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1. Adabra: A Rapid Prototyping 
Environment for Electronic Packaging 

Vista Technologies, Inc. 
1100 Woodfield Road 
Schaumburg IL 60173-5124 
(708) 706-9300 (P) 
(708) 706-9317 (F) 

Adabra is a rapid prototyping environment for Electronic Packaging. Adabra integrates 
many design tools that already exist to carry out design steps such as placement, routing, 
electrical analysis and simulation, etc. A database which stores technology specific data is 
also integrated in Adabra. The key feature of the environment is the use of a computation 
model called Parameter Propagation Network (PPN) that facilitates the selection of pack- 
age design parameters. A PPN represents causal relationships between design parameters 
and thus allows a change in one design parameter to percolate through others. Parameters 
are represented by nodes in the network and their inter-relationships by arcs. Each node 
computes the value of a single parameter. A PPN computation, as carried out in Adabra, 
calculates various parameter values by interacting with design tools in the environment or 
with other PPNs. The concept of a PPN can be extended to form a network of PPNs. Several 
PPNs may be tied together to form an independent module, generically described as aprop- 
agator, which can be used to solve a specific packaging subproblem. A complete solution 
to a packaging problem may involve execution of a set of propagators which coordinate the 
interaction among different design tools utilizing technology data from the database. Two 
propagators forPCB component selection and MCM technology selection are currently 
integrated in Adabra. 

Our focus in this project has been on developing a rapid prototyping environment for elec- 
tronic packaging, laying the groundwork and developing technology leading to an even- 
tual packaging compiler. The environment consists of a set of packaging tools that interact 
closely to generate a packaging solution. There are many individual tools that support 
package design at the component, board and system levels; they could tremendously ben- 
efit the user when tightly integrated under a common framework specifically designed for 
packaging applications. 

Package design has characteristics that make it particularly suitable to rapid prototyping. It 
covers a wide variety of technologies and applications, but is amenable to a systematic 
approach to design. Moreover a number of design tools to carry out individual design 
steps already exist If the tools are part of a package design-specific framework, the proper 
usage of tools, coordination among tools, and data exchanges between tools can all be sys- 



tematically carried out by the framework with the active participation of the user. In this 
sense, the framework provides an environment that is greater than the sum of it's parts. 

Our rapid prototyping environment for electronic package design, Adabra, provides these 
features. The power of the environment lies in the PPN computation model which facili- 
tates the design process. The model enforces a causal relationship between design parame- 
ters that underlie the design process. A PPN computation consists of the autonomous 
(meaning, not started by the user or any tool) propagation of parameter values to other 
parameter computations in a manner defined by a network. Constraints can be placed on 
parameter values in the network. While computing values for the design parameters with 
the given constraints, the PPN uses other application specific packaging tools that have 
been integrated in the framework. 

1.1. An Outline of Adabra Architecture 

Adabra consists of three components: 

• the tool integrating framework, 

• a set of packaging design tools for simulation, layout and analysis, and 

• tool integration technology enforced by a PPN computation model 

The Parameter Propagation Network is a computation model used to represent the inter- 
relationship between design parameters that are involved in electronic packaging. Each 
parameter is represented by a node in the network; their inter-relationships by arcs. During 
execution, the model interacts with tools in the framework, exchanging parameter values. 

1.1.1. Tool Integrating Framework 

Tool integration and inter-tool communication is provided in the framework by a client- 
server model. In this model, the various tools in the framework are clients that request ser- 
vices from an anonymous server. Tools request services in their native mode, that is cor- 
rectly interpreted by the server. Besides, each tool operates independently and is unaware 
of the identities of other tools. The subcomponents of the tool integrating framework are: 

• a Server that can be thought of as the hub of a star network. Clients are connected to it 
via persistent socket connections, and may communicate with each other indirectly 
through the Server. Though the PPN model is an integral part of the framework, it can 
be considered as a special client that uses the same services of the Server that other cli- 
ents require. 



•  a client registry, which is a list of all client identities that are currently active. All the 
clients that the server connects to have an entry in the client registry. 

1.1.2. Packaging Design Tools 

A large number (-100) packaging design tools for simulation, layout and analysis are 
available from vendors. A representative selection of these tools from vendors and Uni- 
versities can be selected and integrated in an environment like Adabra. The Server, 
described in a following section, is the tool that provides integration services to all pack- 
aging tools. The Server views all tools in the framework as it's clients and maintains a cur- 
rent list of active clients in a data structure called the client registry. Of particular interest 
is a client called the Propagator that is the computation engine for the PPN model. In a 
sense, it drives the tools in the environment towards a packaging solution with the help of 
the Server. 

1.1.3. The PPN Computation Model 

The salient features of the PPN computation model include computation of parametric 
values, asynchronous propagation of parameters to other parameter, computation and 
recomputation of parameters by backtracking when parameter constraints are not satisfied. 
Complex parameter constraints and interactions can be effectively handled by a comput- 
ing paradigm called parameter propagation. In this approach, a network of computational 
elements or nodes is constructed. Each node computes the value of a single parameter. The 
interconnections between nodes reflect the interdependencies between corresponding 
parameters. The network, called a parameter propagation network or PPN, is typically a 
directed acyclic graph (or level graph) to ensure that its computation terminates in finite 
time. 

To begin the computation, the values of the nodes at the lowest level of the PPN level 
graph are initialized. The remaining nodes then perform their computations asynchro- 
nously, updating their outputs whenever one of their inputs changes. A constraint may be 
specified at a certain node: if the result of that node computation violates the constraint, 
the network initiates a backtracking procedure through the level graph, exploring the 
space of parameter values until the constraint is satisfied. Thus, parameter values can be 
visualized as propagating back and forth through the network, influencing, and being 
influenced by, the computation of other parameter values. 

The network is said to have completed its computation when the output of each node 
remains constant At this stage, the set of parameter values at the node outputs represent a 
solution which satisfies all the parameter interactions and constraints, if such a solution 
exists. 

The concept of a PPN can be extended to that of a PPN network, in which several PPNs 
are connected up in a manner similar to the way nodes are connected in a PPN. Each PPN 



has one or more output nodes which compute values of parameters of interest to the user, 
and internal nodes which compute values of parameters that are at a level of detail hidden 
from the user. Typically, one constraint may be specified per PPN, and backtracking does 
not occur across PPNs, since each PPN is expected to be a relatively independent compu- 
tational unit Output nodes of PPNs may propagate lists of output values, instead of a sin- 
gle value, so that the network as a whole can generate a set of valid solutions. 

Figure 1 below shows the various sub-components of our rapid prototyping environment 
The server initializes, terminates, and communicates with tool instances that are registered 
in the client registry. The PPN computation model is executed by the module called the 
Propagator. The Propagator's interface to the framework is just as any other tool: i.e., the 
server initiates, terminates, and communicates with the Propagator in the same manner 
that it does with a general tool. A common user interface provides the means by 

Client Registry 

Propagator 

User Interface 

FIGURE 1. Architecture of the rapid prototyping environment 

which the user can graphically interact with the Propagator. In most instances, the user does not directly 
interact with the Server. Tools may have their own private graphical user interfaces that they do not share 
with other tools in the framework. 



2. MCM Design and Brokerage Service 
for the US Electronic Industry 

2.1. Business Opportunity 

This section describes the steps we have taken in commercializing the package design 
technology that has been developed under a Phase IISBIR program. Our commercializa- 
tion activity has focused on the Multichip Module design market This market is capable 
of supporting high technology products and services, and has the potential to rapidly grow 
into one of the dominant packaging technologies of the nineties. With the introduction of 
many bare chip suppliers in the market, MCM market fis poised for a significant growth. 
New applications such as celluar phones, personal digital assistants, PCMCIA cards etc. 
are beginning to provide the required volume production, the MCM market has been wait- 
ing for. A self-sustaining market in MCM products and services is expected to commence 
very soon. 

Under the SBIR Phase II project discussed earlier, we developed enabling technology for 
MCM design. The highlight of the effort is the development focused around a formal 
model of parameter interaction (PPN model) involving packaging parameters. Using this 
formalism, we now have the capability of rapidly developing design advisors which can 
enforce a wide variety of parameter interaction induced by physical, electrical, thermal, 
material, manufacturing, or other reasons. In addition, we have developed the infrastruc- 
ture necessary for such tools to function in a design environment This consists of the 
Adabra tool integration framework built on an object base called PCTE. The environment 
consists of several packaging object bases, several design tools, including Propagators, 
and tool interaction technology mat can be used for tools that are expected to be part of the 
product environment 

We believe that there is a very good opportunity for successful commercialization of our 
technology as an MCM design and brokerage service. We now offer full MCM design ser- 
vice (L, C, D, and the newer hybrids) and are able to perform foundry selection based on 
customer needs. Our competitive edge is derived from the fact that our technology is used 
to evaluate materials, processes, and design rules in order to select the best match with 
customer requirements. It is an imaginative plan to provide a "one-stop-shop" solution to 
many medium and small hardware manufacturers that cannot afford the in-house expertise 
or investment to use MCM's. We encourage small and medium hardware manufacturers to 
use MCM technology by offering them bias-free advice on MCM usage (we can run our 
decision tools in their presence), through lower NRE costs and, hopefully, lower manufac- 
turing costs through broker induced consolidation of orders. 

The business plan that we have developed and described below has several advantages. 
The business plan makes use of "vista's existing infrastructure and experience. Our unique 
perspective, as a foundry-less MCM design house enables us to assess foundry processes 



strengths and weaknesses to the benefit of the customer. It adds to the infrastructure and 
facilities necessary for MCM technology to reach critical mass. 

It should be noted that many companies offer design services tied to the specific architec- 
ture and manufacturing processes that they support Our advantage and uniqueness are our 
technology that allows us to be selective in both process and design to the benefit of our 
customers. 

2.2. Technology and Business Development Plans 
The technology development plan has been carefully formulated to support our business 
development plan, while still being in the mainstream of technology development We 
refocused Adabra environment to emphasize three areas: MCM technology selection, 
design, and process selection. 

MCM technology selection 

MCM packaging is available in many different technologies, and the problem of choosing 
a good match for a packaging application, based on user requirements, is very important 
In fact what is needed is a multitude of solutions which the brokerage service can grade 
based on technical, economic and manufacturing criteria. We implemented an MCM tech- 
nology selection Propagator during Phase n, and we are satisfied with its performance. In 
addition to this, we have enhanced its capabilities in several ways, most notably in incor- 
porating several new MCM technologies which straddle more "traditional" L, C, and D 
categories. We have also improved the quality of its recommendations by implementing 
several enhancements to the basic Propagator and PPN computation model. 

MCM design 

We are enhancing the support capabilities of the Adabra environment for MCM design in 
two ways. We are building a new Propagator that will address design parameter selection 
and that will work in tandem with the following tools: layout electrical and thermal anal- 
ysis and simulation tools, and the technology selection Propagator. It will explore the 
design space between various MCM technologies, and consider trade-offs using MCM 
design tools integrated in the design environment 

It might be recalled, that during Phase 2 we consciously (and correctly) made the decision 
not to implement tools already available in the market such as MCM routing and analysis 
tools. To complete the Adabra environment we have selected and acquired Cadence 
MCM design tools (Allegro-MCM) for integration. 

Process selection 



We have developed good knowledge of process and fabrication parameters as well as pro- 
cess advantages and idiosyncrasies of few foundries. We are in die process of completing 
a new database of process parameters and foundry parameters, and will develop guidelines 
on how they affect design and system level parameters. Process selection and foundry 
selection will be manual, but will heavily depend on the Propagators, design tools, and the 
process database. In the long run, process selection will involve process simulation along 
the lines of IC process simulation. 

Our business plan consists of the following steps: 

• We established technology non-disclosure agreements with two foundries: Acsist Asso- 
ciates (Minneapolis) and CTS Microelectronics (Indiana). 
This entails selection of a representative list of foundries, initiating preliminary discus- 
sion leading to the agreement to provide data. We have found some foundries to be 
reluctant to provide data, while others will have no problem providing data under non- 
disclosure. The choice of foundries will be representative of both technology and mar- 
ket This will include the following: 

L, C, and D technologies 

Low volume/high-end applications 

-aerospace and military 

High volume/low cost 

-consumer electronics 

Special applications 

-automotive 

-telecommunications 

-computers 

Other 

-niche technologies- e.g. diamond substrate 

-custom form-factor 

We are currently working on establishing the modalities of a working relationship with 
each foundry, including demarcation of responsibility, formats for technical disclosure, 
and financial arrangements 



Since foundries do not have standardized technical non-disclosure formats we are try- 
ing to understand foundry specific terminology, formats and measurement methods 
(this part will be made easier if ARPA sponsored standardization gets finalized and 
adopted industry wide). With each foundry we will agree on who is responsible to 
which degree on what, and agree on a cost schedule for services. 

• We are also in the process of establishing supply relationships with bare-chip vendors 
including KGD methodologies. With the introduction of Intel's SmartDie program, 
KGD supplies have improved considerably. Some foundries can supply KGD from 
their own sources, others may want us to provide KGD. Cost and delivery deadlines 
may drive choice. Relationships with KGD sources may be a critical factor in business 
-success 

Vista's MCM design services is now open for business. We have successfully completed 
two trial MCM-C (LTCC) based designs. We have been actively trying to establish con- 
tacts with other MCM foundries and other potential MCM users. 
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3. Phase III work 

The importance of Phase HI in the development of the business was critical because it 
provided the bridge between technology development in a laboratory-like environment 
and its implementation as a technology to solve problems in the real world. 

No new technology was developed during Phase HI. Instead, the prototype developed dur- 
ing Phase II was refined, tested, and integrated with other MCM design tools. 

The Phase HI work can be characterized as a trial period during which a maturing process 
for the technology was realized. Phase m work can be described in terms of three activi- 
ties: Productizing the Phase II prototype; implementing an extensive training and testing 
program during which real MCM designs were implemented from start to finish, and a 
business development phase where the details necessary for doing MCM design and bro- 
kerage business were implemented prior to opening for business. 

3.1. Productization of Phase II prototype: 

Productization work focused on three aspects that needed improvement* performance of 
the tool, elimination of software bugs, and improving and augmenting technology selec- 
tion algorithms to improve the quality of the output of the tool. 

1. Performance improvements 

The prototype at the end of Phase II was slow, but during Phase IH we made very signifi- 
cant improvements in response times. We quickly found that the main cause of the slow- 
ness rested in the response time of the object base to the tool's queries. A lot of effort was 
expended on improving the format of the queries, changing the Schemas that governed the 
data, and modifying the query engine. Improvements were obtained in response time, but 
they were not dramatic. The PCTE object base that contained the database for the opera- 
tion of the tool was carefully examined and we concluded that die complex structure of the 
object base made further improvements at mat level unlikely. 

• 
During the course of trial runs of the tool, we discovered that the tool was being used 
repeatedly with minor changes in parameters; yet each of the queries that were formulated 
were handled in the same manner by the object base resulting in a predictably slow 
response. The obvious solution of providing a data cache was implemented, resulting in a 
dramatic improvement in performance. Surprisingly the data cache also improved the per- 
formance in general of the tool, even when different sets of data were run. Further 



improvements in performance were obtained by simplifying many of the control struc- 
tures of the propagator, while still retaining an interactive mode of operation. 

Another technique that resulted in significant improvements in performance was to sim- 
plify the query presented to the object base by performing more query related processing 
within the propagator. In effect, part of the functionality of the query engine was trans- 
ferred to the PPN's themselves in the form of more extensive node computations. 

As a result of these improvements, it is now feasible to make several runs of the tool in an 
hour. 

3.2. Robustization of the tool 

The principal focus of this activity consisted of the following: elimination of critical bugs 
that would render the tool inoperable, minimizing memory leaks and reducing the run- 
time memory usage, installing better diagnostics, and providing more type checking of 
input and computed parameters. 

Software bugs that resulted in segmentation violations were targeted and removed to the 
extent that they were detected. Minimizing memory leaks was a significant effort since 
memory allocation was reasonably common throughout the operation of the tool. Memory 
leaks were significantly reduced through eliminating larger leaks. Not all memory leaks 
were eliminated, since the benefits would not be proportionate to the cost incurred in 
doing so. Many run-time diagnostics were introduced and error and warning messages 
were improved. To further robustize the tool, careful type and range checking for technol- 
ogy parameters was introduced. This was needed because the object base can be put into a 
non-responsive state if the query parameters do not match the type specified in the schema 
definitions. 

