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Chapter 1 

Introduction 

Fatigue is a phenomenon involving progressive damage accumulation and failure of 
materials under cyclic loads, the peak values of which are usually considerably smaller 
than the static failure load. Fatigue damage can lead to sudden failure of a structure 
if not controlled through proper in-service inspection and maintenance programs. 
According to the report of the ASCE Committee on Fatigue and Fracture Reliability 
(ASCE, 1982), 80% to 90% of failures in metallic structures are associated with fatigue 
and fracture.   Deterioration and damage due to fatigue have become a significant 
problem in aging steel structures that are part of the nation's infrastructure, such 
as highway or railway bridges, gates on locks and dams on inland waterways, and 
offshore structures, which may be subject to a large number of load cycles during 
their service lives. For example, an average daily truck traffic (ADTT) count of one 
thousand over a bridge would impart 3.65 million load cycles to the bridge in ten 
years (Yen et al, 1990); an average of 18 daily hydrostatic cycles on steel miter gates 
at locks and dams along the Ohio River resulting from normal lockages of barges leads 
to about 65,700 load cycles in ten years (US Army Corps of Engineers, 1995). 

The fatigue damage process occurs in two phases: crack initiation and crack propa- 
gation. In fatigue analysis of civil engineering structures, the point of demarcation be- 
tween crack initiation and propagation is somewhat arbitrary, and often is determined 
by the capabilities of the particular non-destructive evaluation (NDE) equipment used 
to detect flaws in the structure. In many steel structures with welded, bolted or riv- 
eted connections, which may contain flaws as a result of normal fabrication, the total 
fatigue life is dominated by the fatigue crack growth phase. The traditional S-N 
approach (Basquin, 1910), which relates the total number of cycles (crack initiation 
plus propagation) to failure with stress range and is commonly used to design against 
structural fatigue (e.g. AASHTO, 1989), neither considers the propagation life explic- 
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itly nor provides information on structural parameters such as crack size or reduction 
of component resistance. A fracture mechanics-based approach is a more informative 
tool for condition assessment when crack propagation is the dominant damage accu- 
mulation mechanism; however it may lead to a conservative appraisal of service life 
when the structure is initially essentially flaw-free. 

Deterministic fracture mechanics models based on experiments (Barsom and Rolfe, 
1987) relate the median crack growth rate to stress intensity. However, considerable 
scatter in crack growth behavior usually is apparent even under carefully controlled 
experimental conditions due to material uncertainty and other unknown factors (e.g. 
Virkler et al, 1979). Futhermore, there rarely is any degree of certainty regarding the 
load cycles and environment (e.g. corrosive environment) in field situations. Uncer- 
tainties in these factors can amplify the scatter in crack growth (e.g.  Barsom and 
Rolfe, 1987).  Thus, uncertainties in prediction of crack size are unavoidable. Most 
of the design criteria, condition assessment procedures, and policies for management 
of engineered facilities subjected to fatigue service have been based on deterministic 
models and some empirical safety factors to account for uncertainties in fatigue behav- 
ior. Probabilistic analysis facilitates a quantitative description of the uncertainty in 
fatigue damage growth. Since structures are subjected to variable service conditions 
and no model is perfect, in-service inspection and condition assessment of fatigue 
damage are necessary for managing risk in an aging structure and for scheduling 
maintenance or repair. State-of-the-art nondestructive evaluation techniques (NDE) 
provide an opportunity to obtain data on fatigue crack growth in service without 
doing any damage to a structure. However, uncertainty exists in the ability of NDE 
methods to detect and measure flaws accurately. Neglecting these uncertainties not 
only may result in misinformed decision-making, but also may lead to unnecessary re- 
pair or hidden damage which later must be repaired. A'rational approach to analyzing 
these sources of uncertainty is also needed. 

1.1    Background 

1.1.1    Fatigue 

The parameters that affect structural fatigue performance include applied stress, ge- 
ometry of structural details, properties of the material, and operating environment. A 
widely accepted empirical crack growth law originally was suggested by Paris, Gomez 
and Abderson (1961), 

da/dN = C(AK)m (1.1) 
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where da/dN is the increment of fatigue crack advance per stress cycle, and AK is the 
range of stress intensity factor, which is related in linear elastic fracture mechanics 
(LEFM) to the far-field nominal stress range, and component geometry factor. C 
and m are empirical constants dependent on material property and environment; m 
is also called the fatigue exponent. 

Experimental data on fatigue crack growth are recorded as the crack size a versus 
the number of elapsed cycles, N. The data subsequently are transformed by numerical 
data processing techniques into crack growth rate da/dN versus stress intensity factor 
AK, and a graph of log(da/dN) versus log Auf is plotted. Regression analysis of 
these data provides estimates of C and m from the intercept and slope of the fitted 
straight line (Clark and Hudak, 1975). Due to various sources of uncertainty, to 
be discussed subsequently, the data are dispersed about the regression line. The 
variance of da/dN increases with AK but the standard error of the of the regression of 
log da/dN on log AK remains essentially constant (Clark and Hudak); this standard 
error approximates the coefficient of variation in da/dN if the noise of log da/dN is 
a normal variate. 

Statistical nature of crack growth 

The regression analysis leading to Eqn 1.1 only describes crack growth rate in the 
median sense. Investigation of the randomness of fatigue crack growth rate under 
service load conditions must consider the statistical characteristics of the crack growth 
law under constant amplitude loadings and the randomness of loadings that gives rise 
to fatigue under variable amplitude loads. 

Numerous experimental studies with a variety of materials reveal the highly vari- 
able nature of crack growth, as illustrated in Figure l.l1. In a program which involved 
78 tests on a 10Ni-8Co-lMo steel plate at 15 different laboratories with several test 
specimen geometries, Clark and Hudak (1975) found that the primary source of vari- 
ability was not associated with geometry or data processing, but with the experimen- 
tal techniques to develop the a versus N data and some unknown factors. Virkler et 
al (1979) conducted an experimental program involving 68 replica tests on 2024-T3 
aluminum alloy. They concluded that due to microscopic material inhomogeneities, 
crack growth rarely follows a smooth curve "unless the process is considered from 
a very macroscopic viewpoint." Their study also revealed that the growth rates are 
statistically correlated in the sense that high growth rates early in the fatigue process 
under constant load are likely to be maintained later in the process. In a later study 

tables and figures are collected at the end of each chapter in which they appear 
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of small cracks in aircraft fastener holes, Hovey et al (1983) claimed that the corre- 
lation of crack growth rates along the crack path is quite important for small cracks. 
Barsom and Rolfe (1987) found, by comparing the fatigue test data for A36, A588 
and A514 steels obtained in both benign and aggressive environments, that aggressive 
fatigue environments increased scatter in fatigue behavior. 

Various theoretical probabilistic models of crack growth have been proposed to 
model the experimentally observed variability under constant amplitude loading: ran- 
dom variable models (Yang, et al, 1983), crack size-dependent (Ortiz and Kiremidjian, 
1987; Madsen, 1985; Madsen et al, 1986; Ditlevsen, 1986) or time-dependent stochas- 
tic models (Lin and Yang, 1985; Spencer and Tang, 1988; Spencer, et al, 1989). A 
more detailed discussion of these models will be presented in Chapter 2. All involve a 
number of assumptions (e.g. the distribution of the time to failure, the nature of the 
correlation structures of noise) that limit their applicability. Additional developments 
are required to enhance these probabilistic models and to make them more generally 
applicable for modeling structural fatigue stochastically. 

Loading uncertainty 

Fatigue analysis requires a knowledge of the history of stresses, stress amplitudes or 
stress ranges. To first order, the development of fatigue damage depends on stress 
ranges. In civil engineering applications, the amplitude of the stress range is usually 
not constant with respect to time. Modeling the stress ranges for purposes of fatigue 
reliability analysis involves two parts: definition of cycles based on stress histories 
and identification of probabilistic characteristics of those cycles. 

The stress range history of a narrow-band stress process can be clearly identified 
with the individual stress cycles. However, the definition of stress ranges becomes 
difficult where wide-band stress processes are concerned because of the complexity 
of the frequency content of the stress process. Different approaches have been pro- 
posed for stress range definition, such as track filtering (Veers, 1987; Fuchs et al, 
1977; Nelson and Fuchs, 1977) and rainflow counting (Matsuishi and Endo, 1968). 
The first approach transforms the stress process into an equivalent (from a damage 
accumulation point of view) narrow band stress process; thus the subsequent fatigue 
analysis can be conducted as a narrow band stress fatigue problem. But the transfor- 
mation is performed by trial and error and predictions of fatigue damage can be quite 
unconservative in some cases (Veers, 1987). The second approach identifies stress 
range from closed stress-strain loops. It has been widely used in cumulative fatigue 
damage based on the Palmgren-Miner rule (Miner, 1945), in which it is assumed that 
the portion of damage in the total fatigue life contributed by a certain stress level 
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is linearly proportional to the fraction of the number of cycles corresponding to that 
stress level. The rainflow cycle-counting algorithm has not been have been applied 
to crack growth analysis. 

The probabilistic characteristics of cycles identified by rainflow analysis are not 
available. An empirical approach, involving trial and error (Wirsching and Light, 
1980), or direct simulation, involving a significant computational burden, is generally 
required. An evaluation of the rainflow cycle counting method for handling a broad- 
band stress process in analyzing stochastic crack propagation should be conducted. 
Computationally efficient methods for treating stresses in time or cycle domains re- 
quire further investigation. 

1.1.2    Non-destructive evaluation 

Non-destructive evaluation (NDE) can locate and size flaws in structures in service. 
The most common NDE techniques in civil structures are Visual Inspection (VT), 
Penetrant Inspection (PT), Magnetic Particle Inspection (MT), Eddy Current (EC), 
Radiographic Inspection (RT), Ultrasonic Inspection (UT) and Acoustic Emission 
(AE) (ASM, 1989; Chase, 1994). While NDE plays an essential role in in-service 
condition assessment, no in-service inspection is perfect. NDE outputs depend on 
many factors such as the condition of the structure that is inspected, the sensitivity 
of equipment, material imperfections and operator training and skills. There are two 
basic types of NDE error- detection error and sizing error- and their mathematical 
treatments are somewhat different. 

The probability of detection (POD(a)) expresses the probability of detecting a 
crack of a given size a. For any but very large defects, there is a finite probability 
that the flaw escapes detection. Conversely, there is a possibility that NDE indicates 
a flaw when none is present (a so-called false call); repair actions in such a case not 
only would be unnecessary but might damage the structure. Typical POD curves are 
illustrated in Figure 1.2; the threshold of detection, ath, depends on the NDE method 
chosen. 

Sizing error refers to the measurement noise with respect to the true size when 
a flaw is detected. For example, slopes of regression lines of true size on measured 
size may deviate from 1 (indicating bias), and the standard error with respect to the 
the regression line can be as high as 20% of the thickness of the element inspected 
(Heasler et al, 1990). A typical regression sizing relationship relating actual flaw size, 
a, to measured size, am, is illustrated in Figure 1.3. 
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Extensive laboratory experiments have been conducted to quantify the NDE de- 
tection and measurement uncertainties for cracks in steel or aluminum specimens (e.g. 
Heasler and Doctor, 1996; Heasler et al, 1993, 1990; Bowen, et al, 1989; Berens, 1989; 
Rummel et al, 1989; Packman et al, 1969). However, these findings have yet to be 
built into a time-dependent probabilistic fatigue crack growth analysis for steel civil 
construction. Most NDE methods have been developed and tested for use in manu- 
facturing, where conditions are clean. Field conditions in civil construction may be 
more difficult, and POD and sizing error may be more diffuse as a result. The role of 
uncertainties in NDE on condition assessment and time-dependent reliability analysis 
of existing structures requires further investigation. 

1.1.3    Summary 

This brief review has shown that there is significant variability in crack growth even 
under constant amplitude loading. Current approaches to modeling this uncertainty 
involve some restrictive assumptions on the statistical nature of the crack growth pro- 
cess. The treatment of variable amplitude loading frequently has been based on either 
over-simplified loading assumptions or tedious simulation. Finally, uncertainties in 
NDE are considerable, but have not been included in time-dependent reliability anal- 
ysis of fatigue damage. Research to broaden the applicability of stochastic fatigue 
analysis is needed to provide a basis for developing guidelines for in-service condition 
assessment of civil construction. 

1.2     Objective and scope 

This report will develop a methodology for the reliability evaluation of fatigue crack 
growth in steel civil structures subject to random loadings. This will be accomplished 
through the following tasks: 

• Generalize the stochastic fatigue crack growth models of previous studies by 
incorporating a time-dependent noise term described by arbitrary marginal dis- 
tributions and autocorrelation structures to model the uncertainty in the crack 
growth under constant amplitude loading; 

• Develop a computationally efficient approach for handling wide-band random 
loadings based on the rainflow method of stress cycle identification; 
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• Perform reliability analyses of a degrading structure and identify the critical 
parameters that affect the reliability of the structure through sensitivity studies; 
and 

• Examine the role of NDE in probability-based condition assessment of struc- 
tures, and conduct a sensitivity analysis to determine how NDE impacts time- 
dependent fatigue reliability. 

The analysis focuses on the growth of a single dominant crack. Interaction of 
multiple cracks is not considered. Loadings are assumed to be stationary and effects of 
infrequent extreme overloads on crack growth are not considered (abrupt loadings on 
civil structures are relatively less frequent than those for aircraft for which the impacts 
of landing or takeoff are important). The analysis relies on existing experimental 
data and focuses on the construction of theoretical models to analyze those data. No 
fatigue crack growth experiments were conducted. 

1.3     Organization 

Chapter 2 presents background material required for stochastic fatigue analysis and 
structural condition assessment, including mathematical tools (concepts and calculus 
of stochastic processes) and deterministic methods for fatigue and fracture analysis. 

Chapter 3 presents the method for modeling the uncertainty in the crack growth 
under constant amplitude loading and for predicting the evolution in the probability 
distribution of crack size during the service life of the structure. The uncertainty is de- 
scribed by a stationary random noise with an arbitrary autocorrelation structure and 
marginal distribution. The treatment of this noise is based on a combination of time 
and frequency domain analysis. Approaches for handling narrow-band non-Gaussian 
processes based on Gaussian processes and wide-band processes by an approximation 
based on the rainflow method of stress cycle identification are also discussed. 

Chapter 4 illustrates the approaches developed in Chapter 3 through a number of 
parametric studies, establishing their validity with comparisons to previous analysis. 
A thorough sensitivity study of crack growth to different factors, such as the variances 
of noises and loadings, is conducted. 

Chapter 5 illustrated the method by a time-dependent reliability analysis with 
respect to crack growth in a steel miter gate at the Emsworth Lock on the Ohio 
River. A model for service loadings based on the history data and a model for the 
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uncertainty of crack growth based on literature are proposed. A comparison is made 
between the predictions and the actual service history of the gate. 

Chapter 6 introduces probability methods for characterizing NDE and discusses 
procedures for updating flaw size information using NDE techniques and Bayesian 
analysis. The impact of NDE on condition assessment and reliability of structures 
is examined. A guideline for repair decision is suggested. Examples of condition 
assessment based on MT and UT are illustrated. 

Chapter 7 summarizes the main conclusions and contributions of this report, and 
recommends some topics for future research. 
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Figure 1.1: Illustration of crack growth uncertainty 
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Figure 1.2: Illustration of probability of detection 

a 

Figure 1.3: Illustration of sizing error 



Chapter 2 

Mathematical Tools for Stochastic 
Fatigue Analysis 

This chapter starts with a brief overview of some basic concepts of stochastic processes 
and stochastic calculus. Classical deterministic approaches to fatigue and fracture 
analysis as well as state-of-art stochastic models to crack growth are then surveyed. 

2.1     Stochastic processes 

The basic mathematical tool underlying the analysis.of crack growth in this report 
is the stochastic differential equation. In order to have a better understanding of 
subsequent developments, some knowledge of stochastic processes is required. 

A stochastic process (s.p.) X(t) is a time (or other parameter)-dependent family 
of random variables whose possible values at any time are governed by probabilistic 
laws. It becomes a random variable (r.v.) when index parameter, t, is fixed. 

2.1.1    Moments and spectral density 

Let X(t) be a continuously valued and continuously parametered stochastic process 
with probability density function (PDF) fn(xux2, ...,xn;tut2, ...,tn). The nmth joint 

11 
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moment is defined by, 
/oo 

xlx?f2(xux2;t1,t2)dx1dx2 (2.1) 
•oo 

When m = 0 and n = 1, Eqn 2.1 defines the mean at t\\ when m — n — 1, it defines 
the autocorrelation function Rxihit?)- 

A stochastic process is mean-square differentiable at time t if and only if the second 
generalized derivative of its correlation function, defined by (Soong and Grigoriu, 
1993), 

limn W + rus + T2)~ R(t + n,s)- R(t,s + r2) + R(t,s)] (2.2) 
Tl,T2—l) T\T2 

v ' 

exists at (t,t) and is finite. 

A s.p. X(t) is weakly stationary if E[X(t)] is constant and Rx(h,t2) = R(T), 

where T = t2 — t1. In this case, the two-sided power spectral density function (PSD) 
of X(t) is (Parzen, 1965) 

s*w = ^hS-Te~^Rx{T)dT (2-3) 

1   fT 

=    lim - /    COS(U>T)RX(T)CIT (2.4) 
T—«-oo 7T Jo 

The relationship between the correlation function and power spectral density is de- 
fined by the Wiener-Khintchine relations, 

RX(T)   =     f°° e^Sxi^du (2.5) 
J—oo 

/•oo 

=   2 /    COS(UT)SX{U)<LJ (2.6) 

The power spectral density of the nth derivative of X(t) is, 

$c(«)M = (^)n^(^) (2.7) 

The spectral moments of a power spectral density are defined as, 
/•oo 

Am = 2y    u>mSx(w)du; (2.8) 

Parameter A corresponds to the variance of the mth derivative of X{t) (Lutes and 
Sarkani, 1997), for example, <rx, a2^ and CT^, when m equal to 0, 2 and 4. A family 
of bandwidth parameters, measures of bandwidth, are described as, 

Am 

which have their values between [0,1]. The one that is most widely used in practice 
is a2. The process is narrow band if a2 is close to 1, and wideband if 0. 
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2.1.2    Mean upcrossing rate and peak distribution 

The mean upcrossing rate and peak distribution are useful descriptors for structural 
fatigue loading, and will be used in the following chapter. The mean upcrossing rate 
v+(u, t) is the measure of the average frequency that a process crosses a certain level 
u with positive slope. In other words, it is the mean rate of the occurrence of the 
event E = (X(t)=nf)X(t) > 0) at time t. Assuming that the joint density function 
of X(t) and X(t) is fxx, we have (Rice, 1945), 

TOO 
i/+(u,t) = J    wfxx(u,w,t)dw (2.10) 

The peak occurrence rate is the rate of occurrence of the event E = (X(t) = 
0 D X(t) < 0). It is the zero down crossing rate of X(t), 

f° 
Vp® = /-co M/jtfCO» w^dw (2-n) 

where fxx is the joint density function of X and X. 

The cumulative distribution function (CDF) of a peak intensity is (Rice, 1945), 

WX")   =   AlimP(A:(0<u|peakduring(<,i + Ai)) (2.12) 

(z.ldj vv 

2.1.3    Some special stochastic processes 

Gaussian process 

A s.p. X(t) is said to be Gaussian if for any integer n and any subset tu t2,..., tn of T, 
the r.v.s X(tt), X(t2),...,X(tn) have a joint Gaussian distribution. A Gaussian process 
is entirely determined by its mean and autocorrelation function, and all the linear 
transformations of X(t) are also Gaussian. As a result, the derivative of a Gaussian 
process is still Gaussian. The original process and its first derivative are independent. 
The original process and its second derivative have correlation coefficient equal to a2 

(Lutes and Sarkani, 1997). If X(t) has mean zero, all moments can be expressed in 
terms of the second-order moments by the following formula (Sobczyk, 1991), 

0 n =odd 
E(EXs) - { EE[(XilXi2)]...E[(Xin_1Xin))   nn=e°ven C2'14) 
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The summation is over all possible ways of combining pairs; the total number of the 
terms summed is ^£^7, where m = n/2. The mean zero-crossing rate and mean rate 
of occurrence of peaks for a zero mean stationary Gaussian random process, X(t), 
are i/+(t) = ££-, and vp(t) = £*-. The peak distribution is given by (Rice, 1945), 

FM = *(^H - ^M-^^m^^) (2.15) 
'yJl-o?2<rx 2a* y/l afrx 

It often is necessary to generate Gaussian processes from a power spectral den- 
sity, when studies ae conducted that involve time series. There are two widely used 
approaches, involving deterministic spectral amplitudes (DSA) and random spectral 
amplitudes (RSA). 

