
Proceedings

Seventh Heterogeneous
Computing Workshop

(HCW '98)

Proceedings

Seventh Heterogeneous
Computing Workshop

(HCW '98)
March 30 1998

Orlando, Florida U.S.A.

Edited by
John K. Antonio, Texas Tech University

Co-Sponsored by
IEEE Technical Committee on Parallel Processing

Office of Naval Research

IEEE

COMPUTER
SOCIETY

Los Alamitos, California

Washington • Brussels • Tokyo

Copyright © 1998 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that
carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code, is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society, or the Institute of Electrical and Electonics Engineers, Inc.

IEEE Computer Society Order Number PR08365
ISBN 0-8186-8365-1

ISBN 0-8186-8367-8 (microfiche)
ISSN 1097-5209

IEEE Order Plan Catalog Number 98EX126

Additional copies may be ordered from:

IEEE Computer Society
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314
Tel:+ 1-714-821-8380
Fax: + 1-714-821-4641
E-mail: cs.books@computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
Tel: + 1-908-981-1393
Fax: + 1-908-981-9667
mis.custserv@computer.org

IEEE Computer Society
13, Avenue de l'Aquilon
B-1200 Brussels
BELGIUM
Tel:+ 32-2-770-2198
Fax: + 32-2-770-8505
euro.ofc@computer.org

IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN
Tel: +81-3-3408-3118
Fax:+81-3-3408-3553
tokyo.ofc@computer.org

Editorial production by Kristine Kelly

Cover art production by Alex Torres

Printed in the United States of America by Technical Communication Services

IEEE

COMPUTER A
SOCIETY i^

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources
oatherinoi and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
roiiection of information Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Artington.VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Proiect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave Blank) 2. REPORT DATE
Sept. 18, 1998

3. REPORT TYPE AND DATES COVERED
Final, Nov. 1, 1997 to Sept. 30, 1998

4. TITLE AND SUBTITLE

A 1998 Workshop on Heterogeneous Computing

6. AUTHOR(S)

H. 3. Siegel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. Andre M. van Tilborg, Director
Math, Computer & Information Sciences Division
Office of Naval Research
Ar lington, VA 22217-5660

5. FUNDING NUMBERS

N00014-98-1-0122

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This grant funded the proceedings of the 7th Heterogeneous Computing Workshop (HCW '98), which was held
on March 30, 1998. HCW '98 was part of the first merged symposium of the 12th International Parallel
Processing Symposium and the 9th Symposium on Parallel and Distributed Processing (TPPS/SPDP 1998),
which was sponsored by the IEEE Computer Society Technical Committee on Parallel Processing and held in
cooperation with ACM SIGARCH. Heterogeneous computing systems range from diverse elements within a
single computer to coordinated, geographically distributed machines with different architectures. A
heterogeneous computing system provides a variety of capabilities that can be orchestrated to execute multiple
tasks with varied computational requirements. Applications in these environments achieve performance by
exploiting the affinity of different tasks to different computational platforms or paradigms, while considering
the overhead of inter-task communication and the coordination of distinct data sources and/or administrative
domains. Topics representative of those in the proceedings include: network profiling, configuration tools,
scheduling tools, analytic benchmarking, programming paradigms, problem mapping, processor assignment and
scheduling, fault tolerance, programming tools, processor selection criteria, and compiler assistance.

14. SUBJECT TERMS

heterogeneous computing, distributed computing, high-performance
computing

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
1

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500

J61171
10-08-96

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

»i'iO QftAUSY B5BPEG-IÜB 1

Table of Contents

Message from the General Chair vii

Message from the Program Chair viii

Committees 1X

Session I: Invited Case Studies and Status Reports on Existing Systems
Chair: John K. Antonio, Texas Tech University, Lubbock, TX, USA

Scheduling Resources in Multi-User, Heterogeneous, Computing
Environments with SmartNet 3

R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,
D. Hensgen, E. Keith, T. Kidd, M. Kussow, J.D. Lima, F. Mirabile,
L. Moore, B. Rust, and H.J. Siegel

The Globus Project: A Status Report 4

/. Foster and C. Kesselman
NetSolve: A Network-Enabled Solver; Examples and Users 19

H. Casanova and J.J. Dongarra
Implementing Distributed Synthetic Forces Simulations in Metacomputing
Environments 29

S. Brünett, D. Davis, T. Gottschalk, P. Messina, and C. Kesselman

Session II: Resource Management, Matching, and Scheduling
Chair: Dan Watson, Utah State University, Logan, UT, USA

CCS Resource Management in Networked HPC Systems 44

A. Keller and A. Reinefeld
A Dynamic Matching and Scheduling Algorithm for Heterogeneous Computing
Systems 57

M. Maheswaran and H.J. Siegel
Dynamic, Competitive Scheduling of Multiple DAGs in a Distributed
Heterogeneous Environment 70

M. Iverson and F. Özgüner
The Relative Performance of Various Mapping Algorithms is Independent
of Sizable Variances in Run-Time Predictions 79

R. Armstrong, D. Hensgen, and T. Kidd

Session III: Modeling Issues and Group Communications
Chair: David J. Lilja, University of Minnesota, Minneapolis, MN, USA

Modeling the Slowdown of Data-Parallel Applications in Homogeneous and
Heterogeneous Clusters of Workstations 90

S.M. Figueira and F. Berman
Specification and Control of Cooperative Work in a Heterogeneous
Computing Environment 102

G.J. Hoyos-Rivera, E. Martinez-Gonzalez, H.V. Rios-Figueroa,
V.G. Sänchez-Arias, H.G. Acosta-Mesa, andN. Lopez-Benttez

A Mathematical Model, Heuristic, and Simulation Study for a Basic Data
Staging Problem in a Heterogeneous Networking Environment 115

M. Tan, M.D. Theys, H.J. Siegel, N.B. Beck, and M. Jurczyk

An Efficient Group Communication Architecture over ATM Networks 130

S.-Y. Park, J. Lee, and S. Hariri

Panel: Is Java the Answer for Programming Heterogenous Computing Systems?
Panel Chair: GulA. Agha, University of Illinois, Urbana-Champaign, IL, USA

Modular Heterogeneous System Development: A Critical Analysis of Java 144

G.A. Agha, M. Astley, J.A. Sheikh, and C. Varela

Fault-Tolerance: Java's Missing Buzzword 156

L. Alvisi

Heterogeneous Parallel Computing with Java: Jabber or Justified? 159

H.G. Dietz

On the Interaction between Mobile Processes and Objects 163

S. Jagannathan and R. Kelsey

Steps Toward Understanding Performance in Java 171

D. Lea

Heterogeneous Programming with Java: Gourmet Blend or Just a Hill of
Beans? 173

C.C. Weems Jr.

Addendum

Author Index 201

VI

Message from the General Chair

Welcome to the 7th Heterogeneous Computing Workshop, also known as HCW 98.
Heterogeneous computing is a growing research area within Computer Science and Engineering,
and is at the confluence of a number of other sub-disciplines, including parallel processing,
distributed systems, scheduling and resource management algorithms, and metacomputing.
Heterogeneous computing systems range from diverse elements within a single computer to
coordinated, geographically distributed machines with different architectures. A heterogeneous
computing system provides a variety of capabilities that can be orchestrated to execute multiple
tasks with varied computational requirements. Applications in these environments achieve
performance by exploiting the affinity of different tasks to different computational platforms or
paradigms, while considering the overhead of inter-task communication and the coordination of
distinct data sources and/or administrative domains. The HCW workshop series includes
research presentations on these and related topics and is an established forum for the
dissemination of recent developments and results in heterogeneous computing. These
proceedings contain the set of papers from the 1998 workshop; I hope you find these informative
and interesting.

HCW 98 is the result of the dedication and hard work of a number of people. I thank Richard F.
Freund, NRaD, for founding this series of workshops and for working hard to ensure its ongoing
continuity and success. John Antonio of Texas Tech University was this year's Program Chair.
With the able assistance of a terrific program committee, he has put together an excellent
program and collection of papers in these proceedings. The Vice-General Chair was Dan
Watson, who helped with the organization of HCW 98 in many ways, including handling
workshop publicity.

Special thanks are due to H. J. Siegel of Purdue University for an enormous amount of help and
advice with both programmatic and organizational matters. Without his guidance and assistance
HCW 98 would not have been possible, and we truly appreciate his efforts. Traditionally, HCW
has been held in conjunction with the International Parallel Processing Symposium (IPPS), which
has merged with the Symposium on Parallel and Distributed Processing (SPDP) this year. I thank
the General Co-Chairs of IPPS/SPDP, Viktor Prasanna and Behrooz Shirazi for their cooperation
and assistance, with special thanks to Viktor for his continued support for HCW since its
inception. This year, the workshop is sponsored by the IEEE Computer Society and the Office of
Naval Research. We thank Dr. Andre M. van Tilborg, Director of the Math, Computer, and
Information Sciences Division of the Office of Naval Research, for supporting publication of
these proceedings under ONR grant number N00014-98-1-0122. Kristine Kelly, IEEE Computer
Society Press, deserves special thanks for her promptness and professional, efficient handling of
all the papers included here, and publication of these proceedings.

Vaidy Sunderam
Emory University

Vll

Message from the Program Chair

The field of heterogeneous computing (HC) is motivated by the diverse requirements of
computational tasks, and the realization that the features of a single architecture are not always
ideal for a wide range of task requirements. Research in HC ranges from the use of diverse
computing systems interconnected over a geographically distributed network to the design and
implementation of a parallel computer architecture consisting of a number of different processor
types or modes of operation. Thus, the field of HC is quite broad, and requires research in areas
such as parallel and distributed processing, performance estimation, matching and scheduling,
task profiling, compiling, and portable programming languages.

The papers published in these proceedings represent some of the latest and most innovative
research in the field of HC. The first session in the program consists of four invited papers
describing case studies and reports on existing HC systems. These papers are very important in
that they illustrate the practicality of HC, and often involve implementations based on past
research findings. The papers included in the second and third sessions were selected by the
program committee from submitted manuscripts. These papers cover topics of great importance
to HC, including resource management, matching, scheduling, modeling issues, and group
communications. The program concludes with what is sure to be a lively panel discussion on the
use of Java for programming HC systems. Position papers from the panel chair and each of the
panelists are included in these proceedings.

It has truly been an honor to serve as Program Chair for HCW 98, and I am very proud of the
quality of this year's program. But coordinating the program was not done in isolation; many
people contributed. I would like to thank the Program Committee members for their careful and
prompt review of the papers assigned to them. I would also like to thank all of the authors for
their technical contributions and insights, and for the careful editing and revising they performed
on their papers based on reviewer comments. I am grateful to Gul Agha for his willingness to
organize the Java panel session on relatively short notice. His success in assembling and
coordinating the outstanding (and diverse) collection of panelists is no doubt a reflection of the
well-deserved respect he has earned from his peers.

I am thankful to have worked with Vaidy Sunderam on this workshop. His leadership was
illustrated in many ways, including his capacity to effectively organize tasks, coordinate ideas
and concerns, and generally keep things running smoothly.

It has been a pleasure working with both Deborah Plummer and Kristine Kelly of the IEEE
Computer Society Press in getting these proceedings published. Special thanks are due to
Kristine for her patience in implementing some last minute changes before going to press. I
would also like to give special thanks to my secretary, Marcelia Sawyers, for her assistance with
my duties related to this workshop.

Finally, I am indebted to H. J. Siegel for his tireless dedication to this workshop. H. J. provided
the Program Committee with numerous ideas and suggestions for organizing the program. For
example, the original idea for including the Java panel came from H. J. In addition to providing
ideas for the program, H. J. also helped keep me on track by providing "gentle reminders" to
complete the many tasks that are involved in implementing a successful program.

John K. Antonio
Texas Tech University

Vlll

Committees

General Chair

Vice General Chair

Program Chair

Steering Committee

Vaidy Sunderam, Emory University

Dan Watson, Utah State University

John K. Antonio, Texas Tech University

Richard F. Freund, Chair, NOEMIX, Inc.
Francine Berman, UCSD
Jack Dongarra, University of Tennessee
Debra Hensgen, Naval Postgraduate School
Paul Messina, Caltech
Jerry Potter, Kent State University
Viktor K. Prasanna, USC
H. J. Siegel, Purdue University
Vaidy Sunderam, Emory University

Program Committee Members John K. Antonio, Chair, Texas Tech University
Francine Berman, University of California, San Diego
Steve J. Chapin, University of Virginia
Partha Dasgupta, Arizona State University
Mary Eshaghian, New Jersey Institute of Technology
Allan Gottlieb, New York University and NEC Research
Babak Hamidzadeh, University of British Columbia
Salim Hariri, Syracuse University
Taylor Kidd, Naval Postgraduate School
Domenico Laforenza, CNUCE - Institute of the Italian NRC
Yan Alexander Li, Intel Corporation
David J. Lilja, University of Minnesota
Noe Lopez-Benitez, Texas Tech University
Piyush Maheshwari, The University of New South Wales
Richard C. Metzger, Rome Laboratory
Viorel Morariu, Concurrent Technologies Corporation
Viktor K. Prasanna, University of Southern California
Ranga S. Ramanujan, Architecture Technology Corporation
Behrooz A. Shirazi, University of Texas at Arlington
H. J. Siegel, Purdue University
Min Tan, Cisco Systems, Inc.
Dan Watson, Utah State University
Charles C. Weems, University of Massachusetts, Amherst
Elizabeth Williams, Center for Computing Sciences
Albert Y. Zomaya, University of Western Australia

IX

Session I

Invited Case Studies
and

Status Reports on Existing Systems

Session Chair

John K. Antonio
Texas Tech University, Lubbock, TX, USA

Scheduling Resources in Mult-User, Heterogeneous, Computing
Environments with SmartNet*

Richard F. Freund+
Michael Gherrity

Stephen Ambrosius
Mark Campbell

Mike Halderman
Debra Hensgen

Elaine Keith
Taylor Kidd

Matt Kussow
John D. Lima

Francesca Mirabile
Lantz Moore

Brad Rust
HJ. Siegel

+NOEMIX, Inc.
14781 Pomerado Road, #133

Poway, CA 92064
rffreund@noemix. com

*see addendum, page 184

The Globus Project: A Status Report

Ian Foster Carl Kesselman

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292-6695

Abstract
The Globus project is a multi-institutional research

effort that seeks to enable the construction of com-
putational grids providing pervasive, dependable, and
consistent access to high-performance computational
resources, despite geographical distribution of both re-
sources and users. Computational grid technology
is being viewed as a critical element of future high-
performance computing environments that will enable
entirely new classes of computation-oriented applica-
tions, much as the World Wide Web fostered the de-
velopment of new classes of information-oriented ap-
plications. In this paper, we report on the status of
the Globus project as of early 1998. We describe the
progress that has been achieved to date in the devel-
opment of the Globus toolkit, a set of core services
for constructing grid tools and applications. We also
discuss the Globus Ubiquitous Supercomputing Testbed
(GUSTO) that we have constructed to enable large-
scale evaluation of Globus technologies, and we review
early experiences with the development of large-scale
grid applications on the GUSTO testbed.

1 Introduction
Advances in networking technology and compu-

tational infrastructure make it possible to construct
large-scale high-performance distributed computing
environments, or computational grids that provide de-
pendable, consistent, and pervasive access to high-end
computational resources. These environments have
the potential to change fundamentally the way we
think about computing, as our ability to compute will
no longer be limited to the resources we currently
have on hand. For example, the ability to integrate
TFLOP/s computing resources on demand will allow
us to integrate sophisticated analysis, image process-
ing, and real-time control into scientific instruments
such as microscopes, telescopes, and MRI machines.
Or, we can call upon the resources of a nationwide
strategic computing reserve to perform time-critical

computational tasks in times of crisis, for example to
perform diverse simulations as we plan responses to
an oil spill.

In the past, high-performance distributed compu-
tation has been achieved on a limited scale by heroic
efforts such as the CASA Gigabit testbed [26] and the
I-WAY [12]. The work of ourselves and others on com-
putational grids differs from these ground-breaking ef-
forts in that we seek to make commonplace the inte-
gration of remote resources into a computation. To a
large extent, the development of usable computational
grids is hindered not by available hardware capabil-
ities but by limitations in the software abstractions
and services that are currently in use. Existing net-
work tools are focused on supporting communication,
not computation, while current distributed comput-
ing systems are not performance driven and typically
are limited to client/server models of computation.
Clearly, the success of computational grids will depend
on the existence of grid-specific middleware that ad-
dresses the needs of computations including dynamic
resource allocation, resource co-allocation, heteroge-
neous and dynamic computational and communica-
tion substrates, and process-oriented security.

We have been studying the problems associated
with constructing usable computational grids since
1995, first in the context of the I-WAY networking
experiment [12] and subsequently as part of a project
called Globus. The goal of Globus is to understand
application requirements for a usable grid and to de-
velop the essential technologies required to meet these
requirements. In pursuit of this goal, we have devel-
oped a research program comprising three broad ac-
tivities:

• developing the basic technology and high-level
tools required for computational grids;

• constructing a large-scale, prototype computa-
tional grid (i.e., testbed) using the basic technolo-
gies and tools we have developed; and

0-8186-8365-1/98 $10.00 © 1998 IEEE

• executing realistic applications on the prototype
grid, in order to evaluate the utility of our tech-
nologies and of the grid concept.

In this paper, we describe the status of the Globus
project in each of these three areas, as of early
1998. This description updates the original Globus pa-
per [13] and a subsequent project summary in [14] by
providing a more complete and up-to-date description
of the Globus toolkit and by reviewing early exper-
iments with the Globus Ubiquitous Supercomputing
Testbed (GUSTO) grid prototype, the largest compu-
tational grid constructed to date.

The organization of this paper is as follows. In the
next section, we outline the basic architecture of the
Globus system, identifying the basic principles that
motivate its design. In Sections 3-7, we describe the
set of basic services that constitute the Globus toolkit
that underlies our approach, and in Section 8 we re-
view some of the higher-level tools that have been con-
structed with this toolkit. In Section 9, we describe
our experiences deploying these tools in the GUSTO
grid testbed, and in Section 10 we review our experi-
ences developing applications. We conclude the paper
with a brief survey of some related work (Section 11)
and a description of our future plans (Section 12).

2 Globus Overview
A central element of the Globus system is the

Globus Metacomputing Toolkit, which defines the ba-
sic services and capabilities required to construct a
computational grid. The design of this toolkit was
guided by the following basic principles.

The toolkit comprises a set of components that im-
plement basic services for security, resource location,
resource management, communication, etc.. The ser-
vices currently defined by Globus are listed in Table 1.
Computational grids must support a wide variety of
applications and programming models. Hence, rather
than providing a uniform programming model, such
as the object-oriented model defined by the Legion
system [18], the Globus toolkit provides a "bag of ser-
vices" from which developers of specific tools or appli-
cations can select to meet their needs.

Because services are distinct and have well-defined
interfaces, they can be incorporated into applications
or tools in an incremental fashion. We illustrate this
mix-and-match approach to metacomputing in Sec-
tions 8 and 10, where we describe how different parallel
tools and a large application can be made grid aware
by incorporating different services.

The toolkit distinguishes between local services,
which are kept simple to facilitate deployment, and

global services, which are constructed on top of lo-
cal services and may be more complex. Computa-
tional grids require that a wide range of services be
supported on a highly heterogeneous mix of systems
and that it be possible to define new services with-
out changing the underlying infrastructure. An estab-
lished architectural principle in such situations, as ex-
emplified by the Internet Protocol suite [6], is to adopt
a layered architecture with an "hourglass" shape (Fig-
ure 1). A simple, well-defined interface—the neck of
the hourglass—provides uniform access to diverse im-
plementations of local services; higher-level global ser-
vices are then defined in terms of this interface. To
participate in a grid, a local site need provide only the
services defined at the neck, and new global services
can be added without local changes. We discuss this
organization in greater detail in Section 3.

Interfaces are defined so as to manage heterogene-
ity, rather than hiding it. These so-called translucent
interfaces provide structured mechanisms by which
tools and applications can discover and control as-
pects of the underlying system. Such translucency
can have significant performance advantages because,
if an implementation of a higher-level service can un-
derstand characteristics of the lower-level services on
which the interface is layered, then the higher-level
service can either control specific behaviors of the un-
derlying service or adapt its own behavior to that of
the underlying service. Translucent interfaces do not
imply complex interfaces. Indeed, we will show that
translucency can be provided via simple techniques,
such as adding an attribute argument to the interface.
We discuss these issues at greater length in Section 4,
when we describe Globus communication services.

An information service is an integral component of
the toolkit. Computational grids are in a constant
state of flux as utilization and availability of resources
change, computers and networks fail, old components
are retired, new systems are added, and software and
hardware on existing systems are updated and mod-
ified. It is rarely feasible for programmers to rely on
standard or default configurations when building ap-
plications. Rather, applications must discover charac-
teristics of their execution environment dynamically
and then either configure aspects of system and ap-
plication behavior for efficient, robust execution or
adapt behavior during program execution. A funda-
mental requirement for discovery, configuration, and
adaptation is an information-rich environment that
provides pervasive and uniform access to information
about the current state of the grid and its underly-
ing components. In the Globus toolkit, a component

Table 1: Core Globus services. As of early 1998, these include only those services deemed essential for an evaluation
of the Globus design philosophy on realistic applications and in medium-scale grid environments. Other services
such as accounting, auditing, and instrumentation will be addressed in future work

Service Name Description

Resource management
Communication
Security
Information
Health and status
Remote data access
Executable management

GRAM
Nexus
GSI
MDS
HBM
GASS
GEM

Resource allocation and process management
Unicast and multicast communication services
Authentication and related security services
Distributed access to structure and state information
Monitoring of health and status of system components
Remote access to data via sequential and parallel interfaces
Construction, caching, and location of executables

TCP FTP HTTP
VIC/VAT ...

Ethernet FDDI ..
ATM SONET

Resource brokers
Resource co-allocators

MPI CC++ HPC++
PAWS CORBA ...

Condor LSF NQE
LoadLeveler EASY-LL

IP Message-passing
Shared-memory ATM

Figure 1: The hourglass principle, as applied in the Internet Protocol suite, Globus resource management services,
and Globus communication services

called the Metacomputing Directory Service [9], dis-
cussed in Section 5, fulfills this role.

The toolkit uses standards whenever possible for
both interfaces and implementations. We envision
computational grids as supporting an important niche
of applications that must co-exist with more general-
purpose distributed and networked computing appli-
cations such as CORBA, DCE, DCOM, and Web-
based technologies. The Internet community and
other groups are moving rapidly to develop official and
de facto standards for interfaces, protocols, and ser-
vices in many areas relevant to computational grids.
There is considerable value in adopting these stan-
dards whenever they do not interfere with other goals.
Consequently, the Globus components we will describe
are not, in general, meant to replace existing inter-
faces, but rather seek to augment them. The utility of
standards is emphasized in Section 6, which describes
the Globus security infrastructure.

3 Resource Management
We now dexcribe more fully the Globus compo-

nents listed in Table 1. We start by considering re-
source management. Both this discussion and the cur-
rent Globus implementation focus on the management
of computational resources. Management of memory,
storage, networks, and other resources is clearly also
important and is being considered in current research.

Globus is a layered architecture in which high-level
global services are built on top of an essential set of
core local services. At the bottom of this layered ar-
chitecture, the Globus Resource Allocation Manager
(GRAM) provides the local component for resource
management [8]. Each GRAM is responsible for a set
of resources operating under the same site-specific al-
location policy, often implemented by a local resource
management system, such as Load Sharing Facility
(LSF) or Condor. For example, a single manager could
provide access to the nodes of a parallel computer,
a cluster of workstations, or a set of machines oper-
ating within a Condor pool [25]. Thus, a computa-
tional grid built with Globus typically contains many
GRAMs, each responsible for a particular "local" set
of resources.

GRAM provides a standard network-enabled inter-
face to local resource management systems. Hence,
computational grid tools and applications can express
resource allocation and process management requests
in terms of a standard application programming inter-
face (API), while individual sites are not constrained
in their choice of resource management tools. GRAM
can currently operate in conjunction with six different
local resource management tools: Network Queuing

Environment (NQE), EASY-LL, LSF, LoadLeveler,
Condor, and a simple "fork" daemon. Within the
GRAM API, resource requests are expressed in terms
of an extensible resource specification language (RSL);
as we describe below, this language plays a critical role
in the definition of global services.

GRAM services provide building blocks from which
we can construct a range of global resource manage-
ment strategies. Building on GRAM, we have defined
the general resource management architecture [8] il-
lustrated in Figure 2. RSL is used throughout this
architecture as a common notation for expressing re-
source requirements. Resource requirements are ex-
pressed by an application in terms of a high-level RSL
expression. A variety of resource brokers implement
domain-specific resource discovery and selection poli-
cies by transforming abstract RSL expressions into
progressively more specific requirements until a spe-
cific set of resources is identified. For example, an ap-
plication might specify a computational requirement
in terms of floating-point performance (MFLOPs). A
high-level broker might narrow this requirement to a
specific type of computer (an IBM SP2, for example),
while another broker might identify a specific set of
SP2 computers that can fulfill that request. At this
point, we have a so-called ground RSL expression in
which a specific set of GRAMs are identified.

The final step in the resource allocation process is
to decompose the RSL into a set of separate resource
allocation requests and to dispatch each request to
the appropriate GRAM. In high-performance compu-
tations, it is often important to co-allocate resources
at this point, ensuring that a given set of resources
is available for use simultaneously. Within Globus, a
resource co-allocator is responsible for providing this
service: breaking the RSL into pieces, distributing it
to the GRAMs, and coordinating the return values.
Different co-allocators can be constructed to imple-
ment different approaches to the problems of allocat-
ing and managing ensembles of resources. We cur-
rently have two allocation services implemented. The
first defines a simple atomic co-allocation semantics.
If any of the requested resources are unavailable for
some reason, the entire co-allocation request fails. In
practice, this strategy has proven to be too inflexible
in many situations. Based on this experience, we have
implemented a second co-allocator, which allows com-
ponents of the submitted RSL expression to be mod-
ified until the application or broker issues a commit
operation.

Notice that a consequence of the Globus resource
management architecture is that resource and com-

RSL
'specialization

Local
resource
managers

Figure 2: The Globus resource management architecture, showing how RSL specifications pass between appli-
cation, resource brokers, resource co-allocators, and local managers (GRAMs). Notice the central role of the
information service.

putation management services are implemented in a
hierarchical fashion. An individual GRAM supports
the creation and management of a set of processes, or
Globus job, on a set of local resources. A computation
created by a global service may then consist of one or
more jobs, each created by a request to a GRAM and
managed via management functions implemented by
that GRAM.

This discussion of Globus resource management ser-
vices illustrates how simple local services, if appropri-
ately designed, can be used to support a rich set of
global functionality.

4 Communication
Communication services within the Globus toolkit

are provided by the Nexus communication library [15].
As illustrated in Figure 1, Nexus defines a relatively
low-level communication API that is then used to sup-
port a wide range of higher-level communication li-
braries and languages, based on programming mod-
els as diverse as message passing, as in the Message
Passing Interface (MPI) [10]; remote procedure call,
as in CC++ [5]; striped transfer, as in the Paral-
lel Application Workspace (PAWS); and distributed
database updates for collaborative environments, as
in CAVERNsoft. Nexus communication services are
also used extensively in the implementation of other
Globus modules.

The communication needs of computational grid
applications are diverse, ranging from point-to-point
message passing to unreliable multicast communica-

tion. Many applications, such as instrument control
and teleimmersion, use several modes of communica-
tion simultaneously. In our view, the Internet Proto-
col does not meet these needs: its overheads are high,
particularly on specialized platforms such as parallel
computers; the TCP streaming model is not appro-
priate for many interactions; and its interface pro-
vides little control over low-level behavior. Yet tra-
ditional high-performance computing communication
interfaces such as MPI do not provide the rich range
of communication abstractions that grid applications
will require. Hence, we define an alternative communi-
cation interface designed to support the wide variety of
underlying communication protocols and methods en-
countered in grid environments and to provide higher-
level tools with a high degree of control over the map-
ping between high-level communication requests and
underlying protocol operations. We call this interface
Nexus [15, 11].

Communication in Nexus is defined in terms of two
basic abstractions. A communication link is formed by
binding a communication startpoint to a communica-
tion endpoint (Figure 4); a communication operation
is initiated by applying a remote service request (RSR)
to a startpoint. This one-sided, asynchronous remote
procedure call transfers data from the startpoint to the
associated endpoint(s) and then integrates the data
into the process(es) containing the endpoint(s) by in-
voking a function in the process (es). More than one
startpoint can be bound to an endpoint and vice versa,

"I want to run a
distributed interactive
simulation involving

100,000 entities"

DIS-specific
broker

"Supercomputers
providing lOOGflops,

"* 100 GB, < 100 msec
latency"'

Information
service

"I want to perform
a parameter study
involving 10,000
separate trials"

"I want to create a
shared virtual space
with participants X,

Y,and Z"

Parameter study-
specific broker

Supercomputer]
resource broker I

"80 nodes on Argonne SP,
256 nodes on CIT Exemplar,
300 nodes on NCSA O2000"

Run SF-Express
.on 300 nodes"

Figure 3: This view of the Globus resource management architecture shows how different types of broker can
participate in a single resource request

allowing for the construction of complex communica-
tion structures.

The communication link/RSR communication
model can be mapped into many different communi-
cation methods, each with potentially different perfor-
mance characteristics [11]. Communication methods
include not only communication protocols, but also
other aspects of communication such as security, reli-
ability, quality of service, and compression. By associ-
ating attributes with a specific startpoint or endpoint,
an application can control the communication method
used on a per-link basis. For example, an application
in which some communications must be reliable while
others require low latencies can establish two links be-
tween two processes, with one configured for reliable—
and potentially high-latency—communication and the
other for low-latency unreliable communication.

High-level selection and configuration of low-level
methods is useful only if the information required to
make intelligent decisions is readily available. Within
Globus, MDS (discussed in Section 5) maintains a
wealth of dynamic information about underlying com-
munication networks and protocols, including network
connectivity, protocols supported, and network band-
width and latency. Applications, tools, and higher-
level libraries can use this information to identify avail-

able methods and select those best suited for a partic-
ular purpose.

