden. Our system diagrams are developed using a schematic capture tool, Synopsys
SGE. With this approach, specification parameters are symbol attributes. A parser extracts the values of
the attributes (specification parameters) and feeds them forward to the test bench system. Thus, if a
specification value is changed, its new value is automatically fed forward to the test bench. Figure 29
shows how a specification parameter is altered in the IRST system schematic. The systems engineer clicks
on the block of the system component for which the specification values are to be changed. A window
then pops up where specification values can be edited. In this example the frame time (the time between

adjacent frames) is being edited. Figure 30 shows the system schematic for the SAR system.

System Level Schematic Diagram Of IRST System Showing Specification
Modification.

ZITIoNTNG

Gisole Piatecrn

Serwor H betetan ey
Tarent Crecironice - H Traruire tren
- PUBITILNING I U ALY AOM LU i D Patanase

Cluttes

3T

Figure 29. Changing An IRST System Parameter

45

SAR (R1rcraft)

a2 %1}

NOISK _OUT

Tranomitter

TR_OUT

RX_INZ
Recer1ver
RX_OUT

RX_IN1

Sensor Date Bus

SAR proceccor

——

Aantonna

ANT _INL ANT_OUT2

ANT_INS

ANT_OUTL AaNT_IN2

rocitioning Controt

ROC_IN PROC_OUT1

PROC_OUTZ2

Picoiay

1]

Target

[TAR_IN TarR_OUT

2.2.6.2 Requirements Interfaces

Figure 30. SAR System Schematic Diagram

DISP_IN

As indicated above, a requirements interface is a math model that receives primary specific requirements

from the specification repository and generates derived requirements. These derived requirements and

some of the original primary specific requirements are the values of test bench generics. Figures 31, 32,

and 33 show the requirements interface for IRST and its associated math model. The purpose of this

model is to translate sensor properties and platform velocity into platform displacement and clutter motion

measured in terms of pixels.

46

Target Speed
Platform Type IRST
Requirements Target Motion
Sensor Resolution n— Interface)
Clutter Motion
Revisit Period
Range
Derived
Requirements
Primary Requirements

Figure 31. Requirements Interface for IRST

 List of equations
— Sensor Res factor = 100/1000000 if Sensor Res =Hi

— Sensor Res factor = 250/1000000 if Sensor Res =
Low

— Platform Velocity = 448 m/s if Platform type = VF-X
— Platform Velocity =256 m/s if Platform type = VF

— Platform Velocity = 192 m/s if Platform type = VP

— Clutter Range = 1609.344 * Range(200 miles)

— Platform Disp = Platform Velocity * Revisit Period(1
sec)

— Clutter Motion = 2 *asin (Platform Disp/ (2 * Clutter
Range)) / Sensor Res factor

Figure 32. Math Model for IRST Requirements Interface

47

-4—— Platform Disp (PD) ——»

A
M a2
Range 1
Range 2
Clutter

Total Angular Disp = a1 + a2
Assume a1 =a2, Range1 = Range2

Sin a1 = (1/2* PD)/ Range1
a1 +a2=2*asin{ PD/2 * Range1)

PAFOV = Pixel angular field of view
Pixel Disp = (a1 + a2) / PAFOV

Target Range = 1609.344 * Range(200 miles)
Target Velocity = Mach to m/s(320) * Target speed
Target Disp = Target Velocity * Revisit Period(1 sec)

Target Motion = 2 * asin (Target Disp / (2 * Target Range)) / Sensor
Res factor

Figure 33. Math Model for the Requirements Interface (Cont’d)

Figures 34 and 35 show the requirements interface and the math model for SAR. This math model is

considerably simpler than the IRST math model. A case could be made for putting these calculations in

the VHDL code. However, having them external makes them controllable by systems engineers. Also,

putting them in the VHDL models may limit the generality of the modeling primitives. We did not

explore this issue extensively, though.

Squint Angle
Carrier Frequency
Swath Width
Nominal Range
Pulse Repitition Frequency
Transmitted Signal Bandwidth
[ransmitted Signal Pulse Width
Speed of Aircraft
Resampling Frequency

—

Primary Requirements

SAR
Requirements
Interface

—

Deramping Signal
Pulse Width
Deramping Signal
Bandwith

Sampling Frequency

Figure 34. Requirements Interface for SAR

Denved
Requirements

48

+Pulse width of the signal used to do de-ramping
Pulse width of transmitted signal +(swath width / speed of light)
=30 us+2*(375m / 3*108(m/s)) = 32.5 ps.

*Bandwidth of the signal used to do de-ramping
Rate of change of frequency * pulse width of the signal
= (600 MHz /30 ps) * 32.5 us = 650 MHz

*Sampling frequency
Sampling frequency > 2 * carrier frequency
=70GHz > 2*33.56GHz.

Figure 35. Math Model for SAR Requirements Interface

2.2.7 Test Plan

A test plan is a document that organizes system requirements in terms of how the requirements will be
tested. It divides requirements into test groups where one particular system requirement is left unspecified

and other system requirements receive fixed values. A set of tests is then allocated to each group.

The Test Plan Interface that we developed for the Test Bench Generator uses the following approach:
1. For each application (SAR or IRST), the test bench is an unbound structural architecture.

2. A VHDL configuration body specifies which iibrary models to use and assigns values to generics.
3. A test group corresponds to a partially specified configuration body.

4. Each individual test corresﬁonds to a fully mmw conﬁgumtion body.

5. The library models are those described in 2.2.5.5.

For the RASSP test program, demonstration test plans were developed for both SAR and IRST.
For SAR the test plan consisted of four test groups with the following goals:

1. Evaluate the range of a single point target.

2. Evaluate the range of multiple point targets.

3. Evaluate the discrimination of two point targets.

4. Evaluate SAR Algorithm noise sensitivity.

49

Figure 36 shows the results of test Group II test in which seven targets were detected. The figure shows
the FFT of the SAR algorithm output. Each target corresponds to a discrete frequency. Figure 37 shows
the test results for a test from Group III. Here, two targets 0.25 meters apart can still be discriminated.
Figure 38 shows the results of a noise test from Group IV where the correct target at 7260 meters was

detected, but because of the noise, two "ghost" targets were also detected.

5] i * 7 targets applied
arvaose M+ All targets detected

Nance Ci

* MSE 0.12 meters

Figure 36. A Test Case of Test Group II

* 2 targets applied (7,260 m and 7,260.25 m)
* Spacing = 0.25 meters
* Can be discriminated

Output of the SAR Processor
eaimalasinesantinahamrancuesoaloaens

1200F eeree s Forrer aeian bt - T - oot T T TR LT S

Intensity

860 970 980 St” 1000 1010 1020 1030 1040

Range Bin Number

Figure 37. A Test Case of Test Group III

50

A Test Case of Test Group IV

* One target applied (7,260 meters)
 Gaussian noise standard deviation = 6.6
+ Three targets detected (7200.13, 7215.68, 7260.05 meters)

Figure 38. A Test Case of Test Group IV

For IRST the test groups had the following goals [Kots96]:
1. Target displacement detection
2. Sensor frame displacement detection
3. Noise sensitivity determination
4. General test group
The general test group allows the user control over all test parameters. The test combines target motion,

platform motion, and sensor noise.

2.2.7.1 Iterative Test Mode

This mode involves repeated execution of the test bench generation and execution software. Its purpose is

to use repeated execution to determine the limiting value of a system parameter such as noise sensitivity.

