# Impact of Incentives On Project Performance

by

### Jayson Doliber Mitchell, B.S.C.E.

#### Thesis

é

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

## **Master of Science in Engineering**

The University of Texas at Austin August, 1998 19981026 102

DISTRIBUTION STATEMENT A: Approved for Public Release -Distribution Unlimited Impact of Incentives On Project Performance

> Approved by Supervising Committee:

1 Supervisor: G. Edward Gibson, Jr.

19 1

**Richard L. Tucker** 

# Copyright

.

by

Jayson Doliber Mitchell

1998

. 1

# Dedication

This thesis is dedicated to my beautiful wife Catherine. She has been my number one supporter. Without her sacrifice, love, and support this thesis would not have been possible.

# Acknowledgements

Special thanks to the Construction Industry Institute for their permission to utilize the project databases. Special thanks also to Dr. G. Edward Gibson for his wisdom and exceptional guidance during the preparation of this thesis.

August 1998

v

### Abstract

Impact of Incentives On Project Performance

Jayson Doliber Mitchell, M.S.E The University of Texas at Austin, 1998

Supervisor: G. Edward Gibson

This thesis contains an in-depth research investigation into the types of construction contract incentives in both the public and private sectors. It utilizes data obtained from the Construction Industry Institute's (CII) Benchmarking and Metrics Program. The impact of safety, cost, and schedule incentives in this database is analyzed. The policy implications of the findings in this research are given for both public and private procurement agencies.

# **Table of Contents**

| List of Tablesix                                  |
|---------------------------------------------------|
| List of Figuresx                                  |
| Chapter 1: Introduction1                          |
| 1.1 Research questions2                           |
| 1.2 Hypotheses                                    |
| Chapter 2: Background                             |
| 2.1 Benchmarking and Metrics at CII4              |
| 2.2 Contract Incentives                           |
| 2.3 KEYS TO INCENTIVE USE SUCCESS                 |
| Chapter 3: Research Methodology15                 |
| Chapter 4: Analysis22                             |
| 4.1 Sample Characterization                       |
| 4.2 Safety Performance vs. Safety Incentives      |
| 4.3 Cost Incentives vs. Cost Growth               |
| 4.4 Schedule Incentives vs. Schedule Growth41     |
| 4.5 Analysis Summary43                            |
| 4.6 Incentive Use Index vs. Project Performance47 |
| 4.6.1 Safety Performance47                        |
| 4.6.2 Cost Growth49                               |
| 4.6.3 Schedule Growth50                           |
| 4.6.4 Summary of Incentive Use Index research     |
| Chapter 5: Conclusions and Recommendations        |
| 5.1 Conclusions54                                 |
| 5.2 Recommendations                               |

| Appendix A: Analysis Data                         | 59  |
|---------------------------------------------------|-----|
| Appendix B: CII Questionnaire (Owner Version 2.0) | 80  |
| Bibliography/References                           | 117 |
| Vita                                              | 119 |

# List of Tables

| Table: 4.1: Summary of safety analysis (overall)                  | 44 |
|-------------------------------------------------------------------|----|
| Table: 4.2: Summary of safety analysis (<250K cwh)                | 44 |
| Table: 4.3: Summary of safety analysis (>250K cwh)                | 45 |
| Table: 4.4: Summary of cost growth analysis                       | 45 |
| Table: 4.5: Summary of schedule growth analysis                   | 46 |
| Table: 4.6: Summary of schedule growth analysis (negative-only)   | 46 |
| Table: 4.7: Summary of Incentive Use Index vs. Safety performance | 52 |
| Table: 4.8: Summary of Incentive Use Index vs. Cost growth        | 52 |
| Table: 4.9: Summary of Incentive Use Index vs. Schedule growth    | 53 |

.

# List of Figures

| Figure 3.1: Research methodology flowchart                              | 16  |
|-------------------------------------------------------------------------|-----|
| Figure 3.2: Version 1.0 Incentive use question                          | 20  |
| Figure 3.3: Version 2.0 Incentive use question                          | 21  |
| Figure 4.1: Breakdown of database by industry type                      | .23 |
| Figure 4.2: Breakdown of database by project type                       | 25  |
| Figure 4.3: Number of public and private projects in database           | .25 |
| Figure 4.4: Public vs. private entity incentive use                     | .26 |
| Figure 4.5: Types of incentives used by public and private entities     | .27 |
| Figure 4.6: Incentive use within each industry type                     | .31 |
| Figure 4.7: Incentive among each construction category                  | .32 |
| Figure 4.8: Average Incentive Use Index for public and private entities | .33 |
| Figure 4.9: Effect of positive safety incentives on safety performance  | .35 |
| Figure 4.10: Effect of safety incentives on the RIR (CWH dependent)     | .37 |
| Figure 4.11: Effect of safety incentives on the LWCIR (CWH dependent)   | .38 |
| Figure 4.12: Effect of cost incentives on cost growth                   | .40 |
| Figure 4.13:Effect of schedule incentives on schedule growth            | .41 |
| Figure 4.14: Effect of negative schedule incentives on schedule growth  | .42 |
| Figure 4.15: Incentive use index vs. overall safety performance         | .48 |
| Figure 4.16: Incentive use index vs. project performance                | .50 |

## **Chapter 1: Introduction**

Aligning both owner and contractor objectives is widely thought to be a catalyst for better project performance. For this very reason, contract incentives are employed in order to identify and ensure focus on the owner's goals. The scope of this report is to research the extent of use and consequent effects of construction contract incentives offered by owners. The relative use by owners of construction phase incentives will be characterized, and an incentive use index assigned to each project. Additionally, the impacts of incentive use in terms of cost, schedule, and safety will be investigated. A relationship between the relative use (incentive index) and project performance will also be examined.

This research will be accomplished using the Construction Industry Institutes' (CII) Benchmarking and Metrics version 1.0 and 2.0 database. This database includes responses from both owners and contractors. Since owners are the ones who will ultimately decide on the inclusion of any incentives, only their responses will be examined.

Reducing cost and schedule growth on a project is quite often a primary goal of an owner. This study will show how the use of cost and schedule incentives affects the cost growth and schedule growth of the construction phase

There are several objectives that this study aims to accomplish. This research should provide both the public and private owner with a foundation to aid them in their decision to use certain types of contract incentives.

1

Additionally, it is anticipated that private projects will have a higher relative incentive use index as opposed to public projects, and this research will attempt to show how the increased use of various incentives will affect project performance.

Positive incentives undoubtedly have a different impact on project performance as opposed to negative incentives (penalties, liquidated damages, etc.). The types of incentives employed by owners will be examined for their relative significance and impending results. Safety incentives will be studied to determine their impact on a project's "Recordable Incident Rate" (RIR) and "Lost Workday Case Incident Rate" (LWCIR), as defined by the Occupational and Health Administration (OSHA).

#### **1.1 RESEARCH QUESTIONS.**

There are several specific research questions that will be answered in this

report. They are as follows:

- Does the use of positive safety incentives reduce a project's RIR and LWCIR?
- Does the use of positive (including combination positive/negative) cost incentives produce lower cost growth?
- Is the use of only negative schedule incentives (liquidated damages etc.) counterproductive to reducing schedule growth?
- Does the combined use of positive and negative schedule incentives reduce schedule growth?
- Does a higher incentive use index result in better project performance in terms of schedule and cost?

#### **1.2 Hypotheses**

For purposes of this study, the following hypotheses are offered using the null hypothesis approach:

- The use of positive safety incentives has no effect on a project's RIR or LWCIR;
- The use of positive (including combined positive/negative) cost incentives does not lower cost growth;
- The use of only negative schedule incentives has no effect on schedule growth;
- The combined use of positive and negative schedule incentives does not reduce schedule growth;
- A higher incentive use index does not result in better cost and schedule performance.

Chapter 2 of this report will include an extensive review of past literature and research concerning incentives. A brief discussion concerning the database utilized, as well as the analysis procedures, will follow in Chapter 3. Chapter 4 presents the analysis of each of the hypotheses and also includes a characterization of the data received from each of the respondents. Last, conclusions and recommendations on the use of contract incentives will be presented in Chapter 5. This thesis should aid both public and private entities with their procurement strategies.

#### Chapter 2: Background

#### 2.1 BENCHMARKING AND METRICS AT CII

The Construction Industry Institute (CII) is an organization of owners and contractors based administratively at the University of Texas at Austin. CII is primarily a research organization whose mission is:

"...to improve the safety, quality, schedule, and cost effectiveness of the capital investment process through research and implementation support for the purpose of providing a competitive advantage to North American business in the global marketplace."

(Hudson 1997).

The CII Board of Advisors established a Benchmarking and Metrics Committee in 1993, whose objectives were to establish a series of metrics that could be applied to all sectors of the construction industry and identify "best practices" that could be used to positively influence the metrics being measured.

All of the data utilized for analysis in this thesis were obtained from CII's Benchmarking and Metrics (BM&M) database. The CII BM&M committee has identified three objectives. They are as follows:

- To provide "the industry" (defined broadly as heavy industrial, light industrial, buildings, and infrastructure) with "norms";
- To measure the use of "best practices" and quantify the value of implementing CII recommended practices;
- To help educate the industry in benchmarking practices and interpretation of data for improvement within their respective companies (CII BM&M Report 1997).

A primary difference between CII's benchmarking approach and benchmarking services offered by other organizations is the level of analysis and feedback provided to individual companies. CII seeks to provide companies with tools to allow in-house analysis of project performance, rather than provide extensive individual project analysis. Individual companies will thus be in a better position to improve. The tools include: a set of well defined performance metrics, a report of industry "norms" for comparison purposes, and reports of general analysis which identify practices that correlate with successful project performance.

#### **2.2 CONTRACT INCENTIVES**

The following literature review has been completed in order to provide the author of this report with a strong foundation of knowledge on the purpose and use of construction contract incentives. There was a large sample of literature available for review, probably due to the fact that owners and contractors are now, more than ever, trying to streamline their goals so as to derive mutual benefits. This review will be broken down into several categories that ultimately relate to the research questions already mentioned.

The purpose of contract incentives will be discussed first, followed by a discussion on owner and contractor goals and objectives for construction projects. Risk allocation and motivational theory will then be discussed, followed by a brief comparison of incentive contracting with Total Quality Management (TQM)

principles. Owner and contractor goals, risk allocation, and motivational theory are the main factors in the success or failure of any incentive plan. These topics are invaluable to the comprehension of incentive contracting. The remainder of the literature review will focus on the different types of incentives available to owners, as well as the advantages and disadvantages of their use.

The word "incentive" is derived from a Latin word meaning, "to stimulate", and when incentives are properly employed, they can stimulate contractors to support, and perhaps even adopt, the goals and objectives of the owner (Neil 1990). Stukhart points out that contract incentives "are the means by which an owner intends to secure certain project goals through the contracting process" (Stukhart 1984). Put more simply, they encourage the contractor to adopt the owners project objectives, essentially making them mutual objectives. By doing so, both the owner and contractor will ideally maximize their respective benefits, assuming a proper incentive plan is developed. Since one of the main motivators for a contractor is often profit, money awards are the most frequently employed incentives.

So what are project goals? They may be an assortment of many things. The main goals that incentives support are reduced cost, reduced project duration (schedule), increased safety performance, and better quality. The aforementioned goals are usually adopted by both the owner and contractor, albeit each usually occupying a different priority. Neil points out that owners are finding that incentives are a valuable tool in supporting other goals such as the improvement of day-to-day management of work, maintaining favorable labor relations, assuring commitment of the best personnel by the contractor, and improving owner/contractor communication and cooperation (Neil 1990). Admittedly, by effectively motivating a contractor to focus on goals such as reduced cost, reduced schedule growth, and reduced accidents, these "indirect" goals are likely to follow suit.

The Construction Industry Institute reported in 1995 that incentives improve performance in the following ways:

- They drive the definition of the project;
- They align project participants on common objectives;
- They create an interdependence among project participants;
- They establish a mutually supportive environment;
- They open communication channels and enhance team building;
- They reward desired behavior.

Again, by establishing incentives for project performance, the above goals are more likely to be realized.

Before continuing, it is important to point out "what contract incentives are not." They are not payment for risk assumption. The contractor should not receive a bonus for the random occurrence of events beyond its control (Ashley 1986). Incentives are paid when a contractor meets or exceeds previously identified standards of performance, of which they have direct control. As previously mentioned, the purpose of contract incentives is to bring the objectives of the contractor in line with those of the owner. These objectives need to be communicated effectively to the contractor if the desired results are to be realized. Unless the objectives are clearly understood by both parties, they will not be effective (Stukhart 1984). Generally speaking, the owner of a project will usually have three accepted goals: most economical cost, specified quality, and on-time completion (Stukhart 1984). The contractor will typically maintain the obvious goal of maximizing his or her their profit. Other goals and objectives do exist, and these will be discussed in the upcoming paragraphs.

Both owners and contractors must realize that risk is a principle that must be shared, and contractors must be able to control the resources necessary to achieve the incentives. Risk should be commensurate with potential gains. Stukhart (1984) defines risk as the exposure to possible economic loss or gain. He further states that risk allocation is very important in order for incentives to be effective. Risk is allocated to contracting parties in order to motivate them to perform in a professional manner. It is based in part on the return of profit to be realized. As previously mentioned, the degree of control over the risk must be considered. Responsibility for an end result must entail complete control over its occurrence. Finally, the relative "ability" of the parties to protect themselves against the risk is also a major consideration (Stukhart 1984). Ashley and Workman (1986) developed some factors to consider in determining the optimum allocation of risk. They include:

- The perception of risk;
- The controllability of risk (accountability without control costs money);
- Preference for risk assumption (ability to absorb or insure against it);
- The opportunity of risk (incentive value of risk)

Ibbs and Abu-Hijleh (1988) state that "excessive risk" offers no incentive value. They further state that it is in the owners best interest not to pass on all risks to the contractor; otherwise adversarial relationships will develop which counteract the goals of the incentive process. In summary, performance can be encouraged by the simple allocation of reasonable risk.

Since incentives are enacted to help "motivate" a contractor, the next few paragraphs will discuss motivational theory. Degoff and Freeman (1985) write that motivation is best defined in terms of its behavioral operations and that it is foremost, "goal oriented." It incites and directs an individual's action to accomplish a task. Ashley and Workman (1986) state that motivation is "a drive to satisfy a need or desire through goal attainment." Furthermore, the needs and desires of any contractor can be reduced to profit maximization. This goal constitutes a self-motivation in construction contracting. Effective motivation in contracting requires the adoption, at least indirectly, of the owner's project objectives by the contractor. This is the role of incentives: to motivate.

Stukhart (1984) feels that in a fixed-price contract, "the contractor achieves a major motivational factor, the desire to be in control of one's fate, ..."

The problem with most fixed-price contracts is that most are written without the involvement of the contractor, and adhesive terms often dictated to the contractor. Although the contractor is still in control of its destiny, other important success factors may be absent (communications, non-adversarial relationships, shared goals and objectives, etc.). Incentives help to derive the benefits of these other success factors.

The aforementioned principles are, at least in part, consistent with the goals of the Total Quality Management (TQM) process. The Transit Cooperative Research Program Report 8 stated that TQM change is about how organizations "perform work, get better at what they do, ... and inspire and reward their people" (TCRP Report 8, 1995). Just as the TQM process moves from the traditional, outdated mode of operation, to a newer, more progressive way of operation, one which improves and evolves continuously, so does the ideal incentive process. The TOM roadmap included in Report 8 identifies three distinct phases: Foundation, Momentum, and Commitment. These three phases are attributable to an effective incentive process as well. The Foundation phase forms the team, discusses shared goals and objectives, clarifies other values and expectations, and identifies satisfaction criteria. The Momentum phase further clarifies expectations, as well as recognizes and rewards desired behavior. The Commitment phase implements the management systems, establishes processes, and evaluates and improves through an appraisal system (TCRP Report 8 1995). Certainly the TQM process is substantially more involved than a simple contract incentive, however it can be safely said that the incentive process seeks the same end result as the TQM process, and accomplishes those goals in much the same manner.

There are a multitude of types of incentives available to owners. Depending upon the desired outcome of a project, the proper incentive(s) can be selected. Positive incentives reward a contractor for desired results, whereas negative incentives attempt to dissuade poor performance in specific areas by decreasing the amount of a contractor's fee. Incentives can be based on safety, cost, schedule, quality, and they exist in other fashions which will soon be discussed.

Most would agree that the best contractual incentive programs have a "win" feature. Those with only a "lose" potential are generally frowned upon (Neil 1990). A "win" feature is essentially a positive incentive, and a "lose" feature a negative incentive. A positive incentive focuses on the desired outcome, and rewards this desired outcome in a positive way, usually in the form of a monetary award. Positive incentives encourage positive contractor actions, behaviors, and relationships, as opposed to negative incentives (liquidated damages, which assess a penalty for late completion, are considered a negative incentive) (Neil 1990). Ashley and Workman (1986) point out that research has demonstrated that positive incentives contribute to improved project results, while negative incentives generally hamper project performance.

A combination of positive and negative incentives may be the solution for owners who are a skeptical of a "positive" only approach. Bechtel Group has used combined positive/negative incentives to avoid sub-optimized project

11

performance with great success. Combined incentives and cost sharing generally keep the contractor in good alignment with the customer's objectives and can be combined with schedule, safety,...and output performance incentives to match and balance contractor incentives with customer objectives (CII, 1995). This report further states that combined incentives, although difficult to administer, have proven fairly successful. Thus an educated, knowledgeable owner with the requisite resources could benefit from the use of combined incentives.

The following is a list of positive and negative incentives that have been utilized in the past:

#### Positive Incentives

- Awards for low or zero RIR/LWCIR (see Chapter 3 for definition);
- Awards for completion of construction under budget or under a guaranteed maximum price (GMP);
- Bonuses for meeting or exceeding target completion dates and milestone dates;
- Report card bonuses which take into account a contractor's overall performance over a designated period;
- The possibility of being selected by the owner as a long-term partner, or establishing a strategic alliance;
- The "Golden Letter"-a letter of commendation written by the owner for a job well done. This gives the contractor something of considerable market value;
- Preference on additional, future work

#### **Negative Incentives**

- Liquidated damages for late completion of an established milestone or overall completion date;
- Cost sharing or reduced fee for exceeding a construction budget (applicable in cost reimbursable type contracts);

• Increased retainage for undesirable performance (Neil 1990).

When an owner is a government contracting agency, it is usually required to accept low bids, and has difficulty employing most of the non-monetary incentives discussed (with the exception of the "Golden Letter").

#### **2.3 KEYS TO INCENTIVE USE SUCCESS**

For all the above incentive plans to work, it is crucial that the criteria be identified and agreed upon well in advance. Negotiated targets result in greater ownership and commitment by the contractor (Ibbs and Abu-Hijleh 1989). In addition, a cooperative relationship between the parties is considered instrumental in reducing project uncertainty and increasing the chances for project success (CII Pub. 24-1). Furthermore, owner personnel must genuinely want the contractor to achieve the maximum incentive because it corresponds to maximum owner success (CII Conference Packet 1996). Jaraiedi, Plummer, and Aber (1995) state that it is important for the contracting agency or owner to do everything possible to eliminate delays and disruptions. This essentially means that extra time and effort must be given to project development so as to avoid costly changes once the project begins. These changes not only affect the cost, but may impact the completion of a milestone or the entire construction process. If changes are made deadlines and targets should be adjusted so the contractor does not suffer a reduced award for circumstances that are the fault of the owner.

Even with all of the possible advantages of using incentives, there are some disadvantages as well. Positive incentives require substantially more contract administration. Ashley and Workman state that contracts with positive incentives appear to have stricter enforcement, greater disputes, and more suggested improvement than contracts without positive incentives (with the exception of positive cost incentives) (Ashley and Workman 1986). There is a tendency for owners to induce the contractor to accept more risk with incentives, which, as stated earlier, is not the purpose of incentives. Ashley and Workman (1986) identified some of the major disadvantages of incentives, as seen by the Business Roundtable:

- Owner's difficulty in establishing fair and equitable targets;
- Owner's additional administrative costs;
- Extra negotiations needed for implementation;
- Changes in owner priorities, beyond the contractor's control, require adjustment and possible re-negotiation of targets.

These disadvantages can be overcome with the proper awareness and management. It is possible to derive the positive benefits from incentive use, and CII (1995) has provided the following lessons learned and recommendations for incentive use:

- Align project incentives with key business success opportunities;
- Make incentives measurable and objective, using relevant benchmarks;
- Include (and preserve) incentive funding at expected outcome levels;
- Frequently share expectations and results;
- Link incentives to outcomes that reasonably can be controlled;
- Incentives alone do not ensure project success.

#### **Chapter 3: Research Methodology**

All of the data used to analyze incentive use was obtained from the Construction Industry Institute (CII). The data includes accumulated data, otherwise known as the Benchmarking and Metrics (BM&M) Database collected over a two-year period from 1996 through 1997. This database consists of 393 owner and contractor projects totaling over \$20.6 billion in cost. Most of the projects are classified as "Heavy Industrial" and are located in the United States and Canada (CII BM&M Report 1997). Since the purpose of this thesis is to determine whether or not construction contract incentives can help owners or procurement agencies reach their goals, only the owner data were analyzed.

Most of the resources utilized for the literature review were found in the Engineering Library at the University of Texas at Austin. A few items were borrowed or purchased from CII, where a significant amount of literature concerning construction is available. There was ample material to conduct a comprehensive literature review.

The BM&M database includes two years of accumulated data. The files for each year are maintained separately, thus a significant amount of time was spent simply stratifying the data from the 1996 files (Version 1.0), and the 1997 files (Version 2.0). The incentive use information for each respective project was included in a separate file from that of the general project information and much time was spent transferring the appropriate incentive information to the file containing the general project information. This incentive information referred to was simply each owners' reply concerning the use of cost, schedule, and safety incentives, as well as the type used (positive, negative, or both) if any. Figures 3.2 and 3.3 at the end of this chapter show how each incentive question was prepared in Version 1.0 and 2.0 respectively. Figure 3.1 is an easy reference flow chart showing the complete methodology used for completion of this thesis.



Figure 3.1: Research methodology flowchart

Once the appropriate incentive information was included with each file, both versions of data were screened and all of the data unrelated to this research was deleted so as to provide for a more streamlined, easy to manipulate, file. The major information that was kept (refer to Appendix B) included the project number, public or private contract, incentives used, construction budget, construction cost, planned schedule, as-built schedule, as well as the number of recordable and lost workday case incidents for each respective project.

Finally, both versions 1.0 and 2.0 needed to be combined into one file in order to conduct the appropriate analysis. Each column of data had to contain the exact type of information as that particular column from the other file. After both versions of data were combined into one master spreadsheet, the data were ready for analysis.

The spreadsheet program used for this entire process (and for graph development) was Microsoft Excel<sup>TM</sup>. This program made for simple sorting of data. Each time an analysis was made using a different dependent variable, the appropriate sort function could be carried out from the master file. For example, when analyzing safety performance versus safety incentive use, the database was sorted by the column containing the incentive type used (if any), with the RIR and LWCIR subsequently being calculated. Projects lacking the necessary data to evaluate safety performance were simply deleted from that particular analysis (a project that gave no information on the lost workday cases may still be valuable when evaluating cost growth).

Below are the formulas used during the analysis portion of this research.