3.3. Technology modifications/improvements 

The technology selection propagator was subjected to an extensive review that covered its 
PPN structure, parameter computations (algorithms), and modifications to the object base. 
Practically every PPN was modified in the light of greater experience with the technology 
selection process. Several new parameters such as "Die availability", "Number of dies of a 
given type", "Module Thickness", etc. were found to be significant factors in technology 
selection and were introduced into the various PPN's. In addition,- two new PPN's - Sig- 
nal Layers and Module Attach were added to the network. These changes provided signif- 
icant qualitative improvements to the tool's evaluation of various MCM technologies. 

Here is a brief summary of the technology improvements: 

10 



PPN: MCM Signal Layers 

This PPN estimates the number of signal layers required by the netlist prior to actual rout- 
ing. Previous estimates used either a constant value or Rent's rule. A more sophisticated 
technique involved converting all the miüti-terminal nets into two terminal nets following 
which a geometrical calculation combined with statistical data provides a good measure of 
the number of signal layers. The parameters used in the computation to produce the esti- 
mate, include the number of chips, and the number of nets, and the total number of pack- 
age IO's 

PPN: MCM Technology Selection 

Extensive trials were conducted to obtain qualitative improvements in the performance of 
this PPN which selects a specific MCM technology for implementation. The number of 
technology choices was expanded to cover: MCM-L, TFC (MCM-Q, LTCC (MCM-Q, 
T-Tape, HTCC, Ceramic, metal, Silicon, GE-Chips First technology, and MCM-L/D 
(IBM). The criteria to select among these technologies was expanded to include several 
new categories. They now include: Thermal properties, Geometrical properties, Reliabil- 
ity, performance, and Miscellaneous. A total of 13 parameters were used to represent these 
criteria whose relative importance was reflected in the selection algorithm. 

PPN: MCM Die Attach 

The improvements made to this PPN are extensive. First, we considered die attachment at 
two distinct levels: the die and the module, and found that these are related choices that 
need to be separately evaluated. Thus the original die attach PPN was split into separate 
PPN's for die attach and module die attach. 

The die attach techniques were expanded to include a new technique called Overlay(HDI) 
in which die are glued into recesses and the interconnection layers are laid over the die. 
New parameters that were included in the selection criterion included die availability, test- 
ability, bum-in, electrical characteristics (inductance, mutual inductance, capacitance, 
transmission line capability), mechanical robustness, etc. Then, a two step selection algo- 
rithm was implemented. 

PPN: MCM Module Attach 

11 



This is a new PPN and its purpose is to evaluate the selection of die attach for individual 
dies in the context of the overall module. At the module level, various combinations of 
individual die attach solutions to be assembled on the same module are evaluated on the 
basis of four parameters: Silicon density (measures how close the die can be sited on the 
module), manufacturing complexity (a rough measure of how hard it is to manufacture the 
design), manufacturing flexibility (the ability of the die attach technique selected to adapt 
to a process parameter change), and Module die attach cost 

An example of the computations is shown below for a four die design. 

If die attach is TAB, FTAB, FlipChip, add 2 for each dissimilar die. 

If die attach is WireBond, add 1 for each dissimilar die. 

ModDieAttachCost = 1+1+2+2 = 6 
Normalized SiliconDensity = 1/4 = 0.25 
ManufacturingFlexibility = 2+2+1+1 = 6 
ManufacturingComplexity = 3 

mm 
TABl 

#2 
TAB2 

#3 
WBl 

. #4 
WB2 

FIGURE 2. Computation for die-attach selection 

Wire bonding can be adapted for components with various die I/O, die geometry, package 
geometry and production process parameters, by programming the bonding machine. 
Thus, this interconnection technique does not require any hardware changes for devices of 
various different parameters. TAB and flip chip require hardware changes to accommodate 
devices of various design and process parameters, since their tooling orders are custom- 
ized to a specific die and package and require different equipment However, for multichip 
applications, a module may consist of die attach methods of different types and the overall 
manufacturing flexibility would refer to the combination of all the die attachments in the 
module. Since manufacturing flexibility refers to the adaptability for different design and 
process parameters, the overall flexibility for a module with mixed interconnections can 
be determined by considering the dissimilarities (nature) of different dies. 

PPN: MCM Metallization 

This is a new PPN that was introduced into the technology selection process. It estimates 
the metallization required in the module based on the results of previous technology selec- 
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tion such as substrate, dielectric, technology, etc. The major characteristics used to select 
metallization include adhesion to substrate, low resistivity (high conductivity), corrosion 
resistance and chemical inertness, and CTE match with the substrate. 

3.4. Functional improvements 

Several functional improvements were also made to the Propagator. These include p-list 
propagation and range inputs. P-list propagating is a technical enhancement that needed 
extensive changes in the PPN architecture. It allows the propagation of multiple values 
across PPN's. This is important because it allows the parameter selection algorithm to pro- 
vide a set of multiple values in response to a set of single values at its inputs. Thus multi- 
ple solutions are produced resulting in a better match of the chosen solution with the 
design parameters. The quality of the solution is greatly enhanced. 

Another enhancement is the introduction of range values. This allows input parameter 
specifications to be a range rather than individual values. An application of this feature can 
be seen in the module attach PPN where a number of independent solutions are simulta- 
neously specified, each representing a die attach solution for one specific die. 

We also implemented a feature that allows constraints to be set on parameter propagation. 
Constraints are settable on only one node in a PPN, i.e., the output node. The constraint 
consists of a logical expression in an interpretive language (X lisp) that uses the Hyper- 
Web server to evaluate the expression. The expression can be changed at any time without 
the need for recompilation. The expression is persistent in that it can be re-used at a later 
time. Special nodes in the object base are used to store the constraints as an X-Lisp expres- 
sion. 

Constraints allow the user to screen out parameter data values that may not be required. A 
common use of constraints is in reducing the number of feasible solutions (since examin- 
ing all the solutions may not be practical) and in tailoring the solution set to a specific set 
of parameter values that a foundry may be able to implement 

Filer commands now allow the reading of file inputs, writing to file, saving and restarting 
the current user session, crash recovery, etc. It is a very useful feature for extended and 
repeated runs of the technology selection propagator. 

A feature that we added to greatly improve the presentation of the tool is the correlation of 
the outputs of each PPN in a tabular manner. The rows of the table reflect entries that are 
individually correlated with the rest of the row entries from other PPN's and therefore cor- 
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respond to the outcomes of individual waveftonts. The correlator also provides a table 
driven user interface for selection of specific parameter values. 

3.5. Testing and Training 

An extensive testing and training program was initiated as part of the business develop- 
ment strategy. Testing was made difficult by the fact that test data were not readily avail- 
able. Some test data were gathered from published technical papers. Others were 
developed in consultation with the foundry industry. 

It was absolutely essential that we get acquainted with the nitty gritty of designing MCM's 
using real examples. First, we had to settle on an MCM design suite of tools to comple- 
ment our tool. Acquisition, installation and evaluation of several toolsets in the market 
was tried and we settled on the Cadence MCM Allegro toolset 

The training program involved actual MCM designs, but these were difficult to obtain due 
to their proprietary nature. 

The actual training took several months to achieve a level of technical skill that would be 
needed to service customer needs. Here is an example description of the type of design 
work that was performed as part of the training. This sample was the outcome of several 
iterations caused by our lack of experience, the inadequacies of the Allegro toolset, and 
the changing conditions imposed by the customer. 

Example: Multibus II design 

Design Description 

The Multibus II design consists of nine chips and ten discrete components. The design has 
approximately 750 net pins and about 250 nets. The netlist includes 7 critical nets which 
need to be routed on a separate layer to meet high speed timing constraints. The chips 
include a Microcontroller MR87C51FB-16, one MPC MQ82389, one FPGA 
MMBT2222A and six resistor networks. The discrete components include two NPN tran- 
sistors MMBT2222A, one resistor of 250 ohm M55342k06B250DM and seven capaci- 
tors. The MCM package is a PLCC type having 224 pins. In addition to these, the design 
includes six test pads each of 15 mils xl5 mils to be attached on the back of the seal ring. 
The design is to be completed using 4 signal layers, 3 ground planes, 1 voltage plane and a 
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separate layer for routing critical nets. The design steps used are shown in the figure 
below. 

Pad stack creation 

I 
Symbol creation 

I 
Layout preparation 

I 
Placement 

I 
Routing 

I 

Thermal analysis 

Signal integrity analysis 

Manufacturing data generation 

T 
MCM foundry 

FIGURE 3. Multibus II design steps 

Padstack Creation 

Padstacks were used to define all the pins, vias, die pads and bond pad information for the 
layout For Multibus design, pad stacks were defined for die pads, bonding pads, buried/ 
blind vias, and I/O pins. The definitions for different padstacks are shown below. 
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20 mils x 6 mils 

4 mils x 4 mils 

4 mils diameter 

50 mils x 12 mils 

bonding pad 

diepad 

blind/buried via 

I/O pad 

SO mils x 24 mils I/O pad 

15 mils x 15 mils test pad 

FIGURE 4. Multibus II padstack definitions 

Symbol Creation 

Symbols corresponding to the components in the design were created using the Symbol 
Editor in our design suite. There are nine types of symbols which were created for this 
design. The symbols for the chips were created for wire bonding assembly technique. The 
pad stacks which were created in the previous step are used in the symbol creation pro- 
cess. Basically symbols consist of part geometry and pad stacks corresponding to the die 
and bonding pads for a given component In case of discrete components, the symbols 
used pads for the surface mount assembly. The main challenge which was encountered in 
symbol creation process was to create bond pads for the high I/O chips. All the symbols 
for the chips were created using single row bonding pads to facilitate the process. The 
bonding pads were created to be accommodated in a single row. Because of this single row 
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limitation, one symbol (Ul) became unusually large. A standard symbol for SOT-23 (Ql 
and Q2) was used for transistors. A device file containing electrical information for the 
pins was used for each symbol to verify one-to-one correspondence between pins and the 
pads in the symbols. The symbols used in the Multibus design are listed below. 

Symbols for chips 

die2002.psm 
die4010.psm 
die82389.psm 
die87C51.psm 

Symbols for discrete components 

capOluf.psm 
res250.psm 
sot23.psm 

Symbol for the VOs 

io.psm 

Symbol for test pads 

ecp.psm 

FIGURE 5. Symbols used in Multibus n design 

Layout Preparation 

After all the symbols have been created and saved in the library, the layout was prepared 
for placement and routing. The layout preparation involves defining design rules (proper- 
ties and constraints), defining layers (cross section), creating substrate geometry, part 
keepins and keepouts and route keepins and keepouts. Once the layout has been defined, 
the netlist is loaded and then blind/buried vias are created. Our design tool set allows cre- 
ation of all possible blind/buried via for a given cross section. The suggested stackup by 
the manufacturer was used for the layout cross section. For Multibus design, a substrate 
geometry of 710 mils x 710 mils, route keepin of 700 mils x 700 mils and part keepin of 
600 x 600 mils were used. The different steps for preparing the layout for this design are 
shown in below. 
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Defining substrate geometry and cross section 

Loading of netlist 

Defining design rules 

Defining part keepins and keepouts 

Defining route keepins and keepouts 

Creation of blind/buried vias 

FIGURE 6. Steps in layout preparation 

Placement 

Placement and routing are done using the Layout Editor. The placement is similar to the 
one suggested by the manufacturer. Our design suite provides tools for placement evalua- 
tion and thermal analysis (Thermax) at placement level. Our design suite also provides 
autoplacement capability. In this design, no routing is allowed on the top layer within the 
seal ring area. 

Routing 

After the placement was finalized, routing was undertaken. First, vias were created for I/O 
pins and bonding pads since no routing was allowed on the top layer. In this design, vias 
for the bonding pads are required to be in a staggered fashion. This necessitated the cre- 
ation of vias for each bonding pad to signal layers. A routing utility called zrouter to create 
vias for each I/O pins was used. Via creation for the I/O pins was easy. However, vias for 
the bonding pads were created separately for each row or column. To facilitate the routing 
completion, vias from the top layer were dropped to xl and yl layers and distributed 
evenly in such a way that vertical vias are on the yl layer and horizontal vias are on xl 
layer. After the initial via creation, critical nets were routed on critical signal layer. Power 
and ground nets were assigned NO_ROUTE properties because these nets were to be 
routed after the signal routing. Autorouting was used to complete a majority of the nets. 
We were able to achieve about 72 percent routing (20% P/G nets) using autorouting. How- 
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ever, the remaining 8 percent nets were routed manually. A very few nets had to be routed 
on critical signal layer in order to achieve 100 percent routing completion for the signal 
nets. Since the film type is positive, power and ground nets were routed after the signal 
routing. The design has three ground and one voltage planes. There are 57 ground connec- 
tions and 37 voltage connections. Our design suite provides glossing routines to clean up 
the routing before the artwork generation is done. 

Manufacturing Data 

There were two types of manufacturing data that were needed: Gerber data for each con- 
ductor layer, and punch files for via informations. Gerber data were generated using art- 
work generation capability of the design tool set whereas punch files are generated using 
NC Drill programs. However, the format of punch files required by the manufacturer is 
different than what is generated by the design tool. Therefore, we have used post-process- 
ing routines to convert the punch files into the right format The Gerber files and punch 
files are listed in Figure 7. 

Gerber files Punch files 

filmxl.art viaxl.dat 
filmyl.art viayl.dat 
filmx2.art viax2.dat 
filmy2.art viay2.dat 
filmgl.art viagl.dat 
filmg2.art viag2.dat 
filmg3.art viag3.dat 
filmvl.art viavl.dat 
filmcs.art viacs.dat 

FIGURE 7. Gerber and punch files generated 

In addition to the Gerber and punch files, the pen plots of different parts of the design have 
also been generated. 

Report Generation 

Our MCM design suite provides capability to generate a wide range of design reports. The 
following types of reports have been generated: 
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Design Rule Checks 

Net list 

Placed Components 

Summary Drawing Report 

Unconnected Pins 

Unplace Component 

Bill of materials 

Component list 

One of the goals of the training program was to achieve a high rate of productivity in the 
design process. Our first round of training with a real MCM design took 12 weeks not 
counting the preparation time. When in business, this rate would not be economical since 
the design would have to be iterated over several times. Towards the end of training, we 
were able to improve productiviy by 40%, but the actual time will vary widely depending 
on the complexity of the design. 

3.6. Study of foundry processes 

During the training period a major efffort was undertaken to study fabrication processes 
prevailing in the industry to evaluate their impact on technology selection. This work 
involved a detailed understanding of the process variations across foundries and across 
technologies. The intent was to survey to what extent we needed to structure our design 
process to take into account foundry process variations. 

This was a complex study of foundry processes because of the lack of standard terminol- 
ogy and limited disclosure of process details. Examples of MCM-L and C processes and 
their variations is shown below. 

MCM -L fabrication process for multilayer MCM-Ls 

1. Prepare copper clad laminate 
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2. Apply photo sensitive resist, expose, develop, etch, remove resist 

3. Inspect layer pair 

4. Treat copper surface to improve adhesion 

5. Laminate 

6. Drill vias 

7. Clean via holes 

8. Metalize via holes with copper 

9. Prepare copper surface of the panel. 

10. Apply photo sensitive resist, expose and develop 

11. Selectively metalize with copper, nickel, gold, etc. 

12. Remove resist 

13. Etch off unneeded copper. 
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14. Remove individual MCM parts from panel. 

15. Misc. operations-solder mask, nomenclature add pins, special metallization, etc. 

16. Electrical test 

17. Final clean 

Impact on business development: 

The impact of the study of foundry processes revealed that the business could split up 
MCM manufacturing into two or three separate activities (Substrate manufacture, assem- 
bly, and test) which could be contracted out to individual firms that specialized in these 
activities. As a result we formed a strategic partnership with a California MCM assembly 
firm, and identified a Minnesota firm for the substrate manufacture part (Unfortunately the 
firm went out of business shortly thereafter). 

Impact of process steps on design 

The impact of the design steps on the process steps are depicted in the table on the follow- 
ing page. Foundry processes have a lot of variation involving these steps, and the technical 
data regarding these steps are trade secrets. 

The major components of the MCM-C process flow are depicted in the diagram following 
the table, after which a mapping is provided between the lower level substrate formation 
process flow and the top level process. 

22 



m m 

mi 
l! m 
II 
III 
II 

4> 

«ISS 

«! 

ill 
Hi 
ÜI1 

II 
i! 