Given a two sided power spectral density S(u) of a Gaussian process, X(t), a 
sample function of the discrete sequence, X(U), i = 0,..., M — 1, can be obtained by 
the DSA method (Rice, 1954; Shinozuka and Deodatis, 1991), 

N-l 

x(ti) = V2 £ Akcos(u>kti + **) (2.16) 

in which Ak = (2S{uk)Aw)ll2, uk = kAu = k^-, uu is the cut-off frequency, and $k 

are uniform variates with C/[0, 2TT], In order to avoid aliasing, the time interval, At, 
should be selected such that uu < ir/At. 

A sample function of X(U) can be also generated by the RSA method (Rice, 1944; 
Tucker et al, 1984), 

k=0 
x(U) = V2J2 Akcos{ukti + $fc) (2.17) 

in which Ak = (RkS(uk)Au})1/'2, uk = kAu = fc^, Rk are Rayleigh variates, and $* 
are uniform variates with C/[0,2TT]. 

It may be noted that the DSA only consists of one random factor, the random 
phase, and the amplitudes of A{ are deterministic. As a result, realizations generated 
from DSA are artificially regular, and each realization has the same variance as the 
true random process. This is not realistic for finite length realizations. Furthermore, 
x(ti) is bounded as long as the number of summation terms to generate the sample is 
limited. In other words, the DSA method may not be able to reproduce the extremes 
of the process unless the value of N is large enough. The bias in extremes associated 
with the DSA method can be propagated into the mean and variance of the output 
of a nonlinear system (Ude, 1995). Also, if the power spectral density function is a 
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Dirac delta function, i.e., there only exists a single frequency, the process produced 
by the DSA is no longer Gaussian. The RSA method consists of two random factors, 
the random phase and the random amplitude. A realization from RSA is a more 
accurate reflection of the "irregularity" of the real process, especially when the mth 

power of the amplitudes of a process are of major interest. Furthermore, the process 
generated by the RSA method is always Gaussian. Accordingly, the RSA method is 
utilized later in this study. 

Wiener process 

A Wiener process W(t) is defined as a process with independent and stationary Gaus- 
sian increments, AW = W(t + At) - W(t), with E(AW) = 0, and E(AW)2 = At. 
W(t) is a Gaussian s.p. with zero mean and autocorrelation function E[W(t)W(t + 
At)] = t, where At > 0. Almost all sample functions of W(t) are of unbounded 
variation in every finite interval (Parzen, 1965). 

White noise 

A white noise £(t) process is a stationary process with zero mean and autocorrelation 
function 2irS0S(t), in which £(•) is a Dirac delta function. Its (two sided) power 
spectral density is a constant, So, over all frequencies. 

Markov and diffusion process 

A Markov process X(t) is one in which, given all past and present states, the knowl- 
edge of future states is dependent only on the present state. The evolution of a 
Markov process is described by a transition PDF, f(y, t\x, s), which represents the 
probability density of X(t) = y, given that X(s) = x, t > s. In other words, all 
probabilistic information of a Markov process can be determined from its transition 
probability density function and initial state. 

A special case of the Markov process is the diffusion process. A Markov process 
X(t) is called a diffusion process if, for any e > 0 (Arnold, 1974), 

lim-!-/ 
<-*» t — S J\y- 

f(y,t\x,s)dy = 0 (2.18) 
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and there exist m(x,s) and a(x,s), such that 

lim-  / (y-x)f(y,t\x,s)dy = m(x,$) (2.19) 
t-*a t — S J\y-x\<t 

lim—?—/        (y-x)2f(y,t\x,s)dy = a2(x,s) (2.20) 
<-*■» 1 — 5 J\y-x\<(. 

The first condition means that a large change in X(t) over a short period of time is 
impossible. The drift coefficient, m(x, 5), describes the mean velocity of the incre- 
ment X{i) — X{s) under the condition X(s) = x. The diffusion coefficient, a2(x,s), 
measures the local magnitude of the fluctuation of X(t) — X(s) about the mean value. 
It can be shown (Arnold, 1974) that, 

X(t) - X(s) ~ m{X{s), s)(t - s) + a{X(s), s)(W{t) - W(s)) (2.21) 

where the increments of a Wiener process, W(t) — W(s), have the Gaussian distribu- 
tion JV(0, (t - s)). 

A diffusion process can be written as the solution of the Ito stochastic differential 
equation, 

dX(t) = m(X, t)dt + a(X, t)dW{t) (2.22) 

Analogously, a n-dimensional vector Markov diffusion process X(<) may be generated 
from a vector Ito differential equation, 

dX(t) = M(X, t)dt + T(X, t)dW(t) (2.23) 

where M is a n-dimensional drift vector, ITT is a nxn diffusion matrix, and W is 
a vector of n independent Wiener processes. Note that it is not necessary that all 
components of the vector be Markovian for the vector to be Markovian. 

The transition probability density f(y,t\x, s) of a Markov diffusion process is 
uniquely determined by the drift vector and diffusion matrix. Suppose / is con- 
tinuous with respect to s and the derivatives df/dii and d2f/dx{dxj exist and are 
continuous with respect to 5. Then / is a solution of the Kolmogorov backward 
equation (Arnold, 1974), 

fs+±mi{x,s)Vy.±Pi(x,s)^-. = 0 (2.24) 
If X(i) is a homogeneous process, that is, the transition probability is dependent on 
r = t — 5, not 5, then we have, 

-a7+§mife + 2S;P«ä^- = 0 (2-25) 
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If / is continuous with respect to * and the derivatives d(m,(x, t)f)/ÖXi and d2(b{j(x, t)f)/dxidx ■ 
exist and are continuous, then / is a solution of the Kolmogorov forward (or Fokker- 
Planck) equation, 

df    AÖMxliXf)_l - A%Mfl 

2.2    Fatigue and fracture 

2.2.1    Deterministic approaches 

Fatigue is understood to be caused by irreversible plastic shear deformation at local 
inhomogeneities or local stress concentrations in structural details. Research on the 
fatigue of materials can be traced back to around 1829, when a German mining 
engineer named W. Albert performed repeated load tests on mine-hoist iron chains 
(Suresh, 1991). Later on, interest in fatigue grew with the increasing use of metallic 
structures subjected to fluctuating loads. Basically, there are two different types of 
approaches to fatigue life prediction: the total life approach and the defect-tolerant 
approach. 

The total life approach relates the total number of cycles to initiate a crack and 
propagate it until failure occurs to stress range (S-N approach) or strain range. The 
concept of an S-N curve was first introduced in the 1860s by the German railway 
engineer Wöhler (Suresh, 1991), but the empirical law which is widely employed 
nowadays in structural design is credited to Basquin (1910). Models considering non- 
zero mean stress were contributed by Gerber, Goodman and Soderberg, as reviewed in 
Suresh (1991). The strain-based approach is used mainly in low cycle fatigue, where 
behavior is inelastic and strain is a more informative parameter. A strain-cycle model 
was proposed by Coffin (1954) and Manson (1954) independently; a modification for 
mean stress was suggested by Rashe and Morrow (1969). These models are all based 
on constant amplitude loadings. For variable amplitude loadings, the most popular 
approach to fatigue damage assessment is the Palmgren-Miner rule (Miner, 1945), as 
mentioned in Chapter 1. 

The defect-tolerant approach defines the fatigue life as the number of fatigue cycles 
or time required to propagate a crack from an initial size to some critical dimension. It 
involves empirical crack growth laws and utilizes fracture mechanics theory. Fracture 
can be classified into three modes: tensile opening or Mode I, in-plane sliding and 
tearing, and anti-plane shear (Suresh, 1991).   Mode I is of most interest in civil 
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structures.   The theory of fracture mechanics includes both linear elastic (LEFM) 
and nonlinear elastic-plastic fracture mechanics (EPFM). 

LEFM is applicable for conditions of small scale yielding, where the nonlinear zone 
at the crack tip is small compared with the crack length. This approach characterizes 
the crack growth rate in terms of a stress intensity factor range AK (Irwin, 1957). 
EPFM deals with the case where the size of the plastic region at the crack tip becomes 
large with respect to the crack length, and characterizes the crack advance rate by 
crack tip opening displacement or J-integral (Suresh, 1991; Dowling and Begley, 1976; 
Dowling, 1977). Term J is the rate of change of potential energy with respect to crack 
advance for a nonlinear elastic material, and reduces to the strain energy release 
rate for a linear elastic material (Rice, 1968). LEFM is more common in structural 
engineering applications because it is applicable to a vast spectrum of materials and 
environmental loading conditions, a substantial body of supporting test data exists, 
and the stress intensity factor range, determined from far-field loading conditions of 
the cracked component, uniquely characterizes the propagation of the crack. Detailed 
knowledge of the micro-mechanics of fracture is not required. 

Crack growth behavior exhibits three distinct regions, depending on AK. In the 
first region, below threshold AKth, cracks remain essentially dormant. As AK in- 
creases, the region of stable crack growth is entered. In the third or instability region, 
cracks propagate rapidly, and a tearing mechanism may occur which leaves fatigue 
striations on the fracture surface. Although crack growth rates in the first and third 
regions are described in the literature (e.g. Walker, 1970; Forman et al, 1967), the 
stable region is of most interest for civil engineering applications. In this range, the 
relationship between the increment of fatigue crack advance per stress cycle, da/dN, 
and the stress intensity factor range, AÄ', is often modeled as (Paris, et al, 1961), 

% = C(AKr (2.27) 

(often referred to as the "Paris law") in which, 

AK = YAcr^/irä (2.28) 

and Aa = amax — ^min is the far-field nominal stress range, a is the crack length, Y 
is the geometry factor dependent on the size of the crack relative to the component, 
and C and m are experimentally determined constants which depends on material 
properties, microstructure, structure details, environment and temperature. The ex- 
ponent m is typically between 2.0 and 4.0 for ductile steels. C is around 3 ~ 4 x 10~10 

for austenitic and ferrite-pearlite steels and 0.7 x 10~8 for martensitic steels in room 
temperature air environment (Barsom and Rolfe, 1987), when the units of crack size 
and stress are inches and ksi, respectively. 
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For variable amplitude loading, the crack growth can be calculated on the basis of 
the summation of crack growth cycle-by-cycle or an equivalent stress intensity factor 
range AKeq. Several proposals have been offered for AKeq, the most common being 
(Hibberd and Dover, 1977; Yen, et al;1990), 

AKeg = £[AJ^]1/m (2.29) 

This approach does not provide sufficient information to describe the scatter or vari- 
ance in the crack growth due to the randomness of the stress history, and the extremes 
of the crack size distribution during the service life remain unknown. Different 
loading sequences might have different effects on the crack growth; for example, a 
high-to-low load sequence might resulted in a longer crack propagation life than a 
low-to-high load sequence. Using the Paris law in a cycle by cycle summation will 
not distinguish between such load sequence effects. However, they are more impor- 
tant for load histories that contain occasional large overloads, such as may occur in 
aircraft (Nelson, 1977), than for civil construction. Several semi-empirical prediction 
models (e.g. Elber, 1970; Wheeler, 1972) have been developed. But load sequence- 
dependent models for wide-band load histories, in which the definition of a fatigue 
cycle is not straightforward, are still under development. 

2.2.2    Stochastic fatigue crack growth model 

A stochastic fatigue crack growth model used in time-dependent reliability analysis 
and condition assessment of civil structures must have two parts: a description of the 
statistical characteristics of crack growth under constant amplitude loadings, and a 
means for incorporating randomness in service loads. 

Statistical characteristics of crack growth law 

Different stochastic crack growth models have been proposed to model uncertainties. 
Yang et al (1983), and others (ASCE, 1982) suggested taking the material coefficients 
C and m as random variables. Such models are sufficient to describe the fluctuations 
between the mean behavior of different specimens and environment in a very general 
way, but are not capable of modeling the deviation of crack growth from the mean 
crack path within each specimen. 

Ortiz and Kiremidjian (1987) assumed that C and m are jointly distributed ran- 
dom variables, and introduced a crack size dependent stochastic process X{a) to 
characterize the irregular crack growth due to micro-inhomogeneities along the crack 
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path: Eqn 2.27 then becomes, dA/dN = C(AK)mX(a), in which X(a) was assumed 
to be stationary with a lognormal marginal distribution and an exponential correla- 
tion structure. The mean and variance of the time to failure, that is, the time for a 
crack to reach a critical size, were calculated but it was claimed that the CDF of time 
to failure was difficult to determine. Applying their model to the experimental data 
of Virkler et al (1979), Ortiz and Kiremidjian found that including the autocorrela- 
tion function of the noise term X(a) improved the agreement between the fatigue life 
prediction and the experimental data for very short cracks; for medium cracks, X(a) 
could be taken as uncorrelated; and for very long cracks, the contribution of X(a) 
was negligible. 

Madsen et al (1986) proposed taking C as g^K in which C\ is a positive random 
variable and C2{a) is a positive random process with lognormal marginal distribution. 
The mean and variance of the time to failure were also found, but some difficulty 
was encountered in determining the distribution of time to failure, and so a normal 
distribution was simply assumed. Ditlevsen (1986) introduced a noise term that 
was dependent on crack size and crack size increment, X(a, Aa). He modeled it as an 
weighted integral of white noise and approximated the distribution of time to failure as 
an inverse Gaussian distribution. Lin and Yang (1985) introduced a time-dependent 
random process to represent the "combined effect of unknown contributions toward 
changing the crack propagation rate with time". Spencer et al (1988, 1989) and 
Sobczyk and Spencer (1992) later adopted this model. 

The selection of an appropriate stochastic model for fatigue crack growth depends 
on the nature of the uncertainty to be interpreted. The application of the stochastic 
fatigue analysis in this study is directed toward civil infrastructure which often is 
exposed to a relatively aggressive environment. Time-dependent fluctuation of the 
crack growth from the deterministic crack growth law appears to be significant. In 
this study, the crack growth noise process is modeled in the time domain. 

The number of loading cycles is a discrete variable with respect to time. When 
time-dependent stochastic analysis is conducted, the number of loading cycles is mod- 
ified into a continuous variable by introducing an average cyclic rate v(t) for each 
cycle, in which u(t) equals the inverse of the time interval for a cycle. When the 
cycle occurrence frequency is large enough, the time interval for a cycle becomes very 
small, and the u(t) converges to a instant value v{t) with respect to time. In this 
case, we have, 

dA _ dAdn _   ,^dA 

~dt ~ ~dn~di~ ^ '~dn ^ '    ' 

in which A is the random flaw size (upper cases denote random variables or processes) 
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and v{t) is a stochastic process. As a consequence, the Paris law can be expressed as, 

dft = Q(A)X(t) (2.31) 

in which Q(A) = function of flaw size, stress, geometry and cyclic rate and X(t) is 
a non-negative (thus non-Gaussian) random process, which must be selected to in 
such a way that the growth rate is non-negative. There are two extremes of X(t): 
one is that X(t) is temporally uncorrelated, and the other is that X(t) is perfectly 
correlated at any two times, in which case X(t) becomes a random variable and the 
model becomes similar to that proposed early on by Yang and others (Yang, 1983; 
Committee, 1982). A realistic X(t) is somewhere in between (Lin and Yang, 1985). 

Lin and Yang (1985) re-wrote Eqn 2.31 as, 

dA 
-^ = Q(A)(p + Y(t)) (2.32) 

where Y(t) is a random process with zero mean and covariance that is the same 
as that of X(t). By assuming that the correlation time of Y(t) is relatively short 
compared with the characteristic time of A(t), they approximated A(t) as a Markov 
diffusion process which is governed by Ito's stochastic differential equation, 

dA = m(A, t)dt + a(A, t)dW(t) (2.33) 

where W(t) is a Wiener process, and the drift and diffusion coefficients, m(A, t) and 
cr(A,t), were obtained as functions of Q and RY. A closed-form solution for the 
transition probability density function f(a,t\a0,t0), which determines the evolution 
of the Markov crack growth process, was obtained from the Fokker-Planck equation, 
assuming that Q(a) and dQ/da vary slowly and RY is a triangle function. 

This method is an improvement in stochastic fatigue crack growth analysis over 
previous methods because a transition probability density function of the crack size 
is found. However, modeling A(t) as a Markov diffusion process requires that the 
correlation time of Y(t) is short, which may not be realistic in some situations. Also, 
Eqn 2.33 implies that, since W(t) is a Wiener process, dA could be negative, which 
is not physically reasonable. Futhermore, the marginal distribution of the noise term 
is not taken into account. In other words, as long as the means and autocorrelation 
functions of two noise processes remain the same, this method yields the same tran- 
sition PDF of the crack size. This may not be appropriate for the analysis of the 
extremes of crack size, when the tails of the crack size distribution may be sensitive 
to the distribution of the noise term. 

Sobczyk and Spencer (1992) and Spencer et al (1989,1988) introduced an auxiliary 
Gaussian process to transform the problem into a vector Markov diffusion process. 
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Suppose X(t) has a marginal distribution function Fx{x); the (non-negative) random 
process X(t) can be represented by the transformed process (Grigoriu, 1984) 

*(0 = F?[$(G(t)/aG)} (2.34) 

where $(•) is the standard normal distribution function and G(t) is an auxiliary 
Gaussian process obtained from the solution of the Langevin stochastic differential 
equation, 

t£ = -aG + ((t) (2.35) 

in which a > 0 and £(t) is a white noise with mean and autocorrelation function 

E(ffl) = 0       E(ttt)t(t + T)) = 2irS08(r) (2.36) 

where 5o is the magnitude of the constant two-sided spectral density function. The 
autocorrelation and spectral density functions of G(t) are (Lin, 1967), 

RG{r) = I^c-M (2.37) 
a 

Thus Eqn 2.31 becomes, 
*<"> - Ä (2-38) 

^   =   C(A)Fj'(*(^>)) (2.39) 

with initial conditions, A(0) = Ao; G(0) = Go- Eqns 2.35 and 2.39 can be interpreted 
in the Ito form; the vector [A(t),G(t)]T is a diffusion Markov process, for which the 
transition probability density is governed by either the Fokker-Planck equation or 
Kolmogorov backward equation. 

Sobczyk and Spencer's approach takes into account the marginal distribution of 
the noise term and does not require the correlation time of the noise term to be short 
since the crack size A is not necessarily a Markov diffusion process. (Recall that 
A need not be Markovian for the vector [A, G]T to be a Markov diffusion process). 
However, their model is valid only if the correlation of the auxiliary process G(t) has 
the form of Eqn 2.37. When this condition does not hold, the Langevin equation is 
not sufficient to capture the correlation structure of the noise, X(t). A new approach 
is required to construct vector Markov diffusion processes with different correlation 
structures because the crack growth reliability analysis not only relies on the marginal 
distribution but also on the correlation structure of X(t); different marginal distri- 
butions and correlation structures of X(t) result in different correlation structures of 
G(t). Moreover, none of the above studies considers the stochastic models of wide 
band loads. 
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Loading uncertainty 

The probabilistic description of stress range required for fatigue analysis depends on 
the characteristics of the stress history. If the stress is modeled as a stationary narrow 
band process, the wave form can be expressed in terms of harmonic components, the 
frequencies of which are concentrated in a narrow range (Cramer and Leadbetter, 
1967), and cycles within a stress history can be clearly identified. If the mean stress is 
zero, the range is approximately twice the value of the peak. For a stationary Gaussian 
process, the peak is described by a Rayleigh PDF (e.g. Cramer and Leadbetter; 1967). 
Thus, the stress range can be modeled as a Rayleigh random variable. 

If the stress is wide band, the frequency content of the load process becomes 
complex and sample functions of the process have poorly denned cycles. Although 
the distribution of peaks of a process can still be obtained (Rice, 1944; 1945), it 
cannot be directly applied to fatigue analysis because the process is highly irregular. 
Fatigue cycles cannot be counted simply by local ranges, for numerous small peaks 
may obscure the large fatigue-critical load cycles. 

If load sequence effects can be neglected as discussed previously, several cycle 
counting techniques are available. Among these, rain-fiow counting is considered to 
be the most reliable. The rainflow counting algorithm is illustrated in Figure 2.1 
(Dowling, 1983). The history is plotted with the time axis on the vertical; rain is 
injected at each point of stress reversal, in order, and flows by gravity down the 
multiple-roof-like structures according to the following rule: 

1. for rain starting from the right and moving toward the left and down, the flow 
stops if it hits the roof whose right point is farther than or equal to the one 
from which it started. 