High-level management of low-level communication
methods has many uses. For example, an MPI imple-
mentation layered on top of Nexus primitives can not
only select alternative low-level protocols (e.g., mes-
sage passing, IP, or shared memory) based on network
topology and the location of sender and receiver [10],
but can simultaneously apply selective use of encryp-
tion based on the source and destination of a message.
The ability to attach network quality of service speci-
fications to communication links is also useful.

Nexus illustrates how Globus services use translu-
cent interfaces to allow applications to manage rather
than hide heterogeneity. An application or higher-
level library can express all operations in terms of
a single uniform API; the resulting programs are
portable across, and will execute efficiently on, a wide
variety of computing platforms and networks. To this
extent Nexus, like other Globus services, hides het-
erogeneity. However, in situations where performance
is critical, properties of low-level services can be dis-
covered. The higher-level library or application can
then either adapt its behavior appropriately or use a
control API to manage just how high-level behavior is
implemented: for example, by specifying that it is ac-

EP

Figure 4: Nexus communication mechanisms. The figure shows three processes and three communication links.
Three startpoints in process 1 reference endpoints in processes 0 and 2.

ceptable to use an unreliable communication protocol
for a particular set of communications.

5 Information
The dynamic nature of grid environments means

that toolkit components, programming tools, and ap-
plications must be able to adapt their behavior in re-
sponse to changes in system structure and state. The
Globus Metacomputing Directory Service (MDS) [9]
is designed to support this type of adaptation by pro-
viding an information-rich environment in which in-
formation about system components is always avail-
able. MDS stores and makes accessible information
such as the architecture type, operating system ver-
sion and amount of memory on a computer, network
bandwidth and latency, available communication pro-
tocols, and the mapping between IP addresses and
network technology.

MDS provides a suite of tools and APIs for dis-
covering, publishing, and accessing information about
the structure and state of a computational grid. As
in other Globus components, official or de facto stan-
dards are used in MDS whenever possible. In this case,
the standards in question are the data representation
and API defined by the Lightweight Directory Access
Protocol (LDAP) [22], which together provide a uni-
form, extensible representation for information about
grid components. LDAP defines a hierarchical, tree-
structured name space called a directory information
tree and is designed as a distributed service: arbi-
trary subtrees can be associated with distinct servers.
Hence, the local service required to support MDS is ex-
actly an LDAP server (or a gateway to another LDAP
server, if multiple sites share a server), plus the utili-
ties used to populate this server with up-to-date infor-
mation about the structure and state of the resources
within that site. The global MDS service is simply the
ensemble of all these servers.

An information-rich environment is more than just
mechanisms for naming and disseminating informa-

tion: it also requires agents that produce useful in-
formation and components that access and use that
information. Within Globus, both these roles are dis-
tributed over every system component—and poten-
tially over every application. Every Globus service
is responsible for producing information that users of
that service may find useful, and for using information
to enhance its flexibility and performance. For exam-
ple, each local resource manager (Section 3) incorpo-
rates a component called the GRAM reporter respon-
sible for collecting and publishing information about
the type of resources being managed, their availabil-
ity, and so forth. Resource brokers use this and other
information for resource discovery.

6 Security
Security in computational grids is a multifaceted is-

sue, encompassing authentication, authorization, pri-
vacy, and other concerns. While the basic crypto-
graphic algorithms that form the basis of most secu-
rity systems—such as public key cryptography—are
relatively simple, it is a challenging task to use these
algorithms to meet diverse security goals in complex,
dynamic grid environments, with large and dynamic
sets of users and resources and fluid relationships be-
tween users and resources.

The Globus security infrastructure developed for
the initial Globus toolkit focuses on just one prob-
lem, authentication: the process by which one entity
verifies the identity of another. We focus on authen-
tication because it is the foundation on which other
security services, such as authorization and encryp-
tion, are built; these issues will be addressed in future
work.

Authentication solutions for computational grids
must solve two problems not commonly addressed by
standard authentication technologies. The first prob-
lem that must be addressed by a grid authentication
solution is support for local heterogeneity. Grid re-
sources are operated by a diverse range of entities,

10

each defining a different administrative domain. Each
domain will have its own requirements for authenti-
cation and authorization, and consequently, domains
will have different local security solutions, mecha-
nisms, and policies, such as one-time passwords, Ker-
beros [29], and Secure Shell. We will have limited
ability to change these administrative decisions, and
any security solution must confront this heterogeneity.

The second problem facing security solutions for
computational grids is the need to support N-way se-
curity contexts. In traditional client-server applica-
tions, authentication involves just a single client and
a single server. In contrast, a grid computation may
acquire, start processes on, and release many resources
dynamically during its execution. These processes will
communicate by using a variety of mechanisms, in-
cluding unicast and multicast. These processes form
a single, fully connected logical entity, although low-
level communication connections (e.g., TCP/IP sock-
ets) may be created and deleted dynamically during
program execution. A security solution for a computa-
tional grid must enable the establishment of a security
relationship between any two processes in a computa-
tion.

A first important step in the design of a security
architecture, often overlooked, is to define a secu-
rity policy: that is, to provide a precise definition of
what it means for the system in question to be se-
cure. This policy identifies what components are to
be protected and what these components are to be
protected against, and defines security operations in
terms of abstract algorithms. The policy defined for
Globus is shaped by the need to support N-way se-
curity contexts and local heterogeneity. The policy
specifies that a user authenticate just once per com-
putation, at which time a credential is generated that
allows processes created on behalf of the user to ac-
quire resources, and so forth, without additional user
intervention. Local heterogeneity is handled by map-
ping a user's Globus identity into local user identities
at each resource.

One important aspect of the security policy de-
fined by Globus is that encrypted channels are not
used. Globus is intended to be used internationally,
and several countries (including the United States and
France) have restrictive laws with respect to encryp-
tion technology. The Globus policy relies only on dig-
ital signature mechanisms, which are more easily ex-
portable from the United States.

The Globus security policy is implemented by the
Globus security infrastructure (GSI). GSI, like other
Globus components, has a modular design in which

diverse global services are constructed on top of a sim-
ple local service that addresses issues of local hetero-
geneity. As illustrated in Figure 5, the local security
service implements a security gateway that maps au-
thenticated Globus credentials into locally recognized
credentials at a particular site: for example, Kerberos
tickets, or local user names and passwords. A bene-
fit of this approach is that we do not require "group"
accounts and so can preserve the integrity of local ac-
counting and auditing mechanisms.

The internal design of GSI emphasizes the impor-
tant role that standards have to play in the definition
of grid services and toolkits. Several of the problems
that GSI is designed to solve, namely, support for dif-
ferent local mechanisms and N-way security contexts,
are not supported by any existing system. Neverthe-
less, GSI's ability to interoperate with other systems,
to achieve independence from low-level mechanisms,
and to leverage existing code is enhanced by coding
all security algorithms in terms of the Generic Se-
curity Service (GSS) standard [24]. GSS defines a
standard procedure and API for obtaining credentials
(passwords or certificates), for mutual authentication
(client and server), and for message-oriented signa-
ture, encryption and decryption. GSS is independent
of any particular security mechanism and can be lay-
ered on top of different security methods. To promote
interoperability, the GSS standard defines how GSS
functionality should be implemented on top of Ker-
beros and public key cryptography. GSS also defines
a negotiation mechanism that allows two parties to se-
lect a mutually agreeable suite of security mechanisms,
should alternatives exist.

GSI currently supports two security mechanisms,
both accessible through the GSS interface. The first
is a plaintext password system, which basically imple-
ments Unix rlogin type authentication. The plain-
text implementation has the advantage of being easy
to develop and debug and is not encumbered by export
controls. The second mechanism uses public key cryp-
tography and is based on the authentication protocol
defined by the Secure Socket Layer (SSL) [21]. This
implementation has the advantages of much stronger
security and interoperability with a variety of com-
modity services, including LDAP and HTTP. We note
that GSS supports a negotiation mechanism, which
allows us to support both security mechanisms simul-
taneously in the Globus environment.

7 Other Globus Services
We briefly describe the other three Globus ser-

vices listed in Table 1: health and status monitoring,
remote access to files, and executable management.

11

ff'Credentjaf) »I User

(Globus credential)

Site 1

GRAM

GSI
t '

(Certificate)

| Public Keyl

User Process}*

User Process}*-

User Process}»
 r1

Site 2

>| User Process]

■t{ User Process]

■*\ User Process]
T

Authenticated interprocess
communication

GRAM

GSI

' t
(llertlfieifte)

I Kerberos

Figure 5: The Globus security infrastructure, showing its support for single sign-on and local heterogeneity

The Heartbeat Monitor (HBM) service provides sim-
ple mechanisms for monitoring the health and status
of a distributed set of processes. The HBM architec-
ture comprises a client interface and a data-collector
API. The client interface allows a process to register
with the HBM service, which then expects to receive
regular heartbeats from the process. If a heartbeat is
not received, the HBM service attempts to determine
whether the process itself is faulty or whether the un-
derlying network or computer has failed. The data-
collector API allows another process to obtain infor-
mation regarding the status of registered process; this
information can then be used to implement a variety of
fault detection and, potentially, fault recovery mecha-
nisms. HBM mechanisms are used to monitor the sta-
tus of core Globus services, such as GRAM and MDS.
They can also be used to monitor distributed appli-
cations and to implement application-specific fault re-
covery strategies.

Access to remote files is provided by the Global Ac-
cess to Secondary Storage (GASS) subsystem. This
system allows programs that use the C standard
I/O library to open and subsequently read and write
files located on remote computers, without requiring
changes to the code used to perform the reading and
writing. As illustrated in Figure 6, files opened for
reading are copied to a local file cache when they are
opened, hence permitting subsequent read operations
to proceed without communication and also avoiding

repeated fetches of the same file. Reference counting
is used to determine when files can be deleted from
the cache. Similarly, files opened for writing are cre-
ated locally and copied to their destination only when
they are closed. A similar copying strategy is used
in UFO [2], but our implementation does not rely on
the Unix-specific proc file system. GASS also allows
files to be opened for remote appending, in which case
data is communicated to the remote file as soon as it
is written; this mode is useful for log files, for exam-
ple. In addition, GASS supports remote operations
on caches and hence, for example, program-directed
prestaging and migration of data. HTTP, FTP, and
specialized GASS servers are supported.

Finally, the Globus Executable Management
(GEM) service, still being designed as of January
1998, is intended to support the identification, loca-
tion, and creation of executables in heterogeneous en-
vironments. GEM provides mechanisms for matching
the characteristics of a computer in a computational
grid with the runtime requirements of an executable
or library. These mechanisms can be used in conjunc-
tion with other Globus services to implement a vari-
ety of distributed code management strategies, based
for example on online executable archives and compile
servers.

8 High-Level Tools
While Globus services can be used directly by ap-

plication programmers, they are more commonly ac-

12

PI

i P2

P3

open for read only:
...... http://dsl.mcs.anl.gOv/~/coords

"""■ "■■-■-.... rilecacne ,
-►i 1 E=

open for read only:
> http://dsl.mcs.anl.g0v/-/c00rds

open for reading & writing:
x-gass://mcs.anI.gov:6453/~/datal

open for read only:
, http://dsl.mcs.anl.g0v/~/c00rds
' open for reading & writing:

ftp://ftp.isi.edU//pub/globus/data2

database j

file0864

i file9629

file7823t

P4 open for appending:
x-gass://rncs.ählgöv:"6453/--'/iög

file0864 rw 1 | x-gassy/mcs.ant.gov:6453/-/data1

file9629 R 4 j http://dsl.rncs.anI.gov/--/coords j

file7823J rw 1 ; ftp://ftp.isi.edU//pub/globus/datafil9

HTTP ,

FTP

GASS
server;

Figure 6: The Global Access to Secondary Storage (GASS) subsystem allows processes on local computers to
read and write remote files. Copies of remote files opened for reading and/or writing are maintained in a local file
cache. A simple database keeps track of the local file name, access mode, reference count, and remote file URL.

cessed via higher-level tools developed by tool develop-
ers. We illustrate this type of use with four examples:
a message-passing library, a parallel language, a re-
mote I/O library, and a parameter study system. Each
tool uses different Globus services in a different way
to support a particular programming model; in each
case, availability of the Globus toolkit has allowed ex-
isting tools to be adapted for wide-area execution with
relatively little effort.

The Message Passing Interface (MPI) defines a
standard API for writing message-passing programs
and is widely used in parallel computing. For grid
applications, message passing has the advantage of
providing a higher-level view of communication than
TCP/IP sockets, while preserving for the program-
mer a high degree of control over how and when
communication occurs. Globus services have been
used to develop a grid-enabled MPI [10] based on
the MPICH library [20], with Nexus used for com-
munication, GRAM services for resource allocation,
and GSI services for authentication. The result is a
system that allows programmers to use simple, stan-
dard commands to run MPI programs in a variety of
metacomputing environments (freely combining het-
erogeneous workstation and MPP metacomputing re-
sources), while making efficient use of underlying net-
works. In future work, the developers of this system
plan to use MDS information to construct communica-
tion structures—in particular, collective operations—

that are optimized for wide-area execution.

Compositional C+-f- [5], or CC++, is a high-
level parallel programming language based on C++.
CC++ defines a global name space through the
use of global pointers, dynamic resource allocation,
and support for threading and remote procedure call
style communication. The Globus implementation of
CC++ uses the same services as the grid-enabled MPI,
except that while the MPI implementation relies on
Globus co-allocation services for resource allocation,
the task-parallel CC++ model interfaces to GRAM
directly.

The Remote I/O (RIO) library [16] is a tool for
achieving high-speed access from parallel programs to
files located on remote filesystems. RIO adopts the
parallel I/O interface defined by MPI-IO [7, 27] and
hence allows any program that uses MPI-IO to oper-
ate unchanged in a wide-area environment. The RIO
implementation, like that of MPI, is constructed by
using Globus services to adapt an existing system—
the ROMIO implementation of MPI-IO—to support
wide-area execution. Specifically, Nexus services are
used for communication, GSI services for authentica-
tion, and MDS services for configuration.

Nimrod-G is a wide-area version of Nimrod [1], a
tool that automates the creation and management of
large parametric experiments. Nimrod allows a user
to run a single application under a wide range of in-
put conditions and then to aggregate the results of

13

these different runs for interpretation. In effect, it
transforms file-based programs into interactive "meta-
applications" that invoke user programs much as we
might call subroutines. Nimrod-G uses MDS services
to locate suitable resources when a user first requests
a computational experiment, and GSI and GRAM ser-
vices to schedule jobs to resources identified by MDS
queries. In effect, Nimrod-G implements resource bro-
kering services specialized for a particular class of ap-
plication.

9 The GUSTO Testbed
Globus technologies have been deployed in

the Globus Ubiquitous Supercomputing Testbed
(GUSTO), by several measures the largest computa-
tional grid testbed ever constructed as of early 1998.
This testbed uses both dedicated OC3 and commod-
ity Internet services to link (as of early 1998) 17 sites,
330 computers, and 3600 processors, providing an ag-
gregate peak performance of 2 Tflop/s. GUSTO sites
span the continental United States, Hawaii, Sweden,
and Germany; additional sites are being added rapidly.
We discuss briefly our experiences deploying, admin-
istering, and using this testbed.

GUSTO was created during the three months prior
to the November 1997 Supercomputing conference,
held in San Jose. During this time, the first version
of the Globus toolkit was completed, deployed at 15
sites, and applied in 10 different application projects.

One lesson learned early during this effort was that
the approach of defining simple local services (and the
considerable effort put into automatic configuration
and information discovery tools) was a big win: we
were able to deploy Globus software at 15 sites with
relative ease, admittedly with considerable help from
local staff in some cases. At several sites, computer
security officers reviewed and approved our code. The
hardest part of the deployment process was typically
the development of the GRAM interface to the local
scheduler.

Once Globus was deployed, MDS and HBM proved
valuable as tools for administering a complex collec-
tion of computer systems. The standard interface pro-
vided by MDS ensured that GUSTO administrators
always had up-to-date information about the struc-
ture and state of the system at their fingertips. This
information was accessed via both an MDS browser
and various specialized Web-based tools developed to
publish specific views of the testbed.

Ten different groups developed applications for
GUSTO. One of these applications is discussed in the
next section; others included remote visualization of
scientific simulations, real-time analysis of data from

scientific instruments (meteorological satellite and X-
ray source), and distributed parameter studies. The
tools and services used by these different applications
varied tremendously, with some programming in sock-
ets and using just the bare minimum of Globus ser-
vices, and others exploiting the full range of services.

The security model used for initial GUSTO deploy-
ment was based on the plain-text GSS implementation
that we have developed. While the plain-text authen-
tication model is quite weak, it had the advantage of
avoiding export control issues. However, the need for
the stronger, public key implementation was univer-
sally expressed. An export license for this technology
is pending, and the currently deployed system will be
upgraded to this authentication mechanism once such
a license is issued.

10 Application Overview
We provide a brief description of one application

demonstrated on the initial GUSTO prototype. SF-
Express is a distributed interactive simulation (DIS)
application that harnesses multiple supercomputers
to meet the computational demands of large-scale
network-based simulation environments. A large sim-
ulation may involve many tens of thousands of entities
and requires thousands of processors. Globus services
can be used to locate, assemble, and manage those
resources. For example, in one experiment in Novem-
ber 1997, SF-Express was run on 852 processors dis-
tributed over 6 GUSTO sites. A more detailed discus-
sion of SF-Express and how Globus is being used to
support its execution across multiple supercomputers
can be found in [4]

An advantage of the Globus bag of services architec-
ture is that an application need not be entirely rewrit-
ten before it can operate in a grid environment: ser-
vices can be introduced into an application incremen-
tally, with functionality increasing at each step. As
illustrated in Table 2 and described briefly in the fol-
lowing, this approach is being followed as the original
SF-Express is converted into a grid-enabled applica-
tion.

SF-Express Startup and Configuration Prior to
the use of Globus services, simply starting SF-Express
on multiple supercomputers was a painful task. The
user had to log in to each site in turn and recall the ar-
cane commands needed to allocate resources and start
a program. This obstacle to the use of distributed re-
sources was overcome by encoding resource allocation
requests in terms of the GRAM API. GRAM and asso-
ciated GSI services are used to handle authentication,
resource allocation, and process creation at each site.

14

Table 2: A grid-aware version of SF-Express is being constructed incrementally: Globus services are incorporated
one by one to improve functionality and reduce application complexity. The Status field indicates code status as
of early 1998: techniques are in use (Y), are experimental or in partial use (y), or remain to be applied in the

future (blank).

Services How used Benefits Status

GRAM, GSI Start SF-Express Avoid need to log in to Y

on supercomputers and schedule each system

+ Co-allocator Distributed startup Avoid application-level Y

and management check-in and shutdown

+ MDS Use MDS information
to configure computation

Performance, portability y

+ Resource broker Use broker to locate
appropriate computers

Code reuse, portability y

+ Nexus Encode communication Uniformity of interface, y
as Nexus RSRs access to unreliable comms

+ HBM Components check in with Provides degree of Y

application-level monitor fault tolerance

+ GASS Use to access terrain Avoid need to prestage
database files etc. data files

+ GEM Use to generate and Avoid configuration
stage executables problems

Currently, the resources used for a simulation are
manually specified, using MDS tools to help locate,
select, and construct RSL specifications for appropri-
ate supercomputers. As illustrated in Figure 2, these
tasks can be avoided if we have access to resource
brokers that can automatically construct the required
RSL, using information such as the available network
bandwidth and CPU power to determine the number
of nodes required from the number of entities being
simulated, and the number of nodes each router can
handle. Once the resource set is identified and the
RSL specification generated, Globus co-allocation ser-
vices are employed to coordinate startup across multi-
ple supercomputers, ensuring that the application has
started on the desired resources before allowing the
simulation to proceed.

After startup, the simulation must configure itself.
In order to execute efficiently on parallel computers
that have nonuniform access to network interfaces or
secondary storage, SF-Express is organized such that
intercomputer communication and I/O activities are
performed only within specialized servers. Using infor-
mation contained in the MDS, SF-Express can config-
ure itself to place these services on appropriate nodes
within a parallel computer, that is, the node with the
attached disk or network interface card.

Finally, SF-Express must read various files describ-

ing the simulation scenario and the terrain on which
the simulation is to be performed. In the initial SF-
Express prototype, these files had to be staged man-
ually to each site at which SF-Express executed. To
simplify this task, we are migrating these file opera-
tions to use the GASS service provided in the Globus
toolkit.

Communication. The SF-Express demonstrated
at SC'97 uses MPI for communication within a sim-
ulation group, but handwritten socket code for com-
munication between routers. This approach leads to
considerable application code complexity and hinders
portability. One approach we are considering is to
rewrite the inter-supercomputer communication code
to use MPI. The grid-enabled MPI discussed in Sec-
tion 8 can then be used, eliminating the need for ap-
plication socket code.

A second approach is to rewrite SF-Express so that
communication operations are expressed directly by
using Nexus operations. SF-Express communication
operations are concerned primarily with the remote
enqueing of simulation events and, hence, are ex-
pressed more naturally as Nexus RSRs than as MPI
calls. A second benefit to using Nexus is that we
can then, as discussed in Section 4, select an unre-
liable communication protocol for the distribution of

15

information to routers. This usage is desirable be-
cause SF-Express, unlike many other distributed sim-
ulations, does not maintain a global simulation clock.
Instead, nodes simply discard incoming events with
timestamps earlier than the local simulation clock.
Hence, an unreliable protocol that tends to deliver
most events sooner than an equivalent reliable pro-
tocol may be preferable.

11 Related Work
The primary purpose of this paper is to report on

the current status of the Globus project rather than
to provide detailed comparisons with related work.
Hence, we provide pointers here to just a few represen-
tative efforts; the reader is referred to our other papers
listed in the references for more detailed discussion.

The Legion project [19], like Globus, is investigat-
ing issues relating to software architectures and base
technologies for grid environments. In contrast to the
Globus bag of services architecture, Legion is orga-
nized around an object-oriented model in which ev-
ery component of the system is represented by an ob-
ject [23]. In principle, Globus services can be used
to implement the Legion object model, so the two
projects are in many respects pursuing complemen-
tary goals.

Condor [25] is a high-throughput computing envi-
ronment whose goal is to deliver large amounts of com-
putational capability over long periods of time (weeks
or months), rather than peak capacity for limited time
durations (hours or days). Condor addresses the needs
of a limited, although important class of applications
whose components are loosely coupled, often orga-
nized into a task-pool style computation. Currently,
the GRAM interface to Condor enables Globus users
to submit jobs to Condor pools. We are working with
the Condor team to integrate other aspects of the sys-
tems, such as authentication.

A number of projects are attempting to build dis-
tributed computing environments on top of technolo-
gies and infrastructure developed for the World Wide
Web. These include specialized systems such as Super-
Web [3] and WebOS [30] as well as systems leveraging
basic Web technologies, such as Java Remote Method
Invocation.

SNIPE [28] is a metacomputing project that builds
on the resource management and communication fa-
cilities provided by the PVM message-passing li-
brary [17]. Like Globus, SNIPE recognizes the impor-
tance of information services and uses the Resource
Cataloging and Distribution System to provide access
to system resources and metadata.

12 Summary and Future Work
We have described the current status of the Globus

project, which seeks to develop the basic technologies
required to support the construction and use of com-
putational grids. A particular focus of the Globus
effort is the development of a small metacomputing
toolkit providing essential services that can then be
used to implement a variety of higher-level program-
ming models, tools, and applications. As we have ex-
plained in this brief review, Globus components have
been deployed in large testbeds and used to implement
a variety of applications.

We have referred above to the advantages that we
perceive in the Globus toolkit approach: in particu-
lar, the wide range of global services that can be sup-
ported, because of the decoupling of global and local
services, and the ability to construct "grid-enabled"
applications incrementally, by incorporating services
one by one and/or by taking increasing advantage
of translucent interfaces. Identification of the weak-
nesses of the approach will require the construction of
larger testbeds and further experimentation with ap-
plications. One concern is that the basic techniques
might not scale, perhaps because the local services de-
fined by the Globus toolkit are too complex for broad
deployment, or because the accuracy of the informa-
tion provided by MDS declines below a useful level.
We are investigating these issues.

We believe that the creation of large-scale testbeds
must be a central part of any computational grid
project. Hence, we are working with a variety of in-
stitutions around the world to create a permanent in-
frastructure to support experimentation with grid ap-
plications and grid software. The initial version of this
GUSTO testbed already includes resources at some 17
institutions, and we expect this number to increase.

In current work, we are investigating both grid ap-
plications and more sophisticated grid services. We
have started to investigate the construction of so-
phisticated resource brokers and robust co-allocation
strategies. We are also studying how MDS can be used
to support dynamic configuration and adaptation, so
that applications can maintain high levels of perfor-
mance in the face of dynamic changes in underly-
ing system infrastructure. Finally, we are integrating
quality of service mechanisms into the Globus frame-
work. Our initial focus is on guaranteeing communi-
cation performance. However, we will also be study-
ing how to integrate processor and memory scheduling
into this framework.

For more information on the Globus project and
toolkit, see the papers cited here and also the material

16

at www.globus.org.

Acknowledgment s
We gratefully acknowledge the numerous contribu-

tions of the Globus team, without which the accom-
plishments detailed here would not have been possible:
in particular, Steven Tuecke, Joe Bester, Joe Insley,
Nick Karonis, Gregor von Laszewski, Stuart Martin,
Warren Smith, and Brian Toonen at Argonne National
Laboratory; Karl Czajkowski and Steve Fitzgerald at
USC/ISI; and Craig Lee and Paul Stelling at The
Aerospace Corporation. SF-Express was developed by
Sharon Brünett, Paul Messina, and others at Caltech
and JPL. The development of GUSTO was made pos-
sible by the considerable assistance offered by staff at
each participating site.

This work was supported in part by the Math-
ematical, Information, and Computational Sciences
Division subprogram of the Office of Computational
and Technology Research, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38; by the De-
fense Advanced Research Projects Agency under con-
tract N66001-96-C-8523; and by the National Science
Foundation.

Author Biographies
Ian Foster received his Ph.D. in computer science

from Imperial College, England. He holds a joint ap-
pointment as a scientist at Argonne National Labo-
ratory and associate professor in the Department of
Computer Science at the University of Chicago. He
is the author of three books and over 100 articles and
reports on various topics relating to parallel and dis-
tributed computing and computational science. In
1995, he led development of the software infrastruc-
ture for the I-WAY networking experiment. Dr. Fos-
ter co-leads the Globus project with Carl Kesselman.

Carl Kesselman is a project Leader at the In-
formation Sciences Institute and a research associate
professor in computer science at the University of
Southern California. He received a Ph.D. in com-
puter science at the University of California at Los
Angeles. He co-leads the Globus project with Ian Fos-
ter. Dr. Kesselman's research interests include high-
performance distributed computing, parallel comput-
ing, and parallel programming languages.

References
[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall.

Nimrod: A tool for performing parameterised
simulations using distributed workstations. In
Proc. 4th IEEE Symp. on High Performance
Distributed Computing. IEEE Computer Society
Press, 1995.

[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and
C. J. Scheiman. Extending the operating system
at the user level: The UFO global file system.
In 1997 Annual Technical Conference on UNIX
and Advanced Computing Systems (USENIX'97),
January 1997.

[3] A. D. Alexandrov, M. Ibel, K. E. Schauser, and
C. J. Scheiman. Superweb: Towards a global
web-based parallel computing infrastructure. In
11th International Parallel Processing Sympo-
sium, April 1997.

[4] S. Brünett, D. Davis, T. Gottschalk, P. Messina,
and C. Kesselman. Implementing distributed syn-
thetic forces simulations in metacomputing envi-
ronments. In Proceedings of the Heterogeneous
Computing Workshop, 1998. to appear.

[5] K. M. Chandy and C. Kesselman. CC++: A
declarative concurrent object oriented program-
ming notation. In Research Directions in Object
Oriented Programming, pages 281-313. The MIT
Press, 1993.

[6] D. E. Comer. Internetworking with TCP/IP.
Prentice Hall, 3rd edition, 1995.

[7] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost,
M. Snir, S. Fineberg, B. Nitzberg, B. Traver-
sal and P. Wong. MPI-IO: A parallel file I/O
interface for MPI. Technical Report NAS-95-
002, NAS, NASA Ames Research Center, Moffett
Field, CA, January 1995. Version 0.3.

[8] K. Czajkowski, I. Foster, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A resource manage-
ment architecture for metacomputing systems.
Preprint, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne,
111., 1997.

[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, and S. Tuecke. A di-
rectory service for configuring high-performance
distributed computations. In Proc. 6th IEEE
Symp. on High Performance Distributed Com-
puting, pages 365-375. IEEE Computer Society
Press, 1997.

[10] I. Foster, J. Geisler, W. Gropp, N. Karonis,
E. Lusk, G. Thiruvathukal, and S. Tuecke. A
wide-area implementation of the Message Passing
Interface. Parallel Computing, 1998. to appear.

17

[11] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.
Managing multiple communication methods in
high-performance networked computing systems.
Journal of Parallel and Distributed Computing,
40:35-48, 1997.

[12] I. Foster, J. Geisler, W. Nickless, W. Smith, and
S. Tuecke. Software infrastructure for the I-WAY
metacomputing experiment. Concurrency: Prac-
tice & Experience, 1998. to appear.

[13] I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. International Jour-
nal of Supercomputer Applications, 11(2):115-
128, 1997.

[14] I. Foster and C. Kesselman, editors. Computa-
tional Grids: The Future of High-Performance
Distributed Computing. Morgan Kaufmann Pub-
lishers, 1998.

[15] I. Foster, C. Kesselman, and S. Tuecke. The
Nexus approach to integrating multithreading
and communication. Journal of Parallel and Dis-
tributed Computing, 37:70-82, 1996.

[16] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogul.
Remote I/O: Fast access to distant storage. In
Proc. IOPADS'97, pages 14-25. ACM Press,
1997.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
B. Manchek, and V. Sunderam. PVM: Paral-
lel Virtual Machine—A User's Guide and Tuto-
rial for Network Parallel Computing. MIT Press,
1994.

[18] A. Grimshaw, A. Nguyen-Tuong, and W. Wulf.
Campus-wide computing: Results using Legion
at the University of Virginia. Technical Report
CS-95-19, University of Virginia, 1995.