I 

ii 

& 
1 

& :8 

ox» mi 
■I   is. iiiiiiiii 

.S o 

| '£3 
D. « 

> Si 

i w> 
1151 

S 

.5 - 
IS I 

>x**.«CB:>: 
CO   B 

A;: 

mm s 
OHM-:-:-: 

mm 
icoi 

i;Si»l lip mm wemmmmm 
"3.     «* 
I     2 

as- 5J§ 

wm 

1»! 
e 

III 
SSÖSS 

l«ii 

S mm iss» 
ill : a 
WBk: 

m 
mi 

23 



Cutting of gren tape 

I 
Via punching 

I 
Metallization 

I 
Testing 

I 
Stacking/Lamination 

I 
Sintering 

I 

Ni/Gold plating 

I 
Substrate elec. test 

I 
Pin Brazing 

I 
Chip attaching 

I 
Module elec test 

I 
Capping 

T 
FORMATION OF SUBSTRATE TOP-LEVEL PROCESS 

FIGURE 8. MCM-C fabricating process 
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Final inspection 

Singulation 

blank tape 

fill 

conductor printing 

register layers 

laminate 

co-fire 

electrical test 

Cutting of green tape 

Via generation 

Metallization 

Testing 

Stacking/Lamination 

Sintering 

Ni/Gold plating 

Substrate elec. test 

Brazing 

Chip attach 

Module elec. test 

Capping 

Substrate processing 

Substrate fab. Top-levl process 

N 

N 

N 
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3.7. Business development activities 

We had extensive business development activity during Phase HL, These activities can be 
described as: business setup, launching a publicity campaign, pursuing strategic alliances, 
and defining the competitive edge that we would have over other companies in the future. 

The MCM design service was a new business model that required a clear assessment of 
the services that we could offer at a reasonable cost We described our services to our 
potential customers in a clear and succint manner as follows: 

The design services include technology selection, layout design, foundry selection and 
interface to various MCM manufacturing facilities. The key feature of the services is to 
offer an unbiased evaluation of manufacturing capabilities of different MCM foundries in 
order to ensure a cost-effective and competitive MCM product In addition it requires a 
commitment to reduce implementation risks and solve customer's MCM problems by 
evaluating alternative technologies, creating multiple designs and through strategic part- 
nerships with a broad manufacturing base. 

Technology selection 

The availability of a broad range of MCM technologies combined with recent variations 
among these technologies, and the multiplicity of the fabrication choices, make the task of 
technology selection a challenging one. Vista has developed tools to carry out a thorough 
trade-off analysis between the application requirements and different technology and 
materials choices available. These tools guide the designer in making the selection of 
appropriate technologies based on application requirements specified in the form of input 
parameters. This step involves selection of substrate, dielectric, and metallization materi- 
als, die attach techniques, heat removal techniques, etc.The technology selection tools 
provide a simple and flexible mechanism to specify application requirements such as cir- 
cuit performance, size, weight environmental conditions, cost etc., and simple user inter- 
action to analyze partial results in order to converge to a suitable set of technology 
parameters. 

Foundry selection 

The selection of an appropriate MCM vendor is an important step in die successful imple- 
mentation of MCM technology. Based on the technology selection results, Vista can use 
its expertise to make the selection of a suitable MCM foundry. Being an independent 
design service bureau, Vista can provide an unbiased evaluation about the manufacturing 
capabilities of different MCM foundries existing in the MCM market today. Vista has 
already established contacts with many qualified MCM manufacturers in order to collabo- 
rate with their manufacturing capabilities to meet its customers' MCM needs. 

Layout design 
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MCM designs being process-driven, it is required that the design be performed based on 
the technology selected and design rules of the selected foundry. Vista can closely work 
with the MCM foundry in the design phase in specifying the design rules and other pro- 
cess specific data and to complete the MCM design. 

Manufacturing interface 

Vista design services include providing MCM foundry interface for substrate fabrication, 
assembly, test and rework. Since Vista is not tied to a single foundry, it can provide manu- 
facturability analysis of different MCM foundry capabilities. In order to provide a cost- 
effective and competitive product, Vista can investigate the possibilities of subcontracting 
different components of manufacturing phase to separate MCM vendors. For example 
substrate fabrication and assembly can be subcontracted to two separate vendors. This can 
be done to use the manufacturing expertise of MCM foundries in some particular areas 
and at the same time provide customers a better product at a competitive cost 

Business setup 

The business setup activities consisted of infrastructure development consisting of setting 
up the modalities of doing business with the customer, with bare die vendors, and with 
substrate manufacturing and assembly firms. A database of vendors was developed and 
telephonic contact was established to introduce our services. 

Several bare die vendors were contacted and price and delivery time tables were dis- 
cussed. An experiment was conducted in which price quotes for a set of four bare die were 
requested. The mean time to obtain a price quote was 4 days. One of the chips did not 
appear on any vendors die list that we contacted; and procuring the die would take a cou- 
ple of months. An early lesson we learnt was that bare die vendors are geared for mass 
market bare die and appear to be reluctant to service requests for other bare die. 

The design process from customer contact to hand over was defined, legal liabilities were 
determined, and technical data interchange with customer was also determined. Examples 
of how data are interchanged with customers and vendors aredepicted in the following 
pages. 

The first feasibility analysis report is used to record the status of the design service with 
respect to the customer. Eight milestones are defined and the start and completion dates 
are recorded in the report The importance of this minutiae lies in the fact that it acts as a 
productivity measure. As the business grows there will be a need to hone our processes to 
reduce the time of completion of each step. 

The second form is used to obtain technical data from the customer who often may not be 
aware of the extent of information needed to develop an MCM that best suits their applica- 
tion. The form includes a component list that the customer needs to provide. Some of the 
components may be packaged components for which bare die availability will have to be 
researched as part of our design services offerings. The third form depicts a typical request 
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for quotation that we use once design is complete. Of interest is the period of performance 
clause that we added following our experiences. Apparently, quantity per quarter is a 
strong determinant of price and some foundries will not provide price quotations without 
this data. 
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FEASIBILITY ANALYSIS 

STATUS REPORT 

Customer name: 
iMCMWKWWWX'M'l'NSWCK OK'KWW'KW'K'KWWS' 

Customer address: 

Start date 

1. Sign NDA with customer 

2. Get input from customer 

3. Check availability of bare die 

4. Develop feasibility solutions 

5. Send data to foundries 

6. Prepare feasibility report 

7. Conference with customer 

8. Service completed 

Date Completed 
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FEASIBILITY ANALYSIS 

CUSTOMER INPUT FORM 

Customer name: 

Customer address: 

1. Netlist 

Format: 

Filename: 

2. Application (check all that apply): 

1. consumer 

2. computers 

3. communication 

4. military/avionics 

3. Period of performance 

When do you desire the first prototype 

Desired start date of manufacture: 
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Anticipated manufacturing schedule: Fill table below 

Year or Quarter from start date i^^^^SISS^^^^^B 

EU 

4. Is there a specific technology (or technologies) that you prefer? (check one or more) 

i. MCM -L lilllil 

2.MCM-C-(HTCC) L I 

3. MCM-C - (LTCC) 

4. MCM -D 

5. MCM-C/D 

6. Other (specify) 

7. No preference 

5. Level of testing required* (check one or more, except 8 and 9): 

1. Standard ASIC 

2. Assembly JTAG 

3. Assembly ICT 

4. System Test 

5. Performance testing 

6. Functional testing 

7. Limited functional test 

8. Will perform own testing 

9. Do not know, need guidance 

* Some of these tests may require you to supply test vectors. 
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6. Will you supply your own die (choose one):       Yes 

7. MCM packaging: (Choose one of the following) 

No Partially yes 

l.LCC 
m^m 

:S'-::'.;:-.;'-. >:: 

2. PGA :'<>'<■<■'<■■'■■'■:'■■'■■■:':''- 

3.QFP 
m ;s. s:. 

4.BGA 

5. Custom 

6. No preference 

8. Maximum operating temp: degrees F 

9. Operating frequency (Clock): Mhz 

10. Special requirements: 

Hermetic sealing required (check one):        Yes 

Size (inch x inch): 

Volume: 

Shape: 

No 

11. Special operating conditions (choose the first or either one or both of the rest): 

1. No special conditions 

2. Will operate under high thermal stress: 

Temp range: 

Number of thermal cycles during lifetime: 

3. Will operate under high mechanical stresses: 

Will you perform your own acceleration testing (select one): Yes No 
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Request for Quotation 

To 

Address 

Tel. & Fax. 

Please provide quotation for item(s) listed below: 

Qty. Description of item Date required 

l Multi Chip Module per attached spec. Please provide cost 
breakdown for design (NRE), fabrication, assembly, and 
test (RE) 

ASAP 

Ship To 

Address 

Tel. & Fax. 

Date: Purchasing Agent 

This is not a purchase order 

34 



Specification: 

Number of nets: 240 

Module area: 2. sq.inch 

Number of layers: 3 gnd., 1 power, 2 signal pairs, 1 critical net layer 

Number of critical nets: 11 

Operating frequency: 30 Mhz 

Operating voltage: 5 V 

Power dissipation: 3 W 

Mounting: on PWB with approx. 200 VO's. 

Functional testing needed. 

Anticipated award date: 1Q '95 

Period of performance: approx. 400 units per year over 1995 and 1996 

Component description: 

Desc. Part Number / Price Qty. I/O 

Processor Intel MQ82389 ($265 each) 1 164 

Controller MR87C51FB-16 ($240 each) 1 40 

FPGA XC4010 -5MQ208C ($470 for 300) 1 191 

Resistor 
(die) 

PRN111242002G ($22.40 each) 6 24 

Resistor M55342K06B249DM (60 cents each) 1 2 

Cap. 250R11B103KV4 (25 cents each) 7 2 

Transistor MMBT2222A (47 cents each) 2 3 
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The business setup activities included visits to nearby foundries and fabrication compa- 
nies to describe our business and to assess an industry standard pricing structure for our 
offering. 

Publicity Campaign: 

We collected a mailing list of about 200 names of companies who might serve as potential 
customers. This list included a number of bare die vendors, MCM foundries, electronic 
companies, PCB manufacturers, etc. We also obtained a list of addressees from the SBA 
which provided a list of contact names and phone numbers. These included mainly large 
defense corporations (Northrop, Singer, Hughes, etc.). In each case mailings were targeted 
at the divisional level. Letters were written to individual people after preliminary contact 
had been established and where their interest warranted such an approach. Follow-ups 
were conducted over the telephone. A sample letter is shown on the following page. 

We also developed advertisements and brochures. A sample advertisement is shown 
below: 

MCM design and brokerage services are offered to 
customers that need one stop assistance in choosing 
the right MCM technology, designing the MCM, and 
in interfacing to the MCM foundry. This new service 
addresses the needs of customers who wish to consider 
using MCM's to meet their packaging requirements of 
high performance, high density, and low cost Services 
include MCM feasibility analysis, technology selec- 
tion (L, C, D, C/D, substrate, die attach, thermal man- 
agement, packaging, etc.), foundry selection, physical 
design, electrical and thermal analysis, bare die and 
package procurement, and interface to manufacturing. 
Feasibility analysis provides a quick first cut technol- 
ogy and cost analysis and is ideally suited for a management decision to proceed or pass. H 
specialized custom tools are used at various stages to find best fit solutions for your requir 
ments. The design service includes routing, signal integrity analysis, thermal analysis, 
design rules check and manufacturing rules check. For more information, contact "Vista Te 
nologies, Inc., 1100 Woodfield Road, Schaumburg, PL, 60173-5124. (708) 706-9300, t-tnz 
MCMinfo@VlstaTech.com 
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Sample Brochure 
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November 29,1994 

JoeK. 
M.. Computer Corp. 
199R....Rd. 
Chelmsford MA 01824 

Dear Joe: 

It was nice talking to you on the phone. Our MCM design services group is now open for 
business. Our business model envisages customers coming to us to get advice on MCM 
technology, foundries, etc. We evaluate the customer's requirements, choose the technol- 
ogy, do the design, and contract out manufacture, assembly, and test to foundries that we 
help chose on the basis of competitive bidding. Or, if you prefer, we simply do the design 
work based on the design rules of the foundry of your choice. We work hard to keep 
abreast of the rapidly changing domain of MCMs so that we can provide you with the per- 
formance edge mat you expect of MCMs. 

As you requested, I have also enclosed a corporate bio. I have also enclosed some Vista 
product literature We would appreciate your putting us on your mailing list for your 
RFQ's. 

Sincerely, 

Dr. Sowmitri Swamy 
Director, Packaging Design Group 

End. 
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Strategie Alliances: 

Another technique to increase business exposure was through strategic alliances. Three 
such alliances were pursued: one for substrate manufacture (ACSIST Associates), another 
for assembly and test (Amtech Electronics), and a third with a full range foundry (CTS 
Corp.) with a large defense clientele. Of these three, ACSIST is no longer in business. 

Excerpts from the Amtech Electronics agreement are provided below to indicate their 
scope. 

Excerpts (articlesl and 4 only): 

"1. Generating business opportunities: 

Amtech agrees that it will generate business opportunities for Vista in the area or areas of 
Vista expertise related but not limited to MCM design. Vista agrees that it will generate 
business opportunities for Amtech in the area or areas of Amtech expertise related but not 
limited to MCM assembly. 

4. Exchange of Technical data 
Amtech agrees to provide technical data, under non-disclosure, regarding its assembly 
process to enable Vista to provide design services suitable for assembly by Amtech. Fur- 
thermore, Amtech agrees that it will inform Vista in a timely manner of any changes to its 
assembly process, capabilities, etc. which may materially affect Vista's ability to render its 
services." 

Maintaining the competitive edge 

As part of the business development strategy, we are concerned about the viability of the 
business in the medium term due to the following reasons: 

a. The MCM market, though increasing, was and is a specialized niche market. 
b. Low cost and volume are the driving forces of the electronics industry, but MCM tech- 
nology is not a low cost technology. Volume manufacturing has not been tried out 
c. Our competitive edge based on technology selection can «ode over time. 

To further maintain our competitive edge we examined the vast PCB market PCB manu- 
facturers thrive on low cost manufacturing and high volume. Most electronics product 
cycles consist of several upgrades, and one the ideas that emerged was techniques to con- 
vert existing PCB designs into MCM designs. 
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PCB to MCM conversion 

The MCM Design Service introduced by Vista offers customers technical solutions to 
packaging problems involving Multi-Chip Module technology. Current services include 
MCM technology selection, foundry selection, and substrate design services. The market 
for such services is rapidly expanding as the number of new MCM technologies, processes 
and foundries increases. The request for these services comes from customers with new 
designs; but enquiries from customers exploring the possibility of converting their exist- 
ing Printed Circuit Board (PCB) designs to MCM designs is also increasing. Some ven- 
dors have already come up with MCM upgrades of the PCB designs as described in 
Section 4. This is due to the fact that MCM technology potentially offers a way to update 
existing PCB-based designs without re-designing the entire system However, the factors 
governing MCM design are radically different from those governing PCB design. Con- 
verting an existing PCB design to an MCM implementation is complex, and involves 
extensive feasibility analysis. As a result, the conversion process results in very high NRE 
cost and design time. Consequently, a potentially large MCM market segment remains ret- 
icent about investing in MCM technology. Servicing this large potential customer base 
with cost and time effective conversion technology will strengthen MCM infrastructure 
and will further reduce MCM costs by broadening the market. 

With current technology, the NRE labor costs of the PCB to MCM conversion process 
flow, described in Section 2, are very high. The steps in the process flow, not counting the 
design of individual MCMs, are estimated to take 15 man-weeks. The design of individual 
MCMs takes an average of 6 man-weeks per MCM. Thus for a typical PCB design con- 
version that involves the development of two MCM's, the total labor is estimated to be 15 
+ 6 + 6 or 27 man-weeks. With the technology development that we propose below, we 
believe that the estimate of total effort for the same example can be cut down to 14 man- 
weeks. The improved productivity target can be met by the development of a small set of 
tools and utilities to improve circuit modeling, electrical simulation and estimation, and 
partitioning of the PCB netiist 

Technology development for PCB to MCM conversion will complement our current set of 
tools and enable us to provide a new cost effective design conversion service. 