2. for rain starting from the left and moving toward the right and down, the flow 
stops if it hits the roof whose left point is farther than or equal to the one from 
which it started. 

3. the flow stops to avoid meeting rain from the roof above. 

Computer programs have been developed (Downing and Socie, 1982) for rain- 
flow analysis. However, a closed-form description of the loading history is difficult. 
Wirsching and Light (1980) introduced an empirical correction factor, 7, which is 
dependent on the fatigue exponent and the irregularity factor, a2, of the power spec- 
tral density of the stress process (cf Eqn 2.9), to associate the mean value of the mth 

power of the stress range of a wideband Gaussian process, Sw, with that of a narrow 
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band process, SV, that is, E(AS^) = ~/E(AS%), assuming the variance and zero 
crossing rate of the processes are the same. Later, Lutes et al (1984) showed that the 
irregularity factor is not sufficient to determine the correction factor and there is a 
need to use other parameters, but no exact solution was proposed. Lutes' study also 
indicated that the effect of nonnormality of the stress process on the correction factor 
may be significant. Therefore, efforts should be devoted to modeling the distribution 
of stress ranges based on the rainflow analysis. A computationally efficient approach 
to this problem when simulation in the time domain is involved is presented in the 
next chapter. 
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Figure 2.1: Rainflow analysis 



Chapter 3 

Stochastic Fatigue Crack Growth 

This chapter is divided into two sections. Section 3.1 discusses treatment of the noise 
term that models inherent variability in the crack growth under constant amplitude 
loading with respect to different marginal distributions and correlation structures, and 
presents a theoretical model for the analysis of crack growth based on that treatment. 
Section 3.2 generalizes the stress range modeling beyond the traditional stationary 
Gaussian narrow band model. The mathematical tools developed in this chapter will 
be used in Chapters 4 and 5 to analyze stochastic fatigue crack propagation. 

3.1     Statistical characteristics of crack growth 

The time-dependent uncertainty in crack growth rate is modeled as a non-negative 
stationary random noise process, X(t), with marginal distribution Fx(x) and corre- 
lation structure RX(T) (cf Eqn 2.31): 

JA 
~ft = Q(A)X(t) (3.1) 

in which Q(A) = function of flaw size, stress geometry and cycling rate. The crack 
growth rate noise, X(t), describes the inherent randomness in crack growth rate at 
the level of accuracy provided by the Paris equation and its experimental constants 
in the region where it is valid, and the test procedures that are used to obtain them. 
This noise generally is non-Gaussian. To facilitate the analysis of this stochastic 
differential equation, an auxiliary zero-mean stationary Gaussian process, G(t), is 
introduced to generate X(t) so that crack growth can be modeled as a vector Markov 
diffusion process (Spencer et al, 1988; 1989). The attractive feature of this approach is 

26 
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that powerful tools for the analysis of vector diffusion processes have been developed 
and, unlike the scalar Markov diffusion model for crack growth (e.g., Lin and Yang, 
1985), no assumption regarding the correlation length of the noise needs to be made! 

Two conditions relating X(t) and G(t) are established to ensure consistency in the 
first and second moments: the marginal distributions and the correlation structures. 
The first can be easily satisfied by the transformation (Grigoriu, 1984), 

X(t) = Ff »[*(<?(*))] (3.2) 

where $(•) is the marginal distribution of the Gaussian process G(t), with zero mean 
and standard deviation aG. Usually, aG is set equal to 1. However, some additional 
effort is required to accomplish the second, that is, to determine the correlation 
function, RG(T), in which r = t2 - tu in order to match RX{T) after the above 
transformation. 

3.1.1    Determination of RG{T) 

Examining Eqn 3.2, it is noted that an exact form of RG(r) is usually not available 
due to the complexity of the transformation function, and an approximation must 
be sought. One might express G{t) in terms of X{t) by expanding the function, 
G = Q^Fxix), in a Taylor series if it is differentiable and estimating RG from 
the linear approximation. However, this approximation is not satisfactory if the 
function S"1^ is highly non-linear, which unfortunately is the usual case. But 
if more expansion terms are retained, it is difficult to determine the higher order 
moment terms E[X(tl)

mX{t2)% m + n > 2, unless X(t) is Gaussian. 

The dilemma can be solved by approximating the transformation X = F^^G) 
by a polynomial, 

X(t) = £biG
i(t) (3.3) 

t'=0 

in which the coefficients &,• are obtained by minimizing the squared errors between the 
exact and approximate X(t). Theoretically, the highest order, n, of the polynomial 
can be arbitrary, depending on how small the residual error is required. In most 
practical cases, a second or third order polynomial is sufficient. 

This approach is similar to the Hermite moment model proposed in an earlier study 
(Winterstein, 1988), in which a non-Gaussian response is approximated by a Gaussian 
process through a Hermite series based on certain specified response moments. The 
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order of the Hermite series equals the number of given marginal response moments 
minus 1. The Hermite moment models are developed for the case when the number 
of given moments is limited, say, less than or equal to 4, but not for the case when 
the actual non-Gaussian marginal distribution is available. There are various numer- 
ical techniques for polynomial approximation; in this study, least-squares regression 
method is employed. 

A A 

Multiplying X{t\) by Xfa) and taking the expectation, we have 

Rx(r)   =   EiX^Xih)] (3.4) 

= EEMi£[C(<i)(?(<2)] (3-5) 
t=o i=o 

in which E[Gx(t\)GP{t-i)] is determined from the property of Gaussian processes (Grig- 
oriu, 1995; Sobczyk, 1991), 

E{UiG{h)) = I Y.E[G{tix)G{ti2))...E[G{Un_,)G{Un)\   n = 2m=even       (3*6) 

where the summation is over all possible ways of combining pairs and the total number 
of the terms summed is j^y- For example, 

E(G1G2G3G4) = E(GiG2)E(G3G4) + E(G1G3)E(G3G4) + E{GXG4)E{G2G3) (3.7) 

and 

E[G\Gl) = 9a4
GRG + 6R% (3.8) 

Eqn 3.6 indicates that ^fG^G^] is simply a polynomial function of RG(T) = E[G(ti)G(t2)]. 
As a result, Rx can be approximated by a polynomial function of RQ, and RQ can 
be estimated by one of the roots of this polynomial equation. The coefficients of this 
equation depend on the marginal distribution of AT and Rx- 

The question arises as to which root should be chosen. The fact that G is mean- 
square differentiable requires that RG(T) be differentiable also. This implies that 
RG(T) should be selected from a consistent root at different time lags r. Since OQ is 
known, the correct root should be the one that satisfies RG{0) ~ aG. In the case when 
there are repeated roots at r = 0, the legitimate root r(r) for RG(T) is identified by 
the following conditions (Soong and Grigoriu, 1993): 

• r(r) = r(—r) 

• r2(r) < r2(0) 
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• r(r) is non-negative definite 

The first two conditions are simple to justify. The third one is justified by Bochner's 
theorem (Cramer and Leadbetter, 1967), which states that r(r) is nonnegative definite 
if and only if it can be represented in the form, 

(r) = r eir"dF{u) 
J—oo (3.9) 

where F(u) is real, non-decreasing and bounded. In other words, the Fourier trans- 
form of r with respect to r should be a real, non-negative and bounded function. 

The method will be illustrated as follows. Suppose that 

1 = BG (3.10) 

where B = [b0, bu..., bn] and G = [1, G,..., Gn]T. The domain of the standard normal 
variable G is infinite. It is replaced by a large interval, say (-4,4), over which the 
least-squares experiment is conducted. The number of experimental points should 
be greater than n + 1 in order to determine n + 1 coefficients in B. Suppose that 
ne experiments are taken using different values of (7t, with responses Xt being given. 
Minimization of the squared error between the observed and estimated responses, 
defined as (Myers, 1971; Box and Draper, 1987), 

where 

and 

L = (XL - BGLf(XL - BGL) 

XL = [*!,...,*„.]' 

(3.11) 

(3.12) 

GL = 

1      1 
G\   C?2 

Gl   G% 

G ne 

GJL 

(3.13) 

yields the estimator of B, 

B = (GLGL
r)-1GLXL 

This is an unbiased estimator, with E(B) = B and 

aw(B)   =   E[(B - B)(B - B)r] 

=   *2(GLGj)- 
,-i 

(3.14) 

(3.15) 

(3.16) 
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where a is the standard error of the regression, the value of which depends on the value 
of the highest order of the polynomial, n. It is seen that the matrix (GLGJ) plays 
an important role in the estimation of 6,-, i = 0, ...,n, and the covariance between 6, 
and bj. The characteristics of this matrix are determined by the experimental layouts 
of G{ and the value of ne. For the sake of computational efficiency for obtaining 
the inverse of this matrix, experimental layouts of Gi are arranged to be symmetric 
about 0 so that most of the off-diagonal elements in (GLGJ) and (GLGJ)" are 
zero (i.e., estimates of 6, and bj are uncorrelated). The value of ne is selected so that 
cov(b{, bj)/cr2 is sufficiently small, say on the order of 0.1. 

Suppose that n = 2, i.e., the polynomial is quadratic. Substituting the estimated 
values of &,-, i = 0,..., n into Eqn 3.10, we have, 

X(tl) = b0 + byG{tx) + b2G
2{tx) (3.17) 

X(t2) = b0 + hG{t2) + b2G
2(t2) (3.18) 

Thus 

X(h)X(t2)   =   bl + boWG^ + bohG^h) (3.19) 

+   boinGfa) + %G{h)G{t2) + 6162(?
2(i1)(?(f2) 

+   6062G
2(<2) + 6162G(i1)G

2(t2) + ^G'2(<1)G
2(<2) 

Taking the expectation of equation 3.19 and combining it with Eqn 3.7, a polynomial 
equation describing the relationship between Rx and RQ is obtained, 

RX(T) ~ b2
0 + 2b0b2a

2
G + b2a4

G + b\RG{r) + 2b\R2
G{r) (3.20) 

The positive root of the quadratic equation yields RG(T), 

-b\ + y/bj - 8b2C 
RC(T) ~ v

4fe2  (3.21) 

where c = fc2, + 2b0b2cxG + bjcrG - Rx(r). 

The above approach to estimate RQ gives the desired characteristics of Rx after 
the transformation. A vector Markov process describing crack growth then can be 
constructed, as described in the next section. 

3.1.2    Construction of crack growth diffusion processes 

The mathematical description of a vector diffusion process is in the form of stochastic 
Ito differential equations, which are basically a set of linear first-order equations with 
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white noise as input. As noted previously, a diffusion process can be constructed from 
a linear differential equation with a white noise input. 

From the Fourier transform theorem, it is known that an arbitrary Gaussian sta- 
tionary random process with rational power spectral density (PSD) can be obtained 
as the output of a linear filter with white noise as the input (Lin, 1967). Moreover, 
a linear filter of higher order can always be transformed into a first-order system. 
As a consequence, an arbitrary stationary Gaussian process with a rational PSD is 
a component of a multi-dimensional diffusion Markov process governed by a set of 
linear first-order stochastic equations. This can be demonstrated by the following 
examples. 

Example 1: 

Suppose that 

<r2a 
5jrM = ^?+5) (3-22) 

This (two-sided) PSD corresponds to a differential equation, 

dX/dt + aX(t) = *y/te$(t) (3.23) 

where £(t) is white noise with two sided PSD equal to ^. To see this, note that the 
sample power spectral density function of X(t) is, 

where Fourier transform F(X) = limr-00 fIT e~iüJtX(t)dt, and T*{X) is the complex 
conjugate of F{X). Performing Fourier transforms of both sides of Eqn 3.23, we have 

F{X) = fT(«).F(0 (3.25) 

where 

H(u) = —— (3.26) 

Thus, 

Sx = \H{^)\2Si (3.27) 

Eqn 3.23 is of the Ito form; thus X(t) is a diffusion process with drift and diffusion 
term aX and 2a2a. By taking the derivative of Sx with respect to u and setting the 
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derivative equal to zero, it is found that the maximum value of Sx occurs at u = 0. 
Integrating Sx yields the standard deviation of X, a. 

Example 2: 

The linear filter corresponding to the two-sided PSD 

2a2a *y2 

SxH =  71 i\2^A    2    2 (3-28) ir   (or - yy + Aa2ur ' 

is, 

cPX/dt2 + 2adX/dt + >y2X = 2afy/ät(t) (3.29) 

Setting X = X\, this equation can be re-written as, 

dXi/dt =   X2 
dX2/dt =   -72Xi - 2aX2 + 2triy/ä£(t) (3.30) 

Eqn 3.30 is of the Ito form, and [Xi,X2]T is a vector Markov diffusion process with 
drift term 

M = [X2, -7
2XX - 2aX2]T (3.31) 

and diffusion term 

r = 0     0 
0   4a2a~f2 (3.32) 

If a << 7, the maximum value of Sx occurs at u ~ 7.   Integrating Sx over the 
domain (—00,00) with respect to u yields cr2, that is, the variance of X. 

The above illustrations show that once the spectral density function of G(t) is 
available in a rational form, a diffusion process can be easily constructed. The power 
spectral density SG can be obtained from its correlation function RQ by the Fourier 
integral, 

SG(w)   =    Hm ^- fT eivwRG(v)dv (3.33) 
T-*oo Z7T J-T 

1    fT 

=    lim — /   cosvuRa{v)dv (3.34) 

This integral can be carried out either theoretically or numerically. If SG{U) is not 
rational in form, an approximation is required. 
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Selection of basic rational functions and the parameters of each function to ap- 
proximate an existing PSD for G(t) should be determined by factors of interest such 
as the area and peaks of the power spectral density function; the former represents 
the variance and the latter reveals the dominant frequencies of G(t). 

If the power spectral density function is a function with one dominant mode within 
the non-negative frequency domain, the rational power spectral density functions 
expressed in Eqn 3.22, with its peak occurring at 0, and Eqn 3.28, with its peak at 
7, often are sufficient. If a more complicated power spectral density function with 
several contributing modes is involved, one rational function may not provide good 
description. In this case, the multi-mode power spectral density, SG, can be envisioned 
as the summation of several single mode power spectral density functions, 5Gi., 

n 

SG = ]T SGi (3.35) 
i=l 

This corresponds to modeling the process as the summation of several independent 
Gaussian processes (?,-, 

G(t) = EGi(t) (3.36) 

in which the cross power spectral density between G, and Gj, i ^ j, is zero. The 
variance of G is equal to the summation of the variances of Gt-, i = 1, ...,n. By 
approximating SGi. with a rational function, such as Eqn 3.22 or 3.28, Gi can be 
interpreted as the output of a linear filter with a white noise input &. The approach 
is illustrated as follows. 

Suppose that the two-sided power spectral density of G(t) has n modes within the 
non-negative frequency domain, one occurring at u> = 0 while the others are at non- 
zero frequencies, as shown in Figure 3.1. The variance and dominant frequencies are of 
interest. Eqn 3.22 and Eqn 3.28 are taken as the basic rational functions. The former 
is used to characterize the zero mode, with coefficients ((ruai) to be determined; 
the latter characterizes the non-zero modes, with 7,- equal to the frequency at the ith 

mode, and (<r,-, a,-) to be determined for i = 2,..., n. Taking the local minimum points 
between adjacent modes of SG as the demarcation points, the power spectral density 
of G can be divided into n segments. If the area of SGi under the non-negative domain 
of u is set to be the area under ith segment of SG, the summation of the variance of 
Gi is equal to the area under the PSD curve of G(t), implying that the variance of 
G{t) is satisfied. 

Now there are n unknown variables, at-, left, with n conditions: the values of local 
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maximum of SG(WJ), j = 1, ••-, n. If we define the function / as, 

n 

/(w;oi,...,a„) = J2
S

G, (3-37) 
t=i 

in which 

5«<"> = 704) <338) 

5G,H   =   -^7-5 27'        2 2,       i = 2,...,n (3.39) 

the n unknown variables, a,-, can be obtained from n nonlinear equations, 

5c(wj) = /(wJ-;oi,...,aB),        i = l,...,n (3.40) 

where u^ = 0 and Uj = 7,-, j = 2, ...,n. The solution of the above equations can be 
obtained by successive substitution. Assume initial values a,0 for a,-, i = 2,..., n, and 
then solve for a.\ from 

SaM = /(wi;öi,O!20,...,aB0) (3.41) 

Set the solution as ai0, and solve for a2 from 

SGM = f{u2;alo,ct2,a30,-,ano) (3-42) 

Set this solution as a2o, solve for a3, and so on, repeating this process until a, 
converges to a,0. Convergence of the successive substitution method is guaranteed if 
the initial value is close to the solution; this condition is usually satisfied if the initial 
value of a,- is selected as the solution of the equations, 

SG(wi = 0)   =   5Gl(0;ai) (3.43) 

5G(w, = 7.)   =   $7,-(7*;a.-)       * = 2,...,n (3-44) 

That is, each time we estimate at0, we assume that there is only one mode for SG] 

this assumption is relaxed later by the successive substitution. 

Finally, we have the set of stochastic differential equations, 

dA/dt = Q(A)F-\*(Gt + ... + Gn) (3.45) 

dGi/dt = -aGi + V^T<Ti6(0 (3-46) 
dGi/dt = Gi2 (3.47) 

dGi2/dt = -7fG,--2a,-Ga + 2<T,-7,->/S7e(0 (3.48) 
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tions. Eqn 3.45-3.48 can be interpreted in the form of Ito stochastic differential equati 
As a consequence, the 2n x 1 vector [A, Gx, G2, G22, ...(?„, Gn2]T is a diffusion process, 
with drift vector 

M = [mi,m2, ra3, m4,..., m2n-i, rn2nf (3.49) 
where 

and diffusion matrix 

r(t) = 

mi   =   Q{A)F~ 'WGi + <?2 + ... + <?„) )                      (3.50) 
m2   =   —aGi (3.51) 
^3    =     (?22 (3.52) 
ro4   =   -72Ö2- - 202(522 (3.53) 

"12n-l     =     ^2 (3.54) 
m2„   =   -7n<3n- - 2anGn2 (3.55) 

0 0 
0    2ofa1    0 • •; 0 
0        0       0 0 .. • 0 

~ 0        0       0 4O-|Q27| ... 0 (3.56) 

0 0 0 
0 0 4*fcn7n 

In general, the statistical characteristics of the fatigue crack growth law with re- 
spect to different marginal distributions and correlation structures of the noise term 
can be modeled as an autonomous (m + l)-dimensional vector Ito equation, 

dX(t) = M(X)+TdW(t) (3.57) 

where X = [A, Gu -, Gm]T, M(X) is a (m + 1) x 1 vector which does not explicitly 
include t, T is a (n + 1) x (n + 1) constant matrix with all the off-diagonal elements 
equal to zero, and W is a vector Wiener process. As a result, X is a homogeneous 
Markov process, that is, its transition probability density /(f,x|s,x0) depends only 
on the elapsed time r = t-s rather than on the specific values of s and t. In this case, 
we express it as /(r,x|x0), and without loss of generality, take 5 = 0. The solution 
of Eqn 3.57 will be discussed in the subsequent section. 

3.1.3    Analysis of vector diffusion processes 

A solution to an Ito differential equation provides a probabilistic description of the 
properties of the process satisfying the equation. An exact and closed form solution 
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is not possible in most practical situations. Most often, approximate solutions are 
represented by analytical formulas or simulation schemes. 

Analytical approaches 

Suppose f(t, x|x0) is the transition probability density function of the vector diffusion 
process X = [A, G\,..., Gn]T, with drift vector M(x) and diffusion matrix I\ Theoret- 
ical solutions to the Ito equations are usually accomplished by either the Kolmogorov 
forward (Fokker-Planck-Kolmogorov) equation (Arnold, 1974), 

df    A fl(m,-(x)/)     1""%/) 
m+t~~^i 2 £§«^7 (3-58) 

or backward equation, 

-g + EM^ + iEIXä^O (3.59) 

provided that all the derivatives exist.  The coefficients 6tJ- = (ITT),j, and for the 
diffusion term of crack growth, the off-diagonal elements are zero if i ^ j. 

Integrating both sides of the Kolmogorov forward equation with respect to Xo in 
its entire domain, it can be seen that the joint probability density function of X, 
f(a,gi, ..., <7„), also satisfies Eqn 3.58. The probability distribution function of crack 
size PA(A(t) < ac) can be obtained by integrating f(a,gi,...,gn) for a from 0 to ac 

and for (?,•, i = 1,..., n, from —oo to oo. 