[19] A. Grimshaw, W. Wulf, J. French, A. Weaver,
and P. Reynolds, Jr. Legion: The next logical
step toward a nationwide virtual computer. Tech-
nical Report CS-94-21, Department of Computer
Science, University of Virginia, 1994.

[20] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
A high-performance, portable implementation of
the MPI message passing interface standard. Par-
allel Computing, 22:789-828, 1996.

[21] K. Hickman. The SSL protocol. Internet Draft
RFC, 1995.

[22] T. Howes and M. Smith. The ldap application
program interface. RFC 1823, 08/09 1995.

[23] M. Lewis and A. Grimshaw. The core Legion
object model. In Proc. 5th IEEE Symp. on High
Performance Distributed Computing, pages 562-
571. IEEE Computer Society Press, 1996.

[24] J. Linn. Generic security service application pro-
gram interface. Internet RFC 1508, 1993.

[25] M. Litzkow, M. Livny, and M. Mutka. Condor -
a hunter of idle workstations. In Proc. 8th Intl
Conf. on Distributed Computing Systems, pages
104-111, 1988.

[26] P. Lyster, L. Bergman, P. Li, D. Stan-
fill, B. Crippe, R. Blom, C. Pardo, and
D. Okaya. CAS A gigabit supercomputing net-
work: CALCRUST three-dimensional real-time
multi-dataset rendering. In Proc. Supercomput-
ing '92, 1992.

[27] Message Passing Interface Forum. MPI-2: Ex-
tensions to the Mess age-Pas sing Interface, 1997.
http://www.mpi-forum.org.

[28] K. Moore, G. Fagg, A. Geist, and J. Dongarra.
Scalable networked information processing envi-
ronment (SNIPE). In Proceedings of Supercom-
puting '97, 1997.

[29] J. Steiner, B. C. Neuman, and J. Schiller. Ker-
beros: An authentication system for open net-
work systems. In Usenix Conference Proceedings,
pages 191-202. 1988.

[30] A. Vahdat, P. Eastham, C. Yoshikawa, E. Belani,
T. Anderson, D. Culler, and M. Dahlin. WebOS:
Operating system services for wide area applica-
tions. Technical Report UCB CSD-97-938, U.C.
Berkeley, 1997.

18

NetSolve: a Network-Enabled Solver;
Examples and Users.

Henri Casanova

Dept. of Computer Science
University of Tennessee

Knoxville, TN 37996-1301

Jack J. Dongarra

Dept. of Computer Science
University of Tennessee

Knoxville, TN 37996-1301
and

Mathematical Science Section
Oak Ridge National Laboratory

Oak Ridge, TN 37821-6367

Abstract
The NetSolve project, underway at the University of

Tennessee and at the Oak Ridge National Laboratory,
allows users to access computational resources dis-
tributed across the network. These resources are em-
bodied in computational servers and allow the user to
easily perform scientific computing tasks without hav-
ing any computing facility installed on his/her com-
puter. The user access to the servers is facilitated
by a variety of interfaces: Application Programming
Interfaces (APIs), Textual Interactive Interfaces and
Graphical User Interfaces (GUIs). There are many re-
search issues involved in the NetSolve system, includ-
ing fault-tolerance, load balancing, user-interface de-
sign, computational servers, and network-based com-
puting. As the project matures, several promising ex-
tensions and applications of NetSolve will emerge. In
this article, we provide an overview of the project and
examine some of the extensions being developed: An
interface to the Condor system, an interface to the
ScaLAPACK parallel library, a bridge with the Ninf
system, and an integration of NetSolve and Image Vi-
sion.

1 The NetSolve project
1.1 Basics

Thanks to advances in hardware, networking infras-
tructure and algorithms, computing intensive prob-

lems in many areas can now be successfully attacked
using networked, scientific computing. In the net-
worked computing paradigm, vital pieces of software
and information used by a computing process are
spread across the network, and are identified and
linked together only at run time. This is in contrast to
the current software usage model where one acquires
a copy (or copies) of task-specific software package for
use on local hosts. One can distinguish three main
paradigms for such systems. In proxy computing, the
data and the program reside on the user's machine and
are both sent to a server that runs the code on the data
and returns the result. In code shipping, the program
resides on the server and is downloaded to the user's
machine, where it operates on the data and generates
the result on that machine. This is the paradigm used
by Java applets within Web browsers. NetSolve uses
the remote computing paradigm: the program resides
on the server; the user's data is sent to the server,
where the appropriate programs or numerical libraries
operate on it; the result is then sent back to the user's
machine.

Figure 1 depicts the typical layout of the system.
NetSolve provides the user with a pool of computa-
tional resources. These resources are computational
servers that have access to ready-to-use numerical
software. As shown in the figure, the computational
servers can be running on single workstations, net-

0-8186-8365-1/98 $10.00 © 1998 IEEE
19

Scalar Server

Network
of

Servers

request

MPP Servers Scalar Server
reply

Figure 1: NetSolve's organization

works of workstations that can collaborate for solv-
ing a problem, or MPP (Massively Parallel Proces-
sor) systems. The user is using one of the NetSolve
client interfaces. Through these interfaces, he can
send requests to the NetSolve system asking for his
numerical computation to be carried out by one of
the servers. The main role of the NetSolve agent is
to process this request and to choose the most suit-
able server for this particular computation in terms of
execution time. Once a server has been chosen, it is
assigned the computation, uses its available numeri-
cal software, and eventually returns the results to the
user. One of the major advantages of this approach
is that the agent performs load-balancing among the
different resources.

As shown on Figure 1, there can be multiple in-
stances of the NetSolve agent on the network, and dif-
ferent clients can contact different agents depending
on their locations. The agents can exchange infor-
mation about their different servers and allow access
from any client to any server if desirable. NetSolve
can be used either via the Internet or on an intranet,
such as inside a research department or a university,
without participating in any Internet based compu-

tation. Another important aspect of NetSolve is that
the configuration of the system is entirely flexible: any
server/agent can be stopped and (re-)started at any
time without jeopardizing the integrity of the system.

1.2 The computational resources
When building the NetSolve system, one of the

challenges was to design a suitable model for the com-
putational servers. The NetSolve servers are config-
urable so that they can be easily upgraded to encom-
pass ever-increasing sets of numerical functionalities.
The NetSolve servers are also pre-installed, meaning
that the end-user does not have to install any numer-
ical software. Finally, the NetSolve servers provide
uniform access the the numerical software, in the sense
that the end-user has the illusion that she is accessing
numerical subroutines from a single, coherent numer-
ical library.

To make the implementation of such a computa-
tional server model possible, we have designed a gen-
eral, machine-independent way of describing a numer-
ical computation, as well as a set of tools to gener-
ate new computational modules as easily as possible.
The main component of this framework is a descriptive
language which is used to describe each separate nu-

20

merical functionality of a computational server. The
description files written in this language can be com-
piled by NetSolve into actual computational modules
executable on any UNIX or NT platform. These files
can then be exchanged by any institution wanting to
set up servers: each time a new description file is cre-
ated, the capabilities of the entire NetSolve system are
increased.

A number of description files have been generated
for a variety of numerical libraries: ARPACK [1], Fit-
Pack [2], ItPack [3], MinPack [4], FFTPACK [5], LA-
PACK [6], BLAS [7, 8, 9], QMR [10], and ScaLA-
PACK [11]. These numerical libraries cover several
fields of computational science; Linear Algebra, Opti-
mization, Fast Fourier Transforms, etc.

NetSolve computational servers providing access to
these libraries are currently running at the University
of Tennessee and at other locations world-wide. Real-
time information on the running servers can be found
on the NetSolve web-page located at

http://www.cs.utk.edu/netsolve

1.3 The client interfaces
A major concern in designing NetSolve was to pro-

vide several interfaces for a wide range of users. Net-
Solve can be invoked through C, Fortran, Java, as well
as on Matlab. In addition, there is a Web-enabled
Java GUI. Another concern was keeping the interfaces
as simple as possible. For example, there are only two
calls in the MATLAB interface, and they are sufficient
to allow users to submit problems to the NetSolve
system. Each interface provides asynchronous calls
to NetSolve in addition to traditional synchronous or
blocking calls. When several asynchronous requests
are sent to a NetSolve agent, they are dispatched
among the available computational resources accord-
ing to the load-balancing schemes implemented by the
agent. Hence, the user—with virtually no effort—can
achieve coarse-grained parallelism from either a C or
Fortran program, or from interaction with a high-level
interface. All the interfaces are described in detail in
the "NetSolve's Client User's Guide" [12].
1.4 The NetSolve agent
1.4.1 The agent as a database

Keeping track of what software resources are available
and on which servers they are located is perhaps the
most fundamental task of the NetSolve agent. Since
the computational servers use the same framework to
contribute software to the system (see Section 1.2), it
is possible for the agent to maintain a database of dif-
ferent numerical functionalities available to the users.

Each time a new server is started, it sends an ap-
plication request to an instance of the NetSolve agent.

This request contains general information about the
server and the list of numerical functions it intends
to contribute to the system. The agent examines this
list and detects possible discrepancies with the other
existing servers in the system. Based on the agent's
verdict, the server can be integrated into the system
and available for clients.

1.4.2 The agent as a resource broker

The goal of the NetSolve agent is to choose the
best-suited computational server for each incoming
request to the system. For each user request, the
agent determines the set of servers that can han-
dle the computation and makes a choice between
all the possible resources. To do so, the agent
uses computation-specific and resource-specific infor-
mation. Computation-specific information is mostly
included in the user request whereas resource-specific
information is partly static (server's host processor
speed, memory available, etc.) and partly dynamic
(processor workload). The agent thus provides the
user with location transparency for the processor per-
forming her computation. Rationale and further de-
tail on these issues can be found in [13], as well as
a description of how NetSolve ensures fault-tolerance
among the servers.
1.5 Conclusion

Agent-based computing seems to be a promising
strategy. NetSolve will evolve into a more elaborate
system in the future and a major part of this evolu-
tion is to take place within the agent. Such issues as
user accounting, security, data encryption for instance
are only partially addressed in the current implemen-
tation of NetSolve and will be the object of much work
in the future. As the types of hardware resources and
the types of numerical software available on the com-
putational servers become more and more diverse, the
resource broker embedded in the agent will need to
become increasingly sophisticated. There are many
difficulties in providing a uniform performance metric
that encompasses any type of algorithmic and hard-
ware considerations in a metacomputing setting, es-
pecially when different numerical resources, or even
entire frameworks are integrated into NetSolve. Such
integrations are described in the following sections.

2 An interface to the Condor system
2.1 Overview of Condor

Condor [14, 15, 16], developed at the University
of Wisconsin, Madison, is an environment that can
manage very large collections of distributively owned
workstations. Its development has been motivated by

21

the ever increasing need for scientists and engineers
to exploit the capacity of such collections, mainly by
taking advantage of otherwise unused CPU cycles.

A brief description of Condor's software architec-
ture follows. A Condor pool consists of any number of
machines, that are connected by a network. Condor
daemons constantly monitor the status of the individ-
ual computers in the cluster. Two daemons run on
each machine, the startd and the schedd. The startd
monitors information about the machine itself (load,
mouse/keyboard activity, etc.) and decides if it is
available to run a Condor job. The schedd keeps track
of all the Condor jobs that have been submitted to the
machine. One of the machine, the Central Manager,
keeps track of all the resources and jobs in the pool.
When a job is submitted to Condor, the scheduler on
the central manager matches a machine in the Con-
dor pool to that job. Once the job has been started,
it is periodically checkpointed, can be interrupted and
migrated to a machine whose architecture is the same
as the one of the machine on which the execution was
initiated. This organization is partly depicted in Fig-
ure 2. More details on the Condor system and the
software layers can be found in [14].

2.2 A Condor pool as a NetSolve resource
2.2.1 Motivation

Interfacing NetSolve and Condor is a very natural
idea. NetSolve provides remote easy access to com-
putational resources through multiple, attractive user
interfaces. Condor allows users to harness the power
of a pool of machines while using otherwise unused
CPU cycles. The users at the consoles of those ma-
chines are therefore not penalized by the scheduling
of Condor jobs. If the pool of machines is reasonably
large, it is usually the case that Condor jobs can be
scheduled almost immediately. This could prove to
be very interesting for a project like NetSolve. In-
deed, NetSolve servers may be started so that they
grant local resource access to outside users. Interfac-
ing NetSolve and Condor could then give priority to
local users and provide underutilized only CPU cycles
to outside users.

2.2.2 Implementation

Figure 2 shows how an entire Condor pool can be seen
as a single NetSolve computational resource. The Cen-
tral Manager runs two daemons in addition to the
usual startd and schedd: the negotiator and the col-
lector. One machine also runs a customized version
of the NetSolve server. When this server receives a
request from a client, instead of creating a local child

process running a computational module, it uses the
Condor tools to submit that module to the Condor
pool. The negotiator on the Central Manager then
chooses a target machine for the computational mod-
ule. Due to fluctuations in the state of the pool, the
computational module can then be migrated among
the machines in the pool. When the results of the nu-
merical computation are obtained, the NetSolve server
transmits that result back to the client.

The actual implementation of the NetSolve/Condor
interface was made easy by the Condor tools provided
to the Condor user. However, the restrictions that
apply to a Condor jobs concerning system calls were
difficult and required quite a few changes to obtain a
Condor-enabled NetSolve server. A major issue how-
ever still needs to be addressed; how does the NetSolve
agent perceive a Condor pool as a resource? Indeed,
it is rather difficult to predict when the job will be
scheduled or how often it will be suspended and mi-
grated. Finding the appropriate performance predic-
tion technique will be at the focus of the next step in
the NetSolve/Condor collaboration.

3 Integrating parallel numerical li-
braries

3.1 Motivation
Integrating parallel packages into NetSolve will al-

low a user on a workstation to access MPP systems
to perform large computation. This access can be ex-
tremely simple and the user may not even be aware
that he is using a parallel library.

3.2 Integrating parallel software packages
into NetSolve

ScaLAPACK (Scalable Linear Algebra Package) is
a library of high-performance linear algebra routines
for distributed-memory message-passing MIMD com-
puters as well as networks of workstations support-
ing PVM [17] or MPI [18]. ScaLAPACK was devel-
oped at the University of Tennessee, Knoxville, the
Oak Ridge National Laboratory and the University of
California, Berkeley. It is a continuation of the LA-
PACK [6] project, and contains routines for solving
systems of linear equations, least squares problems,
and eigenvalue problems. ScaLAPACK views the un-
derlying multi-processor system as a rectangular pro-
cess grid. Global data is mapped to the local mem-
ories of the processes in that grid assuming specific
data-distributions. For performance reasons, ScaLA-
PACK uses the two-dimensional block cyclic distri-
bution scheme for dense matrix computations. Inter-
process communication within ScaLAPACK is done
via the BLACS (Basic Linear Algebra Communication

22

Condor Central Manager Condor pool

Machine N

Figure 2: NetSolve and Condor

subprograms) [19, 20]. All the details on ScaLAPACK
and its software hierarchy can be found in the latest
edition of the User's Guide [11].

Figure 3 is a very simple description of how the Net-
Solve server has been customized to use the ScaLA-
PACK library. The customized server receives data
input from the client in the traditional way. The Net-
Solve server uses BLACS calls to set up the ScaLA-
PACK processor grid. ScaLAPACK requires that the
data already be distributed among the processors prior
to any library call. This is the reason why each user
input is first 2-D block cyclic distributed in that grid
when necessary. The server can then initiate the call
to ScaLAPACK and wait until completion of the com-
putation. When the ScaLAPACK call returns, the
result of the computation is usually available on the
processors and is 2-D block cyclic distributed as well.
The server then gathers that result and sends it back
to the client in the expected format. This process is
completely transparent to the user who does not even
realize that a parallel execution is taking place.

This approach is very promising. A client can use
MATLAB on a PC and issue a simple call like [x] =
netsolveCeig' ,a) and have an MPP system use a

high-performance library to perform a large eigenvalue
computation. We have designed a prototype of the
customized server running on top of PVM [17] or MPI
[18]. There are many research issues arising with in-
tegrating parallel libraries in NetSolve, including per-
formance prediction, choices of processor-grid/matrix-
block size, choice of numerical algorithm, processor
availability, accounting, etc.

4 NetSolve and Ninf
4.1 A brief overview of Ninf

Ninf, developed at the Electrotechnical Laboratory,
Tsukuba, is a global network-wide computing infras-
tructure project which allows users to access compu-
tational resources including hardware, software, and
scientific data distributed across a wide area net-
work with an easy-to-use interface. Computational
resources are shared as Ninf remote libraries and are
executable at remote Ninf servers. Users can build an
application by calling the libraries with the Ninf Re-
mote Procedure Call, which is designed to provide a
programming interface similar to conventional func-
tion calls in existing languages, and is tailored for
scientific computation. In order to facilitate location

23

ScaLÄPACIC
Processor Grid

3

J |NpWdrMPP|

Figure 3: The ScaLAPACK NetSolve Server Paradigm

transparency and network-wide parallelism, the Ninf
MetaServer maintains global resource information re-
garding computational server and databases. It can
therefore allocate and schedule coarse-grained compu-
tations to achieve good global load balancing. Ninf
also interfaces with existing network service such as
the WWW for easy accessibility. More details on Ninf
can be found in [21]. Clearly, NetSolve and Ninf bear
strong similarities both in motivation and general de-
sign. Allowing the two systems to coexist and collab-
orate should lead to promising developments.

4.2 A gateway between Ninf and Net-
Solve

Some design issues prevent an immediate seam-
less integration of the two softwares (conceptual dif-
ferences between the NetSolve agent and the Ninf
Metaserver, problem specifications, user interfaces,
data transfer protocols, etc.). In order to over-
come these issues, the Ninf team started developing
two adapters: a NetSolve-Ninf adapter and a Ninf
NetSolve-adapter. Thanks to those adapters, Ninf
clients can use computational resources administrated
by a NetSolve system and vice-versa.

Figure 4(i) shows the Ninf-NetSolve adapter allow-
ing access to Ninf resource from a NetSolve client. The
adapter is just seen by the NetSolve agent as any other
NetSolve server. When a NetSolve client sends a re-
quest to the agent, it can then be told to use the Net-
Solve adapter. The adapter performs protocol trans-

lation, interface translation, and data transfer, asks a
Ninf server to perform the required computation and
returns the result to the user.

In Figure 4(ii), the NetSolve-Ninf adapter can be
seen by the Ninf MetaServer as a Ninf server, but in
fact plays the role of a NetSolve client. This is a lit-
tle different from the Ninf-NetSolve adapter because
the NetSolve agent is a resource broker whereas the
Ninf MetaServer is a proxy server. Once the adapter
receives the result of the computation from some Net-
Solve server, it transfers that result back to the Ninf
client.

There are several advantages of using such
adapters. Updating the adapters to reflects the evo-
lutions of NetSolve or Ninf seems to be an easy task.
Some early implementation evaluations tend to show
that using either system via an adapter causes accept-
able overheads, mainly due to additional data trans-
fers. Those first experiments appear encouraging and
will definitely be extended to effectively enable an in-
tegration of NetSolve and Ninf.

5 Extending Image Vision by the use of
NetSolve

In this section, we describe how NetSolve can be
used as a building block for a general purpose frame-
work for basic image processing.

24

NetSolve^
Client

' NetSolve >
Agent

/ Ninf \
[1 Client 1

i V^x

/Ninf \^
j (MetaServer u_»
I \ /

NetSolve \
Agent /

Ninf-NetSolve |
Adapter MM

Ninf
Server

Ninf-NetSolve '
Adapter ^M

NetSolve
Server

■ Ninf
Server

NetSolve
Server

(i) i (")

Figure 4: Going (i) from NetSolve to Ninf and (ii) from Ninf to NetSolve

5.1 Integrating the ImageVision library
into NetSolve

This project is under development at the ICG insti-
tute at Graz University of Technology, Austria. The
scope of the project is to make basic image processing
functions available for remote execution over a net-
work. The goals of the project include two objectives
that can be leveraged by NetSolve. First, the result-
ing software should prevent the user from having to
install complicated image processing libraries. Sec-
ond, the functionalities should be available via Java-
based applications. The ImageVision Library (IL) [22]
is an object-oriented library written in C++ by Silicon
Graphics, Inc. (SGI) and shipped with newer work-
stations. It contains typical image processing routines
to efficiently access, manipulate, display, and store im-
age data. ImageVision has been judged quite complete
and mature by the research team at ICG and seems
therefore a good choice as an "engine" for building
a remote access image processing framework. Such a
framework will make IL accessible from any platform
(and not only from SGI workstations) and is described
in [23].

5.2 NetSolve as an operating environ-
ment for ImageVision

The reasons why NetSolve has been a first choice
for such a project are diverse. First, NetSolve is easy
to understand, use, and extend. Second, NetSolve is
freely available. Third, NetSolve provides language
binding to Fortran, C, and Java. And finally, Net-
Solve's agent-based design allows load monitoring and
balancing among the available servers. New NetSolve
computational modules corresponding to the desired
image processing functionalities will be created and
integrated into the NetSolve servers. A big part of the
project at ICG is to build a Java GUI to IL.

Figure 5 shows a simple example of how ImageVi-
sion can be accessed via NetSolve. A Java GUI can be
built on top of the NetSolve Java API. As shown on
the figure, this GUI could offer visualization capabili-
ties. For computations, it uses an embedded NetSolve
client and contacts SGI servers that have access to IL.
The user of the Java GUI does not realize that Net-
Solve is the back end of the system, or that he uses
a SGI library without running the GUI on a SGI ma-
chine! The protocol depicted on Figure 5 is of course
simplistic. In order to obtain acceptable levels of per-
formance, the network traffic needs to be minimized.
There are several ways of attacking this problem. For
instance, the servers could "keep a state", meaning
that some data can be cached on the server for fu-
ture use. Several issues are involved in the design of
such a mechanism as the cache needs proper invalida-
tion mechanisms, replacement policies, etc. Another
possibility would be to combine requests to avoid re-
transmitting redundant data. Such a change can be
already emulated my designing appropriate problem
description file for the NetSolve servers. However, it
may become preferable to include request combination
as a standard feature of the NetSolve protocol. The
current version of the Java API in GUI in NetSolve
allows to reference objects (e.g. images) via URLs.
This may prove useful for some applications, and in
particular to the ImageVision/NetSolve integration.

6 Conclusion
The scientific community has long used the Inter-

net for communication of email, software, and docu-
mentation. Until recently there has been little use of
the network for actual computations. This situation
is changing rapidly and will have an enormous impact
on the future.

We have discussed throughout this article how Net-

25

: [_y i ■ -1—^—j

I NetSolve
Agent

2. choice of a server

1. netsl("rotate",...)j

Java GUI

'm /NetSolveA 3. send data

V. Client X.

{ Visualization) il^i
4. retrieve result

SGI back end

Figure 5: ImageVision and NetSolve

Solve can be customized, extended, and used for a
variety of purposes. We first described in Sections 2
and 3 how NetSolve can encompass new types of com-
puting resources, resulting in a more powerful and flex-
ible environment and raising new research issues. We
next discussed in Section 4 how NetSolve and Ninf can
be merged into a single metacomputing environment.
Finally, in Section 5, we gave an example of an entire
application that uses NetSolve as an operating envi-
ronment to build general image processing framework.
All these developments take place at different levels in
the NetSolve project and have had and will continue
to have an impact on the project itself, causing it to
improve and expand.

References
[1] R. Leboucq, D. Sorensen, and C. Yang. ARPACK

Users Guide. 1997.

[2] A. Cline. Scalar- and Planar-Valued Curve Fit-
ting Using Splines Under Tension. Communica-
tions of the ACM, 17:218-220, 1974.

[3] D. Young, D. Kincaid, J. Respess, and R. Grimes.
Itpack2c: a FORTRAN package for solving large
sparse linear systems by adaptive accelerated it-
erative methods. Technical report, University of
Texas at Austin, Boeing Computer Services Com-
pany, 1996.

[4] J. More, B. Garbow, and K. Hillstrom. Minpack
: Documentation file accessible at:
"http://www.netlib.org/minpack/readme".

[5] P. Swarztrauber. FFTPACK : Documentation file
accessible at:

"ftp://ftp.ucar.edu/ftp/dsl/lib/fftpack/readme".

[6] E. Anderson, Z. Bai, C. Bischof, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users' Guide, Second
Edition. SIAM, Philadelphia, PA, 1995.

[7] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh.
Basic Linear Algebra Subprograms for Fortran
Usage. ACM Transactions on Mathematical Soft-
ware, 5:308-325, 1979.

[8] J. Dongarra, J. Du Croz, S Hammarling, and
R. Hanson. An Extended Set of Fortran Basic
Linear Algebra Subprograms. A CM Transactions

on Mathematical Software, 14(l):l-32, 1988.

[9] J. Dongarra, J. Du Croz, I. Duff, and S. Ham-
marling. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Transactions on Mathemat-
ical Software, 16(1):1-17, 1990.

26

[10] R.W. Freund and N.M. Nachtigal. QMR: A quasi-
minimal residual method for non-Hermitian lin-
ear systems. Numer. Math., 60:315-339, 1991.

[11] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users' Guide.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[12] H. Casanova, J. Dongarra, and K. Seymour.
Client User's Guide to Netsolve. Technical Re-
port CS-96-343, Department of Computer Sci-
ence, University of Tennessee, 1996.

[13] H Casanova and J. Dongarra. NetSolve: A
Network Server for Solving Computational Sci-
ence Problems. The International Journal of Su-
percomputer Applications and High Performance
Computing, ll(3):212-223, 1997.

[14] M. Litzkow, M. Livny, and M.W. Mutka. Con-
dor - A Hunter of Idle Workstations. In Proc. of
the 8th International Conference of Distributed
Computing Systems, pages 104-111. Department
of Computer Science, University of Winsconsin,
Madison, June 1988.

[15] M. Litzkow and M. Livny. Experience with
the Condor Distributed Batch System. In Proc.
of IEEE Workshop on Experimental Distributed
Systems. Department of Computer Science, Uni-
versity of Winsconsin, Madison, 1990.

[16] J. Pruyne and M. Livny. A Worldwide Flock
of Condors : Load Sharing among Workstation
Clusters. Journal on Future Generations of Com-
puter Systems, 12, 1996.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM : Paral-
lel Virtual Machine. A Users' Guide and Tuto-
rial for Networked Parallel Computing. The MIT
Press Cambridge, Massachusetts, 1994.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker,
and J. Dongarra. MPI: The Complete Reference.
The MIT Press Cambridge, Massachusetts, 1996.

[19] J. Dongarra and R. van de Geijn. Two dimen-
sional basic linear algebra communication sub-
programs. Technical Report CS-91-138, Com-
puter Science Dept, University of Tennessee,
Knoxville, TN, 1991. Also LAPACK Working
Note #37.

[20] R.C. Whaley and J. Dongarra. A user's guide to
the BLACS vl.l. Technical Report CS-95-281,
Computer Science Dept, University of Tennessee,
Knoxville, TN, 1995. Also LAPACK Working
Note #118.

[21] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka,
and U. Nagashima. Ninf : Network based In-
formation Library for Globally High Performance
Computing. In Proc. of Parallel Object-Oriented
Methods and Applications (POOMA), Santa Fe,
1996.

[22] G. Eckel, J. Neider, and E. Bassler. ImageVision
Library Programming Guide. Silicon Graphics,
Inc., Mountain View, CA, 1996.

[23] M. Oberhuber. Integrating ImageVision into
NetSolve. Available at http://www.icg.tu-
graz.ac.at/mober/pub, October 1997.

Biographies

Jack J. Dongarra holds a joint appointment as
Distinguished Professor of Computer Science in the
Computer Science Department at the University of
Tennessee (UT) and as Distinguished Scientist in
the Mathematical Sciences Section at Oak Ridge Na-
tional Laboratory (ORNL) under the UT/ORNL Sci-
ence Alliance Program. He specializes in numeri-
cal algorithms in linear algebra, parallel computing,
use of advanced-computer architectures, programming
methodology, and tools for parallel computers. Other
current research involves the development, testing and
documentation of high quality mathematical software.
He was involved in the design and implementation
of the software packages EISPACK, LINPACK, the
BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI,
the National High-Performance Software Exchange
and NetSolve; and is currently involved in the design of
algorithms and techniques for high performance com-
puter architectures.

Professional activities include membership in the
Society for Industrial and Applied Mathematics
(SIAM), the Institute of Electrical and Electronics En-
gineers (IEEE), the Association for Computing Ma-
chinery (ACM), and a Fellow of the American Associ-
ation for the Advancement of Science (AAAS).

He has published numerous articles, papers, reports
and technical memoranda, and has given many presen-
tations on his research interests.

http://www.netlib.org/utk/people/JackDongarra/
Henri Casanova earned the Applied Mathe-

matics and Computer Science Engineer degree from

27

the Ecole Nationale Superieure d'Electrotechnique,
d'Electronique, d'Informatique et d'Hydraulique de
Toulouse (ENSEEIHT), Toulouse, France in 1993, as
well as the Diplome d'Etudes Approfondies in Parallel
Architectures and Software Engineering from the Uni-
versite Paul Sabatier, Toulouse, France. In 1992-1993
he was a trainee at the Institut de Recherche en In-
formatique de Toulouse (IRIT), in Toulouse, France.
From November 1993 until November 1994 he did his
military service working from the French Ministry of
Defense (DGA) as Advisor for the Computer Science
Division of the DPAG. In January 1995, he entered

the PhD program in Computer Science at the Uni-
versity of Tennessee, Knoxville and has been working
as a Graduate Research Assistant since then.

His research interests are diverse and include meta-
computing, Internet-based computing, parallel and
scientific computing, stochastic modeling (Markov
chains, Large Deviation Theory) and performance
prediction for distributed computing applications.
Casanova is the main developer of the NetSolve
project and still maintains the major part of the soft-
ware.