With the exception of the incentive use index, all formulas are in the same format

used by the CII benchmarking committee.

• Safety Performance:

1. Recordable Incident Rate (RIR): (# recordable incidents)/(# craft work hours) \* (200 K w-h/yr).

- 2. Lost Workday Case Incident Rate (LWCIR):
  (# lost workday cases)/(# craft work hours) \* (200 K w-h/yr).
- Construction Cost Growth: (Actual Construction Cost-Budgeted Construction Cost)/Actual Cost.
- Construction Schedule Growth: (Actual Construction Duration-Predicted Duration)/Predicted Duration
- Incentive Use Index: The total number of incentives used on a project. The range is between 0 and 6, and accounts for safety, cost, and schedule incentives only. For example, if a project employs both positive and negative schedule incentives, the corresponding incentive use index would be 2.

Hypothesis testing was performed using statistical analysis. This analysis essentially compares the relative values of two means to determine if the difference between them, if any, is significant or can be attributed to chance. Using either the z or t statistic, an analysis can be made. For analysis containing 30 or more projects in the sample, the z statistic is used. For analysis containing less than 30 samples, the t statistic is used (Blank, 1980). All the analyses (except for the one concerning the evaluation of negative-only schedule incentives where the t statistic is used) used the z-statistic since each analysis sub-sample contained more than 30 projects.

The objective of these tests is to determine whether the means of two samples of projects are equal to each other at a certain level of significance. By establishing the null hypothesis [Mean of sample 1 = Mean of sample 2:( $\mu_1 = \mu_2$ )], one can prove if the two samples are considered equal or not. Unless the null hypothesis is accepted, the means are not considered equal. If the null hypothesis is accepted, one can conclude that any difference in the two populations is attributable to chance or sampling error, and not due to whether or not incentives were used. The level of significance used to prove or disprove the Null hypothesis in this thesis is 95%. The z-values are also compared to the acceptance range at 90% confidence, as well as other values if it could be shown to be significant. The formulas used for calculation of the z-value are as follows:

 $\sigma_d = ((\sigma_1)^2 / N_1 + (\sigma_2)^2 / N_2)^{.5}$ 

( $\sigma$ =standard deviation, N = number of projects in sample)

 $z=(\mu_1-\mu_{-2})/\sigma_d$ .

(µ=mean)

The Null hypothesis acceptance ranges at various levels of confidence are shown below:

95%: z-value from -1.96 to 1.96

90%: z-value from -1.645 to 1.645

86.7%: z-value from -1.5 to 1.5

80%: z-value from -1.282 to 1.282

The analysis of the data follows in Chapter 4 and reflects the aforementioned methodology.

| <u>quired in a phase, leave blank)</u><br>Pre-project Design Procurement Construct Start-up |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
|---------------------------------------------------------------------------------------------|----------|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|
|                                                                                             | planning |   |   |   |   |   |   |   |          |   |   | _ |   |   |   |
|                                                                                             | +        | - | 0 | + | - | 0 | + | - | 0        | + | - | 0 | + | - | 0 |
| Cost                                                                                        |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Schedule                                                                                    |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Safety                                                                                      |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Productivity                                                                                |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Quality                                                                                     |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Customer<br>Satisfaction                                                                    |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
| Operability                                                                                 |          |   |   |   |   |   |   |   |          |   |   |   |   |   |   |
|                                                                                             |          |   |   |   | - |   |   |   | <u> </u> |   |   |   |   |   |   |

Figure 3.2: Version 1.0 Incentive use question

(Version 2.0: Question 10) If **Contract Incentives** were utilized, please indicate whether those incentives were positive (a financial incentive for attaining an objective), negative (a financial disincentive for failure to achieve an objective), or both. Circle "+" to indicate a positive incentive and circle "-" to indicate a negative incentive.

| Comp.<br>Name | Func<br>-tion | Approx.<br>Percent<br>of<br>Function<br>(Nearest<br>10%) | Type of<br>Remun.<br>(Contract<br>End) | V<br>tl<br>co<br>alli<br>par<br>Ye | Vas<br>his<br>mp.<br>an<br>ance<br>tner<br>?<br>s/No |      | C<br>(circ | Contra   | ict In<br>mai | nce    | entive<br>as ap | s<br>ply | ) |
|---------------|---------------|----------------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------------|------|------------|----------|---------------|--------|-----------------|----------|---|
|               |               |                                                          |                                        |                                    |                                                      | Cost |            | Schedule |               | Safety |                 | Quality  |   |
|               |               |                                                          |                                        | Y                                  | N                                                    | +    | -          | +        | -             | +      | -               | +        | - |
|               |               |                                                          |                                        | Y                                  | Ν                                                    | +    | -          | +        | -             | +      | -               | +        | - |
|               |               |                                                          |                                        | Y                                  | Ν                                                    | +    | •          | +        | -             | +      | -               | +        | - |
|               |               |                                                          |                                        | Y                                  | Ν                                                    | +    | •          | +        | -             | +      | -               | +        | I |
|               |               |                                                          |                                        | Y                                  | Ν                                                    | +    | -          | +        | -             | +      | -               | +        | - |
| ·             |               |                                                          |                                        | Y                                  | Ν                                                    | +    | -          | +        | -             | +      | -               | +        | - |
|               |               |                                                          |                                        | Y                                  | Ν                                                    | +    | -          | +        | 1             | +      | -               | +        | - |
|               | Γ             |                                                          |                                        | Y                                  | Ν                                                    | +    | -          | +        | -             | +      | -               | +        | • |

Figure 3.3: Version 2.0 Incentive use question

#### **Chapter 4: Analysis**

#### **4.1 SAMPLE CHARACTERIZATION**

This analysis was conducted on 183 owner-submitted projects. None of the data submitted to CII by any contractor was considered. Before any hypothesis testing was done, the sample was first broken down several different ways in order to characterize the diversity of projects. All of the descriptions provided are presented in both graphical and written format throughout the chapter.

Figure 4.1 shows the sample projects in terms of "Industry Type." Any project submitted to CII is included in one of four possible categories. The categories are building projects, heavy industrial projects, light industrial projects, and infrastructure projects. Examples of each type are as follows:

- <u>Heavy Industrial Projects</u>-Electrical Generating, Oil Exploration & Production, Oil Refining, Pulp and Paper, Chemical Manufacturing, Environmental, Metals Refining & Processing, and Natural Gas Processing;
- <u>Light Industrial Projects</u>-Pharmaceuticals Manufacturing, Consumer Products Manufacturing, Microelectronics Manufacturing, Automotive Manufacturing, Foods, and Office Products;

- <u>Infrastructure Projects</u>-Electrical Distribution, Highway, Navigation, Flood Control, Rail, Water/Wastewater, Airport, Tunneling, Marine Facilities, and Mining;
- <u>Buildings</u>-Lowrise/Highrise Office, Warehouse, Hospital, Laboratory, School, Prison, Hotel, Maintenance Facilities, Parking Garage, and Retail.



Figure 4.1: Breakdown of database by industry type

As can be seen in Figure 4.1, the majority of the projects are heavy industrial. A total of 100 projects, constituting 54 percent of the database, were heavy industrial. The next largest group was the building projects, which numbered 40 in all (22 percent). The remaining sample projects included 29 light

industrial projects (16 percent) and 14 infrastructure projects (8 percent). As noted in the figure, these projects were from all cost categories.

The types of projects submitted were further classified as being modernization, grass roots, or add-on projects. Modernization projects are facilities for which a substantial amount of the equipment, structure, or other components are replaced or modified, and which may expand capacity and/or improve the process or facility. Grass roots projects are where a new facility is built from the foundation and up. A project requiring demolition of an existing facility before new construction begins is also classified as grass roots. Add-on or addition projects are those where a new addition ties in to an existing facility, often intended to expand capacity.

The projects were essentially evenly distributed among the three project types. Figure 4.2 shows this distribution. A total of 65 projects were classified as grass roots (36 percent), while the remaining 118 projects were split evenly between modernization and addition projects (32 percent each). This even distribution of projects is probably less significant than the uneven distribution in terms of industry type, given the wide range of cost and scope.



Figure 4.2: Breakdown of database by project type



Figure 4.3: Number of public and private projects in database

The database was dominated by private projects, as shown on the previous page in Figure 4.3. A total of 81 percent, 143 out of the 183 projects, were from the private sector. The portion of public projects represented a mere 19 percent, 35 in all, of the data. Although this is unbalanced, there is still enough data to provide some significant comparisons between the two populations.

Public and private entities were each evaluated based on their respective incentive use. Each group was looked at individually and the amount of projects utilizing cost, schedule, and safety incentives (all types) was determined. Figure 4.4 and Figure 4.5 illustrate the public and private use of incentives. Some projects had multiple incentives and are reported in more than one category.



Figure 4.4: Public vs. private entity incentive use


Figure 4.5: Types of incentives used by public and private entities

As was anticipated, private entities used cost incentives a great deal more than public. In fact, they employed them almost three times as much. The private sector reported a 30 percent use rate, while the public reported just over 11 percent. Since most public entities are constrained by narrow procurement statutes, which mandate the acceptance of the lowest responsible, responsive bidder, this is not surprising. As Figure 4.5 shows however, there were four public projects that reported the use of positive cost incentives. All four of these projects were classified as electrical additions (modernization projects). It is interesting to note that three of these four projects were procured on a costreimbursable basis, which lends itself perfectly to the use of cost incentive use.

It is quite obvious why the private sector uses cost incentives. They are attempting to control expenditures so that the maximum return on investment may be realized. Private entities are in business to make profit, and by sharing any cost savings with the contractor, they feel they may be increasing their chances of realizing this goal. As Figure 4.4 shows, a total of 45 private projects included cost incentives (30.4 percent). Of these 45 projects, only one utilized a negative-only incentive approach.

The calculated use of schedule incentives, also shown in Figure 4.4, provided interesting results. Of the 35 public projects, 17 employed some type of schedule incentive, almost 50 percent. Figure 4.5 shows that, of these 17 projects, 11 utilized negative-only incentives (most likely the assessment of liquidated damages for late completion). Three projects reported the use of positive-only incentives, and the remaining three public projects used a combination of positive and negative schedule incentives.

The private use of schedule incentives was similar to their use of cost incentives. There were 47 private projects that contained some type of schedule incentive, which amounted to just under 32 percent (see Figure 4.4). In contrast again with public entities, Figure 4.5 shows that 30 of these 47 projects utilized positive schedule incentives. Only three of the 148 private projects utilized a negative-only schedule incentive. A total of 14 projects included both positive and negative schedule incentives. This thesis will attempt to show that the use of

negative-only schedule incentives is counterproductive. Private owners seem to have adopted the same theory by looking at their overall schedule incentive use.

The comparative use of safety incentives was similar to that of cost incentives and is also included in Figures 4.4 and 4.5. Only three of the public projects utilized a safety incentive, a total of only 8.6 percent. A significant number of private entities did, however, use safety incentives. A total of 54 out of the 148 private projects (36.5 percent) employed them. Figure 4.5 indicates the types of safety incentives utilized were essentially all positive, although two private projects reported the use of negative-only safety incentives, and six private projects employed a combination of positive and negative incentives.

As is the case with cost incentives, it is likely difficult for public owners to justify the use of safety incentives. Under constant scrutiny from the general public, incentive use is a "hard sell." Private firms are free to employ any kind of incentive that they wish in order to help them realize their goals. Reducing the number of accidents on a private project is probably a higher priority due to the litigious atmosphere that has recently developed. Third party lawsuits are more likely to be filed against a private entity than a public one. Most public contracts contain a significant amount of exculpatory language that indemnifies them anyway. CII has estimated that a Recordable Incident (RI) costs approximately \$1100, and a Lost Workday Case (LWC) costs almost \$50,000. If safety incentives can be shown to reduce the RIR and LWCIR on a project, not only will significant money be saved by all parties involved in the construction process, the intangible effects of a safer jobsite like better moral, higher productivity and better efficiency will abound.

The next comparison made was the relative incentive use among the respective industry types, shown in Figure 4.6. The largest representative group, heavy industrial projects, also recorded the most incentive use among the industry types. Of the 100 heavy industrial projects, 37 (37 percent) employed some type of cost incentive, almost double the percentage of all the other industry types. Schedule incentive use was slightly higher at 40 percent, and an even higher number of heavy industrial projects, 44 percent, utilized safety incentives.

At the low end, except for schedule incentive use, was the building industry. Only four of these projects (10 percent) utilized a cost incentive, and an even lower number, 7.5 percent, employed safety incentives. It would be interesting to see the overall RIR's and LWCIR's for each industry type to determine if one is considered safer than the rest. The incentive use rates indicated in Figure 4.6 are not assumed to be representative of the construction industry as a whole. Building projects did record the second highest schedule incentive use at 35 percent.

The light industrial and infrastructure projects were similar in their use rates. Cost incentives were employed 14.3 percent and 20.7 percent of the time respectively. Schedule incentives were seen on 21.4 percent of light industrial projects, and on 24.1 percent of the infrastructure projects. Safety incentive use was slightly over 20 percent at 21.4 percent and 24 percent respectively.



Figure 4.6: Incentive use within each industry type

Incentive use was also characterized in terms of project nature. Figure 4.7 shows how the 183 projects utilized incentives from the perspective of project type. Grass roots projects indicated the highest overall incentive use. Of the 65 grass roots projects, 22 utilized some type of cost incentive (33.8 percent), with over 40 percent containing a schedule incentive (27 total). Addition and modernization projects had similar use rates. Of the 59 addition and modernization projects, 22 percent and 23.7 percent employed cost incentives respectively, approximately 10 percent below that of grass roots. Schedule incentive use in these two categories was also approximately 10 percent of the solution and solution and projects. Addition projects utilized them 30.5 percent of the

time, while modernization projects employed them slightly more at 32.2 percent of the time. All three categories reported safety incentive use at slightly over 30%, a fairly even distribution.



Figure 4.7: Incentive among each construction category

Given that most of the projects are of the heavy industrial type, it is not surprising that the grass roots projects contain more schedule incentives than the rest, since a quicker completion of the new facility may result in a quicker return on investment.

The final comparison for characterization purposes is provided in Figure 4.8. This graph shows the average Incentive Use Index for both public and private entities. As was shown in the previous paragraphs, private projects generally contain a higher percentage of incentives when compared to public projects. The possible score for the Incentive Use Index is in the range of 0-6. Private projects had an average index rating of 1.2, 33 percent higher than the public projects' average rating of 0.8. This seems to be consistent with logical thought. Later, this report will attempt to correlate a higher incentive use index with improved project performance. The development of the incentive use index was discussed in chapter 3.



Figure 4.8: Average Incentive Use Index for public and private entities

## 4.2 SAFETY PERFORMANCE VS. SAFETY INCENTIVES

Safety incentives are utilized on construction projects for the obvious reason of curbing accidents. The construction process is inherently dangerous, and given the escalating cost of insurance, reducing the amount of incidents makes sense. The costs of accidents, already mentioned in this thesis provide ample reason to endeavor to reduce the accident rate on a project.

Safety incentives are employed by owners with the expectation that a contractor will take extra time in the proper planning and execution of each activity. It is also hoped that each individual construction worker will have an increased awareness concerning safety on the job site. The average RIR and LWCIR for the construction industry, as reported by OSHA, is 9.8 and 4.3 respectively. As one can discern from Figure 4.9, the average rates from the owner projects are very low compared to the industry as a whole. CII reports that CII member companies maintain an impressive average RIR and LWCIR of 2.3 and 0.48 respectively.

The owner projects were analyzed to determine if the use of positive safety incentives had any impact on the RIR and LWCIR of a project. To test the null hypothesis, which says that there is no difference (whether or not incentives were used), the projects were separated into those that employed positive safety incentives and those projects that did not indicate the use of any safety incentives at all. As discussed in Chapter 3 of this report, several projects were eliminated from consideration due to lack of necessary data. Of the remaining 139 projects containing sufficient safety data, 47 utilized positive incentives, with the remaining 92 projects containing no safety incentives. The first comparison included projects from all cost categories, industry groups, and project types. Figure 4.9 shows the mean (average) RIR and LWCIR for these respective incentive use categories.

The RIR for each group of projects was nearly identical at 3.8 for the positive incentive group, and 3.9 for the no incentive group. Although additional research is certainly necessary, this may give the impression that recordable incidents are bound to happen regardless of incentive use, and may be more related to a companies long-standing safety procedures and philosophy. At a 95 percent confidence level, these two populations produced a z-value of -.173, which indicates acceptance of the null hypothesis, essentially meaning that there is no statistical difference between these two groups.



Figure 4.9: Effect of positive safety incentives on safety performance

Safety incentive employment did appear however to significantly reduce the LWCIR on a project. The 47 projects that employed safety incentives had a mean LWCIR of .5, compared to .9 for those projects with no safety incentives. Given the cost of a lost workday case, and the consequent effects on morale and productivity, this appears to be a significant result. Statistical analysis yielded acceptance of the null hypothesis, however, at 95 percent confidence with a zvalue of -1.42. If the confidence level is reduced to 80 percent, the Null hypothesis could be rejected, indicating that these two groups are not the same. Although it is desired to have a confidence level of 90 percent or greater, one cannot ignore the significance of these results.

In order to further analyze the impacts of safety incentives, the projects were divided into two categories. The projects were split into those having greater than 250,000 craft-work-hours (CWH), and those having less than 250K CWH. This analysis will help determine the effect of safety incentives on projects of different sizes. The projects were only split into two categories because of the sample size did not allow for the separation into four categories, in the manner that CII typically does in most analyses. Figures 4.10 and 4.11 show the results of this analysis for the RIR and LWCIR respectively.

Consistent with the previous analysis, the average RIR was nearly equal for both groups, with the projects employing safety incentives producing a slightly lower average RIR. The 19 incentive based projects having less than 250K CWH produced an average RIR of 3.6. The 67 non-incentive based projects having less than 250K CWH produced an average RIR of 3.9. Statistical analysis of these two groups indicates that they are essentially the same at any significant confidence level.



Figure 4.10: Effect of safety incentives on the RIR (CWH dependent)

The average RIR for the 28 incentive based projects containing more than 250K CWH was 3.9, compared to a 4.1 for the 25 non-incentive based projects over 250K CWH. Statistical analysis provided for acceptance of the null hypothesis for these two groups as well. Safety incentive use did not seem to have an impact on the RIR of these projects.



Figure 4.11: Effect of safety incentives on the LWCIR (CWH dependent)

The comparison of the LWCIR proved to be more interesting. The projects below 250K CWH provided an essentially equal comparison, however those projects with more than 250K CWH proved to differ significantly in their corresponding LWCIR. Figure 4.11 first compares 19 projects with incentives to 67 projects without incentives (< 250K CWH). The incentive-based projects had a slightly lower average rate at .4, compared to .6 for the non-incentive based projects. Statistical analysis showed these two groups to be essentially the same.

The second comparison that included in Figure 4.11 concerns projects containing more than 250K CWH. The 28 projects with safety incentives

produced an average LWCIR of .5, while 25 projects containing no safety incentives had an average LWCIR more than three times that amount at 1.7. Even at 95% confidence, these two groups are not the same, thus we can reject the null hypothesis and it can be concluded that safety incentives are effective in reducing the LWCIR on a project, especially on larger projects.

These analyses indicate that safety incentives may help one realize a significant reduction in project accidents, at least lost workday cases. Although it is not clearly evident that safety incentives reduce the RIR on a project, the fact that they can reduce the LWCIR is significant, and could have a larger impact on any project as a whole. Positive incentives will encourage contractors to plan better for safe work practices and to instill more awareness in their crews. The consequent effects of this will likely apply to major items of work. Even without a reduction in the RIR, the fact that the LWCIR can be reduced with incentives gives ample reason alone for their employment.

#### **4.3 COST INCENTIVES VS. COST GROWTH**

The next research question that will be discussed is whether positive cost incentives actually lower cost growth. After screening the database for the appropriate cost growth information, 161 projects remained for analysis. Of these projects, 39 employed the use of positive cost incentives or a combination of positive and negative. Figure 4.12 shows that these projects had an average cost growth of only 2.7 percent. The remaining 122 projects that did not employ any cost incentives experienced an average cost growth of 4.7 percent, 2 percent





Figure 4.12: Effect of cost incentives on cost growth

Statistical analysis, however, indicated that these two groups of data were essentially the same in terms of cost growth, even though the non-incentive group had an average cost growth more than twice that of the incentive group.

Certainly additional data is needed to accurately quantify the effects of cost incentives on cost growth. One needs to also take into account for any changes, both owner requested and from other reasons. The reimbursement type of a project, whether it is lump sum or cost-reimbursable, also likely has a significant impact on the impact of any cost incentive employed.

### **4.4 SCHEDULE INCENTIVES VS. SCHEDULE GROWTH**

The next analysis was a test on whether or not positive schedule incentives (or combination positive/negative) contributed to a reduction in schedule growth. As shown in Figure 4.13, these projects were compared with those projects utilizing only negative incentives or no schedule incentives at all. One-hundred fifty-nine projects remained for analysis after the data were screened for the appropriate schedule growth information. A total of 44 projects employed either positive or a combination of positive & negative schedule incentives. This group of projects produced an average cost growth of 5.08 percent. The 115 remaining projects that did not employ schedule incentives, or did so only in a negative fashion, experienced an average schedule growth of 9.32 percent, almost double that of the former.



Figure 4.13:Effect of schedule incentives on schedule growth

The standard deviations in both groups were fairly large and statistical analysis of the results yielded a z-value of -.934, well within the acceptance range of the null hypothesis. These two samples therefore, are considered the same in terms of schedule growth.

This report also endeavored to determine if the use of only negative schedule incentives was counterproductive to schedule growth. Unfortunately only seven projects were available that employed only negative schedule incentives. These seven projects were compared with the remainder of the 159 projects considered in the previous analysis. This comparison is shown in Figure 4.14.





"Negative only" schedule incentives produced a whopping average schedule growth of 27 percent in this small group of projects. Although this small sample is not considered statistically reliable, it is nonetheless interesting and should spark interest for further analysis. The remaining projects, totaling 152 when combined, had an average schedule growth of 7 percent. Statistical analysis yielded a z-value of -1.82, which although in the range of null-hypothesisacceptance at 95 percent confidence, falls outside this range when the confidence value is reduced to 90 percent, indicating that these two groups can be considered different in terms of schedule growth at 90 percent confidence.

Since this comparison involved a small number of projects utilizing a "negative-only" incentive approach, the t-statistic was also calculated. The t-value calculated, .208, indicated an acceptance of the null hypothesis at almost any level of significance, however, giving further indication that the two sample populations are essentially the same in terms of schedule growth. Additional "negative only" projects should be analyzed so that the impact of "negative only" schedule incentives can be confidently ascertained. This information should prove valuable to most public contracting entities, since most public contracts contain a "liquidated damages" clause without any provisions for additional contractor compensation in the case of on-time or early completion.