On the other hand, if both sides of the Kolmogorov backward equation are inte- 
grated with respect to a from 0 to ac, and with respect to #,-, i = l,...,n, from —oo 
to oo, we obtain the transition probability P(A(i) < ac|a0,<7i0,...,<7n0) satisfying Eqn 
3.59, 

ÖP .   .ÖP  , A        ,   JP      1A.      d2P /oz?AN 

W = mi(X°fe + Smi+l(Xo)%; + 2 £bii+1dgT (3-6°) 
The probability distribution of the crack size PA = PA(A(t) < ac) can be obtained 
from the solution of Eqn 3.60 by the theorem of total probability, 

/oo foo     rac 

- /     /    ^(^(0 <ac\ao,9i0,-,9n0)fo{ao,giQ,-,gno)da0dglo...dgnl3.61) 
•oo       J—oo JO 

where fo(a0,gi0,...,gno) = fA0<f>Glo—<f>G„0, and <f> is the normal density function. If 
the initial value of the crack size is deterministic, say a0 = Co, that is, /A0 is a Dirac 
delta function, then PA = P(A(t) < ac\ao = Co). 
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It is usually difficult to get a closed-form solution to the Kolmogorov equations; 
instead, numerical tools must be employed. In this study, the finite difference method 
is used. The Kolmogorov forward equation involves a Dirac delta function in its initial 
condition when the initial crack size is deterministic. This might cause some difficulty 
in numerical discretization; thus, the Kolmogorov backward equation, rather than 
forward equation, is used to obtain the probability distribution of the crack size in 
this study. 

It should be noted that the variables in Eqn 3.60 are a0,<7i0, ...,gno, with boundary 
[ahac] for a0 and (-00,00) for gio, where a/ is the smallest possible initial crack size 
(a, = 0 if no crack is present, and greater than zero if a flaw of unknown initial size 
is present), and ac is the value of interest. As a result, the initial condition is, 

P(a(0) < ac\a0,glo,...,gno) = 1        Va0,#0 (3.62) 

The number of boundary conditions (b.c.) with respect to each variable depends 
on the highest order of the derivatives of / with respect to that variable in Eqn 3.60. 
Therefore, we need one b.c. for a0, and two for each gio. If the initial crack size is ac, 
the crack size at any given time, t > 0, must be no less than ac because the crack is 
propagating. This implies that, 

P(a(t) < ac\ac,glo,...,gno) = 0       Vgio,t > 0 (3.63) 

The boundary condition with respect to gio depends on the statistical characteris- 
tics of the noise term. For example, suppose that the sample space of the noise term 
is the positive real line; if gio -► 00, the noise term would become infinite according to 
monotonic property of the transformation function Eqn 3.2 between g and the noise 
term. As a result, the crack growth rate would be infinite at t = 0. Consequently, the 
crack size would approach infinity at any time t > 0, which implies that it is almost 
impossible for the crack size to be bounded, 

P(a(*)<ac|a0,...,oo,...)~0       Vao,*>0 (3.64) 

Similarly, if gio -» -00, the noise and the crack growth rate would be zero at t = 0. 
If the noise is perfectly correlated, the crack remains in a dormant state at all times. 
Then we have 

P(a(*)<ac|a0,...,-oo,...) = 0       Vao,i>0 (3.65) 

Finally, if the noise is totally uncorrelated, the initial crack size does not affect the 
probability distribution of crack size at t > 0, meaning that, 

dP(a(t) < ac\a0,... - oo...)/da0 = 0       Va0, t > 0 (3.66) 
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Eqn 3.65 also implies Eqn 3.66, though not vice versa. If the correlation structure 
is somewhere in between these extremes, Eqn 3.66 can be adopted. Spencer and 
Sobczyk (1992) used Eqn 3.66 for all correlation structures. 

With the initial and boundary conditions in hand, Eqn 3.60 can be solved by finite 
difference methods. As an example, consider a two-dimensional problem, in which 
time and space are divided into discrete uniform subinterval, as depicted in Figure 
3.2. The partial derivatives of the parabolic equation are replaced by finite differences 
using the explicit method, which allows one to compute easily values of the function 
at time £,• = At + U-i using the values at t = <,_!. Using subscripts to denote position 
and superscript for time, we have, 

pk+l _ pk pk        _ pk pk        _  pk 

If the relative size of the time and distance steps is not chosen properly, errors made 
at one stage of the calculations will be magnified as the computation is continued. 
To ensure stability and convergence in the numerical integration, ^^^/(Ax)2 must 
be less than or equal to 1/2 (Gerald and Wheatley, 1989). 

Simulation approaches 

An alternative solution to the Ito equations involves simulation, which generates a 
large number of different samples that can be used to estimate various statistical 
properties of the desired solution. This method is usually straightforward and is not 
unreasonably expensive with the use of modern computers. In this report, the Euler 
scheme is employed when simulation is used (Kloeden and Platen, 1992; Sobczyk, 
1991). Suppose the initial value of Eqn 3.57 is X0 = [a0,#i0,...,gno]T, where gio are 
normal variates following N(0, a,). For a given discretization 0 = t0 < t\ < ... < tx = 
T of the time interval [0, T], the Euler scheme gives the recursive algorithm, 

X(ti+1) = X{ti) + M(X{U))At + r(W(i,+1) - W(*t-)) (3.68) 

for i = 1,...,7V — 1, with initial value X0. The jth component of the independent 
vector increment W(ft+1) - W(*,-), AW},- = W}(ii+1) - Wj(U) is a normal variate, 
with 

E(AWji) = 0 (3.69) 

Var(AWji) = (ti+1 - ti) (3.70) 
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Using the Euler scheme, samples of the crack size within time interval [0, T] can be 
obtained, and the probability distribution of the crack size can be estimated. The 
Euler scheme converges in the mean-square sense to X(*), as the time increment At 
approaches zero, and the mean-square error is O(At). An appropriate At can be 
identified easily by trial and error, as illustrated subsequently. 

3.2    Loading uncertainty 

If the uncertainty in the load is taken into account, the crack growth rate law (without 
considering the model uncertainty, X) becomes, 

dA/dt = v(t)Q(A,A<r(t)) (3.71) 

where the the loading cyclic rate v(t), and the stress ranges Aa(t) both are random 
processes. Depending on the nature of the service loading on the structure, the loading 
history may be provided either in the form of a stress range history or a stress history. 
The modeling approaches for these two forms of loading history are different. 

If the marginal distribution F(.) and the correlation structure RAtT of the stress 
range are given, the treatment of random loading in fatigue analysis is similar to what 
was described for the noise term of the crack growth law. The stress range is modeled 
as, 

Aa(t) = F~^(G(t)) (3.72) 

where G(t) is a Gaussian process with marginal distribution $(•) and correlation 
function RG, which is estimated by the polynomial approximation of the transforma- 
tion function F_1$. The power spectral density function of G, SG, is estimated in 
the form of a rational function, and serves as the basis for the construction of a linear 
filter. Finally, a vector Markov process is established to model crack growth. 

If the data or structural analysis describes the stress history, however, a stress 
range model must be obtained from this stress history. Depending on the frequency 
content of the stress history, the stress process can be either narrow band or wide 
band. The stress range of a narrow band process can be modeled as a random variable, 
which is approximately twice the amplitude of the process if the mean stress is zero.' 
The cyclic rate is approximately equal to the mean occurrence rate of peaks or zero 
upcrossing rate of the process. The distribution and mean occurrence rate of peaks 
are given in Chapter 2. For the special case when the process is stationary Gaussian, 
the range of a narrow band Gaussian process can be modeled as a Rayleigh random 
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variable and the cyclic rate is £§-• For non-Gaussian process, it is difficult to obtain 

the distribution of peaks because the joint distribution of X, X and X may not be 
available. An alternative way to approach the problem is to transform the process 
into a Gaussian process by Eqn 3.2. Since the transformation function is monotonic, 
the peaks of the two processes correspond to each other, and assuming the mean 
stress is zero, the stress ranges, which are approximately twice the peak stresses, are, 

Aa(t) ~ 2F-1$(Gmax) (3.73) 

where Gmax is a Rayleigh random variable. The load cycling rate for a narrow band 
process is approximately the zero upcrossing rate of the process. 

If the loading history is a wide band process, load cycles are indistinct and the 
above approaches do not apply. However, rainflow analysis, which has been widely 
applied in cycle counting for stress-life (e.g., Wirsching and Light, 1980) and strain- 
life approaches (e.g., Dowling, 1983) when loading sequence effects are neglected, 
can be used to define cycles in the time domain for crack propagation analysis. The 
justifications for this approach are: 1) each of the cycles identified by rainflow analysis 
of the loading history is a closed stress-strain hysteresis loop of the type obtained 
from constant amplitude tests, and these loops are the same for both total life and 
crack propagation analysis; and 2) the initiation phase in welded or riveted structures 
often is negligible, and therefore the propagation life is approximately equal to the 
total life. Since the rainflow analysis has been demonstrated experimentally to be a 
reliable approach to cycle counting for total life prediction, it should be applicable 
to the analysis of crack propagation in welded or riveted structures. Support for this 
judgment is provided by Suresh (1991). It should be noted that the effect of load 
sequencing, to the extent that it affects the fatigue behavior of the structure, cannot 
be reflected in the rainflow analysis because the order of the cycles is randomized. 
For most civil structures, this is not a significant consideration. 

Crack growth can be modeled probabilistically using rainflow analysis and direct 
simulation: 

1. Generate a discrete time series of stress er, say MT sets (i,-,at), i = l,...,My, 
in time interval [0, T], from the given power spectral density of stress. If the 
process is Gaussian, the random spectral amplitude approach (RSA) discussed 
in Chapter 2 is adopted. If the process is non-Gaussian and the marginal 
distribution function is known, the correlation structure of a corresponding 
Gaussian process can be determined by using the approach proposed in section 
3.1.1. A Gaussian time series then can be generated from that correlation 
structure by the RSA method. A non-Gaussian sample can then be obtained 
by the transformation given in Eqn 3.2. 
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2. Conduct rainflow analysis of the time series of stress, and obtain the cycle 
number, nr, and amplitudes of cycles A<r,-, i = l,...,nP in [0,T]. The mean 
cyclic rate is estimated as v = nT/T. 

3. Using an Euler scheme, calculate the value of crack size recursively from, 

ai+1 = a,- + uQ(a{, Aa,-)A<;        i = 1,..., nT (3.74) 

where At is assumed to be T/nr. Thus J/A* = 1, and 

at+1 = a; + g(at-, Aat) (3.75) 

A sample function of crack size a{t), from which size at any time can be deter- 
mined, is obtained. 

4. Repeat steps 1, 2, 3 n times, and get n samples of crack size at t = T, aJ
T, where 

the superscript j, j = 1,..., n, represents the jth sample. 

5. Estimate the probability distribution of crack sizes at time t = T by rank- 
ordering the values of a3

T, and estimating the cumulative probability Fk(ar) as 
k/(n + l),k = l,...,n. 

This approach is very expensive since a large number of computations, including stress 
history simulation and rainflow analysis of a large sample size (say 105), is involved 
each time a sample of crack sizes at time t — T is desired. 

To reduce the expense of computation, a probabilistic model of stress range that 
is obtained from the rainflow analysis is developed instead. Conducting rainflow 
analysis does not preserve the correlation structure of the process as can be seen from 
Figure 3.3. Therefore, samples of the stress range obtained from the rainflow analysis 
can be envisioned as samples from a process which is uncorrelated with respect to 
time. The marginal distribution is estimated from a long history of stress under the 
assumption that the process is ergodic. The cyclic rate is available in the average 
sense for rainflow analysis, because the number of cycles is counted within a certain 
interval of time. If the stress is stationary, the variation of the total number of cycles 
within a long history (for a high-cycle fatigue problem) is small, as will be shown in 
the example in section 4.2. Accordingly, the cyclic rate can be modeled as a constant, 
which is equal to the mean occurrence rate of the peaks of the stress process. 

The marginal distribution of the stress range process can be estimated by fitting the 
data with a known distribution, or by a numerical table generated from a sufficiently 
large sample. The former provides a closed-form model, and is often sufficient to 
depict the interval around the mean value; however, the description at the tail region, 
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which is important in reliability analysis, may be poor. The latter can characterize the 
behavior very well across almost the entire region of the random variable if the sample 
size is sufficiently large, even if no closed-form PDF is available. Since the analysis of 
crack growth is usually conducted by numerical methods, a closed-form model of the 
marginal distribution of the stress range is not essential, and the distribution can be 
modeled in a tabulated form. The approach is as follows: 

1. Generate a long loading history, say t = m x T, from a given power spectral 
density of the stress, where T is the time of interest for the crack growth analysis, 
and m is greater than or equal to 1, depending on the length of T. 

2. Conduct a rainflow analysis to get the cycle number nr and sequence of stress 
range amplitudes A07, i = 1, ...,nr. 

3. Estimate v = nT/(m x T) and rank order ACT,- to estimate the cumulative 
probability of ACT. 

Crack growth can then be analyzed by transforming the problem into Ito equations 
and using the Euler scheme. Since the the stress range process is uncorrelated with 
respect to time, the scheme of the simulation is as follows, supposing that the crack 
size at t = T is of interest; 

1. Generate an uncorrelated sequence ACT,, \=\,...,\y x TJ, from the empirical 
distribution above; 

2. Simulate a sample of crack size at time T, aj-, by the Euler scheme, 

ai+1 = a + Q(a{, A<7.)       i = 1,..., [u x T\ (3.76) 

3. Repeat steps 1 and 2 n times to get n samples of crack size at t = T, aip, 
i = 1,..., n 

4. Estimate the probability distribution of aj. 

Computation time is reduced because the samples of stress ranges are generated 
from the empirical distribution obtained by analyzing one stress record instead of 
from a rainflow analysis for each sample. The time that is required to estimate the 
distribution of the stress range from one (ergodic) sample is relatively small. The error 
involved in this approximation and its computational efficiencies will be investigated 
in Chapter 4. 
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Figure 3.3: Stress histories before and after rainflow counting 



Chapter 4 

Fatigue Crack Growth 
Illustrations 

In this chapter, the stochastic approaches to fatigue analysis developed in Chapter 
3 are illustrated. Their validity is established and their advantages over existing 
methods of fatigue analysis are investigated. The sensitivity of stochastic crack growth 
due to different factors, such as the autocorrelation structure of the model noise term 
and the variance and bandwidth of the loading, is examined in detail. 

4.1     Statistical evaluation of the crack growth rate 
model 

In this section, the treatment of the noise term that models inherent randomness 
in the crack growth rate is illustrated. The effects of the marginal distribution and 
correlation structure of the noise on crack propagation are examined. The loading is 
deterministic and is assumed to result in constant amplitude stresses; this assumption 
is relaxed in section 4.2. 

The stochastic crack growth rate is modeled as, 

dA/dt = QAbX(t) (4.1) 

in which X(t) is the random noise term. This law is similar to that in Lin and Yang 
(1985), who applied their method to the analysis of the crack propagation of 7475- 
T7351 aluminum fastener specimens subjected to an aircraft load spectrum.   The 

46 
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parameters Q and b are constants.   The noise X(t) is assumed to be a stationary 
process with mean fx and autocorrelation function, 

^-{A+W-M/AfcW^ (,2) 

The initial crack size is 0.004 in (0.1 mm). The correlation time A is assumed to be 
8000 hr, the mean px is 1.0206, and the variance cx\ is 2/?, with ß equal 0.021643. 
Parameters b and Q are 0.9297 and 1.1051 x 10"4, respectively. The complementary 
cumulative distribution function (CCDF) at 8000 hr estimated by Lin and Yang is 
plotted arithmetically and on lognormal probability paper, respectively, with the solid 
line in Figure 4.1 and 4.2. 

When the approach described in section 3.1 is applied to the same problem, as- 
sumed that the noise of log dA/dt versus log AK is normal with mean equal to zero 
and variance equal to of, the noise term of the crack growth rate model is modeled 
as, 

X(t) = l<r°W (4.3) 

The marginal distribution of G(t) in Eqn 4.3 is standard normal.  The relationship 
between Vx = vx/ßx and <rx is (Ang and Tang, 1975; Benjamin and Cornell, 1970) 

Vx   =   exp^/nlO)2 - 1 (4.4) 

In order to estimate the autocorrelation function of G(t), Eqn 4.3 is approximated 
by a quadratic equation as explained in Chapter 3, 

X ~ 60 + WG + b2G
2 (4.5) 

in which the coefficients &,- are determined by least-squares regression analysis. Ex- 
perimental runs are conducted with experimental points (7, evenly distributed over 
domain (-4,4) at intervals of 0.5. The responses X< corresponding to <?, are com- 
puted from Eqn 4.3. By minimizing the mean-squared error, we find that 60 = 0.9981, 
&i = 0.2169 and b2 = 0.0214. The results of this approximation are presented in Fig- 
ure 4.3, where it can be seen that Eqn 4.5 is a good fit to Eqn 4.3. The integral of 
the mean-square error over the domain (-4,4) is 1.643 x 10"3. 

The relationship between the autocorrelation function of G(t) and X(t), derived 
from Eqn 4.5, is (cf Chapter 3), 

Rx^b2
0 + 2bQb2a

2
G + b\cj% + b\RalG2 + 2b2

2RGiG2 (4.6) 
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or, 

-b\ + Jb\ - Sb\c 

The RG thus determined is plotted in Figure 4.4 and has a triangular shape. This 
is not surprising if we examine Eqn 4.6 closely. The ratio &2/&1 is less than 0.1, its 
square is smaller than 0.01, and the contribution of the last term, i.e., the nonlinear 
contribution, is relatively small. Accordingly, RQ is approximately linear in Rx, the 
shape of which is a triangle superimposed on a rectangle. The first three terms of 
Eqn 4.6 are constants, which represent the constant component induced from nx- As 
a result, the shape of Rx has a triangular form. 

The two-sided power spectral density function of G{i) is obtained by the integral, 

1   r°° 
SG(u)   =   - I    cos TuRG{T)dT (4.8) 

1    /"A 
=   -      cosTu(l-T/A)dr (4.9) 

1 — cos Au; 
(4.10) 

TAU>
2 

A/2 
ir(uA/2)< 

sin2(u;A/2) (4.11) 

SG{W) is plotted with the solid line in Figure 4.5. The dominant frequency is zero, at 
which SG(0) = A/2TT. 

In order to construct a Markov diffusion process model for crack growth analysis, 
SG(^) is replaced by a rational function, as discussed in Chapter 3. There is only one 
dominant frequency centered at zero; accordingly, the function, 

SG =    , f* a> (4.12) 
7r(w^ + a1) 

which corresponds to the first-order linear filter, 

dG/dt   =   -aG + V2^({t) (4.13) 

is judged to be sufficient when only the standard deviation and dominant frequency 
are the factors of interest. The constant <JG is the standard deviation of G and a is 
determined by, 

2 

5G(0) = A/(2TT) = ^ (4.14) 
ira. 
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As a result, aG equals 1 and a equals 2.5 x 10"4. Eqn 4.12 is plotted with the dashed 
line in Figure 4.5 for comparison with Eqn 4.11. 

Approximating Eqn 4.11 with Eqn 4.12 implies that RQ is now approximated by 
an exponential function, 

RG = exp(-a|r|) (4.15) 

To examine the error regarding the correlation function of the noise term X due to 
the above numerical approximation, the estimate of Rx obtained by substituting Eqn 
4.15 into Eqn 4.6 is plotted with the dashed line in Figure 4.6 for comparison with 
the true Rx. It can be seen that the maximum absolute value of the relative error 
for Rx(r) is less than 1%. 

Based on Eqns 4.13 and 4.3, the fatigue crack growth now is formulated as a 
two-dimensional vector Markov diffusion process, 

dA/dt   =   QAbW*GW (4.16) 

dG/dt   =   -aG+V2^((t) (4.17) 

with drift term, 

M = [ml5 m2]T = [QAbl^G, -ccGf (4.I8) 

and diffusion term, 

r = 0    0 
0   2a (4.19) 

with initial condition [a0,g0], where a0 = 0.004in (0.1mm) and g0 is a standard 
normal variate. Due to the complexity of the drift components, a closed-form solution 
to Eqns 4.16 and 4.17 is not possible. As discussed in Chapter 3, there are two 
approaches to obtain an approximate solution: the Euler scheme or the numerical 
solution to the Kolmogorov backward equation. The Euler simulation-based scheme is 
straightforward, and its accuracy depends on the time step dt. The solution obtained 
from this approach for dt = 1.0 hr is plotted with the solid curve on lognormal 
probability paper in Figure 4.7. To check whether the time step is small enough, a 
smaller value dt = 0.01 hr is assumed, and the solution is plotted with the dashed 
curve in Figure 4.7. The result is close to that obtained using dt = 1.0 hr, which 
implies that dt = 1.0 hr is sufficient. The CPU time required is about 80 sec when 
dt = 1.0 hr and the sample size of crack length at T = 8000 hr equals 2000. 