Design Flow for PCB to MCM conversion 

Figure 1 depicts the three variants of the PCB to MCM conversion problem presented to 
the design service. These are: a. converting a single PCB to MCM's for performance 
improvement, b. converting multiple PCB's to MCM's for decreasing volume, or c. 
replacing part of a PCB with MCM's to make room on the PCB for additional chips. The 
key component of the conversion process in all cases is to substitute an interconnection of 
single chip-based packages with an electrically equivalent combination of multichip mod- 
ules implemented in one or more technologies under severe form-factor, compatibility and 
cost constraints. In all three cases we expect to follow the process flow that is shown in 
Figure 2. Starting at the top left hand corner of the diagram, the PCB netiist is modified by 
replacing packaged components with bare die. A chip replacement strategy is used to han- 
dle the difficult cases arising due to non-availability of bare-die at a given test level, and 
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Substitution of (passive) discrete components. The electrical characteristics of the circuit 
will have changed due to changes in the underlying parasitics of the un-packaged die and 
changes in the trace structure and substrate material of the MCM's. Since the latter are 
determined at a future step in the process by the MCM implementation, the simulation 
model is developed and simulated at various extrema. This way, the actual values will lie 
within the simplex described by these extrema. The result of the simulation is to generate 
a set of critical nets that cover the simplex. The netlist is then partitioned in the following 
step. 

a) 

b) 

c) 
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FIGURE 9. Variants of the PCB to MCM conversion problem 

The partitions are developed taking into account bare die geometry, external I/O, testabil- 
ity levels, critical nets, and customer specified factors. The output of this step is a partition 
of the original netlist and technology and performance indices for each resulting MCM. 
There are several technology indices that are calculated, such as estimated module power, 
average circuits per chip, estimated module size, and average die area, etc. The technology 
indices form the input to the technology selection tool that is used to select the MCM tech- 
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nology (L, C, D, C/D, L/D etc.), substrate, dielectric, die attach, power dissipation and 
other relevant parameters. 
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FIGURE 10. Design flow for PCB to MCM conversion 

The technology indices and the MCM partitions drive the MCM Technology Selection and 
Foundry Selection tool as shown in the figure. This tool outputs a variety of technology 
and foundry choices that can be evaluated to obtain independent cost estimates. Technol- 
ogy selection and foundry selection are followed by physical design (placement, routing, 
thermal and electrical analysis) of each MCM individually. The next to final step in the 
process flow is the updating of the electrical model using the Gerber data generated during 
physical design. The updates include the use of accurate trace delays and the modeling of 
inter-module net delays including clock skew across modules. The electrical simulation of 
this model verifies the timing requirements set by the earlier simulation. The final step is 
the MCM package design for pin compatibility or integration with the motherboard. These 
steps may be iterated over several times when multiple solutions of technology indices are 
generated. 

Technology development 

The technology development effort needed to support the PCB to MCM design conversion 
process flow is described below: 

Bare die analysis, electrical re-modeling and simulation 

The first step in the feasibility analysis for PCB to MCM conversion is analyzing bare chip 
availability. In most cases, the availability coverage is substantially less than 100%, espe- 
cially glue logic and low volume special purpose chips. Glue logic chips may be generally 
re-targeted to a new implementation strategy such as manufacturer-specific programmable 
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logic devices for which bare-die availability is assured. Special purpose chips may have to 
be replaced with components of equivalent functionality for which bare die is available. In 
cases involving performance upgrades, the replacement chip should be available as bare- 
die. The electrical model of the netlist is revised and re-simulated to ensure that the origi- 
nal timing requirements are met or exceeded. Such electrical models are critical in high 
frequency (> 60 MHz) applications. The result of the simulation is to redefine the critical 
nets in the design. 

Research: Development of robust pie- and post-design electrical models of netlist to 
reflect transition to MCM's from original PCB. 

Technology development: We need to develop a tool for quick electrical model generation 
of MCM netlist, The electrical model should account for the reduced inductances due to 
elimination of component package leads, change in trace structure and trace lengths, com- 
ponent replacements, and material changes. It should compute (the simplex of) extremum 
parameter values and be integrated with SPICE or other circuit simulators. 

We also need to develop a database of bare-chip data that includes bare-chip equivalents, 
testability levels, physical data and suppliers 

Partitioning, 3-D MCM implementations, and electrical simulation 

This involves partitioning the netlist so that each part can be implemented on a separate 
MCM. For high density requirements coupled with low power dissipation, the partitioning 
step will consider 3-D MCM implementations as well. Partitioning may be necessary 
either to satisfy real estate needs or by a need to improve yields and thus lower costs. Par- 
titioning will be based on the following criteria: form-factor requirements, chip I/O, main- 
taining integrity of critical nets, and testability levels of the bare-die. Passives/discrete 
components will be handled as part of the form factor constraints. Their small contribution 
to I/O will be neglected as a factor in I/O-based partitioning. Factors such as thermal man- 
agement will be handled "downstream" as part of the physical design step. 

The testability requirements are the only non - topological factor influencing the partition, 
but they are very critical since they directly affect yield. Bare die come with various qual- 
ity levels reflecting the extent of testing (and thus, influencing the bare die price). At 'Vis- 
ta's MCM design service, we have six categories of tested die: Bare die, Known tested die, 
Known good die, DC Probe tested, DC probe with LAT, AC/DC hot temperature probe 
with LAT, 100% die-level test with burn in. Since not all dies are fully tested, the partition 
must not freely mingle expensive known good die with inexpensive partially tested die in 
order to maintain acceptable first pass yield. Furthermore, rework and repair strategies to 
improve yields are direct correlated with the testability levels of individual die on the 
MCM 

One of the special applications of the partitioning tool will be the development of design 
techniques for 3-D MCM implementations. Currently, 3-D technology is being employed 
in design conversions of memory PCB's to MCM's (See Section 4). The tool will develop 
partitions to support stacked substrate MCM architectures in a manner that will minimize 
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Connectivity between non-adjacent layers (with the exception of I/O). The advent of low 
power designs makes the power dissipation problem less acute, and our partition tool will 
allow stacked substrate architectures for non-memory PCB's to be designed. 

A second phase of electrical modeling whose focus is the impact of partitioning on the 
electrical characteristics of inter-MCM and motherboard nets will be needed. Partitioning 
impacts the electrical characteristics in several ways: through die enhanced need for driv- 
ers to drive off-MCM or multiple MCM loads, through increased fanout, and through 
introduction of heterogenous trace structures in several nets. We will use the modeling 
tool developed in the previous section for this second phase of simulation. 

Technology development: We need to develop a partitioning tool that partitions PCB 
netlists across several MCM's based on the four factors listed above, namely: form-factor 
requirements, chip I/O, maintaining signal integrity of critical nets, and testability levels 
of the bare-die. In addition, we need to develop a special partitioning technique for 3-D 
MCM's using the stacked substrate architecture. 

Technology/foundry selection and physical design 

Technology selection in the MCM conversion involves the selection of technology param- 
eters for a given MCM partition. This module takes input parameters such as EstModule- 
Size, NumberOfChips, EstModuleSpeed etc. for a given MCM partition and outputs the 
suitable technology, materials, die attach technique etc. The technology selection tool has 
already been developed by Vista as part of the MCM design and fabrication services. 

Technology needed: Current tool support is adequate 

Related work and case studies 

There are several examples of manufacturers marketing MCM upgrades of PCB designs. 
These are one-of-a-kind designs aimed at the PC market Others have developed MCM 
design advisor tools that perform trade-off analysis at system level in order to determine 
packaging technologies for input components. The technologies covered by these design 
advisor tools include traditional and fine-line PCBs and MCM's. A brief description of 
related work is listed below. 

Computer upgrades by Austek Microsystems 

Austek Mirosystems and MicroModule Systems have devised a solution to upgrading the 
aging laptop computers running on Intel 286 and 386SX processors. Using MCM technol- 
ogy, they have designed and assembled a five-component TI486SLC-based upgrades with 
the footprint of the original '286' or '386SX'. The modules have been designed to be 
field-upgradable by making them pin-compatible with the existing 286 and 386SX proces- 
sors. The upgrading MCM includes 486SLC chip from Texas Instruments, Austek's cache 
controller chip with 16 kbytes of cache, a 25-MHz clock generator and a synchronizer. 
The MCM comes in two packages, one that plugs into a 286 socket and one that clamps 
over a 386SX and disables it The latter configuration is necessary, since 386SX chips are 
usually soldered to circuit boards. The new modules can enhance performance by a factor 
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of six. This is possible by boosting the clock rate of the devices on the MCM and due to 
the shorter distances between the devices. 

Dual C40 DSP by Texas Instruments 

Texas Instruments Military Products Division developed a standard multichip module 
based on two SMJ320C40 digital signal processors in the first quarter of 1993. The new 
Dual C40 MCM reduced the board area by approximately 40 percent and power dissipa- 
tion up to IS percent over discretely packaged components. Size reduction was made pos- 
sible by the assembly of multiple components in a single package and by limiting external 
package pins. About 500 connections remain internal to me module, so that a Dual C40 
MCM requires only 408 pins. This can be compared with a single SMJ320C40 having 325 
active pins. The new dual module also saves board space in its package dimensions. A 
320C40 packaged in a ceramic quad flatpack measures 2 inches on a side. The Dual C40 
MCM, with 10 active components measures 2.65 inches on a side. 

Multichip System Design Advisor from MCC 

MSDA (Multichip Systems Design Advisor) is a software tool designed to enhance the 
manufacturability and decrease the design risk associated with the selection of packaging 
technologies for integrated circuits. It performs trade-off analysis at system level for the 
selection of packaging technologies for input components. Trade-off results are output for 
various technologies including traditional, fine-line PCBs and MCMs. The input consists 
of two types: chip class and partition class. The chip class includes bare chip and other dis- 
crete components data whereas partition class includes the partition data and the netlists. 
The analysis is performed by concurrently computing different design parameters. These 
design parameters include thermal (internal and external resistances), electrical delays, 
physical (size, weight, interconnect routing requirements), reliability, testability, and cost 
performance metrics for multichip systems. The different technologies considered by 
MSDA are traditional and fine-line PCBs, low temperature co-fired ceramic, and thin-film. 

3-D MCM Implementations 

Three-dimensional packaging techniques have been employed in many memory as well as 
non-memory applications. There are three types of 3-D assembly techniques which have 
been used so far: packaged chips, bare chips, and multichip modules. By stacking chips on 
top of one another, designers can exceed 100% silicon efficiency compared to 2-20% for 
DIPs, PGAs and surface mount packages. Space and defense applications have been the 
main targets driving the developments of 3-D technology. The major applications for 3-D 
MCMs are all related to memory stacking: secondary cache memory, SIMM replacements 
for DRAM storage, solid state disk drives, and high density PCMCIA memory cards. Sun 
Microsystems has recently developed processor boards with cache memory stacks. Texas 
Instruments uses memory stacks on its Aladdin processor MCMs and dual C30 DSP mod- 
ules. Irvine Sensors, nCUBE and NASA's Jet Propulsion Lab have developed a memory 
stack that is integrated into a compact node for a massively parallel processor computer. 

45 



Matsushita has developed a process using stacked TAB technology to build memory 
cards. 

Another path that could be pursued in the still longer term is to incorporate the impact of 
processes on the MCM design through an extension to the current tool setThis involves 
implementing a Fabrication Advisor. The MCM market and technology is still in its 
infancy to make this idea viable in the near term, but with increased clock frequency the 
Fabrication Advisor could become indispensable to die design services business. 
the usefulness of this technology 

Technology CAD 

Technology CAD (TCAD) aims at predicting the impact of process and manufacturing 
technologies on semiconductor devices. It has long been used in IC design to achieve 
enhanced performance, reliability, and manufacturability. TCAD has been very useful in 
transitioning IC manufacturing to higher densities through improved device characteriza- 
tion leading to accurate device modeling and simulation. The new packaging technology 
revolution being ushered in by multichip modules (MCM) will include, among others, the 
same semiconductor processes used in IC manufacturing. The requirement of highly reli- 
able design, significant process dependencies of the design, and the tremendous pressure 
to lower manufacturing cost while improving yield, are very critical to successful MCM 
manufacturing. Yet, TCAD development for MCM's has been very limited. This paper 
investigates the role of TCAD in MCM design and manufacturing processes. It establishes 
that TCAD can improve the reliability and manufacturability of MCM designs, by being 
able to predict die effect of specific processes on reliability, module yield, and estimated 
turnaround time, and will be very useful in the development of cost-effective module 
designs. 

Our approach to TCAD for MCM's differs in many respects from IC manufacturing 
TCAD. We will heavily emphasize the impact of process and manufacturing steps on 
MCM design and technology selection. This is because MCM technology covers a large 
range of process and fabrication choices, each of which impacts design differently. We 
will focus on ways to have TCAD impact MCM's during the design phase. Our vehicle for 
doing so is the Fabrication Advisor. The key feature of the Fabrication Advisor is the abil- 
ity to analyze the impact of process parameters on design parameters such as reliability, 
and optimize the match between technology data, user-specific requirements, design, and 
the available fabrication processing capabilities. It will perform a detailed fabrication fea- 
sibility analysis for a given set of design and technology data, early in the design process 
to ensure a reliable, cost-effective, high yield and highly manufacturable process-driven 
design. 

MCM Technology CAD 

Technology CAD has been used in the design of integrated circuits and technologies in 
order to achieve high performance, reduced cycle time, enhanced reliability, and increased 
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manufacturability [3,7,9]. Traditionally, the term TCAD has meant a set of tools that pro- 
vide data of the physical characteristics and topography of the IC by simulating fabrica- 
tion. Various TCAD tools such as process and device simulators [2,4,5] have been 
developed and are being used in many applications of IC design and technology develop- 
ments. These TCAD tools were developed to minimize the physical experimentation time 
and to develop new IC technologies and have contributed to significant improvements in 
design and fabrication. We wish to investigate the role of TCAD in MCM designs in order 
to achieve similar benefits. 

MCM's, being process and technology driven, are very prone to variations in these factors 
from design to design. MCM TCAD can address these process and technology dependen- 
cies in order to ensure high reliability, yield, and cost effectiveness. Properly designed and 
deployed, MCM TCAD can delineate the differences in processes, technologies, and 
materials on a specific design, and can enable the designer to make intelligent choices 
from the plethora of competing technologies, materials, and process alternatives, as illus- 
trated in Figure 1. We view TCAD as an essential part of the MCM technology infrastruc- 
ture that needs to be developed. 

^ 1. Design for high performance 
&2. Design for reliability 
S 3. Design for repsinhQity 
^4. Design for testability 
55. Reduced cycle time 
S 6. Design for msnuftctunbility 
^7. Cost reduction 
S 8. Yield enhancement 

I 

FIGURE 11. MCM TCAD processes 

The three areas in which MCM TCAD can play important roles are: 

1. Design Process 
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2. Manufacturing Process 

3. New Technology Development 

MCM TCAD IN THE DESIGN PROCESS 

TCAD can be used to improve a number of design parameters such as performance, reli- 
ability, and repairability, as discussed in the following paragraphs: 

Design of high performance MCM-based systems require a careful consideration of elec- 
trical and thermal issues. Usually, electrical and thermal designs are carried out by simu- 
lating MCM layout However, data provided by the layout alone is not adequate for 
simulation, as it lacks the topography based information. By simulating fabrication, MCM 
TCAD can provide accurate topography information to be used in electrical and thermal 
simulations resulting in enhanced performance. Moreover, by providing physical based 
information on 3D substrate and layer models, a better control on the signal integrity prob- 
lems such as crosstalk and skin-effect can be achieved. 

Enhancement in performance must also be accompanied by a reliable design. MCM 
TCAD provides the ability to predict module reliability associated with a particular design 
before going to the fab. It can be used to predict the failure mechanisms of process related 
materials and mechanical stress induced due to thermal mismatch. Early analysis of these 
failure mechanisms in multichip module designs by using TCAD can increase the reliabil- 
ity factor by a significant margin. 

In addition to enhancement in module reliability, TCAD can play a critical role in the 
design for repairability, which is considered one of the major factors for cost-effective 
products. TCAD can be used to analyze the substrate and interconnect structures to evalu- 
ate if the replacement or the repair of defective parts will be possible or not in a post-fabri- 
cation phase. Since repairability of a defective part in an MCM depends on the process 
employed, TCAD can efficiently be used to provide good estimation of the layout margins 
necessary for the repair of defective components after the MCM has been fabricated. 

MCM TCAD can play equally important role in the design for testability (DFT), manufac- 
turability and yield improvements. The technical evolution in MCM's allows the design of 
products so complex mat they are virtually impossible to test MCM technology can 
severely limit the available electrical test access. Therefore, design for testability is the 
key to cost-effective testing. Usually, testing has been divided into three categories namely 
parametric, functional and performance testing. The circuitry and the method employed 
for each of these has its own implementation requirements depending on the particular 
fabrication process. TCAD can be used to analyze the adaptability of particular test 
method in an existing fabrication process. 