28

Implementing Distributed Synthetic Forces Simulations in
Metacomputing Environments

Sharon Brünett, Dan Davis, Thomas Gottschalk, Paul Messina
Center for Advanced Computing Research

California Institute of Technology
Pasadena, California 91125

Carl Kesselman
University of Southern California

Information Sciences Institute
Marina del Rey, CA 90292

Abstract

A distributed, parallel implementation of the widely
used Modular Semi-Automated Forces (ModSAF) Dis-
tributed Interactive Simulation (DIS) is presented,
with Scalable Parallel Processors (SPPs) used to simu-
late more than 50,000 individual vehicles. The single-
SPP code is portable and has been used on a variety
of different SPP architectures for simulations with up
to 15,000 vehicles. A general metacomputing frame-
work for DIS on multiple SPPs is discussed and results
are presented for an initial system using explicit Gate-
way processes to manage communications among the
SPPs. These 50K-vehicle simulations utilized 1,904
processors at six sites across seven time zones, includ-
ing platforms from three manufacturers. Ongoing ac-
tivities to both simplify and enhance the metacomput-
ing system using Globus are described.

1 The Large-Scale DIS Problem
Over the past few years, Distributed Interactive

Simulation (DIS) [1] has become an increasingly essen-
tial tool for training, system acquisition, test and eval-
uation within the Department of Defense. Key compo-
nents of DIS include: high-fidelity computer-simulated
individual entities (tanks, trucks, aircraft, ...); inter-
actions among entities hosted on different computers
through network messages; and support for Human In
Loop (HIL) interactions. Using DIS, it is possible to
create large-scale virtual representations of real oper-
ational environments that are inexpensive enough to
be used repeatedly.

ModSAF is a particularly important example of
DIS which is routinely used for cost-effective training
throughout the armed forces. Generally, it is run us-
ing an ensemble of workstations communicating over a

network, typically a LAN. Each workstation is respon-
sible for simulating some modest number (30-100) of
entities. These computer-generated Semi-Automated
Forces (SAF) are intended to mimic realistically the
behaviors of opposing or support forces within an ex-
ercise. The entity and environment models are accord-
ingly quite detailed.

Individual simulators (workstations) interact
through the exchange of data messages called PDUs
(Protocol Data Units) [2]. These PDUs are used
in ModSAF to describe the state of individual enti-
ties, weapons firing, detonations, environmental phe-
nomenon, command and control orders, etc. In stan-
dard ModSAF, the PDUs are sent as UDP datagrams.
Due to this unreliable message-delivery mechanism,
each entity state PDU typically contains a complete
summary of the vehicle's current state, and PDUs are
(re)transmitted at frequent, regular "heartbeat" inter-
vals to compensate for dropped data packets.

Independent of the nature of the PDU communi-
cations mechanism, this simplest picture of ModSAF
is not scalable in that it (implicitly) assumes each sim-
ulator receives and responds to all PDUs from all other
simulators—a model that clearly fails as the number of
simulators and simulated entities increases. Moreover,
in many realistic large scale simulations, it is invari-
ably the case that most system-wide PDU traffic is
irrelevant for the limited set of entities hosted on an
individual simulator (e.g., tanks separated by tens of
kilometers generally do not interact).

The DIS community encountered these issues in
their STOW-E exercise (Synthetic Theater of War-
Europe [3]) and ED-1A Engineering Demonstration
[4], in which ModSAF was used to simulate 5,371 ve-
hicles hosted at 12 separate sites in the USA and Eu-

0-8186-8365-1/98 $10.00 © 1998 IEEE
29

rope. Increasing the simulated entity count could not
be achieved by simply adding more workstations to
the network. Addition of a PDU screening mechanism
('Interest Management') helped but did not eliminate
all scaling hurdles.

This paper describes a new approach to truly
large-scale DIS, using multiple Scalable Parallel Pro-
cessors (SPPs) to solve the scaling problems observed
in STOW-E. After a short summary of project goals
and accomplishments in Sections 1.1 and 1.2, Section 2
presents the general method used for porting ModSAF
to run on an SPP. Sections 3-5 contain, respectively,
a (long-term) vision for an effective STOW metacom-
puting model, an analysis of initial multi-SPP Mod-
SAF accomplishments, and an overview of ongoing ac-
tivities to enhance and extend the existing software us-
ing elements from the Globus metacomputing toolkit

[7], [8].

1.1 SF Express Project Overview
The Synthetic Forces Express project (SF Ex-

press) [9] began in 1996 to explore the utility of
Scalable Parallel Processors (SPPs) as a solution to
the communications bottlenecks of conventional Mod-
SAF. The SF Express team consists of researchers
from the California Institute of Technology (Cal-
tech), the Jet Propulsion Laboratory (JPL), and the
Space and Naval Warfare Systems Center San Diego
(SPAWARSYSCEN, formerly known as NRaD). The
SF Express charter was to demonstrate a scalable com-
munications architecture simulating 50K vehicles on
multiple SPPs—an order-of-magnitude increase over
the size of the STOW-E simulation.

SPPs provide a natural, attractive alternative to
networked workstations for large-scale ModSAF runs.
Most of the processors on an SPP can be devoted to
independent executions of "SAFSim," the basic Mod-
SAF simulator code. The reliable high-speed commu-
nications fabric between processors on an SPP pro-
vides significantly increased bandwidth over standard
dataflows among networked workstations. A scalable
communications scheme was constructed in three main
steps:

Interest Specification Procedures: Individual
data messages were associated with specific inter-
est class indices, and procedures were developed
for evaluating the total interest state of an indi-
vidual simulation processor.

Intra-SPP Communications: Within an individ-
ual SPP, certain processors were designated as
message routers; the number of processors used
as routers can be selected for each run. These

processors receive and store interest declarations
from the simulator nodes and move simulation
data packets according to the interest declara-
tions.

Inter-SPP Communications: Additional interest-
restricted data exchange procedures were devel-
oped to support SF Express execution across mul-
tiple SPPs.

The primary technical challenge in porting Mod-
SAF to run efficiently on SPPs lies in construct-
ing a suitable network of message-passing router
nodes/processors. SF Express uses point-to-point SPP
communications (implemented using the MPI Message
Passing Interface [10]) to replace the UDP socket calls
of standard ModSAF. The network of routers man-
age SPP message traffic, effecting interest-restricted
communications among simulator nodes. This strat-
egy allows considerable freedom in constructing the
router node network. This paper describes a model
based on statically-allocated communication channels
among specific subsets of processors within an SPP.
This Router Network Architecture (RNA) was devel-
oped at Caltech [11],[12].

As the simulation problem size increases beyond
the capabilities of any single SPP, additional interest-
restricted communications procedures are needed to
enable "Metacomputed ModSAF" runs on multiple
SPPs. After a number of options were considered, an
implementation using dedicated Gateway processors
to manage inter-SPP communications was selected.

1.2 Simulations of 50K+ Vehicles

On 11 August 1997, the SF Express project per-
formed two separate simulation runs, each with more
than 50,000 individually simulated vehicles. The runs
used three different types of Scalable Parallel Proces-
sors (SPPs) at six separate sites spanning seven time
zones, as shown in Fig.(l). These sites were linked
by a variety of wide-area networks. Specifics for each
site are listed in Table 1. The majority of the SPPs
used the RNA communications scheme, while NASA
Ames and CEWES applied an alternative approach
developed at JPL [13].

The N(P) entries in the table indicate the number
of processors used at each site. The N(V)j columns in-
dicate the number of locally simulated vehicles in each
of the two runs. The 50K-vehicle simulation scenar-
ios were created by the Exlnit software [14] and fea-
tured immediate intense interactions among the sim-
ulated entities, causing high communications levels
both within and among SPPs.

30

NASA Ames
IBMSP2

Caltech CAQR
Exemplar

MHPCC
IBMSP2

ORNL
Intel Paragon

Hewlett-Packard
Exemplar

Kbytes/sec
 <10
 10-20
— 20 -100
-^>100

Figure 1: SPP sites and message rates in the 50K SF Express runs

Table 1: Participating Sites and Simulated Entity Counts for the 50,000 Vehicle SF Express Runs

Site Hardware N(P) N(V)i N(V)2

Caltech, Pasadena CA
ORNL, Oak Ridge TN
NASA Ames CA
CEWES, Vicksburg MS
MHPCC, Maui HI
HP/Convex, Richardson TX

HP Exemplar
Intel Paragon

IBM SP2
IBM SP2
IBM SP2

HP Exemplar

256
1024
139
229
128
128

13,095 12,182
16,695 15,996
5,464 5,637
9,739 9,607
5,056 7,027
5,348 6,733

Total 1,904 55,397 57,182

31

Standard Networked ModSAF

Interest
Declaration

PDUs

Generic SPP Decomposition

Router Node:

SAFSim Node

Service Node

Figure 2: Schematic illustration of a networked ModSAF simulator and notional mapping of the simulator tasks
onto an SPP

2 Porting ModSAF to a Scalable Par-
allel Processor
The basic strategy used in porting ModSAF to

an SPP is a heterogeneous assignment of tasks to pro-
cessors, as illustrated in Fig. (2). The processors are
divided into three classes:

Entity Simulators: Most of the SPP's processors
execute a minimally modified version of SAFSim,
the standard simulator code.

Data Servers: A small number of nodes read and
store simulation data, forwarding it to the SAF-
Sim nodes through SPP messages.

Routers: The movement of data among the SAFSim
nodes is managed by a number of dedicated router
nodes. The broadcast or multicast socket calls of
standard ModSAF are replaced by point-to-point
communications directed by this router network.

Neither side of Fig. (2) is scalable without the
imposition of additional interest management logic,
which limits the number of incoming data for an in-
dividual SAFSim. Since interest management is an
active research area, it is important that the SPP im-
plementation not depend on specifics of any one inter-
est management scheme. RNA makes only two min-
imal assumptions in this regard: each PDU can be
associated with an interest value (an "interest class"),
and each SAFSim can compute its own interest state
(the set of all relevant interest values for locally sim-
ulated vehicles). The communications network must

deliver to the SAFSim only those PDUs that overlap
the SAFSim's declared interest state.

2.1 The Router Network Architecture
The basic building block of Router Network Ar-

chitecture is a fixed set of SAFSim nodes communicat-
ing with single "Primary Router" node, as illustrated
in Fig. (3). There are only two essential modifications
to the standard ModSAF code, as run of the SAFSim
nodes of Fig. (3):

1. The usual (broadcast) network reads and writes in
the ModSAF network communications library are
replaced by SPP communications with the router
node.

2. Each SAFSim node periodically recomputes its
collective interest state (union of interest states
for all locally simulated vehicles) and sends this
information to its router.

The Primary Router in Fig.(3) receives and (tem-
porarily) stores PDUs and interest declarations from
the attached SAFSims and subsequently forwards
those PDUs that match the SAFSim interest states.
These tasks are implemented using three straightfor-
ward constructs:

1. A large circular buffer that stores active data el-
ements.

2. A client list that maintains the current interest
declaration of the individual attached SAFSims
and pointers to the next outgoing PDU for each
client.

32

Primary Router
f >

kl f fp 4 XLt
[* E y7fJ I
w P 1 M ''l

o 1 II II u a« |_j|_ji
c

IU. v LJL-JI
SAFSim Nodes

List of Clients
Interest Declaration
Last-Sent Datum Tag

PDU Storage Area

Figure 3: A Primary Router with its associated SAFSims

3. A simple interest assessment function that deter-
mines whether a PDU matches a client's declared
interest.

The Primary Router in Fig. (3) is a pure data server
that waits for and processes requests from SAFSim
clients. For efficiency, the actual data messages ex-
changed between SAFSims and Routers are PDU bun-
dles.

It has been found that a single Primary Router
can comfortably manage the communications for a set
of client SAFSims in Fig.(3) simulating 1K-2K total
vehicles. Multiple replicas of the Primary Router Clus-
ter are required once the overall simulation size ex-
ceeds this limit. In such cases, the basic unit of Fig. (3)
is first augmented by the addition of two new Router
nodes (referred to as "Pop-Up" and "Pull Down").
This enhanced routing "triad" is replicated, and ad-
ditional communications links between Pop-Up and
Pull-Down routers are enabled, giving rise to the full
router network shown in Fig.(4).

Communications within the full architecture of
Fig.(4) are also straightforward. In addition to its
normal communications with the SAFSim nodes, each
Primary Router forwards all SAFSim PDUs to its as-
sociated Pop-Up Router and also sends its collective
interest state (the union of the SAFSim interest states)
to its Pull-Down Router. Each Pull-Down router sub-
sequently collects interest-filtered PDUs from the full
Pop-Up layer, and delivers these data to the Primary
Router. Message passing within the router network
follows a strict set of hierarchical rules. In particular,
all data exchanges are flow-controlled, being initiated
by small request packets sent from one node to a router
in a higher layer within Fig. (4). This approach is used
to prevent both communications deadlocks and the ar-
rival of large unanticipated messages that could exceed
available system buffer space.

The Pop-Up layer in Fig. (4) provides a distributed
repository for active messages within the simulation
(making the Pop-Ups a perfect place to attach data
loggers for subsequent replays or statistics gather-
ing). Note that the data collection activities of the
Pull-Down routers occur in parallel with the Primary
SAFSim communications. This parallelism minimizes
the additional time delays for PDUs that must travel
through the full router network.

2.2 Performance of the Single-SPP Mod-
SAF Implementation

Detailed studies of the RNA model are contained
in Refs.[ll],[12]. Highlights of these analyses are as
follows:

1. The RNA approach has been run successfully on
a variety of SPP architectures, including the Intel
Paragon, IBM SP2, HP Exemplar, Silicon Graph-
ics Origin 2000, and "Beowulf" PC Cluster [15].

2. These single-SPP runs have included simulations
involving up to 18,000 vehicles.

3. The scaling behavior of RNA as problem size
increases is well-understood, with "theoretical"
expectations validated by the measured perfor-
mance results.

4. The effective inter-processor communications
within an SPP reduce PDU communication over-
head significantly for an individual SAFSim (rel-
ative to standard ModSAF performance on a
LAN/WAN network).

3 Anatomy of a DIS Metacomputer
"Metacomputing" can be defined as the concur-

rent use of multiple network-linked resources for solv-
ing very large computational problems. However,

33

Pop-Up

Pull-Down

Primary

Triad 3

Figure 4: The full RNA router network

computing in networked environments has both ad-
vantages and drawbacks. The state and structure of
networked resources are often dynamic and quite het-
erogeneous. Performance and portability may be com-
promised when trying to deal with heterogeneity. Al-
ternatively, linking large numbers of diverse resources
allows access to processing power and unique capabil-
ities beyond the resources at any one site. It also en-
ables applications to be solved with a mix of systems,
assigning appropriate and available assets to specific
parts of the overall problem.

For many classes of large distributed applications,
the aggregate computational power in a collection of
SPPs is only part of the metacomputing solution. A
full system would link computational engines, storage
systems, scientific instruments, advanced display de-
vices, and human resources, as illustrated in Fig.(5),
with "HIL" representing some sort of 'Human In Loop'
interface and "Idesk" ("Immersa-desk") representing a
typical advanced display device. Data may be gath-
ered from a remote source (for example, a satellite
downlink) and streamed into a collection of SPPs for
real-time simulation processing. During the course
of the simulation, mechanisms for logging, filtering,
or compressing data may be employed for subsequent
post-processing (e.g., visualization, querying, and per-
sistent storage).

Distributed heterogeneous computing immedi-
ately implies diversity in terms of hardware architec-
tures and performance, operating systems, administra-
tive domains, network protocols, etc. As the size and
complexity of the distributed system increases, opera-
tional issues (e.g., resource scheduling, allocation, and
data staging) become increasingly important compo-
nents of the metacomputing model.

The next two sections describe two initial steps to-
ward the seamless metacomputing picture of Fig.(5).
Section 4 presents the Gateway model used by the ini-
tial 50K-vehicle runs outlined in Table 1. Section 5
describes subsequent multi-SPP experiments to inte-
grate parts of the Globus metacomputing toolkit [7],

[8] in order to remove many operational difficulties en-
countered during initial large simulations.

4 SF Express on Multiple SPPs using
Explicit Gateways
For large runs on multiple SPPs, some portions

of the entity state information from each SPP will,
in general, be relevant for entities simulated on other
SPPs. Extensions of the single-SPP architecture
must effect interest-restricted PDU exchanges among
the SPPs. Dedicated Gateway processors provide a
straightforward mechanism for this task.

The Gateway processors are generalizations of the
intra-SPP routers from Section 2.1, and can be viewed
as communications servers for two distinct classes of
clients:

Local Clients: Router nodes on the same SPP as the
Gateway that hold the continually changing col-
lective PDU and Interest State of the local SPP.
Local Clients send (internal) interest declarations
and simulation data to the Gateway for subse-
quent delivery to remote resources.

External Clients: Processes on remote machines
that receive and process interest declarations and
PDU bundles from the local SPP. An external
client could be a standard ModSAF workstation
or GUI. For inter-SPP links, an External Client is
essentially a mirror image of a Local Client that
resides on the external SPP.

Gateways manage interest-selected data flow in
two directions by way of four basic operations:

1. The collective interest state of the Local SPP is
sent out to each of the external SPPs.

2. The corresponding interest declarations are re-
ceived from the remote SPPs, defining standard
client interests. The union of these external inter-
est states defines the collective (external) gateway

34

^mmmm^s^imji

:>-4 Site 2 I»

Router

Figure 5: Schematic of a DIS metacomputing environment

interest, which is sent up to the local attached
routers.

3. The Gateway receives interest-screened data from
the local routers in the usual manner, and for-
wards these to the appropriate external hosts.

4. The Gateway receives data from the external
SPPs and sends it to the attached local routers
for subsequent distribution within the local SPP.

Aside from the fact that a Gateway node has two im-
portant global interest states (the attached SPP and
the external world), the overall operation of Gateways
is extremely similar to that of the router nodes from
Section 2.1.

4.1 Gateway Specifics for the Initial 50K-
Vehicle Runs

The first metacomputing experiments within the
SF Express project involved a number of simplify-
ing assumptions and restrictions on the nature of the
Gateway processes, in particular:

1. The communications network among the partici-
pating SPPs is implemented as a fully connected
set of links between pairs of SPPs, with each SPP
dedicating a Gateway processor for each external
SPP.

2. Messages between SPPs are sent as UDP/IP data-
grams.

3. Interest declaration messages are retransmitted at
regular intervals ("heartbeats") to accommodate
the unreliable nature of the UDP messages.

In Fig. (6), the schematic diagram of the multi-SPP
environment illustrates the dedicated Gateway links.

The Gateways in Fig. (6) operate as pure commu-
nications servers, whose task is to manage the flow
of requested PDUs and interest states between SPPs.

Details can be found in Ref. [12]. Timing results for
Gateway operations in the 50K-vehicle runs are exam-
ined in Section 4.4.

The complete connectivity among Gateways in SF
Express (as in Fig. (6)) should be viewed as a provi-
sional expediency on the road to a 50K-vehicle sim-
ulation. With one exception noted below, this model
easily handled the inter-SPP traffic at rates up to 1,000
PDUs/sec. However, this initial model does not scale
well as the number of sites in Fig.(6) increases, and
has the additional defect that Gateway processors as-
sociated with low-activity links are a wasted resource.
Movement towards an architecture linking individual
SPPs by some form of multicasting (possibly ATM)
network should be explored.

4.2 The 50K-Vehicle Scenarios
The scenarios used by SF Express involve Blue

and Red forces laid down on the 300 km by 350 km
SAKI (Saudi Arabia, Kuwait, Iraq) terrain database.
The full complement of vehicles is organized into a
number of opposing force groups. The relative pop-
ulations of vehicles types (tanks, trucks, helicopters,
...) and the actual laydowns of units and vehicles were
designed according to standard military doctrine [16]
including, for example, a roughly 2:1 superiority in
numbers for the attacking Blue forces.

Fig.(7) presents a schematic of the force deploy-
ments in one of the two scenarios used in the 50K-
vehicle runs. This "Version 2.1" laydown has about
42K Blue Vehicles and 21K Red Vehicles. Most of
the vehicles (about 85%) are trucks, as is realistic for
many actual military campaigns.

The large boxed areas in Fig. (7) show the assign-
ments of scenario elements to SPP platforms. The
evolution of the scenario over time is fairly simple: all
of the Blue forces move east and attack while the Red
forces sit and defend. This gives rise to intense interac-
tions along the dashed "Front Line" in Fig. (7). For the

35

SAFSim Node
0 Router Node

(G\ Gateway

SF Express SPP } SAFStation LAN I

Figure 6: Schematic multi-SPP SF Express using explicit Gateways

HP/crr

Ames

50 km Front Line

t

Persian
Gulf

Blue Forces Red Forces

Figure 7: Version 2.1 scenario and assignments of force groups to specific SPPs

36

given Force^SPP assignments, this yields significant
data exchanges between the Ames and CEWES SP2s
and among the four 64-processor components of the
Caltech HP Exemplar. Additional non-fighting inter-
actions occur between some sets of adjacent Blue force
groups.

4.3 Porting and Practical Issues
Initially, SF Express was ported to the Intel

Paragons at Caltech. Extensive single-node runs were
required to begin understanding and assessing opti-
mization possibilities for the very large ModSAF code
base. Small multiple node runs identified key com-
munications libraries that would need modification.
Numerous problems were encountered (system call as-
sumptions, inadequate bounds checking, ...). Solu-
tions developed during the single-node Paragon work
simplified subsequent ports to other platforms, al-
though OS-specific assumptions, awkward build proce-
dures, and occasional cross-compilation issues required
case-by-case treatments.

Once the SF Express code had matured to the
point where simulations with 1K-10K vehicles were be-
coming routine, initial heterogeneous multi-SPP tests
began. Coordination and synchronization of simula-
tion startup was quickly identified as a key issue, along
with management of the extensive scenario data files.
A number of intermediate-sized runs, involving 20K-
30K simulated vehicles at two or three sites, were crit-
ical first steps before attempting to commandeer six
SPPs for a block of intersecting dedicated time neces-
sary for the proposed 50K-vehicle exercise.

The large, 50K-vehicle runs with six SPPs spread
across the country involved substantial administrative
and operational issues. Various sites had different disk
policies, accounting mechanisms, usage models, and
schedulers. Ultimately, the success of the large runs
resulted from moderate to significant system admin-
istration intervention, competent system support per-
sonnel, and numerous phone calls. While this was ac-
ceptable for a demonstration, it is clearly inadequate
for a production model. Many of the initial Globus
activities described in Section 5 focus on these opera-
tional issues.

4.4 Inter-SPP Highlights of the 50K Runs
The performance issues for the metacomputing

model of Fig. (6) center on data movement through the
Gateway nodes. The results presented in this section
demonstrate that communications levels were easily
managed, with one (essentially expected) Paragon ex-
ception.

A word on the configuration of the HP Exemplar
machines is in order here. At the time of the 50K

runs, the Caltech machine was available only as four
independent 64-processor machines (labelled "HP/Cj"
below); it is now a single 256-processor system. In
contrast, the 128-processor Exemplar at the Convex
site ("HP/Tx") was configured as a single system.

4.4.1 Results from the Version 2.1 Scenarios

Table 2 summarizes inter-SPP data rates for the V2.1
scenario run. The rows and columns are labelled by
SPP site; entries are in Kbytes/sec. Blank entries rep-
resent links with rates of less than 0.5 Kbytes/sec.

Many of the RNA-^-RNA communication links
have no appreciable activity. This is due to the ge-
ographic separation of the Force groups in Fig.(7)
and additional restrictions on broadcast PDUs, as dis-
cussed in Refs.[ll],[12]. The communication model
running on Ames and CEWES retains a significant
level of simulation-wide broadcast PDUs, giving rise
to the constant "background" data rates evident in
the bottom two rows of Table 2. The values in Table 2
show the rates at which data are sent from the "Row
SPP" to the "Column SPP." Due to dropped packets,
these are not the same as the rate at which data are
received by the Column SPPs, but they are generally
close. The exceptions involved links to ORNL, where
packet loss was often severe. In the worst case,

MHPCC Sends 63.9 Kbytes/sec to ORNL
ORNL Receives 7.9 Kbytes/sec from MHPCC

With the exception of communications to ORNL, the
number of dropped UDP packets within the Version
2.1 runs is small, and well within the tolerable range
for ModSAF.

Table 3 contains a detailed look at three of the
more active inter-SPP links from Table 2:

HP/Tx <3> MHPCC: Successful, moder-
ately high bandwidth communications
between machines on a Wide-Area Net-
work.

MHPCC o ORNL: Saturated/Failed
communications between machines on a
Wide-Area Network.

HP/C1 <S> HP/C2: Successful communi-
cations between machines on a Local-
Area Network.

The "PDU Busy" rows list the fraction of (wall clock)
time spent in PDU communications within the SPP
and through the Gateway to the remote SPP. The last
two rows give the mean times for PDU bundle com-
munications across the network. The UDP-ethernet

37

Table 2: Inter-SPP Communications Rates for the V2.1 Scenario Large-Scale Metacomputing Runs

HP/CO HP/Cl HP/C2 HP/C3 ORNL MHPCC HP/Tx

HP/CO - 20.7 35.1
HP/Cl 23.9 - 15.9 14.8 16.1
HP/C2 64.2 - 15.3
HP/C3 18.4 5.8 -
ORNL - 63.9
MHPCC 22.2 - 67.2
HP/Tx 3.7 21.0 169.0 -
AMES 3.3 3.3 3.3 3.3 3.3 3.3 3.3
CEWES 6.3 6.3 6.3 6.3 17.6 6.3 6.2

Table 3: Details of Gateway Performance on Three Busy Links of the V2.1 SF Express Run

Local SPP
Remote SPP

HP/Tx
MHPCC

MHPCC
HP/Tx

ORNL
MHPCC

MHPCC
ORNL

HP/Cl
HP/C2

HP/C2
HP/Cl

Local PDU Busy
Remote PDU Busy

0.168
0.147

0.074
0.080

0.041
0.926

0.050
0.032

0.023
0.031

0.014
0.030

Read Time [msec]
Write Time [msec]

0.60
0.97

0.63
0.28

22.26
27.52

0.77
0.26

0.61
0.45

0.60
0.34

reads and writes on the ORNL Paragon are about 30
times slower than on the other platforms, leading to an
overwhelmed Gateway and the significant data losses
noted above.

It should be stressed that no attempts were made
to optimize network communications in these initial
50K runs. Networks used included ESnet, LosNettos,
NREN, DREN, ANSnet, and commodity providers.
Fig. (8) shows a partial network map of communica-
tions links to the Caltech site, with shaded ellipses
representing the various network domains. A message
from Caltech to MHPCC visits 14 routers, while a re-
turn message travels through 12. Clearly, the SF Ex-
press 50K-vehicle runs did not use an overly optimized
network.

The results in Tables 2 and 3 indicate that some-
thing more aggressive than simple UDP/IP ethernet
will be needed to use successfully the ORNL Paragon
in a large scale, distributed simulation. As was noted
in Section 4.1, the RNA Gateway strategy can accom-
modate various transport mechanisms.

5 An Integrated Metacomputing Envi-
ronment Using Globus
The Globus Project [7], [8] is developing a basic

software infrastructure to support applications that
need and/or are capable of using geographically dis-
tributed computational and information resources. A

key element of Globus is the design and implemen-
tation of a distributed supercomputing infrastructure
toolkit that provides an integrated set of services in
five key areas:

1. Communications: The Nexus communications
library provides message-delivery services for a
variety of communications models in a manner
that is cognizant of network quality of service pa-
rameters.

2. Information: The Metacomputing Directory
Service (MDS) offers a uniform method for ob-
taining real-time information on system status
and structure.

3. Resource Location/Allocation: The Global
Resource Allocation Manager (GRAM) provides
mechanisms for declaring application resource re-
quirements, identifying and scheduling appropri-
ate resources, as well as initiating and managing
the application on these resources. The GRAM
can be thought of as a low-level scheduler Appli-
cation Program Interface (API).

4. Security: The Globus system includes a number
of basic security services (e.g., authentication and
authorization), enabling sophisticated application
specific security mechanisms and single sign-on
functionality.

38

Ames ORNL

NREN

sprintlinklnet

Figure 8: Partial network connectivity map for the 50K-vehicle simulations

5. Data Access: Mechanisms are provided for
high-speed remote access to persistent storage.

5.1 Benefits of the Globus Toolkit
The modules within the Globus Toolkit directly

address a number of problems uncovered during the
initial, manually operated SF Express metacomputing
runs.

The Nexus library provides a "resource aware"
implementation of communication tasks (e.g., data ex-
changes between the Gateway nodes of Fig. (6)), using
the best available communications mechanism (UDP
over IP, HIPPI, ATM, etc.). Simple automatic selec-
tion rules or user-guided directives determine the ap-
propriate communications method, with selections dy-
namically dependent on the status of the available net-
work services. These features are particularly useful
for the communications links between Gateway pro-
cessors, in order to avoid bandwidth saturation, as
was observed in Section 3 for the ORNL-»MHPCC
link. The communications layer provides efficient im-
plementations of native communication methods, in-
cluding message passing, multicast, distributed shared
memory, remote procedure calls, etc. The selected
method must be aware of Quality of Service (QoS) pa-
rameters, such as reliability, bandwidth, and latency.
Intelligent, performance-based, application configura-
tion choices can be made to match the "currently avail-
able" execution environment, enabling the user to bet-

ter utilize shared resources and attain higher through-
put.

The MDS and GRAM elements of the Globus
toolkit address the broad problem of resource iden-
tification, allocation, and task execution within the
grid of available assets. The MDS provides an au-
tomated, "information-rich" approach to system con-
figuration, enabling intelligent automated resource al-
locations. MDS includes a data model to represent
dynamically changing capabilities of various parallel
computers and networks, so that tools and applica-
tions do not have to rely on stale or programmer-
supplied knowledge (e.g., use a dedicated HIPPI or
ATM node instead of garden variety UDP/IP).

Once the desired distributed assets have been
identified, GRAM provides a simple, uniform interface
to local resource allocations. In essence, GRAM en-
ables the coordinated startup of a metacomputing run
by a single "go" script that drives the participating
SPPs, attached displays, etc. This represents a sig-
nificant improvement over the existing environment,
in which the non-static differences among operating
systems and resource schedulers on various platforms
are coordinated by hand-crafted scripts (and prayers)
based on detailed knowledge of resource-specific usage
models. Globus services also provides periodic health
and status information for each job instantiation and
allows application-specific tools to hook into generic
health and status monitor services. This capability

39

would be an improvement over the existing SF Ex-
press method using separate monitoring tools on each
SPP.