The Kolmogrov backward equation for the crack growth process is, 

~~di    mi(a°'£°)~ + "»2(00,00)— + a~ = 0 (4.20) 
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Integrating both sides of the equation with respect to a from 0 to ac, and with respect 
to g, from -oo to oo, the transition probability P(A(t) < ac\a0,go) satisfies, 

dP .        ,ÖP,      .        .dP       d2P ,      s -7T- = mi(a0,5ro)^— + rn2(aQ,g0)— + a—y (4.21) 
dt da0 g0 dg$ K       ' 

with initial condition, 

P(A(0) < ac\a0,g0) = 1       Va0in[ahac] (4.22) 

and boundary conditions, 

P(A(t) < ac\ac,g0) = 0       V^0 (4.23) 

P(A(t) < ac\a0, oo) = 0       Va0 (4.24) 

dP(A(t) < oc|a0, -oo)/dg0 = 0       Va0 (4.25) 

where a/, the lower bound of the variable a0, is 0.004 in (0.1mm). 

The explicit finite difference scheme discussed in Chapter 3 is used to solve Eqns 
4.21-4.25. The infinite domain of G is approximated by (—4,4), the intervals of ao 
and g0 are 3.0 x 10"4 and 4.0 x 10"2, respectively, and the interval of At is less than 
Ax2/(4a2) to ensure the stability of the solution P(A(t) < ac\a0,g0). 

Since the initial crack size is a single value, a/, we have, 
/oo 

P{A(t) < ac\aQ = ahg0)<J>(9o)dg0 (4.26) 
-oo 

The probability of crack exceedance P(A(t) > ac) at T = 8000 hr is plotted with 
the dot-dashed curve in Figure 4.8 for comparison with the Euler scheme solution. 
Figure 4.8 shows that there are some differences between the solutions. As the mesh 
of the finite difference method becomes finer (interval of crack size da0 is reduced 
to 1.5 x 10~4), the difference between the solutions becomes smaller. However, the 
computation time required for the explicit finite difference method is expensive, with 
6 hr for the original mesh and 1 day for the refined mesh, while the CPU time required 
for the Euler scheme is only 80 sec. Therefore, unless the problem is simple and a 
closed-form solution can be obtained from the Kolmogorov equation, the Euler scheme 
is preferable. In the following, solutions to the Ito equations all are obtained by the 
Euler scheme. 

For comparison with the result obtained by Lin and Yang (1985), the solution 
from the proposed Euler scheme with dt = 1 hr is plotted with a dashed curve in 
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Figures 4.1 and 4.2. Over the central region of the CCDF (95% interval of the crack 
size), both results are close. However, it can be seen that there is some deviation 
between the two solutions at the extremes of the probability distribution. There are 
two possible sources for the difference. One is the numerical error of the proposed 
approach, arising from the approximation of Rx and solution of Eqn 4.21. The 
second is the assumption made by Lin and Yang (1985): "the correlation time of the 
noise term is short compared with the characteristic time of a{tf. Note that in this 
example, the correlation time was equal to the total time of interest for crack growth 
(8000 hr). 

To investigate whether the latter is indeed the main source of the difference, an- 
other numerical experiment was conducted in which it was assumed that the cor- 
relation time is much shorter, say, 80 hr, which is 1% of the total time of interest 
for crack growth; while all other parameters remain the same.   The difference be- 
tween the estimated Rx and the true Rx, plotted in Figure 4.9, is similar to that of 
the previous example when A is reduced. Both solutions for CCDF of crack size at 
T = 8000 hr are plotted on lognormal paper in Figure 4.10. It is seen that even at the 
extremes of the probability distribution, the results are quite close to each other when 
A = 80 hr. These imply that the main source of the difference between the results 
in the previous example is not the numerical error of the proposed method, but the 
assumption regarding the length of the correlation time with respect to characteris- 
tic time of a(t). When A/T is small, this assumption is valid and both approaches 
lead to similar results. When the correlation time increases, this assumption may no 
longer be valid; however, the proposed method can be still applied since it involves 
no assumption regarding correlation time. To further confirm the agreement of both 
approaches when A/T gets smaller, we increase the time of interest to T = 12,000 hr, 
while the correlation length is assumed to be 8000 and 80 hr, respectively. The CDFs 
are plotted on lognormal paper in Figure 4.11, and it is seen that the conclusion holds 
when T increases. 

The mean and variance of the crack size both increase when time is increased. The 
coefficient of variation of the crack size (c.o.v.(a)) when A = 80 hr and 8000 hr is 
calculated and plotted versus time with the solid line in Figure 4.12. The value of 
c.o.v.(at) increases as time increases. The mean and variance of the time required 
for the crack size to reach a given size also increase with respect to the crack size. 
However, as can be seen in Figure 4.13, the value of c.o.v.(*0) decreases as the crack 
size increases in the short crack length region, and approaches a constant as the crack 
size gets longer. This trend is consistent with other experimental and theoretical 
studies of the statistical nature of fatigue crack propagation in 2024-T3 aluminum 
alloy (Virkler et al (1979); Ortiz and Kiremidjian (1986)). The correlation length A 
of the noise term also affects the values of c.o.v.(ai) and c.o.v.(ia), as can be seen 
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by comparing the results in Figures 4.12 and 4.13 for different values of A. The 
shorter correlation length leads to smaller values of c.o.v. in both cases. In other 
words, uncorrelated noise results in the smallest dispersion in the crack size at a 
certain time and in the time to reach a crack size. Therefore, the stochastic model 
dA/dN = C(AK)mX, in which X is treated as a random variable rather than a 
random process, would overestimate the scatter in crack size at a given time in the 
service life. However, at a given time, the CCDF of crack size not only depends on the 
scatter, but also on the mean of the crack size, which has only a slight increase when 
the noise becomes more correlated as can be seen in Figure 4.14. As a result, whether 
taking A'asa random variable is a more conservative approach when estimating the 
failure probability depends on the critical flaw size. 

Lin and Yang's approach only takes into account the first two moments of X(i). 
In other words, as long as the autocorrelation function of the noise is the same, their 
model yields the same probability distribution of crack size, regardless of the marginal 
distribution of X(t). In order to examine the effect of the marginal distribution of 
X(i) on the CDF of a(<), the lognormal distribution of X(i) is replaced by a uniform 
distribution; the target mean and autocorrelation function remain the same. In this 
case, 

X = (b-a)$(G) + a (4.27) 

where 

a-ßx- ^x (4.28) 

and 

b = px + V&r* (4.29) 

It was found that a = 0.6602 and b = 1.3810 by substituting the values of fix and ax 
into Eqns 4.28 and 4.29. 

Due to the behavior of the uniform distribution, a quadratic polynomial is not 
sufficient to approximate Eqn 4.27. Instead, a cubic polynomial is employed, 

X = b0 + b1G + b2G
2 + b3G

3 (4.30) 

with coefficients, b0 = 1.0206, bx = 0.2352, b2 = 0.0 and 63 = -0.0134 obtained by 
least-squares regression analysis, as discussed before. The correlation function of RQ 

must satisfy, 

R3
G+pRG + q = 0 (4.31) 
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where 

p = [b\ + 66361 + 96l)/(66=) (4.32) 

q = (b2
0-Rx)/(6bl) 

There are two imaginary roots and one real root. The real root is, 

RG = A1'3 + B^ (4.33) 

where 

A = -0.5q + y/pS/27 + qy4: (4.34) 

B = -0.5? - y/pt/27 + q2ß 

This RG is plotted in Figure 4.15. The reason for the linearity in RG can be seen by 
examining Eqn 4.31 and the values of 63 and 61, which implies that the linear terms 
dominate the function of RQ. Accordingly, a linear filter described by Eqn 4.13 is 
employed to construct an auxiliary Markov process for crack growth. This implies 
that RG is approximated by the exponential function Eqn 4.15. The estimated values 
of Rx, based on the the estimated values RQ, and Eqn 4.31 are compared with the 
true Rx in Figure 4.16. The relative error is less than 1%. 

Based on Eqn 4.27 and Eqn 4.13, the probability distribution of crack size is 
obtained by the Euler scheme discussed in Chapter 3, and the result is plotted with 
the dash-dotted line in Figure 4.17 for T = 8000 hr and A = 8000 hr. The CCDF 
becomes asymptotic at its extremes because the domain of the noise term is limited 
for an uniform distribution. Note that there can be a considerable difference in the 
probability distribution of crack size, depending on the assumptions made regarding 
the marginal distribution of the noise term when A is comparable to T. However the 
difference decreases when A becomes smaller, say A = 1%T; this can be explained 
by the central limit theorem. 

The positive crack growth rate requires X{t) to be positive. As a result, the 
marginal distribution of X(t) is generally non-Gaussian. However, when the standard 
deviation of X is small, the probability that X is negative is small (in the above 
example, the mean of X is 1.0206, and the standard deviation is 0.208; thus, the 
probability that X < 0 is less than 10"6 if X is normal) Therefore, assuming the 
marginal distribution function of X to be normal, may not lead to misleading results 
(say, negative values of crack size), particularly if At is small, can be seen from Figure 
4.17. 
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4.2    Loading uncertainty 

In this section, the contribution of the uncertainty in the stress process to the prob- 
ability distribution of the crack size is assessed. The noise is suppressed, and all 
material parameters are assumed to be deterministic. Results obtained from the pro- 
posed approach are compared with those obtained (at considerable expense) from 
direct simulation. The effect of the bandwidth of the stress history on the crack 
growth also is investigated. 

The crack growth rate is assumed to be described by, 

dA/dt = vC{Yy/^ÄA<j)m (4.35) 

Crack growth parameters are Y = 1.12, C = 0.66 x 10~8 and m = 2.25 and the 
initial crack size is ao = 0.3 in (7.6 mm). These data are obtained from the study of 
deterministic edge crack growth in an infinite-width plate fabricated from A514 steel 
by Barsom and Rolfe (1987). The yield stress is lOOksi (689 MPa). The stress cr(t) 
is assumed to be a Gaussian process with constant one-sided power spectral density 
S(OJ) = 60/7T ksi2-hr/rad within a limited bandwidth (0,47r), which is selected such 
that the root-mean-mth-power of the stress range, my/J2 A<7-"/m, is approximately 
36 ksi (248 MPa). Stress histories are simulated from the RSA method with the 
given power spectral density as discussed in Chapter 2; stress ranges are obtained by 
rainflow analysis. 

Since the stress is Gaussian, according to Chapter 2, the mean occurrence rates 

of zero upcrossing, i/£, and peaks, i/+, are ^^v/^p" ^ 1.155 cycle/(time unit) and 

T^~\ Tjfa — 1.549 cycle/(time unit). Examining the 100 samples of cycle number ZS/OTT y   w   \Q 

obtained from 100 stress histories by rainflow analysis, it is found that the average 
cyclic rate is around 1.51 cycle/hr, which is close to i/+. The coefficient of variation of 
the number of cycles in 12,500 hr is only 0.24%. Thus, the cyclic rate, which equals 
the total number of cycles divided by total time, can be modeled as a deterministic 
value v*. 

The cumulative distribution function of the crack size at T = 12,500 hr obtained 
from direct simulation using the (nearly) exact approach discussed in Chapter 3 is 
plotted with the dashed line in Figure 4.18 and on lognormal probability paper in 
Figure 4.19. The simulation is expensive, with CPU time on a Digital Alpha Station 
4000 equal to approximately 4 days (if no Fast Fourier Transform (FFT) algorithm 
is used), or 30 min (if FFT is used), for 100 samples of crack size at T = 12,500hr. 

The approximate method described in Chapter 3 bases the analysis of crack growth 
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on the average cyclic rate and distribution of stress ranges obtained from one long 
stress history.  The total time of the stress history is selected to be twice the time 
of interest for crack growth (25,000 hr). Rain flow analysis of this one stress history 
yields an average cyclic rate of the stress range of 1.51 cycle/hr, and an empirical 
distribution of the stress range. The stress range then is modeled as an uncorrelated 
process with this empirical marginal distribution. The probability distribution of the 
crack size at T = 12,500 hr is computed by the Euler scheme and is plotted with 
the solid line in Figure 4.18 and on lognormal probability paper in Figure 4.19 for 
comparison with the exact solution. The solutions from the two different approaches 
are close, with around 1% relative difference between the crack size corresponding to 
0.99 cumulative probability (the upper limit of the probability that the 100 direct 
simulation samples can estimate). However, the CPU time of the proposed method 
is reduced.   Around 3 hr (without FFT), or less than 1 min (with FFT), is spent 
for rain-flow analysis to obtain an empirical distribution of stress ranges, which can 
be used for different fatigue studies as long as the statistics of the stress remain 
unchanged.  Subsequently, only 2-3 min is required to determine the CDF of crack 
sizes. Accordingly, the proposed approach is more efficient for dealing with fatigue 
analysis involving wide band load processes. 

To examine the effect of the bandwidth (index of wide or narrow band), area 
(variance of the stress process) and shape of the PSD of a stress process on the 
parameters of the stress range and the probability distribution of the crack size, four 
stress processes, the PSDs of which are illustrated in Figure 4.20, are considered. 
The first PSD is 60/x ksi2-hr/rad, 0 < u < 4TT, the second is 120/TT ksi2-hr/rad, 
IT < u < 3?r, the third is jgw if 0 < u < 2TT and *ffi _ j»w if 2TT < u < 4TT, and 
the fourth is 60/TT ksi2-hr/rad, -K < u < 3TT.   The first three have the same area, 
but different bandwidth or shape.   The fourth has the same shape and bandwidth 
as the second one, but different area.   The theoretical values of i/+, estimated i/+, 
mVX Acr™/m> /*A<r, and co.v.(Acr) based on rainflow analysis are summarized in 
Table 4.1.  For the first three cases, which have the same area of PSD (variance in 
stress), the second has the narrowest bandwidth, the highest "V£ Aof/m, lowest 
co.v.(Aa), and lowest up; the parameters for the third are in the middle, but are 
closer to those of the second. All parameters for the fourth are the lowest. The CDFs 
of crack size at T = 12,500 hr are shown for all four in Figure 4.21. The CDFs for 
the second and third cases are very close, the mean values being approximately 1.86 
in (47.2 mm). The mean value for the first case is 1.79 in (45.5 mm). The dispersion 
for the first three cases are close, while the fourth has the smallest mean (0.66 in or 
16.8 mm), and dispersion. 
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4.3    Sensitivity study 

Linear regression analysis of the logarithm of crack growth rates, log dA/dt, on the 
logarithm of stress intensity factors, log AK yields only the mean value of log dA/dt 
(or the median of dA/dt). The relationship between the mean of normal and lognor- 
mal variables (Ang and Tang, 1975) implies that even though the mean of the noise 
in log dA/dt is zero, it is greater than unity for dA/dt. Thus, deterministic models 
of crack growth rate based on parameters obtained from the regression analysis can 
result in an unconservative estimate of crack size following a period of stable crack 
growth due to service loading. Stochastic models take into account the noise and thus 
compensate for this underestimation. This is illustrated in the following. 

Assume that the logarithm of the noise, log\QX is modeled by two extreme cases: 
as an uncorrelated Gaussian process or as a Gaussian random variable, with zero 
mean and standard deviation <?\ = 0.087635 in both cases. The stochastic crack 
growth model is 

da/dt = uC(Yy/^A<r)m100087635G (4.36) 

where the marginal distribution function of G(i) is standard normal, ACT = 36.1 ksi 
(249 MPa) and v = 1.51 cycle/hr, (the values of root-mean-mth-power of the stress 
range and average cyclic rate of a stress process with S&a{u) = 60/7T, 0 < u> < 47r, 
as determined in the preceding section). The other parameters remains the same as 
in Section 4.2. The deterministic crack size at T = 12,500 hr and its probability 
distributions under these two extreme assumptions regarding the stochastic nature 
of the noise are compared in Figures 4.22 and 4.23. The deterministic value is ap- 
proximately 96% of the median value obtained from the uncorrelated noise model 
and 99% of the median value from the random variable model. The variance of the 
crack size is very small when X(t) is uncorrelated, because each sample of A{t) is 
the summation of uncorrelated variables over a long time. When X(t) is perfectly 
correlated, the variance of the crack size becomes large because X is the same within 
a crack growth path, but different between different crack growth paths. Almost all 
crack sizes would be larger than that determined from deterministic analysis if noise 
is an uncorrelated process; if the noise is modeled as a random variable, about 50% 
of the crack sizes would be larger. 

To investigate the combined effect of both model noise, X(t), and loading uncer- 
tainty on crack growth, the CDFs of crack growth at T = 12,500 hr are plotted in 
Figure 4.24 for three cases. The first describes the effect of the loading uncertainty, 
with the stress power spectral density 5A<T = 60/x within 0 < u < 4?r when noise 
is not included.   The second depicts the effect of the model noise X(t), in which 
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logwX(t) is an uncorrelated normal process, with zero mean and standard deviation 
0.087635; the stress range is deterministic with value equal to the root-mean-mth- 
power value of the stress range history in the first case. The third characterizes the 
combined effect of both sources of uncertainty. The CDF of crack size shifts to the 
right when the model noise is taken into account, but the variance in the loading 
dominates the variance of the crack growth in this example. 

However, when the model noise is highly correlated, critical factors for the variance 
in crack size change as illustrated in Figure 4.25, where four cases are presented 
with the loading characterized by the same SA<T(U) as before. One case represents 
uncertainty only due to loading. The remaining cases represent combinations of both 
loading and noises with different correlation functions, the first for the case when 
noise term is uncorrelated with respect to time, the second for the case when noise is 
a random variable, and the third for the case when noise is in between these extremes 
modeled by RQ = exp(-a|r|), where G = ^JI* and a = 2.5 x 10~4. The noise 
dominates the variance of crack size when X(t) is highly correlated. The correlation 
length of X(t) is related to the value of a. When a gets smaller and smaller, G(t) 
converges to a random variable, while when a gets larger and larger, G(t) becomes 
uncorrelated. Thus, an accurate measurement of a is required in order to have a good 
prediction of the CDF of crack size. Experimental data (similar to the repeated trials 
by Virkler et al (1979)) for crack growth histories under different conditions must 
provide the basis for statistical analysis of the correlation structure of X(t). 

The uncertainty of the fatigue exponent m has not been considered in the above. 
The value of m can vary for different materials, components and environments. Thus 
it can be modeled as a random variable. To assess whether uncertainty in m plays an 
important role in crack growth, a uniform distribution is assumed for m with mean 
equal to 2.25 and c.o.v. equal to 0.01, 0.03, 0.05, respectively. In each case, the 
noise, X, is assumed to be either perfectly correlated or uncorrelated with respect 
to time. The variance of X and the values of other parameters in the crack growth 
law are assumed to be the same as before. The effects of m on the c.o.v. of time 
to reach various crack sizes are illustrated in Figure 4.26. When the c.o.v. of m is 
small (< 0.01), the uncertainty in m plays an important role if X is uncorrelated, 
but is negligible if X is perfectly correlated. In other words, the contribution of the 
uncertainty of m and X to the uncertainty in the time required to reach a given crack 
size depends on the correlation structure of X for small values of c.o.v. of m. As the 
c.o.v. of m gets larger, the uncertainty in m dominates the uncertainty in the time 
required to reach a given crack size, and the correlation structure of X becomes less 
important. 
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Type vv h "VEAafVm^sz) flAa(^si) c.o.v.(Acr) 

1 1.55 1.51 36.1 27.9 0.73 
2 1.18 1.17 40.8 33.3 0.64 
3 1.33 1.30 38.9 30.8 0.69 
4 1.18 1.17 28.8 23.5 0.64 

Table 4.1: Stress history parameters with respect to different PSDs 



CHAPTER 4.   FATIGUE CRACK GROWTH ILLUSTRATIONS 59 

1.0 

0.9-- 

0.8- 

0.7- 

0.6-- 

0.5-- 

0.4-- 

0.3-- 

0.2-- 

0.1-- 

0.0 
0.00 0.01 

1   Lin and Yang's approach 
2   Euler scheme 

0.02 

crack size (in) 

 1 H 
0.03 0.04 

Figure 4.1: CCDF of crack size 
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Figure 4.4: The estimated autocorrelation function of G(t) 
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Figure 4.5: The power spectral density (two-sided) of G(t) 
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Figure 4.10: CCDF of crack size due to model uncertainty (T=8000hr) 



CHAPTER 4.   FATIGUE CRACK GROWTH ILLUSTRATIONS 69 

3" 

2- 

I'- 

ll. o 
a o+ 

-1-. 