Even when the MCM technology which satisfies the application requirements has been 
designed, the actual fabrication of substrate and interconnect structures are subject to man- 
ufacturing variations. TCAD can evaluate process sensitivities on design parameters lead- 
ing to a better estimation of the final module yield at a particular performance level. 
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TCAD can be used to generate foundry-specific design rules earlier based on design and 
process anomalies reducing design cycle time. TCAD can also be used to investigate the 
impact of process modifications to enhance the performance and capability of a technol- 
ogy resulting in manufacturable designs. Improvement in design, minimization of physi- 
cal experimentation, and early feasibility analysis of fabrication processes can lead to a 
substantial yield improvements and cost reductions. 

We can thus conclude that in the design process 

TCAD predictions should be design- specific. 

A corollary of this statement is that MCM TCAD has something useful to say for each 
individual design. This goal is significantly different from IC design, where predictions 
are device based. Any design that uses that device would have the same predictions. This 
critical capability makes interaction between MCM design software and TCAD extremely 
useful for the system designer. 

MCM TCAD IN THE MANUFACTURING PROCESS 

The availability of a large and continuously changing set of competing technologies, 
materials and process alternatives, make process selection a challenging task. MCM 
TCAD can be used to accurately predict production problems, analyze unit processes, and 
simulate a particular foundry-specific process flow without actually going to the fab, 
resulting in improved yields, turnaround time and considerable cost-savings. In this sec- 
tion, we briefly survey the role TCAD can play in the manufacturing process. 

1. Accurate prediction of fabrication specific production problems (fabrication feasibility 
analysis early in the overall design process) 

e.g. stacked via of x micron cannot be fabricated in y number of layers 

An immature infrastructure, lack of standards and novel fabrication techniques, some- 
times lead to an MCM final product which is either costly or does not meet the required 
specifications. MCM TCAD can accurately predict anticipated production problems by 
employing process simulation concepts. TCAD enables the designer to modify the design, 
or the foundry its target technology to avoid production problems. Manufacturing-related 
problems have been one of the main causes for costly final products. For example, a par- 
ticular fabrication process may not allow the formation of stacked vias beyond a certain 
number of layers and this can be predicted well in advance by using TCAD tools. 

2. Objective comparison of Unit Processes 

e.g. MCM-L (laminate process) vs. MCM-D (deposited process) 

MCM TCAD can be used to compare unit processes from different technology alterna- 
tives. Since there are various fabrication processes which exist for different MCM tech- 
nologies, it becomes important to evaluate one unit process against the other. For example, 
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deposition of interconnect metallization may vary in different processes (MCM-L, MCM- 
C and MCM-D). This helps to optimize process related parameters by analyzing the 
effects of unit processes in different process flows. 

3. Objective comparison of foundry-specific processing capabilities 

e.g. MMS vs. nChip. The table on die left depicts the same patterning process imple- 
mented in two different ways. 

MCM TCAD can play a significant role in com- 
parison of different fabrication processing capa- 
bilities. The number of fabrication processing 
capabilities for manufacturing MCM's is 
expected to grow as MCM's gain widespread 
applicability. The dependencies of the fabrica- 
tion process on the foundry-specific equipments 
and materials necessitate a systematic compari- 
son of foundry processing capabilities for a 
given design and user requirements. A given 
design can be manufactured in different MCM 
foundries resulting in different characteristics of 
the final product A given process flow can be 
implemented in different foundries using slight 
variations of materials and foundry-specific 
equipments. 

Use of TCAD in this application can result in process optimization for a given design and 
user requirements and consequently cost savings and enhanced manufacturability. MCM 
TCAD obviates the need to go to the actual fab and hence saving in time-to-market and 
revenues. 

Patterning using polyimide 

Tooling 

Process step Foundry 1 Foundry 2 

Apply Spin Spray 

Soft bake Oven ER conveyor 

Expose Contact Projection 

Develop Spray Ultrasonic 

Cure Furnace Microwave 

4. Accurate modeling of substrate, dielectric, interconnect structures for use in electrical/ 
thermal simulations models 

MCM designs require a thorough analysis of electrical and thermal behaviors. The electri- 
cal and thermal simulators available provide this information based on the layout These 
simulation tools cannot provide the topography based information which is needed for 
accurate simulations models. MCM TCAD enables the designers to carry out the electrical 
and thermal simulations with accurate physically based information, thus resulting in bet- 
ter performance for the final module product 

5. Bonding process modeling. 

The bonding techniques can have significant impact on the yield and the manufacturability 
of the final products. This becomes more important in view of the limited supply of known 
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good die (KGD) and repairability of the fabricated MCM TCAD can be used to estimate 
the effectiveness and suitability of the different bonding techniques depending on the 
design and application requirements. 

MCM TCAD IN NEW TECHNOLOGY DEVELOPMENTS 

TCAD can also play a significant role in the design and development of new technologies 
using concepts such as process optimization and process enhancements. The actual fabri- 
cation and experimentation of new materials and processes involve substantial costs. 
TCAD can obviate the need for actual experimentation and aid in the developments of 
new technologies such as new substrates (e.g. diamonds), new assembly techniques (e.g 
3D MCM's), superconducting and optical interconnects. Some of the potential areas 
where TCAD can be used in order to design and develop new technologies are: 

1. New substrate materials 

2. Superconducting MCM's 

3.3D MCM's 

4. Optoelectronic MCM's 

5. Large size substrates 

Key Component in MCM Design Services 

In addition to providing a complementary role in Adabra framework environment, FA will 
also become an essential part of our proposed MCM design services bureau. FA automates 
the process of MCM fabrication facility selection, a key requirement in the overall MCM 
designs and an important business offering in an MCM design services. This will provide 
a bias-free evaluation of fabrication facilities for a given design by employing process 
simulation technique such as {Nem design-driven process simulation}. 

The use of TCAD in the design of integrated circuits is known for few years and have 
proved to provide many advantages. However, TCAD can provide even more significant 
benefits in MCM designs. This is true because of the fact that MCM designs are process- 
driven. Several technology choices and existence of multiple fabrication facilities make 
the use of TCAD in MCMs imperative. We have also proposed the development of a 
TCAD tool known as Fabrication Advisor, for use in MCM designs. The key function of 
Fabrication Advisor is to optimize the match between the technology design, user-specific 
requirements, design and the available fabrication facilities. Moreover, it predicts the fab- 
rication difficulties for a given input technolgy design early in the design process. Thus, it 
helps the selection of a particular MCM fabrication process, being an integral part of an 
MCM design services bureau. This ensures a cost-effective, high yield and highly manu- 
facturable process-driven design. Fabrication Advisor can play the role of a complemena- 
try tool in our Adabra environment and also a key component in the proposed MCM 
design services bureau. 
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4. Adabra Tool Interface 
This document describes the design of Adabra Tool Interface. Section 4.1 describes the 
architecture of Adabra Tool Interface. Section 4.2 details the methods of each module 
described in section 4.1. 

4.1. Architecture of Adabra Tool Interface 
• Figure 1 below shows the architectural layout of Adabra Tool Interface. Adabra Tool 

Interface consists of four modules, "Toolinterface" ," Communication Channel","- 
Callbacks" and "ToolAddressTable" module. The dotted lines in Figure 1 indicate that 
the "tool interface" module contains the other three modules. 

FIGURE 12. Architecture of Adabra Tool Interface 

The Tool Interface module, is responsible for creating the motif widgets, and processing X 
events with the help of the other two modules contained in it 

The Communication module is responsible for communication between Adabra Tool 
Interface and Adabra Server. It is through this module that Adabra Tool Interface informs 
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the server to start clients, stopclients. Through the communication module, the tool inter- 
face module gets the configuration information of the tools running in Adabra. 

The Callbacks module has the functions required to process the Xevents. 

4.2. The Tool Interface Module 

Toolinterface Methods 

1. Create - 

• Create the Communication Channel module, the ToolAddress Table and the allbacks 
module in that order. 

• Create and Initialize the DataMembers 

2. Delete- 

• Delete the Communication channel module and the Callbacks module 

s. Get glossiest - 

• Get list of tools running in Adabra 

4. Create and Display Widgets- 

• Get the list of tools running in Adabra by sending a message to Adabra Server 

• Create the Widget to be displayed using this list of tools and display the widget 

5. TooUnterfaceLoop 

• Catch the X events and Process them. 

Tool Interface Data Members 

1. ToolAddressTable 

2. CommunicationChannel 

3. Callbacks 

4.2.1. The ToolAddress Table 

The ToolAddress Table is a table with two columns. The first column stores the name of 
the tool and the second column stores the address of the tool in the server. To communi- 
cate with a tool in Adabra server, the address of the tool is to be known. The methods in 
this module are 

Create(list of tools, communicaiton channel address)- 

For each tool in the list of tools, send a message on the communication channel and get the 
address of the tool. Create an entry in the table with the tool name and address obtained. 
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DeleteO 

Delete all entries in the ToolAddress table. 

RetrieveToolAddress(Toolname) 

Given the toolname, get the address of the tool from the ToolAddressTable. 

Data Members 

CommunicationChannel 

4.2.2. The Callbacks Module 

Methods 

Create(ToolAddressTable, Communication Channel) 

DeleteO 

Start_Callback(toolname)- Send a message to the Server to start the tool 

Stop_Caüback(toolname) - Get the address of the tool from the tool address table, and 
send it a message to stop 

Get_ConfigurationCallback(toolname) - Send a message to get the various fields in the 
configuration. 

Help_Callback() - 

Exit_Callback() - Exit from 

Data Members 

ToolAddressTable 

4.2.3. The Communication Channel Module 

The methods in this module can be obtained form Propagator Design Document 
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5. PPN Propagator 
REQUIREMENTS DOCUMENT 

This document lists the requirements for the PPN Propagator module in the rapid proto- 
typing environment [SBIRQ92]. Section 1 lists the requirements of the PPN Propagator 
module. Section 2 describes the requirements for each sub module of the Propagator. 
Finally, section 3 gives an overall requirements chart for the Propagator. 

5.1. Propagator Module 

The requirements for the PPN Propagator can be divided into two main categories: 
requirements for the Propagator as a client in the environment and requirements in terms 
of its functionalities. 

5.1.1. Requirements as a client in the rapid prototyping 
environment 

The following are a list of requirements that must be supported for the Propagator to be a 
client in the environment 

Independent of tool integration- 

The Propagator must be independent of the type of tool integration provided in the 
environment. By tool integration we mean a mechanism that provides for inter-tool 
communication and simultaneous access of all tools integrated in it There are at least 
two different tool integration mechanisms based on whether the integration is inter- 
preter-based (e.g. Vista's HyperWeb) or encapsulator-based(e.g. HP's Softbench). The 
Propagator module can only assume the presence of a server in the environment The 
server is responsible for inter-tool communication by providing handles for each tool- 
tool communication. 

Ease of portability across environments- 

The Propagator module should be easily portable across environments. Portability 
across environments involves writing an interface module for the Propagator in the new 
environment The interface module should have the actions for communication with 
external modules in the environment By ease of portability we mean ease of writing 
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the interface module. A simple specification for the interface module should be pro- 
vided Note:- We need to formalize this as it will go as guidelines for porting across 
environments. 

Communication- 
The PPN and nodes in the Propagator should be able to communicate with other cli- 

ents in the environment Individual PPNs and their nodes must be addressable from 
outside the Propagator module. Communication between PPNs and external modules in 
the Propagator is carried out either directly or through the Propagator. 

Multiple Propagators- 
Facilitate the existence of more than one Propagator in the prototyping environment 
In other words, there is a need to provide for a mechanism that will break up large Prop- 
agator modules into smaller ones and integrate them with the environment This may be 
necessary to enhance the performance of the computation process. Thus, it is possible 
that there are more than one Propagators running simultaneously in the environment 
Multiple Propagators can either run with one server or in a distributed environment 
which has multiple servers. Note:- Need to see if the design of the Propagator will be 
affected in a distributed environment 

5.1.2. Requirements in terms of the functionality 

Interact with User Interface- 
The PPN Propagator should be able to interact with the user-interface to obtain val- 
ues for the parameters. The user must also be able to change the constraints for parame- 
ters via the user interface. Note:- Currently we assume that the user interface is an 
external module. 

External Communication- 
The Propagator should create communication channels for communication with 
other modules in the environment. Refer to the communication requirements at the 
module level. 

Internal Communication- 
Within the Propagator, PPNs should be able to communicate with each othenother. 
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Start Computation- 
al PPN Propagator must create the run time PPN instances and start computation 
after obtaining relevant information from the external user interface module. 

Execution Control- 
The Propagator must facilitate control of PPN computation. For example, setting 
breakpoints, changing constraints and parameter values at nodes. Constraints and 
parameter values cam be changed during run time. 

PPN Querying- 
The Propagator should be able to query PPNs for PPN specific information. 

5.2. Requirements for each sub-module in the Propagator 

The architecture of the Propagator module was discussed in the Propagator's design docu- 
ment [DESIGN92]. The various modules in the Propagator are communication channels, 
PPNs Channel Table and the Master Table. 

5.2.1. Communication Channel Requirements 

This module is responsible for external communication. It communicates with the external 
modules through channel messages. A channel message is a packet of information 
exchanged between the Propagator and other clients in the environment 

Number of Communication Channels - 
Each node in a PPN computation can potentially communicate with a client in the envi- 
ronment It is not practical to create a communication channel for every node in a PPN. 
Hence, it is reasonable to have a single communication channel for all the nodes in die 
PPN. Thus, a communication channel could be established for each PPN participating 
in the computation process. However, when there are multiple Propagators in the envi- 
ronment the number of communication channels to be created in the environment ay be 
very large. This calls for a design which provides an option for the number of commu- 
nication channels created. A user can assign a separate channel to a specific PPN. PPNs 
without a separate channel them communicate through a master channel. 

In summary, the following set of communication channels should be provided: 
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• A master channel for general communication with the environment. 

• Dedicated channels for specific PPNs in the environment 

Special Messages - 

The Propagator module receives requests for some specific actions within the Propaga- 
tor. A list of messages that the Propagator receives are listed below: 
Start Computation - Trigger PPN computation. 
Propagate a value - Provide a value for some node in a PPN. 
Stop Computation - Stop PPN computation. 
Query a node in a PPN - Query a node in a PPN about node specific information stored 
in it 
Change, modify or delete a constraint at a node - Add, modify and delete constraints at 
nodes. 
Set breakpoints- Provide breakpoints to control PPN execution. 
Resume Propagation- Restart computation at the node where propagation stopped 
when breakpoint was set 

5.2.2. Initializer Requirements 

The Initializer module of the Propagator must be responsible for creating communication 
channels, PPN instances, the Channel Table and the Master Table. The requirements for 
the Initializer module are listed below: 

Create Communication Channels - 
Create the necessary communication channels (Master and PPN channels). 

Create PPNs - 
Create the run time instances for PPNs and nodes. The initializer also enters the 
instances for the PPNs in the 

Create Master Table - 
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Create the Master Table, a mapping of the PPNs created and their names. 

5.2.3. The Master Table 

The Master Table maintains the run time instances for each PPN and node in the Propaga- 
tor. At any time the actual run time instance for a given node or PPN can be obtained from 
it Based on these functions of the Master Table, its requirements can be listed as: 

Create Master Table - 
Create a Master table. 

Update Master Table - 

Add an entry into the Master Table. 

Retrieve from Master Table - 

Return the run time instance when given a PPN name and a node name. 

5.2.4. The Scheduler 

5.2.4.1. Required Functionalities 

• Schedule a PPN for execution.- The scheduler picks a PPN for execution as long as 
they are available for execution. 

• Enforce Parameter Propagation between PPNs - Based on the results from a PPN that 
was executed, Scheduler triggers Parameter Propagation. 

• Enforce Conditions on PPN Interconnections - The Scheduler initiates Parameter Prop- 
agation based on the conditions on the Inter-PPN interactions. 

• Should be able to implement several scheduling algorithms. 

5.2.4.2. Scheduler Input 

Here is a list of input needed by the Scheduler to schedule a PPN for execution. 
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• Interconnection Table - The Scheduler module interacts with the Interconnection table 
to determine the dependencies between PPNs. The scheduling algorithm which sched- 
ules a PPN for execution is based on PPN interconnections. 

• Master Table - The addresses of the PPNs are required to enforce parameter propaga- 
tion based on the condition interconnections. 

5.2.4.3. User Interface Requirements 

• Optional PPN dedicated channels- The user interface should provide die user with 
a list of all PPNs and request him/her to click on those PPNs for which a communica- 
tion channel is desired. 

• Setting Breakpoints- The user interface should obtain breakpoints for PPN execution 
from the user. 

• Primary Inputs- The inputs for primary nodes in the Propagator have to be obtained. 