## 4.5 ANALYSIS SUMMARY

The following tables contain a summary of the results and the statistical analysis done for each comparison made thus far.

| Safety Analysis                       |          |      |       |      |
|---------------------------------------|----------|------|-------|------|
| (Overall)                             | Mean     | Std  | Mean  | Std  |
| · · · · · · · · · · · · · · · · · · · | <u> </u> | Dev  |       | Dev  |
| Positive Incentives vs.               | 3.8      | 3.52 | 0.5   | 0.8  |
| No Incentives                         | 3.9      | 5.09 | 0.9   | 2.81 |
| z-value                               | -0.173   |      | -1.42 |      |
| Accept Null<br>Hypothesis?            |          |      |       |      |
| 95% Confidence                        | Y        |      | Y     |      |
| 90% Confidence                        | Y Y      |      | Y     |      |
| 80% Confidence                        | Y        |      | N     | ]    |

Table 4.1: Summary of Safety Analysis (overall)

Table 4.2: Summary of safety analysis (< 250K cwh)

| (<250K CWH)                | Mean   | Std  | Mean   | Std  |
|----------------------------|--------|------|--------|------|
|                            | RIR    | Dev  | LWCIR  | Dev  |
| Positive Incentives<br>Vs. | 3.6    | 3.87 | 0.4    | 0.86 |
| No Incentives              | 3.9    | 5.26 | 0.6    | 1.64 |
|                            |        |      |        |      |
| z-value                    | -0.244 |      | -0.664 |      |
| Accept Null<br>Hypothesis? |        |      |        |      |
| 95% Confidence             | Y      |      | Y      |      |
|                            |        |      |        |      |
| 90% Confidence             | Y      |      | Y      |      |

| Table: 4.3: Summary | of safety anal | ysis (>250K cwh) |
|---------------------|----------------|------------------|
|---------------------|----------------|------------------|

| Safety Analysis<br>(cont'd) |             |            |               |            |
|-----------------------------|-------------|------------|---------------|------------|
| (>250 K CWH)                | Mean<br>RIR | Std<br>Dev | Mean<br>LWCIR | Std<br>Dev |
| Positive Incentives<br>Vs.  | 3.9         | 3.32       | 0.5           | 0.77       |
| No Incentives               | 4.1         | 4.67       | 1.7           | 4.65       |
| z-value                     | -0.171      |            | -2.06         | -          |
| Accept Null<br>Hypothesis?  |             |            |               |            |
| 95% Confidence              | Y           |            | N             | ]          |
| 90% Confidence              | Y           |            | N             | -          |

Table 4.4: Summary of cost growth analysis

| Cost Analysis                          | Mean Cost Growth | Std   |
|----------------------------------------|------------------|-------|
| -                                      |                  | Dev   |
| Positive/Combined<br>Incentives<br>Vs. | 0.027            | 0.261 |
| Negative/No Incentives                 | 0.047            | 0.334 |
| z-value                                | -0.38            |       |
| Accept Null Hypothesis?                |                  |       |
| 95% Confidence                         | Y                |       |
| 90% Confidence                         | Y                |       |

Table 4.5: Summary of schedule growth analysis

| Schedule Analysis                      | Mean Schedule | Std   |
|----------------------------------------|---------------|-------|
|                                        | Growth        | Dev   |
| Positive/Combined<br>Incentives<br>Vs. | 0.051         | 0.241 |
| Negative/No Incentives                 | 0.093         | 0.292 |
| z-value                                | -0.934        |       |
| Accept Null Hypothesis?                |               |       |
| 95% Confidence                         | Y             |       |
| 90% Confidence                         | Y             | ]     |

Table 4.6: Summary of schedule growth analysis (negative-only incentives)

| Schedule Analysis                  | Mean Schedule    | Std   |
|------------------------------------|------------------|-------|
|                                    | Growth           | Dev   |
| Negative Only<br>Incentives<br>Vs. | 0.27             | 0.28  |
| All others                         | 0.073            | 0.277 |
| z-value                            | -1.82            |       |
| t-value                            | .208             |       |
| Accept Null Hypothesis?            |                  |       |
| 95% Confidence                     | Y                |       |
|                                    |                  |       |
| 90% Confidence                     | N (Y w/ t-value) |       |

.

### **4.6 INCENTIVE USE INDEX VS. PROJECT PERFORMANCE**

The incentive use index developed for purposes of this research also provided interesting results. As previously discussed, this index is simply the total number of incentives employed during the construction phase for a particular project. If a positive cost incentive is used, the incentive use index would equal one. If both a positive and negative cost incentive is used, the incentive use index is equal to two. The range for this research is from zero to six, since only three incentive type were evaluated (safety, cost, and schedule). This idea was developed in order to determine whether a higher index produces better or worse project performance in terms of safety, cost, and schedule. Projects that have an index between zero and one will be compared to projects with an index between two and six

#### **4.6.1 Safety Performance**

A total of 138 projects were available to make the analysis on safety performance. Figure 4.15 shows that both the average RIR and LWCIR were similar in each group. There were 46 projects indicating an incentive use index of greater than two, and these projects experienced an average RIR of 4.1 and an average LWCIR of 0.7. The projects with an index less than two, 92 in all, experienced slightly better performance with an average RIR of 3.8 and an average LWCIR of 0.5.



Figure 4.15: Incentive use index vs. overall safety performance

These results are interesting and could suggest that too many incentives employed, especially if geared towards cost and schedule performance, could be detrimental to the overall safety performance of a project. The trend shown for this sample indicates that when too many incentives are employed, contractors may lose their focus on safety, however, statistical analysis indicates that these two groups are essentially the same in terms of safety performance.

## 4.6.2 Cost Growth

After screening the data, 148 projects were left to conduct the same analysis on cost growth, shown in Figure 4.16. A total of 44 projects had an incentive use index greater than 2, while the remaining 104 projects had an index less than 2. The 44 projects in the higher use range produced an impressive overall average cost growth of -2.0 percent. The group of projects with a lower use index experienced an average cost growth of 4 percent, for a total difference of 6% between the two groups. Given the average cost of the projects in the data, this amounts to a significant amount of money.

Quantitatively speaking, these results are significant. On a hypothetical project worth \$50 million, analysis of this sample indicates that higher incentive use correlates to six percent savings, or \$3 million.

Statistical analysis yielded a z-value of 1.86, which although means acceptance of the Null hypothesis at 95 percent confidence (just barely), at 90 percent confidence, the Null hypothesis may be rejected and it may be concluded that these two groups are different when it comes to cost growth. If it can be confidently shown that safety performance does not suffer as a result of greater incentive use, the fact that one is more likely to achieve reduced cost growth if a greater number of incentives are used will likely make them a popular tool for improving project results.



Figure 4.16: Incentive use index vs. project performance

# 4.6.3 Schedule Growth

The analysis of the impact of the incentive use index on schedule performance produced results consistent with that of the cost growth analysis, and is also shown in Figure 4.16. The group of projects with an index greater than two, 47 in all, indicated an average schedule growth of 4 percent. This number is much lower than the 11 percent average schedule growth reported by the projects with an index of less than two (109 in all). Assuming a project is worth \$50 million, with a 24 month duration and an assumed 18 percent return on investment (ROI); analysis of this sample indicates a seven percent schedule growth reduction, 1.7 months in all. Combine that with 1.5% (ROI) per month times \$50 million, and this results in a savings of \$1.25 million from the schedule savings.

Statistical analysis of this comparison yielded a z-value of 1.78, which again, at 95 percent confidence, means acceptance of the null hypothesis. At 90 percent confidence, however, the null hypothesis may be rejected and it may be said that a higher incentive use index appears to produce lower schedule growth on a project. Similar to the cost growth analysis, as long as it can be shown that safety performance does not suffer as a result of increased incentive use, it seems that incentive packages can reduce not only cost, but the schedule as well.

# 4.6.4 Summary of Incentive Use Index research

The tables on the following pages summarize the aforementioned results.

۹

| Use Index Performance   |          |      |       |      |
|-------------------------|----------|------|-------|------|
| Safety                  | Mean RIR | Std  | Mean  | Std  |
|                         |          | Dev  | LWCIR | Dev  |
| 0-1                     | 3.8      | 4.68 | 0.5   | 1.09 |
| vs.                     |          |      |       |      |
| 2-6                     | 4.1      | 4.48 | 0.7   | 1.81 |
|                         |          |      |       |      |
| z-value                 | -0.4     |      | -0.4  |      |
|                         |          |      |       |      |
| Accept Null Hypothesis? |          |      |       |      |
| 95% Confidence          | Y        |      | Y     |      |
|                         |          |      |       |      |
| 90% Confidence          | Y        |      | Y     |      |

Table 4.7: Summary of Incentive Use Index vs. safety performance

7

r

Table 4.8: Summary of Incentive Use Index vs. cost growth

| Cost Growth Analysis    | Mean Cost Growth | Std   |
|-------------------------|------------------|-------|
|                         |                  | Dev   |
| 0-1<br>Vs               | 0.04             | 0.256 |
| 2-6                     | 0.02             | 0.151 |
| z-value                 | 1.78             |       |
| Accept Null Hypothesis? |                  |       |
| 95% Confidence          | Y                |       |
| 90% Confidence          | N                |       |

Table: 4.9: Summary of Incentive Use Index vs. schedule growth

| Schedule Growth<br>Analysis               | Mean Schedule<br>Growth | Std<br>Dev |
|-------------------------------------------|-------------------------|------------|
| 0-1                                       | 0.11                    | 0.259      |
| Vs.<br>2-6                                | 0.04                    | 0.208      |
| z-value                                   | 1.85                    |            |
| Accept Null Hypothesis?<br>95% Confidence | Y                       |            |
| 90% Confidence                            | N                       |            |

# **Chapter 5: Conclusions and Recommendations**

### **5.1 CONCLUSIONS**

This thesis has shown that certain contract incentives, employed by owners to encourage a contractor to help the owner reach their goals and objectives, are effective, while the employment of others has shown to be, at best, marginally effective for the sample studied. The following paragraphs offer conclusions reached from the analysis conducted in Chapter 4 as well as recommendations for procurement agencies (included at the end of this chapter). Please note that these conclusions are valid for this sample only, but do shed light on a subject that has had little empirical study.

Public entities seem to shy away from the use of incentives, especially when compared to private entities. This is evident when one looks at the average use of cost and safety incentives. Just over 11 percent of public projects in the sample reported the use of cost incentives, and even less, 8.6 percent reported the use of safety incentives. There are many explanations for these low usage rates, none more obvious than the fact that public entities are usually constrained by laws dictating the acceptance of the dreaded "low bid." In this type of procurement method, the contractor bears the majority of risk, thus public entities may not realize any benefits from the use of these incentives anyway. If perhaps the remuneration type were different cost reimbursable for instance, then these types of incentives would be a more feasible option. In contrast, private contracts in the sample reported much higher incentive use rates at approximately 30 percent for each of the incentive types studied. Private firms are at greater liberty to determine their procurement strategy, and are likely benefiting.

Of no surprise was the fact that public entities did employ a significant amount of schedule incentives. Over 48 percent of the public projects submitted reported the use of schedule incentives, albeit 11 of the 16 reporting them utilized negative-only incentives. The preponderance of liquidated damages clauses in public contracts, with no commensurate reward for early completion, seems to be counterproductive. Private owners apparently have recognized this, since only three of the 47 private projects in the sample reporting a schedule incentive used a "negative-only" approach.

Incentive use among the various industry types was fairly evenly dispersed, with heavy industrial projects showing a 40 percent usage rate for cost, schedule, and safety incentives respectively. The use rate among each nature of project (add-on, grass roots, and modernization) was also fairly even at approximately 30 percent for each incentive type. The only project type that really showed any difference was grass roots projects, where over 41 percent reported the use of schedule incentives versus 30 percent for the other two types of projects. Incentive use was again shown to be more prevalent in private projects when the average Incentive Use Index was calculated for both private and public projects. Private entities had a 33 percent higher average use index at 1.2, versus the 0.8 calculated for the public projects. As the analysis in Chapter 4 indicates, private entities are benefiting, especially in the areas of reduced schedule growth and reduced cost growth.

The use of safety incentives in the sample was shown to improve project safety performance. Positive safety incentives employed on projects containing over 250,000 craft-work-hours have resulted in a drastic reduction in the average LWCIR. This reduction in the LWCIR is also evident on projects of all sizes, albeit at a lower confidence. Owners cannot ignore these results considering both the economic and humanitarian benefit of improved safety.

Positive/combined cost incentives in this sample did show a trend towards reduced cost growth, however, adequate statistical significance could not be attained. It is likely that with additional research the statistical criteria could be satisfied. Given the potential savings to owner entities and the seemingly high use rate of positive cost incentives, certainly more research is needed in this area. If it cannot be proven that they reduce cost, why employ them in the first place?

The use of positive/combined schedule incentives in this sample did indicate a lower potential for schedule growth. Similarly, negative-only incentives did seem to hinder project schedule performance, with the projects employing them in this sample showing an average schedule growth almost four times that of those projects with no schedule incentives or positive/combined schedule incentives. Although only a small number of projects reported the use of negative incentives, these results are startling nonetheless, especially to the public sector which often includes a liquidated damages clause in a contract without much thought. Similar to cost incentives, however, the analysis of schedule incentives did not pass the rigorous statistical testing, and further analysis with more data is needed to confirm these apparent trends.

The incentive use index analysis yielded some interesting results. While an increased amount of incentives did not necessarily improve safety performance (nor did it adversely affect it), utilizing 2 or more incentives on a project resulted in drastic reductions in both cost growth as well as schedule growth.

#### **5.2 RECOMMENDATIONS**

Based on the analysis of this sample, the following recommendations are offered to any entity engaged in the procurement of construction related services:

- Utilize safety incentives to the maximum extent. The benefits of a lower LWCIR are invaluable;
- Avoid the use of "negative-only" schedule incentives, particularly liquidated damages clauses. These clauses immediately create an adversarial relationship between the owner and contractor and are counterproductive to reducing the project duration;
- If incentives are desired, utilize a "packaged" approach. By using 2 or more incentives, the chances are increased that the project will experience both reduced cost growth and reduced construction duration.

- Do not blindly include incentives in any contract. Owner entities should become educated on incentive use and realize that incentives should be designed to reward contractors for desired behavior, not to reward the assumption of additional risk.
- Additional research should be conducted on the impact of incentive use when larger samples become available.

Appendix A: Analysis Data

| cil_id_a version type char publiphy cli_cntr cristtype | concost |
|--------------------------------------------------------|---------|
| O1 Version 1 Dormatory/Grass Roo Public 0 LS           | 4       |
| O10 Version 1 Electrical (Modernizal Private 0 LS      | 4       |
| O100 Version 1 Microelectr Add-on Private 0 CR         | 1       |
| O101 Version 1 Highrise O Grass Roo Private 0 CR       | 1       |
| O102 Version 1 Microelectr Add-on Private 0 CR         | 1       |
| O11 Version 1 Water/Was Add-on Private 0 LS            | 4       |
| O12 Version 1 Chemical Add-on Private 100 CR           | 4       |
| O13 Version 1 Chemical Modernizal Private 100 CR       | 4       |
| O14 Version 1 Chemical Add-on Private 60 CR            | 4       |
| O15 Version 1 Chemical Modernizal Private 90 CR        | 3       |
| O16 Version 1 Chemical I Grass Roo Private 100 CR      | 3       |
| O19 Version 1 Water/Was Add-on Private 0 LS            | 4       |
| O2 Version 1 Laboratory Grass Roo Public 0 LS          | 4       |
| O20 Version 1 Pulp and P Modernizal Private 0 LS       | 4       |
| O21 Version 1 Pulp and P Add-on Private 0 LS           | 4       |
| O22 Version 1 Chemical I Grass Roo Private 0 CR        | 1       |
| O23 Version 1 Chemical I Grass Roo Private 0 LS        | 1       |
| O24 Version 1 Chemical Modernizal Private 0 LS         | 4       |
| O25 Version 1 Chemical Add-on Private 0 CR             | 4       |
| O26 Version 1 Laboratory Grass Roo Private 0 GP        | 1       |
| O27 Version 1 Pulp and P Modernizal Private 0 LS       | 4       |
| O28 Version 1 Pulp and P Grass Roo Private 0 CR        | 1       |
| O29 Version 1 Laboratory Modernizal Public 0 LS        | 4       |
| O3 Version 1 Marine Fac Modernizal Public 0 LS         | 4       |
| O30 Version 1 Lowrise Of Modernizal Public 0 LS        | 4       |
| O31 Version 1 Lowrise Of Grass Roo Public 0 LS         | 4       |
| O32 Version 1 Lowrise Of Modernizal Public 0 LS        | 4       |
| O33 Version 1 Laboratory Grass Roo Private 16 LS       | 4       |
| O35 Version 1 Pharmacet Add-on Private 0 LS            | 4       |
| O36 Version 1 Pharmacet Modernizal Private 0 LS        | 4       |
| O37 Version 1 Metals Ref Modernizal Private 100 LS     | 4       |
| O38 Version 1 Lowrise Of Modernizal Private 0 GP       | 4       |
| O39 Version 1 Automotive Modernizal Private 0 LS       | 4       |
| O4 Version 1 Maintenan Grass Roo Public 0 LS           | 4       |
| O40 Version 1 Automotive Add-on Private 0 LS           | 4       |
| O41 Version 1 Automotive Modernizal Private -9 Unk     | 4       |
| O42 Version 1 Lowrise Of Grass Roo Private 0 CR        | 4       |
| O43 Version 1 Lowrise Of Add-on Private 0 CR           | 4       |
| O44 Version 1 Oil Refinin Modernizat Private 10 LS     | 4       |
| O45 Version 1 Lowrise Of Grass Roo Public 0 LS         | 4       |
|                                                        |         |

•

| conschet consate | inc indy   | critwichr | necrdini | Istwictic | RIR      | IWCIR    |
|------------------|------------|-----------|----------|-----------|----------|----------|
| 3 4              | 2          | 275953    | 0        | 0         | 0        | 0        |
| 4 4              | 0          | 85423     | Ō        | 0         | 0        | 0        |
| 1 1              | 3          | 27630     | 0        | 0         | 0        | 0        |
| 1 1              | 3          | 145836    | 11       | 2         | 15.08544 | 2.742807 |
| 1 1              | 3          | 1152930   | 31       | 0         | 5.377603 | 0        |
| 4 4              | i Ö        | 189500    | 17       | 4         | 17.94195 | 4.221636 |
| 4 4              | 0          | 63165     | 1        | 0         | 3.16631  | 0        |
| 3 4              | 2          | 63000     | 6        | 0         | 19.04762 | 0        |
| 4 4              | 0          | -999      | -999     | -999      | 200000   | 200000   |
| 4 4              | 2          | -999      | -999     | -999      | 200000   | 200000   |
| 4 1              | 3          | 1120000   | -999     | -999      | -178.393 | -178.393 |
| 4 4              | 0          | 69000     | 5        | 0         | 14.49275 | 0        |
| 2 4              | 1          | 275000    | 2        | 2         | 1.454545 | 1.454545 |
| 1 4              | 1          | 25375     | 2        | 0         | 15.76355 | 0        |
| 3 4              | 2          | 27975     | 2        | 0         | 14.29848 | 0        |
| 4 1              | 2          | 1117000   | 21       | 1         | 3.760072 | 0.179051 |
| 1 1              | <b>`</b> 3 | 410000    | 5        | 0         | 2.439024 | 0        |
| 4 1              | 1          | 86000     | 1        | 0         | 2.325581 | 0        |
| 4 4              | 0          | 120000    | 1        | 0         | 1.666667 | 0        |
| 4 4              | 1          | 186000    | 6        | 1         | 6.451613 | 1.075269 |
| 4 1              | 1          | 275818    | 8        | 1         | 5.800927 | 0.725116 |
| 1 1              | 3          | 637000    | 38       | 9         | 11.93093 | 2.825746 |
| 2 4              | · 1        | 62800     | 0        | 0         | 0        | 0        |
| 2 4              | · 1        | 130000    | 0        | 0         | 0        | 0        |
| 2 4              | 1          | -999      | -999     | -999      | 200000   | 200000   |
| 2 4              | 1          | 280000    | 4        | 3         | 2.857143 | 2.142857 |
| 4 4              | 0          | -999      | -999     | -999      | 200000   | 200000   |
| 4 4              | 0          | -999      | -999     | -999      | 200000   | 200000   |
| 4 4              | 0          | 135000    | 6        | 1         | 8.888889 | 1.481481 |
| 4 4              | 0          | 90000     | 4        | 0         | 8.888889 | 0        |
| 4 4              | 0          | -999      | -999     | -999      | 200000   | 200000   |
| 4 4              | 0          | 1000000   | 8        | -999      | 1.6      | -199.8   |
| 4 4              | 0          | 4/8//4    | 52       | 15        | 21./2215 | 6.266004 |
| 2 2              |            | 126000    | 0        | 0         | 0        | 0        |
| 4 4              |            | 112000    | 0        | 0         | 0        | 0        |
| 4 4              |            | -999      | -999     | -999      | 200000   | 200000   |
| 4 4              |            | 391409    | 4        | 0         | 2.043898 | 0        |
| 4 4              |            | 496000    | 14       | 0         | 5.645161 | 0.660067 |
| 4                | 1          | 300000    | 6        | 4         | 4        | 2.00000/ |
| 4 4              | 0          | -999      | -999     | -999      | 200000   | 200000   |
| 2 4              | ⊦ 2        | 40887     | 2        | 2         | 9.783061 | 9.783061 |