-2 •■ 

-3- 

-4- 
-5.0 

Lin and Yang's approach, 
the proposed approach 

Lin and Yang's approach. A-80 
the proposed approach 

T=12000 hr 

A-B000 

■• 

-2.0 

Figure 4.11: CCDF of crack size due to model uncertainty (T=12000hr) 



CHAPTER 4.   FATIGUE CRACK GROWTH ILLUSTRATIONS 70 

2000      4000 6000     8000 

time Ihr) 

10000     12000     14000 

Figure 4.12: C.o.v of crack size versus time 
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Figure 4.13: C.o.v of time versus crack size 
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Figure 4.14: Mean of crack size versus time 
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Figure 4.18: CDF of crack size due to random loading 
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Figure 4.21: CDF of crack size due to different PSDs 
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Figure 4.24: Effect of loading and model uncertainty 
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Figure 4.25: Sensitivity of crack size to correlation in noise 
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Chapter 5 

Fatigue Crack Growth Analysis of 
the Emsworth Miter Gate 

The inland waterway system in the United States plays a significant role in the trans- 
portation of agricultural and industrial products. Among the most important compo- 
nents of navigation infrastructure on these waterways are steel miter gates installed 
at locks and dams. Many of these gates were constructed more than fifty years ago 
and during their service lives have been subjected continuously to various loadings 
and environmental effects, such as cyclic hydrostatic loadings, vessel impact, and al- 
ternate wetting and drying. Deterioration of steel gates during service has occurred 
from fatigue or corrosion-fatigue (U.S. Army Corps of Engineers, 1993). Failure con- 
sequences for such facilities are costly and their repair and maintenance is expensive 
and potentially disruptive to transportation on the waterway. Rational policies for 
condition assessment and maintenance actions are required from both safety and 
economic perspectives. 

The methods presented in Chapters 3 and 4 provide tools for time-dependent 
reliability assessment and service life prediction of aging structures in the presence of 
uncertainties due to construction conditions, service load and environmental factors. 
As a demonstration of the use of these tools, the reliability analysis with respect to 
crack growth in a miter gate at the Emsworth Lock on the Ohio River is presented 
in this chapter. 

85 
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5.1    Ems worth miter gate description 

The Emsworth Lock and Dam is located on the Ohio River about 6 miles downriver 
from Pittsburgh, Pennsylvania. The main lock chamber is 110 ft by 600 ft (34m 
x 183m). The original steel miter gates were designed in 1920 and were replaced 
in 1979 after suffering significant fatigue and corrosion damage during their service 
life (Ellingwood, Zheng and Bhattacharya, 1996). The availability of the records of 
the service history of these gates provides a good opportunity to validate the time- 
dependent reliability analysis methods for condition assessment and life prediction of 
such structures. 

Both the original gate and its replacement gate are vertically framed steel struc- 
tures, as illustrated in Figure 5.1. They are similar structurally, except in the position 
of the vertical girders and the configuration of the diagonal bracing. For the original 
gate, a vertical beam, indicated in Figure 5.1 as Beam No. 7, was placed at the 
midspan of this gate; in the replacement gate, a stronger vertical girder was used in 
this position. Each gate leaf is framed by two large horizontal girders at the top and 
bottom that span approximately 61.5 ft (18.7 m) from the quoin to the miter, and by 
vertical beams spaced at 58 in (1.47 m) that are laterally braced. The height of the 
gate from the sill to top girder is approximately 26.5 ft (8.1 m). Diagonal bracing is 
provided for torsional stiffness and dimensional stability. The upstream face of the 
gate leaf is covered by skin plates, which provide water-retention and resistance to 
lateral-torsional buckling of the beams. 

Typical cross sections of the top girder and Vertical Beam No. 7 of the original 
gate are illustrated in Figure 5.2 (Ellingwood, Zheng and Bhattacharya, 1996). Both 
components were designed as flexural members, with flange consisting of two angles 
that are riveted to the web plate. A portion of the plate is included in the compression 
(upstream) flanges of the vertical beam. The effective width of this compression flange 
is determined from the local plate stability requirements in the AISC Specification 
(1989). 

The original gate was fabricated with ASTM A7 steel, with a specified yield 
strength Fy =33 ksi (228 MPa). The replacement gate was constructed with ASTM 
A36 steel, with specified yield strength Fy = 36 ksi (248 MPa). 
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5.2    Service load analysis 

The cyclic loads used for the fatigue damage analysis in this study are the hydrostatic 
loads resulting from normal operation of the lock. Extreme service loads, such as 
impact by barges and debris, are not considered because not enough data is available. 
A typical load profile on a miter gate is illustrated in Figure 5.3 (Ellingwood, Zheng 
and Bhattacharya, 1996). The magnitude and fluctuation of the hydrostatic load 
depend on both upper pool and lower pool elevations. The upper pool is maintained 
at a nearly constant level by the dam, but the lower pool level fluctuates according 
to the flow conditions in the river. 

Histories of daily pool elevations on the gate and computed stress amplitudes 
associated with different locations on the top girder and Vertical Beam No. 7 were 
provided courtesy of Black and Veatch Engineers. Their stress analysis was based 
on the assumption of elastic structural behavior. The top girder was analyzed as a 
three-hinge arch, with forces induced from the reactions of the vertical beams. The 
vertical beams were analyzed as simply supported, with nonuniform distributed load 
resulting from the hydrostatic loadings. The validity of this approach to structural 
analysis reportedly was established by a finite element analysis of the gate leaf for 
selected upper and lower pool elevations. 

Each time history includes 5502 data, spanning from Jan 1, 1980 to June 30, 1995. 
The pool elevations and thus the stress amplitudes were not necessarily the daily 
maxima/minima; rather, they represented the values at some arbitrary time during 
the day at which the measurement was taken. An average of about 10 days' data 
were missing each year. When the data provided were subjected to a preliminary 
screening prior to analysis, two incorrect readings were identified, in which the lower 
pool reported was below the sill. These were replaced by the average of readings on 
preceding and following days. The corrected stress amplitude data are the basis of 
the subsequent fatigue reliability analysis. 

The maximum tension stress in Beam No 7 occurred in the downstream flange 
about 10 ft (3m) above the sill. The daily mean was 15,250 psi (105 MPa) (within 
the elastic range), standard deviation was 903 psi (6 MPa), skewness coefficient was 
-5.3 and kurtosis coefficient was 52.4. The maximum stress for the top girder occurred 
at its intersection with Vertical Beam No. 7; the mean was 687 psi (4.7 MPa) and 
the standard deviation was 32 psi (0.2 MPa). Thus the more highly stressed Vertical 
Beam No. 7 is more critical as far as fatigue damage is concerned. Accordingly, the 
fatigue reliability analysis is performed on the Vertical Beam No 7. 

The PSD of the pool elevations and stress ranges were calculated and are plotted 
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in Figures 5.4 and 5.5. These PSDs are related clearly, since the stresses were com- 
puted from the pool elevations by elastic analysis. The dominant frequency of 0.0177 
rad/day is equivalent to a cyclic period of 355 days, which is the annual number of 
recorded data, and reflects the yearly seasonal fluctuations in river level. 

The 5502 data only provide daily stress amplitudes. To evaluate fatigue behav- 
ior, the elapsed number of cycles is also needed. Therefore, a complete cyclic stress 
history must be constructed from the daily stress amplitude data. Due to the op- 
erating characteristics of the waterway, the variation in the pool levels during one 
day is very small. Accordingly, it can be assumed that the amplitudes of the cyclic 
stresses during each day remains constant, but that the amplitudes vary randomly 
from day to day. The average number of cycles per day is obtained by dividing the 
number of cycles per month by the number of days within that month; the average 
yearly and monthly cycles were determined from the data provided by the US Army 
Corps of Engineers Ohio River District, as summarized in Figures 5.6 and Figure 5.7, 
respectively (Ellingwood, Zheng and Bhattacharya, 1996). The ten missing days of 
data each year are assumed to occur the last 5 days of December and first 5 days of 
January, corresponding to the holiday season. The mean number of load cycles per 
day at the Emsworth Lock is approximately 12. The linearity in the yearly data prior 
to 1940 seems questionable; however, it had only a minor impact on reliability of the 
gate since the dispersion in other parameters, such as environmental effects, are more 
significant. 

The analysis of cyclic stresses described in Chapter 3 is facilitated if the distribution 
of stress ranges can be fitted by a known theoretical distribution. Apart from the four 
moments, the lower and upper limits of the loading corresponding to the limits of the 
upper and lower pool levels should be matched. Several distributions, including the 
Beta and Pearson families of distribution, (Elderton and Johnson, 1969) were tried; 
however, none of these distributions fitted the data particularly well, especially with 
regard to the skewness and kurtosis. Therefore, the fatigue analysis was conducted by 
utilizing an empirical distribution constructed directly from the stress data provided 
by Black and Veatch Engineers. The empirical PDF of this stress range, Aa, based on 
the reconstructed data, is shown in Figure 5.8. The value of stress range is bounded, 
which is consistent with the limited height of pool elevation. The most likely values 
of A<7 range from 12 ksi (83 MPa) to 16 ksi (110 Mpa). Stress ranges below 6 ksi (41 
MPa) are unlikely to occur. 
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5.3    Stochastic crack growth model 

Characterization of uncertainty in stochastic crack growth has two components: load- 
ing uncertainty and randomness in the crack growth. Both sources of uncertainty 
must be considered. The loading data are provided in terms of stress range rather 
than stress, which is different from the examples in Chapter 4. Accordingly, rainflow 
analysis is not required, and a stochastic model of the stress range process can be 
developed directly from the data on miter gate operating loads. 

In order to analyze fatigue crack growth as a Markov diffusion process, the stress 
range ACT is transformed into a Gaussian process, Gi{t), by the transformation func- 
tion, 

ACT = F-l*(Gt) (5.1) 

where F(«) is the empirical CDF of ACT (the empirical PDF corresponding to this 
empirical CDF is shown in Figure 5.8), and $(•) is the standard normal distribution 
function of Gi(t). The autocorrelation function and power spectral density of the 
stress range process can be determined from Eqn 5.1. Based on the reconstructed 
stress history, a time series Gi(t) is produced, and the two-sided power spectral density 
of Gi (i) is obtained by Fourier transformation of the time series. The value of SG1 (U;) 

when u > 0 is plotted with the dashed line in Figure 5.9. There are several peaks 
in this PSD, but only one of them, with magnitude equal to 124.0 ksi2-day/rad, is 
significant. The other peaks are relatively small. The process Gi(t) is narrow band. 
The dominant frequency of 0.0177 rad/day is equivalent to a cyclic period of 355 
days. This matches the annual number of daily pool level records per year in the 
original sample. The contribution of SGl (w) at the frequency related to the average 
daily cycle number, 12, is very small and is not plotted in Figure 5.9. 

In order to facilitate the analysis, the power spectral density of Gi(t) was fitted 
by a rational function. Since there is only one major peak, which is centered at a 
non-zero frequency, the function, 

= 2oaV 1  
Gl IT     (wa - 72)2 + (2ao;)2 (5"2) 

which corresponds to the second order linear filter, 

cPGi/dt2 = -2adG1ldt - 72C?! + 2yyfä(t) (5.3) 

is sufficient to describe the standard deviation and dominant frequency of interest. 
Parameter a is the standard deviation of G\, 7 is equal to the dominant frequency, 
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a is determined by the peak value of the power spectral density. Therefore, a = 1, 
7 = 0.0177 and a = l/(2irSGl(l)) = 0.00128. The PSD approximated by Eqn 5.2 is 
plotted for comparison with the empirical PSD determined from the data with a solid 
line in Figure 5.9. The mean and c.o.v. of ACT estimated from the approximated PSD 
of G\ and Eqn 5.1 are 15.3 ksi (106 MPa) and 0.052, which are close to the values, 
15.3 ksi and 0.057, estimated from the empirical CDF (cf Figure 5.8). 

By characterizing G\{i) as the output of the second-order linear filter in Eqn 5.3, 
a three-dimensional Markov vector process can be constructed to depict the crack 
growth due to random loadings, 

dA/dt   =   vCiYV^AF-'md)))™ (5.4) 

dGJdt   =   G2 (5.5) 

dG2/dt   =   -j2G1-2aG2 + 21^2(t) (5.6) 

Apart from loadings, propagation of a fatigue crack also depends on factors such as 
material properties, structural details and environmental effects. The mean effect of 
these factors on the logarithm of the crack growth rate is reflected by parameters m 
and log C in Eqn 5.4, and the dispersion is reflected by the noise term X. 

The tension flange of Vertical Beam No. 7 has stress raisers due to the presence of 
the rivets connecting the angles to the webs and uneven corrosion from the aggressive 
environmental effects due to cycles of alternate wetting and drying. Taking into 
account these stress raisers, Vertical Beam No. 7 is believed to be comparable to 
AASHTO (1989) Fatigue Categories D or E (Ellingwood, Zheng, Bhattacharya, 1996; 
U.S. Army Corps of Engineers, 1992). The AASHTO fatigue data provide information 
on total life, described in terms of S-N curves for different riveted, bolted and welded 
structural details, but crack growth rate data for theses fatigue categories could not be 
located. Thus, to illustrate the proposed method, the parameters of the crack growth 
rate law are determined from the S-N curves for Categories D and E by assuming 
that the fatigue lives predicted by both models are identical. The justification for this 
assumption is that small cracks are inherent in most gate structural components as a 
result of the fabrication process. As a result, the crack initiation phase is negligible. 

The S-N relationship for steel is, 

AamN = Cs (5.7) 

where Cs = 10927S, and m = 3.105 for a Category E detail and Cs = 1096648, and 
m = 2.988 for a Category D detail (Barsom and Rolfe, 1987). 

The deterministic crack growth model is (Eqns 2.20 and 2.21), 

da/dN = C(Yy/^A<r)m (5.8) 
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Assume that Y is a constant, say 1.12, the approximate value for edge cracks when 
the crack size is not larger than half of the element thickness. Separating a and N 
and integrating both sides of Eqn 5.8, we have, 

ai-™/2 _ a}-m/2 

AamN = T-^ =2  (5 q^ 
(l-m/2)C(Y^F)™ {     } 

in which a0 is the initial crack size (assumed here to be deterministic) and a^ is the 
critical crack size. Combining Eqn 5.7 with Eqn 5.9, and assuming C0 = C(Yy/F)m, 
we have 

ai-m/2 _ al~m'2 

°° =    p-m/2)C. (510> 
Suppose that a0 is 0.05 in (1.3mm) and a„ is 3/16 in (4.8mm), which is half the 
thickness of the flange of the beam. The value of o0 is near the threshold of detection 
of several NDE techniques, as will be shown in Chapter 6. When the crack size 
exceeds half the element thickness, crack growth accelerates rapidly, and there is a 
considerable decrease in the section modulus, which results in a significant decrease 
of the element flexural resistance. Eqn 5.10 yields different values of C0 for different 
Categories. 

To account for the uncertainty in crack growth due to environmental and mate- 
rial variability, assume that the noise for the linear regression equation, expressing 
logda/dN versus logAK, is normal, jV"(0,<r3). The noise term for crack growth rate 
is modeled as, 

X = lO^'W (5.11) 

Since data are unavailable to describe the correlation function of G3(t), an exponential 
form is assumed for illustrative purposes, 

RG3 =£73exp(-a3|r|) (5.12) 

The standard deviation of the crack growth rate data of carbon steel base plate in a 
benign environment is approximately 0.1 (Barsom and Rolfe, 1987). Since the gates 
are subject to a corrosive environment, this standard deviation would be larger; here, 
a3 is assumed to be 0.2. Different values of the correlation factor a3 are assumed to 
assess its effect on the probability distribution of crack size. The stochastic fatigue 
crack growth taking into account the randomness in environmental and material be- 
havior is, 

dA/dt   =   vCo{\fÄAc)mW*G*M (5.13) 

dGzldt   =   -osGs + >/5äs6(0 (5.14) 



CHAPTER 5 EMSWORTH MITER GATES 92 

Combining Eqns 5.13, 5.14, 5.4, 5.5 and 5.6, we obtain a four-dimensional Markov 
vector process Y = [A, G\, G%, G3]1\ defined by the stochastic differential equation, 

dY/dt = M + TC(t) (5.15) 

with drift term, 

M = [vCo{\fÄAa)ml^G^\ G2, -7
2Ci - 2aG2, -a3G3]T (5.16) 

diffusion term, 

r = 
000 0 
000 0 
0   0   4j2a 0 
0   0      0 2a3 

(5.17) 

and white noise vector, 

f(*) = [0,0,6(*).6(*)]T (5.18) 

Solutions to this equation are obtained from the Euler scheme, as discussed in Chapter 
3. The CDF of the crack size during the service life of the gate is analyzed in the 
subsequent section. 

5.4    Fatigue reliability analysis of miter gates 

The deterioration of the miter gates is most commonly associated with damage due 
to corrosion, fatigue and fracture (U.S. Army Corps of Engineers, 1993). General 
corrosion involves a uniform section loss over the entire exposed surface. The section 
loss aggregates the fatigue/fracture damage processes, and catastrophic failure may 
result. During the service life of the original Emsworth miter gate, it was noted 
that due to corrosion-fatigue damage, four vertical beams developed fractures in the 
downstream flanges under normal loading before the gate was replaced in 1979 (U.S. 
Army Corps of Engineers, 1992). 

The interaction of corrosion and fatigue/fracture damage processes are non-linear 
and cannot be analyzed by linear superposition (Barsom and Rolfe, 1987). The 
section loss, L, due to general corrosion is described by 

L{t) = C1(t-t0y (5.19) 
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where C\ ~ 140, c2 ~ 0.67 and t0 =corrosion induction period for the environment 
of the Emsworth Lock (Ellingwood, Zheng and Bhattacharya). The constants are 
obtained from experiments, and are defined so that L is in units of /*m when t is 
in years. The section loss decreases the section modulus, thereby increasing the 
maximum tension stress and stress range in the beam. This increase in the stress 
range is amplified by the power m when crack propagation occurs. The corrosion- 
fatigue damage is modeled by, 

dA/dt = v(t)C(YV^ÄR(t)A<r(t))mX(t) (5.20) 

where Acr(t) and X(t) are random stress processes as described in the preceding 
sections. The correlation factor a3 of the noise X(t) was assumed to be 2.5 x 10~6, 
which represents the situation in which the noise is highly correlated with respect to 
time. The cyclic rate v is modeled as a deterministic value before 1940 and a uniform 
random variable after 1940. The ratio of the original elastic section modulus to the 
degraded section modulus with respect to time, R(t), is modeled as CB.B(i), where 
B(ty is the mean value of R(t), and CR is assumed to be a uniform random variable 
with unit mean and c.o.v = 0.2. 

The CDFs of the crack size due to corrosion-fatigue for Vertical Beam No. 7 
modeled as a Category E detail at T =20, 40 and 60 years are plotted on Figure 5.10. 
The curves shift to the right and the probability that a > aCT increases when the time 
increases. Defining pf — P(a > <!„), the failure probability with respect to time is 
plotted with the solid line in Figure 5.11. The failure probability at T = 60 years is 
around 0.47, which is consistent with the observed gate performance. 

To examine the effects of the parameters of X on corrosion-fatigue damage, the 
standard deviation, <r3, was changed from 0.2 to 0.1 and the failure probability, p/5 

is replotted in Figure 5.11. The effect of az is not significant and becomes negligible 
when the time increases. Next, the correlation parameter, a3, was increased to 2.5 x 
10~2, corresponding to weakly correlated noise. As shown in Figure 5.11, differences 
in pf due to a3 are more significant than those due to <r3. Weakly correlated crack 
growth noise results in lower values of pf when pj < 0.12, but higher values of pf when 
pj > 0.12 due to the interaction of the mean and dispersion discussed in section 4.1. 
In reality, small values of pf are of most concern. While an assumption that the noise 
is uncorrelated causes pf to be slightly underestimated, replacing the noise with a 
random variable with the same variance yields a pessimistic estimate of the reliability 
of the structure, and might lead to unnecessary repair and costly maintenance actions. 
Further experiments are required to determine the characteristics of the correlation 
structure of the noise term and to ensure an accurate life prediction. 