• Constraint Insertion/Deletion- Constraints for parameters at a node in the network 
can be added and deleted with the help of the interface. 

5.2.5. PPN Integrator Requirements 

• Interconnections Table-The interconnections of PPNs is obtained from the user and 
entered into the table. This information is essential by the Propagator for creating 
PPNs. 

• PPN initialization Table- Each PPN table is useful for creating nodes in die PPNs and 
setting their inital variables. 

5.2.6. PPN Compiler Requirements 

Channel variable- Associated to each PPN object is a channel variable that gives the 
address of the channel assigned to it for external communications. 
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• Breakpoint variable- When this variable is set propagation will stop, else propagation 
continues. This variable is part of the code derived by the PPN compiler. 

5.2.7. Review of Requirements 

In this section a review of the requirements for the Propagator is made possible through 
the chart shown in Figure 1. We do not show the requirements of the PPN Scheduler in 
this figure. This chart takes a layered approach to the requirements. At the top most layer 
we have the module level requirements. In the second layer we have the functionality 
requirements. Finally, in the bottom layer are the sub module level requirements which 
satisfy the functional requirements of the Propagator. 
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6. Propagator Design 

Abstract This document describes the design of the PPN Propagator module in the 
rapid prototyping environment Section 1 sketches the architecture of the PPN Propaga- 
tor and describes the functions of each sub-module in the architecture. 

6.1. Architecture of the Propagator 

The Propagator consists of the following basic modules: Communication Channel, Ini- 
tializer, PPNs, Channel Table and Master Table. The Communication Channel and the 
Channel Table are the modules concerned with external communication and processing 
of special messages received by the PPN propagator. The Master Table stores the 
addresses of die PPNs in the propagator. Inter-PPN communication is made possible by 
accessing the addresses of PPNs from die Master Table and sending messages to the 
appropriate PPN. The initializer module creates the channel table, master table, PPN 
run-time instances and the necessary communication channels. As discussed in die 
requirements document[PREQ92], mere are two types of channels in the Propagator 
the Master Channel and optional PPN Channels that are dedicated to a specific PPN. 
This is to facilitate direct communication between the PPN and external tools in the 
environment PPNs which do not have a dedicated PPN channel communicate with the 
environment via the Master Channel 

Figure 14 shows the architecture of die Propagator module. We view each sub-module 
as an object From die architecture we can derive four different classes of objects- Com- 
munication Channels, PPNs, Operators, Master Table and Initializer. The control and 
data flow between these objects is based on the messages received by die propagator 
module and the action it takes for each message received. The Initializer module creates 
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the other modules in the Propagator. (Shown by solid arrows from the Initializer to all 
the other modules.) The Channel Table and the Communication Channels request the. 

FIGURE 14. Architecture of the Propagator 
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Master Table for the address of die PPN it wishes to communicate with. (Again shown 
by a solid arrow. )The Master Table responds to these requests with the address of the 
appropriate PPN. (Response of the Master Table is indicated by the shaded arrows.) 
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When the Propagator module starts up, it first creates the Initializer sub-module, which 
in turn creates the Channel table, Master Table, PPN's and Communication Channel 
sub-modules. This is depicted by the arrows from the Initializer to other sub-modules in 
Figure 13. Initially, only the MasterChannel is created. Figurel4 shows the action taken 
by the Master Channel when it receives a message for creating more channels from the 
user. 

When the Master Channel updates the channel table, with the addresses of the channels 
just created, the channel table sends the address of die PPN dedicated channels to the 
respective PPNs as shown in Figure IS. Each PPN stores the address of the channel ded- 
icated to it on receiving the SetChannellnfo message. It should be noted here that the 
channel table is a persistent module. This is because we wish to provide the user with 
the feature of creating new channels and assigning them to PPNs interactively (i.e., at 
any point in the parameter propagation.) The user can change die channels associated 
with PPNs at any point of time during execution. 

UpdateChannelTable 

SetChannellnfo 

FIGURE 15. Action taken by the ChannelTable on receiveng VpdateChannel message 

If the messages on the communication channels (master or PPN dedicated channels) is 
to propagate a value to a PPN or a node, set a value for a node, change or modify con- 
straints at a node, or to set break points, then the channel object retrieves the actual PPN 
or node instance from the Master Table and sends an appropriate message to the PPNs 
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by placing die message in the PPNs internal message queue. This is depicted in Figure 
16. 

AddConstraint 
ModifyConstraint 
DeleteConstraint 

RetrieveFroi 
MasterTabl 

SetBreakpoint 
PropagateValue 
SetValue 

)ueryNode 

specific 
message 
toPPN 
or node 

FIGURE 16. Actions taken by a Communication channel on receiving special messages 

A node in a PPN can talk to external clients via the communication channels dedicated 
to it It does so, by placing the message to the external client on the channel dedicated to 
it. 

Besides the basic modules discussed above, the propagator has a top level module not 
shown.in Figure 14. This module is responsible tor creating the initializer object and 
sending it a start message. This module executes in a loop, processing messages pend- 
ing on each channel, choosing a PPN for execution and initiating its execution. A sched- 
uling algorithm to choose a PPN for execution is needed. Scheduling a PPN for 
execution depends on the availability of input for execution and satisfying certain exe- 
cution criteria given by the user. The Scheduler module shown in Figurel4 is responsi- 
ble for scheduling PPNs for executions. This module is created by the top level module 
in the Propagator. 

The input to the propagator module are two tables, called the PPNTaWe and InterCon- 
nectionsTable. The PPNTaWe gives the PPNs, and the number of instances of each PPN 
Gass that need to be created by the Propagator. The InterConnectionsTable gives the 
interconnections between the PPNs specified in the PPNTaWe. The InterConnectionTa- 
bles may contain references to PPNs in another Propagator. 
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CreateChannek^l        / 
Table    y^    Create/ 

yS MasjerTable 
CreateChannel 

CT MT 

FIGURE 17. Actions taken by the Initializer on receiving a start message 

ateMoreChannels 

Master 
^ Channel 

Create - 
Channel /    \   \UpdateChannelTable 

Cre\e 
Channel 

^ CT 

FIGURE 18. Actions taken by the MasteChannel on receiving CreateMoreChannels message 
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CommunicationChannel 

,      CreateChannel 
PropagateValue 
SetValue 
AddConstraint 
ModifyConstraint 
DeleteConstraint 
SetBreakPoint 
QueryNode 

-    SendMessagetoClient 
Close Channels 

PPNChannel MasterChannel 

CreateMoreChannels 

Initializer 
Start 
Stop 

ChannelTable 

CreateChannelTable 

UpdateChannelTable 

SetChannellnfo 

MasterTable 

CreateMasterTable 

UpdateMasterTable 

RetrieveFromMasterTable 

FIGURE 19. Propagator classes and their methods 
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6.2. Design of Propagator Sub-Modules 

6.2.1. Communication Channel Module 

This sub-module is responsible for external communication. It communicates with other 
external modules in the environment through channel messages. A channel message is a 
packet of information exchanged between the propagator and other clients in the envi- 
ronment 

Each node in a PPN computation can potentially communicate with a client in the envi- 
ronment. However, it is not practical to create a communication channel for every node 
in a PPN. Therefore, it is reasonable to have a single communication channel for all the 
nodes in a PPN. All communications to the nodes in a PPN are buffered in this channel 
in the order of their arrival. Thus, for each PPN participating in the computation process 
we can establish a communication channel The user is to decide whether a particular 
PPN should have a channel dedicated to it or not, depending on the users assessment of 
the communication load between the PPN and other external modules. This information 
is provided through the user interface. PPNs without a dedicated channel, communicate 
with external modules via a Master Channel. A Master Channel is always created and is 
an essential module of the Propagator. Special messages to be processed by the propaga- 
tor are placed on the master channel by external modules. 

We shall now describe a communication channel object class in C++, whose methods 
perform the functions of communication channels. We define a CommunicationChannel 
class, a MasterChannel class and a PPNChannel class. MasterChannel and PPNChannel 
are sub classes of CommunicationChannel. The distinction between a Master Channel 
and PPN dedicated channels is that, a PPN dedicated channel does not receive all die 
messages received by the Master Channel. For example, only the Master Channel 
receives a message from the user interface outside the propagator to create PPN dedi- 
cated channels. Also, only the Master Channel sends a message to the framework to reg- 
ister the PPN dedicated channels just created. The methods in CommunicationChannel 
class are CreateChannel, Propagate Value, SetValue, AddConstraint,ModifyCon- 
straint, DeleteConstraint, SetBreakPoint, QueryNode and TalktoAnotherClient. 

The CreateChannel function creates a channel for communication (A channel could be 
a socket, a file, a data structure etc.,). Propagate Value, AddConstralnt, DeleteCon- 
straint, ModifyConstraint, SetBreakPoint, ResumePropagation and QueryNode 
messages on the channel have the following action- retrieve PPN or node instance from 
the Master Table and send a corresponding message to the instance. 

A PPN node can communicate with other tools in the environment during computation. 
The node which desires to communicate with the external client places an appropriate 
message on the communication channel dedicated to it This is done with the help of the 
Channel Table. The TalkToAnotherClient method of the communication channel class, 
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message actions 

SetValueofNode(P/W, 
node,args) 

Retrieve address of PPN from the Master 
Table and send it a message to set the value 
of node. 

PropagateValueToNode 
(PPN,node ^args) 

Retrieve the address of PPN fiom the Master 
Table and send it a message to propagate 
args to node. 

QxxvryHode(PPNjiode) Retrieve the address of PPN from the Mastei 
Table and send it a message to Query node. 

SetorModifyConstraint 
(PPN) 

DeleteConstraint 

Retrieve the address of PPN from the Mastei 
Table and set the constraint field of node 
appropriately. 

SendMessagetoOient 

(client-class,type/nessage 

WriteChannel(cfie/tf-cfaM, type, message) 
) 

St\BKzkPovat(PPN,node) 
or 
ResumePropagation 
(PPN.node) 

Retrieve the address of PPN from the Mastei 
Table and set the status field of node in PPN 
to STOP or CONTINUE 

CreateMoreChannels 
(PPNJist) 

For each PPN in PPNJist check if PPN 
has a dedicated channel. If PPN already 
has a dedicated channel, close the existing 
channel and create a new PPN Channel. 

FIGURE 20. Methods of Communication Channel 
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retrieves the channel address from the channel table and places the message to be sent to 
the external client on it 

Besides the messages described above, a MasterChannel can also receive CreateMore- 
Channels method, and RegisterPPNChannels method. A CreateMoreChannels mes- 
sage received by the master channel results in sending a CreatePPNChannels message 
to the initializer. The initializer creates more channels and intimates the server by plac- 
ing the message RegisterPPNChannels on the master channel These methods belong 
only to the MasterChannel class and are not available to the PPNChannel class as shown 
in Figure 19. 

When the Master Channel receives a message for creating more channels, it creates an 
instance of PPNChannel class. Each channel created is registered in the Channel Table. 
After creating the required number of channels the initializer writes a message to inform 
the external modules about the PPN dedicated channels just created. 

Note that the list of messages received by the Propagator module, is by no means 
exhaustive. New messages to the Propagator module can be added by writing methods 
for them in the corresponding class object For example, messages to modify PPN exe- 
cution, like ExhaustBacktrackNode, ExhaustBacktrack, ExhaustBacktrackandAccumu- 
late force PPN execution so that all feasible solutions are obtained. 

6.2.2. Initializer Module 

The Initializer sub module of the Propagator is responsible for creating die other sub 
modules in the propagator. The Start method of this class creates the Channel Table, 
Master Table and Master Channel Objects. The sequence of actions in mis method are 
summarized in Figure 21. 

Message Sequence of Actions 

Start 
Create an instance of MasterChannel 

Create an instance of ChannelTable 

Create an instance of MasterTable 

Create PPNs and their interconnections 

Stop Delete MasterTable, ChannelTable and Channels 

FIGURE 21. Methods of the Initializer 
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6.2.3. Channel Table Module 

The Channel Table object stores the address of the communication channel for each 
PPN which has a dedicated channel for its communication. The Channel Table class 
consists of three methods: CreateChannelTable, UpdateChannelTable, and SetChan- 
neHnfo.The CreateChannelTable method is called with the master channel as an argu- 
ment Thus, until any PPN dedicated channels are created, all PPNs use the master 
channel for communication with external modules. The UpdateChannelTable method 
enters an entry into the channel table. The SetChannellnfo method sends the addresses 
of the special channels created to the PPNs. These PPNs dien directly communicate 
with external clients by placing messages on these clients. The table in Figure 22 sum- 
marizes the methods of the Channel Table class. 

Message Sequence of Actions 

CreateChannelTable Create Channel Table. 
(maintain CT as a record of PPN name 
and channel_i<L) 

UpdateChannelTable Add an entry into the table. 

RetrieveEromChannelTable Search table and return channeled. 

SetChannellnfo 
For each PPN in table, obtain PPN 
instance from Master Table and set its 
socket field to channel_id. 

FIGURE 22. Methods of ChannelTable 

6.2.4. MasterTable Module 

A Master Table Class is defined for the Master Table. The Master Table object stores the 
run time instances for the PPNs and nodes in die propagator. The methods in this class, 
are CreateMasterTable, UpdateMasterTable and RetrieveFromMasterTable. The 
CreateMasterTable method creates die Master Table object The UpdateMasterTable, 
method adds an entry into the master table. The RetrieveMasteiTable method takes a 
PPN name as input argument and returns its run time instance. These methods are sum- 
marized in Figure 23. 
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Message Sequence of Actions 

CreateMasterTable Create Master Table.(maintained as 
a record of PPN_name and instance 
address. 

UpdateMasteiTable Add an entry into the MasterTable. 

RetrieveFromMasterTable 
(PPN) 

Search through table for PPN 
and return its instance address. 

FIGURE 23. Methods of MasterTable 

6.2.5. Scheduler Module 

The function of the Scheduler module is to determine the PPN to be executed at a given 
point of time. The Scheduler looks up the PPN Interconnection Table to determine die 
condition on the interconnections across PPNs. Based on these conditions a PPN is 
scheduled for execution. 

Issues to be considered while scheduling PPNs for execution- 

n Time of completion of a PPN computation is not finite. 

n The Interconnections across PPNs have conditions associated with them. Based on 
these conditions a PPN gets scheduled for execution. 

n If PPN execution is preemptive, nodes that have completed their processing will 
have to be stored in the PPN, so that the next time die PPN gets scheduled for execu- 
tion, processing begins at the node where execution was halted. 

n Input to the Scheduler- a list of PPN instances in the Propagator and the interconnec- 
tions between them. 

n Output of the Scheduler - a PPN name for execution. 

The interaction between the Scheduler and other relevant modules in the Propagator are 
shown below. 

75 



Propagate(PPN) 

Interconnection 

Table 

ion|,,''' 

J      s  

Scheduler 

Abstract 
PPN 
Table 

/ 

FIGURE 24. Interaction between Scheduler and other Modules in the Propagator 

Figure 25 shows a control flow diagram for the toplevel module in the Propagator that 
involves the Scheduler module. The toplevel module does some initialization before 
interacting with the Scheduler. 

Here, we show a main loop where the Propagator first reads all its input channels, and 
passes control to the Scheduler module. The Scheduler returns a PPN for execution. The 
Propagator executes this PPN, reads die input channels and passes control to the Sched- 
uler again. 
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PPN = Scheduler. 
GetPPNQ 

PPN. 
Execute(PPN) 

FIGURE 25. Control Flow for the Toplevel Module of thePropagator 

An assumption made here is that PPN gives control to the tpplevel at regular intervals, 
thus preempting its execution. By adopting such a preemptive shceduling, we have 
achieved the following 

n Input channel is read more often, and hence queries can be processed immediately, 

n All PPNs get a chance to execute as much as possible. 

6.2.5.1. Scheduler Class Definition 

Member Functions 

1. Constructor Function- This is die constructor for the Scheduler object It does 
some initialization. 

2. GetPPN - Get the next PPN from the Schedule (by calling the Scheduler funciton). 

3. Scheduler Function - Stores the algorithm for determining a Schedule. We will 
adopt a breadth first schedule. First a Level Graph is created by looking up the inter- 
connections from the InterConnectionTable. A Schedule List is prepared, based on 
the levelgraph, such that AbstractPPNs with a lower level number, occur earlier in 
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the list Each time die Scheduler function is invoked an AbstractPPN from the list is 
returned in a round-robin fashion. 