- -

| q_23 c | ii_id_c prb | udget  | projcost | budescon | actescon | Cost Grth | pincon_s |
|--------|-------------|--------|----------|----------|----------|-----------|----------|
| 2 0    | D1 194      | 400000 | 19900000 | 18373000 | 18873000 | 0.027214  | 10/1/93  |
| 1 0    | D10 22      | 461000 | 21533000 | 9512000  | 7926000  | -0.16674  | 7/1/94   |
| 1 0    | 0100 17     | 600000 | 17800000 | -999     | -999     | 0         | 9/9/09   |
| 1 0    | D101 15     | 200000 | 13800000 | -999     | -999     | 0         | 9/9/09   |
| 1 0    | 0102 1.3    | 34E+08 | 1.2E+08  | -999     | -999     | 0         | 9/9/09   |
| 2 0    | D11 38      | 237000 | 40197000 | 5250000  | 18164000 | 2.45981   | 9/9/09   |
| 2 0    | 012 10      | 600000 | 7720000  | -999     | 5965000  | -5971.97  | 9/9/09   |
| 1 0    | 013 23      | 000000 | 21900000 | 12040000 | 10020000 | -0.16777  | 1/15/95  |
| 2 0    | 014 47      | 050000 | 58400000 | 32450000 | 40600000 | 0.251156  | 3/1/93   |
| 2 0    | D15 1.2     | 24E+08 | 1.27E+08 | 6000000  | 62800000 | 0.046667  | 2/1/94   |
| 8 0    | D16 3.6     | 58E+08 | 3.54E+08 | 1.85E+08 | 1.77E+08 | -0.04324  | 5/1/92   |
| 2 0    | 019 24      | 000000 | 21500000 | 23600000 | 21100000 | -0.10593  | 7/30/94  |
| 2 0    | 02 64       | 800000 | 75132000 | 55089000 | 65132000 | 0.182305  | 9/15/91  |
| 2 0    | D20 7       | 648000 | 6440000  | 2900000  | 2447000  | -0.15621  | 9/19/94  |
| 2 0    | D21 7-      | 419000 | 6413000  | 2253000  | 1974000  | -0.12383  | 7/1/94   |
| 1 0    | 022 1.3     | 36E+08 | 1.24E+08 | 62100000 | 55100000 | -0.11272  | 4/15/94  |
| 1 0    | 023 44      | 300000 | 48300000 | 23076000 | 26576000 | 0.151673  | 3/15/95  |
| 1 0    | 024 13      | 300000 | 13632000 | 7245000  | 7553000  | 0.042512  | 3/15/94  |
| 2 0    | 025 15      | 580000 | 10403000 | 9457000  | 6089000  | -0.35614  | 12/15/92 |
| 1 0    | D26 23      | 400000 | 22700000 | 20130000 | 19485000 | -0.03204  | 7/15/93  |
| 1 0    | D27 51      | 000000 | 44600000 | 19009000 | 15015000 | -0.21011  | 1/20/93  |
| 1 0    | 028 65      | 000000 | 70900000 | 26200000 | 35683000 | 0.361947  | 7/15/90  |
| 2 0    | D29 5       | 345000 | 5400000  | 5000000  | 5000000  | 0         | 7/9/93   |
| 1 0    | 03 13       | 996000 | 15934000 | 12692000 | 14532000 | 0.144973  | 9/9/09   |
| 1 C    | 030 6       | 246000 | 6192000  | 5700000  | 5650000  | -0.00877  | 7/1/92   |
| 8 0    | D31 46      | 085000 | 43494067 | 42300000 | 40026000 | -0.05376  | 4/30/92  |
| 2 0    | 032 6       | 665000 | 7500000  | 6330000  | 7080000  | 0.118483  | 9/1/90   |
| 1 0    | D33 1.0     | 35E+08 | 1.4E+08  | 1.15E+08 | 1.19E+08 | 0.031113  | 9/9/09   |
| 2 0    | 035 16      | 000000 | 14500000 | 5750000  | 5500000  | -0.04348  | 9/26/93  |
| 2 0    | D36 15      | 500000 | 15100000 | 5500000  | 4200000  | -0.23636  | 7/1/94   |
| 2 0    | D37 8       | 000000 | 8200000  | 6500000  | 7300000  | 0.123077  | 6/30/95  |
| 1 0    | D38 1       | .5E+08 | 1.5E+08  | 1.28E+08 | 1.32E+08 | 0.03125   | 4/9/93   |
| 1 0    | 039 95      | 400000 | 1.04E+08 | 9000000  | 97700000 | 0.085556  | 1/23/95  |
| 2 0    | 04 17       | 600000 | 16947000 | -999     | 14897000 | -14912.9  | 9/9/09   |
| 2 0    | 040 34      | 000000 | 29800000 | 32300000 | 28311000 | -0.1235   | 9/12/94  |
| 2 0    | D41 56      | 400000 | 56000000 | 51900000 | -999     | -1.00002  | 8/24/92  |
| 1 0    | 042 31      | 090000 | 28281000 | 28190000 | 25474000 | -0.09635  | 9/9/09   |
| 1 0    | D43 36      | 920000 | 39100000 | 33120000 | 34700000 | 0.047705  | 7/23/93  |
| 2 0    | 044 1.0     | 03E+08 | 95000000 | 43985000 | 31057000 | -0.29392  | 1/15/94  |
| 8 0    | 045 84      | 000000 | 79470000 | 56000000 | 68000000 | 0.214286  | 2/15/91  |
| 2 (    | 047 13      | 169000 | 12430000 | 3628000  | 3730000  | 0.028115  | 7/19/95  |

.
| pincon_1 a | actcon_s a | actcon_f | Sed Grth |
|------------|------------|----------|----------|
| 12/22/94   | 10/15/93   | 3/15/95  | 0.15     |
| 7/7/95     | 6/1/94     | 3/15/95  | -0.23    |
| 9/9/09     | 9/9/09     | 9/9/09   | #DIV/0!  |
| 9/9/09     | 9/9/09     | 9/9/09   | #DIV/0!  |
| 9/9/09     | 9/9/09     | 9/9/09   | #DIV/0!  |
| 9/9/09     | 11/1/92    | 3/30/94  | #DIV/0!  |
| 9/9/09     | 8/1/94     | 6/1/95   | #DIV/0!  |
| 7/15/95    | 1/15/95    | 8/30/95  | 0.25     |
| 2/18/94    | 3/1/93     | 6/1/94   | 0.29     |
| 1/15/95    | 3/15/94    | 5/1/95   | 0.18     |
| 5/1/94     | 6/15/92    | 5/19/94  | -0.04    |
| 12/31/95   | 8/19/94    | 12/15/95 | -0.07    |
| 9/15/93    | 10/21/91   | 4/29/94  | 0.26     |
| 12/22/94   | 10/3/94    | 12/12/94 | -0.26    |
| 5/15/95    | 6/15/94    | 3/15/95  | -0.14    |
| 4/15/95    | 3/15/94    | 6/15/95  | 0.25     |
| 1/15/96    | 3/15/95    | 2/15/96  | 0.10     |
| 2/15/95    | 3/15/94    | 2/15/95  | 0.00     |
| 11/15/93   | 2/15/93    | 9/15/93  | -0.37    |
| 4/15/95    | 7/15/93    | 1/15/95  | -0.14    |
| 10/9/95    | 1/20/93    | 10/18/95 | 0.01     |
| 11/26/91   | 8/13/90    | 4/13/92  | 0.22     |
| 1/1/95     | 7/19/93    | 2/17/95  | 0.07     |
| 9/9/09     | 4/15/92    | 3/15/94  | #DIV/0!  |
| 7/1/94     | 8/18/92    | 2/29/96  | 0.77     |
| 4/1/94     | 6/22/92    | 5/30/95  | 0.53     |
| 10/1/91    | 6/15/91    | 12/15/92 | 0.39     |
| 9/9/09     | 2/1/90     | 12/1/93  | #DIV/0!  |
| 11/20/94   | 11/15/93   | 4/14/95  | 0.23     |
| 11/30/95   | 9/1/94     | 11/30/95 | -0.12    |
| 11/6/95    | 7/5/95     | 12/15/95 | 0.26     |
| 12/28/95   | 10/2/93    | 4/1/96   | -0.08    |
| 4/1/96     | 4/17/95    | 7/1/96   | 0.02     |
| 9/9/09     | 11/9/92    | 7/5/95   | #DIV/0!  |
| 6/30/95    | 9/12/94    | 7/26/95  | 0.09     |
| 8/27/93    | 9/9/09     | 9/9/09   | -1.00    |
| 9/9/09     | 7/22/93    | 9/7/95   | #DIV/0!  |
| 4/30/96    | 7/23/93    | 4/22/96  | -0.01    |
| 10/15/95   | 11/15/93   | 1/15/96  | 0.24     |
| 4/14/94    | 4/16/91    | 2/1/96   | 0.52     |
| 10/15/95   | 7/26/95    | 9/9/09   | -357.43  |

| cil_id_a | version   | type char                  | publipriv | cii_cntr | cnsttyp | e cost_inc |
|----------|-----------|----------------------------|-----------|----------|---------|------------|
| O48      | Version 1 | Natural Ga Grass Roo       | Private   | 0        | LS      | 1          |
| O49      | Version 1 | Electrical (Grass Roo      | Private   | 100      | LS      | 4          |
| O5       | Version 1 | Hospital Grass Roo         | Public    | 0        | LS      | 4          |
| O50      | Version 1 | Natural Ga Add-on          | Private   | 0        | LS      | 4          |
| O51      | Version 1 | Natural Ga Grass Roo       | Private   | 0        | LS      | 4          |
| O52      | Version 1 | <b>Environme Grass Roo</b> | Private   | 0        | GP      | 4          |
| O53      | Version 1 | Chemical Modernizat        | Private   | 0        | LS      | 4          |
| O54      | Version 1 | Chemical NAdd-on           | Private   | 0        | CR      | 4          |
| O55      | Version 1 | Chemical NAdd-on           | Private   | 0        | LS      | 4          |
| O56      | Version 1 | Chemical Add-on            | Private   | 0        | LS      | 4          |
| 057      | Version 1 | Chemical NAdd-on           | Private   | 0        | LS      | 4          |
| O58      | Version 1 | Warehouse Add-on           | Private   | 0        | LS      | 4          |
| O59      | Version 1 | Water/Was Add-on           | Private   | 0        | LS      | 4          |
| O60      | Version 1 | Maintenan Grass Roo        | Private   | 0        | LS      | 4          |
| O61      | Version 1 | Water/Was Modernizat       | Private   | 0        | LS      | 4          |
| O62      | Version 1 | Consumer Grass Roo         | Private   | 0        | GP      | 4          |
| O63      | Version 1 | Consumer Add-on            | Private   | 0        | CR      | 4          |
| O64      | Version 1 | Consumer Modernizat        | Private   | 15       | CR      | 4          |
| O65      | Version 1 | Warehouse Modernizat       | Private   | 75       | CR      | 4          |
| O66      | Version 1 | Consumer Add-on            | Private   | 100      | CR      | 4          |
| O68      | Version 1 | Electrical (Grass Roo      | Private   | 27       | LS      | 4          |
| O69      | Version 1 | Oil Refinin(Add-on         | Private   | 100      | CR      | 4          |
| 070      | Version 1 | Chemical I Grass Roo       | Private   | 100      | GP      | 3          |
| 071      | Version 1 | Oil Refinin(Modernizat     | Private   | 0        | CR      | 1          |
| 072      | Version 1 | Oil Refinin(Add-on         | Private   | 100      | CR      | 4          |
| 073      | Version 1 | Oil Refining Grass Roo     | Private   | 100      | CR      | 4          |
| 074      | Version 1 | Oil Refinin Modernizat     | Private   | 100      | CR      | 4          |
| 075      | Version 1 | Oil Refining Grass Roo     | Private   | 100      | CR      | 1          |
| 076      | Version 1 | Oil Refining Grass Roo     | Private   | 100      | CR      | 1          |
| 077      | Version 1 | Chemical I Grass Roo       | Private   | 0        | CR      | 1          |
| 078      | Version 1 | Environme Modernizat       | Private   | 0        | LS      | 4          |
| 079      | Version 1 | Pulp and P Modernizat      | Private   | 0        | CR      | 4          |
| O8       | Version 1 | Electrical (IAdd-on        | Private   | 95       | 1       | 4          |
| O80      | Version 1 | Pulp and P Modernizal      | Private   | 0        | LS      | 4          |
| O81      | Version 1 | Pulp and P Add-on          | Private   | 75       | CR      | 4          |
| O82      | Version 1 | Chemical NAdd-on           | Private   | 100      | CR      | 3          |
| O83      | Version 1 | Laboratory Grass Roo       | Private   | 0        | CR      | 4          |
| O84      | Version 1 | Laboratory Grass Roo       | Private   | 0        | CR      | 4          |
| O85      | Version 1 | Lowrise Of Grass Roo       | Private   | 100      | CR      | 4          |
| O86      | Version 1 | Electrical (Modernizat     | Public    | 30       | CR      | 4          |
| O87      | Version 1 | Water/Was Modernizat       | Public    | 0        | LS      | 4          |

| schd_inc saf | e_inc Inc Ir | hdx (  | attwikhr | recrdinj | istwikdc | RIR      | LWCIR    |
|--------------|--------------|--------|----------|----------|----------|----------|----------|
| 2            | 4            | 2      | 30791    | 0        | 0        | 0        | 0        |
| 3            | 4            | 2      | 373661   | 16       | 43       | 8.563912 | 23.01551 |
| 2            | 4            | 1      | 132815   | 2        | 2        | 3.011708 | 3.011708 |
| 4            | 1            | 1      | -999     | -999     | -999     | 200000   | 200000   |
| 4            | 1            | 1      | -999     | -999     | -999     | 200000   | 200000   |
| 4            | 4            | 0      | 216113   | 4        | 1        | 3.701767 | 0.925442 |
| 4            | 4            | 0      | 101000   | 0        | • 0      | 0        | 0        |
| 4            | 1            | 1      | 69451    | 2        | 0        | 5.759456 | 0        |
| 1            | 1            | 2      | 54190    | 0        | 0        | 0        | 0        |
| 4            | 4            | 0      | 101044   | 1        | 0        | 1.979336 | 0        |
| 4            | 4            | 0      | 153590   | 3        | 1        | 3.906504 | 1.302168 |
| 4            | 4            | 0      | 51720    | 0        | 0        | 0        | 0        |
| 4            | 4            | 0      | 82000    | 3        | 0        | 7.317073 | 0        |
| 4            | 4            | 0      | 101357   | 2        | 0        | 3.946447 | 0        |
| 4            | 4            | 0      | 245000   | 2        | 0        | 1.632653 | 0        |
| 4            | 4            | 0      | 468508   | 9        | 1        | 3.841983 | 0.426887 |
| 4            | 4            | 0      | 106400   | 0        | 0        | 0        | 0        |
| 4            | 4            | 0      | 155862   | 1        | 1        | 1.283186 | 1.283186 |
| 4            | 4            | 0      | 205000   | 1        | 0        | 0.97561  | 0        |
| 4            | 4            | 0      | 404593   | 1        | 0        | 0.494324 | 0        |
| 4            | 1            | 1      | 548000   | 18       | 2        | 6.569343 | 0.729927 |
| 4            | 1            | 1      | 111398   | 2        | 0        | 3.590729 | 0        |
| 3            | 1            | 5      | 5000000  | 98       | 3        | 3.92     | 0.12     |
| 1            | 1            | 3      | 541269   | -999     | -999     | -369.133 | -369.133 |
| 1            | 1            | 2      | 240000   | 4        | 0        | 3.333333 | 0        |
| 4            | 4            | 0      | 298000   | 5        | 1        | 3.355705 | 0.671141 |
| 1            | 1            | 2      | 67560    | 1        | 0        | 2.960332 | 0        |
| 1            | 1            | 3      | 2784268  | 32       | 1        | 2.298629 | 0.071832 |
| 1            | 1            | 3      | 1093820  | 13       | 1        | 2.376991 | 0.182845 |
| 1            | 1            | 3      | 914000   | 8        | 0        | 1./5054/ | 0        |
| 4            | 4            | 0      | 8/328    | 0        | 0        | 0        | 0        |
| 4            | 4            | 0      | 320000   | 6        | 0        | 3.75     | 0        |
| 4            | 4            | 0      | 148000   | 4        | 0        | 5.405405 | 0        |
| 4            | 4            | 0      | 160000   | 8        | 1        | 10       | 1.25     |
| 4            | 4            | 0      | 148414   | 10       | 1        | 13.47582 | 1.347582 |
| 3            | 3            | 6      | 36/532   | 5        | 2        | 2.720852 | 1.088341 |
| 4            | 4            | 0      | 128000   | 0        | 0        | 0        | 0        |
| 4            | 4            | 0      | 300000   | 16       | 4        | 10.66667 | 2.000007 |
| 4            | 4            | U<br>A | 106/000  | 22       | 9        | 4.123/11 | 1.0869/3 |
| 4            | 4            | U      | 84680    | 2        | 0        | 4./23666 | 0        |
| 4            | 4            | 0      | -999     | -999     | -999     | 200000   | 200000   |

| q_23 cli_ld_ | c prbudget | projcost | budescon | actescon | Cost Grth        | pincon_s |
|--------------|------------|----------|----------|----------|------------------|----------|
| 2 048        | 7981000    | 9012000  | 3296000  | 3519000  | 0.067658         | 6/22/95  |
| 2 049        | 1.12E+08   | 1.07E+08 | 38051000 | 33054000 | -0.13132         | 9/1/91   |
| 2 05         | 16150000   | 11678000 | -999     | 9752000  | -9762.76         | 9/9/09   |
| 1 O50        | 9922000    | 10278000 | 2437000  | 3379000  | 0.386541         | 2/28/94  |
| 1 051        | 8918000    | 8013000  | 2391000  | 2704000  | 0.130908         | 4/25/94  |
| 2 O52        | 1300000    | 12950000 | -999     | -999     | 0                | 6/1/91   |
| 2 O53        | 12555000   | 12975000 | 4746000  | 5348000  | 0.126844         | 3/1/95   |
| 1 054        | 8039000    | 9790000  | 4685000  | 6962000  | 0.486019         | 5/1/95   |
| 1 O55        | 9300000    | 8700000  | 4734000  | 5311000  | 0.121884         | 9/7/94   |
| 1 056        | 13750000   | 14550000 | 5735000  | 6425000  | 0.120314         | 4/1/95   |
| 2 057        | 24400000   | 19400000 | 11990000 | 8310000  | -0.30692         | 10/3/94  |
| 1 O58        | 6200000    | 5400000  | 3805800  | 3065000  | <b>-</b> 0.19465 | 11/2/92  |
| · 1 O59      | 18300000   | 14600800 | 14948923 | 11765367 | -0.21296         | 8/1/94   |
| 1 O60        | 10900000   | 8900000  | 9078000  | 7500000  | -0.17383         | 6/1/93   |
| 1 O61        | 25400000   | 27919787 | 17502500 | 20821519 | 0.189631         | 12/1/93  |
| 1 062        | 1.33E+08   | 1.32E+08 | 53617000 | 54055000 | 0.008169         | 8/15/93  |
| 2 063        | 17750000   | 14819000 | 6025000  | 4415000  | -0.26722         | 11/1/94  |
| 2 064        | 11000000   | 10990000 | 7852000  | 7144000  | -0.09017         | 3/1/94   |
| 2 065        | 30500000   | 29750000 | 12000000 | 12000000 | 0                | 8/1/94   |
| 2 066        | 33000000   | 32500000 | 18500000 | 17840000 | -0.03568         | 3/6/95   |
| 2 068        | 74800000   | 82300000 | 20900000 | 24300000 | 0.162679         | 11/15/94 |
| 1 O69        | 29800000   | 21100000 | 16725000 | 8000000  | -0.52167         | 2/13/95  |
| 1 070        | 4.61E+08   | 4.97E+08 | 2.23E+08 | 2.06E+08 | -0.07742         | 8/15/92  |
| 2 071        | 39575000   | 44575000 | 19403000 | 21892000 | 0.128279         | 3/1/95   |
| 2 072        | 36700000   | 37900000 | 18100000 | 18700000 | 0.033149         | 5/1/93   |
| 2 073        | 65700000   | 51700000 | 33100000 | 24300000 | -0.26586         | 8/1/94   |
| 1 074        | 12520000   | 12520000 | 3800000  | 3500000  | -0.07895         | 7/1/94   |
| 1 075        | 2.36E+08   | 2.08E+08 | 90600000 | 80800000 | -0.10817         | 5/1/93   |
| 1 076        | 1.12E+08   | 81380000 | 35400000 | 25800000 | -0.27119         | 5/1/93   |
| 1 077        | 1.54E+08   | 1.49E+08 | 58500000 | 45100000 | -0.22906         | 5/1/93   |
| 2 078        | 7301000    | 7360000  | 1200000  | 1300000  | 0.083333         | 6/8/94   |
| 1 079        | 16671000   | 16722000 | 6989000  | 7326000  | 0.048219         | 2/1/95   |
| 1 08         | 27200000   | 23000000 | 11390000 | 9681000  | -0.15004         | 3/15/93  |
| 1 O80        | 16242000   | 17400000 | 7832000  | 8000000  | 0.02145          | 5/31/94  |
| 2 081        | 10058000   | 11500000 | 3683000  | 4725000  | 0.282922         | 9/9/09   |
| 1 082        | 5600000    | 61000000 | 29000000 | 30000000 | 0.034483         | 2/15/94  |
| 2 083        | 1600000    | 14500000 | 14500000 | 12935000 | -0.10793         | 8/1/93   |
| 2 084        | 4100000    | 40925000 | 38485000 | 37965000 | -0.01351         | 8/15/91  |
| 1 085        | 1.6E+08    | 1.55E+08 | 1.44E+08 | 1.38E+08 | -0.04097         | 1/1/90   |
| 2 086        | 13144000   | 13634000 | 6112000  | 7121000  | 0.165085         | 10/10/95 |
| 2 087        | 5360000    | 5600000  | -999     | -999     | 0                | 11/21/94 |

| pincon_1 | actcon_s | actcon_f | Sed Grth |
|----------|----------|----------|----------|
| 10/15/95 | 7/29/95  | 11/19/95 | -0.02    |
| 10/1/92  | 4/9/92   | 2/5/93   | -0.24    |
| 9/9/09   | 11/8/93  | 8/10/95  | #DIV/0!  |
| 10/3/94  | 2/28/94  | 12/19/94 | 0.35     |
| 9/26/94  | 4/25/94  | 10/3/94  | 0.05     |
| 10/30/92 | 11/1/90  | 4/1/93   | 0.71     |
| 12/5/95  | 3/1/95   | 1/12/96  | 0.14     |
| 11/15/95 | 5/1/95   | 11/27/95 | 0.06     |
| 9/1/95   | 9/7/94   | 1/1/96   | 0.34     |
| 2/15/96  | 3/26/95  | 1/19/96  | -0.07    |
| 8/4/95   | 10/3/94  | 11/30/95 | 0.39     |
| 11/1/93  | 1/1/93   | 11/20/93 | -0.11    |
| 8/1/95   | 8/1/94   | 8/15/95  | 0.04     |
| 8/4/94   | 5/24/93  | 1/31/94  | -0.41    |
| 9/1/95   | 5/1/94   | 2/26/96  | 0.04     |
| 1/1/95   | 8/15/93  | 2/1/95   | 0.06     |
| 8/31/95  | 11/1/94  | 9/7/95   | 0.02     |
| 6/15/95  | 3/1/94   | 6/1/95   | -0.03    |
| 2/1/96   | 8/1/94   | 6/1/96   | 0.22     |
| 11/20/95 | 4/3/95   | 2/12/96  | 0.22     |
| 1/31/96  | 10/1/94  | 5/15/96  | 0.34     |
| 12/29/95 | 7/5/95   | 12/15/95 | -0.49    |
| 3/15/94  | 10/15/92 | 7/15/94  | 0.11     |
| 10/20/95 | 3/1/95   | 11/14/95 | 0.11     |
| 10/1/94  | 5/1/93   | 10/1/94  | 0.00     |
| 10/31/95 | 6/1/94   | 10/1/95  | 0.07     |
| 5/1/95   | 4/1/94   | 6/1/95   | 0.40     |
| 6/1/95   | 5/3/93   | 4/17/95  | -0.06    |
| 6/1/95   | 5/1/93   | 3/24/95  | -0.09    |
| 4/1/95   | 6/1/93   | 2/27/95  | -0.09    |
| 5/2/95   | 6/8/94   | 5/4/95   | 0.01     |
| 6/30/95  | 3/1/95   | 9/30/95  | 0.43     |
| 6/15/95  | 7/15/93  | 12/15/95 | 0.07     |
| 6/15/95  | 5/31/94  | 10/15/95 | 0.32     |
| 9/9/09   | 2/1/95   | 7/15/95  | #DIV/0!  |
| 10/15/95 | 4/15/94  | 7/15/95  | -0.25    |
| 3/30/95  | 8/1/93   | 2/28/95  | -0.05    |
| 6/30/93  | 8/15/91  | 12/30/93 | 0.27     |
| 12/31/94 | 1/1/90   | 10/31/94 | -0.03    |
| 1/19/96  | 10/10/95 | 1/17/96  | -0.02    |
| 12/24/95 | 11/21/94 | 9/9/09   | -79.19   |

,

.