1B(t) is provided courtesy of Dr.   Baidurya Bhattacharya, graduate of The Johns Hopkins 
University 
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To study the effect of the randomness in the corrosion process, R(t) is modeled as 
a deterministic function, as in an earlier study (Ellingwood, Zheng and Bhattacharya, 
1996). The failure probability is shown in Figure 5.11, indicating a significant role in 
the randomness of the corrosion process. The randomness in the corrosion should be 
considered in reliability-based condition assessment and in scheduling maintenance 
and repair prior to failure. Failure probabilities with and without the corrosion effect 
are calculated and plotted in Figure 5.12. To separate the effects of randomness and 
mean in the corrosion, only mean corrosion is considered. The failure probabilities 
are very sensitive to the presence of corrosion, plausible variations leading to an 
order of magnitude difference in failure probability for a service period of 60 years. 
It is also interesting to note that the probability is very close to that found in the 
earlier study based on a total life analysis (S-N curve) using Miner's rule for variable 
amplitude fatigue (Ellingwood, Zheng and Bhattacharya, 1996) in Figure 5.12. The 
close agreement is due to the small variance in the cyclic stresses. 

The effect of change in structural detail is examined by recomputing the failure 
probability assuming that vertical Beam No. 7 can be modeled as a Category D detail. 
It was found that p/ = 1.5 x 10-3 at t = 60 years and zero when t < 60 years. This is of 
the same order as those found in an earlier study based on a total life analysis, which 
indicated that p/ = 2.1 x 10-3 at 60 years, and around zero, otherwise (Ellingwood, 
Zheng and Bhattacharya, 1996). The failure probability is much lower compared with 
that for the Category E detail. It seems possible that gate performance in service 
might be improved by detailing its connections in a manner that would reduce the 
stress raisers that result from current design and fabrication practice. 
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Original mttar gat* at Emsworth 

Raptoeanwnt mitar gat* at Emsworth 

Figure 5.1: Schematic of original and replacement miter gates-Emsworth Lock (Elling- 
wood, Zheng and Bhattacharya, 1996) 
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Figure 5.2: Cross section of top girder and vertical beam from Emsworth Lock (Elling- 
wood, Zheng and Bhattacharya, 1996) 



CHAPTER 5 EMSWORTH MITER GATES 97 

|  Top girder 

skin plate 

Vertical Beam No. 7 

Lower pool el. 212 m 

Sill el. 210 m 

Figure 5.3: Hydrostatic load acting on gate (Ellingwood, Zheng and Bhattacharya 
1996) 
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Figure 5.4: PSD of the pool elevation 
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Figure 5.5: PSD of the stress range 
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Figure 5.6: Yearly hydrostatic cycles for Emsworth Lock 



CHAPTER 5 EMSWORTH MITER GATES 101 

500 

month 

Figure 5.7: Monthly hydrostatic cycles for Emsworth Lock from 1956 to 1995 
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Figure 5.11: Failure probability versus time 
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Figure 5.12: The effect of corrosion on time-dependent reliability 



Chapter 6 

Non-destructive Evaluation 

The need for reliable inspection tools to detect and quantify fatigue cracks in steel 
structures without impairing their function in service is evident. For example, a 
study by Chase (1994) showed that almost half of the bridges in the United States 
have steel girders, and fatigue cracks are a major problem in them. Inspections of 
miter gates at locks and dams typically reveal extensive fatigue cracking in the down- 
stream girder flanges, which are subjected to tension (U.S. Army Corps of Engineers, 
1992). Non-destructive evaluation techniques (NDE) facilitate inspection and play 
an important role in structural reliability assessment as well as in repair decisions, 
especially when combined with methods of failure analysis derived from fracture me- 
chanics. A summary of different performance characteristics of several commonly 
used NDE techniques, such as sensitivity to the flaw size and adaptability to field in 
civil structures is given in Table 6.1 (Chase, 1994). 

This chapter reviews the performance of different NDE techniques, characterizes 
the uncertainties that are inherent in flaw detection and measurement, and identifies 
the factors that appear to be particularly important in in-service condition assessment 
and reliability evaluation. A guideline for repair is suggested. Examples of condition 
assessment based on MT and UT are illustrated. 

6.1    Mathematical tools for NDE characterization 

Two issues are of primary concern for reliability-based condition assessment: flaw 
detection and flaw measurement. 

107 
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6.1.1    Probability of flaw detection 

Probabilistic characteristics of each NDE technique determine the quality of the in- 
formation gained regarding the in-service crack size from the inspection data. Some 
authors have postulated that the detection probability is independent of flaw size. 
This is counter-intuitive, inasmuch as large flaws seem more likely to be detected 
than small ones. A probability of detection (POD) curve for a particular NDE 
method can be obtained by introducing flaws of various sizes, a, into test specimens, 
asking inspectors to examine the specimens in a controlled experiment, and plotting 
the POD(a) based on these experimental observations. Generally, POD(a) increases 
with increasing flaw size. Each NDE device has an inherent minimum resolution 
and thus a threshold of detection, ath- The POD curve will be nonzero for a > ath- 
Conversely, the situation may arise where a flaw is indicated when none is present. 
This situation is described by the false call probability (FCP), i.e. POD(a = 0) > 0. 
The FCP is significant for non-visually-assisted techniques, such as UT, EC and RT. 
To obtain a complete picture of the flaw detection capacities of a particular NDE 
method, POD curves should be developed from tests which include both blank and 
flawed specimens. 

Several POD models have been proposed; their parameters can be estimated 
through regression analysis of experimental data, as shown in Figure 6.1. Berens 
(1989) suggested that a log-logistic function is suitable for fitting such data: 

POD(a) = (1 + expH-^(J^^))))-1;        a > 0 (6.1) 

where /J. and a are parameters depending on factors, such as equipment, field con- 
ditions and inspector training. Parameter fj, = /na0.s, where a0.s is the median flaw 
size satisfying POD(a0.s) = 0.5; a is related to the steepness of the POD(a) curve, 
a smaller value of a being associated with a steeper POD(a) curve. The log-logistic 
model is similar to a lognormal distribution. 

Others have suggested that the POD can be modeled by the exponential distribu- 
tion (e.g., Tsai and Wu, 1993), 

POD(a) = { I ~ eXp{~c{a ~ Cth))   a ~ ath (6.2) 1^0 a<ath 
K     ' 

in which ath =minimum detectable flaw and c =constant, both of which depend on the 
NDE device and its resolution. If NDE were perfect, every flaw above the threshold 
of detection, ath, would be detected, and POD(a) would take on the appearance of a 
Heaviside function, 

POD(a) = H(a - ath) (6.3) 



CHAPTER 6.   NON-DESTRUCTIVE EVALUATION 109 

Such is not the case, of course; however, one would like c to be as large as possible in 
order to approach this condition. 

Eqn 6.1 and 6.2 both are consistent with intuition, in that large flaws almost 
certainly will be detected while very small flaws will almost certainly be missed, 
assuming that the entire component is inspected. Considering that even very large 
flaws may not be detected with certainty, an alternative expression for the probability 
of detection was proposed (Staat, 1993): 

PQD(a) = (1 - p)(l - exp(-ca))       o>0 (6.4) 

Note that this POD(a) is asymptotic to 1 - p for large values of a. There is no 
threshold of detection in this model, i.e., flaws larger than zero have a finite POD. A 
model combining the best features of both Eqns 6.2 and 6.4 (and also more constants 
that must be determined experimentally) would be, 

POD(a) = (1 - p)(l - exp(-c(a - ath)))       a > ath (6.5) 

The probability of detecting flaws smaller than ath would be zero, while the probability 
of detecting very large flaws would be 1 - p; typically p would be on the order of 
0.01 - 0.05. 

One disadvantage of the models represented by Eqn 6.2-6.5 is that none of them 
incorporates the false call probability. Taking this into account, Heasler, Taylor and 
Doctor (1993) proposed a logistic model using a instead of Ina in Berens's model. 

POD(a) = (1 + exp(-(a + /9a)))"1 (6.6) 

Thus, 

FCP = POD(a = 0) = (1 + exp(-a))-1 (6.7) 

A comparison of the above POD curves is presented in Figure 6.2. 

6.1.2    Flaw measurement error 

Error in flaw sizing is also an important issue. The relationship between the actual 
and measured flaw size is generally described by a linear function determined by 
regression analysis. There are two types of regression analysis. One is conducted 
with given measured size, am, and variable true size, A, (e.g. Rummel, et al, 1989), 

A = ßi + ß2am + e (6.8) 
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The random variable, e, describes replicate experimental errors with respect to A, 
and is assumed to be approximately normally distributed with standard deviation 
varying with different NDE procedures and inspection teams. Coefficients of these 
models are obtained from regression analysis. The regression analysis conducted in 
terms of A on am is most useful because the true size needs to be estimated from an 
inspection for reliability assessment. An alternative proposed regression model is in 
terms of Am (or log Am) on a (or logo) (e.g. Heasler et al, 1990; 1993), 

hgAm=ß1+ß2\oga + e (6.9) 

Am=ß1 + ß2a + e (6.10) 

or 

4 = (WTWUTt U^h. (6.11) 
ßi + ßio- + e a > cth 
cth otherwise 

in which c^ represents the resolution limit, the smallest flaw that can be sized by the 
NDE equipment tested. Eqn 6.9 employs a log transformation of the data to stabilize 
the errors. On the other hand this implies that errors are proportional to flaw size 
(with zero error for zero flaw size), which generally is not the case. While Eqn 6.10 
implies that the error does not change with size, negative values in measured size 
may occur if the standard deviation of e is relatively large. Eqn 6.11 implies that 
a measured flaw size can never be smaller than the resolution limit. Eqns 6.9-6.11 
presume that the true size is given, and the measured size is an estimate; this is 
characteristic of laboratory test programs, but is contrary to the needs of reliability 
assessment. 

The role of NDE in time-dependent reliability analysis is examined in section 6.3. 

6.2    Performance of NDE techniques 

6.2.1    Visual inspection (VT) 

The oldest and still most widely used NDE method for steel miter gate structures is 
visual inspection. Underwater inspections for cracks usually are performed visually, 
supplemented by magnetic particle inspection (MT) after cleaning (Kishi, 1988). Vi- 
sual inspection can identify regions of corrosion, or peeling or blistering of coatings 
that may indicate damage to the substrate. Special attention must be paid to welds 
and to heat-affected zones of weldments. 
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Liquid penetrant (PT) 

Liquid penetrant is effective in locating surface flaws in essentially nonporous mate- 
rials. The fluorescent or visible penetrant seeps into various types of minute surface 
openings by capillary action. Indications of defects thus are given. The advantage 
of this method is that it depends neither on ferromagnetism (as does, for example, 
MT) nor on defect orientation as long as only surficial flaws are considered. The ma- 
jor limitation of PT is that it cannot detect subsurface flaws and can be excessively 
influenced by the surface roughness or porosity. Studies of application of PT to the 
detection of fatigue cracks in steel bridges have revealed that this method is good for 
crack lengths greater than approximately 10 mm in welds and 24 mm in other types 
of joints such as bolted, riveted and eyebar joints(Chase, 1994). 

Examining the data by Rummel, Hardy and Cooper (Metals Handbook, 1989) 
from an analysis of data from 328 fatigue cracks in 118 aluminum alloy specimens, it 
is found that the POD curve (Section 6.1.1) for PT is close to the exponential form, 

POD = 1 - exp(-c(a - ath));        a>ath (6.12) 

where the parameters are estimated as c ~ 2/mm and ath ~ 0.5mm, as shown in 
Figure 6.3. No false call data were included in the analysis, and thus the false call 
probability equals zero. The flaw measurement error (Section 6.1.2) is described by 
a linear function of the actual flaw size A in terms of measured flaw size, am; 

A = bx + b2am + e (6.13) 

where the parameters are estimated as 6X ~ 0, b2 ~ 0.9 and at ~ 0.638mm assuming 
that the data falls in a 98% interval. 

Data on crack detection in 4330 vanadium modified heat treated steel (Packman 
et al, 1969) imply a typical PT POD: 

POD = -i  (6 14\ 

as illustrated in Figure 6.4, where the parameters are estimated as at ~ -2.2, and 
a2 ~ 0.47/mm. The corresponding FCP is about 10%. No sizing data could be 
located for steel. 

Magnetic particle inspection (MT) 

MT is utilized to reveal surface and subsurface discontinuities in ferro-magnetic mate- 
rials. When the material is magnetized, a leakage field is generated by magnetic dis- 
continuities that lie in a direction generally transverse to the direction of the magnetic 
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field. The leakage field gathers and holds some of the finely divided ferro-magnetic 
particles applied over the surface. This forms an outline of the discontinuity and 
indicates its location, size and shape. 

MT is capable of detecting fine, sharp and shallow surface cracks in ferro-magnetic 
materials, but is not good for wide and deep defects. It cannot be used for nonferro- 
magnetic materials. The magnetic field must be in a direction that intercepts the 
principal plane of discontinuity for a good result. Thin coatings of paint and other 
nonmagnetic coverings adversely affect the sensitivity. MT is effective in detecting 
surficial defects in excess of about 5 mm long in welds and greater than 25 mm in 
bolted or riveted joints (Chase, 1994). 

Studies by Packman et al (1969) indicated that a typical MT POD for cracks in 
4330 vanadium modified steel is of the form of Eqn 6.14, as shown in Figure 6.4, 
where ax = —2.94, and a2 = 1.42/mm. The corresponding FCP is about 5%. No 
data could be located for sizing error, but it has been claimed that MT is quite good 
at quantifying crack size (Chase, 1994). 

6.2.2    Ultrasonic inspection (UT) 

UT is used to detect both surface and internal discontinuities in materials. Beams 
of high frequency sound waves introduced into the material attenuate due to wave 
scattering and are partially or completely reflected at interfaces. The reflected beam is 
displayed and analyzed to define the presence and location of defects such as cracks or 
voids. UT can also be used to measure thickness and extent of corrosion by monitoring 
the transit time of a sound wave through the component or the attenuation of the 
energy. UT can be performed under water. 

The principal advantages of UT are its portability, superior penetrating power 
and volumetric scanning ability, which allows the detection of interior flaws. UT is 
sensitive to crack length approximately greater than 5 mm in welds and 10 mm in 
bolted or riveted joints, and its complexity and operator dependence are moderate 
(Chase, 1994). Its disadvantage is that defects are difficult to detect in portions of 
structure where the surface is rough or irregular or where flaws are very small, thin 
or not homogeneous. 

Research has been in progress for several years to determine reliability of in-service 
ultrasonic inspection techniques, with the aim of establishing reliability of the inspec- 
tion process for pressure vessels and piping systems in nuclear power plants (Heasler, 
et al, 1993; Heasler, et al, 1996).   Data are being obtained from an international 
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round-robin program on ultrasonic inspection capabilities involving teams from the 
United States, several European countries and Japan. The types of cracks implanted 
into the test specimens include fatigue and stress corrosion cracks.   The materials 
employed are clad ferritic steel, cast stainless steel and wrought stainless steel.  In 
civil engineering structures, ferritic steel is of major interest. A typical POD curve 
for crack depth in ferritic steel developed as part of this program is in the form of 
Eqn 6.14, with (aua2) ranging from (-1.7,0.173/rom) to (-18.2,4.268/mm), cor- 
responding to a FCP ranging from 15% to 0.   The POD curve corresponding to 
(-18.2,4.268/mm) is plotted in Figure 6.4. The sizing data for crack depth exhibits 
considerable scatter. This implies that while UT is good at locating cracks, it may 
not be suitable for quantifying crack size as shown in Figure 6.5. Moreover, false call 
probabilities tend to be higher for volumetric inspection methods such as UT, values 
as high as 27% being reported by some investigators (Heasler, et al, 1990) 

6.2.3    Eddy current (EC) 

EC is effective in detecting defects at or within a few millimeters of the surface. It is 
based on the principle of electromagnetic induction. Taking a pipe as an example, a 
current is created in the pipe by encircling it with induction coils. The presence of a 
crack in the pipe impedes the current flow and changes its direction, causing changes 
in the associated electromagnetic field which can be monitored. Thus surface discon- 
tinuities having a combination of predominantly longitudinal and radial dimensional 
components can readily be detected. 

Surface discontinuities can be detected by EC with high speed and low cost. If a 
coating is present, it need not be removed. However, the sensitivity of this method 
to defects beneath the surface is decreased. Also, laminar defects may not alter the 
flaw enough to be detected. Defects less than 6 mm (1/4 inch) at the toe of a weld 
reportedly cannot be detected by EC (Shah, et al, 1994). EC is effective in detecting 
fatigue cracks with lengths greater than approximately 10 mm in welds and greater 
than 25 mm in bolted or riveted joints (Chase, 1994). 

Research on the ability of eddy-current inspection techniques to detect flaws in 
steel steam generator tubes (Bowen, et al, 1989) indicated a typical POD curve that 
is close to Eqn 6.14, with ax = -2.94 and a2 = 9 and a is percentage of specimen 
thickness. The typical parameters of the sizing regression of A on Am are bx = -34%, 
b2 = 1.7, <r€ = 13%, with crack size measured in term of the percentage of the wall 
thickness. The slope deviates from 1, and the intercept does not equal 0, indicating 
measurement bias for small flaw sizes. Although the relative value of crack size to 
wall thickness may affect the accuracy of the inspection, the absolute crack size has 
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more significant effects on the inspection result. Thus, it is recommended that data 
for POD and sizing error be provided in the absolute sense. A POD curve assuming 
that the wall thickness is 25.4 mm is plotted in Figure 6.4. This POD is qualitatively 
consistent with the results reported by Shah, et al (1994) and Chase (1994). 

6.2.4    Acoustic emission (AE) 

Sudden movement in stressed materials produces acoustic stress waves. The stress 
waves can be detected on the surface of the structure by one or more piezoelectric 
transducers. One source of AE is defect-related active deformation processes such as 
fatigue crack growth. Thus, AE offers the possibility of monitoring growing defects 
during service. Research has been conducted to relate AE energy counts to stress 
intensity factor and strain energy release rate (Yeh, Enneking and Tsai, 1994). How- 
ever, difficulties still remain in using acoustic transducers to locate or size growing 
defects accurately due to the noise resulted from various sources. Efforts have been 
made (Ghorbanpoor, 1994) to improve signal discrimination techniques for AE eval- 
uation of steel bridges. AE is effective for fatigue cracks in steel bridges greater than 
10 mm in welds and 20 mm in joints, respectively. More specific information on de- 
tection probability or measurement error for AE could not be located. The technique 
is still relatively new in its application to civil structures. 

6.2.5    Radiography (RT) 

RT methods are based on the differences in absorption of penetrating radiation, such 
as X-ray or 7-ray, by different portions of a component. The images produced can 
be analyzed to locate flaws. RT can detect internal flaws which are not too small in 
relation to section thickness. Planar defects cannot be detected unless their principal 
plane is essentially parallel to the radiation beam. In contrast to the other methods 
above, access to both sides of the component is required. Safety protocols also must 
be followed. RT is relatively expensive. This technique is effective in detecting cracks 
greater than approximately 10mm in welds and bolted and riveted joints (Chase, 
1994). 

A typical POD curve for X-ray inspection obtained by Rummel, Hardy and Cooper 
(1989) from data on 328 fatigue cracks in 118 aluminum alloy specimens can be 
modeled by Eqn 6.12, with ath = 0.5mm and c = 0.36/mm. The slope is low 
compared with that of the PT as shown in Figure 6.3. The sizing data exhibit 
considerable scatter, as shown in 6.6. 
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6.2.6    Summary 

Most of the available data for describing NDE capacities quantitatively have been ob- 
tained from laboratory experiments. In-service data are generally insufficient for pro- 
viding statistical information. For surface or near-surface cracks, MT demonstrates 
good performance as far as detecting and sizing accuracy are concerned.   Further- 
more, it can be applied both in air and underwater. For internal cracks, UT is a good 
choice for locating cracks, but may not be as good for measuring crack size   POD 
data regarding different types of cracks (e.g. fatigue or stress corrosion cracks) in dif- 
ferent materials (e.g. ferritic or wrought stainless steel) using UT are available only 
for laboratory conditions. Most POD data are applicable to welded connections but 
it is not clear how to apply them to bolted, riveted or eyebar connections, for which 
NDE data are more limited. Some studies on field inspection of different joint details 
have provided qualitative information regarding detection capacities, but quantitative 
data are not available (e.g. Chase, 1994). 

6.3    Role of NDE in reliability-based condition as- 
sessment 

While the analytical models of structural deterioration presented in Chapters 3 and 4 
provide a forecast of the structure behavior and a basis for estimating when inspection 
might be required, periodic non-destructive inspection gives additional information 
on the in-service condition of the structure. Since there are errors and uncertainties 
inherent m the inspection process, as described in the preceding sections, decisions 
regarding maintenance or repair should be based on the analytical predictions  in- 
spection data and uncertainties in the inspection techniques. Accordingly, if a flaw 
is detected and the measured size is greater than some predetermined (see below) 
critical value, cCT, the component should be repaired. If, however, no flaw is detected 
or if the measured flaw size is less than Ccr, the decision to continue service should 
be based on the uncertainties associated with the inspection and the prior knowledge 
of the probability density function (PDF) of crack size.  In order to provide guide- 
lines for this decision process, this section examines the role played by NDE in the 
reliability-based condition assessment of structures. 