Not all startup and job management concerns are
addressed with the use of a single script that starts
program execution on all resources. Determining and
staging required datasets is another concern. Staging
of data automatically and efficiently just prior to sim-
ulation time avoids a number of difficulties associated
with site-specific disk usage policies. For example, the
50K scenario datasets could not permanently reside on
the file systems of the SPPs used in the SF Express
runs, due to various quota limits and disk policies.
This situation necessitated tedious (and somewhat er-
ror prone) manual staging prior to the large runs.

Simulations to date have involved static assign-
ments of scenarios to SPPs, such that configuration
file preparation and data staging could occur prior
to SPP resource allocation. This approach typically
wastes disk space and does not allow the application
to take best advantage of the resources available. The
Data Access services (remote I/O calls) within Globus
allow high-speed remote access to persistent storage,
such as simulation scenarios and behavior files, po-
tentially saving vast amounts of disk space and fre-
quent user-intervention required to move large data
sets both before and after runs (possibly scheduled
arbitrarily). The more resource-aware an application
can become, the larger the window for adaptive and
optimal choices.

5.2 Initial Experiments with Globus

The coordinated startup capabilities of Globus
were successfully tested during two live demonstra-
tions at the November 1997 High Performance Net-
working and Computing Conference (SC97) in San
Jose. These experiments involved 824 processors on
SPPs at six sites, as shown in Fig.(9), simultaneously
displaying parts of the simulation on an Immersa-desk
in the Argonne National Laboratory booth on the
conference floor. Unlike the fairly conservative force
group assignments of the initial 50K-vehicle simula-
tions, these runs involved a more "interleaved" assign-
ment of scenario files to SPPs, as shown in Fig.(9).
This was done in order to provide more stressing tests
of inter-SPP communications. The overall simula-
tion involved about 40K vehicles (about 50K ModSAF
entities). The important new aspects using GRAM
specifications to drive the simulation were successfully
demonstrated.

6 Accomplishments and Future Direc-
tions
The multi-SPP runs in August 1997 surpassed le

project goal of a 50,000-vehicle simulation on a het-
erogeneous collection of SPPs and validated the over-
all SF Express concept. The Exlnit team generated a
collection of sound military scenarios featuring intense,
quick interactions (and fighting) within the one-hour
time frame of the runs.

Problem areas in the single-SPP SF Express code
seemed to center on, not surprisingly, the ModSAF
simulation engine itself. Of the hundreds of thousands
of lines of ModSAF source code, less than five percent
of the libraries were modified to accommodate RNA.
The core simulation code was purposely left mostly
alone, due not only to project scope, but also to de-
couple performance of the communications architec-
ture from the driving simulation engine. Among other
issues, simple profiling determined that ModSAF ve-
hicle table manipulations consumed a substantial frac-
tion of total CPU time. Possible solutions for expen-
sive ordered list operations are noted in Ref. [17].

Problems in the multi-SPP runs of Section 4 were
largely operational, arising from the differing environ-
ments at the six SPP sites. The Globus experiments
described in Section 5 can be viewed as the first steps
toward a more user-friendly robust system.

An attractive near-term direction involves a
greater exploitation of the unified resource information
services, resource location and allocation services, and
data access modules within Globus to eliminate much
of the configuration file mechanisms within SF Express
and optimize runtime parameters. Using the currently
deployed Globus services, initialization and execution
of a large simulation would proceed roughly as follows:

1. The user specifies the location of the simulation
data and the desired simulation size from a single
place (e.g., console or file).

2. MDS evaluates the request and locates appro-
priate resources (with the MDS databases aug-
mented to understand information on the inher-
ent simulation capabilities of the individual plat-
forms) .

3. Once the appropriate computational assets are al-
located, GRAM is used to start the distributed
simulation and to exchange runtime system con-
figuration information among the participants.

4. Using the system configuration information from
GRAM, each SPP takes responsibility for a spe-
cific subset of the simulation scenario files, retriev-

40

Hfl HP Exemplar (Floor)
128 Processors, 8.4K Vehicles

{ | IBM SP2 (MHPCC)
256 Processors, 16.7K Vehicles

CJJ HP Exemplar (CIT)

B
240 Processors, 15.4K Vehicles

SGI NASA Ames
60 Processors, 3.8K Vehicles

nSj SGI Indiana
^^ 60. Processors, 3.8 Vehicles

□ IBM SP2 (ANL)
'—' 80 Processors, 5.IK Vehicles

Figure 9: Version 2.1 scenario element assignments for the initial tests with Globus

ing these data automatically from the staging area
using the Globus Data Access services.

In this model, user input is largely restricted to
the high-level specification of the problem itself (i.e.,
the simulation scenarios), with Globus managing all
pragmatic issues of resource allocation, data staging,
job management, and network connectivity needed in
order to meet the user specified requirements (which
could well include additional constraints, such as re-
quired network bandwidths).

The construction of this Globus-directed meta-
computing model is a realistic near-term goal. Modifi-
cations within the existing RNA code base of Ref. [12]
would largely involve generalizations of the Gateway
communications procedures to use portable Nexus
routines in place of socket calls. Additional new logic
would be needed within the single-SPP initialization
sequence to support runtime assignments of scenarios
to SPPs, based on configuration data from GRAM.
(Neither of these tasks is seen as being particularly dif-
ficult.) This system would become the next-generation
SF Express proof-of-concept demonstration, with in-
telligent resource allocation, simulation startup, and
data management all done in a simple, user-friendly
manner.

Acknowledgments
Support for this research was provided by the In-

formation Technology Office, DARPA, with contract
and technical monitoring via Naval Research and De-
velopment Laboratory (NRaD).

Access to various computational facilities and sig-
nificant system support were essential for this work.
The 1024-node Intel Paragon was made available by
the Oak Ridge Center for Computational Sciences.

The smaller Intel Paragon and 256-processor HP Ex-
emplar were made available by Caltech/CACR. The
IBM SP2s were provided by the Maui High Perfor-
mance Computing Center, U.S. Army Corps of En-
gineers Waterways Experiment Station Information
Technology Laboratory, and the Numerical Aerody-
namic Simulation Systems Division at NASA Ames
Research Center. Indiana University and NASA Ames
provided access to the Silicon Graphics machines. A
128-CPU HP Exemplar was provided by HP/Convex
Division Headquarters. We thank the system admin-
istrators and support staff at all these sites.

Globus experiments and integration were made
possible by the dedicated team at Argonne National
Laboratory (led by Ian Foster) and USC Information
Sciences Institute, including Karl Czajkowski, Mei-
Hui Sue, and Marcus Thiebaux.

Author Biographies
Sharon Brünett is a Computing Analyst for

Caltech's Center for Advanced Computing Research.
She received her B.S. in Computer Science and Ap-
plied Mathematics from the University of California,
Riverside in 1983. Current interests include scalable
I/O methodologies for SPPs, characterizations of per-
formance on MTA architectures, and integration of
multidisciplinary applications.

Dan Davis, Assistant Director at CACR, has a
B.A. in Psychology and a J.D., both from the Univer-
sity of Colorado. With a background in Naval cryptol-
ogy and intelligence, he and Dr. Gottschalk are also
pursuing technology for K-12 education.

Thomas Gottschalk, CACR Senior Research
Scientist, is a Member of the Professional Staff and
Lecturer in Theoretical Physics at Caltech. He re-
ceived a B.S. in Astrophysics from Michigan State

41

University in 1974 and a Ph.D. in Theoretical Physics
from the University of Wisconsin in 1978. Gottschalk
spent several years designing simulation models for
High Energy Physics interactions. He has written
large parallel codes for multi-target tracking and for
physical design validation of VLSI chips.

Paul Messina is Assistant Vice President for
Scientific Computing at Caltech, Faculty Associate
in Scientific Computing, Director of Caltech's Cen-
ter for Advanced Computing Research, and serves
on the executive committee of the Center for Re-
search on Parallel Computation. His recent interests
focus on advanced computer architectures, especially
their application to large-scale computations in science
and engineering. He also is interested in high-speed
networks and computer performance evaluation. He
heads the Scalable I/O Initiative, a multi-institution,
multi-agency project aimed at making I/O scalable for
high-performance computing environments. Messina
has a joint appointment at the Jet Propulsion Labo-
ratory as Manager of High-Performance Computing.
Messina received a Ph.D. in mathematics in 1972 and
a M.S. in Applied Mathematics in 1967, both from the
University of Cincinnati, and his BA in mathematics
in 1965 from the College of Wooster.

Carl Kesselman is a Project Leader at the In-
formation Sciences Institute and a Research Associate
Professor in Computer Science at the University of
Southern California. He received a Ph.D. in Computer
Science at the University of California at Los Angeles.
He co-leads the Globus project, along with Ian Foster,
at Argonne National Laboratory. Dr. Kesselman's re-
search interests include high-performance distributed
computing, parallel computing, and parallel program-
ming languages.

References
[1] J. S. Dahmann and D. C. Wood, "Scanning the

Special Issue on Distributed Interactive Simu-
lations," Proceedings of the IEEE, Volume 83
(1995) 1111, and references therein.

[2] R. C. Hofer and M. L. Loper, "DIS Today," Pro-
ceedings of the IEEE, Volume 83 (1995) 1124.

[3] C. M. Keune and D. Coppock, "Synthetic Theater
of War-Europe (STOW-E) Technical Analysis,"
NRaD Technical Report 1703 (1995).

[4] K. Boner, C. Keune, and J. Carlson, "Syn-
thetic Theater of War (STOW) Engineering
Demonstration-IA (ED-1A) Analysis Report,"
NRaD Report, May, 1996.

[5] S. Rak, M. Salisbury, and R. MacDonald,
"HLA/RTI Data Distribution Management in the
Synthetic Theater of War," Proceedings of the
Fall 1997 DIS Workshop on Simulation Standards
(97F-SIW-119).

[6] R. Cole and B. Root, "Network Technology for
Stow 97," Naval Research Laboratory briefing,
and private communication.

[7] The documents link on the Globus Project
WWW site (http://www.globus.org) points to a
number of technical papers and interface specifi-
cations.

[8] I. Foster and C. Kesselman, "Globus: A Meta-
computing Infrastructure Toolkit," to be pub-
lished in International Journal of Supercomputer
Applications.

[9] P. Messina et al, "Distributed Interactive Sim-
ulation for Synthetic Forces," Proceedings of
the International Parallel Processing Symposium,
Geneva (1997).

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker,
and J. Dongarra, "MPI, The Complete Refer-
ence," MIT Press (1996).

[11] S. Brünett and T. Gottschalk, Pathfinder: A Scal-
able Implementation of ModSAF on SPPs, CACR
Report in preparation.

[12] S. Brünett and T. Gottschalk, Large-Scale Meta-
computing Framework for ModSAF, Technical
Report CACR-152, January 1998.

[13] L. Craymer and C. Lawson, "A Scalable, RTI-
Compatible Interest Manager for Parallel Proces-
sors," Proceedings of the Spring 1997 DIS Work-
shop on Simulation Standards.

[14] J. Köhler, S. Narasimhan, J. Pittman, A. Whit-
lock. "ExGen Software Design Document." Naval
Command, Control and Ocean Surveillance Cen-
ter (NCCOSC), RDT&E DIV, June 18, 1996.

[15] http://cesdis.gsfc.nasa.gov/beowulf, the Beowulf
WWW site, and references/links therein.

[16] L. Mengel, "Scenario Modifications for SF Ex-
press 50,000 Vehicle Scenario," NCCOSC RDTE
DIV Report N66001-97-M-1531 (1997).

[17] L. Craymer and L. Ekroot, "Characterization and
Scalability," Proceedings of the 1998 Spring Sim-
ulation Interoperability Workshop.

42

Session II

Resource Management,
Matching, and Scheduling

Session Chair

Dan Watson
Utah State University, Logan, UT, USA

CCS Resource Management in Networked HPC Systems

Axel Keller and Alexander Reinefeld
PC2 - Paderborn Center for Parallel Computing

Universität Paderborn, D-33102 Paderborn, Germany

Abstract
CCS is a resource management system for paral-

lel high-performance computers. At the user level,
CCS provides vendor-independent access to parallel
systems. At the system administrator level, CCS of-

fers tools for controlling (i.e. specifying, configuring

and scheduling) the system components that are oper-
ated in a computing center. Hence the name "Com-

puting Center Software". CCS provides:

• hardware-independent scheduling of interactive
and batch jobs,

• partitioning of exclusive and non-exclusive re-
sources,

• open, extensible interfaces to other resource man-
agement systems,

• a high degree of reliability (e.g. automatic restart
of crashed daemons),

• fault tolerance in the case of network breakdowns.

In this paper, we describe CCS as one important
component for the access, job distribution, and admin-
istration of networked HPC systems in a metacomput-
ing environment.

1 Introduction
With the increasing availability of fast interconnec-

tion networks high-performance computing has under-
gone a metamorphosis from the use of local comput-
ing facilities towards a distributed, network-centered
computing paradigm. The motivation is to better
utilize the available hardware by linking LAN/WAN
connected supercomputers to a virtual metacomputer
[33]. While at the time being, there are only few multi-
site applications that fully exploit the computational
power of distributed nodes, metacomputing is already
used on a broader scale for job load sharing and fault
tolerance purposes.

Distributed high-performance computing environ-
ments usually comprise a wide spectrum of resources
with different capabilities. Here, a resource manage-
ment system must be able to cope with unreliable net-
works and with heterogeneity at multiple levels (e.g.

administrative domains, scheduling policies, operating
systems, protocols etc.). Because of the dynamic na-
ture of the metacomputing components, the available
resources should be identified at runtime. As an ex-
ample, the performance of shared media (networks)
varies over time, requiring constant updates on the
global system state and structure.

From the user's point of view, a metacomputer
should be as easy to use as the workstation on
his/her desk. This means that users need a vendor-
independent access interface and their applications
should be transparently mapped onto a set of suitable
target platforms.

In this paper, we present the architecture of our
CCS Computing Center Software. Having started in
1992 with a comprehensive system that manages all
computers in a site but gives users only access to a
single system at a time, CCS was continuously up-
graded. It now supports multi-site applications and
has an open interface to metacomputer management
services. As a long-term goal we want to integrate
CCS—among other resource management systems—
into an open global metacomputing environment.

In the Ath release, three new concepts have been
introduced: 'CCS Islands' provide management facil-
ities for administrating single HPC systems in a local
site. At the next higher level, a 'Center Resource Man-
ager' coordinates the cooperative administration and
use of all systems in a computing center, whereas the
'Center Information Server' provides an active direc-
tory service for metacomputer access from the outside
world.

All modules build on the generic 'Resource and Ser-
vice Description' that is used for specifying hardware
and software components.

The contents of this paper are as follows: First, we
put CCS in the context of the Globus project. Then
we present the architecture of the CCS islands and
their technical implementation. Thereafter, we intro-
duce the concepts required for metacomputing (Cen-
ter Resource Manager and Center Information Ser-
vice) and how they work together. Our tools for re-

0-8186-8365-1/98 $10.00 © 1998 IEEE
44

source and service description are described in Sec-
tion 5 and some preliminary results on the use of CCS
in an industrial metacomputing setting are discussed
in Section 6. Section 7 gives a brief review on related
projects and Section 8 presents a summary.

2 CCS - A Link to Globus?
While CCS may be seen as "just another resource

management software" we have always put it in a
much broader context. In fact, our primary design
goal was to provide a resource management system
that can be integrated into metacomputer environ-
ments like our Metacomputer Online toolbox [32].

Because Globus [15], as part of the National Com-
putational Science Alliance [34], is certainly the most
well-known metacomputing project throughout the
world, we now put CCS in relation to Globus. The
following list gives the most important similarities and
differences between the two projects.

The Globus project regards a metacomputer as a
networked virtual supercomputer constructed dynam-
ically from geographically distributed resources that
are linked by high-speed networks. It aims at a verti-
cally integrated treatment of application, middleware
and network and it provides a basic infrastructure of
tools building on each other:

• resource (al)location:
Globus Resource Manager GRM [23]

• communication layer:
Nexus [13]

• unified resource information service:
Metacomputing Directory Service MDS [12]

• authentication interface:
Generic Security System GSS [26]

• data access:
Remote 10 Facility RIO [16].

In the Globus metacomputer, applications are ex-
pected to configure themselves to fit the execution
environment delivered by the metacomputing system,
and then adapt their behavior to subsequent changes
in the resource characteristics. This concept has been
named 'Adaptive Wide Area Resource Environment'
AWARE.

The Computing Center Software CCS was pri-
marily designed to manage the resources in a single
site. They may be geographically distributed but op-
erate in a single NFS/NIS domain. It provides an
open interface so that several sites may be joined by

higher-level tools—a modular approach that proved
useful in several industrial projects. CCS has a hi-
erarchical structure with autonomous software layers
that interact only via message passing: The lowest
level is a self-sufficient 'island' controlling a single ma-
chine or cluster which can be operated stand-alone.
The next higher level consists of the Center Resource
Manager (CRM) and the Center-Information Server

(CIS) which build the interfaces of a site to the 'out-

side world'.
CCS does not only provide a comfortable user in-

terface, but it also offers a versatile, almost system-
independent interface for the administrator. Its open
framework architecture allows to integrate all kinds of
HPC systems. Compared to Globus, CCS

• does not support metacomputing by itself, but it
provides one important component,

• has not yet an API,

• does not support remote I/O,

• has no dedicated authentication interface.

3 Computing Center Software
When the CCS project [9, 30, 31] started in 1992,

only few competitive systems were available. With
our background in the operation of massively parallel
computing systems, we aimed at providing

• concurrent user access to exclusively owned re-
sources

• interactive and batch processing at the same time,

• optimal system utilization by dynamical parti-
tioning and scheduling,

• maximum fault tolerance for remote access via
WANs.

CCS became first operationable on a 1024-node
transputer system and was later adapted to Power-
Plus systems from Parsytec and also to workstation
clusters. Aiming at portability, we designed CCS to
run on UNIX systems, such as Linux, SunOS, Solaris,
AIX and others. The architecture with its modular
frame structure allows to integrate a great variety of
other systems, cf. Sec. 3.2.

3.1 Architecture

Island Concept. With its distributed nature, fault
tolerance is a basic prerequisite for CCS working cor-
rectly. In earlier versions, the machines of a comput-
ing center were managed by a single (but physically
distributed) CCS software. This caused bottlenecks

45

User Interfaces (UI)

/ I
IM '„_..,' QM

Island Mgr. ,; 1 Queue Mgr.,

I AM)
| Access Mgr. j

/ I
^IM~V .^QM
I Island Mgr. j lL Queue Mgr.

\ I

Parsytec GC/PP SCI - Workstation Cluster

Figure 1: Architecture of CCS 'islands'

at the single scheduler serving all machines and re-
sulted in poor fault tolerance due to the one central
request handler. With the 4th release, each machine is
now managed by a dedicated CCS, resulting in set of
comprehensive, self-sufficient 'islands' shown in Fig-
ure 1. Each island has six components, which will be
described in more detail later in the text:

• The User Interface (UI) offers X- or ASCII-access
to all capabilities of a machine. It encapsulates
the physical and technical characteristics for a ho-
mogeneous access to single or multiple heteroge-
neous systems.

• The Access Manager (AM) manages the user in-
terfaces and is responsible for authorization and
accounting.

• The Queue Manager (QM) schedules the user re-

quests.

• The Machine Manager (MM) manages the paral-

lel system.

• The Island Manager (IM) provides name services
and watchdog functionalities for reliability.

• The Operator Shell (OS), not shown in Figure 1,
allows system administrators to control CCS, e.g.
by connecting to the single daemons.

With the island concept scalability, reliability and
error recovery have been improved by separating the

management of different machines into different is-
lands. Each machine uses a dedicated scheduling
strategy and can therefore be operated in a different
mode (batch, shared, mixed etc.). Specific user inter-
faces can be used to reflect special system features.

Reliability. In heterogeneous distributed environ-
ments, reliability is of prime importance. For exam-
ple, a message-passing program that does not receive
an answer from its partner in time, does not know

• whether the network is down,

• or whether it temporarily has a low bandwidth,

• or whether the communication partner has died.

This is because the necessary information is not avail-
able at OSI level 7. We therefore need an instance with
global and up-to-date information on the status of all
system components. This instance should be always
accessible and it should have little or no dependencies

on other modules.
In CCS, this instance is the Island Manager (IM).

At startup and shutdown time all CCS daemons notify
the IM. Hence the IM has a consistent view on the
current status of the processes in an island. The IM
is authorized to stop erroneous daemons or to restart

crashed ones.
In its second task, the IM provides name services.

It maintains an address translation table that matches
symbolic names to the daemons' physical network ad-
dress (host ID and port number). This gives a level
of indirection, allowing the IM to migrate daemons to
other hosts in the case of overloads or system crashes.
Symbolic names are given by the triple <center,
island, process>. As a side effect, this allows to
run several CCS islands on a single host concurrently.

User Management. The User Interface (UI) runs
in a standard UNIX shell environment like tcsh,
bsh, or ssh. Common UNIX mechanisms for 10-
redirection, piping and shell scripts can be used and
all job control signals (ctl-z, ctl-c, ...) are supported.
Five CCS commands are available:

• ccsalloc for allocating and/or reserving resources,

• ccsbind for re-connecting to a lost interactive ap-
plication/session,

• ccsinfo for displaying information on the job
schedule, users, job status etc.,

• ccsrun for starting jobs on previously reserved re-

sources,

• ccskill for resetting or killing jobs and/or for re-

leasing resources.

46

[Current Time . 15.3,10.12- use*: pecs, request-ID: 30, 128 nodes
I Execution Timft 15.3,16:52 to 15.3, 18:39 (lh47m), reservation

UMB

pr

CC | GCPP 1 £Cel | XaORERl Jump Datei Quit! Tm ►!
■■.»»■■Mil »i* . linTi f f i p.i. ■» I» I» 11 i. IM"I IVI i it " n I I.I.I 11. m n 11 i »i Q1;;;'' Viii m ftmm* ■ \ faümg .'' ■^-—""*■

Figure 2: Scheduler GUI displaying the scheduled
nodes (vertical axis) over the time axis.

The Access Manager (AM) analyzes user requests
and is responsible for authentication, authorization
and accounting.

CCS supports project specific user management.
Privileges can be granted to either a whole project
or to specific project members, for example

• access rights per machine

• allowed time of usage (day, night, weekend, ...)

• maximum number of concurrently used resources

• accounting per machine (product of CPU-time
and #PEs)

• machine access rights (batch, interactive, the
right for reserving resources)

User requests are sent to the Queue Manager (QM)
which schedules the jobs according to the current
scheduling policy. CCS provides several scheduling
modules (FCFS, FFIH, FFDH, IVS) that can be
plugged in by the system administrator, cf. Sec. 3.2
[18].

Job Scheduling. The first CCS release was capa-
ble of managing exclusive (non-timeshared) resources
only. With release 4.0, CCS has been upgraded to
support time-shared resources as well. As in Condor,
Codine, or LSF, the system administrator may specify
a maximum load factor that is allowed on the single
nodes.

In their resource requests, users must also specify
the expected finishing time of their jobs. Based on this

information, CCS determines a fair and determinis-
tic schedule. Both, batch and interactive requests are
processed in the same scheduler queue. The request
scheduling problem is modeled as an n-dimensional
bin packing problem, where the one dimension cor-
responds to the continuous time flow, and the other
n — 1 dimensions represent system characteristics, such
as the number of processor elements. Currently, CCS
uses an enhanced first-come-first-serve (FCFS) sched-
uler, which fits best to the request profile in our cen-
ter. The waiting times are reduced by first checking
whether a newly incoming request may fit into a gap
of the current schedule. The current schedule is dis-
played in an X-window as illustrated in Figure 2.

CCS allows to reserve resources for a given time in
the future. This is a convenient feature when planning
interactive sessions or online events. As an example,
consider a user wants to run a parallel application with
64 processors of the Parsytec GCel from 9 to 11 am at
13.2.1999. This resource allocation is done with the
command:
ccsalloc -m GCel -p 64 -s 9:13.2.99 -t 2h.

'Deadline scheduling' is another useful feature.
Here, CCS guarantees the job to be completed at (or
before) the specified time. A typical scenario for this
feature is an overnight run that must be finished when
the user comes back to his/her office in the next morn-
ing. Deadline scheduling gives CCS the flexibility to
improve the system utilization by scheduling batch
jobs at the earliest convenient and at the latest possi-
ble time.

The CCS scheduler is able to a handle two kinds of
requests, those that are fixed in time and the variable
ones. A resource that has been reserved for a given
time frame is fixed: It cannot be shifted on the time
axis (see the hatched rectangles in Fig. 2). Interac-
tive requests, in contrast, can be scheduled earlier but
not later than asked for. Such shifts on the time axis
might occur when resources are released before their
estimated finishing time.

System Partitioning. For metacomputing, we
need a scheduler that computes deterministic sched-
ules. Additional design objectives were optimal sys-
tem utilization combined with a high degree of system
independence. To deal with these conflicting require-
ments we have split the scheduler software into two
parts, one of them (QM) being completely indepen-
dent of the underlying hardware architecture. With
this separation, the scheduler daemon has no informa-
tion on the mapping constraints such as the minimum
cluster size, or the amount/location of the link entries.

47

machine administration

/ I \

Figure 3: Detailed view of the machine manager (MM)

These machine dependent tasks are performed by a
separate instance, the Machine Manager (MM). The
MM verifies whether a schedule given by the QM can
be mapped onto the hardware at the specified time,
now also taking concurrent use by other applications
into account. If the schedule cannot be mapped onto
the machine, the MM returns an alternative schedule
to the QM.

The separation between the hardware-independent
QM and the system-specific MM also allows to em-
ploy system-dependent mapping heuristics that are
implemented in small system-specific modules. Spe-
cial requests for IO-nodes, partition shapes, memory
constraints, etc. are taken into consideration in the
verifying process. Moreover, with the machine-specific
information encapsulated in the MM, CCS islands can
be easily adapted to other architectures.

Process Creation and Control. At configuration
time, the QM sends the user request to the MM.

The MM then allocates the compute nodes, loads and
starts the application code and releases the resources

after the run.
Because the MM also verifies the schedule, which is

a polynomial or NP-hard problem, a single MM dae-
mon might become a computational bottleneck. We
have therefore split the MM into two parts, one for
the machine administration and one for the job exe-
cution (see Figure 3). Each part contains a number of
modules and/or daemons.

The machine administration part consists of three
separate daemons (MV, MSM, CM) that execute
asynchronously as shown in Figure 3. A small Dis-
patcher coordinates the lower-level components.

The Machine Verifier (MV) checks whether the
schedule given by the QM can be realized at the
specified time with the specified resources. Based on
its more detailed information on the machine struc-
ture (hardware and software) it runs system-specific
scheduling and partitioning schemes. The resulting
schedule is then returned to the QM.

The Configuration Manager (CM) provides the in-
terface to the hardware. It is responsible for booting,
partitioning, and shutting down the operating system
software. Depending on the system's capabilities, the
CM may gather subsequent requests and re-organize
or combine them for improving the throughput—
analogously to a hard disk controller.

The Master Session Manager (MSM) interfaces to
the job execution level. It sets up the session, includ-
ing application-specific pre- or post-processing, and it
maintains information on the status of the application.

It allocates and synchronizes the system entries of
the user partition with the help of the Node Session
Manager (NSM), that is run on each specified entry
node. The NSM starts and stops jobs and it controls
the processes. When receiving a command from the
MSM, the NSM starts an Execution Manager (EM)
which establishes the user environment (UID, shell set-
tings, environment variables, etc.) and starts the user
application.

On time-sharing systems, the NSM invokes as many
EMs as needed. It also gathers dynamic load data
and sends it to the MM and QM where it is used for
scheduling and mapping purposes.

Virtual Terminal Concept. With the increasing
use of supercomputers for interactive simulation and
design, the support of remote access via WANs be-
comes more and more important. Unpredictable be-
havior and even temporary breakdowns of the network
should (ideally) be hidden from the user.

48

AM

o
o
o o
3

MM
Dispatcher

c 1 1 rcmd

o
CB
i—t-

o'
3

T3
~i
O
O
o
o

MSM

rcmd

NSM

' fork and exec \

UI *

EM , o
ptyM

1,2

V

0

1

!

1
P

'

for (and exec o
CO

o
Vi

■o
o
o
CD
CO
CO

CQ

o
c

73 /

j

user
appl.

I ptys
1 L

1,2
forl

spawned
appl.

k and exec

Figure 4: Control and data flow in CCS

In CCS, this is done by the EM which buffers the
standard 10 streams (stdin, stdout, stderr) of the user
application. In case of a network break down, all open
output streams are sent by e-mail to the user or they
are written into a file when specified by the user. Users
can re-bind to interrupted sessions, provided that the
application is still running. CCS guarantees that no
data is lost in the meantime.

In summary, Figure 4 gives a overview on the con-
trol and data flow in a CCS island.

3.2 Implementation Aspects
CCS consists of about 180,000 lines of C code.

The code is—as far as possible—ANSI compliant and
POSIX 1003.1-1990 conform. It follows a 'program-
ming frame approach' by splitting most of the modules
into two parts, a generic and a system-specific one.

As an example, Figure 5 shows the MM frame.
Here, only the mapping module is machine dependent,
all other parts are generic and can be re-used.

The daemons are driven by events from incoming

r~ '
Communication

^

AM QM MSM OS NS

RSD j

Event Automata

Services

j ADT

Recovery

Debug

! Migration | Time Control
Verify

i
Partitioning

V
Mapping

J

Figure 5: The MM frame

requests or timeouts. Each daemon has a watchdog
which checks whether the daemon is still alive. If
not, the watchdog shuts its daemon down. This is
recognized by the IM, which in turn restarts the dead
daemon and informs its communication partners to
re-bind to the new instance.

All daemons include a wrapped timer that creates
clock ticks for debugging purposes and for simulating
incoming requests on a variable time scale.

Even though CCS is POSIX-conform, we imple-
mented a Runtime Environment (RTE) layer that
wraps system calls. This allows for easy porting to
new operating systems. Currently, the RTE provides
interfaces for

• the management of dynamic memory, including
debugging and usage logging,

• signal handling,

• file I/O including filter routines for ASCII-files,

• manipulation of the process environment,

• terminal handling (e.g. pty),

• sending e-mails,

• logging of warnings and error messages.