.

| cil_id_a | version   | type char              | publipriv | cii_cntr | cristt | /pe concosi |
|----------|-----------|------------------------|-----------|----------|--------|-------------|
| O88      | Version 1 | Electrical (Modernizal | Public    | 100      | CR     | 4           |
| O89      | Version 1 | Electrical (Modernizal | Public    | 100      | CR     | 4           |
| O90      | Version 1 | Electrical (Modernizat | Public    | 100      | CR     | 4           |
| O91      | Version 1 | Oil Refinin Add-on     | Private   | 0        | CR     | 4           |
| O92      | Version 1 | Chemical NAdd-on       | Private   | 100      | CR     | 4           |
| O93      | Version 1 | Chemical MAdd-on       | Private   | 100      | CR     | 4           |
| O94      | Version 1 | Chemical I Grass Roo   | Private   | 100      | CR     | 4           |
| O95      | Version 1 | Chemical Modernizat    | Private   | 70       | CR     | 4           |
| O96      | Version 1 | Water/Was Grass Roo    | Private   | 100      | CR     | 4           |
| O97      | Version 1 | Chemical I Grass Roo   | Private   | 100      | CR     | 1           |
| O98      | Version 1 | Lowrise Of Grass Roo   | Private   | 0        | GP     | 1           |
| O99      | Version 1 | Microelectr Grass Roo  | Private   | 0        | CR     | 1           |
| O103     | Version 2 | Water/Was Modernizat   | Private   | 0        | LS     | 1           |
| O104     | Version 2 | Laboratory Grass Roo   | Private   | 0        | GP     | 1           |
| O105     | Version 2 | Oil Refinin(Modernizat | Private   | 0        | CR     | 1           |
| O106     | Version 2 | Marine Fac Add-on      | Private   | 100      | CR     | 1           |
| O107     | Version 2 | Oil Refinin Modernizat | Private   | 0        | CR     | 1           |
| O108     | Version 2 | Environme Grass Roo    | Private   | 100      | CR     | 1           |
| O109     | Version 2 | Oil Refinin(Add-on     | Private   | 70       | CR     | 4           |
| 0110     | Version 2 | Metals Ref Grass Roo   | Private   | 0        | CR     | 1           |
| 0111     | Version 2 | Metals Ref Modernizat  | Private   | 0        | CR     | 3           |
| 0112     | Version 2 | Metals Ref Modernizat  | Private   | 0        | LS     | 4           |
| 0113     | Version 2 | Metals Ref Modernizat  | Private   | 100      | CR     | 4           |
| 0114     | Version 2 | Chemical NAdd-on       | Private   | 100      | LS     | 4           |
| 0115     | Version 2 | Chemical MGrass Roo    | Private   | 100      | CR     | 1           |
| 0116     | Version 2 | Chemical I Grass Roo   | Private   | 0        | LS     | 4           |
| 0117     | Version 2 | Chemical Modernizat    | Private   | 0        | CR     | 3           |
| 0119     | Version 2 | Maintenan Grass Roo    | Public    | 0        | LS     | 4           |
| O120     | Version 2 | Lowrise Of Grass Roo   | Public    | 0        | LS     | 4           |
| 0121     | Version 2 | Lowrise Of Grass Roo   | Public    | 0        | LS     | 4           |
| 0122     | Version 2 | Pharmace Modernizat    | Private   | 60       | GP     | 1           |
| 0123     | Version 2 | Pharmace Modernizat    | Private   | 0        | GP     | 3           |
| 0124     | Version 2 | Pharmacel Grass Roo    | Private   | 0        | LS     | 4           |
| 0125     | Version 2 | Pharmace Modernizat    | Private   | 100      | CR     | 3           |
| O126     | Version 2 | Pharmacel Modernizat   | Private   | 0        | LS     | 4           |
| 0127     | Version 2 | Chemical NAdd-on       | Private   | 0        | CR     | 4           |
| O128     | Version 2 | Pharmacel Grass Roo    | Private   | 0        | LS     | 4           |
| 0129     | Version 2 | Electrical (Add-on     | Public    | 100      | CR     | 1           |
| 0130     | Version 2 | Electrical (Add-on     | Public    | 100      | CR     | 1           |
| 0131     | Version 2 | Electrical (Modernizat | Public    | 0        | LS     | 4           |
| 0132     | Version 2 | Electrical (Modernizat | Public    | 100      | CR     | 1           |

÷

| conschd consafe |   | inc indx | critwkhr | recrdinj | lstwikdc | RIR      | LWCIR    |
|-----------------|---|----------|----------|----------|----------|----------|----------|
| 4               | 4 | 0        | 64200    | 1        | 0        | 3.115265 | 0        |
| 4               | 4 | 0        | 61168    | 0        | 0        | 0        | 0        |
| 3               | 1 | 3        | 604900   | 8        | 0        | 2.645065 | 0        |
| 4               | 4 | 0        | 60000    | 1        | 1        | 3.333333 | 3.333333 |
| 4               | 4 | 0        | 159968   | . 3      | 0        | 3.75075  | 0        |
| 4               | 4 | 0        | 96344    | 1        | 0        | 2.075895 | 0        |
| 4               | 4 | 0        | 67066    | 0        | 0        | 0        | 0        |
| 4               | 4 | 0        | 320000   | 6        | 0        | 3.75     | 0        |
| 4               | 4 | 0        | -999     | -999     | -999     | 200000   | 200000   |
| 4               | 4 | 1        | 640300   | 6        | 0        | 1.874122 | 0        |
| 1               | 1 | 3        | 587000   | 6        | 0        | 2.044293 | 0        |
| 1               | 1 | 3        | 3595212  | 103      | 9        | 5.729843 | 0.500666 |
| 1               | 1 | 3        | 188016   | 2        | -999     | 2.127479 | -1062.68 |
| 1               | 1 | 3        | 102100   | 1        | 0        | 1.958864 | 0        |
| 1               | 1 | 3        | 276710   | 3        | 0        | 2.168335 | 0        |
| 1               | 1 | 3        | 51000    | 1        | 0        | 3.921569 | 0        |
| 1               | 1 | 3        | 318000   | 1        | 0        | 0.628931 | 0        |
| 1               | 1 | 3        | 1850000  | 12       | 3        | 1.297297 | 0.324324 |
| 4               | 4 | 0        | 43000    | 0        | 0        | 0        | 0        |
| 1               | 1 | 3        | 133292   | 7        | 1        | 10.50326 | 1.500465 |
| 3               | 3 | 6        | 579190   | 32       | 2        | 11.04991 | 0.69062  |
| 4               | 4 | 0        | 174349   | 14       | 1        | 16.05974 | 1.147124 |
| 4               | 4 | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 1               | 1 | 2        | 88400    | 1        | 1        | 2.262443 | 2.262443 |
| 1               | 1 | 3        | 550000   | 4        | 0        | 1.454545 | 0        |
| 4               | 4 | 0        | 455000   | 3        | 1        | 1.318681 | 0.43956  |
| 4               | 3 | 4        | 196000   | 0        | 0        | 0        | 0        |
| 2               | 4 | 1        | 40000    | 0        | 0        | 0        | 0        |
| 2               | 4 | 1        | 60000    | 1        | 1        | 3.333333 | 3.333333 |
| 2               | 4 | 1        | 72254    | 0        | 0        | 0        | 0        |
| 1               | 1 | 3        | 47000    | 1        | 0        | 4.255319 | 0        |
| 3               | 3 | 6        | 120000   | 1        | 0        | 1.666667 | 0        |
| 4               | 4 | 0        | 1110000  | 57       | 6        | 10.27027 | 1.081081 |
| 3               | 3 | 6        | 900000   | 34       | 4        | 7.555556 | 0.888889 |
| 4               | 1 | 1        | 1000000  | 63       | 9        | 12.6     | 1.8      |
| 4               | 4 | 0        | 100000   | 0        | 0        | 0        | 0        |
| 3               | 4 | 2        | 250000   | 2        | 0        | 1.6      | 0        |
| 1               | 1 | 3        | 542260   | 8        | 1        | 2.950614 | 0.368827 |
| 1               | 4 | 2        | 29560    | 1        | 1        | 6.7659   | 6.7659   |
| 4               | 4 | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 1               | 4 | 2        | 49108    | 2        | 0        | 8.145312 | 0        |

,

| a 23 | cii id c | orbudaet | proicost | budescon | actescon | Cosi Grth | pincon s |
|------|----------|----------|----------|----------|----------|-----------|----------|
| 2    | O88      | 6945000  | 7274000  | 2869000  | 3180000  | 0.1084    | 4/22/95  |
| 2    | 089      | 4928000  | 5127000  | 1685000  | 1864000  | 0.106231  | 5/7/94   |
| 1    | 090      | 65685000 | 65674000 | 40964000 | 37300000 | -0.08944  | 10/1/93  |
| 2    | O91      | 10100000 | 9300000  | 3278000  | 2818000  | -0.14033  | 10/1/95  |
| 1    | 092      | 8000000  | 9840000  | 1731400  | 3551000  | 1.050941  | 5/3/93   |
| 2    | O93      | 10888000 | 11511000 | 5116000  | 5943000  | 0.16165   | 3/13/95  |
| 1    | O94      | 9200000  | 8614000  | 2144000  | 1922000  | -0.10354  | 5/1/95   |
| 2    | O95      | 30000000 | 32700000 | 4700000  | 8000000  | 0.702128  | 1/24/95  |
| 1    | O96      | 7200000  | 6650000  | 1283000  | 1789000  | 0.394388  | 2/15/95  |
| 1    | O97      | 7000000  | 7000000  | -999     | -999     | 0         | 9/1/92   |
| 1    | O98      | 58700000 | 54900000 | -999     | -999     | 0         | 9/9/09   |
| 1    | O99      | 5.15E+08 | 5.15E+08 | -999     | -999     | 0         | 9/9/09   |
| 1    | O103     | 23100000 | 22500000 | 11480000 | 12665000 | 0.103223  | 2/13/95  |
| 2    | 0104     | 9600000  | 9417000  | 8493000  | 8069000  | -0.04992  | 5/15/95  |
| 1    | O105     | 44700000 | 3600000  | 26049000 | 20489000 | -0.21344  | 2/10/96  |
| 1    | O106     | 7000000  | 6500000  | 5125000  | 4846000  | -0.05444  | 9/15/95  |
| 1    | 0107     | 29000000 | 29200000 | 18630000 | 20289000 | 0.08905   | 10/1/95  |
| 1    | O108     | 1.48E+08 | 1.45E+08 | 94491000 | 94154000 | -0.00357  | 11/1/93  |
| 1    | O109     | 6700000  | 5800000  | 3540000  | 3100000  | -0.12429  | 6/29/96  |
| 1    | 0110     | 20500000 | 22400000 | 6391937  | 7360572  | 0.15154   | 3/15/95  |
| 1    | 0111     | 64800000 | 66230000 | 28640000 | 29229000 | 0.020566  | 3/3/95   |
| 2    | 0112     | 77600000 | 75005000 | 27605000 | 24630000 | -0.10777  | 6/1/92   |
| 2    | 0113     | 37400000 | 46204000 | 14926000 | 22000000 | 0.473938  | 12/1/92  |
| 2    | 0114     | 18287000 | 17882000 | 7353000  | 8207000  | 0.116143  | 10/1/94  |
| 1    | 0115     | 81800000 | 66400000 | 37500000 | 30100000 | -0.19733  | 2/1/96   |
| 1    | 0116     | 24900000 | 32819000 | 12718000 | 16898000 | 0.328668  | 3/1/95   |
| 1    | 0117     | 17750000 | 14900000 | 9900000  | 8150000  | -0.17677  | 11/15/95 |
| 2    | 0119     | 4060000  | 6282000  | 4800000  | 6022000  | 0.254583  | 2/15/90  |
| 2    | 0120     | 9000000  | 8415000  | 9000000  | 8415000  | -0.065    | 9/9/09   |
| 2    | 0121     | 7200000  | 6955400  | -888-    | -888-    | 0         | 8/8/08   |
| 2    | 0122     | 6475000  | 64/5000  | 2600000  | 3100000  | 0.192308  | 3/8/96   |
| 1    | 0123     | 7000000  | 6500000  | 55/5000  | 5210000  | -0.06547  | 4/15/96  |
| 1    | 0124     | 1.29E+08 | 1.33E+08 | /4231000 | /9808000 | 0.07513   | //1/92   |
| 2    | 0125     | 53500000 | 54900000 | 46400000 | 4/400000 | 0.021552  | 12/1/94  |
| 1    | 0126     | 1.67E+08 | 1.61E+08 | 95000000 | 90000000 | -0.05263  | 1/1/93   |
| 2    | 0127     | 14550000 | 15399000 | /435000  | 7854000  | 0.056355  | 4/1/95   |
| . 2  | 0128     | 27800000 | 28600000 | 24500000 | 24100000 | -0.01633  | 8/1/95   |
| 2    | 0129     | 54000000 | 59300000 | 36354000 | 469/5000 | 0.292155  | 5/23/94  |
| 2    | 0130     | 5640000  | 5891000  | 2301000  | 2413000  | 0.0486/4  | 10/7/94  |
| 2    | 0131     | 50982000 | 56238000 | 938/000  | 14890000 | 0.586236  | 2/1/94   |
| 2    | 0132     | /066000  | 66/1000  | 2941000  | 2/40000  | -0.06834  | 2/10/96  |

| pincon_i | actcon_s | actcon_f | Scd Grth |
|----------|----------|----------|----------|
| 6/6/95   | 4/22/95  | 6/6/95   | 0.00     |
| 7/1/94   | 5/7/94   | 7/1/94   | 0.00     |
| 5/30/96  | 2/1/94   | 6/30/96  | -0.09    |
| 4/29/96  | 10/1/95  | 4/29/96  | 0.00     |
| 7/1/94   | 5/3/93   | 7/11/94  | 0.02     |
| 12/15/95 | 3/20/95  | 4/12/96  | 0.40     |
| 12/21/95 | 5/15/95  | 12/31/95 | -0.02    |
| 12/28/95 | 12/19/94 | 2/9/96   | 0.23     |
| 12/29/95 | 4/10/95  | 3/28/96  | 0.11     |
| 12/31/93 | 9/1/92   | 12/31/93 | 0.00     |
| 9/9/09   | 9/9/09   | 9/9/09   | #DIV/0!  |
| 9/9/09   | 9/9/09   | 9/9/09   | #DIV/0!  |
| 2/29/96  | 1/27/95  | 6/22/96  | 0.34     |
| 7/30/96  | 5/1/95   | 7/30/96  | 0.03     |
| 7/23/96  | 2/10/96  | 9/1/96   | 0.24     |
| 8/6/96   | 9/15/95  | 1/31/97  | 0.55     |
| 4/17/96  | 10/1/95  | 4/17/96  | 0.00     |
| 3/1/94   | 11/1/93  | 4/1/94   | 0.26     |
| 12/19/96 | 6/19/96  | 1/23/97  | 0.26     |
| 3/15/96  | 11/15/94 | 8/11/95  | -0.27    |
| 3/31/97  | 3/13/95  | 9/23/96  | -0.26    |
| 2/16/94  | 6/1/92   | 2/16/94  | 0.00     |
| 2/1/94   | 9/1/93   | 5/1/94   | -0.43    |
| 11/30/95 | 10/1/94  | 11/30/95 | 0.00     |
| 3/1/97   | 1/15/96  | 2/15/97  | 0.01     |
| 3/30/96  | 5/1/95   | 5/30/96  | 0.00     |
| 8/15/96  | 12/15/95 | 8/15/96  | -0.11    |
| 4/15/91  | 7/30/90  | 11/22/91 | 0.13     |
| 9/9/09   | 9/9/09   | 9/9/09   | #DIV/0!  |
| 8/8/08   | 9/30/91  | 11/4/92  | #DIV/0!  |
| 9/19/96  | 3/15/96  | 8/31/96  | -0.13    |
| 10/15/96 | 4/15/96  | 9/15/96  | -0.16    |
| 10/1/95  | 7/1/92   | 4/30/96  | 0.18     |
| 7/1/96   | 12/1/94  | 9/1/96   | 0.11     |
| 8/1/94   | 1/1/93   | 2/1/96   | 0.95     |
| 4/1/96   | 2/1/95   | 1/1/96   | -0.09    |
| 2/28/96  | 8/1/95   | 4/25/96  | 0.27     |
| 9/30/95  | 9/23/94  | 12/14/95 | -0.10    |
| 9/30/96  | 10/7/94  | 11/24/95 | -0.43    |
| 4/30/94  | 10/29/94 | 3/12/95  | 0.52     |
| 3/23/96  | 2/10/96  | 3/23/96  | 0.00     |

.

••

| cii_id_a | version   | type ct       | nar        | publipriv | cii_cntr | cnsttype | cosl_inc |
|----------|-----------|---------------|------------|-----------|----------|----------|----------|
| 0133     | Version 2 | Metals Ref G  | rass Roo   | Private   | 0        | CR       | 4        |
| 0134     | Version 2 | Automotive A  | dd-on l    | Private   | 0        | LS       | 4        |
| O135     | Version 2 | Automotive A  | dd-on I    | Private   | 35       | LS       | 4        |
| O136     | Version 2 | Foods G       | rass Roo   | Private   | 0        | LS       | 4        |
| 0137     | Version 2 | Lowrise Of M  | lodemizat  | Private   | 0        | LS       | 4        |
| O138     | Version 2 | Chemical NA   | dd-on      | Private   | 100      | UP       | 4        |
| O139     | Version 2 | Chemical NG   | irass Rool | Private   | 0        | LS       | 4        |
| O140     | Version 2 | Chemical M    | lodemizat  | Private   | 0        | LS       | 4        |
| 0141     | Version 2 | Metals Ref A  | dd-on      | Private   | 0        | GP       | 4        |
| 0142     | Version 2 | Chemical M    | lodemizat  | Private   | 0        | UP       | 4        |
| 0143     | Version 2 | Chemical NG   | irass Rool | Private   | 0        | CR       | 1        |
| 0144     | Version 2 | Water/Was G   | irass Rool | Public    | 0        | LS       | 4        |
| 0145     | Version 2 | Lowrise Of A  | dd-on      | Public    | 0        | LS       | 4        |
| O146     | Version 2 | Oil Refinin(A | dd-on      | Private   | 100      | CR       | 1        |
| 0147     | Version 2 | Oil Refinin(A | dd-on      | Private   | 100      | CR       | 3        |
| O148     | Version 2 | Oil Refinin(A | dd-on      | Private   | 100      | CR       | 1        |
| O149     | Version 2 | Electrical (M | lodernizat | Public    | 25       | LS       | 1        |
| O150     | Version 2 | Pulp and PA   | dd-on      | Private   | 100      | CR       | 3        |
| 0151     | Version 2 | Pulp and PM   | lodemizat  | Private   | 0        | CR       | 4        |
| 0152     | Version 2 | Pulp and PA   | dd-on      | Private   | 0        | LS       | 4        |
| O153     | Version 2 | Pulp and PG   | irass Roo  | Private   | 0        | LS       | 4        |
| O154     | Version 2 | Pulp and PA   | dd-on      | Private   | 0        | LS       | 4        |
| O155     | Version 2 | Electrical (A | dd-on      | Private   | 100      | LS       | 4        |
| O156     | Version 2 | Water/Was M   | lodemizal  | Private   | 100      | CR       | 4        |
| 0157     | Version 2 | Foods M       | lodemizal  | Private   | 0        | GP       | 4        |
| O158     | Version 2 | Warehouse A   | dd-on      | Private   | 0        | LS       | 4        |
| O159     | Version 2 | Foods M       | lodemizal  | Private   | 0        | LS       | 4        |
| O160     | Version 2 | Consumer A    | dd-on      | Private   | 0        | CR       | 4        |
| 0161     | Version 2 | Foods A       | dd-on      | Private   | 100      | CR       | 4        |
| O162     | Version 2 | Consumer M    | lodemizal  | Private   | 95       | CR       | 4        |
| O163     | Version 2 | Consumer A    | dd-on      | Private   | 0        | CR       | 4        |
| 0164     | Version 2 | Chemical M    | lodemizal  | Private   | 100      | CR       | 4        |
| O166     | Version 2 | Lowrise Of G  | irass Roo  | Private   | 0        | LS       | 4        |
| O167     | Version 2 | Pharmacel G   | irass Roo  | Private   | 100      | CR       | 4        |
| O168     | Version 2 | Chemical NG   | irass Roo  | Private   | 100      | CR       | 1        |
| O169     | Version 2 | Chemical NG   | irass Roo  | Private   | 100      | CR       | 1        |
| 0171     | Version 2 | Chemical A    | dd-on      | Private   | 0        | LS       | 4        |
| 0172     | Version 2 | Oil Refinin(M | lodemizat  | Private   | 0        | CR       | 3        |
| 0173     | Version 2 | Oil Refinin(A | dd-on      | Private   | 0        | CR       | 4        |
| 0174     | Version 2 | Oil Refinin(A | dd-on      | Private   | 0        | LS       | 4        |
| 0175     | Version 2 | Water/Was G   | irass Roo  | Private   | 100      | CR       | 4        |