Suppose a crack is detected during NDE and the measured size is Am = c If the 
inspection were perfect, the actual crack size A would be equal to c. However the 
measurement is uncertain. The relationship between actual and measured crack size 
is assumed to be given by Eqn 6.13, where e is normally distributed with zero mean 
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and standard deviation at. Let D be the event that a crack is detected. Assume the 
probability distribution of the true crack size is normal, with mean equal to 6a + b2c 
and standard deviation equal to <re, 

P(A < a\(Am = c)DD) = *('     h " *2C) 

where $(•) is the standard normal CDF. 

(6.15) 

If the safety margin is M = a„ - A, in which a„ =critical crack size, a repair 
action should be taken when P(M < 0) = p„, that is, 

1 - P(A < acr) = 1 - $(^^d) = Pcr (6.i6) 

Combining Eqns 6.15 and 6.16, we obtain a linear function of cCT, the critical measured 
size, versus <*„., the critical true size, 

The slope of this function is the inverse of the slope of the sizing regression line, b2. 
The intercept is -^r'g-^K, The parameter h makes c„ shift down if bx > 0, 
and up if bx < 0. The contribution of at, the measure of sizing scatter, is proportional 
to -$-1(l - pCT), which is greater than 0 if p„ > 0.5, and less than or equal to 0 
otherwise. For the special case in which pCT = 0.5, <re has no influence on c„, which 
means that the decision is made based only on the mean performance of sizing. For 
perfect sizing, c„ = acr. 

It should be noted that the values of a^ and p„ depend on factors such as the 
redundancy of the structure and inspection period. For example, if the structure is 
highly redundant, damage to one element does not affect significantly the performance 
of the whole structure, and the values of a„ and p„ can be set relatively high. 
Determination of a„ and pCT is beyond the scope of this study, which focuses on 
identification of significant factors for reliability analysis. 

In order to identify cCT, it is important to have accurate information for the re- 
gression of A on am. Laboratory studies have been conducted to measure cracks 
in aluminum specimens (e.g. Rummel et al, 1989; Berens; 1989). However, mea- 
surement error statistics representative of cracks in steel components in service (e.g., 
bridges, miter gates, offshore platforms) could not be located for common NDE tech- 
niques used in field inspection. Moreover, although extensive laboratory studies have 
assessed the inspection performance of UT and EC on steel (e.g., Heasler, et al; 1993; 
Bowen et al, 1989), the regression analysis of these experimental data was expressed 
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in terms of Am on a. This presentation does not match the needs of reliability-based 
structural condition assessment, where the true flaw size is required for calculating 
fatigue failure probability. Furthermore, the statistics of Am on a cannot be simply 
converted to those of A on am (Benjamin and Cornell, 1970). 

If no crack is detected, it does not necessarily mean that no crack is present. Let 
fA(a) be the prior PDF of crack size. The conditional posterior CDF of crack size 
(following inspection) is, 

P(A<^) = S^gn*) (6.18) 

in which 

P(A<anD)   =    fap(D\A = a)fA(a)da (6.19) 
JO 

=    l\\-POD{a))fA{a)da (6.20) 
JO 

and 

P(D)   =    /   (l-POD(a))fA(a)da (6.21) 
J 0 

The posterior CDF of crack size thus is, 

P(A < alD) =   W-WK.M*)* (6.22) 
J0 (1 - POD(a))fA(a)da v       ' 

and the posterior PDF is, 

„        _   dP(A < a\D) 
fAa) da  (6.23) 

=        (l-POD(a))fA(a) 
/0°°(1 - POD(a))fA(a)da ^4j 

If the CDF of crack size, FA(a), is available instead of fA{a), Eqn 6.22 can be re- 
written as, 

( '   ' (1 - POD(oo)) + C s-^FA(a)da 
(6-25) 

The posterior PDF, which is determined by the POD and the prior PDF, can 
be used as the basis of decision-making regarding repair. If no repair is made, the 
posterior PDF can be substituted in the time-dependent reliability assessment as the 
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initial condition to determine remaining service life or safety margin. For the special 
case when the detection is perfect, which implies that there is no crack if none is 
detected, the POD curve is a step function at zero, and the posterior PDF would be 
a Dirac delta function at a = 0. On the other hand, if the POD is nearly zero, the 
posterior PDF is nearly the same as the prior PDF, which implies that the inspection 
is not informative; in this case, the decision to repair or continue service must rely 
only on the prior distribution. 

In general, a repair decision might be based on the following decision tree: 

■{ 
no detection - 

inspection < 

detection' Am * C"   repair 

Am < Co-   no repair 
POD nearly perfect no repair 
POD good to medium consider posterior PDF 
POD poor based on prior PDF 

In field applications to civil structures, MT and UT are common. The impact of 
these NDE techniques on reliability-based condition assessment is considered in the 
following illustrations. 

6.4    Illustrations of NDE effects on reliability 

6.4.1    Crack measurement using MT 

This section illustrates the impact of measurement errors on reliability. Assume that 
MT is used to inspect a steel miter gate similar to the Emsworth gate. The sizing 
parameters of MT are not available, but it is known that the sizing error is small. 
Thus, it is assumed that bx = 0, b2 = 1.0 and crt =0.95 mm (0.0375 in), around 10% 
of the flange thickness. Assume a^ = 4.8mm (around 0.1875 in), which is half of 
the flange thickness. The required value of Co- changes when the value of p„ varies, 
based on Eqn 6.17, as shown in Figure 6.7. The slope of c„. is very sensitive to pcr 

when pCT < 0.2, and is nearly constant in the region of 0.2 < p„ < 0.5. Moreover, for 
small values of p„, the critical measured crack size, c„, is smaller than the critical 
true crack size, a^.; this implies that critical situation may occur even though the 
measured crack size is smaller than a^. 

When per is fixed and aCT is changed, the value of c„- changes as shown by the 
family of c„ versus a^ curves in Figure 6.8. The relationship between c^ and a„ is 
linear with slope 1.0 and negative intercept, implying that the critical measured size 
is smaller than the critical true size. 
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To examine the effect of the NDE measurement parameters on the time-dependent 
structural reliability, the failure probabilities of a structural element similar to Vertical 
Beam No. 7 on the Emsworth Lock (cf Figure 5.1) are studied for five different cases, 
shown in Table 6.2.   All reliability calculations were performed using the method 
in Section 5.3 and 5.4, assuming an AASHTO Category E detail.   The first case 
represents the situation when no NDE is involved; here, the failure probability with 
respect to time is the same as predicted in Chapter 5. The other four cases assume that 
the structure is inspected at T = 40 years, with measured size c = 2.54 mm (0.1 in). 
The second case assumes that the gate is fully repaired, and the failure probability 
becomes very small immediately right after the repair.   The damage process then 
develops subsequently with similar probabilistic characteristics as in the first case, 
except that the time shifts, as shown in Figure 6.9. The third to fifth cases assume 
that no repair action is taken. The third case represents an unbiased estimate of the 
true crack size and small variance (10% of the flange thickness), the fourth represents 
biased estimation, and the fifth represents an unbiased estimate but large variance 
(20% of the flange thickness), as indicated by the NDE parameters in Table 6.2. 
Based on Eqn 6.15, the CDFs of the true crack size at t = 40 years were estimated. 
These CDFs are normal distribution functions, and the possibility exists that the 
values of crack size fall outside the physical limit (0, flange thickness).   To avoid 
this unreasonable situation, the CDFs were truncated and were later taken as the 
CDFs of the initial crack size for subsequent crack propagation analysis. The failure 
probabilities shown in Figure 6.9 for Cases 3-5 were updated assuming aCT = 4.8 mm 
(0.1975 in). The failure probability for these three cases all are larger than the second 
case because no repair is performed. Among these three cases, the failure probability 
is the greatest when the scatter of NDE measurement is the largest (Case 5), and the 
smallest when the slope of the regression line of A on am is smaller than 1.0 (Case 
4). The differences in failure probability with respect to different NDE measurement 
parameters are significant. Accordingly, the reliability forecast is strongly dependent 
on the quality of the data that describe the probabilistic characteristics of the NDE 
measurement. 

6.4.2    Crack detection using UT 

This section illustrates the effect of flaw detectability on reliability. The component 
inspected is ferritic steel. The crack growth law is 

dA/dt = uC(YAcrV^Ä)mX(t) (6.26) 

where C = 3.6 x 10"10 (corresponding to English units), Y = 1.12, m = 3, Aa = 20 ksi 
(138 MPa) (deterministic) (Barsom and Rolfe, 1987) and v = 4 cycle/hr. The noise 
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X is assumed to be an uncorrelated process, with a lognormal marginal distribution. 
The mean and standard deviation for log10 X are (0, 0.1). At the time of an inspection 
(at which t is set equal to zero), the crack size is a random variable with prior PDF 
^(15, 3) mm. The prior PDF and CDF of the initial crack size are plotted in Figure 
6.10 and 6.11. 

The NDE technique is UT with POD function defined by Eqn 6.14 (Heasler et 
al, 1993). Parameter ai is related to the FCP, and is non-dimensional and negative. 
Bigger absolute values of ax correspond to smaller FCP and smaller PODs for small 
cracks. The steepness of the POD is determined by a2; the larger the a2, the steeper 
the curve. Three POD curves are illustrated in Figure 6.12, PODs 1 and 2 have the 
same FCP, 0.15, but different steepness parameters. PODs 1 and 3 have the same 
steepness parameter but different FCPs. The parameters (ai,a2) are (-1.7,0.3/ram), 
(—1.7,0.15/mm), and (-7,0.3/mm), respectively.   The first two POD curves are 
typical for UT inspection under controlled laboratory conditions of thermal fatigue 
cracks in clad ferritic steel components. (Heasler, et al, 1996); the first represents good 
inspection performance, and the second represents medium inspection performance. 
The third is an assumed curve, used simply to represent poor inspection performance. 
Assuming that no flaw was detected, the posterior CDFs and PDFs at t = 0 for three 
different POD curves are plotted in Figures 6.10 and 6.11 based on Eqns 6.24 and 
6.22 as a comparison with the prior PDFs and CDFs. Note that the PDFs are shifted 
toward smaller flaw sizes because no flaw was detected. Taking these posterior PDFs 
as the PDFs for the initial crack size at t = 0, the posterior CDFs at t = 10,000 hr 
are calculated and are plotted in Figure 6.13, along with the CDF computed from the 
prior at t = 0. Crack growth statistics were computed using the procedure described 
in Section 4.1 in all cases. The crack size distributions at t = 10,000 hr clearly are 
affected by different values of FCP and steepness parameter, and differences between 
them increase when time increases. The posterior distribution of crack size converges 
to the prior distribution as the performance of the NDE technique becomes poorer 
(the worst one is POD 3). Although no flaw was detected at t = 0, there is still a 
high probability that a crack exits when the inspection performance is not informative 
(e.g., POD 3). In this case, the condition of the structure should not be judged simply 
from the inspection data, but also should be based on the prior distribution. 
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Defect 
Characteristics 

Sensitivity Accessibility Instrument 
Complexity 

Operator 
Dependence 

VT surface 
underwater 

good fair low high 

MT surface 
sub-surface 

ferromagnetism 
underwater 

excellent fair low high 

EC surface 
sub-surface 

good excellent medium medium 

UT surface 
internal 

underwater 

excellent fair medium medium 

RT surface 
internal 

fair poor medium high 

AE growing defect good excellent high low 

Table 6.1: NDE techniques 
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Case inspection/repair NDE measurement parameters 

1 no/no 
2 yes/full 
3 yes/no 0 1.0 0.0375 
4 yes/no 0 0.7 0.0375 
5 yes/no 0 1.0 0.075 

Table 6.2: Parameters with respect to different NDE measurement errors 
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POD 

Figure 6.1: Fitting flaw detection data with a POD curve 
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Figure 6.2: Illustration of different POD models 
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Figure 6.3: POD by PT and RT for aluminum specimens 
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Figure 6.4: POD by NDT for steel specimens 
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Figure 6.5: Measurement error using UT (Heasler and Doctor, 1996) 

NOT mean value, iengtn in in. 
0.1 :2 3.3 0.4 0.S 

0 2.5 :0 'S        10 0 12.5 
\DT mean value, iengtn in mm 

(b) RT 

Figure 6.6: Measurement error using RT (Rummel et al, 1989) 
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Figure 6.7: c„ versus pc 
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Figure 6.9: Updating failure probability 
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Figure 6.11: Prior and posterior CDFs of crack size at t=0 
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Figure 6.12: POD curves for UT 
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Chapter 7 

Summary, Conclusions and 
Recommendations 

7.1    Summary and conclusions 

This report presented a methodology for evaluation of fatigue reliability in steel civil 
structures, taking into account uncertainties in materials, environment and loads. The 
role of NDE in reliability-based structural condition assessment was also investigated. 

The crack growth model was formulated using linear fracture mechanics and Paris' 
law. The study of stochastic crack growth involved two aspects: the first is the model 
of uncertainty in fatigue crack growth under service load conditions, while the second 
is the efficient computation of the probability laws describing crack evolution in time. 
Contributions to the uncertainty in crack growth arise from the statistical nature of 
the crack growth law under constant amplitude loading and randomness in variable 
amplitude loading. The uncertainty in the crack growth under constant amplitude 
cycling is modeled by a time (or cycle)-dependent random noise process with arbi- 
trary (generally non-Gaussian) marginal distribution and correlation structure. This 
random noise process depicts the inherent variability in crack growth that is apparent 
when growth is modeled by empirical laws such as the Paris equation. Wide-band 
variable amplitude random stresses are modeled by an approximation based on the 
rainflow analysis of stress cycle identification. 

The proposed method generalizes the results of previous studies (e.g., Lin and 
Yang, 1985, Spencer, et al, 1989) by allowing specific marginal distributions and cor- 
relation structures of randomness in crack growth to be considered and loadings to 

135 
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be modeled as random processes. The statistical nature of crack growth under con- 
stant amplitude loading is modeled by a combination of time domain and frequency 
domain analyses. The noise is transformed into a Gaussian process, which is gener- 
ated by a system of time-dependent linear differential equations. These differential 
equations, along with the crack growth law, take the form of an Ito stochastic dif- 
ferential equation, which models the evolution of crack size as one component of a 
vector Markov diffusion process. The probability distribution of crack size at any 
time is then calculated analytically (e.g. numerical integration of the Fokker-Plank- 
Kolmogorov equation) or by simulation (e.g. Euler scheme). These approaches give 
consistent results. However, the simulation approach is more straightforward and 
computationally efficient. The method is validated by comparison of the results with 
previous studies by Lin and Yang (1985). Application of the method to the reliabil- 
ity analysis of crack growth in the steel miter gates at Emsworth Lock and Dam on 
the Ohio River results in predictions of fatigue damage that are consistent with the 
observed performance of the gates during a 60-year service life (Ellingwood, Zheng 
and Bhattacharya, 1996). 

Deterministic models of crack growth rate based on parameters obtained from the 
customary regression analysis of logda/dN on logAK can result in an unconservative 
estimate of crack growth. Stochastic models of crack growth compensate for this 
underestimation. Different correlation structures in the growth rate noise result in 
significant differences in the dispersion in crack size but relatively small differences in 
the mean value of crack size. Strongly correlated noise results in the highest disper- 
sion, but slightly smaller mean value of crack size at a given time. The nature of this 
correlation may have a significant impact on estimated fatigue reliability. Whether 
taking the noise as a random variable is a more conservative approach to estimate 
the failure probability depends on the critical crack size. The probability distribu- 
tion of crack size also depends strongly on what assumptions are made regarding the 
marginal distribution of the noise term when the correlation length is long. The effect 
of marginal distribution of the noise becomes negligible when its correlation length is 
very small, say 1% of the time of interest. 

Crack growth due to wide-band stress processes is assessed by identifying the 
stress ranges from rainflow analysis, a method which has been widely applied in cycle 
counting for stress-life or strain-life approaches to fatigue analysis. Rainflow analysis 
of the stress history does not preserve the correlation structure of the process and 
the loading sequence is randomized. Therefore, samples of the stress range obtained 
from the rainflow analysis can be envisioned as samples from a stress process that is 
uncorrelated with respect to time. The marginal distribution of the stress process can 
be estimated from a long history of stress under the assumption that the process is 
ergodic. The validity and efficiency in computation of this approach is demonstrated 
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by comparison of the results with extensive direct simulation. 

A sensitivity study was conducted to assess the relative importance of uncertainty 
in load and in crack growth noise on fatigue reliability. This study showed the vari- 
ability of load can be a dominant factor for crack dispersion when the noise is an 
uncorrelated process. However, when the noise becomes highly correlated, its statis- 
tical characteristics become a critical factor. 

Reliability-based condition assessment of structures in-service assisted by NDE 
was also investigated. Comparison of the performance of different NDE techniques in 
detecting and sizing cracks reveals that for surface or subsurface cracks, MT demon- 
strates good performance as far as detecting and sizing accuracy are concerned; for 
internal cracks, UT is a good choice for locating cracks, but may not be good at sizing 
crack depth. Considerable uncertainties are associated with both flaw detection and 
measurement, and these uncertainties have significant impact on the time-dependent 
reliability analysis. As a result, decisions regarding maintenance or repair should rely 
on the probabilistic information of the NDE technique, outputs of inspection and 
prior CDF of flaw size.   If a flaw is detected, the critical measured size on which 
a repair action should be based is judged by the critical true crack size, the sizing 
accuracy and a target pf. The critical measured size is a linear function of the critical 
true size, the slope and intercept being determined by the NDE sizing performance. 
The smaller the sizing bias and variance are, the closer the measured size approaches 
the true crack size. If no flaw is detected, any decision to repair should be based on 
the NDE detection performance, described by the POD curve. If the performance is 
perfect and no flaw is detected, no repair is needed. On the other hand, if the detec- 
tion performance is poor, the decision to repair should be based on the prior PDF of 
crack size. If the POD is somewhere in between, the repair decision should depend 
on both the POD of the NDE methods and the prior PDF of crack sizes estimated 
from the stochastic crack growth model. 

7.2    Recommendations 

Studies of stochastic crack growth herein showed that different correlation structures 
and marginal distributions of the noise in crack growth rate result in estimates of 
failure probability that may differ significantly, particularly in the latter stage of 
service life. Fatigue experiments should be conducted to define the characteristics of 
the correlation and marginal distribution of the random crack growth rate noise term 
for different service environment and materials under constant amplitude loadings to 
improve the stochastic representation of service life. 
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The stochastic models of uncertainty in this study are applied to the determin- 
istic crack growth rate model based on linear elastic fracture mechanics. A similar 
approach should be investigated for the cases when plastic fracture mechanics model 
might be used (e.g., large scale yielding of the region around the cracks may occur 
when unusual loadings, such as impact loads due to vessel collision, contribute sig- 
nificantly to structural deterioration). More complex loadings may be investigated 
through stochastic finite element analysis. 

This study focused on stochastic fatigue damage from a single crack due to me- 
chanical fatigue. Interaction of fatigue damage with other factors, such as corrosion, 
requires further investigation. Since most civil structures are highly redundant sys- 
tems, the presence of one crack does not necessarily lead to failure of the whole 
structure. A study of the interaction of multiple cracks based on stochastic finite 
element analysis and system reliability analysis is recommended. 

Although POD and crack sizing accuracy play an important role in condition 
assessment, data to describe POD and sizing error for common NDE techniques, 
especially MT and PT, for fatigue field service conditions and different steel struc- 
tural details are limited. A more systematic study should be conducted to identify 
probabilistic characteristics of commonly used NDE techniques for detection and mea- 
surement of cracks in typical structural details in different field conditions. Reliability 
analysis requires that the regression analysis on sizing be conducted in terms of A on 
Am, not vice versa. The probability of detection and sizing error should be presented 
as a function of absolute size instead of relative size. False call probabilities should 
be determined. 

In service condition assessment and maintenance policies for civil facilities can be 
optimized using the time-dependent fatigue reliability analysis tools presented herein. 
Such optimization studies require accurate estimates of fatigue probabilities and costs 
of inspection, maintenance and repair, and functional failure. While this research 
focused on the first aspect, efforts also should be made to define these costs. The 
availability of this information would lead to improved facility management policies. 
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