The integration of new schedulers is easy, because
the QM has an API to plug in new modules. This
also allows the QM to use several schedulers. At
runtime, the QM takes the decision which scheduler
to use, thereby adjusting to specific operating modes
(e.g. interactive use only or mixed time sharing and
space sharing).

Communication Layer. The communication layer
separates a daemon's code from the communication
network, allowing to change communication protocols
without the need to change the source code of the

49

t
Center Information Server

r~ ^
i Center Resource Manager

/ 1 \

Figure 6: A site managed by CCS

daemons. The communication layer performs the fol-
lowing tasks:

• it provides a reliable and hardware-independent
exchange of data,

• it allows to dynamically connect/disconnect to
communication partners,

• it checks the availability of communication part-
ners (in cooperation with the IM),

• it translates symbolic module names (in cooper-
ation with the IM).

In our current implementation the daemons com-
municate through remote procedure calls (RPC).
Compared to the faster TCP/IP sockets, asynchro-
nous RPCs provide a more high-level method for
process interaction—closely related to the client-server
model of distributed computing. Also, they support
data conversion with the XDR-library.

The binding of incoming RPC calls (events) to the
corresponding callback-functions is done during run-
time to allow to dynamically add new events by reg-
istering the corresponding event handler.

4 CCS Interface to Metacomputing
With the autonomous islands described in the last

section we have one important component for meta-
computer management. The three other components
are:

• A passive instance that maintains up-to-date in-
formation on the system structure and state.

• An active instance that is responsible for the lo-
cation and allocation of resources within a center.
It also coordinates the concurrent use of several
systems, which may be administered by different
local resource management systems.

• A powerful but user-friendly tool that allows sys-
tem administrators and users to specify classes of
resources.

These three components are: The center informa-
tion manager CIS, the center resource manager CRM,
and the resource and services description RSD.

Center Information Server (CIS). The CIS is
the 'big brother' of the island manager (IM) at the
next higher level, the metacomputer level. Like the
UNIX Network Information Service NIS or the Globus
Metacomputing Directory Service MDS, our CIS pro-
vides up-to-date information on the resources in a site.
Compared to the active IM in the islands, CIS is a pas-
sive component.

At startup time, or when the configuration has been
changed, an island signs on at the CIS and informs it
about the topology of its machines, the available sys-
tem software, the features of the user-interfaces, the
communication interfaces and so on. The CIS main-
tains a database on the network protocols, the system
software (programming models, libraries, etc.) and
the time constraints (for specific connections, etc.).
The CIS also plays the role of a 'docking station' for
mobile-agent software or external users.

For the higher level metacomputer components, the
CIS data must be compatible or easily convertible to
the formats used by other resource management sys-
tems.

The Center Resource Manager (CRM). Like
the Globus resource manager, the CRM is a high-level
but independent tool that lies on top of the CCS is-
lands. It supports the set-up and execution of multi-
site applications running concurrently on several plat-
forms. The term multi-site application can be under-
stood in two ways: It could be just one application
that runs on several machines without explicitly being
programmed for that execution mode [17], or it could
comprise different modules, each of them executing on
a machine that is best suited for running that specific
piece of code. In the latter case the modules can be im-
plemented in different programming languages using
different message passing libraries (e.g. PVM, MPI,
PARIX, MPL etc.). Multi-communication tools like

50

PLUS [6] are necessary to make this kind of multiple-
site application possible.

For executing multi-site applications three tasks
need to be done:

• locating the resources,

• allocating the resources,

• starting and terminating the modules.

For locating the resources, the CRM maps the user
request (given in RSD notation) against the static
and dynamic information on the available system re-
sources.

The static information (e.g. topology of a single
machine or the site) has been specified by the system
administrator, while the dynamic information (e.g.
state of an individual machine, network characteris-
tics etc.) is gathered at runtime. All this information
is provided by the CIS. Since our resource descrip-
tion language is able to describe dependency graphs,
a user may additionally specify the required commu-
nication bandwidth for his/her application. In the
mapping and migration process, the communication
pattern should also be taken into account. Data on
the previous runtime behavior can be gathered and
condensed in an execution profile as described in [19].

After the target resources have been located, they
must be allocated. This can be done in analogy to
the two-phase-commit protocol in distributed data-
base management systems: The CRM requests the
allocation of all required resources at all involved is-
lands. If not all resources were available, it either re-
schedules the job or it denies the user request. Oth-
erwise the job can now be started in a synchronized
way. Here, machine-specific preprocessing tasks or
inter-machine specific initializations (e.g. starting of
special daemons) must be initialized.

Analogously to the islands level, the CRM is able
to migrate user resources between machines to achieve
a better utilization. Accounting and authorization at
the metacomputer level can also be negotiated at this
layer.

The CRM can be implemented in several ways. As
an example, it could be implemented as a single dae-
mon or in the form of distributed instances like the
QM-MM complex at the islands level.

5 Resource and Service Description
CCS includes a versatile resource description facil-

ity, named RSD for Resource and Service Description.
RSD is used

• at the administrator level for describing type and
topology of the available resources, and

File 1 Nodes j Edges
" ISO

Topoloeies

o
-Xr

Name = CC-48
Type = MPP
CPU = MPC604

128MB MEM

>-«--f~^->-»

Figure 7: Graphical RSD editor

• at the user level for specifying the required system
configuration for a given application.

The predecessor of RSD, the resource description
language RDL [3] served in earlier releases of CCS. In
general, it was regarded as too complex. Especially
industrial users did not want to take the burden of
typing in a textual resource specification when just
wanting to run a code on a machine with a simple,
regular topology. It seems, that it was too early for
the user community to appreciate the full descriptive
power of a versatile description language. Hence, we
hided the language interface by easy-to-use command
line options. But of course, RDL was still used behind.

With the current trend to distributed computing,
resource description tools become important again.
Based on our experiences with RDL, we now provide
a more generic approach with three interfaces:

• a graphical interface (GUI) for specifying simple
topologies and attributes,

• a language interface for specifying more complex
and repetitive graphs (mainly intended for the
system administrator), and

• an application programming interface (API) for
access from within an application program.

The graphical editor stores the graphical and tex-
tual data in an internal data representation. This data

51

is bundled with the API access methods and sent as
an attributed object to the target systems, where it is
matched against other hard- or software descriptions.

The internal data description can only be accessed
through the API. For later modifications it is re-
translated into its original form of graphic primitives
and textual components. This is possible, because the
internal data representation also contains a descrip-
tion of the component's graphical layout. In the fol-
lowing, we describe the core components of RSD in
more detail.

Graphical Interface. The graphical editor pro-
vides a set of simple modules that can be edited and
linked together to build a dependency graph of the
requested resources or a system description.

At the administrator level, the GUI is used to de-
scribe a center's resource components in a top down
manner, starting at the outermost interconnection
topology, see Figure 7. With drag and drop tech-
niques, the administrator specifies the available ma-
chines, their links and the interconnection to the out-
side world.

In the next step, the machines are specified in more
detail by clicking on a node. The editor then opens
a window to display detailed information on the ma-
chine, if available. The GUI offers a set of standard
machine layouts and some generic topologies like tree,
grid or hypercube. The size and shape is defined ac-
cording to the available hardware. For a single node,
detailed attributes like network interface cards, disk
sizes, I/O throughput, or the automatic start of dae-
mons may be specified.

Language Interface. From a system administra-
tor's point of view, graphical user interfaces are not
powerful enough for describing complex metacomput-
ing environments with a large number of services and
resources. Administrators need an additional tool for
specifying irregularly interconnected, attributed struc-
tures.

Hence, we devised a language interface that is used
to specify arbitrary topologies. The hierarchical con-
cept allows different dependency graphs to be grouped
for building even more complex nodes, that is hypern-
odes. For a complete formal definition of the language
interface see [7].

Figures 9 and 10 illustrate a resource specifica-
tion for a metacomputer application Met a running
on two systems as shown in Figure 8. The meta-
computer comprises an SCI workstation cluster and

ATM port ATM port

* 622 Mbps ATM

mpp_atm [\ «'£re_'°_'>ypsmo<fe_port

Figure 8: RSD example for multi-site application

NODE Mata {

DEFINITION:

PQRTÜ = (SCI, ATM, FDDI); — multi -valued attribute

DECLARATION — include the two hype r nodes

INCLUDE "SCI-WSC";

INCLUDE "MPP";

CONNECTION-!- of the MPP with SCI workstat ion c luster

EDGE wsc_mpp. atm {
NODE SCI-WSC PORT ATM <=> NODE MPP PORT ATH;};

BANDWIDTH = 622 Mbps; ri
}:

Figure 9: RSD specification of Fig. 8

a massively parallel system, interconnected by a bidi-
rectional ATM network.

The definition of Met a is straight-forward, see Fig-
ure 9. Figure 10 shows the specification of the SCI
cluster component, consisting of 8 nodes, two of them
with quad-processor systems. For each node, the fol-
lowing attributes are specified: CPU type, memory
per node, operating system, and the port of the SCI
link. All nodes are interconnected by a uni-directional
SCI ring with 1.0 Gbps. In the example, the first node
is the gateway to the workstation cluster. It presents
its ATM port to the next higher node level (see AS-
SIGN statement in Fig. 10) to allow for remote con-
nections.

Internal Data Representation. The abstract
data type establishes the link between the graphical
and the text based representation. It is also used to
store descriptions on disk and to exchange them across
networks. The internal data representation must be
capable of describing the following properties:

• arbitrary graph structures

• hierarchical systems or organizations

• nodes and edges with arbitrary sets of valued at-
tributes

52

NODE SCIJiSC {
DEFINITION:
CONST N = 8;
SHARED;

number of nodes
allocate resources for shared use

DECLARATION:
— we have 2 SHP nodes (gateways), each with 4 processors
— each gateway provides one SCI and one ATM port
FOR i=0 TO 1 DO

NODE i {
DECLARATION:
CPU=ALPHA; HEH0RY=512; MULTI.PR0C=4; PORT»[SCI,ATM];

};
CD

— the others are single processor nodes
— each with one SCI port
FOR i=2 TO N-l DO

NODE i {
DECLARATION:
CPU=ALPHA; HEH0RY=256; 0S=S0LARIS;P0RT=SCI;

};
OD

CONNECTION:
— build the 1.0 Gbps unidirectional ring
FOR i=0 TO N-l DO

EDGE edge_$i-to.<((i+l) HOD N)
{ NODE i PORT SCI => NODE ((i+1) MOD N) PORT SCI;
BANDWIDTH = 1.0 Gbps;

};
OD

— establish a special virtual edge from node 0 to the
— port of the hyper node SCI.HSC (=outside world)
ASSIGN edge_to_hypernode_port
{ NODE 0 PORT ATM <=> PORT ATM;};

}i

Figure 10: RSD specification of the SCI part

Furthermore it should be possible to reconstruct the
original representation, either graphical or text based.
This facilitates the maintenance of large descriptions
(e.g. a complex HPC center) and allows visualization
at remote sites.

In order to use RSD in a distributed environment,
a common format for exchanging RSD data structures
is needed. The traditional approach would be to use a
data stream format. However, this would involve two
additional transformation steps whenever RSD data
is to be exchanged (internal representation into data
stream and back). Since the RSD internal representa-
tion has been defined in an object oriented way, this
overhead can be avoided, when the complete object is
sent across the network.

Today there exists a variety of standards for trans-
mitting objects over the Internet, e.g. CORBA, Jav-
aBeans, or Component Object Module COM+. Since
we do not want to commit on either of these, we only
define the interfaces of the RSD object class but not its
private implementation. This allows others to choose

an implementation that fits best to their own data
structures. Interoperability between different imple-
mentations can be improved by defining translating
constructors, i.e. constructors that take an RSD object
as an argument and create a copy of it using another
internal representation.

6 CCS in Practice
CCS was first used in an industrial setting in the

Europort project [8] where large industrial codes were
ported to PVM, PARMACS and MPI to run them on
massively parallel systems. While we got much posi-
tive feedback from the users who praised the stability
and versatility of CCS, our resource description lan-
guage RDL (a predecessor of the RSD described here)
was regarded as 'too complex'. Users complained
about the tedious task of typing in a long RDL de-
scription when they just wanted to run a program on
a simple target architecture.

Hence, with the 2nd release of CCS we concealed
RDL, giving the user only a simple command line in-
terface. But with the advent of metacomputing, re-
source description became important again.

Application-Centric Metacomputing. The con-
cept of CCS 4.0 proved useful in two ESPRIT projects
[20], both with the goal to provide easy access to
industrial applications that are run on Internet or
Intranet-connected HPC systems. In both cases, a vir-
tual user access point was implemented in Java that
schedules incoming jobs to the temporarily best suited
compute server in the Internet. Small and medium
enterprises are expected to benefit most by the use of
the distributed HPC services for running their most
compute-intensive simulation applications - a service
they could otherwise not afford due to expensive hard-
ware, maintenance and education cost.

The keyword to these projects is 'application cen-
tric metacomputing': We do not simply provide raw
computing time—as done in several other metacom-
puting projects—but we rather give access to spe-
cific pre-registered applications on a pay-per-use basis.
The reasons are twofold:

• First, compute-intensive applications are typi-
cally also data-intensive, some of them repeti-
tively running queries against very large data-
bases. Clearly, the databases should be installed
prior to access time and updated at night time.

• Second, industrial users are typically not willing
to learn about vendor-specific HPC access just to

53

run their code; they rather prefer to see the ma-
chine through their application code's interface.

This scheme was proven in industrial projects run-
ning CPU-time intensive CFD simulations on servers
in France, Germany and Great Britain. Because CFD
simulations produce a large amount of output for vi-
sualizing flows and pressures, the server includes a
caching facility, allowing the user to specify only that
portion of data that is actually needed.

In the second project, we implemented a distrib-
uted pharmaceutical application server that allows
truely interactive design of drug targets. The distrib-
uted server contains codes for the prediction of pro-
tein functions from sequences, for sensitive sequence
searches, for 3D structure generation and for struc-
ture comparison. A virtual user access point has been
implemented in Java with a job load balancing scheme
based on the CIS concept. Security is ensured by data
encryption, firewalls and Kerberos authentication. In
addition, the server can be installed on in-house LANs
for running the most sensitive drug design projects.

7 Related Work
Resource management systems emerged from the

need for a better utilization of expensive HPC systems.
The Network Queuing System NQS [25], developed by
NASA Ames for the Cray2 and Cray Y-MP, might
be regarded as the ancestor of many modern queuing
systems like the Cray Network Queuing Environment
NQE and the Portable Batch System PBS.

Following another path in the line of ancestors,
the IBM Load Leveler is a direct descendant of Con-
dor [27], whereas Codine [21] has its roots in Con-
dor and DQS. They have been developed to support
'high-throughput computing' on UNIX workstation
clusters. In contrast to high-performance computing,
the goal is here to run a large number of (mostly se-
quential) batch jobs on workstation clusters without
affecting interactive use. The Load Sharing Facility
LSF [28] is another popular software for utilize LAN-
connected workstations for high-throughput comput-
ing. For more detailed information on cluster manag-
ing software, the reader is referred to [2, 24].

These systems have been extended for support-
ing the coordinated execution of parallel applications,
mostly based on PVM. A multitude of schemes have
been devised for high-throughput computing on a
somewhat larger scale, including the Iowa State Uni-
versity's Batrun [35], the CORBA-based Piranha [29],
the Dutch Polder initiative [11], the Nimrod project
[1], and the object-oriented Legion [22] which proved
useful in a nation-wide cluster. While these schemes

emphasize mostly on the application support on ho-
mogeneous systems, the AppLeS project [5] provides
application-level scheduling agents on heterogeneous
systems, taking into account their actual resource per-
formance.

For the research presented in this paper, the already
mentioned Globus project [15] is most important.
Based on the lessons learned in the I-WAY experiment
[14], the National Computational Science Alliance [34]
implements a framework of an adaptive wide area
metacomputer environment, where Globus, among
Condor and Symbio (for clustering WindowsNT sys-
tems) , plays a key role in establishing a national dis-
tributed computing infrastructure.

Globus aims at building an adaptive wide area re-
source environment (AWARE) with a set of tools that
enables applications to adapt to heterogeneous and
dynamically changing metacomputing environments.
Similar to our CIS, a metacomputing directory service
(MDS) [12] has been proposed to address the need
for efficient and scalable access to diverse, dynamic,
and distributed information. The API is vendor-
independent. MDS is able to handle static and dy-
namic information. Like our MARS system [19], MDS
is intended to manage application specific information
that has been found useful in previous program runs
(e.g. memory requirements, program structure, com-
munication patterns).

8 Summary
We have presented history, presence and future de-

velopment of the resource management software CCS.
The current release 4.0 has the following features:

• It is modular and autonomous on each layer. New
machines, networks, protocols, schedulers, system
software, and meta-layers can be added at any
point—some of them even without the need to
re-boot the system.

• It is reliable. There is no single point of failure.
Recovery is done at the machine layer. The center
information manager (CIS) is passive and can be
restarted or mirrored.

• It is scalable. There exists no central instance.
The hierarchical approach allows to connect to
other centers' resources. This concept has been
found useful in several industrial projects.

• It is extensible. Other resource management sys-
tems (e.g. Codine, LSF, Condor) can be linked
to CCS without the need to adjust their internal
control regime.

54

From a software engineering view, each module can
be implemented in another way, regardless of earlier
implementations. From an administrators point of
view, the system is easy to administer (by means of
RSD and the operator shell), it is reliable, dynamic,
and offers customized control on each level.

Compared to the Globus project, there are some
similarities, but on a somewhat lower level. With this
respect, CCS may be seen as a testbed for gaining
valuable experiences with an existing resource man-
agement system that provides some important fea-
tures required for practical metacomputing.

Current Status. Not all of the features have been
fully implemented yet. We are currently in the tran-
sition phase between the previous RDL language and
the here described, more general RSD description tool.
Both, the CRM and the CIS have not yet been imple-
mented completely. Furthermore, we plan to change
the communication layer from RPCs to MPI-2 or
Nexus. These communication layers support the use of
multi-threaded daemons, thereby improving the per-
formance of CCS under heavy load.

References
[1] D. Abramson, R. Sosic, J. Giddy, B. Hall. Nimrod:

A Tool for Performing Parameterized Simulations
using Distributed Workstations. 4th IEEE Symp.
High Perf. and Distr. Comp. August 1995.

[2] M. Baker, G. Fox, H. Yau. Cluster Comput-
ing Review. Northeast Parallel Architectures Cen-
ter, Syracuse University, Nov 1995, New York.
http://www.npar.syr.edu/techreports/index.html

[3] B. Bauer, F. Ramme. A General Purpose Re-
source Description Language. Grebe, Baumann
(eds), Parallel Datenverarbeitung mit dem Trans-
puter, Springer-Verlag, Berlin, 1991, 68-75.

[4] R. Baraglia, G. Faieta, M. Formica, D. Laforenza.
Experiences with a Wide Area Network Metacom-
puting Management Tool using IBM SP-2 Parallel
Systems. Concurrency: Practice and Experience,
John Wiley k Sons, Ltd., Vol. 8, 1996.

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf,
G. Shao. Application-Level Scheduling on Distrib-
uted Heterogeneous Networks. Supercomputing 96,
Nov. 1996.

[6] M. Brune, J. Gehring, A. Reinefeld. Heterogeneous
Message Passing and a Link to Resource Manage-
ment. J. Supercomputing, Kluwer Acad. Publ., Vol
11,355-369 (1997).

[7] M. Brune, J. Gehring, A. Keller, A. Reinefeld.
RSD - Resource and Service Description. Tech.
Rep., Paderborn Center for Parallel Computing,
1998. Also submitted to HPCS'98.

[8] A. Colbrook, M. Lemke, H. Mierendorff,
K. Stueben, C.-A. Thole, 0. Thomas. Europort -
ESPRIT European Porting Projects. Int. Conf on
High-Perf. Comp. and Netw., Springer LNCS 796
(1994), 46-54.

[9] Computing Center Software CCS. Paderborn
Center for Parallel Computing, http://www.uni-
paderborn.de/pc2/projects/ccs.

[10] T. DeFanti, I. Foster, M. Papka, R. Stevens, T.
Kuhfuss. Overview of the I-WAY: Wide Area Vi-
sual Supercomputing. International Journal of Su-
percomputer Applications, 10(2):123-130, 1996.

[11] D. Epema, M. Livny, R. van Dantzig, X. Evers,
J. Pruyne. A Worldwide Flock of Condors: Load
Sharing among Workstation Clusters. FGCS, vol.
12, 1996, 53-66.

[12] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, S. Tuecke. A Directory Ser-
vice for Configuring High-Performance Distributed
Computations. Proc. 6th IEEE Symp. on High-
Performance Distributed Computing 1997

[13] I. Foster, J. Geisler, C. Kesselman, S. Tuecke.
Managing Multiple Communication Methods in
High-Performance Networked Computing Systems.
J. Parallel and Distributed Computing, 40:35-48,
1997.

[14] I. Foster, J. Geisler, W. Nickless, W. Smith,
S. Tuecke. Software Infrastructure for the I-WAY
High-Performance Distributed Computing Experi-
ment. Proc. 5th IEEE Symp. on High Performance
Distributed Computing, 562-570, 1996.

[15] I. Foster, C. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. Journal of Supercom-
puter Applications.

[16] I. Foster, D. Kohr, R. Krishnaiyer, J. Mogul. Re-
mote 1/0: Fast Access to Distant Storage. ANL
Technical Report.

[17] E. Gabriel, T. Beisel, M. Resch. PACX (PArallel
Computer extension), An Installation Guide. In-
stallation guide for PACX Version 2.0, RUS Tech.
Rep., 1997.

55

[18] J. Gehring, F. Ramme. Architecture-Independent
Request-Scheduling with Tight Waiting-Time Esti-
mations. IPPS'96 Workshop on Scheduling Strate-
gies for Parallel Processing, 1996, Hawaii, Springer
LNCS 1162,41-54.

[19] J. Gehring, A. Reinefeld. MARS - A Framework
for Minimizing the Job Execution Time in a Meta-
computing Environment. Future Generation Com-
puter Systems, Vol. 12, 87-99 (1996).

[20] J. Gehring, A. Reinefeld, A. Weber, PHASE and
MICA: Application Specific Metacomputing. Eu-
ropar'97, Passau, Germany, 1997.

[21] GENIAS Software GmbH. Codine: Com-
puting in Distributed Networked Environments.
http://www.genias.de/products/codine/.

[22] A. Grimshaw, J.B. Weissman, E.A. West, E.C.
Loyot. Metasystems: An Approach Combining
Parallel Processing and Heterogeneous Distrib-
uted Computing Systems. J. Par. Distr. Comp. 21
(1994), 257-270.

[23] GRM. Resource Manager Specification v0.3.
http://www.globus.org/scheduler/grm_spec.html

[24] J.P. Jones, C. Brickell. Second Evaluation of Job
Queueing/Scheduling Software: Phase 1 Report.
Nasa Ames Research Center, NAS Tech. Rep.
NAS-97-013, June 1997.

[25] B.A. Kinsbury. The Network Queuing System.
Cosmic Software, NASA Ames Research Center,
1986.

[26] J. Linn. Generic Security Service Applica-
tions Programming Interface. Internet RFC 1508,
(1993).

[27] M.J. Litzkow, M. Livny. Condor-A Hunter of Idle
Workstations. Procs. 8th IEEE Int. Conf. Distr.
Computing Systems, June 1988, 104-111.

[28] LSF. Product Overview. http://www.platform-
.com/products/, July 1997.

[29] S. Maffeis. Piranha: A CORBA Tool for High
Availability. IEEE Computer, April 1997, 59-66.

[30] F. Ramme, T. Römke, K. Kremer. A Distrib-
uted Computing Center Software for the Efficient
Use of Parallel Computer Systems. HPCN Europe,
Springer LNCS 797, Vol. II, 129-136 (1994).

[31] F. Ramme. Transparente und effiziente Nutzung
partitionierbarer Parallelrechner. PhD Disserta-
tion (in German), Paderborn Center for Parallel
Computing, 1997.

[32] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring,
D. Laforenza, F. Ramme, T. Römke, J. Simon.
The MOL Project: An Open Extensible Metacom-
puter. Proceedings HCW'97, Vienna, IEEE Com-
puter Society Press, 17-31.

[33] L. Smarr, C.E. Catlett. Metacomputing. Commu-
nications of the ACM 35,6(1992), 45-52.

[34] R. Stevens, P. Woodward, T. DeFanti, C. Catlett.
From I-WAY to the National Technology Grid.
Communiations of the ACM 11(1997), 51-60.

[35] F. Tandiary, S.C. Kothari, A. Dixit, E.W. An-
derson. Batrun: Utilizing Idle Workstations for
Large-Scale Computing. IEEE Parallel and Distr.
Techn., Summer 1996, 41-48.

Acknowledgments
Thanks to the members of the CCS-team, who have

spent a tremendous effort on the development, im-
plementation, and debugging since the project start
in 1992: Bernard Bauer, Matthias Brune, Harald
Dunkel, Jörn Gehring, Oliver Geisser, Christian Hell-
mann, Axel Keller, Achim Koberstein, Rainer Kotten-
hoff, Karim Kremers, Fru Ndenge, Friedhelm Ramme,
Thomas Römke, Helmut Salmen, Dirk Schirmer,
Volker Schnecke, Jörg Varnholt, Leonard Voos, Anke
Weber.

Author Biographies
Axel Keller received his diploma in computer sci-
ence from the University of Paderborn in 1993. As
a staff member of the Paderborn Center for Parallel
Computing he spent much time in designing and im-
plementing CCS releases 2,3, and 4.

Alexander Reinefeld received his CS diploma and
PhD from the University of Hamburg in 1982 and
1987, respectively. In 1984/85 and 1987/88, he was
awarded a DAAD scholarship and a Sir Walton Killam
Post Doctoral fellowship for a two years study at the
University of Alberta. He worked as a software con-
sultant and as an assistant professor at the University
of Hamburg. Since 1992, he manages the Paderborn
Center for Parallel Computing.

56

A Dynamic Matching and Scheduling Algorithm for

Heterogeneous Computing Systems

Muthucumaru Maheswaran and Howard Jay Siegel

Parallel Processing Laboratory
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-1285 USA

{maheswar, hj} @ecn.purdue.edu

Abstract

A heterogeneous computing system provides a
variety of different machines, orchestrated to perform an
application whose subtasks have diverse execution
requirements. The subtasks must be assigned to
machines (matching) and ordered for execution
(scheduling) such that the overall application execution
time is minimized. A new dynamic mapping (matching
and scheduling) heuristic called the hybrid remapper is
presented here. The hybrid remapper is based on a cen-
tralized policy and improves a statically obtained initial
matching and scheduling by remapping to reduce the
overall execution time. The remapping is non-
preemptive and the execution of the hybrid remapper can
be overlapped with the execution of the subtasks. During
application execution, the hybrid remapper uses run-time
values for the subtask completion times and machine
availability times whenever possible. Therefore, the
hybrid remapper bases its decisions on a mixture of run-
time and expected values. The potential of the hybrid
remapper to improve the performance of initial static
mappings is demonstrated using simulation studies.

Keywords: dynamic scheduling, heterogeneous comput-
ing, list scheduling, mapping, matching, parallel process-
ing, scheduling.

This work was supported by the DARPA/ITO Quorum Program
under the NPS subcontract numbers N62271-97-M-0900 and
N62271-98-M-0217.

1. Introduction

Different portions of a computationally intensive
application often require different types of computations.
In general, a given machine architecture with its associ-
ated compiler, operating system, and programming
environment does not satisfy the computational require-
ments of all portions of an application equally well.
However, a heterogeneous computing (HC) environment
that consists of a heterogeneous suite of machines and
high-speed interconnections provides a variety of archi-
tectural capabilities, which can be orchestrated to per-
form an application that has diverse computational
requirements [2, 10, 14, 15]. The performance criterion
for HC used in this paper is to minimize the completion
time, i.e., the overall execution time of the application on
the machine suite.

One way to exploit an HC environment is to decom-
pose an application task into subtasks, where each sub-
task is computationally well suited to a single machine
architecture. Different subtasks may be best suited for
different machines. The subtasks may have data depen-
dencies among them, which could result in the need for
inter-machine communications. Once the subtasks are
obtained, each subtask is assigned to a machine
(matching). The subtasks and inter-machine data
transfers are ordered (scheduling) such that the overall
completion time of the application is minimized. It is
well known that such a matching and scheduling
(mapping) problem is, in general, NP-complete [3].
Therefore, many heuristics have been developed to

0-8186-8365-1/98 $10.00 © 1998 IEEE
57

obtain near-optimal solutions to the mapping problem.
The heuristics can be either static (matching and schedul-
ing decisions are made prior to application execution) or
dynamic (matching and scheduling decisions are made
during application execution).

Most static mapping heuristics assume that accurate
estimates are available for (a) subtask computation times
on various machines and (b) inter-machine data transfer
times. Often, it is difficult to accurately estimate the
above parameters prior to application execution. There-
fore, this paper proposes a new dynamic algorithm,
called the hybrid remapper, for improving the initial
static matching and scheduling. The hybrid remapper
uses the run-time values that become available for sub-
task completion times and machine availabilities during
application execution time. It is called the hybrid
remapper because it uses some results based on an initial
static mapping in conjunction with information available
only at execution time.

The hybrid remapper heuristics presented here are
based on the list scheduling class of algorithms (e.g., [1,
9]). An initial, statically obtained mapping is provided as
input to the hybrid remapper. If the initial mapping is
not provided, it should be obtained before running the
hybrid remapper by executing a static mapping algorithm
such as the baseline [18], genetic-algorithm-based
mapper [18], or Levelized Min Time [9].

The hybrid remapper executes in two phases. The
first phase of the hybrid remapper is executed prior to
application execution. The set of subtasks is partitioned
into blocks such that the subtasks in a block do not have
any data dependencies among them. However, the order
among the blocks is determined by the data dependencies
that are present among the subtasks of the entire applica-
tion. The second phase of the hybrid remapper, executed
during application run time, involves remapping the sub-
tasks. The remapping of a subtask is performed in an
overlapped fashion with the execution of other subtasks.
As the execution of the application proceeds, run-time
values for some subtask completion times and machine
availability times can be obtained. The hybrid remapper
attempts to improve the initial matching and scheduling
by using the run-time information that becomes available
during application execution and the information that
was obtained prior to the execution of the application.
Thus, hybrid remapper's decisions are based on a mix-
ture of run-time and expected values.