•

| schd_inc | safe_inc | Inc Indx | crftwkhr | recrdinj | Istwicdic | RIR      | LWCIR    |
|----------|----------|----------|----------|----------|-----------|----------|----------|
| 4        | 4        | 0        | 297437   | 3        | 3         | 2.017234 | 2.017234 |
| 4        | 4        | 0        | -888     | 1        | 1         | -225.225 | -225.225 |
| 4        | 4        | 0        | 375700   | 2        | 0         | 1.064679 | 0        |
| 4        | 4        | 0        | 521000   | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 112000   | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 33110    | -888     | -888      | -5363.94 | -5363.94 |
| 4        | 4        | 0        | 500000   | 2        | 0         | 0.8      | 0        |
| 4        | 4        | 0        | 194000   | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | -888     | -888     | -888      | 200000   | 200000   |
| 4        | 4        | 0        | 50000    | 0        | 0         | 0        | 0        |
| 1        | 1        | 3        | 500000   | 2        | 0         | 0.8      | 0        |
| 4        | 4        | 0        | -888     | -888     | -888      | 200000   | 200000   |
| 2        | 4        | 1        | -888     | 0        | 0         | 0        | 0        |
| 1        | 1        | 3        | 2783000  | 14       | 0         | 1.006109 | 0        |
| 3        | 2        | 5        | 870000   | 12       | 2         | 2.758621 | 0.45977  |
| 1        | 2        | 3        | 336000   | 0        | 0         | 0        | 0        |
| 3        | 3        | 5        | 30000    | 0        | 0         | 0        | 0        |
| 3        | 3        | 6        | 73123    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 80713    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 27649    | 2        | 0         | 14.46707 | 0        |
| 4        | 4        | 0        | 103100   | 1        | 0         | 1.939864 | 0        |
| 4        | 4        | 0        | 24043    | 1        | 0         | 8.318429 | 0        |
| 3        | 4        | 2        | 1200000  | 5        | 2         | 0.833333 | 0.333333 |
| 4        | 4        | 0        | 38830    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 76000    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 184000   | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 936093   | 23       | 2         | 4.914042 | 0.427308 |
| 4        | 4        | 0        | 34980    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 621000   | 10       | 0         | 3.220612 | 0        |
| 4        | 4        | 0        | 38000    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | -888     | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 133366   | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | 98850    | 0        | 0         | 0        | 0        |
| 4        | 4        | 0        | -888-    | -888     | -888      | 200000   | 200000   |
| 1        | 1        | 3        | 96000    | 2        | 0         | 4.166667 | 0        |
| 4        | 4        | 1        | 61/300   | 13       | 0         | 4.21189  | 0        |
| 4        | 4        | 0        | -888     | -888     | -888      | 200000   | 200000   |
| 3        | 1        | 5        | -999     | -999     | -999      | 200000   | 200000   |
| 4        | 1        | 1        | 888-     | -888     | -888      | 200000   | 200000   |
| 4        | 1        | 1        | 3348553  | 29       | 4         | 1./32091 | 0.238909 |
| 4        | 4        | 0        | 81415    | 2        | 0         | 4.9131   | 0        |

| q_23 | cii_id_c | prbudget | projcost | budescon | actescon | Cost Grth | pincon_s |
|------|----------|----------|----------|----------|----------|-----------|----------|
| 2    | O133     | 52650000 | 52900000 | 16792000 | 18546000 | 0.104455  | 10/1/95  |
| 2    | O134     | 19850000 | 26250000 | 18000000 | 22000000 | 0.222222  | 12/1/96  |
| 2    | O135     | 55600000 | 55400000 | 36030000 | 34280000 | -0.04857  | 10/1/95  |
| 1    | O136     | 58800000 | 57200000 | 39567620 | 42375430 | 0.070962  | 4/1/94   |
| 1    | O137     | 16066600 | 10845700 | 10599600 | 6078700  | -0.42652  | 2/1/95   |
| 2    | O138     | 3900000  | 4800000  | 1091680  | 2008118  | 0.839475  | 8/15/95  |
| 7    | O139     | 73000000 | 67600000 | 29100000 | 27400000 | -0.05842  | 8/1/95   |
| 2    | O140     | 21600000 | 21500000 | 7400000  | 7250000  | -0.02027  | 10/1/95  |
| 2    | 0141     | 11100000 | 10740000 | -888     | -888     | 0         | 5/17/96  |
| 2    | 0142     | 4650000  | 4812000  | 1959000  | 2294000  | 0.171006  | 8/8/08   |
| 1    | 0143     | 67200000 | 56640000 | 22200000 | 17900000 | -0.19369  | 5/1/95   |
| 2    | 0144     | 21000000 | 19482514 | 9688000  | 9387000  | -0.03107  | 9/29/88  |
| 2    | 0145     | 6360000  | 6150806  | 5600000  | 5553877  | -0.00824  | 3/30/94  |
| 1    | O146     | 2.31E+08 | 1.78E+08 | -888     | -888     | 0         | 11/1/93  |
| 1    | 0147     | 1.88E+08 | 1.87E+08 | 88854000 | 98570000 | 0.109348  | 2/10/93  |
| 1    | O148     | 48800000 | 43000000 | 27600000 | 22400000 | -0.18841  | 3/1/95   |
| 2    | O149     | 10976000 | 10968000 | 6888000  | 5436000  | -0.2108   | 6/26/95  |
| 2    | O150     | 5663000  | 8323000  | 2126000  | 4505000  | 1.119003  | 3/22/96  |
| 2    | O151     | 7500000  | 7949000  | 3200000  | 3549000  | 0.109063  | 8/8/08   |
| 2    | O152     | 15185000 | 14000000 | 4685000  | 3418000  | -0.27044  | 5/15/95  |
| 2    | O153     | 11559000 | 11572000 | 3548000  | 3930000  | 0.107666  | 10/17/94 |
| 2    | O154     | 6000000  | 5400000  | 4251000  | 3750000  | -0.11785  | 5/24/96  |
| 1    | O155     | 1.43E+08 | 1.44E+08 | -888     | -888     | 0         | 10/15/95 |
| 1    | O156     | 26250000 | 23674000 | 16137000 | -888     | -1.00006  | 3/1/94   |
| 1    | 0157     | 22800000 | 22800000 | 8536900  | 8320000  | -0.02541  | 10/28/96 |
| 1    | O158     | 25733000 | 25733000 | 10232300 | 10955723 | 0.0707    | 3/9/95   |
| 1    | O159     | 76500000 | 82404000 | 34937000 | 40291000 | 0.153247  | 11/30/94 |
| 1    | O160     | 7800000  | 8700000  | 2057000  | 1831000  | -0.10987  | 3/15/96  |
| 2    | 0161     | 79000000 | 72400000 | 30900000 | 34600000 | 0.119741  | 11/1/95  |
| 1    | O162     | 6100000  | 6500000  | -888     | -888     | 0         | 10/7/96  |
| 2    | O163     | 1700000  | 1550000  | 727000   | 592000   | -0.18569  | 4/1/96   |
| 1    | 0164     | 9900000  | 9730000  | 3998000  | 4930000  | 0.233117  | 5/3/96   |
| 2    | O166     | 11750000 | 12840000 | 11125000 | 12007000 | 0.079281  | 11/15/95 |
| 2    | 0167     | 28620000 | 25420000 | 11895000 | 11805000 | -0.00757  | 1/15/94  |
| 2    | O168     | 17001000 | 13086000 | 8100000  | 5936000  | -0.26716  | 5/1/95   |
| 8    | O169     | 1.25E+08 | 1.04E+08 | 70388000 | 54497000 | -0.22576  | 9/1/94   |
| 8    | 0171     | 7844000  | -888     | 3312000  | -888     | -1.00027  | 3/10/97  |
| 1    | 0172     | 5025000  | 5300000  | -888     | -888     | 0         | 1/1/96   |
| 8    | 0173     | 24000000 | 2600000  | 13524000 | 15300000 | 0.131322  | 3/1/96   |
| 1    | 0174     | 1.73E+08 | 2.31E+08 | 78882000 | 1.42E+08 | 0.803238  | 9/15/95  |
| 1    | 0175     | 7200000  | 7094000  | 2192000  | 2037000  | -0.07071  | 4/19/95  |

| pincon_I | acteon_s | actcon_l | Scd Grth |
|----------|----------|----------|----------|
| 5/1/96   | 11/1/95  | 7/1/96   | 0.14     |
| 7/1/97   | 12/1/96  | 7/1/97   | 0.00     |
| 7/1/97   | 12/1/95  | 7/1/97   | -0.10    |
| 7/1/96   | 5/1/94   | 3/15/97  | 0.28     |
| 2/1/96   | 3/1/95   | 1/1/96   | -0.16    |
| 5/15/96  | 9/15/95  | 5/15/96  | -0.11    |
| 11/30/96 | 8/1/95   | 12/10/96 | 0.02     |
| 9/1/96   | 10/1/95  | 9/30/96  | 0.09     |
| 10/25/96 | 4/29/96  | 11/15/96 | 0.24     |
| 6/30/96  | 8/8/08   | 6/30/96  | 0.00     |
| 4/1/96   | 3/15/95  | 4/1/96   | 0.14     |
| 1/10/91  | 11/9/88  | 5/9/91   | 0.09     |
| 12/19/95 | 3/30/94  | 3/21/96  | 0.15     |
| 10/31/95 | 11/1/93  | 8/14/95  | -0.11    |
| 6/1/94   | 3/15/93  | 6/1/94   | -0.07    |
| 8/1/96   | 3/1/95   | 7/13/96  | -0.04    |
| 8/23/96  | 6/26/95  | 8/23/96  | 0.00     |
| 10/7/96  | 5/1/96   | 4/18/97  | 0.77     |
| 8/8/08   | 5/6/96   | 2/27/97  | #DIV/0!  |
| 12/15/95 | 5/15/95  | 3/15/96  | 0.43     |
| 2/6/96   | 10/17/94 | 1/31/96  | -0.01    |
| 11/4/96  | 5/24/96  | 11/4/96  | 0.00     |
| 12/15/96 | 10/15/95 | 1/15/97  | 0.07     |
| 6/1/96   | 2/1/94   | 1/1/96   | -0.15    |
| 4/18/97  | 10/28/96 | 4/18/97  | 0.00     |
| 4/28/96  | 3/9/95   | 4/28/96  | 0.00     |
| 2/1/97   | 11/30/94 | 4/1/97   | 0.07     |
| 10/15/96 | 3/15/96  | 10/15/96 | 0.00     |
| 1/1/97   | 11/1/95  | 1/1/97   | 0.00     |
| 4/11/97  | 10/7/96  | 4/11/97  | 0.00     |
| 6/17/96  | 4/15/96  | 7/22/96  | 0.27     |
| 12/13/96 | 3/18/96  | 4/11/97  | 0.74     |
| 12/15/96 | 10/15/95 | 4/15/97  | 0.38     |
| 1/6/95   | 1/15/94  | 12/7/94  | -0.08    |
| 12/1/95  | 5/15/95  | 11/16/95 | -0.14    |
| 11/1/95  | 8/30/94  | 10/31/95 | 0.00     |
| 6/20/97  | 3/24/97  | 8/8/08   | -318.35  |
| 5/1/96   | 1/1/96   | 6/30/96  | 0.50     |
| 12/1/96  | 3/1/96   | 12/15/96 | 0.05     |
| 12/17/96 | 9/15/95  | 3/17/97  | 0.20     |
| 12/5/95  | 4/10/95  | 6/28/96  | 0.93     |

| cil_id_a | version   | type                | char       | publipriv | cii_cntr | cnsttype | cosi_inc |
|----------|-----------|---------------------|------------|-----------|----------|----------|----------|
| 0176     | Version 2 | Chemical N          | Add-on     | Private   | 0        | CR       | 4        |
| 0177     | Version 2 | Chemical N          | Modemizal  | Private   | 100      | UP       | 2        |
| 0178     | Version 2 | Consumer            | Modernizat | Private   | 100      | UP       | 4        |
| O179     | Version 2 | Water/Was           | Grass Roo  | Private   | 0        | CR       | 4        |
| O180     | Version 2 | Electrical E        | Modemizat  | Private   | 0        | LS       | 4        |
| O182     | Version 2 | <b>Oil Refining</b> | Add-on     | Private   | 0        | LS       | 4        |
| 0184     | Version 2 | School              | Grass Roo  | Public    | 0        | LS       | 4        |
| O185     | Version 2 | School              | Grass Roo  | Public    | 0        | LS       | 4        |
| O186     | Version 2 | School              | Modernizat | Public    | 0        | LS       | 4        |
| O187     | Version 2 | School              | Grass Roo  | Public    | 0        | LS       | 4        |
| O188     | Version 2 | Chemical N          | Add-on     | Private   | 100      | CR       | 1        |
| O189     | Version 2 | Oil Refining        | Add-on     | Private   | 0        | CR       | 1        |
| O190     | Version 2 | Maintenan           | Add-on     | Public    | 0        | LS       | 4        |
| O191     | Version 2 | Highrise O          | Grass Roo  | Public    | 0        | LS       | 4        |
| O192     | Version 2 | Laboratory          | Grass Roo  | Public    | 0        | LS       | 4        |
| O193     | Version 2 | Restaurant          | Grass Roo  | Public    | 0        | LS       | 4        |
| O194     | Version 2 | Dormatory/          | Grass Roo  | Public    | 0        | LS       | 4        |
| O195     | Version 2 | Dormatory/          | Grass Roo  | Public    | 0        | LS       | 4        |
| O196     | Version 2 | Chemical N          | Add-on     | Private   | 100      | CR       | 3        |

.....

/

76

| schd_inc | sate_inc | Inc Indx | crftwkhr | recrdinj | Istwikdc | RIR      | LWCIR    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 4        | 1        | 1        | 581000   | 8        | 0        | 2.753873 | 0        |
| 2        | 2 1      | 3        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | 98000    | 0        | 0        | 0        | 0        |
| 4        | 1        | 1        | 148360   | 5        | 1        | 6.740361 | 1.348072 |
| 4        | 4        | 0        | -888     | 0        | 0        | 0        | 0        |
| 4        | 4        | 0        | -888     | 0        | 0        | 0        | 0        |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 1        | 1        | 3        | 660000   | 4        | 0        | 1.212121 | 0        |
| 4        | 4        | 1        | 45000    | 0        | 0        | 0        | 0        |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 4        | 4        | 0        | -888     | -888     | -888     | 200000   | 200000   |
| 3        | 3 4      | 4        | 317725   | -888     | 0        | -558.974 | 0        |

.

| a 23 | cii ki c | orbudaet | proicost | budescon | actoscon | Cost Grth | pincon s |
|------|----------|----------|----------|----------|----------|-----------|----------|
| 1    | 0176     | 57800000 | 51422000 | 13784320 | 13832000 | 0.003459  | 6/15/94  |
| 1    | 0177     | 82746000 | 1.07E+08 | 39796661 | 54123000 | 0.359988  | 8/8/08   |
| 1    | 0178     | 21000000 | 21500000 | 5800000  | 6280000  | 0.082759  | 2/1/96   |
| 1    | O179     | 23500000 | 22770000 | 13547000 | 10755000 | -0.2061   | 2/5/95   |
| 2    | O180     | 5125000  | 5549000  | -888     | 4100000  | -4618.12  | 8/8/08   |
| 2    | O182     | 18000000 | 16000000 | 11800000 | 9780000  | -0.17119  | 8/8/08   |
| 2    | O184     | 23054000 | 22370000 | 14688000 | 14771000 | 0.005651  | 1/19/95  |
| 2    | O185     | 13200000 | 13171000 | 9910000  | 11450000 | 0.155399  | 9/15/95  |
| 2    | O186     | 23600000 | 24735000 | 19758000 | 22315000 | 0.129416  | 2/1/96   |
| 2    | O187     | 18062000 | 18727000 | 15611000 | 15906000 | 0.018897  | 8/8/08   |
| 1    | O188     | 42120000 | 47230000 | 12112000 | 14778000 | 0.220112  | 10/24/95 |
| 2    | O189     | 7500000  | 7975000  | 2000000  | 3325000  | 0.6625    | 3/1/94   |
| 2    | O190     | 22260000 | 16580000 | 21000000 | 15677000 | -0.25348  | 6/30/91  |
| 2    | O191     | 75000000 | 78170000 | 69700000 | 73025000 | 0.047704  | 1/3/95   |
| 2    | O192     | 28565000 | 29153000 | 26455000 | 27168000 | 0.026951  | 3/21/94  |
| 2    | O193     | 7156000  | 7494000  | 6542000  | 6774000  | 0.035463  | 9/20/93  |
| 1    | 0194     | 2.87E+08 | 2.72E+08 | 2.75E+08 | 2.6E+08  | -0.05472  | 1/15/95  |
| 8    | O195     | 10900000 | 8547000  | 8668000  | 8227000  | -0.05088  | 10/30/94 |
| 2    | O196     | 50400000 | 47500000 | -888     | -888     | 0         | 8/8/08   |

.

| pincon_i | actcon_s | actcon_t | Scd Grin |
|----------|----------|----------|----------|
| 11/15/95 | 6/15/94  | 11/15/95 | 0.00     |
| 8/8/08   | 3/15/95  | 7/15/96  | #DIV/0!  |
| 8/1/96   | 5/1/96   | 4/1/97   | 0.84     |
| 2/5/96   | 3/13/95  | 4/18/96  | 0.10     |
| 8/8/08   | 1/15/93  | 12/15/96 | #DIV/0!  |
| 8/8/08   | 10/12/91 | 11/15/92 | #DIV/0!  |
| 6/17/96  | 1/19/95  | 6/30/96  | 0.03     |
| 3/31/97  | 3/1/95   | 4/16/97  | 0.38     |
| 8/1/97   | 2/5/96   | 9/1/97   | 0.05     |
| 8/8/08   | 2/21/96  | 7/31/97  | #DIV/0!  |
| 7/24/96  | 12/6/95  | 10/26/96 | 0.19     |
| 4/1/94   | 10/1/94  | 11/1/94  | 0.00     |
| 7/30/94  | 6/14/91  | 12/21/93 | -0.18    |
| 9/9/09   | 1/25/95  | 2/17/97  | -1.02    |
| 2/22/96  | 3/22/94  | 4/6/96   | 0.06     |
| 12/20/94 | 8/30/93  | 5/3/95   | 0.34     |
| 9/30/96  | 2/28/95  | 9/30/96  | -0.07    |
| 12/30/95 | 10/26/95 | 11/30/96 | -0.06    |
| 8/8/08   | 8/8/08   | 8/8/08   | #DIV/0!  |

\*\*\*\*\*\*\*

# **Appendix B: CII Questionnaire (Owner Version 2.0)**

The data collected by this form begins the second round of data collection for CII's benchmarking and metrics system. The data will be used to establish performance norms, to identify trends, and to correlate execution of project management processes to project outcomes. It will form part of a permanent database. Through such correlation across many companies and projects, opportunities for improving your company's project performance will be identified. CII will not analyze performance of individual companies, however. Each company will be provided the means to compare itself to the benchmarks. Therefore, it is important that you retain a copy of this questionnaire for your records. All data will be held in strict confidence.

When you have completed the questionnaire, please return it to your Company's Data Liaison by May 1, 1997.

The next 2 pages contain definitions for project phases. Please pay particular attention to the start and stop points which have been highlighted. All project costs should be given in U.S. dollars. If you need further assistance in interpreting the intent of a question, please call Ned Givens or Kirk Morrow of CII at (512) 471-4319 (E-mail: tkmorrow@mail.utexas.edu). Remember, conformance to the instructions and phase definitions is crucial for establishing reliable benchmarks.

Your company data liaison has been provided with a list of projects which were submitted by your company during the previous data collection effort. In order to maintain the integrity of the database, please ensure that projects which have been submitted previously are not reported again.

If the information required to answer a given question is not available, please write "UNK" (unknown) in the space provided. If the information requested does not apply to this project, please write "NA" (not applicable) in the space provided. However, keep in mind that too many "unknowns" or "not applicables" could render the project unusable for analysis.

This form should be completed under the direction of the project manager. The project manager should consult with colleagues who worked on the project. We urge that you carefully review the phase table on the next 2 pages before attempting to provide the requested information.

Definition is provided in the attached glossary for words and phrases that are both italicized and underlined.

| <u>e</u> |
|----------|
| ab       |
| H        |
| Se       |
| ha       |
| Д        |
| ect      |
| ିତ୍ର     |
| ď        |

| Project Phase                                                                                                                                                                             | START/STOP                                                                                                                         | Typical Activities & Products                                                                                                                                                                                                                              | Typical Cost Elements                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Pre-Project Planning</li> <li>Typical Participants:</li> <li>Owner personnel</li> <li>Planning Consultants</li> <li>Consultant</li> <li>Alliance / Partner</li> </ul>            | Start: Defined Business Need that<br>requires facilities<br>Stop: Total Project Budget<br>Authorized                               | <ul> <li>Options Analysis</li> <li>Life-cycle Cost Analysis</li> <li>Project Execution Plan</li> <li>Appropriation Submittal Pkg</li> <li>P&amp;IDs and Site Layout</li> <li>Project Scoping</li> <li>Procurement Plan</li> <li>Arch. Rendering</li> </ul> | <ul> <li>Owner Planning team personnel<br/>expenses</li> <li>Consultant fees &amp; expenses</li> <li>Environmental Permitting costs</li> <li>Project Manager / Construction<br/>Manager fees</li> <li>Licensor Costs</li> </ul>                  |
| Detail Design<br>Typical Participants:<br>• Owner personnel<br>• Design Contractor<br>• Constructability Expert<br>• Alliance / Partner                                                   | Start: Design Basis<br>Stop: Release of all approved<br>drawings and specs for<br>construction (or last package for<br>fast-track) | <ul> <li>Drawing &amp; spec preparation</li> <li>Bill of material preparation</li> <li>Procurement Status</li> <li>Sequence of operations</li> <li>Technical Review</li> <li>Definitive Cost Estimate</li> </ul>                                           | <ul> <li>Owner project management<br/>personnel</li> <li>Designer fees</li> <li>Project Manager / Construction<br/>Manager fees</li> </ul>                                                                                                       |
| Demolition / Abatement<br>(see note below)<br>Typical Participants:<br>• Owner personnel<br>• General Contractor<br>• Demolition Contractor<br>• Remediation /<br>Abatement<br>Contractor | Start: Mobilization for demolition<br>Stop: Completion of demolition                                                               | <ul> <li>Remove existing facility or portion of facility to allow construction or renovation to proceed</li> <li>Perform cleanup or abatement / remediation</li> </ul>                                                                                     | <ul> <li>Owner project management<br/>personnel</li> <li>Project Manager / Construction<br/>Manager fees</li> <li>General Contractor and/or<br/>Demolition specialist charges</li> <li>Abatement / remediation contractor<br/>charges</li> </ul> |
| Note: The demolition / a<br>(potentially parall<br>demolition / abate                                                                                                                     | abatement phase should be reported<br>leling the design and procurement p<br>ement phase if the work is integral w                 | when the demolition / abatement wo<br>hases) in preparation for new constr<br>vith modernization or addition activi                                                                                                                                        | rk is a separate schedule activity<br>action. Do not use the<br>ties.                                                                                                                                                                            |

•

Project Phase Table (Cont.)