51

Figure 39 summarizes the application of the iterative mode to SAR. In the right-hand column are the test
strategies. "Even division without end points" means that the single targets tested are equally spaced
within a major interval and end points are excluded. "Constant increment" means that the number of
multiple targets is incremented from one test bench iteration to the next. " Double increment and binary
search" means that the test parameter is incremented until an upper and lower bound is found on the

parameter. After which a binary search is used to determine where the value is within the two limits.

Figure 39 SAR Test Groups of Iterative Test Mode
Figure 40 shows the results of the iterative mode for SAR Test Group II where the number of multiple
targets is incremented from one to seven. MSE is the mean squared error in the range of the detected
targets vs. the inserted targets. Figure 41 shows the results for SAR Test Group III where eight iterations
were used to determine that two targets can be detected as long as they are 0.23 meters apart. Figure 42
gives the results of an iterative test sequence that determined that the maximum tolerable noise standard

deviation is 6.1.

Figure 40. Results of Iterative Mode for SAR Test Group II

52

Initial distance = 0.05 meters
* Precision=0.01 meters
Finished in 8 iterations

+ Discrimination capability = 0.23 meters

Figure 41. Results of Iterative Mode for SAR Test Group III

* Adjustable parameter: noise standard deviation
* Test strategies: double increment & binary search

* Imitial noise standard deviation = 1 (normalized to the
amplitude of chirp signal)

e Precision=0.1

» Fimished in 10 iterations

» Maximum tolerable noise standard deviation = 6.1

Figure 42. SAR Test Group IV Evaluation of Noise Sensitivity

The results of the iterative mode tests for IRST are shown in Figure 43. In these tests an increment

strategy was used to determine maximum value for target speed, platform speed, and noise level.

Test Group Parameter | Increment | Limiting Value
Target displacement detection | Target Speed 25m/s 450 m/s
Sensor frame displacement . Platform 1S m/s 225m/s
detection Speed
Noise sensitivity Noise Level 10 110

Figure 43. Results of Iterative Mode for IRST

In a follow-on contract sponsored by the U. S. Air Force, we will combine the test plan with goal trees to

develop a high-level approach to system testing. A goal tree will represent a test plan. The goal tree is

given a grand goal such as "determine the system noise sensitivity.” The grand goal is decomposed into

53

subgoals until primitive goals are reached. Primitive goals define a test group that would be applied to

reach the grand goal.

2.2.8 System Integration

Figure 44 is a modification of the basic approach shown in Figure 8, as it shows a high level test bench

generation system with test plan interface. Now default specification requirements are received from the

Specification Repository. The Test Plan Interface can override these default requirements or modify them

based on the test group to be employed. The Test Plan Interface produces the final specific primary

requirements and forwards them to the Requirements Interface which employs a math model to produce

derived requirements which are the generic values. The Test Plan Interface also produces model selection

information which selects test bench primitive models to bind to the test bench structural architecture.

»| Design Tool VHDL Primitives L
Genersl | (Code Generator) > Pﬂ';‘:;‘:“
Specifications Y
Test Bench
Default e
Specification y Primitives
Requirements Test Plan Model Selection
Specifications > Interface
Repository » Simulatable
Specific Test
Requirements Bench
Requirements
Interface Derived
qullil
General & (generic)
Specifi
g::zi:m,.,., Environmental Data Files MUT
> Data
Generator

Figure 44. A High-Level Test Bench Generation System with Test Plan Interface

The other information flow paths are the same as in the basic system. General specification information is

used by the Design Tool to develop VHDL primitives which are refined in the library structure. As time

passes, the Design Tool is used infrequently and test benches are just developed structurally using the

54

primitive library. Both general and specific requirements are still used by the Environmental Data

Generator to produce data files for test benches that use file I/O.

2.2.8.1 Systems integration Work

Existing design and application area tools can be used to develop pieces of a test bench. However, two
software systems are required to integrate the pieces. Figure 45 shows the Test Bench Generation System
which produces the test bench. The top part of the diagram has been explained: Specification Repository,
Design Tool, Requirements Interface, and Environmental Data Generator. Now three libraries are shown:
Test Data Library, VHDL System Database, and TB VHDL Components. The Test Bench Generation
User Interface (TBGUI) interacts with the user to select test plans, models, generic information and data
files that make up a test bench. At each step, one can accept or override default values. TBGUT also allows
one to edit the specification information in the Repository. The outputs of the Test Bench Generation
System are: 1) the complete executable VHDL test bench, 2) test data files to be read by the test bench
during execution, and 3) 5 file of simulation control information. This file is used to control the

simulation and is peculiar to the VHDL simulator being used [Syn95,Van92] .
Figure 46 shows the VHDL Simulation Controller. This system uses the VHDL test bench model, test data

files, and simulation control files to perform the simulation. The Test Bench Execution User Interface

allows the user to select the modes of execution and output display.

55

Test Bench Generation System

Specific Requirements Spechication _G:nl:r:I Iio:lullemerm
Repository ']
S |
- '
Environment Deslign Tool
Data (VHDL Code
TestPlan Generator Generator)
Mode! Non-VHDL
Generlkc Selection
Values

Requirements
Interface

Data
Files

Simulation
Controt
Flles

Test Data
Flles

Figure 45. Test Bench Generation System

The VHDL Test Simulafion Controller

Simulation Test
Control Data
File File
TBEUI
Test Test Displays
Resuits
—
VHODL
Simulator

Figure 46. The VHDL Test Simulation Controller

56

2.2.8.2 Demonstration System

For our laboratory demonstrations system. we combined the Test Bench Generation System and the
VHDL Test Simulation System into one system with one menu driven user interface. The software is
written in C using X-View layer libraries of the X-11 protocol. The interface prompts the user with a list
of possible selections or prompts the user to key in certain values in a certain range. Figure 47 shows the
menu structure for IRST (SAR is similar). The user first selects file I/O or a code generated (on-line). For
the file /O case one next selects the results of a particular test plan that were derived previously off line.
Within the results of a particular test plan, the results of a particular test case are selected which results in
the selection of data files to be read by the test bench. Finally one chooses either on-line or post processing
of simulation output. With on-line processing, X windows show results as they are generated. With post
processing, MATLAB is used to process the resuits after simulation. Post processing is generally faster.
After this selection, simulation begins and results are displayed. Figures 48, 49, and 50 show input frames
read from a file by a test bench, X window oniine displays, and final test displays which show the
comparator output. Figure 51 shows the result of a SAR file /O simulation. The three-dimensional figure

depicts computed range and azimuth information in a received SAR signél. The input file was from MIT.

57

User Interface Menu Structure for IRST

Stimulus Source
File VO Code-generated

Change

System Requirements

Test Mode
Single Test Iterative
Select

4

Tert Plan [Select Test Plan |
I Select Values of Input Parameters l
\ 4 ¥
Select I Select Clutter File I
Test Case '
Target Type I
Single Point IRTeol Generated
IRTeol Target Selection
Database Create on-ine
‘Output Processing Simulate
On-line Post Stimulus Generator Complete Test Bench
Output Processing
On-line Pest
l Start Execution

Figure 47. User Interface Menu Structure for IRST

Figure 48. Test Displays: Test Vectors Used in the File /O Test Case

y

% xanw % x%a
. {/ i

S s
fx U O 8
Lt Gl

Figure 49. Test Displays: MUT Outputs for the File I/O Test Case

Figure 50. Test Displays: Comparator Outputs for the File I/O Test Case

59

Processed Image

SNR = 101.2 dB

Figure 51. SAR Simulation Result Using File /O Mode

The right side of the menu structure is for code-generated inputs (online) test benches. In this mode, one
first has the option of changing information in the Specification Repository. Next, one selects the test plan
and values of free parameters in that test plan. The next several choices relate specifically to IRST. One
chooses a clutter file and whether to use a point target or an IRTOOL signature generated one. For the
IRTOOL choice, the target can be read from a data base (fast) or generated online (slow). The final two
selections are shared by the SAR system. One selects whether to simulate the test bench only or the test

bench driving the MUT. Finally, the method of output processing is chosen.