Data Members 

Interconnection Table, AbstractPPNTable, LevelGraph 

Note mat the Scheduler treates Operators and PPNs identically. The Scheduler picks up 
either a PPN or an Operator from the Schedule and hands it over to the TopLevel Mod- 
ule. The toplevel module, executes «he AbstractPPN. 

6.2.6. Multiple Propagators 

Since PPN Networks are typically very large, it is useful to break down the network into 
smaller networks, such that each sub network is part of a different Propagator. Each 
Propagator executes as a separate process in the framework. Communication between 
PPNs is via the Master Channels in each Propagator. 

Below is a list of decisions made to incorporate Multiple Propagators in our design. 

Abstract PPN's Do Not Have Private Channels 

Due to the Complexity of PPN Channels when there are multiple Propagators in the 
Framework, all PPNs now communicate through the MasterChannel. Moreover, in the 
earlier scheme where Abstract PPNs have private channels, we did not foresee any per- 
formance gain. 

Abstract PPN*s not concerned with the destination node during propa- 
gation. 

It is task of the channel associated with the PPN, (here MasterChannel) to determine the 
address of the destination node for propagation. 

MasterChannel determines the propagator to which the destination node belongs to and 
does the following: 

n If address of destination node not in the current propagator, MasterChannel queries 
its client object to determine the physical address of the other propagator, and then 
communicates with die destination node. 

n Otherwise, the propagate message is added to the Message queue of the PPN in the 
current propagator, to which the destination node belongs to. 

Impact on the Server/Client Registry 

1) Each Propagator is associated with a logical name (The name as appears in the inter- 
connection table.) Every propagator, registers interest in this logical name. 
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2) When a Propagator needs to talk to another Propagator whose logical name it knows, 
it sends a message to its client object to get the physical address of the other propagator. 

3) A method in the client object rfind-propagator-by-id, determines the physical address 
of the given propagator id. 

6.2.6.1. PPN's and Operator's 

6.2.7. PPNRedo 

In our experience with PPN's a need for a special type of a PPN arose. This special PPN 
is a lightweight object, whose main objective is propagation, based on input from vari- 
ous nodes. Our PPN's do not allow multiple inputs to a single node in a PPN. Therefore 
we introduce special type of PPN called an Operator. An Operator can receive inputs 
from multiple nodes and perform an operation on it and fan out the results. 

Operator's and PPN's are Abstract PPN's. They are different in mat 

a) An Operator does not compute and propagate until all its inputs are available. 

b) An Operator has multiple inputs and multiple outputs. 

c) An Operator only receives propagate messages. 

d) Unlike a PPN, an Operator, does not propagate when a new value arrives, it propa- 
gates only when all its input values arrive and belong to the same wavefiront Values 
from earlier wavefronts will be discardedd. 

User distinguishes between Operator and PPN in the AbstractPPN 
Table and the InterConnectionTable. 

a) The class name for an Operator will be a derived class of an Operator Class and will 
be given in the PPNTable. 

b) Li the InterConnectionTable, the syntax of PPN node name is - <propagator_name>/ 
<ppn_instance_name>/<parameter> and Operator name is - <propagator_name>/<oper- 
ator_instance_name>. The Propagator distinguishes between Operator's and PPN's 
during instance creation by looking up the PPNTable. 

The propagator is designed for interactive use. Through the redo feature, users can 
easliy experiment with alternative PPN input values and constraints. Three forms of 
redo are available: instant redo, selective redo, and input-determined redo. 

Instant redo re-executes the PPN last executed, or Redo PPN. This is accomplished by 
resetting all PPNs in the propagator schedule, starting from the PPN last executed, and 
men reconstructing their input queues. The input queues are rebuilt by sequencing 
through interconnection table entries looking for input nodes ("to-nodes") that go to a 
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PPN, and re-propagating the values in the history list of the corresponding output nodes 
("from-nodes"). The RedoO function of the propagator performs these duties. 

Selective redo is a minor variation of instant redo. The only difference is mat instead of 
using the last PPN to start the redo, the currently selected PPN is used. The RedoCall- 
back routine (found in PropUI/callbacks.c), first checks for a selected PPN. If found, 
than the selected PPN becomes the Redo PPN, otherwise, die PPN last executed is used. 

Input-determined redo is the last redo form. If the user changes a PPN input, by altering 
a value in the user interface and pressing the Setlnput button, then the Redo PPN is 
determined by the propagator. Regardless of which PPN executed last, or which PPN is 
executed, the first PPN in the propagator schedule which uses the changed input will 
become the Redo PPN. 

The propagator method GetNextRedoPPNO performs the checking of changed inputs. 
This function is passed the Redo PPN, either the last executed PPN or a selected PPN, 
and looks for PPNs appearing earlier in the schedule having changed inputs. If none of 
the previous PPNs have changed inputs, men the given Redo PPN is used. Otherwise, 
hte first changed PPN becomes the Redo PPN. Once the Redo PPN is found, it is passed 
to the RedoO function of the propagator, which, as described earlier, resets and rebulds 
the input queues of Redo PPN and its successors. 

The following figure illustrates this process. 

Redo ButtonPressEvent 

NextPPN <-Sucessor(LastExecutedPPN) 

Execute NextPPN.... 

LastExecutedPPN <- RedoPPN || InputDeterminedPPN; 

*pply (ResetPPN, RebuildlnputQueue) to (PPNScheduleUst); 

FIGURE 26. Redo execution 
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6.2.8 PPN Constraints 

Using the propagator user interface, a constraint computation may be set by pressing the 
Set button under the Constraint portion of the control panel. If a PPN is not selected, 
you will get an error dialog indicating so. You must select a PPN which has a constraint 
parameter defined for it PPNs without constraints are indicated by the symbol "NULL" 
in the constraint field of the PPN header or status line. PPN status lines are shown in the 
bottom panel of the propagator interface, along with the values of the PPN's nodes. 

After the SetConstraint button is pressed, a text entry dialog box will appear, prompting 
you to enter the constraint expression. Constraint expressions must be a valid XLISP 
expression or function call. Pressing the OK button causes the constraint expression to 
be checked for syntax, and, if no error occurred, the constraint expression is saved in a 
string attribute of a PCTE node. For syntax checking to work properly be sure mat the 
PCTE Workbench Server control variable *socket-breakenable* is set to nil. 
See Figure 19. 

An environment variable UPROP_CONSTRAINT_DIR
M

 should be set in the user's shell 
to indicate the directory (PCTE parent node) to use to store nodes containing constraint 
expressions. If this environment variable is not set, then the user's home object, identi- 
fied by the environment variable "PCTE_HOME" is used. When constraints are saved, a 
node ot type hyperlisp is created from the designated parent node. The linkname 
will be constraint-parameter-nameXsp. Thus, for the PPN MCMDieAttach, die link 
name will be DieAtt ach. lsp. The PCTE Workbench name of the node will be set 
toDieAttach Constraint Computation for easy reference. Stored constraints 
are loaded into their repsective PPNs and nodes during propagator initialization. 

Once set, a constraint can be changed by selected the same PPN and pressing the Set 
Constraint button. The dialog box will show the previous value, which can be edited. To 
delete the constraint, erase the text in the dialog box and press OK. Alternatively, you 
can find the node containing the constraint expression and delete it (if you do this, how- 
ever, you will have to restart the propagator to remove the constraint from its internal 
memory). 

When constraints are evaluated by the PCTE Workbench Server, the constraint value is 
stored in the global XLISP variable *PPN-constraint-value*. This permits the writing of 
constraint expressions such as ( < *PPN-constraint -value* 10 ). If your 
constraint computation does not fit on one line, define an XLISP function for the com- 
putation, and store it in the constraint parameter's node. For example, suppose you have 
a function P-LT which returns T if the constraint value is less than some number, nil 
otherwise. After testing the function thorougly, use the propagator interface to enter the 
constraintas (P-LT 10). This action will cause a node to be created as discussed 
above. Now, using Epoch, or any other PCTE Workbench integrated editor, copy your 
function into the new node. Now, when die constraint parameter expression is loaded, 
the contents of the node, containing your function, will also be loaded into the Server. 
To change the function, just edit the node. 
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SetConstraint ButtonPressEvent 

NextPPN <-Sucessor(LastExecutedPPN) 

Execute NextPPN.... 

SetConstraintCaHback() 

if(noSelectedPPN|| 
no constraint parameter for Selected PPN) then 

display error and return 

popup dialog to enter Lisp constraint expression 

ConstraintShellOKCallback 

Constraint <- Get string from constraint dialog box 
if (not a valid constraint) expression 
display error and return 

SetConstraint(selectedPPN, constraint) 

main.C 

ProcessSetConstraint(PPN, constraint) 

SetConstraint(constraint) 

node <- QetObject(PPN constraJnt_parameter) 

Save constrain! expression In node. 

SaV6 constraint In Ki lb ftofle Urtflef fne airecWy oBjectSpscfflea By" 
he environment variable PROP_CONSTRAlNT_DIR 

FIGURE 27. Methods of MasterTable 

82 



7. PPN Design 

7.1. Introduction 

This document specifies the requirements for the PPNs in the Adabra rapid prototyping 
environment Section 1 presents an introduction to the PPN model. Section 2 contains def- 
initions for some of the terms used in this document Section 3 contains some notes about 
the rest of the document Section 4 lists the requirements of the PPN. Section 5 lists the 
requirements of the nodes in a PPN. Section 6 lists the requirements of the operators. The 
Appendix at the end of the document contains a list of all requirements in this document 

7.2. Introduction to the PPN model 

The PPN model is a general-purpose decision and analysis model. An example of a 
generic PPN model is shown in Figure 1. It consists of nodes and arcs; the nodes represent 
a computation process associated with a parameter and the arcs describe the relationship 
between parameters. The nodes and the arcs of the PPN depict the interdependencies 
between various parameters. Parameters whose values are known form the lowest layer of 
the graph as they initiate the problem solving process. Associated with each PPN is a con- 
straint (not depicted in the figure). 

In a very real sense, PPN's embody technology interdependence that is characteristic of 
any decision making process. PPN's are so named because they formalize the notion of 
object interdependence and causality relationships in terms of propagating the values of 
parameters to other parameters in a manner defined by a network. The edges of the net- 
work embody the relationships between parameters. The nodes of the network represent a 
computation of the parameter (and is often referred to as the parameter itself). The compu- 
tational nodes in the PPN model are responsible for constraint checking, and can initiate 
backtracking. When a constraint is violated, a node for recomputation is chosen and prop- 
agation resumes from there. A chief feature of the computation model is its capacity to 
provide a "new" value to other parameters along the network's edges. A new value is a 
result of computations at the nodes of the network. 

Computation at a node can be within the model, or outside. For example, the value of X in 
Figure 28 could be equivalent to a summation of U,V and W. Such a computation can be 
performed within the model by a procedural call. Complex calculations can be performed 
external to the PPN by a different tool. The tool can be invoked with the values of the 
input parameters (here U,V and W). On completion of the computation, the tool returns a 
value for X, or a value that aids in computing a value for X. 

Parameter propagation in a PPN is entirely autonomous in that it does not require any 
external stimuli. It does so only when the value of the parameter changes. A change in the 
value of the parameter autonomously propagates the change to other parameters. The heart 
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FIGURE 28. A PPN depicting interdependence between parameters 

of the PPN implementation consists of a Propagator engine. Parameter propagation in a PPN can be con- 
trolled by the user with the help of break-points in the execution. This feature is useful for the partial execu- 
tion or propagation if desired by the user. 

While PPN's parameter propagation is an excellent way to implement parameter depen- 
dency through autonomous updates, it is not sufficient for computing a solution. The 
PPN's powerful backtrack feature does the following: a new value is selected in one of the 
previous nodes and the value is propagated as before. The new value of the parameter 
results in a re-computation of subsequent nodes and so on. In effect, the PPN searches 
through the problem space for a solution. We can visualize this computation as a conic 
propagation wave front alternately surging and retreating through the PPN's nodes, and 
rejecting all stable values that do not satisfy the constraint Finally, when the PPN does 
stop computation, a solution is found. 

Thus, the hallmark of the model is autonomous propagation of parameter values and 
recomputation of values when constraints are violated. 

7.3. Definitions 

Wavefronts- A wavefront is defined to be a set of values for all parameters arising from 
the progression of computation through the network of PPNs for a specified set of input 
values. 

Wavefront Numbers- Each wavefront has an unique number. The syntax of a wavefront 
number is: 
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<wavefront number> ::= <field>l <field>$<wavefront number> 

<field> ::= # I <parameter index>.<p-index> 

<parameter index> ::= <number> 

<p-index> ::= <number> 

Field- Each field of the wavefront number is delimited by a '$' symbol. 

Input Wavefronts- An input wavefront for a PPN with N input nodes is defined as a non- 
empty set of at most N plists in the input queue, such that each plist is for a different input 
node. 

pvalue- A pvalue is a pair consisting of a wavefront number and a value. 

plist- A plist is a linked list of pvalues. All pvalues in a plist have an unique wavefront 
number. All pvalues in a plist have an unique value. 

p-index- The position of the pvalue in the plist The positions are numbered starting from 
one. 

Input Node- A node in a PPN that receives values from operators or nodes in other PPNs, 
or the user, and does not have another node in the same PPN on its fan-in. 

Output Node- Any node in a PPN which has a fan-out to a node or operator not in the 
same PPN. 

Interior Node- Any node in a PPN mat is neither an input node nor an output node. 

Level Graph- A level graph of a PPN (or network of PPNs) is a directed acyclic graph 
with an ordered set of levels. A level is a set of nodes (or PPNs) that are independent Two 
nodes are independent if there exists no path between the nodes in the graph. Nodes in 
level i have ancestor nodes in levels j (j < i) and descendants in levels k (k > i). Nodes at 
level 1 do not have any ancestors. 

Active and Inactive Constraints- Constraints in a PPN can be in one of two states active 
or inactive. Active constraints are tested in PPN execution and may cause backtracking of 
the PPN execution. Inactive constraints are ignored. 

7.4.  Notes about the Requirements 

The requirements specified in this document completely specify the expected behavior of 
the modules/objects of interest Any requirement not included is excluded. Bold and Italic 
fonts have been used to further emphasize certain aspects of the requirements. 
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All requirements, over all sections, have been numbered sequentially. Requirements have 
been grouped into sub-sections numbered using roman numerals (I, n,...). Each require- 
ment also has a short descriptive title. Each requirement has a complete description fol- 
lowing the title. 

Where appropriate Requirement Notes have been used to specify the requirements 
imposed on other modules/objects in the Adabra rapid prototyping environment by the 
assumptions, made in this document, about their behavior. 

The following is the list of requirements that must be satisfied for the PPN. 

I Input Messages to PPNs 

R:l. PPN Input Messages- 
Each PPN class must provide methods to handle the following messages: 

1. Create 

Create an instance of the PPN class and all its nodes and initialize all 
instance data structures. 

2. Delete 

Delete the specified instance. 

3. GetValueList (parameter) 

Return a plist for fat parameter. 

4. GetFanOutList (parameter) 

Return a list of the fan-out of the parameter. 

6. GetFanlnlist (parameter) 

Return a list of the fan-in of the parameter. 

6. GetlnterconnectionTable 

Return the interconnection table for this PPN. 

7. GetPropagatedWavefront 

Return a list containing the pvalues of die input nodes from the current 
propagated (internal) wavefront 

8. GetExecutionState 

Return all the information pertaining to the current execution state of the 
PPN instance. 

9. GetConstraint 

Return the constraint if any associated with this PPN. 

io. GetBreakPoints 
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Return a list containing all breakpoints, including wavefront and backtrack 
breakpoints, for this PPN instance. 

11. GetBacktrackNodes 

Return a list containing the backtrack nodes for this PPN instance. 

12. Propagate (item) 

Add item to the tail of the input queue. 

13. SetConstraint (value) 

Set the constraint constant to value specified, and activate constraint if 
deactivated. If no constraint is defined or if value is not of the same type (or 
subtype) of the constraint parameter then db not perform the operation and 
return an error message, else return an acknowledgment 

14. ActivateConstraint 

Activate the constraint. 

15. DeactivateConstraint 

Deactivate constraint Note the constraint is never actually deleted, just 
deactivated. 

1& SetValueList (parameter, plist value list) 

Set the value of parameter to be value list, parameter may not be an input 
parameter. The length of value list must be greater than zero. The Node 
computation is not performed until an UnSetValueList message is received. 
The value list can not be over written by PPN (Node) computation. 

Requirement Note: 

SetValueList may not be used when the PPN is suspended at a 
breakpoint. 

17. SetFanOutList (source parameter, target parameter) 

Set the fan-out of a output node. The source parameter is a node in the 
PPN instance, target parameter is a input node in another PPN instance. 