•

| Project Phase                               |                                         | Typical Activities & Products                                                                     | Typical Cost Elements                                    |
|---------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                             | START/STOP                              |                                                                                                   |                                                          |
| Procurement                                 | Start: Procurement Plan                 | Vendor Qualification                                                                              | Owner project management personnel                       |
| -                                           | for Engineered                          | Vendor Inquiries                                                                                  | Project Manager / Construction Manager                   |
| Typical Participants:                       | Equipment                               | Bid Analysis     Durcharing                                                                       | <ul> <li>Drouwmant &amp; Evnaditing nerconnel</li> </ul> |
| <ul> <li>Design Contractor</li> </ul>       | Stop: All engineered                    | • Expediting                                                                                      | Engineered Equipment                                     |
| <ul> <li>Alliance / Partner</li> </ul>      | equipment uas occu<br>delivered to site | Engineered Equipment                                                                              | Transportation                                           |
|                                             |                                         | Transportation     Vendor QA/QC                                                                   | • Shop QA / QC                                           |
| Construction                                | Start: Beginning of                     | Set up trailers                                                                                   | Owner project management personnel                       |
|                                             | continuous substantial                  | Site preparation                                                                                  | Project Manager / Construction Manager                   |
| Typical Participants:                       | construction activity                   | <ul> <li>Procurement of bulks</li> </ul>                                                          | fees                                                     |
| Owner personnel                             | Stop: Mechanical                        | Issue Subcontracts                                                                                | Building permits                                         |
| Design Contractor (Inspection)              | Completion                              | Construction plan for Methods/Sequencing                                                          | Inspection QA/QC                                         |
| Construction Contractor and its             |                                         | <ul> <li>Build Facility &amp; Install Engineered Equipment</li> <li>Complete Durchlist</li> </ul> | <ul> <li>Construction labor, equipment &amp;</li> </ul>  |
| SUDCONNECCOIS                               |                                         | Complete functions     Demokilize constantion equipment                                           | - Bult motarials                                         |
|                                             |                                         | <ul> <li>Demonstre construction equipment</li> <li>Warehousing</li> </ul>                         | Durk Interliats     Construction equipment               |
|                                             |                                         | 9                                                                                                 | Contractor management nersonnel                          |
|                                             |                                         |                                                                                                   | Warrantics                                               |
| Start-up / Commissioning                    | Start: <u>Mechanical</u>                | <ul> <li>Testing Systems</li> </ul>                                                               | <ul> <li>Owner project management personnel</li> </ul>   |
| Note: Does not usually apply to             | <u>Completion</u>                       | Training Operators                                                                                | Project Manager / Construction Manager                   |
| infrastructure or building type projects    | Stop: Custody transfer to               | <ul> <li>Documenting Results</li> </ul>                                                           | tees                                                     |
|                                             | user/operator (steady                   | <ul> <li>Introduce Feedstocks and obtain first Product</li> </ul>                                 | <ul> <li>Consultant fees &amp; expenses</li> </ul>       |
| Typical Participants:                       | state operation)                        | <ul> <li>Hand-off to user/operator</li> </ul>                                                     | <ul> <li>Operator training expenses</li> </ul>           |
| <ul> <li>Owner personnel</li> </ul>         | -                                       | <ul> <li>Operating System</li> </ul>                                                              | <ul> <li>Wasted feedstocks</li> </ul>                    |
| <ul> <li>Design Contractor</li> </ul>       |                                         | Functional Facility                                                                               | Vendor fees                                              |
| <ul> <li>Construction Contractor</li> </ul> |                                         | Warranty Work                                                                                     |                                                          |
| <ul> <li>Training Consultant</li> </ul>     |                                         |                                                                                                   |                                                          |
| <ul> <li>Equipment Vendors</li> </ul>       |                                         |                                                                                                   |                                                          |

| 1. | Your Company:                                                                                                                                                                |                                                                                      |                                                                                           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2. | Your Project I.D<br>to protect the project's identity. The<br>personnel identify the questionnaire<br>and to prevent duplicate project entries                               | (You may<br>purpose of this I.D. is<br>correctly if clarificatio<br>es.)             | y use any reference<br>to help you and CII<br>n of data is needed                         |
| 3. | Project Location: Domestic                                                                                                                                                   |                                                                                      | _, USA                                                                                    |
|    |                                                                                                                                                                              | State                                                                                |                                                                                           |
|    | International                                                                                                                                                                | 0                                                                                    |                                                                                           |
|    |                                                                                                                                                                              | Country                                                                              |                                                                                           |
| 4. | Contact Person (name of the person filling                                                                                                                                   | g out this form):                                                                    |                                                                                           |
| 5. | Contact Phone No. ( )                                                                                                                                                        | 6. Contact Fax N                                                                     | No. ()                                                                                    |
| 7. | Principal Type of Project (Check only<br>principal type, but is an even mixture of<br>short description of the project. If the p<br>describe in the space next to "Other."): | one. If you feel the pro-<br>of two or more of those is<br>project type does not app | bject does not have a<br>listed, please attach a<br>bear in the list, please<br>Buildings |
|    | mustra                                                                                                                                                                       | <u>Initastructure</u>                                                                | <u>Dunuings</u>                                                                           |
|    | Electrical (Generating)                                                                                                                                                      | _Electrical Distributio                                                              | on_Lowrise                                                                                |
|    | Office                                                                                                                                                                       |                                                                                      |                                                                                           |
|    | Oil Exploration/Production                                                                                                                                                   |                                                                                      | Highway                                                                                   |
|    | Highrise Office                                                                                                                                                              |                                                                                      |                                                                                           |
|    | Oil Retining                                                                                                                                                                 | Navigation                                                                           | warehouse                                                                                 |
|    | Pulp and Paper                                                                                                                                                               | FIOOD CONTOI                                                                         | nospital                                                                                  |
|    | Chemical Mig                                                                                                                                                                 |                                                                                      | Laboratory                                                                                |
|    | Environmental<br>Dearmaceuticals Mfg                                                                                                                                         | Airport                                                                              | School<br>Prison                                                                          |
|    | Metals Refining/Processing                                                                                                                                                   |                                                                                      | T IISON<br>Tunneling                                                                      |
|    | Consumer Products Mfg                                                                                                                                                        | Mining                                                                               | Parking Garage                                                                            |
|    | Natural Gas Processing                                                                                                                                                       |                                                                                      | Retail                                                                                    |
|    | Automotive Mfg.                                                                                                                                                              |                                                                                      |                                                                                           |
|    | Foods                                                                                                                                                                        |                                                                                      |                                                                                           |
|    |                                                                                                                                                                              |                                                                                      |                                                                                           |
|    | Other (Please describ                                                                                                                                                        | pe)                                                                                  |                                                                                           |

8. This project was (check only one): Grass Roots\_\_\_\_\_ Modernization \_\_\_\_\_ Addition \_\_\_\_\_

<u>Grass roots</u> - a new facility from the foundations and up. A project requiring demolition of an existing facility before new construction begins is also classified as grass roots.

<u>Modernization</u> - a facility for which a substantial amount of the equipment, structure, or other components is replaced or modified, and which may expand capacity and/or improve the process or facility.

<u>Addition</u> - a new addition that ties in to an existing facility, often intended to expand capacity.

\_\_\_\_ Other (Please describe)\_\_\_\_\_

**9.** Achieving Design Basis. Please indicate in the following table the product or function of the completed facility, the unit of measure which best relates the product or function capacity of the completed facility, the planned capacity of the facility at the start of detail design, and the capacity achieved by the completed facility.

For process facilities, the measure is either one of input or output as appropriate. Examples : crude oil refining unit - barrels per day throughput

For infrastructure or buildings, please include the measure that you feel is best. Please spell out this measure rather than using an abbreviation.

If the product produced or function provided by this facility is of a confidential nature, please write "Confidential" in the first column and provide the other data.

If you are unable to furnish a measure or units, please write "NA" (not applicable) in the "Product or Function" field and go to question 10.

| Product<br>or<br>Function | Unit<br>of<br>Measure | Planned<br>Start-up<br>Capacity | Achieved<br>Start-up<br>Capacity | Planned<br>Final<br>Capacity | Achieved<br>Final<br>Capacity |
|---------------------------|-----------------------|---------------------------------|----------------------------------|------------------------------|-------------------------------|
|                           |                       |                                 |                                  |                              |                               |
|                           |                       |                                 |                                  |                              |                               |
|                           |                       |                                 |                                  |                              |                               |

9a. Please indicate the method of *acceptance testing* used on this project.

- \_\_\_\_\_ No Assessment
- \_\_\_\_\_ Demonstrated operations at achieved level
- \_\_\_\_\_ Formal documented acceptance test over a meaningful period of time
- **9b.** Please indicate how the achieved capacity of the completed facility compares against expectations documented in the project execution plan. If the achieved capacity is much worse or much better than expected, please briefly comment on the primary cause of the deviation.

| <br>Much worse than expected                                         | Why? |
|----------------------------------------------------------------------|------|
| <br>Worse than expected                                              |      |
| <br>As expected<br>Better than expected<br>Much better than expected | Why? |
|                                                                      |      |

.

10. Project Participants. Please list the companies, including your company, that helped execute this project, but do not list any subcontractors. Indicate the function(s) each company performed and the approximate percent of that function to the nearest 10%. For each function, indicate the principle form of remuneration in use at the completion of the work. Please indicate if each participant was an alliance partner and if their contract contained incentives.

Please use the following codes to identify the **Function** performed by each project participant.

| PPP | Pre-Project Planner             | DM | Demolition/Abatem  |
|-----|---------------------------------|----|--------------------|
|     | -                               |    | ent Contractor     |
| PPC | Pre-Project Planning Consultant | GC | General Contractor |
| D   | Designer                        | PC | Prime Contractor   |
| PE  | Procurement - Equipment         | PM | Project Manager    |
| PB  | Procurement - Bulks             | CM | Construction       |
|     |                                 |    | Manager            |
|     |                                 |    |                    |

**Percent of Function** refers to the percent of the overall function contributed by the company listed. Estimate to the nearest 10 percent.

**Type of Remuneration** refers to the overall method of payment. Unit price refers to a price for in place units of work and does not refer to hourly charges for skill categories or time card mark-ups. Hourly rate payment schedules should be categorized as cost reimbursable. Please use the following codes to identify remuneration type. Record the form of remuneration for your own company's contribution, if any, as "I" (In House).

| LS | Lump Sum                                  | GP | Guaranteed |
|----|-------------------------------------------|----|------------|
|    | •                                         |    | Maximum    |
|    |                                           |    | Price      |
| UP | Unit Price                                | I  | In-house   |
| CR | Cost Reimbursable/Target Price (Including |    |            |
|    | Incentives)                               |    |            |

An <u>Alliance Partner</u> is a company with whom your company has a long-term formal strategic agreement that ordinarily covers multiple projects. Circle "Y" to indicate that a company was an alliance partner or circle "N" if the company was not an alliance partner.

If **Contract Incentives** were utilized, please indicate whether those incentives were positive (a financial incentive for attaining an objective),

negative (a financial disincentive for failure to achieve an objective), or both. Circle "+" to indicate a positive incentive and circle "-" to indicate a negative incentive.

| Company<br>Name | Fun<br>ctio<br>n | Appro<br>x.<br>Percen<br>t of<br>Functi<br>on<br>(Neare<br>st<br>10%) | Type<br>of<br>Remu<br>n.<br>(Contr<br>act<br>End) | Wa<br>thi<br>comp<br>y a<br>allian<br>partn<br>?<br>(Yes,<br>o) | is<br>s<br>oan<br>n<br>nce<br>ier<br>/N |    | Co<br>(circ) | ontrac<br>le as 1 | t In<br>man | cer<br>y a | ntives<br>s app | ;<br>oly) |       |
|-----------------|------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|----|--------------|-------------------|-------------|------------|-----------------|-----------|-------|
|                 |                  |                                                                       |                                                   |                                                                 |                                         | Co | ost          | Sche              | dule        | S          | afety           | Qu        | ality |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | 1           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | 1           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | -           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | •           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | -           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | -           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | -           | +          | -               | +         | -     |
|                 |                  |                                                                       |                                                   | Y                                                               | Ν                                       | +  | -            | +                 | -           | +          | -               | +         | -     |

#### 11a. <u>Total Project Budget</u>

- The total project budget amount should correspond to the estimate at the start of detail design including *contingency*.
- The total project budget amount should include all planned expenses from preproject planning through startup or to a "ready for use" condition, excluding the cost of land.
- State the project budget in U.S. dollars to the nearest \$1000. (You may use a "k" to indicate thousands in lieu of "...,000".)

\$\_\_\_\_\_

**11b.** How much <u>contingency</u> does this budget contain? (to the nearest \$1000. You may use a "k" to indicate thousands in lieu of "...,000".)

\$\_\_\_\_\_

#### 12. Total Actual Project Cost:

- The total actual project cost should include all actual project costs from preproject planning through startup or to a "ready for use" condition, excluding the cost of land.
- Actual costs should correspond to those that were part of the budget. For example, if the budget included specific amounts for in-house personnel, then actual cost should include the actual amounts expended during the project for their salaries, overhead, travel, etc.
- State the project cost in U.S. dollars to the nearest \$1000. (You may use a "k" to indicate thousands in lieu of "...,000".)

\$\_\_\_\_\_

### 13. Please indicate the budgeted and actual costs by project phase

- Phase budget amounts should correspond to the estimate at the start of detail design.
- Refer to the table on pages 2 and 3 for phase definitions and typical cost elements.
- State the phase costs in U.S. dollars to the nearest \$1000. (You may use a "k" to indicate thousands in lieu of "...,000".)
- Include the cost of bulk materials in construction and the cost of engineered equipment in procurement.
- If this project did not involve Demolition/Abatement or Startup please write "NA" for those phases.
- The sum of phase budgets should equal the Total Project Budget and the sum of actual phase costs should equal Total Actual Project Cost from questions 11 & 12 above.

| Project Phase        | Phase Budget<br>(Including Contingency) | Amount of<br>Contingency in Budget | Actual<br>Phase<br>Cost |
|----------------------|-----------------------------------------|------------------------------------|-------------------------|
| Pre-Project Planning | \$                                      | \$                                 | \$                      |
| Detail Design        | \$                                      | \$                                 | \$                      |
| Procurement          | \$                                      | \$                                 | \$                      |
| Demolition/Abatement | \$                                      | \$                                 | \$                      |
| Construction         | \$                                      | \$                                 | \$                      |
| Startup              | \$                                      | \$                                 | \$                      |
| Totals               | \$                                      | \$                                 | \$                      |

## 14. Planned and Actual Project Schedule

- The dates for the planned schedule should be those in effect at the start of detail design. If you cannot provide an exact day for either the planned or actual, estimate to the nearest week in the form mm/dd/yy; for example, 1/8/96, 2/15/96, or 3/22/96.)
- Refer to the chart on pages 2 and 3 for a description of starting and stopping points for each Phase.

• If this project did not involve Demolition/Abatement or Startup please write "NA" for those phases.

|                          | Planned                  | Schedule                | Actual Sc             | hedule               |
|--------------------------|--------------------------|-------------------------|-----------------------|----------------------|
| Project Phase            | Start<br>mm / dd /<br>yy | Stop<br>mm / dd /<br>yy | Start<br>mm / dd / yy | Stop<br>mm / dd / yy |
| Pre-Project Planning     |                          | /                       | / /                   | /                    |
| Detail Design            |                          | /                       |                       | /                    |
| Procurement              |                          |                         | / /                   |                      |
| Demolition/Abatemen<br>t |                          | 1                       | 1 [                   |                      |
| Construction             |                          | /                       | / /                   |                      |
| Startup                  |                          | /                       |                       | /                    |

14a. What percentage of the total engineering workhours for design were completed prior to total project budget authorization? (Write "UNK" in the blank if you don't have this information)

\_\_\_\_\_%

14b. What percentage of the total engineering workhours for design were completed prior to start of the construction phase? (Write "UNK" in the blank if you don't have this information)

\_\_\_\_\_%

15. <u>Project Development Changes</u> and <u>Scope Changes</u>. Please record the changes to your project by phase in the table provided below. For each phase indicate the total number, the net cost impact, and the net schedule impact resulting from project development changes and scope changes. Changes may be initiated by either the owner or contractor.

<u>Project Development Changes</u> include those changes required to execute the original scope of work or obtain original process basis.

<u>Scope Changes</u> include changes in the base scope of work or process basis.

- Changes should be included in the phase in which they were initiated. Refer to the table on pages 2 and 3 to help you decide how to classify the changes by project phase. If you cannot provide the requested change information by phase, but can provide the information for the total project please indicate the totals.
- Indicate "minus" (-) in front of cost or schedule values, if the net changes produced a reduction. If no changes were initiated during a phase, write "0" in the "Total Number" columns.
- State the cost of changes in U.S. dollars to the nearest \$1000 and the schedule changes to the nearest week. You may use a "k" to indicate thousands in lieu of "...,000".

| Project<br>Phase                 | Total<br>Number of<br>Project<br>Developme<br>nt Changes | Total<br>Number of<br>Scope<br>Changes | Net Cost<br>Impact of<br>Project<br>Development<br>Changes<br>(\$) | Net Cost<br>Impact of<br>Scope<br>Changes<br>(\$) | Net Schedule<br>Impact of<br>Project<br>Development<br>Changes<br>(weeks) | Net Schedule<br>Impact of<br>Scope<br>Changes<br>(weeks) |
|----------------------------------|----------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|
| Design                           |                                                          |                                        | \$                                                                 | \$                                                | wks                                                                       | wks                                                      |
| Procur<br>ement                  |                                                          |                                        | \$                                                                 | \$                                                | wks                                                                       | wks                                                      |
| Demol<br>ition/A<br>bateme<br>nt |                                                          |                                        | \$                                                                 | \$                                                | wks                                                                       | wks                                                      |
| Constr<br>uction                 |                                                          |                                        | \$                                                                 | \$                                                | wks                                                                       | wks                                                      |
| Startup                          |                                                          |                                        | \$                                                                 | \$                                                | wks                                                                       | wks                                                      |

| Totals | \$<br>\$ | wks | wks |
|--------|----------|-----|-----|
|        |          |     |     |

### 16. Field Rework

Was there a system for tracking and evaluating field rework for this project?

\_\_\_\_\_ Yes \_\_\_\_\_ No

If yes, please complete the following table. If no, proceed to question 17.

Please indicate the Direct Cost of Field Rework, the Cost of Quality Management, and the Schedule Impact of Field Rework for each category shown in the following table. If you track field rework by a few other or additional categories, please add them in the blank spaces provided. If the system used on this project does not include any of the Sources of Field Rework listed, write "NA" (not applicable) in the Direct Cost of Field Rework space. If your system used a listed Source of Field Rework, but this project had no Field Rework attributable to it, write "O" in the Direct Cost of Field Rework space. If you cannot provide the requested field rework information by Source of Field Rework, but can provide the information for the total project, please write "UNK" (unknown) in the fields adjacent to the sources of field rework and indicate the totals.

The <u>direct cost of field rework</u> relates to all costs needed to perform the rework itself whereas the <u>cost of quality management</u> includes quality assurance or quality control costs, which may identify the need to perform field rework or prevent the need for additional field rework.

| Source of Field<br>Rework       | Direct Cost of Field<br>Rework | Cost of Quality<br>Management | Schedule Impact of<br>Field Rework |
|---------------------------------|--------------------------------|-------------------------------|------------------------------------|
| Owner Change                    | \$                             | \$                            | Weeks                              |
| Design Error /<br>Omission      | \$                             | \$                            | Weeks                              |
| Designer Change                 | \$                             | \$                            | Weeks                              |
| Vendor Error /<br>Omission      | \$                             | \$                            | Weeks                              |
| Vendor Change                   | \$                             | \$                            | Weeks                              |
| Constructor Error<br>/ Omission | \$                             | \$                            | Weeks                              |
| Constructor<br>Change           | \$                             | \$                            | Weeks                              |
| Transportation<br>Error         | \$                             | \$                            | Weeks                              |
|                                 | \$                             | \$                            | Weeks                              |
| Totals                          | \$                             | \$                            | Weeks                              |

# 17. Actual Total Cost of Major Equipment

Please record the actual total cost of major equipment procured for permanent installation in this project in the space provided below.

- Include only the invoiced cost for items of major equipment. Do not include the cost of associated services such as making vendor inquiries, analyzing vendor bids, or expediting.
- State the cost of equipment in U.S. dollars to the nearest \$1000. You may use a "k" to indicate thousands in lieu of "...,000". Refer to the following table to help you identify major equipment expenditures.
- If the project did not include major equipment, which is typical of many infrastructure or building projects, please write "NA."

| \$ |  |  |
|----|--|--|
|    |  |  |
|    |  |  |
|    |  |  |
|    |  |  |

| General                                                           | Kinds of Equipment Covered                                                                                                                                                            |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification                                                    |                                                                                                                                                                                       |
| Columns and Pressure<br>Vessels (Code Design)                     | Towers, columns, reactors, unfired pressure vessels, bulk storage spheres,<br>and unfired kilns; includes internals such as trays and packing.                                        |
| Tanks (non-code design; 0-<br>15 psig, MAW or design<br>pressure) | Atmospheric storage tanks, bins, hoppers, and silos.                                                                                                                                  |
| Exchangers                                                        | Heat transfer equipment: tubular exchangers, condensers, evaporators, reboilers, coolers (including fin-fan coolers and cooling towers) - excludes fired heaters.                     |
| Direct-fired Equipment                                            | Fired heaters, furnaces, boilers, kilns, and dryers, including associated<br>equipment such as super-heaters, air preheaters, burners, stacks, flues, draft<br>fans and drivers, etc. |
| Pumps                                                             | All types of liquid pumps and drivers.                                                                                                                                                |
| Vacuum Equipment                                                  | Mechanical vacuum pumps, ejectors, and other vacuum-producing apparatus and integral auxiliary equipment.                                                                             |
| Turbines                                                          |                                                                                                                                                                                       |
| Motors                                                            |                                                                                                                                                                                       |
| Electricity Generation and<br>Transmission                        | Major electrical items (e.g., transformers, switch gear, motor-control centers, batteries, battery chargers, and cable [15kV]).                                                       |
| Speed Reducers/Increasers                                         |                                                                                                                                                                                       |
| Materials-Handling<br>Equipment                                   | Conveyers, cranes, hoists, chutes, feeders, scales and other weighing devices, packaging machines, and lift trucks.                                                                   |
| Package Units                                                     | Integrated systems bought as a package (e.g., air dryers, refrigeration systems, ion-exchange systems, etc.).                                                                         |

| Special Processing<br>Equipment | Agitators, crushers, pulverizers, blenders, separators, cyclones, filters,<br>centrifuges, mixers, dryers, extruders, and other such machinery with their<br>drivers |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                      |
### 17b. Project Complexity

Place a mark anywhere on the scale below that best describes the level of complexity for this project as compared to other projects from the same industry sector. For example, if this is a heavy industrial project, how does it compare in complexity to other heavy industrial projects. Use the definitions below the scale as general guidelines.



- Low Complexity Characterized by the use of no unproven technology, small number of process steps, small facility size or process capacity, previously used facility configuration or geometry, proven construction methods, etc.
- **High Complexity** Characterized by the use of unproven technology, an unusually large number of process steps, large facility size or process capacity, new facility configuration or geometry, new construction methods, etc.

#### 18. Workhours and Accident Data

Please record total craft workhours, the number of recordable injuries, and the number of lost workday cases separately in the spaces provided below.

- Use the U.S. Department of Labor's OSHA definitions for recordable injuries and lost workday cases among this project's craft workers. If you do not track in accordance with these definitions, write "UNK" in the recordable injuries and lost workday cases columns.
- Write "UNK" in any space for which the information is unavailable or incomplete.
- A consolidated project OSHA 200 log is the best source for the data.

|                       | OSHA                | OSHA               |
|-----------------------|---------------------|--------------------|
| Total Craft Workhours | Recordable Injuries | Lost Workday Cases |

|  | 1 |   |  |
|--|---|---|--|
|  | 1 |   |  |
|  | 1 |   |  |
|  |   |   |  |
|  | 1 | - |  |
|  |   |   |  |

18a. How many of the craft workhours reported in the table above were "overtime" (or "premium time")? (Write "UNK" in the blank if you don't have this information) \_\_\_\_\_ hrs

# **Safety Practices**

Safety includes the site-specific program and efforts to create a project environment and state of consciousness which embraces the concept that all accidents are preventable and that zero accidents is an obtainable goal. If this project was accident free, check "NA" as appropriate for questions 27 through 30.

|     | Yes   | No        |                       |                     |                  |                |                |
|-----|-------|-----------|-----------------------|---------------------|------------------|----------------|----------------|
| 19. | _     |           | This project          | had a written sit   | e-specific safe  | ety plan.      |                |
| 20. |       | _         | This project          | had a written sit   | e-specific eme   | ergency plan.  |                |
| 21. |       |           | This project          | had a site safety   | supervisor.      |                |                |
| 22. |       | <u></u>   | The site safe         | ety supervisor for  | r this project v | vas full-time. |                |
| 23. |       |           | This project<br>emplo | had a written sa    | fety incentive   | program for    | hourly craft   |
| 24. |       |           | Toolbox saf           | ety meetings we     | re required.     |                |                |
| 25. |       |           | This project<br>emplo | required prehire    | substance abu    | ise testing of | contractor     |
| 26. |       |           | Contractor e          | employees were i    | andomly scree    | ened for alco  | hol and drugs. |
| 27. | Subs  | tance abu | use tests were        | e conducted after   | an accident:     |                |                |
|     | _     | Alv       | ways                  | Sometimes           | _Seldom          | Never          | NA             |
| 28. | Accie | dents we  | re formally i         | nvestigated:        |                  |                |                |
|     | _     | Alv       | ways                  | Sometimes           | Seldom           | Never          | NA             |
| 29. | Near  | -misses v | were formally         | y investigated:     |                  |                |                |
|     |       | Alv       | ways                  | _Sometimes          | _Seldom          | Never          | NA             |
| 30. | Senio | or manag  | ement review          | wed accidents:      |                  |                |                |
|     |       | Alv       | ways                  | _Sometimes          | _ Seldom         | Never_         | NA             |
| 31. | Safet | y was a l | high priority         | topic at all pre-co | onstruction an   | d constructio  | n meetings:    |
|     | _     | Alv       | ways                  | Sometimes           | Seld             | om             | Never          |

**32.** Safety records were a criterion for contractor/subcontractor selection:

| Always                      | Sometimes                         | Seldom              | Never             |
|-----------------------------|-----------------------------------|---------------------|-------------------|
| 33. Pre-task planning for   | safety was conducted I            | by contractor foren | nen:              |
| Always                      | Sometimes                         | Seldom              | Never             |
| 34. Jobsite-specific orient | ation was conducted for mployees: | or new contractor a | and subcontractor |
| Always                      | Sometimes                         | Seldom              | Never             |

**35.** This question is for Contractors only.

#### **Team Building Practices**

<u>Team Building</u> is a process that brings together a diverse group of project participants and seeks to resolve differences, remove roadblocks and proactively build and develop the group into an aligned, focused and motivated work team that strives for a common mission and for shared goals, objectives and priorities.