Figures 52, 53, and 54 show setting up and results of a SAR multiple target simulation. In Figure 52, the
user selects the multiple target test plan, the number of targets, and their ranges in meters. The rest of the
specific requirements are provided by the Specification Repository. Figure 53 shows the FFT of the SAR
algorithm output as displayed by MATLAB. Figure 54 gives X window target reports which list detailed

numeric data on each of the targets detected and the mean squared error in their combined detection.

60

Figure 52. SAR TBGUI Base Window Showing Code Generated Mode and Parameter Entering

61

Output of the SAR Processor

7280

NMeters

Figure 53. Code Generated Mode of Test Group II: Range of Multiple Targets

Figure 54. Target Report

62

The Test Bench Generator was written for execution on Sun workstations. To execute the program,

Synopsys VHDL Analyzer and Simulator, and Synopsys Graphics Environment and MATLAB are

required.

2.2.9 Conclusions

In our RASSP sponsored work we have shown that effective test bench generation requires:

L.

2.

High level graphics design tools to develop initial test bench code quickly.

A test bench component library to construct test benches structurally.
Accurate environmental modeling using application domain specific software.
Automatic linkage to the system specification.

A test plan interface to configure the test bench structural model.

And while commercial software can be used for generation of test bench pieces, system software having

graphic user interfaces is needed to integrate the pieces into a working system.

63

3. Accomplishments

3.1 Tool Construction

3.1.1 Algorithm Partitioning Tool

Development of the Algorithm Partitioning Tool consisted of three efforts conducted recursively:

o Selection of tools and libraries,

o Development of target models, and

o Development of interfaces.
Initially, simple models were constructed using candidate toolsets to determine toolset and library
suitability and to provide specifications for interface inputs and outputs. This was followed by
development of models of increasing complexity at each stage, algorithm, hardware, spreadsheet, and
performance models, and determining if sufficient data was available from the predecessor stage to
support the following stage. When not, "give and take" modifications were made to the models. In order
to keep the interfaces simple and understandable, we decided at the start of the contract to make all

interface inputs and outputs ASCII files.

3.1.1.1 Selection of Tools and Available Libraries

For VHDL modeling, it was decided at the outset to use the Honeywell developed PML library and the
Synopsis compiler and simulator for both the APT and the test bench generator. However, the PML
models were developed by Honeywell using the Vantage VHDL simulator (now Viewlogic Optium VHDL
simulator). Even with extensive support from Honeywell personnel, we were unable to get even simple
models to simulate using the Synopsis VHDL simulator. At the midpoint of our contract, we decided to
adopt the Vantage VHDL simulator for APT VHDL simulation, and retain the Synopsis VHDL simulator

for the test bench work. Since the VHDL performance model development was behind schedule due to

64

unanticipated problems with the VHDL simulator and to debugging problems with the PML models. we
developed an extraction interface for schematics drawn with Network I1.5 to allow work on the tool
interfaces to progress in parallel with the PML model development. As PML models became avaiiable.

we were able to use the Network II.5 experience to accelerate VHDL interface development.

Team members attended early meetings at both RASSP prime contractors where it was determined that
ComDisco's SPW and BONeS and U. C. Berkley's Ptolemy Synchronous DataFlow and Discrete Event
Domains were prime candidates for functional and non-VHDL performance simulation respectively. We
visited both U. C. Berkley and ComDisco and for the first 6 months of the contract, we did initial
modeling with Ptolemy, SPW, and BONeS. At that time, our preference was to use Ptolemy. However,
when we received the Lincoln Laboratories SAR specification and started modeling it, we found that the
package was not robust enough (in Jan/Feb 1994) and refocused on SPW/BONeS. It was later found, and
confirmed by Cadence Alta Group, that there is no way to generate a BONeS model other than through
their graphical interface. We then turned to Network IL.5 as our performance modeling tool because it

was robust enough to support the SAR application and CACI was willing to work with us and their tool

has an ASCII interface.

A survey of all available spreadsheets was conducted at the outset of the project. The 2020 spreadsheet
from Access Technology was adopted as it is the only one that provides a facility for creating and

modifying spreadsheets with externally produced ASCII files.

3.1.1.2 Development of Target Models

Our approach was to build source and target models and then develop interfaces to transition from source
to target. Also, we started with small, easily verified applications and simple architectures and worked
our way up to real applications and architectures. The simple models were derived from the real

target algorithms.

65

We started with a textbook SAR and notional IRST algorithms with which we were familiar and an
architecture consisting of arrays of TI TMS320C40s. These models were used initially to familiarize
ourselves with candidate tools, Ptolemy SDF, SPW. BONeS. and PML. We also started constructing

exploratory spreadsheets to determine meaningful forms for presentation to the user.

Upon receipt of the Lincoln Laboratories Benchmark I SAR specification, we focused on that algorithm.
The first models were a small model of the range processing and corner turn for a single polarity pair with
very small vectors so that we could verify the output of each block of the SPW model. This was followed
by a single polarity pair model of the entire algorithm that treated the azimuth processing as a

single subswath. We then incorporated the kernel set selection and subswath processing into the single
polarity pair model. Finally, we modeled the entire algorithm as specified. All four functional models
and BONeS performance models (on the C40 arrays) were completed along with a demonstration

interface for generating a sizing spreadsheet for the small model by the first RASSP conference.

At the first RASSP conference, it was determined that the prime contractors were both using the Mercury
Raceway with i860 or sharc as their architecture. We focused or hardware and performance modeling on

that architecture.

By the second RASSP conference, we had developed four running VHDL models using the Honeywell

PML library components along with some additional in-house components.
1. Single processor, single global bus system.

2. Four processor, single giobal bus system.

3. Four processor, multiple local bus system interconnected by a crossbar switch.

66

The software tasks implemented were parts of the range processing and corner turn algorithms from the
MIT Benchmark I SAR processing algorithm. The results of experiments performed on these models is
reported in Hormazd P. Commissiariat's thesis (Performance Modeling of Single Processor and Multi-
Processor Computer Architectures) and in a paper at the second RASSP Conference (Developing Re-
usable Performance Models for Rapid Evaluation of Computer Architectures Running DSP Algorithms,

pp. 103-108).

The final model was a 16-processor Mercury Raceway architecture. Two algorithms were mapped onto
this architecture: 1) the SAR range processing algorithm, and 2) the single polarity multi-swath SAR
benchmark. This work was reported in Srilekha Vuppala's thesis (Methodology for VHDL Performance

Model Construction and Validation).

With these models available, we were able to finish the VHDL interfaces for APT.

3.1.1.3 Development of Interfaces to Generate Target Models

A key issue that drove interface design was maintaining information about predecessor/successor relations
between functions (i.e., dataflow). For the SPW to spreadsheet interface, Qe needed to derive
predecessor/successor relationships between our higher-level functions and the SPW primitive

functions. This was required in order to determine iteration rates for spreadsheet functions. Within the
spreadsheet, macros had to be developed to derive new predecessor/successor relationships as functions

were mapped onto different processors requiring the insertion of data transfer functions.