This research is part of a DARPA/ITO Quorum Pro-
gram project called MSHN (Management System for
Heterogeneous Networks). MSHN is a collaborative
research effort that includes NPS (Naval Postgraduate
School), NRaD (a Naval Laboratory), Purdue, and USC
(University of Southern California). It builds on Smart-
Net, an operational scheduling framework and system for

managing resources in a heterogeneous environment
developed at NRaD [6]. The technical objective of the
MSHN project is to design, prototype, and refine a distri-
buted resource management system that leverages the
heterogeneity of resources and tasks to deliver the
requested qualities of service.

The organization of this paper is as follows. The
matching and scheduling problem and the associated
assumptions are defined in Section 2. Three variants of
the hybrid remapper heuristics are described in Section 3.
Section 4 examines the data obtained from the simulation
studies conducted to evaluate the performance of the
hybrid remapper heuristic. In Section 5, related work is
discussed. Finally, Section 6 gives some future research
directions.

2. Problem Definition

The following assumptions are made regarding the
application. The application is decomposed into multiple
subtasks and the data dependencies among them are
known and are represented by a directed acyclic graph
(DAG). That is, the nodes in the DAG represent the sub-
tasks and the links represent the data dependencies. An
estimate of the expected computation time of each sub-
task on each machine in the HC suite is known a priori.
This assumption is typically made when conducting
mapping research (e.g., [4, 7, 13, 16]). Finding the
expected computation time is another research problem.
Approaches based on analytical benchmarking and task
profiling are surveyed in [14, 15]. Any loops and data
conditionals are assumed to be contained inside a sub-
task.

It is assumed that the hybrid remapper is running on
a dedicated workstation and all mapping decisions are
centralized. Once a subtask is mapped onto a machine it
is inserted into a local job queue on that particular
machine. The execution of the subtask is managed by the
job control environment of the local machine. The sub-
task executions are non-preemptive. All input data items
of a subtask must be received before its execution can
begin, and none of its output data items are available
until its execution is completed. These assumptions
make the matching and scheduling problem in HC sys-
tems more manageable. Nevertheless, solving the
mapping problem with these assumptions is a significant
step toward solving the more general problem.

An application task is decomposed into a set of sub-
tasks S, where st is the i-th subtask. Let the HC
environment consist of a set of machines M, where nij
be the j-th machine. The estimated expected computa-
tion time of subtask s: on machine m is given by et ■.
The earliest time at which machine nij is availablFTs
given by A[j], where \A \ = \ M |.

58

The data communication time between two
machines has two components: a fixed message latency
for the first byte to arrive and a per byte message transfer
time. An | M |x | M | communication matrix is used to
hold these values for the HC suite. Similar matrices are
used by other researchers in HC (e.g., [7, 13, 16]).

To facilitate the discussion in Section 3, a hypotheti-
cal node called an exit node is defined for the DAG as
follows. An exit node (subtask) is a node with 0 compu-
tation time that is appended to the DAG such that there is
a 0 data transfer time communication link to this node
from every node in the DAG that does not have an output
edge. The critical path for a node in the DAG is defined
as the longest path from the given node to the exit node.

3. The Hybrid Remapper Algorithm

3.1. Overview

The notion behind most dynamic mapping
algorithms is that due to the dynamic nature of the
mapping problem, it is not efficient to use a fixed
mapping computed statically. Therefore, most dynamic
mappers regularly either generate the mapping or refine
an existing mapping at various times during task execu-
tion. That is, dynamic mapping algorithms solve the
mapping problem by solving a series of partial mapping
problems (consisting of only a subset of the original set
of subtasks). The partial mapping problem is usually
solved by a static mapping heuristic. Because the
mapping is performed in real time, it is necessary to use a
fast algorithm to avoid any machine idle times that occur
from having to wait for the mapper to complete its exe-
cution. In the hybrid remapper algorithm presented here,
the partial mapping problem is solved using a list-based
scheduling algorithm.

In the following subsections, three variants of the
hybrid remapper algorithm are described. The first
phase, common for all three variants of the hybrid
remapper, involves partitioning the subtasks into blocks
and assigning ranks to each subtask (where the rank indi-
cates the subtask's priority for being mapped, as defined
below). The variants of the hybrid remapper differ in the
second phase by the minimization criteria they use and
by the way they order the subtasks examined by the
partial mapping problem. One variant of the hybrid
remapper attempts to minimize the expected partial
completion time at each remapping step, and the others
attempt to minimize the overall expected completion
time. Two variants of the hybrid remapper order the sub-
tasks at each remapping step using ranks computed at
compile time, and the other using a parameter computed
at run time.

3.2. Partitioning and Rank Assignment

This first phase uses the initial static mapping,
expected subtask computation times, and expected data
transfer times to preprocess the DAG that represents the
application. Initially, the DAG is partitioned into B
blocks numbered consecutively from 0 to B—1. The par-
titioning is done such that the subtasks within a block are
independent, i.e., there are no data dependencies among
the subtasks in a block. All subtasks that send data to a
subtask Sj in block k must be in any of blocks 0 to k—\.
Furthermore, for each subtask Sj in block k there exists
at least one incident edge (data dependency) such that the
source subtask is in block k—\, i.e., an incident edge
from some st. The (B-l)-fh block includes the subtasks
without any successors and the 0-th block includes only
those subtasks without any predecessors. The exit node
is not included in any block in the DAG partitioning.
The three blocks obtained using this partitioning
algorithm for an example seven node DAG is shown in
Figure 1(a).

Once the subtasks in the DAG are partitioned, each
subtask is assigned a rank by examining the subtasks
from block B-\ to block 0. The rank of each subtask in
the (B— l)-th block is set to its expected computation
time on the machine to which it was assigned by the ini-
tial static matching. Now consider the A:-th block,
O^k <B-l. Recall eix is the expected computation
time of the subtask s, on machine mx. Let ct • be the
data transfer time for a descendent Sj of .?, to "get all the
relevant data items from Sj. The value of ct] will be
dependent on the machines assigned to subtasks s-{ and Sj
by the initial mapping, and the information in the com-
munication matrix. Let iss(.?,) be the immediate
successor set of subtask 5,- such that there is an arc from
5,- to each member of iss(.?,) in the DAG. In the equation
below, each eijc implies subtask s, is assigned to
machine mx by the initial mapping. With these
definitions, the rank of a subtask st is given by:

rank(5,-) = e,-,x+J. max
Ätfc'j+rank<J;»

Figure 1(b) illustrates the rank assignment process
for the subtask st. The rank of a subtask can be inter-
preted as the length of the critical path from the point the
given subtask is located on the DAG to the exit node,
i.e., the time until the end of the execution of all its des-
cendents. Two variants of the hybrid remapper described
here are based on the heuristic idea that by executing the
subtasks with higher ranks as quickly as possible, the
overall expected completion time for the application can

59

block 0 block k-1

block k+1

(a) (b)

Figure 1: (a) Partitioning a DAG into blocks and (b) assigning ranks to the nodes of a DAG.

be minimized.

3.3. Common Portion of the Run-Time Phase

In all three variants of the hybrid remapper, the exe-
cution of the subtasks proceeds from block 0 to block
B—\. A block k is considered to be executing if at least
one subtask from block k is running. Also, the execution
of several blocks can overlap with each other in time,
i.e., subtasks from different blocks could be running at
the same time.

The hybrid remapper changes the matching and
scheduling of the subtasks in block k while the subtasks
in block (k-\) or before are being executed. The hybrid
remapper starts examining the block k subtasks when the
first block (£-1) subtask begins its execution. When
block k subtasks are being mapped, it is highly likely
that run-time completion time information can be used
for many subtasks from blocks 0 to k—2. There may be
some subtasks from blocks 0 to k-2 that are still running
or waiting execution when subtasks from block k are
being considered for remapping. For such subtasks,
expected completion times are used.

3.4. Minimum Partial Completion Time Static
Priority (PS) Algorithm

As mentioned earlier, the hybrid remapper uses a
list-scheduling type of algorithm to recompute the
matching and scheduling for the subtasks in each block.
In a list-scheduling type of algorithm, the subtasks are

first ordered based on some priority. Then, each subtask
is mapped to a machine by examining the list of subtasks
from the highest priority subtask to the lowest priority
subtask. The machine to which each subtask is assigned
depends on the matching criterion used by the particular
algorithm.

In this variant of the hybrid remapper, the priority of
a subtask is equal to the rank of that subtask that was
computed statically in the first phase (Subsection 3.2).
The matching criterion used for subtask st is the minimi-
zation of the partial completion time, defined below.
Thus, this variation is referred to as the minimum partial
completion time static priority (PS) algorithm.

Let mx be the machine on which s, is being con-
sidered for execution. Then let pct(s,-,*) denote the
partial completion time of the subtask s, on machine mx,
dr(.y,) be the time at which the last data item required by
Sj to begin its execution arrives at mx, and ips(s,-) be the
immediate predecessor set for subtask s, such that there
is an arc to s, from each member of ips(5,) in the DAG.
For any subtask st in block 0, pct(j/^r) = c,-iX. For any
subtask S, not in block 0, where Sj e ips(.?,), and Sj is
currently mapped onto machine mx,

^^eiJS.O^^W»
pct(s, ,x) = et +max(/4 [x], dr (Sj))

In the computation of pcl(shx), the above equation is
recursively used until subtask Sj is such that its run-time

60

completion time on machine wv is available or subtask s ■
is in block 0. The subtask s, is remapped onto the
machine mx that gives the minimum pct(s,-,*), and A [x]
is updated using pct(s,,x). Then the next subtask from
the list is considered for remapping.

3.5. Minimum Completion Time Static Priority
(CS) Algorithm

The notion behind the PS algorithm was that by
remapping the highest rank subtask s, to execute on the
machine that will result in the smallest expected partial
completion time, the overall completion time of the
application may be minimized. Instead of this approach,
the variant of the hybrid remapper described here
attempts to minimize the overall completion time by
remapping each subtask Sj in block k such that the length
of the critical path through subtask s, is reduced. Thus,
this variation is referred to as the minimum completion
time static priority (CS) algorithm. The reason for con-
sidering both PS and CS is that in PS the remapping is
faster but CS attempts to derive a better mapping because
it considers the whole critical path through st.

Let mx be the machine on which st is being con-
sidered for execution. Then let the longest completion
time path from a block 0 subtask to the exit node through
the subtask s, be ct(s,,x). The overall completion time
of the application task is determined by one such longest
path through a block k subtask. Consider the subtask st

in Figure 2. Assume that the longest path through s, is
shown by bold edges in Figure 2. For any subtask st,

ct(j,- ,x) = s e is™^)(pct(5, ,x)+c, j +rank(5y))

max :Pct^^)+,,eissS^J+rank^»

The subtask st is remapped onto the machine mx that
gives the minimum ct(s, jc), and A [x] is updated using
pct(i, ,x). Then the next subtask in the list is considered
for remapping.

3.6. Minimum Completion Time Dynamic
Priority (CD) Algorithm

The rank of a subtask 5, is computed prior to appli-
cation execution. Therefore, if st is remapped to a
machine other than the one it was assigned to by the ini-
tial static mapping, the rank of st may not give the length
of the critical path from s, to the exit node.

The algorithm presented here is same as the CS
algorithm, except ranks are no longer used in ordering
the subtasks within a block. Instead of using the stati-
cally computed ranks, this algorithm uses the value of

ct(5, ^c), where mx is the machine assigned to s, in the
initial mapping, to order the subtasks within a block.
Thus, this variation is referred to as the minimum
completion time dynamic priority (CD) algorithm.

The example shown in Figure 3 illustrates why using
ranks computed at compile time to order the subtasks
within a block may not lead to the best overall
completion time. In the given example, the DAG shown
in Figure 3(a) is mapped onto two machines m0 and mx.
Figure 3(b) shows the subtask computation time matrix,
which gives the computation time of a subtask on dif-
ferent machines. The initial static mapping is shown in
Figure 3(c). The numbers inside each bar correspond to
the subtask index and the execution time of the subtask,
in "subtask index/execution time" notation. The times
are given in seconds. The data transfer times are negligi-
ble if the source and destination machines are the same,
otherwise, for this example there is a fixed time of two
seconds for the data transfer. In Figure 3(a), the number
outside each node indicates the rank of that subtask
derived using the initial mapping.

When block 2 is considered for remapping by either
the PS or CS algorithm, s5 is mapped first and then J4 is
mapped. Suppose s0 finishes its execution in 20 seconds
instead of 10 seconds and s} finishes in 10 seconds. This
causes the subtask s4 to become critical and s5 to become
non-critical, i.e., s5 is not part of the critical path
anymore. By using the rank numbers that were statically
computed, the PS and CS algorithms map s5 before s4.
Thus, s5 will be mapped to the best machine and this can
delay the completion of s4. Instead of using the statically
computed ranks, the CD algorithm considers ct(s,,jc),
where subtask s, is assigned to mx in the initial mapping.
For this example, subtask s4 is assigned to machine m0

and subtask s5 is assigned to machine mx. Therefore, the
CD algorithm considers ct(s4,0) and ct(s5,l) to determine
the remapping order.

ct(.j 4,0) = 20+15+10+10 = 55

ct(s5,l) = 10+20+10+2+10 = 52

Because the value of ct(55,l) is less than the value of
ct(s4,0), 54 is considered for remapping before s5 by the
CD algorithm. This example illustrates that using ct(s,,
x), where mx is the machine that is assigned to s{ in the
initial mapping, enables the remapping algorithm to track
the critical path better than using the static ranks.

61

pCt(Sj)

rank I

block k-2

block k-1

block k+1

Figure 2: Estimating the completion time by considering the longest path through s ..

4. Experimental Results and Discussion

4.1. Simulation Parameters

A simulator was implemented to evaluate the perfor-
mance of the hybrid remapper variants. Various parame-
ters are given as input to the simulator. Some parameters
are specified as fixed values, e.g., number of machines,
and others as a range of values with a maximum and a
minimum value, e.g., subtask computation time. When a
range is specified, the actual value is set to a random
value within the specified range. Each data point in the
results presented in this section is an average of 100
simulation runs. The experiments were performed on a
Sun Ultra with a SPARC processor running at 165 MHz.

To generate a DAG that represents an application,
the number of subtasks, maximum out degree of a node,
number of data items to be transferred among different
subtasks, range for subtask computation times, and range
for data item sizes are provided as input to the simulator.
Using these input parameters the simulator creates a
table with the subtasks along the columns and data items
along the rows. If a subtask Sj produces a data item dt

then the cell (/',;') has the label PRODUCER and if the
subtask sj consumes a data item dt then the cell (/ ,j) has
the label CONSUMER. A data item has one and only
one producer, but may have zero or more consumers.
For a given data item, a producer is randomly picked and

then consumers are picked such that the resulting graph
is acyclic and the maximum out degree constraints are
satisfied.

To define the HC suite, the number of machines is
provided as input. The simulator randomly generates
valid subtask computation times to fill a table that deter-
mines the subtask computation times on each machine in
the HC suite. For these experiments it is assumed that a
fully connected, contention-free communication network
is used. The inter-machine communication times are
source and destination dependent. Communication times
are specified by a range value. The run-time value of a
parameter such as the subtask execution time or inter-
subtask data communication time can be different from
the expected value of the parameter. The variation is
modeled by generating simulated run-time values by
sampling a probability distribution function (PDF) that
has the expected value of the parameter as the mean.

4.2. Generational Scheduling

In this subsection, the generational scheduling (GS)
algorithm [5] is briefly described. The performance of
the hybrid remapper is compared with the performance
of the GS algorithm in the next subsection. The GS
algorithm is a dynamic mapping heuristic for HC sys-
tems.

62

block 0

42
S3) block 1

22
s5) block 2

block 3

m.

m,

1/10

subtask m0 m1

0 10 10

1 10 10

2 15 20

3 15 20

4 10 15

5 10 10

6 10 15

3/20

(b)

5/10

0/10 2/15 4/10 6/10

time

(c)

Figure 3: An example mapping to illustrate the benefit of the CD algorithm: (a) the partitioned DAG,
(b) the subtask computation time matrix, and (c) the initial mapping.

Initially, the GS forms a partial scheduling problem
by pruning all the subtasks with unsatisfied precedence
constraints from the initial DAG that represents the
application. The initial partial scheduling problem con-
sists of subtasks that correspond to those in block 0 of the
hybrid remapper approach. The subtasks in the initial
partial scheduling problem are then mapped onto the
machines using an auxiliary scheduler. The auxiliary
scheduler considers the subtasks for assignment in a first
come first serve order. A subtask is assigned to a
machine that minimizes the completion time of that par-
ticular subtask.

When a subtask from the initial partial scheduling
problem completes its execution, the GS algorithm per-
forms a remapping. During the remapping, the GS
revises the partial scheduling problem by adding and
removing subtasks from it. The completion of the subtask
that triggered the remapping event may have satisfied the
precedence constraints of some subtasks. These subtasks

are added to the initial partial scheduling problem. The
subtasks that have already started execution are removed
from the initial partial scheduling problem. Once the
revised partial scheduling problem is obtained, the sub-
tasks in it are mapped onto the HC machine suite using
the auxiliary scheduler. This procedure is iteratively per-
formed until the completion of all subtasks.

4.3. Hybrid Remapper

From the discussions in Section 3, it can be noted
that the hybrid remapper is provided with an initial
mapping that is derived prior to application execution
using a static matching and scheduling algorithm. The
simulator generates a random DAG, using the parameters
it receives as input, at the beginning of each simulation
run. An initial static mapping for this DAG is obtained
by matching and scheduling this DAG onto the HC suite
using the baseline algorithm [18].

63

The baseline algorithm that is used to derive the ini-
tial mapping is a fast static matching and scheduling
algorithm. It partitions the subtasks into blocks using an
algorithm similar to the one described in Subsection 3.2.
Once the subtasks are partitioned into blocks, they are
ordered such that a subtask in block k comes before a
subtask in block /, where k <l. The subtasks in the same
block are arranged in descending order based on the
number of descendents of each subtask (ties are broken
arbitrarily). The subtasks are considered for assignment
by traversing the list, beginning with block 0 subtasks. A
subtask is assigned to the machine that gives the shortest
time for that particular subtask to complete.

In this simulator, three different PDFs (a) Erlang(2)
[12], (b) uniform, and (c) skewed uniform are used to
generate the simulated run-time values. For Erlang(2),
the expected values are provided as the mean and the
PDF is sampled to obtain a simulated run-time value. In
Figure 4, 10,000 consecutive random numbers generated
by the Erlang(2) random number generator with mean
ten is shown using a 200-bin histogram. For the skewed
uniform PDF, the following rule is used to generate the
simulated run-time value. Let a] be the negative percen-
tage deviation, a2 be the positive percentage deviation,
and u be a random number that is uniformly distributed
in [0,1]. Then, the simulated run-time value of a parame-
ter x can be modeled as T x (100-a1+(a,+a2)M)/100. For
the uniform PDF, a, = cc2 = a. For the simulation results
presented here, Erlang(2) is used unless otherwise noted.

250

200

^ 150

ft; 100

10 20 30 40
bins

50 60

Figure 4: A 200-bin histogram for 10,000
consecutive samples of the Erlang(2) random
number generator with mean equal to ten.

In these experiments, baseline refers to first deriving

a static mapping using the baseline algorithm and
expected subtask computation and communication times,
and then, using this mapping, computing the total appli-
cation execution time based on the simulated run-time
values for computation and communication times. Also,
in these experiments, ideal refers to deriving a static
mapping using the baseline algorithm and simulated
run-time values (instead of the expected values) for sub-
task computation and communication times. Note that
this ideal is used for comparison purposes only, and can-
not be implemented in practical environments. Also note
that the ideal is not necessarily the optimal mapping.
These simulated run-time values are also used to evalu-
ate the application task completion time with the hybrid
remapper variants.

In Figure 5(a), the performance of the PS algorithm
is compared to the mapping that is obtained using the
baseline algorithm for ten machines. Figure 5(b) shows a
similar comparison for the CS algorithm for ten
machines. The performance of the CD algorithm is
shown in Figures 6(a) and 6(b). Figure 6(a) compares
CD and the baseline for varying numbers of subtasks and
ten machines. Figure 6(b) compares the two approaches
for varying numbers of machines and 200 subtasks.

From Figures 5(a), 5(b), and 6(a) it can be observed
that the performance difference among the three variants
is almost negligible. The heuristic improvements per-
formed to obtain the CS and CD variants from the PS
variant of the hybrid remapper make the CS and CD use
more initial matching and scheduling derived informa-
tion. That is, while CS and CD use more information in
an attempt to derive a better mapping than the PS, the
information is based on expected values, rather than
run-time values. Thus, there is no significant improve-
ment. Also, in these simulation studies, the initial
mapping is obtained using a simple baseline algorithm.
The performance of CS and CD may improve if a higher
quality initial assignment is used, e.g., if a genetic
algorithm based mapper [18] is used for the initial
matching and scheduling.

As the number of subtasks increase, the performance
difference between each hybrid remapper variant and the
baseline increases. This increase in performance can be
attributed to two factors: (a) increased number of remap-
ping events and (b) increased average number of sub-
tasks per block. Increasing the number of remapping
events provides the hybrid remapper with more oppor-
tunities to exploit the run-time values of parameters that
are available during application execution. Also, with
the increased number of subtasks per block the hybrid
remapper can derive schedules that are very different
from the initial schedule. Therefore, the average perfor-
mance of the hybrid remapper increases with increasing
number of subtasks.

64

o
ü
<B

CO

E

a>
a.
E o o

140-

120-

100-

80-

60-

40-

20- .>

PS algorithm
baseline

ideal

~?Ü)Ö 2(50 300 400
number of subtasks

(a)

forming well with a low computation/communication
ratio is currently under investigation.

500

140- CS algorithm
at baseline —
r 120- ideal .-
o o ^ "
CO 100- ,** ^>^

+ * .^^

<1> , ** ^0**^

E 80- ,''\s^
c o 60- ,-\^^
CO „ - j^

Q.
F 40-
o „*/r
o 20-

0-
160 2A0 360 460 50

number of subtasks

(b)

Figure 5: Performance of the hybrid remapper
versus the baseline for (a) the PS algorithm and
(b) the CS algorithm.

Ten machines and 100 subtasks were used in Figure
7. In Figure 7(a), the performance of the CD algorithm
is compared with the baseline for varying
computation/communication ratios and Figure 7(b)
shows the performance comparison of the CD algorithm
with the baseline for varying average number of subtasks
per block. Figure 7(a) shows that the hybrid remapper
performs better as the computation/communication ratio
increases. The computation/communication ratio is the
average subtask execution time divided by the average
inter-subtask communication time. In Figure 7(a), the
low computation/communication ratio denotes the range
1.0-10.0, medium computation/communication ratio
denotes the range 10.0-200.0, and high
computation/communication ratio denotes the range
200.0-4000.0. With increasing
computation/communication ratio, the data transfer times
become less significant compared to the subtask compu-
tation times. The reason for the hybrid remapper not per-

o o
CO

m.
CO I
c
.0

Q.
E o o

140-

120-

100-

80-

60-

40-

20-

CD algorithm
baseline

ideal

i"$0 200 3Ö0 400
number of subtasks

(a)

500

nu-

100- CD algorithm
en , l baseline —

90- \i

0 \ 1
o
CO R0- \»
O) \»
CO 70- V
fc \l

r 60- \\
0 V N

Q 50- *
D. s. x v

H 40- X. s -
0
0

30-

20-
it> & sfo 4b 5Ü

number of machines

(b)

Figure 6: Performance of the CD algorithm
versus the baseline for (a) varying the subtasks
and (b) varying the machines.

From Figure 7(b) it can be noted that the relative
performance of the CD algorithm increases with increas-
ing the average number of subtasks per block. When
there are more subtasks per block, it is possible for the
hybrid remapper to derive mappings that are very dif-
ferent from the initial mapping.

Figure 8(a) compares the performance of the CD
algorithm with the baseline algorithm for a uniform dis-
tribution PDF, 20 machines, and 200 subtasks. Figure
8(b) performs the same comparison for a skewed uni-
form distribution PDF, 20 machines, and 200 subtasks.
In the skewed uniform distribution the negative percen-
tage deviation is half of the positive percentage devia-
tion.

As noted earlier, one of the features of the hybrid
remapper algorithm that is presented here is overlapping
its operation with the execution of the subtasks. To

65

-a c o

a
E
c o

£ 2CH
E o o

60-

50-

40-

30-

10-

CD algorithm
baseline

loW medium high
computation/communication ratio

(a)

■o c o

0) I
c g

Q.

38-

37-

36-

<H 35-

34-

33-

32-

31--

30-

CD algorithm
baseline

!£ 5^ W
percentage deviation

(a)

100

,\
CD algorithm

CO
T) sn- baseline —
C \» ideal
o \ v
ai \ x

4<>- a> \ s
I- ^^ *

*■£= * - _
c o 30- -»__"" ---.__
a>
a.

o ?0- o

I 4 6 i A h
avg. number of subtasks per block

(b)

55-

Figure 7: Performance of the CD algorithm
versus the baseline for (a) varying the
computation/communication ratio and (b)
varying the average number of subtasks per
block.

obtain complete overlap, in the worst case, the remap-
ping time for a block of subtasks should be less than the
execution time of the smallest subtask in the previous
block. More precisely, the time available for remapping
block k is equal to the difference between the time the
first block k-\ subtask begins execution and the time the
first block k subtask can begin execution. Figure 9(a)
shows the per block remapping time for the CD
algorithm for varying numbers of subtasks and ten
machines. In Figure 9(b), the per block remapping time
for the CD algorithm is shown for varying numbers of
machines and 200 subtasks.

In Figure 10, the performance of the CD algorithm is
compared with the GS algorithm for varying numbers of
subtasks. From the simulation results it can be observed
that the CD algorithm is slightly outperforming the GS
algorithm. From the discussions in Section 3.6, it can be

CD algorithm
baseline —

~~S) T5Ö 150
positive percentage deviation

(b)

200

Figure 8: Performance of the CD algorithm
versus the baseline for (a) using the uniform
distribution for parameter modeling and (b)
skewed uniform for parameter modeling.

noted that the CD algorithm attempts to minimize the
length of the critical path at each remapping step. In the
GS algorithm, the critical path through the DAG is not
considered when the subtasks are remapped. This is one
reason for the better performance of the CD algorithm.
The GS algorithm has more remapping events compared
to the hybrid remapper. The number of remapping
events is equal to the number of subtasks in the GS
algorithm and equal to the number of blocks in the CD
algorithm. The increased number of remappings allows
the GS algorithm to base its assignment decisions on
more current values. This may be why the GS is per-
forming only three to four percent worst than the CD
algorithm even though GS does not consider the critical
path through the DAG. In the GS algorithm, at least one
machine may be waiting on the scheduler to finish the
mapping process. This scheduler induced wait time on
the HC suite was not included in the GS versus CD com-

66

--. 0.06-

200 300 400
number of subtasks

(a)

500

50 2b S) 3T
number of machines

(b)

Figure 9: Per block remapping time of CD for (a)
varying subtasks and (b) varying machines.

parison.

■o c o

Q.
e o

120-

100-

CD algorithm
GS algorithm

5Ü 160 150 260 250 300 350 460 450 öAo
number of subtasks

Figure 10: Performance of the CD algorithm
versus the Generational Scheduling algorithm
for varying numbers of subtasks.

5. Related Work

Other groups have also studied dynamic mapping
heuristics for HC systems (e.g., [5, 8, 11]). A brief
description of the GS algorithm and an experimental
comparison of the hybrid remapper with the GS
algorithm were presented in Section 4. The Self-
Adjusting Scheduling for Heterogeneous Systems
(SASH) algorithm is presented in [8]. One of the differ-
ences between the hybrid remapper and the SASH
algorithm is that the hybrid remapper uses a list-
scheduling based algorithm to perform the remappings at
run time, whereas the SASH algorithm uses a variation
of the branch and bound algorithm to generate the partial
mappings at each remapping event. Also, unlike the GS
and SASH algorithms, the hybrid remapper presented
here can use any initial mapping to guide its remapping
decisions, i.e., the initial mapping is used to compute the
ranks and completion time estimates in the hybrid
remapper. It is necessary to experimentally determine
how the quality of the initial mapping impacts the overall
performance of the hybrid remapper.

In [11], two mapping algorithms are presented. One
is based on a distributed model and the other is based on
a centralized model. The distributed mapping algorithm
is different from the algorithms presented in [5, 8], and
the hybrid remapper presented here, which are all cen-
tralized algorithms. The centralized mapping algorithm
is based on a global queue equalization algorithm.

6. Conclusions and Future Work

The simulation results indicate that the performance
of a statically obtained initial mapping can be improved
by the hybrid remapper. From the simulation results
obtained, performance improvement can be as much as
15% for some cases. The timings also indicate that the
remapping time needed per block of subtasks is in the
order hundreds of milliseconds for up to 50 machines
and 500 subtasks. In the worst case situation, to obtain
complete overlap, the computation time for the shortest
running subtask must be greater than the per block
remapping time.

The experimental studies revealed that the hybrid
remapper performs better than the generational schedul-
ing, but the margin of difference was only three to four
percent. The hybrid remapper has a better machine utili-
zation compared to the generational scheduling
algorithm, because in the hybrid remapper the mapping
operations are overlapped with the application execution.
Further research is necessary to develop ways to improve
the hybrid remapper's performance. This include exa-
mining the use of different schemes for partitioning the
DAG into blocks, exploring the use of different ways of

67

ordering subtasks within a block, and investigating the
use of different criteria for determining subtask to
machine assignments.

The partitioning scheme that is currently used in the
hybrid remapper does not consider the usage pattern of
the data items produced by a subtask. The partitioning is
solely based on the data dependencies. This could cause
a subtask with low rank value in a block k to be mapped
before a subtask with high rank value in a block /, where
I > k. Various alternate partitioning schemes need to be
explored and evaluated to examine different criteria for
forming blocks.