36. Was a team building process used for this project? Yes \_\_\_\_\_ No \_\_\_\_

If yes, answer questions 36a - 36h. If no, go to question 37.

Yes No

| 36a. | <br> | Was an independent consultant used to facilitate the team building process?  |
|------|------|------------------------------------------------------------------------------|
| 36b. | <br> | Was a team-building retreat held early in the life of the project?           |
| 36c. | <br> | Did this project have a documented team-building implementation plan?        |
| 36d. | <br> | Were objectives of the team building process documented and clearly defined? |

36e. Were team building meetings held among team members throughout the project?

\_\_\_\_\_ Regularly \_\_\_\_\_ Sometimes \_\_\_\_\_ Seldom \_\_\_\_\_ Never

**36f.** Were follow-up sessions held to integrate new team members and reinforce concepts?

\_\_\_\_\_ Regularly \_\_\_\_\_ Sometimes \_\_\_\_\_ Seldom \_\_\_\_\_

Never

- **36g.** Please indicate the project phases in which team building was used. (Check all that apply)
  - \_\_\_\_ Pre-Project Planning

\_\_\_\_ Design

- Procurement
- \_\_\_\_ Construction

\_\_\_\_\_ Startup

36h. Please indicate the parties involved in the team building process. (Check all that

apply)

- \_\_\_\_ Owner

- \_\_\_\_\_ Owner
  \_\_\_\_\_ Designer(s)
  \_\_\_\_\_ Contractor(s)
  \_\_\_\_\_ Major Suppliers
  \_\_\_\_\_ Subcontractor(s)
  \_\_\_\_\_ Construction Manager
  \_\_\_\_\_ Other. If other, please specify

## **Constructability Practices**

<u>Constructability</u> is the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives. Constructability is achieved through the effective and timely integration of construction input into planning and design as well as field operations.

37. Was Constructability implemented on this project? Yes \_\_\_\_\_ No \_\_\_\_\_

If yes, please respond to the following statements (37a-371). If no, go to question 38.

- **37a.** Which of the following best describes the constructability program designation for this project?
  - \_\_\_\_ No designation
  - \_\_\_\_\_ Part of standard construction management activities
  - Part of another program, such as Quality or only identified on a project
- level

\_\_\_\_\_ Recognized on a corporate level, but may be part of another program

- \_\_\_\_\_ Stand-alone program on same level as Quality or Safety
- **37b.** Which of the following best describes the constructability training of personnel for this project?
  - \_\_\_\_ None
  - \_\_\_\_\_ If any occurs, done as on-the-job training
  - \_\_\_\_\_ Awareness seminar(s)
  - \_\_\_\_\_ Part of standard orientation
  - Part of standard orientation; deeply ingrained in corporate culture
- **37c.** Which of the following best describes the role of the constructability coordinator for this project?

  - \_\_\_\_\_ Part-time if identified; very limited responsibility
  - Informal full- or part-time position; responsibilities vary
  - \_\_\_\_\_ Formal full- or part-time position; responsibilities vary
  - \_\_\_\_\_ Full-time position; plays major project role
- **37d.** Which of the following best describes the constructability program documentation for this project?
  - \_\_\_\_ None; CII documents may be available
  - \_ Limited reference in any manual; CII documents may be distributed or

referenced

\_\_\_\_\_ Project-level constructability documents exist; may be included in other corporate documents

- Project constructability manual is available
- Project constructability manual is thorough, widely distributed, and periodically updated
- **37e.** Which of the following best describes the nature of project-level efforts and inputs concerning constructability for this project?
  - \_\_\_\_ None
  - \_\_\_\_\_ Reactive approach, constrained by review mentality, poor understanding of proactive benefit
  - Aware of major benefits, proactive approach
  - \_\_\_\_\_ Proactive approach; routinely consult lessons learned

Aggressive, proactive approach from beginning of project; routinely consult lessons learned

**37f.** Which of the following best describes the implementation of constructability concepts on this project?

- \_\_\_\_\_ Very little concept implementation
- Some concepts used periodically; often considered too late to be of use
- Selected concepts applied regularly; full use, timeliness of input varies
- \_\_\_\_\_ All concepts consistently considered; timely implementation of feasible concepts

All concepts consistently considered, continuously evaluated, aggressively implemented

37g. Constructability ideas on this project were collected by: (Check as many as apply)

- \_\_\_\_\_ Suggestion Box
- \_\_\_\_\_ Interviews
- \_\_\_\_\_ Review Meetings
- \_\_\_\_\_ Questionnaire
- \_\_\_\_\_ Other Methods
  - \_ Not Collected

**37h.** To what extent was a computerized constructability database utilized for this project?

- \_\_\_\_ None
- \_\_\_\_\_ Minimal
- \_\_\_\_ Moderate Extensive

37i. Please characterize the frequency of the constructability reviews and discussions for this project.

- \_\_\_\_\_ Once a Week
- \_\_\_\_ Once a Month
- \_\_\_\_ Once every 3 Months
- \_\_\_\_\_ Once every 6 Months
- \_\_\_\_\_ Once a Year or Less Frequent
- **37j.** Please indicate the time period of the first meeting that deliberately and explicitly focused on constructability. Place a check below the appropriate period.

| Pre-P | roject Pla | nning | Desig | Detail Construction<br>Design/Procurement |      | Construction |            | on   |
|-------|------------|-------|-------|-------------------------------------------|------|--------------|------------|------|
| Early | Middl<br>e | Late  | Early | Middl<br>e                                | Late | Early        | Middl<br>e | Late |
|       |            |       |       |                                           |      |              |            |      |

#### Yes No

- 37k. \_\_\_\_ Constructability was an element addressed in this project's formal written execution plan.
- **371.** \_\_\_\_\_ Were the actual cost savings (identified cost savings less implementation cost) due to the constructability program tracked on this project?

If yes, please list? \$\_\_\_\_\_

## **Pre-Project Planning Practices**

<u>**Pre-Project Planning**</u> involves the process of developing sufficient strategic information with which owners can address risk and decide to commit resources to maximize the chance for a successful project. Pre-project planning is often perceived as synonymous with front-end loading, front-end planning, feasibility analysis, and conceptual planning. Please respond to the following statements using the definition provided below the scale for guidance (Questions 38a - 38d are for Contractors only.)

**38e.** Place a mark on the scale below that best describes the composition of the preproject planning team.



- **Excellent** Highly skilled and experienced members with authority; representation from business, project management, technical disciplines, and operations; able to respond to both business and project objectives.
- **Poor** Members with a poor combination of skill or experience that lack authority; insufficient representation from business, project management, technical disciplines, and operations; unable to respond to both business and project objectives.
- **38f.** Place a mark on the scale below that best describes the technology evaluation for this proglem to Poor

- **Excellent** Thorough and detailed identification and analysis of existing and emerging technologies for feasibility and compatibility with corporate business and operations objectives. Scale-up problems and hands-on process experience were considered.
- Poor Poor or no technology evaluation.
   Excellent Poor
   38g. Place a mark on the scale below that best describes the evaluation of alternate siting locations.

- Excellent Thorough and detailed assessment of relative strengths and weaknesses of alternate locations to meet owner requirements. Excellent Poor
- Excellent Poor
  Poor Poor or no evaluation of alternate siting locations.
- **38h.** Place a mark on the scale below that best describes the risk analysis performed for project alternatives.
  - **Excellent** Risks associated with the selected project alternatives were identified and analyzed. These analyses included financial/business, regulatory, project, and operational risk categories in order to minimize the impacts of risks on project success.
  - **Poor** Poor or no risk analysis performed for project alternatives.

The Project Definition Rating Index (PDRI) identifies and describes critical elements in a scope definition package and allows a project team to predict factors impacting project risk. It is intended to evaluate the completeness of project scope definition prior to consideration for authorization.

**39.** Was the Project Definition Rating Index (PDRI) utilized on this project? \_\_\_\_\_ yes \_\_\_\_\_ no

If yes, indicate the score received just prior to total project budget authorization.

Please attach a copy of the PDRI scoresheet and proceed to question 40. If no, please complete the following matrix using the appropriate definition levels given below. Definition is provided for each of the pre-project planning elements on pages 4 through 11 of the glossary of terms. <u>Indicate how well defined each element was prior to the total project budget authorization by placing a check below the appropriate definition level</u>. Elements with definition levels 2 through 4 darkened should be answered as "yes/no" questions. Indicate definition level 1 for "yes" or definition level 5 for "no" to indicate if the elements either existed or did not exist within the project definition package at authorization.

| Definition Levels:      |                        |                        |
|-------------------------|------------------------|------------------------|
| 1 - Complete definition | 3 - Some deficiencies  | 5 - Incomplete or poor |
| definition              |                        |                        |
| 2 - Minor deficiencies  | 4 - Major deficiencies | N/A - Not applicable   |

Note: If the project on which you are reporting is a building or infrastructure project, some of the following elements may not apply to your project. Please place a check in the "N/A" column to indicate "not applicable" if any element does not apply to your project.

|                                        | Defi         | nition Le | vel at A | Authoriz | zation |             |
|----------------------------------------|--------------|-----------|----------|----------|--------|-------------|
|                                        | Com<br>plete |           |          | F        | 'oor   |             |
| Technical Elements                     | 1            | 2         | 3        | 4        | 5      | N<br>/<br>A |
| Process Flow Sheets                    |              |           |          |          |        |             |
| Site Location                          |              |           |          |          |        |             |
| P&ID's                                 |              |           |          |          |        |             |
| Heat & Material Balances               |              |           |          |          |        |             |
| Environmental Assessment               |              |           |          |          |        |             |
| Utility Sources With Supply Conditions |              |           |          |          |        | T           |

| Mechanical Equipment List                 |      |    |   |
|-------------------------------------------|------|----|---|
| Specifications - Process/Mechanical       |      |    |   |
| Plot Plan                                 |      |    |   |
| Equipment Status                          |      |    |   |
| Business Elements                         | <br> |    |   |
| Products                                  |      | Ĩ  |   |
| Capacities                                |      |    |   |
| Technology                                |      |    |   |
| Processes                                 |      |    |   |
| Site Characteristics Available vs. Req'rd |      |    |   |
| Market Strategy                           |      |    |   |
| Project Objectives Statement              |      |    |   |
| Project Strategy                          |      |    |   |
| Project Design Criteria                   |      |    |   |
| Reliability Philosophy                    |      |    |   |
| Execution Approach Elements               |      |    |   |
| Identify Long Lead/Critical Equip. &      |      | Γ. |   |
| Matl's                                    |      |    |   |
| Project Control Requirements              | <br> |    | L |
| Engineering/Construction Plan & Approach  | i    |    |   |

#### **Design/Information Technology Practices**

Please place a check to indicate the extent to which each design/information technology application listed below was used on this project. See the legend below for definition of the "Use Levels." If you believe that an application could not have been appropriately applied on this project check "NA."

| Use Levels:       |                  |                      |
|-------------------|------------------|----------------------|
| 1 - Extensive Use | 3 - Moderate Use | 5 - No Use           |
| 2 - Much Use      | 4 - Little Use   | N/A - Not applicable |

40a. Was an *integrated database* utilized on this project?

Yes No

If yes, please indicate the extent that each of the following shared data within the integrated database. If other applications were used, please list them. If no, proceed to question 40b.

|                                            |           | Use Levels |   |          |        |         |  |
|--------------------------------------------|-----------|------------|---|----------|--------|---------|--|
|                                            | Extensive | Use        |   |          | No Use |         |  |
| Applications                               | 1         | 2          | 3 | 4        | 5      | N/<br>A |  |
| Facility planning                          |           |            |   |          |        |         |  |
| Design / Engineering                       |           |            |   |          |        |         |  |
| 3D CAD model                               |           |            |   |          |        |         |  |
| Procurement / Suppliers                    |           |            | 1 |          |        |         |  |
| Material management                        |           |            |   |          |        |         |  |
| Construction operations / Project controls |           |            |   |          |        |         |  |
| Facility operations                        |           |            |   |          |        |         |  |
| Administrative / Accounting                |           |            |   |          |        |         |  |
|                                            |           |            |   |          | ļ      | ļ       |  |
|                                            |           |            |   | <u> </u> |        |         |  |
|                                            |           |            |   |          |        |         |  |

40b. Was electronic data interchange (EDI) utilized on this project? Yes \_\_\_\_\_ No \_\_\_\_\_

If yes, please indicate the extent to which each of the following document types were transmitted using EDI. If other applications were used, please list them. If no, proceed to question 40c.

|                       |           |     | Use l | Levels |        |     |
|-----------------------|-----------|-----|-------|--------|--------|-----|
|                       | Extensive | Use |       |        | No Use |     |
| Applications          | 1         | 2   | 3     | 4      | 5      | N/A |
| Purchase orders       |           |     |       |        |        |     |
| Material releases     |           |     |       |        |        |     |
| Design specifications |           |     |       |        |        |     |
| Inspection reports    |           |     |       |        |        |     |
| Fund transfers        |           |     |       |        |        |     |
|                       |           |     |       |        |        |     |
|                       |           |     |       |        |        |     |
|                       |           |     |       |        |        |     |

40c. Was 3D CAD modeling utilized on this project?

Yes \_\_\_\_ No \_\_\_\_

If yes, please indicate the extent to which a 3D CAD model was used for each of the following applications. If other applications were used, please list them. If no, proceed to question 40d.

|                                   | Γ         | Use Levels    |   |   |        |     |
|-----------------------------------|-----------|---------------|---|---|--------|-----|
|                                   | Extensive | Extensive Use |   |   | No Use |     |
| Applications                      | 1         | 2             | 3 | 4 | 5      | N/A |
| Define / communicate project      |           |               |   |   |        |     |
| scope                             |           |               |   |   |        |     |
| Perform plant walk-throughs       |           |               |   |   |        |     |
| (Replacing plastic models)        |           |               |   |   |        |     |
| Perform plant operability /       |           |               |   |   |        |     |
| maintainability analyses          |           |               |   |   |        |     |
| Perform constructability reviews  |           |               |   |   |        |     |
| with design team                  |           |               |   |   |        |     |
| Use as reference during project / |           |               |   |   |        |     |
| coordination meetings             |           |               |   |   |        |     |
| Work breakdown and estimating     |           |               |   |   |        |     |
| Plan rigging or crane operations  |           |               |   |   |        |     |
| Check installation clearances /   |           |               |   |   |        |     |
| access                            |           |               |   |   |        |     |
| Plan and sequence construction    |           |               |   |   |        |     |
| activities                        |           |               |   |   |        |     |
| Construction simulation /         |           |               |   |   |        |     |
| visualization                     |           |               |   |   |        |     |

| Survey control and construction         |      |      |   |  |
|-----------------------------------------|------|------|---|--|
| layout                                  |      |      |   |  |
| Material management, tracking,          |      |      |   |  |
| scheduling                              |      |      |   |  |
| Exchange information with               |      |      |   |  |
| vendors / fabricators                   |      | <br> |   |  |
| Track construction progress             |      |      |   |  |
| Visualize project details or design     |      |      |   |  |
| changes                                 |      |      |   |  |
| Record "As-Built" conditions            |      |      |   |  |
| Train construction personnel            |      |      |   |  |
| Safety assessment / training            |      |      |   |  |
| Plan temporary structures               |      |      |   |  |
| (formwork, scaffolding, etc.)           | <br> | <br> |   |  |
| <b>Operation / Maintenance training</b> |      |      | _ |  |
| Turn-over design documents to the       |      |      |   |  |
| project owner                           |      | <br> |   |  |
| Start-up planning                       | <br> |      |   |  |
|                                         |      | <br> | - |  |
|                                         |      |      |   |  |

.

# 40d. Was *bar coding* utilized on this project?

Yes \_\_\_\_\_ No \_\_\_\_\_

If yes, please indicate the extent to which bar coding was used for each of the following applications. If other application were used, please list them. If no, proceed to question 41.

|                                          |           |     | Use | Levels |        |     |
|------------------------------------------|-----------|-----|-----|--------|--------|-----|
|                                          | Extensive | Use |     |        | No Use |     |
| Applications                             | 1         | 2   | 3   | 4      | 5      | N/A |
| Document control                         |           |     |     |        |        |     |
| Materials management                     |           |     |     |        |        |     |
| Equipment maintenance                    |           |     |     |        |        |     |
| Small tool / consumable material control |           |     |     |        |        |     |
| Payroll / Timekeeping                    |           |     |     |        |        |     |
|                                          |           |     |     |        |        |     |
|                                          |           |     |     |        |        |     |

# **Project Change Management Practices**

Change Management focuses on recommendations concerning the management and control of both <u>scope changes</u> and <u>project development changes</u>.

|              | Yes      | No       |                                                                                                                                                                       |
|--------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>41</b> a. | ·        |          | Was a formal documented change management process, familiar to the principal project participants used to actively manage changes on this project?                    |
| 41b          | ·        |          | Was a baseline project scope established early in the project and frozen with changes managed against this base?                                                      |
| 41c.         |          |          | Were design "freezes" established and communicated once designs were complete?                                                                                        |
| 41d          | •        | _        | Were areas susceptible to change identified and evaluated for risk during review of the project design basis?                                                         |
| 41e.         |          |          | Were changes on this project evaluated against the business drivers and success criteria for the project?                                                             |
| 41f.         |          |          | Were all changes required to go through a formal change justification procedure?                                                                                      |
| 41g.         |          | <u> </u> | Was authorization for change mandatory before implementation?                                                                                                         |
| 41h          | ·        |          | Was a system in place to ensure timely communication of change information to the proper disciplines and project participants?                                        |
| 41i.         |          |          | Did project personnel take proactive measures to promptly settle,<br>authorize, and execute change orders on this project?                                            |
| 41j.         |          |          | Did the project contract address criteria for classifying change,<br>personnel authorized to request and approve change, and the basis for<br>adjusting the contract? |
| 41k          | ·        |          | Was a tolerance level for changes established and communicated to all project participants?                                                                           |
| 411.         | <u> </u> |          | Were all changes processed through one owner representative?                                                                                                          |

| 41m | At project close-out, was an evaluation made of changes and their impact on the project cost and schedule performance for future use as lessons learned?                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41n | Was the project organized in a Work Breakdown Structure (WBS) format and quantities assigned to each WBS for control purposes prior to total project budget authorization? |

# The questionnaire is complete. Thank you for your participation.

.

## **Bibliography/References**

- Abu-Haijleh, Samer F., and Ibbs, William C.(1989). "Schedule Based Construction Incentives." Journal of Construction Engineering and Management. Vol. 115, no. 3. Sept. 1989. Pgs 430-443.
- Ashley, David B., and Workman, B. Wayne (1986). "Incentives in Construction Contracts." CII Source Document SD-8. CII, Austin, TX.
- Blank, Leland.(1980). <u>Statistical Procedures for Engineering, Management, and</u> <u>Science.</u> McGraw-Hill Book Company. New York.
- CII Benchmarking and Metrics Data Report for 1997. CII, Austin, TX.
- "Use of Incentives," CII Conference Implementation Packet 1995. CII, Austin, TX.
- "Innovative Contractor Compensation Plans," CII Conference Packet (1996). Research Product. CII, Austin, TX.
- "Cost-Trust Relationship," CII Publication 24-1 (1993). CII, Austin, TX.
- DeGoff, Robert A., and Friedman, Howard A. (1985). <u>Construction Management</u> John Wiley and Sons. NY.
- Hahn, Dewayne Edmon, and Borcherding, John David. (1997). "A Study of Superintendent and Management Views to Improve Construction Work Relationships." A Report to the Dept. of Civil Engineering, University of Texas at Austin. Austin, TX.
- Hudson, D. N. 1997. "Benchmarking Construction Project Execution." University of Texas at Austin. Austin, TX.
- Ibbs, C.W. and Abu Haijleh, Samer F. (1988). "Unique features of Construction Contract Incentive Plans." CII Source Document SD-40. CII, Austin, TX.

- Ibbs, C.W. and Abu Haijleh, Samer F. (1988). "Unique features of Construction Contract Incentive Plans." CII Source Document SD-40. CII, Austin, TX.
- Jaafari, A. (1996). "Twinning Time and Cost in Incentive-Based Contracts." Journal of Management in Engineering. Vol. 12, No. 4. Pgs 62-72.
- Jaraiedi, Majid, Plummer, Ralph W., and Aber, Mary S. "Incentive/Disincentive Guidelines for Highway Construction Contracts." Journal of Construction Engineering and Management. Vol. 121, No.1. March 1995. Pgs 112-120.
- Mendelsohn, Roy. (1984). "Early Completion Schedules: The Promises and Pitfalls." Journal of Management in Engineering. Pgs 28-30.
- Neil, James M. (1991). "Incentives-Powerful Tools for Owners." Cost Engineering. Vol. 33. No. 1. Pgs 19-23.
- Stukhart, George M. (1984) "Contractual Incentives." Journal of Construction Engineering and Management. Vol 110. No. 1. Pgs 34-41.
- "The Quality Journey: A TQM Roadmap for Public Transportation," Transit Cooperative Research Program-TCRP Report 8 (1995). National Academy Press. Washington. D.C.

Vita

Jayson Doliber Mitchell was born in Salem, Massachusetts on September 25<sup>th</sup>, 1970. He is the son of Diane Jessica Mitchell and Clark Allen Mitchell. After graduating from Beverly High School, Beverly, Massachusetts, he attended Tufts University in Medford, Massachusetts. He received his Bachelor of Science Degree in Civil Engineering and commission as an Ensign in the Civil Engineer Corps in May 1992. During the following years he served as both a Company Commander and a Detachment Officer in Charge with Naval Mobile Construction Battalion FORTY and as a Project Engineer for the Resident Officer in Charge of Construction in Pensacola, Florida. In August 1997, he entered the Civil Engineering Graduate School at the University of Texas where he studied Construction Engineering and Project Management.

Permanent address: 6 Hancock Street Beverly, MA, 01915

This thesis was typed by the author.