At the first RASSP Conference, we demonstrated spreadsheet command files and scripts to build a
protot_v’pe spreadsheet from manually produced hardware and software description files. Work had
commenced on extracting the data for the software description files from an SPW model. Specs had been

developed for extraction of component characteristics and architecture data from VHDL models.

67

By the second RASSP Conference, the SPW to spreadsheet interface was maturing and the library was
being improved and expanded. The command file library was being expanded in parallel. Very small
VHDL models had been built but no VHDL to spreadsheet interface yet existed. The SPW to spreadsheet

interface was developed in four steps.

1. First, using the small (range processing and corner turn) algorithm we produc.:ed an SPW to
spreadsheet interface. We were unable to extract control data. essential for performance modeling,
with the SPW Tool Interface Language.

2. We solved the control problem by collecting the necessary data from an SPW file (model_name.mseq)
generated when the functional model is simulated or when it is used to generate a C program. With
this interface, we were able to proceed to the full single polarity pair algorithm without subswaths.

3. When we progressed to the single polarity pair algorithm with subswaths, we found a need to re-
optimize the loop structures. The model_name.mseq file is optimized for a single, not multiple,
processors. We were able to add loop re-optimization to the interface and produce satisfactory
spreadsheets for the full single polarity pair algorithm with subswaths.

4. Finally, it was found when we proceeded to the full benchmark algorithm, which is really three
threads of the same algorithm, that it would be extremely difficult for the user to distinguish between
threads. SPW has no way to differentiate between different instantiations of a function. This was
solved by adding a parameter named thread to all of our library blocks. This completed our SPW to

spreadsheet interface.

We decided to extract HW data from a Network II.5 schematic in order to start development of the
hardware model to spreadsheet and spreadsheet to performance model interfaces. This work paralleled
the SPW to spreadsheet interface efforts and in most cases drove the requirement for changes in that

interface.

68

Development of the Network II.5 interfaces provided structure and insights that supported rapid
development of interfaces with VHDL models as soon as VHDL target models were developed. In the last

year of the contract, the VHDL interfaces were developed.

1. VHDL processor characteristic files to APT processor characteristic files interface. This interface was
written using VITP (VHDL Tool Integration Platform from CAD Languages, Inc.) to parse the
processor characteristic files provided in the Honeywell PML library. Essentially, VTIP provides a
set of callable C.

2. Language subroutines that allow searching any VHDL language file for specific constructs. Priya
Balasubramanian wrote a C program called PCET (Processor Characteristic Extraction Tool) that
uses the VTIP C routines to extract processor parameters needed by the APT sizing spreadsheet.
These parameters are stored in the Processor Characteristic Library described in Section 2.1.3. This
tool is documented in her thesis entitled Interfacing VHDL Performance Models to Algorithm
Partitioning Tools.

3. VHDL structural model to APT Spreadsheet interface. Priya Balasubramanian also wrote a C
language program called ACET (Archjtem Characteristic Extraction Tool) using the subroutines
in VTTP. This interface parses a VHDL structural model of the target architecture built using PML
components in order to extract parameters from each component in the candidate architecture that are
needed by the APT partitioning spreadsheet. This tool is also &ocumented in her thesis.

4. VHDL structural model to APT spreadsheet interface. Priya Balasubramanian also wrote a C
language program called CONET (CONection Extraction Tool) using subroutines in VTIP to parse a
VHDL structural model of the target architecture built using PML components in order to extract
connection information needed by the APT partitioning tool. This tool is also documented in her
thesis.

5. APT Spreadsheet to VHDL Performance Model Interface. Dirk Ziegenbein wrote this interface using
the standard Unix parsing tool, NAWK. This interface reads an ASCII file produced by the APT tool

that describes the software to hardware mapping being studied, reads the file produced by CONET,

69

and reads the VHDL structural model of the target architecture built using PML components. The
interface automatically generates an executable VHDL performance model including the required test
bench. The test bench is executed to simulate the performance of the target architecture with the
target algorithm mapped onto the architecture by the APT tool. This dynamic performance

simulation will find system bottlenecks and under- or over-utilized components.

3.1.2 Test Bench Generator

3.1.2.1 Use of Commercial Tools to Generate Test Benches

The following commercial tools were used in the test bench generation process:

1.

Illogix Express VHDL - See Section 2.2.5.2 for a discussion of using state charts with Express VHDL
to model IRST test benches and Section 2.2.5.4 for an example of using activity charts with VHDL to
model SAR test benches.

Cadence Signal Processing Work System (SPW) - See Section 2.2.5.4 for a discussion of modeling
SAR with SPW.

Synopsys Graphical Environment(SGE) - See Section 2.2.5.5 for a discussion of how SGE was used
to construct structural models of test benches. SGE was also used to capture the Specification
Repository. See Section 2.2.6.1.

RDD 100 was used to capture requirements for IRST. Its use is discussed in Section 2.2.4.

3.1.2.2 Requirements Captures and Use in Test Benches

Synopsys Graphical Environment (SGE) was used to capture the Specification Repository. See Section

2.2.6.1. RDD 100 was used to capture requirements for IRST. Its use is discussed in Section 2.2.4. The

system requirements are used to generate values of test bench generics. How this is done is discussed

throughout Section 2.2.

70

3.1.2.3 Use of Configuration Declarations to Reuse Test Bench Components.

VHDL configurations were used to bind the test bench structural architecture to library components, thus

promoting code reuse between model years. Details of this are given in Sections 2.2.5.5 and 2.7 and 2.8.

3.2 Library Construction

3.2.1 Conversion of SPW Test Benches to VHDL

(see Section 2.2.5.4)

3.2.2 Use of IRAMP Data Bases

(see Section 2.2.5.7)

3.2.3 IRTQOL Models

(see Section 2.2.5.7)

3.2.4 xpatch Models

(see Section 2.2.5.7)

3.2.5 Use of Honeywell/Omniview Performance Model Library

We used components from the Honeywell/Omniview Performance Model Library, version PML_02a, to
construct VHDL performance models. We mbdiﬁed some models and added new ones to satisfy our
needs. This library is delivered in subdirectory apt/data/PML_02a. There are three main subdirectories:

packages, processors. and leaf cells.

71

3.2.5.1 Packages Subdirectory (apt/data/PML_02a/packages)

Subdirectorv packages contaiy package declarations and package bodies for a variety of uses. The original

PML packages include packages of constants, packages of routines to collect statistics. etc.

3.2.5.1.1 Additions to the Packages Subdirectory
We added a package of constants called constants.vhdl to the packages subdirectory that includes all of the

constants used in our models.
We also added a package of subroutines that are used by the tool that automatically creates the final
executable VHDL performance model. These subroutines, described in the following table, are delivered

as file subroutines-p.vhdl (package declarations) and file subroutines-b.vhdl (package body).

Table 3. Subroutines and Their Descriptions

Subroutine Name Description

readp Sends a read token from a processor to a memory
device

writep Sends a write token from a processor to a memory
device

controlp . Sends a control token from one processor to
another processor

distributep Distributes tokens from a single source to multiple

’ destinations on a round robin basis

splitp Distributes tokens from a single source to multiple
destinations on a first available basis

split_initp Initializes a split operation by starting tasks in each
of the destination processors

broadcastp Broadcasts received tokens to all processors in a set
of destination processors

donep .| Procedure used to end all tasks

hostcheckp Procedure used at the beginning of each task to
detect errors in task mapping and to verify that the
target processor is a valid processor

72

3.2.5.2 Processor Subdirectory

The processors subdirectory (apt/data/PML_02a/processors) includes all of the original PML processor
components needed to develop performance models. These components are delivered under our

government use license. Distribution outside the government is not permitted.