18. SetBreakPoint (parameter) 

Set a breakpoint for forward execution of the PPN instance at parameter. If 
parameter specifies an input node then return an error message, else return 
an acknowledgment If a breakpoint has already been set ax parameter then 
return an acknowledgment 

19. SetBacktrackBreakPoint 

Set a breakpoint for backtracking. Execution is suspended whenever the 
PPN instance backtracks. 

20. SetWavefrontBreakPoint 
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Set a breakpoint before the next (internal) wavefront is propagated. Execu- 
tion is suspended before the next legal cross-product element is propa- 
gated. 

21. UnSetValuelist (parameter) 

Allow PPN execution to over write the value for parameter. This does not 
delete the current value list of the parameter. 

22. DeleteBreakPoint (optional parameter) 

Delete the breakpoint at parameter. If no parameter is specified dien delete 
all breakpoints in the PPN instance. 

23. DeleteBacktrackBreakPoint 

Delete the backtrack breakpoint 

24. DeleteWavefrontBreakPoint 

Delete the wavefront breakpoint 

25. Continue 

Continue execution of the PPN instance from where it was suspended. 

26. Execute 

Begin execution. 

27. Stop 

Stop executing this PPN instance after completing the current internal 
wavefront and export any values at the output nodes. Also reset all data 
structures that would reset upon normal completion of execution. 

II Output Messages from PPNs 

R2.. PPN Output Messages- 

PPN instances must generate the following messages: 

i. Export 

Inform the propagator that there are values to be exported, by calling the 
export function of the propagator module for each output node that has val- 
ues to be propagated. This message should be generated when the PPN 
instance has completed execution. Multiple nodes in a PPN instance may 
serve as output nodes. 

2. Tool Messages 

These are messages generated by the nodes in a PPN instance for commu- 
nication with other tools.The PPN will just forward these messages to the 
communication module of the propagator. 

3. Error Messages 
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These error messages should not be generated if the PPN generates an 
export message. The PPN may generate die following error messages: 

i.   Backtracking failed 

This message is generated when the PPN backtracks to the input level and 
all legal combinations caused the active constraint to be violated. If any 
legal combination did not cause constraint violation men an export mes- 
sage should be generated instead. 

ii. Type check failed for input parameter. 

This message is generated when any input to any parameter to PPN is of 
the wrong type. The error message must specify the parameter and the 
offending input 

iii. Trigger not set 

This message is generated when the trigger to a PPN is not set 

iv. Incomplete input wavefront 

This message is generated if no complete legal combination of input values 
can be generated from the current set of input plists. 

m Data Inputs to PPNs 

R3. PPNData Inputs- 

Input nodes in a PPN, will receive data input from the user and other PPNs. 
R.4. PPN Input Queue- 

PPNs must have an input queue where all the data inputs to the PPN should be placed. 
RS. Input Nodes- 
All input nodes should process plists, by computing legal combinations over all inputs 
and then propagating each combination separately. 
R£. User specified values for the Input Nodes of a PPN- 

The user may choose to specify a value for any input node of a PPN. 
Requirement Note: Builder Requirement 

It is desirable that the User Interface Operators be gener- 
ated automatically by the builder module. 

R:7. Type Checking of Inputs- 

Mi type checking must be performed on each member of the plist If any member of the 
plist is of the wrong type the entire plist should be rejected and an error reported. 

IV Data Outputs from PPNs 

R£. Outputs from a PPN- 

Each output node of a PPN must form a plist of its values and men export the plist. 
RS. Output Nodes in a PPN- 
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Any node, except input nodes may serve as an output node. If the PPN has a constraint 
specified (active or inactive) then the constraint node and all nodes that do NOT have a 
common ancestor with the constraint node in the PPN graph, may serve as output 
nodes. 
R:10. Exporting Multiple Values from Output Nodes- 
Only output nodes at the top most level of the of the PPN level graph (nodes without 
any descendants in the PPN) may export multiple values. All other output nodes must 
export the last propagated value. 

V Breakpoints in a PPN 

RÜ1. Breakpoints in PPN execution- 
Users can specify breakpoints in PPN instance execution. Breakpoints are set at nodes 
in a PPN and cause execution to be suspended when execution reaches that node, i.e. 
when the node is scheduled for execution. The suspension takes effect before the node 
computation is performed. When a breakpoint is reached the execution state of the PPN 
must be updated. 
R:t2. Deletion ofBreakpoints- 
Breakpoints are in effect until they are deleted. 
R:13. Breakpoints and Backtracking- 
Users may set a breakpoint for backtracking by using the message SetBacktrackBreak- 
Point If a backtrack breakpoint is set then PPN execution should be suspended as soon 
as a PPN backtracks. This breakpoint is in effect until deleted by sending a DeleteBack- 
trackBreakPoint message. PPN execution state must be updated before the PPN sus- 
pends at this breakpoint 
R:14. Breakpoints and Wavefronts 
Users may set a breakpoint between wavefronts by using the message SetWavefront- 
BreakPoinL When a PPN completes execution of one internal wavefront PPN execu- 
tion should be suspended before the next internal wavefront is propagated, but after the 
next legal input combination is computed. This breakpoint is in effect until deleted by 
sending a DeleteWavefrontBreakPoint message. PPN execution state must be updated 
before the PPN suspends at this breakpoint 
R:15. Resuming after a Breakpoint- 
Users can resume execution after a breakpoint by sending a Continue message. PPN 
execution state must be updated upon receiving a Continue message. 
R:16. No Breakpoints at Input Nodes- 
Breakpoints may not be set at input nodes. 

VI Backtracking in PPNs 

R:17. Backtracking- 
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A PPN must backtrack if an active constraint is violated. Backtracking involves restart- 
ing the PPN execution from the next backtrack node in the list of backtrack nodes. This 
node may now propagate a new value from its value list If the value list is empty then 
backtracking proceeds to an ancestor of this node and this node must reset its history 
list 
R:18. Backtrack Nodes- 
The list of backtrack nodes should be specified when a PPN is defined. This list can not 
be changed after PPNs are compiled into the propagator. All input nodes are backtrack 
nodes.There may be at most one backtrack node at each level in the level graph for a 
PPN, with the exception of the input nodes. 
Ril9. Backtracking History- 

If backtracking reaches a node which generates multiple values then the previously 
propagated value must be deleted from the value list of the node and added to the his- 
tory list of the node. 
R2.0. Termination of Backtracking- 
Backtracking should be terminated when backtracking reaches the input level and all 
legal input combinations for the current input wavefront have already been propagated, 
or when the PPN gets a stop message. 

Vn PPN Execution 

R21. Triggers- 
Each PPN instance should have a special input parameter called the trigger. The trigger 
does not have a type. The trigger should be reset at the end of each input wavefront 
Any output node (irrespective of type) of any PPN instance maybe connected to the 
trigger input of a PPN instance. 
R22. PPN Execution Condition- 
Each PPN upon being scheduled for execution should test if all conditions for execu- 
tion are satisfied before beginning execution. The conditions to be tested are: 

i.   Is the trigger set for the current input wavefront and 

ii. Do all input nodes have legal values, and 

iii. Is the input queue non-empty. 
R23. Completion ofExecution- 
A PPN instance should complete execution on an input wavefront if: 

i.   backtracking is terminated, or 

ii. all parameter propagation has been completed for the current input 
wavefront or 

iii. the PPN instance receives a Stop message 
Upon completion of execution delete the current input wavefront and reset appropriate 
internal data structures. 
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Vm Wavefronts in PPN Execution 

R24. Wavefronts and Multiple Values for a Parameter- 

If the parameter is an output node then the base wavefront number should be computed 
for the multiple values as a concatenation of the wavefront numbers of the current 
cross-product combination of input values. The computed base wavefront number 
should not have identical fields. For each of the values generated by the output node 
assign a wavefront number as follows: 

<base wavefront number>$<output parameter index>.<p-index> 

Where <output parameter index> is the unique number assigned to this output node in 
the network and <p-index> is the location of the value in the plist counting from one. 

For instance if the current legal combination has the wavefront numbers {1.1,1.1$2.1, 
3.1} then the base wavefront number would be 1.1$2.1$3.1 and if the output plist had 
three values then their wavefront numbers would be 1.1$2.1$3.1$29.1, 
1.1$2.1$3.1$29.2 and 1.1$2.1$3.1$29.3, where 29 is the parameter index for this output 
parameter. 

R25. Legal cross-product combinations ofWavefronts- 

An input pvalue may be legally combined with another input pvalue if: 

i.   both pvalues have die same wavefront number, for example 1.2$3.5 
and 1.2$3.5 or 

ii. if the wavefront numbers are different and there are no common param- 
eter specifications, for example 1.2$3.5 and 23.2$34.5, or 

iii. if the wavefront numbers are different and some parameter specifica- 
tions are common, and the p-indices are identical, for example 1.2$3.5 and 
1.2$33.1. 

IX Scheduling of PPN Nodes 

R26. Node Scheduling- 

Within the PPN, nodes must be executed as per a schedule, created by a specified 
scheduling algorithm. The scheduling must be non-preemptive. The scheduling algo- 
rithm may be different from the one used by the propagator module. 

X PPN Definition 

R27. Node Specification- 

Nodes in a PPN will be specified using a table called the node table. 

R28. Node fan-in and fan-out- 

A node instance, except input nodes, in a PPN may have multiple fan-in and fan-out 
Input nodes must have exactly one fan-in and multiple fan-out. 

R29. Interconnection Specification- 

Interconnections hetween nodes in a PPN will be specified using an interconnection 
table. All interconnections in a PPN are unconditional. 
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XIPPN Constraints 

R-30. One Constraint per PPN- 
Each PPN can have at most one constraint 
R31. Constraint Syntax- 

A constraint is of the form: 
<constraint> ::= <func>(<param>) <relational operator> <constant> 
<relational operator> ::= < I > I = I <= I >= I != I subset I superset 
<func> ::= a well defined function of the parameter 
The constraint is associated with one node in the PPN. <func(param)> is a function of 
the parameter at the node. 
R32. Constraint Constant Type- 
<constant> must be of the same type as the parameter. <constant> could be a range if 
the type supports ranges. <constant> can also be a discrete set, in which case each ele- 
ment of the set must be of the same type as the parameter. 

7.5.  PPN Nodes 

The following is the list of requirements that must be satisfied by the nodes in a PPN. 

I Node Computation 

R33. Types of Node Computation- 
There are three types of node computation. They are: 

i. Algebraic Computation 

Algebraic computation represents evaluation of simple algebraic expres- 
sions. An algebraic expression can be any legal 'C expression. Expres- 
sions may also use function calls from a set of pre-defined math functions. 

2. Procedural Computation 

Procedural computation is a call to a well-defined procedure written in 'C. 
It is required that procedures can be defined as a part of the node specifica- 
tion. It is desirable that procedures could be specified in procedural lan- 
guages other than *C\ It is desirable that procedures need not be defined as 
a part of the node definition, but are available as a separate archive. 

3. Constructive Computation 

Constructive computations involve external tools, database queries and any 
other tool interaction. Nodes must communicate with external tools only 
via the communication module of the propagator. Nodes may not depend 
on the details of the communication apparatus or the location of the tool 
Nodes must address tools by their logical names. Nodes must not have 
hard-coded paths to the location of the tools. 
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Nodes must be capable of supporting all three kinds of computation specified above. 
R34. Node Values are Persistent 
All nodes including input nodes should maintain their values until they are over written 
by the next node computation, with the exception specified by R39. 
R35. Multiple Values generated by Node Computation- 
Node computation may generate multiple for any set of input pvalues. 
R36. Best Value first Propagation- 
The PPN designer may choose to provide a method for each node, except input nodes, 
that can order the pvalues of the parameter for that node in a increasing order of "good- 
ness". The node will then propagate the best (first) value from the list and then (if nec- 
essary) the next best pvalue and so on. If the node is an output node then the pvalues 
should be placed in a plist in a increasing order of "goodness" and then exported. 
Wavefront numbers should be assigned to the pvalues after they are ordered. 
R37. Default value for Input Nodes- 
The PPN designer may choose to provide input nodes of a PPN class with a default 
plist. If no default value is specified and the input node does not have a value then the 
PPN should not execute and signal an error. 
R38. User Specified values for Nodes- 
If the value of a node is set by a SetValueList message then it cannot be over written by 
node computation until it is unset by a UnSetValuelist message. 

7.5.1. Operators 

The following is the list of requirements to be satisfied by operators. 

I Input Messages to Operators 

R39. Operator Input Messages- 
Each Operator class must provide methods to handle the following messages: 

i. Create (integer numjanjn) 

Create an instance of the class with number of inputs set to numjanjn. 
numjanjn > 0. 

2. Delete 

Delete the specified instance. 

3. GetValueList 

Return the value list of the operator instance. 

4. SetFanOutlist (target parameter) 

Add target parameter to the fan-out list of the operator instance, 

s. Execute 
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Begin execution, 

e. Propagate (source parameter, value) 

Place value at the tail of the queue for parameter. 

n Output Messages from Operators 

R.40. Operator Output Messages- 

1. Export 

Operator instances should generate export messages. This message is used to export the 
values to the destination nodes. The same plist should be exported on all the fan-out 

2. Error Messages 

i.   Type Checking Failed 

This message is returned when type checking failed on an input plist The 
offending plist is deleted from the input queue. 

ii. Incomplete Inputs 

This message is returned when an operator is scheduled for execution, and 
requires all inputs but a legal input combination cannot be constructed. 

m Data Input to Operators 

R.41. Operator Data Inputs- 
An operator may receive input from the user, PPNs, or other Operators. 
R.42. Operator Input Queues- 
Each operator input must be modeled as a separate queue. 
RA3. Operator Input Queue Processing- 
When a set of inputs are delivered to the computation procedure they should be deleted 
from the input queue. Inputs to the computation procedure must be at the head of the 
input queues. 
R.44. Operator Input Processing- 
The operator designer may choose to configure an operator class as: 

i.   requiring all inputs before computation can be started or 

ii. requiring at least one input before computation can be started. 
RA5. Inputs to Operators- 
Each input to an operator should be a plist Operators should deliver legal combinations 
in the cross-product of the input plists to the computation procedure. 
R.46. Type Checking of Operator Inputs- 

All operator inputs must be of the same specified type. Each element of the input plist 
must of the same specified type. Any input which is not of the specified type should be 
rejected and an error signalled. 
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R.47. Operator Inputs are NOT Persistent 
Operators should not store their last input values after operator computation for those 
values is completed. 

IV Data Outputs from Operators 

R.48. Outputs from Operators- 
The operator instance must accumulate the outputs from all items in the cross-product 
and place it in a plist and then export the plist 
R.49. Operator Outputs are Persistent 
Operators should maintain the latest output plist 

V Breakpoints in Operators 

R50. No Breakpoints in Operators- 
Users may not specify breakpoints for operator instance execution. 

VI Operator Definition 

RSI. Operator Computation Definition- 
Each operator class encapsulates a well-defined operation. The operation must be spec- 
ified as a well-defined *C procedure accepting a variable number of inputs of a particu- 
lar data type and producing an output of the same data type. 
R52. Operator Fan-out- 
Each operator may have multiple fan-out 
RS3. Type of Operator Inputs and Outputs- 
All operator inputs and outputs are of the same type and are specified by the operator 
designer. These types cannot be changed by the user at run time. 

VII Operator Execution 

R£4. Operator Execution Condition- 
Each operator upon being scheduled for execution should execute if a legal combina- 
tion can be produced of the input plists. If the operator requires all inputs for execution 
then a legal combination must contain a value for all inputs, else if the operator requires 
at least one input then a legal combination must have at least one input 

Vm Wavefronts in Operator Execution 

R55. Legal cross-product combinations ofWavefronts- 

See similar requirement for PPNs. 

IX User Input Operators 

R56. Subtype of Operators 
User Input Operators are a subtype of the class of operators. 
R57. User Input to PPNs via User Input Operators 
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User input to input nodes in a PPN may be propagated via User Input Operators. 
R58. User Input Operator Computation 

User Input Operators are used to compute the wavefront number for user inputs to PPN 
input nodes. User Input Operator computation is as follows: 
for each pvalue in the input plist 

{ 
count <- count + 1; 
pvalue. wavefiront-number <- <parameter index>.<count> 

} 
R59. Input to User Input Operators 

Input to User Input Operators provided by the user. 
R£0. Fan-out of User Input Operators 
User Input Operators may have multiple fan-out All fan-out must be connected to 
input nodes of PPN instances. 
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