3.2.5.2.1 Additions to the Processor Subdirectory

The VTIP analyzer would not recognize certain constructs used in the Honeywell processor models.
Therefore, in order to parse the models using the VTIP tool, we were forced to modify certain components
in the processor library. These modified components were used only for VTIP parsing, and never for
actual VHDL simulation. The modifications were relatively minor and are detailed in Priya
Balasubramanian’s Masters thesis. To differentiate between the modified models and the original models,
we named the modified model files with the same name as the original model file but used an extension of

*.vtip instead of the original extension of *.vhdl. The following modified files are delivered in

subdirectory processors.

procapplication-a.vtip

processor-C.vtip
3.2.5.3 Leaf_ cells Subdirectory

The leaf_cells subdirectory (apt/data/PML_02a/leaf_cells) contains all of the original PML components

except the processor components. These components include input devices, output devices, bus interface

units, etc.

3.2.5.3.1 Additions to the leaf_cells subdirectory
We needed to modify certain leaf cells for our purposes. We added an h to the filename of each model
that we modified to distinguish our modified models from the original models. For example, the original

filename comm_int-a.vhdl became comm_fnth-a.vhdl. The following models were modified:

73

comm_inth-a.vhdl
comm_inth-e.vhd}
global_inth-a.vhdl
global_inth-e.vhd!
indeviceh-a.vhdl
indeviceh-e.vhdl
memoryh-a.vhdl
memoryh-e.vhdi

We also added additional components that were not in the original PML_02a library. The following table
describes the added components.

Table 4. Added Components and Their Description

Component Name Description

biu_four-a.vhdl Cluster of 4 bus interface units connected to a
biu_four-e.vhdl common bus

biu_star-a.vhdl Cluster of 3 bus interface units connected to a
biu_star-e.vhd! common bus

crossblock-a.vhdl Crossbar component that connects an input port to
crossblock-e.vhdl each output port

crossbar-a.vhdl Six port crossbar consisting of six crossblock
crossbar-e.vhdl components

3.2.5.4 Compilation (Analysis) of Library Components for VHDL Simulation

Prior to initial use, all of the components in the enhanced PML library must be analyzed by the Vantage
analyzer. Also, occasionally, these components must be re-analyzed if they become corrupted. The
subdirectories must be analyzed in the following order: Packages, Processors, Leaf cells. Each directory
contains an executable script file named vcomp* that can be executed to analyze a single file. The
command form is: vcomp filename.vhdl. Also, each directory has an executable script file named van-
comp* that can be executed to analyze all of the components in the directory in the proper order. Van-

comp calls vcomp repeatedly.

74

3.2.5.5 Compilation (Analysis) of the Library Components for VTIP Use

Before calling any of the C language subroutines provided by VTIP, all component files must be analyzed
by the VTIP analyzer. Again, the files in the three subdirectories must be executed in the following order:
Packages, Processors. Leaf _cells. Each directory contains an executable UNIX script file named vtipc*
that can be executed to analyze all of the files in the subdirectory in the proper order. The VTIP analyzer
creates a new file in the directory apt/data/dls for each file analyzed. The name of the new file is the same
as the name of the original VHDL file but with extension * vhdlview instead of the original extension of
*.vhdl. The files in the dls library are used by VTIP subroutine calls to find constructs in the VHDL

program.

3.2.6 Use of SPW Libraries to Generate Performance Models

Our initial SPW models were constructed in the normal manner from standard libraries. Thesé models
were extensively parameterized to allow rapid functional verification on small test sets. As we
commenced construction of the TIL programs for data extraction, we developed our initial candidates for
the APT library. These were composite hierarchies of standard library blocks. An exﬁnple is the FIR
filter of a vector input (we named it fir_vector) which required conversion of the input vector to a string,
filtering the string, conversion of the output string to a vector, and discarding the "startup" components.
We also found the need for copies of a block that represent different functions, such as a vector source to
represent sensor input and one to represent a file access. This was first accomplished by constructing a

higher level model consisting only of the required block (i.e., an encapsulated block) with TIL attached at
the higher level.

As cited in paragraph 3.1.1.3, we found that we were unable to extract control data, essential for
performance modeling, with the SPW Tool Interface Language and had to copy the model name.mseq file
which is generated when the functional model is simulated or when it is used to generate a C program.

When an extraction is made using TIL, the netlister flattens the hierarchy to the level where it first

75

encounters a TIL file for that program and considers that to be a leaf block. The model_name. mseq file
contains data for the standard library blocks at the bottom of the model. This required modifving our
composite blocks to contain two components, a standard block with TIL that extracts nothing and the
remainder of the function with TIL that will produce the spreadsheet row. This way, the rate (number if
iterations of the function for one iteration of the algorithm) can be captured from the rate of the standard
library block as reflected in the model_name.mseq file. With this expansion, we generated running

Network II.5 models of the simple mode! and the single polarity pair SAR.

When we generated a spreadsheet for the full four polarity pair (three pairs processed) SAR, we found it
extremely difficult for the user to determine which of three identical functions was associated with which
pair. (In the SPW model, the three pairs use the same identical model.) This problem was corrected by
adding another parameter to the model named thread. This parameter was set to HH, HV, and VV in the
three threads and extracted and placed next to the function in the spreadsheet. Introducing this parameier
to all blocks, including those in standard libraries. required us to make a complete copy of all blocks ﬁsed
rather than using some in the standard libraries. While this introduced some redundancy, it removed the
need for encapsulated blocks since we could make multiple copies of the same block with different names

and TIL attached.

3.2.7 Development of VHDL DSP Library of Primitives and Applications

This library was developed to'provide the test bench generator tool with MUTSs to test. It consists of
several packages and the final MIT SAR Benchmark 1 model. These models were developed by Ram
Gummadi. His Master’s thesis, Methodology for Structured VHDL Model Development, explains the

models and the process used to construct them.

The package DSP_PRIMS contains the following primitive DSP functions.

76

FFT SIG Fast Fourier Transform with signals
FILT SIG Filter with signals
CONV SIG Convolution with signals
i FFT VAR Fast Fourier Transform with variables
FILT VAR Filter with variables
CONV VAR One dimensional convolution with variables
CON VAR Two-dimensional convolution with variables

Package IEEE_math contains trigonometric functions with real data types.
Package types_pkg contains declarations of all of the data types.

Package PRIMS contains the major functions in the SAR algorithm, summarized in the following table.

Function Name Description

VBIQ Video to Baseband IQ Conversion
RG COMPR Range Compression

CORN TURN Corner turn operation

AZI COMPR Azimuth Compression

3.3 Applications of Test Benches

3.3.1 SAR Test Benches

(see Section 2.2.5.4)

3.3.2 IRST Test Benches

(see Section 2.2.5.1)

3.3.3 SAR Performance Modeling

The RASSP benchmark algorithm and derivatives of it was the primary algorithm employed in developing

the APT tool.

77

3.3.3.1 SPW SAR Algorithm Model

The SPW SAR models, both single polarity pair and the full model. were completed early in the project.
Figure 55 is the top-level graph in SPW. Each of the SAR PROCESS and OUTPUT blocks are the same
single polarity pair model. The only thing unique to the full model is the LOAD AND DISTRIBUTE
block. The three models, apt_example. apt_1_pol, and apt_3_pol, are included with the library, apt_lib,

in the apt.dmp file delivered with this report.

SAR SYSTEM MODEL PARAMETERS
Puise Si1ze 2032 Header Size 20 Number_Subswaths 16 Number of Pulses per Updgte Si12
Number of Range Bins 2048 Number of FIR Coefficients 3 Number of Pulses per Image 1024
Sequence File /projectss/p2/rassp/work/apt/datassw/ept_3_pol.seq AUX SizeS7? Thread [D X
Parameter Fiie /projects/p2srassp/work/aptsdatesswusapt_3_pol.par Number _Kerneis 32
lf
SELECT OUTPUT
SAR L.
LoD KERNEL \ . P NN - —onbin
b _SET N HH "
o PROCESS
o) ouTPUT
- > SAR s
AND N X - N . ——tn
w, > HY HYU
. PROCESS
W_pi——)-
> OUTPUT
w_ SAR
DISTRIBUT e -
g ' > -0~ g _bin
yu
W
PROCESS

Figure 55. Top-Level Graph in SPW

3.3.3.2 Spreadsheet Hardware Tradeoffs

During the period prior to the first RASSP conference we experimented with numerous spreadsheet
layouts. As stated in paragraph 3.1.1.2, initial efforts used a textbook SAR and a notional IRST
algorithm. Later in the period we focused on the RASSP benchmark SAR. We discovered that much
insight can be gained in early design stages through static analysis comparing processor clock speeds and
instruction architectures and analyzing memory requirements. This led to development of sizing as well
as mapping spreadsheets, and to the eventual incorporation of the ability to change processor types in a

spreadsheet from a menu. These analyses quickly showed that the large memory requirement for the

78

overlapped corner turn was a critical issue. Results were passed to the prime contractors and to the
benchmark contractor. When the Mercury Raceway architecture was selected. the memory issues were
amplified. The sizing models allowed rapid comparison of the desired SHARC and fallback i860
processors. The value of the sizing analysis followed by simulation of selected architectures was proven in
the JAST analyses reported in the second interim report and summarized in paragraph 3.3.4. Spreadsheets
for the

simple model and the one polarity pair generated with Network I1.5 and VHDL generated .ssh files along
with output for performance model generation are included in the models directory of the delivered

software in the 2020 subdirectory in subdirectories race_15 and vpiracel6, respectively.

3.3.3.3 VHDL Performance Models

We are delivering one VHDL archi_tecture model located in directory apt/models/vpiracel6. This is a 16-
p‘rocessor raceway architecture. There are three files: 1) vpiracel6.vhd! is a VHDL structural model of
the architecture using components from the enhanced PML library, .2) vpiracel6-c.vhdl is a configuration
file with all of the hooks needed to map software tasks to the processors. However, there are no software
tasks specified. Each processor is assigned an idle task that will be replaced by application tasks by the
automat;d APT tool. and 3) vpiracel6.vtip i; the modified version of the architecture file suitable for

VTIP analysis.

Subdirectory range16 (apt/models/VHDL/vpiracel16/range16) contains the output of the APT tools when
the range processing and corner turn segments of the MIT SAR Benchmark algorithm are mapped onto

the architecture.

Subdirectory apt/data/PML_02a/test contains the executable file simvpiracel6* that will execute the

VHDL performance model created by the APT tool.

79

3.3.3.4 BONeS Performance Model

As stated in paragraph 3.1.1.2, before we abandoned BONeS as the performance modeling tool we
completed BONeS models of our three versions mapped onto arrays of TMS320C40 processors. Figures
56 and 57 show the top level and the range compression graph for the full SAR model. The BONeS

models are included in the models directory of the delivered software in the bones subdirectory.

SAR [16Jul- 1994 807 44 |

TOP LEVEL MODEL OF RASSP BENCHMARK ALGORITHM
Hardware Parameters Architecture Parameters Algorithm Parameters

1P PpaineRan 1P LocalMem_Read 4P Rg Prcassons perADM TP Surples_per_Pule TP Number Sewmats

$P ReLMoy Ao Oycies $P Local Mam Wrie 1P Az Proassons perADM P By par_Puse Woxd §P PRI

1P Burwerty_Opcies 1P Grbaluem_Resdt 1P Addracs Gan per ADM 1P Puse_Ses TP No_FIR_Ooet

1P Oomplex_Mpy_Oycies $P Qrial Mem_woe 4P Local Memory See $P Putses perimage P PubesperUpcate

1P Address_Gan_Oycine 1P Gibaltiem_Sim TP Worl_Langh tP DFT_Ska

Caleulated Parameters

[F] My A Time 7] Complex_Woy_Time
[F] sey_Time [P] Acsmss_Gan_Time Range > Form 3 Az >

Dimensioned Shared Resources

7] OubalMem HH] ADM Oorwot Prcessor HH] Addsess Genenatr HH (A Sge! Pruoessos HH [Looe! Mamory HH
7] axbatiem W [B] ADM Cowol Processor [Adcvscs Qaranaor W [® soro! Prcesos MY [B] Locat Memory W
[A) Grpalsiam W [H] ADM Corwot Proessor VW [F] Adtuss Geranor vy [Sigw! Prcamos W [Loes! Marrory WV

Figure 56. Top-Level Model of RASSP Benchmark Algorithm

80

RanmComrpmes _ { 20- 1994 $:14:52]

RANGE COMPRESSION DIAGRAM
(Single Polarity Pair)

Main Algorithm Flow

*vi:ft_ﬂﬁlléx e

Free rree
Aliocate Comer Tum Memory ictm) (o)
e S EIATES
g MoOw Dimensioned Shared Resources Algorithm Parameters
cenn Th actei_men TR Aciress Genenvor 1P Nomange_sins TP Puises per tage
. R toca Mamoy TR ADM ConYol Procassor P won_! P PUsEs par UDOIw
Architecture Parameters ;" ,g,,,,,,,:,,: :r w::uu._mn s
1P Ay Processoes per ADM Hardware Parameters Qr sarpesperruse TP Puse sizm
1P Atines o owADM 1r ocou_Men_Win TP Local_Mam Wi Tr Norin_comn
Cakulated Parameters Tr Qca_men_fasa TP Local_vem. e
fr compaex vpy_Tme {7 By _Tme
tr vy Add_tme

Figure 57. Range Compression Diagram

3.3.3.5 Network [I.5 Performance Models

Target perfomanée models were constructed for all three target algorithms mapped onto the Mercury
Raceway architecture. The model for the full SAR algorithm is included in the models directory of the
delivered software in the N25/target subdirectory. Schematics for three architecture variations are
included in the models directory of the delivered software in the N25/schem subdirectory. Generated
models of the 1_pol and simple models mapped to the ra.ce_l,S a:chitecturé. are included in the models
directory of the delivered software in the N25/generated subdirectory. All three performance models are |
accompanied by a .lis file containing standard output from simulation. Figure 58 is a printout of the

network model.

o] s 41} [

eferfprfon] /o] =
EE EREREEEE =8

Figure 58. Network Model

3.3.4 JAST Performance Modeling

As stated in paragraph 1.3, the benchmarking effort at Northrop-Grumman commenced with analyzing
the requirements and per’formancé of the RASSP SAR algorithm on their candidate architectures,
discarding non-contenders and then analyzing additional algorithms on the remaining

architecture variations. We also did some initial modeling of a Real Beam Ground Map (RGBM)

algorithm [RGBM].

3.3.4.1 Tradeoff Space Explored

The basic architecture consisted of signal processing groups consisting of four DSPs, memory, and an
interface. We varied processor characteristics over four different DSP instruction sets and clock rates
from 25 to 200 MHz. We analyzed variations with local DSP RAM, Global RAM for the array, and

both. We examined different bus structures and characteristics for access to local and global memories.

82

3.3.4.2 Use of Spreadsheet to Narrow the Design Space

A series of sizing spreadsheet studies were conducted on four radar algorithms with various instruction
sets and clock rates. These reduced the set of processor characteristics to be considered to a few and

provided estimates on processing and memory requirements.

3.3.4.3 Use of Performance Model to Identify Bottlenecks

Extensive trade studies were conducted using dynamic performance models of the RASSP SAR algorithm
on numerous variants of the JAST architecture. These studies addressed questions provided by weapon

system contractor system engineers.

The RASSP SAR algorithm can be considered as three groups of functions that are processed in parallel,
one group for each of the three polarity pairs. Each polarity pair is composed of a .range processing and
an azimuth pfocessing selgment separated by a matrix transpose (corner turn) operation. Mappings

were in&estigated with each of three signal processing groups processing a single polarity pair and w1th all
of the processing conducted in two groups. Within these approaches, we simulated mapping the range
processing on a single DSP and the azimuth processing on both a single DSP and on two DSPs. The

latter mapping roughly equalized the processor utilization on the range and azimuth processors.

Memory requirements provided to be a key issue in the trade studies leading to a shift away from the
initial processor/architecture. Some of the initial memory organization variations that we considered were

DSPs with and without local memories.
Studies were conducted of required bus widths and rates in conjunction with memory/cache combinations.

Even though the utilization of the buses was well below 100%, contention for the buses caused the loss of

some incoming pulses in the initial simulation of the no local memory alternative. This necessitated a

83

complex hierarchy of priorities and interrupt restarts to ensure all pulses and range bins were processed.
This loss of data indicated that the design was close to saturation. This was an indication of a high
risk that this design, when fully implemented. would not be able to meet the processing requirements of

the algorithm.

84

4. Future Directions

The APT toolset is a "proof of concept” system. Employment by JSF avionics system engineers to analyze
concepts proved its value. However much improvement is required to evolve a fully commercialized

toolset.
Among these are the following extensions of the toolset:

Extending the seamless design environment. The SPW tool set can generate codes for a single
processor. Combining the APT capabilities with the SPW code generators would allow the
partitioning to be done once in the resource utilization environment and then have the code

generated for the target multiprocessor system automatically.

Integration of the resource utilization analysis tools with man in the loop (MITL) simulations.
The JSF project started efforts to link the performance models generated by the APT to high load

segments of MITL simulation traces.

Integration of the signal processor resource utilization analysis tools with the system architecture
analysis tools used in high level trade studies. The APT system can be used to generate detailed
timing estimates for the signal processing modules that can be factored into the complete

avionics architecture simulations.

Developing a complete suite of benchmark algorithms and associated library expansion. This
suite should encompass memory demanding algorithms such as the SAR algorithms used in the
RASSP and JSF efforts with processing demanding algorithms such as multiple PRF search-

while-track algorithms.

85

Validating the models against actual systems. The development of the APT system has focused
on the verification issue, developing tools that automatically provide traceability of performance
model events and parameters back to algorithm primitives and parameters and hardware
structures and parameters. In order to increase the comfort level in the simulations and analyses.
a model of existing software and hardware must be generated and the timing of the performance
model should be compared with timing of the actual system. The timing measures of the SPW
primitives used in the spreadsheet have been compared with timings for the same primitives

provided in hardware manufacture application notes.

Developing a graphical user interface to activate the various tools and select input sources and

output locations.

In addition several revisions would be in order. These are associated with the lessons learned described in

paragraph 5.

Rewrite the tools for extraction of data from the VHDL structural model in awk. This would
eliminate the need for VTIP and the attendant need to develop a separate model for extraction.

The new extraction routines would extract only the required data.

Modify the target models and the VHDL to spreadsheet and spreadsheet to VHDL interfaces to

employ the latest (commercialized) version of PML.
The current version of the bld_route program uses Moore's Algorithm to compute one shortest

path (corresponding to the route) between each pair of components. Because the components are

ordered, the network traffic might not be distributed well enough. The Algorithm should be

86

modified to compute all shortest paths (routes) between each pair of components and select a

| route randomly or to select routes during simulation based on real traffic.

A test plan can be combined with goal trees to develop a high approach to system testing. A goal tree will

represent a test plan. The goal tree is given a grand goal such as "determine the system noise sensitivity."

|
|
|
} The grand goal is decomposed into subgoals until primitive goals are reached. Primitive goals define a test
|
group that would be applied to reach the grand goal.

87

5. Lessons Learned

Several lessons were learned in the course of this project.

Building target models using an under development library requires much time devoted to library
debugging. This led to completion of extraction programs before working target models were completed.
The result is that much unnecessary data was extracted from the structural model and one item (INST =
PML instantiation name) that should have been extracted was not. Correction of this would eliminate

artificial constraints on component names in the structural model.

VTIP was harder to learn than expected. It also could not analyze PML files as delivered. This required
modified PML files and a redundant structural model. In retrospect, direct extraction of data from the

VHDL files with awk would be more efficient and would provide an easier to use toolset.

In our RASSP sponsored work, we have shown that effective test bench generation requires:
1. High-level graphics design tools to develop initial test bench code quickly.

2. A test bench component library to construct test benches structurally.

3. Accurate environmental modeling using application domain specific software.

4. Automatic linkage to the system specification.

5. Atest plan interface to configure the test bench structural model.

And while commercial software can be used for generation of test bench pieces, system software having

graphic user interfaces is needed to integrate the pieces into a working system.

88

6. Published Papers

James R. Armstrong, Geoffrey Frank, Srinivasan Hrishikesh, Prabhakar Gowrisankaran. Zhen Xu.
"Test Bench Development for RASSP DSP Models," Proceedings of the First Annual RASSP

Conference, Arlington, VA, August 15-18, 1994, pp. 91-96.

R. Armstrong, G. Frank, et al., “High Level Generation of VHDL Test Benches,” Proceedings of the

Spring VHDL International Users Forum, April 1995, pp. 6.23-6.34.

A. Frank, J. R. Armstrong, and F. G Gray, “Support for Model Year Upgrades in VHDL Test

Benches,” Proceedings of the 2nd Annual RASSP Conference, July 1995.

Gray and J. R. Armstrong, “Reutilizaton of VHDL Test bench and Library Components,” Proceedings

of the 1994 American Instjtl_ne of Aeronautics and Astronautics., San Antonio, Texas, March 28-30,

1995, pp. 691-700.

R. Amstrong, G. A. Frank, and F. G. Gray, “Efficient Approaches to Testing VHDL DSP Models,”
Short Paper Presented to ICASSP 95. Full journal article to appear in the Journal on VSLI Signal
Processing.

G. A Frank, B. E. Clark, and W. G. Ransdell, “Adapting algorithms to architectures through
transformations,” Proceedings of 1" Annual RASSP Conference, August 15-18, 1994, pp. 171-178.
H. P. Commissariat, F. G. Gray, J. R. Armstrong, G. A. Frank, “Developing Reusable Performance
Models for Rapid Evaluation of Computer Architectures Running DSP Algorithms,” Proceedings of
the 2™ Annual RASSP Conference, July 24-27, 1995, pp. 103-108.

G. A. Frank and B. E. Clark of Research Triangle Institute, and B. Schaming and W. Kline of
Lockheed Martin Advanced Technology Laboratory. “Hardware/Software Codesign from the RASSP

Perspective.” Journal article to appear in the Journal of VLSI Signal Processing.

89

7. Masters Thesis

1.) P. Gowrisankaran. “Structural test bench development for DSP models.” Masters Thesis , Bradley

Department of Electrical Engineering, Blacksburg, VA, March 1995.

2.) S. Hrishikesh, “Behavioral Test Bench Development For DSP Models.” Masters Thesis , Bradley

Department of Electrical Engineering, Blacksburg, VA, March 1995.

3.) Z. Xu, “Modeling SAR signals and sensors using VHDL.” Masters Thesis, Bradley Department of

Electrical Engineering, Blacksburg, VA, February 1995.

4.) Sailesh Kottapalli. “A Test Plan Driven Test Bench Generation System” Masters Thesis, Bradley

Department of Electrical Engineering, Blacksburg, VA, July 1996.

90

References

[Are95] Arete’ Associates, IRTOOL Reference Manual, February 1995.

[ArmJ93]} J.R. Armstrong and F.G. Gray, Structured Logic Design With VHDL, Prentice Hall, Englewood

Cliffs, NJ, 1993.

{ArmJ94] James R. Armstrong, Geoffrey Frank, Srinivasan Hrishikesh, Prabhakar Gowrisankaran, Zhen
Xu, “Test Bench Development for RASSP DSP Models,” Proceedings of the First Annual RASSP

Conference, Arlington, VA, August 15-18, 1994, pp. 91-96.

{ArmJ95] J. R. Armstrong, G. Frank, et al., “High Level Generation of VHDL Test Benches,”

Proceedings of the Spring VHDL International Users Forum, April 1995, pp. 6.23-6.34.

[ArmJ96] J. R. Armstrong, G. A. Frank, and F. G. Gray, “Efficient Approaches to Testing VHDL DSP
Models,” Short Paper Presented to ICASSP 95. Full journal article to appear in the Journal on

VSLI Signal Processing.

[Asc] Ascent Logic Corporation, RDD-100 User’s Guide, Release 4.

[BalA94]Balboni, A., Mastretti, M., and Stefanoni, M., “Static Analysis for VHDL model Evaluation,”

EURO VHDL, 1994.

[Cad94] Cadence, Inc., SPW-The DSP Framework, User’s Guide, March 1994.

[CamS893] S. Campana, “Passive Electro-optical Systems,” The Infrared & Electro-Optical Svstems

Handbook, ERIM, Ann Arbor, MI, 1993.

[ChoC94]1 C. H. Cho and J.R. Armstrong, "The B Algorithm: A Behavioral Test Generation Algorithm,"

Proceedings of the International Test Conference, Fall 1994, pp. 968-979.

91

[Com92] Comdisco Systems. Inc.. Signal Processing WorkSystem/The DSP Framework, 1992.

[Dem93] Demaco, Inc.. User Manual for x-patch, September 15, 1993.

[EurA93] Proceedings of EUROASIC 93.

[FraG91] G. A. Frank, “The Evolution of External Models For Simulation,” Proceedings of the Systems

Design Synthesis Technology Workshop, Naval Surface Warfare Center, Silver Spring, MD,

Sept. 10-13, 1991.

[FraG95] G. A. Frank. J. R. Armstrong, and F. G Gray, “Support for Model Year Upgrades in VHDL Test

Benches,” Proceedings of the 2nd Annuat RASSP Conference, July 1995.

[GowP95] P. Gowrisankaran, “Structural test bench development for DSP models,” Masters Thesis ,

Bradley Department of Electrical Engineering, Blacksburg, VA, March 1995.

[GraG94] F. G. Gray and J. R. Armstrong, “Reutilizaton of VHDL Test bench and Library

Components,” Proceedings of the 1994 American Institute of Aeronautics and Astronautics., San

Antonio, TX, March 28-30, 1995, pp. 691-700.

[GajD94] D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and Design of Embedded Systems,

Prentice Hall, NJ, 1994,

[HarD87] D. Harel, “STATECHARTS: A Visual Formalism for Complex Systems,” Science of Computer

Programming 8, 231-274, North-Holland, 1987.

[HriS95] S. Hrishikesh, “Behavioral Test Bench Development For DSP Models,” Masters Thesis ,

Bradley Department of Electrical Engineering, Blacksburg, VA, March 1995.

[IEEE88] IEEE Standard VHDL Language Reference Manual, IEEE, New York, 1988.

[Tlog92] i-Logix, ExpressV-HDL Reference Manual, i-Logix, Inc., Burlington, MA, Vol. I, Version 3.0,

December 1993.

92

[KapS94] S. Kapoor, J. R. Armstrong, and S. R. Rao, “An Automatic Test Bench Generation System.”

Proceedings of the VHDL International Users Forum, Spring 1994, pp. 8-17.

[KotS96] Sailesh Kottapalli, “A Test Plan Driven Test Bench Generation System,” Masters Thesis,

Bradley Department of Electrical Engineering, Blacksburg, VA, July 1996.

[LiW96]W. Liand J. R. Armstrong, “Test Generation from VHDL Behavioral Models,” Proceedings of

the VHDL International Users Forum, Fall 1996.
[Mat92] The Math Works Inc., MATLAB Reference Guide, Oct., 1992.

[ONR94] Office of Naval Research, “Infrared Analysis Measurements and Modeling Program-Data

Catalog,” January 1994.

[PauB92] Paulsen, B. and Levia, O., “Techniques for Writing High Performance and High Quality VHDL

Models,” EURO VHDL, 1992.

[RicM94] M. A. Richards, "The RASSP Program: Overview and Accomplishments," Proceedings of the

1st Annual RASSP Conference, Arlington VA, August 15-18, 1994, pp. 1-8.

[RBGM] AFWAL-TR-86-1017 "Generic Signal Processor Architecture (GSPA)" Vol. I "Requirements"”

AT&T Bell Laboratories February 1986.

[ShaG94] G. A. Shaw, “Synthetic Aperture Radar Image Processor - RASSP Benchmark,” M.L.T. Lincoln

Laboratory, January 1994.

[Syn92] Synopsys Graphical Environment User Guide, Version 3.0, December 1992.

[Syn95] Synopsys VHDL System Simulator - Command Reference Manual, Version 3.3b, Sept. 1995.
[Van92] Vantage Analysis Systems, Inc., Vantage Spreadsheet User's Guide Volumes I and II. 1992.

[Wav92] IEEE Standard 1029.1-1992- Wave Form and Vector Exchange Specification.

93

[WicJ96 | Wicks. J. A., Jr. and Armstrong, James. R.. “VHDL Model Efficiency.” Asian Pacific

Conference on Hardware Description Languages, Bangalore, India, January 1996.

[XuZ95]1 Z. Xu, “Modeling SAR Signals and Sensors Using VHDL.” Masters Thesis, Bradley

Department of Electrical Engineering, Blacksburg, VA. February 1995.

[ZueB94] B. Zuerndorfer and G.A. Shaw, “SAR Processing for RASSP Application,” Proceedings of the

1st Annual RASSP Conference, Arlington VA, August 15-18, 1994, pp. 253-268.

94