One of the features of the hybrid remapper algorithm
presented here is the overlap of the execution of the
hybrid remapper algorithm with the execution of the sub-
tasks. In the hybrid remapper developed in this research,
the remapping event for block k is the readiness to exe-
cute of the first block £-1 subtask. Hence, the number
of remapping events is equal to the number of blocks. In
other algorithms, such as the Generational Scheduling
algorithm [5], the number of remapping events is equal
to the number of subtasks. It is necessary to study the
trade-offs of increasing the number of remapping events
on the performance of the algorithms and the amount of
machine idle time from having to wait for a mapping
decision. Also, the interaction of varying the amount of
uncertainty in the parameter values and increasing the
number of remapping events needs further research.

In this paper, the performance of the hybrid
remapper is compared with the performance of the static
baseline, and the dynamic generational scheduling
algorithm [5]. Further simulation studies are necessary
to compare the performance of the hybrid remapper with
other dynamic mapping algorithms, such as the queue
equalization algorithm [11].

The hybrid remapper developed in this research
assumed a fully connected, contention-free communica-
tion model. This model needs to be improved to accom-
modate message contention and restricted inter-machine
network topologies that occur in practical situations.
Also, enhancements are necessary to support cases where
a subtask can have multiple sources (machines) for a
needed data item [17].

The performance of the hybrid remapper has been
studied using simulations in this research. Exploring the
possibility of obtaining performance bounds using
analytical methods is yet another possible area of future
research.

Another future area of study is to evaluate the per-
formance of the hybrid remapper when the initial
mapping is generated by a genetic algorithm (GA) based
mapper [18]. Also, it would be interesting to compare
the relative performance of the hybrid remapper and the
mapping obtained by a static GA-based mapper as the

run-time values of the parameters deviate from their
expected values.

In summary, a new dynamic mapping algorithm
called the hybrid remapper was presented in this paper.
The hybrid remapper uses novel heuristic approaches to
dynamically improve a statically obtained initial
mapping. The potential of the hybrid remapper to
improve the performance of initial static mappings was
demonstrated using simulation studies.

Acknowledgments — The authors thank Robert
Armstrong, Tracy Braun, Debra Hensgen, Taylor Kidd,
Yu-Kwong Kwok, and Viktor Prasanna for their com-
ments and useful discussions.

References

[I] T. L. Adam, K. M. Chandy, and J. R. Dickson, "A com-
parison of list schedules for parallel processing systems,"
Comm. of the ACM, Vol. 17, No. 12, Dec. 1974, pp. 685-
690.

[2] M. M. Eshaghian, ed., Heterogeneous Computing, Artech
House, Norwood, MA, 1996.

[3] D. Fernandez-Baca, "Allocating modules to processors in
a distributed system," IEEE Trans, on Software
Engineering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427-
1436.

[4] R. F. Freund, "The challenges of heterogeneous comput-
ing," Parallel Systems Fair at the 8th Int'l Parallel Pro-
cessing Symp., Apr. 1994, pp. 84-91.

[5] R. F. Freund, B. R. Carter, D. Watson, E. Keith, and F.
Mirabile, "Generational scheduling for heterogeneous
computing systems," Int'l Conf. Parallel and Distributed
Processing Techniques and Applications (PDPTA '96),
Aug. 1996, pp. 769-778.

[6] R. F. Freund, T. Kidd, D. Hensgen, and L. Moore,
"SmartNet: A scheduling framework for meta-
computing," 2nd Int'l Symp. Parallel Architectures,
Algorithms, and Networks (ISPAN '96), June 1996, pp.
514-521.

[7] A. Ghafoor and J. Yang, "Distributed heterogeneous
supercomputing management system," IEEE Computer,
Vol. 26, No. 6, June 1993, pp. 78-86.

[8] B. Hamidzadeh, D. J. Lilja, and Y. Atif, "Dynamic
scheduling techniques for heterogeneous computing sys-
tems," Concurrency: Practice and Experience, Vol. 7,
No. 7, Oct. 1995, pp. 633-652.

[9] M. A. Iverson, F. Ozguner, and G. J. Folien, "Paralleliz-
ing existing applications in a distributed heterogeneous
environment," 4th Heterogeneous Computing Workshop
(HCW '95), Apr. 1995, pp. 93-100.

[10] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L.
Wang, "Heterogeneous computing: Challenges and
opportunities," IEEE Computer, Vol. 26, No. 6, June
1993, pp. 18-27.

[II] C. Leangsuksun, J. Potter, and S. Scott, "Dynamic task
mapping algorithms for a distributed heterogeneous com-
puting environment," 4th Heterogeneous Computing
Workshop (HCW '95), Apr. 1995, pp. 30-34.

68

[12] A. Papoulis, Probability, Random Variables, and Sto-
chastic Processes, Second Edition, McGraw-Hill, New
York, NY, 1984.

[13] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund,
"Genetic simulated annealing for scheduling data-
dependent tasks in heterogeneous environments," 5th
Heterogeneous Computing Workshop (HCW '96), Apr.
1996, pp. 98-117.

[14] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y.
A. Li, "Heterogeneous computing," in Parallel and Dis-
tributed Computing Handbook, A. Y. Zomaya, ed.,
McGraw-Hill, New York, NY, 1996, pp. 725-761.

[15] H. J. Siegel, H. G. Dietz, and J. K. Antonio, "Software
support for heterogeneous computing," in The Computer
Science and Engineering Handbook, A. B. Tucker, Jr.,
ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

[16] H. Singh and A. Youssef, "Mapping and scheduling
heterogeneous task graphs using genetic algorithms," 5th
Heterogeneous Computing Workshop (HCW '96), Apr.
1996, pp. 86-97.

[17] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li,
"Minimizing the application execution time through
scheduling of subtasks and communication traffic in a
heterogeneous computing system," IEEE Trans, on
Parallel and Distributed Systems, Vol. 8, No. 8, Aug.
1997, pp. 857-871.

[18] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.
Maciejewski. "Task matching and scheduling in hetero-
geneous computing environments using a genetic-
algorithm-based approach," J. of Parallel and Distri-
buted Computing, Special Issue on Parallel Evolutionary
Computing, accepted and scheduled to appear.

Biographies

Muthucumaru Maheswaran is a PhD candidate in the
School of Electrical and Computer Engineering at Pur-
due University, West Lafayette, Indiana, USA. His
research interests include task matching and scheduling
in heterogeneous computing environments, parallel
languages, data parallel algorithms, distributed comput-
ing, scientific computation, and world wide web systems.
He has authored or coauthored two journal papers, seven
conference papers, two book chapters, and one technical
report.

Mr. Maheswaran received a BScEng degree in
electrical engineering from the University of Peradeniya,
Sri Lanka, in 1990 and a MSEE degree from Purdue
University in 1994. Mr. Maheswaran is a member of the
Eta Kappu Nu honorary society.

coauthored over 250 technical papers, has coedited seven
volumes, anu wrote the book Interconnection Networks
for Large-Scale Parallel Processing (second edition
1990). He was a Coeditor-in-Chief of the Journal of
Parallel and Distributed Computing (1989-1991), and
was on the Editorial Boards of the IEEE Transactions on
Parallel and Distributed Systems (1993-1996) and the
IEEE Transactions on Computers (1993-1996). He was
Program Chair/Co-Chair of three conferences, General
Chair/Co-Chair of four conferences, and Chair/Co-Chair
of four workshops. He is an international keynote
speaker and tutorial lecturer, and a consultant for govern-
ment and industry.

Prof. Siegel's heterogeneous computing research
includes modeling, mapping heuristics, and minimization
of inter-machine communication. He is an Investigator
on the Management System for Heterogeneous Networks
(MSHN) project, supported by the DARPA/ITO Quorum
program to create a management system for a hetero-
geneous network of machines. He is the Principal Inves-
tigator of a joint ONR-DARPA/ISO grant to design
efficient methodologies for communication in the hetero-
geneous environment of the Battlefield Awareness and
Data Dissemination (BADD) program.

Prof. Siegel's other research interests include paral-
lel algorithms, interconnection networks, and the PASM
reconfigurable parallel machine. His algorithm work
involves minimizing execution time by exploiting archi-
tectural features of parallel machines. Topological pro-
perties and fault tolerance are the focus of his research
on interconnection networks for parallel machines. He is
investigating the utility of the dynamic reconfigurability
and mixed-mode parallelism supported by the PASM
design ideas and the small-scale prototype.

Howard Jay Siegel is a Professor in the School of
Electrical and Computer Engineering at Purdue Univer-
sity. He is a Fellow of the IEEE (1990) and a Fellow of
the ACM (1998). He received BS degrees in both electr-
ical engineering and management (1972) from MIT, and
the MA (1974), MSE (1974), and PhD degrees (1977)
from the Department of Electrical Engineering and Com-
puter Science at Princeton University. Prof. Siegel has

69

Dynamic, Competitive Scheduling of Multiple DAGs in a Distributed
Heterogeneous Environment

Michael Iverson and Füsun Özgüner

The Department of Electrical Engineering
The Ohio State University

Columbus, OH 43210
{iverson, ozguner} @ ee. eng. ohio-state. edu

Abstract
With the advent of large scale heterogeneous environ-

ments, there is a need for matching and scheduling algo-
rithms which can allow multiple DAG-structured applica-
tions to share the computational resources of the network.
This paper presents a matching and scheduling framework
where multiple applications compete for the computational
resources on the network. In this environment, each ap-
plication makes its own scheduling decisions. Thus, no
centralized scheduling resource is required. Applications
do not need direct knowledge of the other applications.
The only knowledge of other applications arrives indirectly
through load estimates (like queue lengths). This paper
also presents algorithms for each portion of this schedul-
ing framework. One of these algorithms is modification of
a static scheduling algorithm, the DLS algorithm, first pre-
sented by Sih and Lee [1]. Other algorithms attempt to pre-
dict the future task arrivals by modeling the task arrivals
as Poisson random processes. A series of simulations are
presented to examine the performance of these algorithms
in this environment. These simulations also compare the
performance of this environment to a more conventional,
single user environment.
Keywords: Matching and Scheduling, DAG, Multiuser,
Poisson Random Process, List Scheduling.

1 Introduction
Heterogeneous computing has a number of distinct ad-

vantages [2, 3, 4], centering around the ability to utilize
the features of different machine architectures. A central
theme of heterogeneous computing is the ability to con-
struct a single computational entity from a network of het-
erogeneous machines. As advanced networking technolo-
gies become available, the practical size of these hetero-
geneous environments is growing to a point where it is
possible to create a single computational resource from a
set of high performance computers distributed across the

globe. In such a system, multiple users will be able to
simultaneously utilize the computational resources of this
network to execute a variety of large parallel applications.
The primary challenge of using such a computing environ-
ment is to obtain a near-optimal solution to the matching
and scheduling problem. To accomplish this task, there are
several unique characteristics of this environment which
must be considered: the dynamic nature of the machine
and network loads, the size of the network, and the need
for multiple users to fairly compete for the computational
resources.

Given these issues, this paper presents a framework for
executing multiple applications in this heterogeneous envi-
ronment. These applications have a directed, acyclic graph
(DAG) structure. In this framework, each application is
responsible for scheduling its own tasks. Thus there is no
centralized scheduling authority. This paper also presents a
series of algorithms to operate within the framework. One
of these algorithms is based upon a static matching and
scheduling algorithm, called the DLS algorithm, first pre-
sented by Sih and Lee [1]. These algorithms attempt to
predict the future loads of the machines, by modeling task
arrivals as a Poisson random process. A series of simula-
tions are presented to demonstrate these methods. In the
next section, relevant background material is examined,
and, in Section 3, an overview of the execution environ-
ment is presented. Section 4 gives a detailed presentation
of the algorithms used within this environment. The re-
sults of a simulation study are discussed in Section 5, and
conclusions from these results are offered in Section 6.

2 Background
The majority of the interest in DAG scheduling has

been restricted to static environments. One simple and
efficient type of heterogeneous scheduling method is the
level-based algorithm, which schedules a task based upon
that task's depth in the DAG. Some methods which fall into

0-8186-8365-1/98 $10.00 © 1998 IEEE
70

this category include those presented by Leangsuksun and
Potter [5], who study a variety of simple, heterogeneous
scheduling heuristics, and a method called the LMT algo-
rithm, which assigns all of the tasks at a particular depth in
the DAG at one time [6]. Kim and Browne [7] present a
static scheduling technique called linear clustering, where
tasks are clustered into chains of tasks, and these clus-
ters are mapped onto the physical machines. This hetero-
geneous scheduling method has limited application to the
proposed problem, since it assumes that the individual pro-
cessors perform uniformly for all code types (i.e. the per-
formance of a task on each heterogeneous processor varies
only by a scale factor). A more complex static method,
called the MH algorithm, is presented by El-Rewini and
Lewis [8]. Again, this method is limited in that it uses the
same simple model of a heterogeneous system as in [7].
Another method is the Cluster-M technique introduced by
Eshaghian and Wu [9], which clusters tasks together based
upon architectural compatibility. Of interest to this re-
search is the method presented by Sih and Lee [1]. This
static technique, called Dynamic Level Scheduling, sched-
ules tasks by using a series of changing priorities. The DLS
algorithm has been shown by Sih and Lee to be superior to
other static DAG scheduling algorithms for heterogeneous
systems, and will be discussed in more complete detail be-
low.

While most of the DAG scheduling algorithms are
static, there are a few algorithms that examine the prob-
lem of scheduling DAGs in a dynamic environment. For
heterogeneous systems, Haddad [10, 11] presents a dy-
namic load balancing scheme for DAGs. This scheme dif-
fers from a conventional scheduling algorithm, in that it
does not look at the exact structure of a given applica-
tion. It instead uses a number of metrics that characterize
the tasks and the task graph, to balance the computational
load. For homogeneous MIMD systems, Rost et al. [12]
present a scheduling model called agency scheduling. This
model supports decentralized scheduling decisions by giv-
ing a set of distributed scheduling tasks control over a local
set of processors. Neither of these methods explicitly con-
sider the problem of scheduling multiple applications in
a distributed environment. This paper presents a new dy-
namic scheduling method, which is designed for some of
the unique features of this environment. In the next section,
these features are examined in detail.

3 Definitions
As stated above, in this environment, multiple appli-

cations are competing for the computational resources of
the network. Each application is represented by a set
of communicating tasks. These tasks are organized us-
ing a DAG, G = (V, E), where the set of vertices V —
{vi, t>2, • • •, vn} represents the set of tasks to be executed,

and the set of weighted, directed edges E represents com-
munication between tasks. Thus, e^ = (vi,Vj) £ E
indicates communication from task Vi to Vj, and \eij\
represents the volume of data sent between these tasks.
The execution environment consists of a set of hetero-
geneous machines, which can be represented by the set
M = {mi,m2,. ■.,T7ig}. The computation cost function,
C : V x M -> 5ft, represents the execution cost of each
task on each available machine. Thus, the cost of execut-
ing task Vi on machine rrij will be denoted by C(vi,mj).
If a particular task cannot be executed on a given machine,
the function will evaluate to infinity.

In this environment, each machine is limited to execut-
ing one task at a time. There are several compelling reasons
to adopt this organization.

1. In DAG scheduling, when a task is scheduled, it is de-
sirable to know the time at which the task will com-
plete execution. In a system where multiple tasks
can simultaneously execute on a machine, the com-
pletion time of a given task depends upon the other
tasks which are also executing on the machine. Since
tasks from other applications may arrive at any time,
it is not possible to determine the completion time a
priori.

2. When system loads are able to change after a task has
been assigned, task migration is necessary to balance
machine loads. Task migration can be difficult in a
heterogeneous environment, since there is no guaran-
tee that there is another machine available to execute
a given task.

To ensure that each machine can execute only one task
at a time, each machine will have a FIFO queue. Tasks
wanting to execute on a machine must wait in the ma-
chine's queue until the machine is available. However, it is
possible for a task to receive data from predecessors while
another task is executing, and likewise send data to suc-
cessor tasks. Since such communication is not processor
intensive, it should have little effect upon the execution of
the running task.

The above organization does not include any resources
for making scheduling decisions. Therefore, there will
be another set machines in the network: scheduling ma-
chines. Each application will execute a scheduling task
(on a scheduling machine), which is responsible for mak-
ing all of the scheduling decisions for that application.
Ideally, these scheduling machines would be general pur-
pose workstations (possibly even the user's workstation).
A conceptual model of this environment is shown in Fig-
ure 1.

Since each application is self-scheduling, an applica-
tion only has direct knowledge of its own tasks. The

71

JESQ Q

fjfÖJ^)

o

O Computation
Machine

O Scheduling
Machine

O r^ßfjFö

Figure 1: Conceptual model of execution environment.

only information it has about other applications is in the
form of machine and network load estimates. The schedul-
ing machines are responsible for maintaining this dynamic
state information. The load of a particular machine rrij
is characterized by the queue length Qmj, the task arrival
rate Xmj, and the average size lm. of the arriving tasks,
in terms of execution time. Although beyond the scope
of this paper, techniques will be needed to acquire and es-
timate this loading data. One such method is presented
by Hou and Shin [13], who use Bayesian decision theory
to predict queue lengths using observations which may be
out-of-date (due to the network latency).

The communication costs are represented using the
function D : E x M x M -> K. Thus, the cost of
sending the message from task vr to task vs (represented
by edge ers) from machine m* to machine rrij will be
D(ers,mi,m,j). Communication between tasks compli-
cates the matching and scheduling process in this environ-
ment. In order for a task to begin execution, two condi-
tions must be satisfied: (1) data from previous tasks must
be available, and (2) the task must be at the head of the
queue. Ideally, both of these conditions would be satisfied
at the same time. Achieving this goal is not likely, however.
Thus, there are two possible scenarios:

1. Data is available before the task reaches the head of
the queue. In this case, the task will have to wait to
begin execution (the task should have been placed in
the queue earlier). This queuing delay can potentially
increase the completion time of the application. Other
applications are unaffected.

2. Task reaches the head of the queue before data is
available. In this case, the task was placed in the
queue too early, and the task will have to wait for
the data. As it waits, the machine will be idle, and
the other tasks in the queue will have their progress
blocked.

There is a significant problem with having a task block
the queue. When a task is allowed to block the queue for
an arbitrary amount of time, it is no longer possible to ac-
curately determine the completion time of a task when it
is placed in the queue. However, there is a means of lim-
iting the effects of this behavior. It is possible to require
the scheduling algorithm to estimate the amount of block-
ing time that a task is likely to incur, based upon the queue
length and the time at which the data is expected to arrive.
This estimate can then be explicitly included as part of the
queue length estimates, thus minimizing the effects of any
blocking time. Even with this modification, blocking time
still represents a waste of machine resources.

Some additional definitions are needed by the matching
and scheduling algorithms defined below. The static level
of task Vi, istatic(vi), is defined to be the largest sum of
the median execution times of the tasks along any directed
path from task vt to an end node of the graph. Since the en-
vironment is heterogeneous, the median execution time of
a task vt, denoted C(vi), is used to characterize the over-
all behavior of that task. If the actual median is infinite,
the median value will be replaced with the largest finite
execution time. In order to differentiate between different

72

machines, the term

A(vi,mj) = C(vi) - C{vi,mj) (1)

is defined to indicate the speed that machine rrij executes
task Vi, relative to the median value. A large value of A
implies a fast machine. Given this set of definitions, the
details of matching and scheduling in this environment will
be presented in the next section.

4 Matching and Scheduling Algorithm
In this section, we will define a framework for solv-

ing the matching and scheduling problem in the environ-
ment defined above, and then present specific algorithms
for each portion of the framework. The framework will be
defined as a series of sets containing the tasks of the ap-
plication, and a series of heuristics to move tasks between
these sets. The first set will be the set of unscheduled tasks,
denoted U. As its name implies, the set U will contain
tasks which have not been scheduled to execute on a partic-
ular machine. At the beginning of the algorithm, all tasks
are members of the set U.

In list scheduling methods, no task can be scheduled un-
til all of its predecessors have been scheduled. Using this
ordering, we can define the set of ready tasks R to be the set
of tasks whose predecessors have been scheduled, and thus
can be assigned to a machine. From the definition above,
it is clear that R C U. Below, a heuristic will be defined
that will choose the best-suited task (and the machine to
execute it on) from this set of ready tasks R. This will be
called the matching decision policy. Since much of the in-
formation used by the matching decision policy is dynamic
in nature, it is important to consider the time at which the
matching and scheduling decisions are made. This time
will be determined by a heuristic called the scheduling time
policy. The combination of these two policies will move
tasks from set R to a new set P: the set of pending tasks.
The set of pending tasks P is the set of tasks which have
been assigned to execute on a particular machine, but have
yet to be placed in the appropriate machine's queue. This
set is partitioned into q subsets Pi,P2,... ,Pq. Each sub-
set Pj contains the tasks which have been assigned to ma-
chine rrij. When a task has been placed in the queue, it is
moved into a final set 5, the set of scheduled tasks. The
time at which a task is placed in the appropriate queue is
determined by a heuristic called the queuing time policy.
Figure 2 illustrates the sets defined above, and the flow of
tasks from one set to another.

Given these definitions, the process of making a deci-
sion within this framework can be broken down into three
steps: determining how to make a matching and scheduling
decision (matching decision policy), determining when to
make a matching and scheduling decision (scheduling time
policy), and determining when to place a scheduled task in

Matching Decision Policy &
Scheduling Time Policy

P: pending tasks

Queuing Time
Policy

Figure 2: Dynamic DAG Scheduling Framework.

the chosen queue (queuing time policy). Figure 3 shows
the algorithm which governs how each of these steps is
executed. Every T time units, this algorithm will use the
policies discussed above to move tasks between the vari-
ous sets. The value of T is called the examination interval.
In the subsections below, algorithms will be presented for
each of these policies. The matching decision policy will
be a dynamic adaptation of the DLS algorithm presented
by Sih and Lee [1]. The scheduling time and queuing time
policies will use probabilistic methods to determine the ap-
propriate time to schedule or queue tasks.
4.1 Matching Decision Policy

As mentioned above, the matching decision algorithm
is based upon a dynamic adaptation of the DLS algorithm.
Therefore, a brief overview of the relevant portions of the
original static version of the DLS algorithm will be pre-
sented first.

4.1.1 Static DLS Algorithm

In [1], Sih and Lee present the DLS algorithm: a compile
time, static algorithm for scheduling a DAG onto a set of
heterogeneous machines. This algorithm, can be catego-
rized as a list scheduling algorithm, where the tasks are as-
signed to the machines in topological order. As with nearly
all list scheduling algorithms, the DLS algorithm operates
by assigning a priority, called a level, to each task in that
graph. This priority is then used to choose among the set of
tasks which are ready to be scheduled at that time. The the
DLS algorithm differs from previous algorithms in that the
level of a task depends upon the tasks which have already

73

While U^<f>,do:
begin

While the scheduling time policy indicates
that tasks should be scheduled:

begin
Use matching decision policy to

choose a task-machine pair
(choose a task to move from
set R to set P).

Check precedence constraints of
tasks
(find any tasks which can be
moved into set R).

end
Use queuing time policy to examine

pending tasks
(move tasks ready to be queued from
set P to set S).

Wait T time units.
end

Figure 3: Generic matching and scheduling algorithm for
the framework

4.1.2 Dynamic Matching Decision Policy

As mentioned above, the purpose of the matching decision
policy, given a set R of tasks ready to be scheduled, is
to find the "best" task-machine pair from the set of ready
tasks R. This decision policy can be constructed using a
modified version of the dynamic level equation presented
above.

In order to operate in a dynamic environment, the terms
of the dynamic level expression, shown in equation 2, will
require modification. Examining the individual terms of
this expression, it can be seen that the first and last terms
do not depend upon any data which is dynamic in nature.
However, the middle term, max[idata(ui,m:)), ifree(mj)],
which denotes when the task will be able to begin execu-
tion on the specified machine, does depend upon dynamic
information. The two arguments of the max operator repre-
sent the two independent events which need to be satisfied
in order for a task to begin executing on a machine. For the
environment discussed above, the two terms needed are the
time at which the data is available on the chosen machine
and the time at which the machine is idle, and thus able to
execute the task. For this environment, this second quantity
is defined to be

been assigned. This concept is called the dynamic level of
a task, and is defined to be

^dynamic\^ii 7^1 j) —

istatic(vi) - max[tdSita(vi,Tnj),t{Tee(mj)]

+A(vi,mj), (2)

where tfiee(m,j) denotes the time at which machine rrij
will be idle, and idata(vi,mj) denotes the time when
task Vi 's data will be available on machine rrij. The first
term of the expression is the static level of the task. This
term indicates the path length to the end of the graph. Since
a long path is more likely to be the critical path of the
graph, a large value of Lstatic will increase the schedul-
ing priority. The second term indicates when the task can
begin on the machine, based upon the time when the data
is available on the machine, and the time at which the ma-
chine is able to execute the task. An earlier starting time
will imply a higher priority. The third term indicates how
fast the machine rrij will execute the task, relative to the
other machines in the system. With this dynamic level ex-
pression, making a matching decision is equivalent to find-
ing the ready task and machine which maximize the above
expression. Another advantage to this approach is that both
the task and processor are chosen at the same time. Sih and
Lee show that this policy is superior to independently se-
lecting either the task or the processor.

tfreeirrij) =t + QTl + X] c(vk,mj), (3)

where t is the current time. The second term in the ex-
pression is the execution time of the tasks in machine rrij's
queue at this time, and the last term represents the total ex-
ecution time of the tasks in set Pj (i.e. waiting to be placed
in machine m/s queue). With this modification, this por-
tion of the DLS algorithm can be used as the matching de-
cision policy. The next issue of interest is the process of
determining when to make a scheduling decision.

4.2 Scheduling Time Policy
As shown by Sih and Lee [1], it is better to choose the

task and machine simultaneously, rather than choose ei-
ther independently of the other. Thus, the purpose of the
scheduling time policy is to determine when it is appropri-
ate to make matching and scheduling decisions, not when
to schedule a particular task. There is a tradeoff inherent
in deciding when to schedule a task. Since the loading in-
formation used by matching decision policy will change
with time, if a task is scheduled early, the information used
to make the decision could be too inaccurate to be of use.
However, if the algorithm waits too long to schedule the
task, it is possible that a desired machine will be unavail-
able (due to a long queue) and the task will be forced to
execute on a suboptimal machine.

In this paper, the following heuristic is proposed to de-
termine when scheduling decisions should be made. A

74

scheduling decision will be made if the probability that
any ready task will experience queuing delay on its most
desired machines exceeds a predefined threshold value. To
simplify the derivation of this probability, consider a single
machine rrij. Using the above information, we can derive
an expression defining the probability that a task will expe-
rience queuing delay on this machine if it is not assigned to
the machine now (if it is not assigned now, it would have to
wait a minimum of T time units until the scheduler exam-
ines the situation again). In other words, we would like to
find the probability that a sufficient number of tasks from
other applications will arrive (and be placed in the queue)
in the next T time units such that the task will be forced to
experience queuing delay.

To determine an expression for this probability, it is nec-
essary to define a "critical number" of tasks—the minimum
number of average-sized tasks which would have to arrive
within the examination interval T, such that any task as-
signed at time (T + t) would experience queuing delay.
Assuming that the arriving tasks are of average size lm.,
the critical number will lie within the interval

•-slack T + t, slack

tu
(4)

where isiack denotes the difference between the time at
which the data will be available and the time at which the
queue will be empty. This term, called the slack time, is
defined to be

t slack

*data — (Qrrij + t) if tdata > (Qrrij + t)
0 otherwise

(5)

While it is more likely that the critical number will be
closer to the upper bound of this interval, it is better to
use the lower bound, due to the behavior of the method in
the boundary condition (which will be explained below).
Therefore, in this paper, the critical number of tasks z will
be defined to be

'slack

lr,
(6)

Now, assuming that the task arrivals can be reasonably ap-
proximated using a Poisson random variable, the probabil-
ity that the number of arrivals k within the interval T will
be greater than or equal to z can be defined to be

Pm,[k>z] = 1-P[k<z]

k=0

-\m.T

k\
(7)

The reason for choosing to use the lower boundary in equa-
tion 5 is due to the case when £s]ack is equal to zero. By

defining the quantity z in this manner, equation 7 will eval-
uate to one.

This expression only considers the probability of expe-
riencing queuing delay on a single machine. In reality, it
is likely that there will be more than one machine avail-
able to execute the task. It is therefore desirable to expand
the above expression to consider the possibility of a task
experiencing queuing delay on more than one of its best
performing machines. Thus, the scheduling time policy
will be defined to schedule tasks if there is a ready task
which has a probability of experiencing queuing delay on
its three fastest machines that is greater than a predefined
threshold ß. So, to determine if a task is "in danger" of not
getting a desired machine, the algorithm finds the machines
rrii, rrij, and m^ on which the task executes the fastest.
Then, the algorithm computes the critical number z for
each of the above machines, (denoted zmi, zmj, and zmie)
and the probability of experiencing queuing delay on each
of these machines, using equation 7 above. With these val-
ues, the overall probability of not getting one of these three
machines is

queue — (-*"»,•["' ^ ^rm])'

(Pmj[k>Zmj})-(Pmk[k>Zmk)). (8)

The choice of three is clearly a heuristic. The advantage
of using a fixed number, like three, is primarily computa-
tional: the algorithm will be more efficient, which is im-
portant in a dynamic environment. If there are fewer than
three machines on which a task can execute, the probabil-
ity will be computed using this lesser number of machines.
The choice of the value ß is also a heuristic. A series of ex-
periments are performed to evaluate the choice of a value
for the parameter ß. These results will be presented in Sec-
tion 5.

4.3 Queuing Time Policy
As discussed above, when placing a task in a queue,

there are two possible scenarios: the task is placed in the
queue too early and experiences blocking delay, or the task
is placed in the queue too late, and experiences queuing
delay. The ideal time to place a task in the queue lies be-
tween these two extremes. The formulation of the queuing
time policy will use a probabilistic formulation similar to
the scheduling time policy described above. To construct
a heuristic to attempt to place a task in the queue at the
appropriate time, a pair of cost functions will be defined.
The first cost function, Cbiock, will indicate the blocking
cost the task will experience if it is placed in the queue
now. The second cost function, Cqueue. will indicate the
probable queuing cost the task will experience if the queu-
ing algorithm waits another T time units to assign the task.
The goal of the queuing time policy is to place each task in

75

the queue in a manner which minimizes both the queuing
and blocking cost.

The blocking cost function is defined to be the amount
of blocking time the machine will experience. Given the
time at which the data is available, idata> and the queue
length at time t, Qm., the blocking cost is

Cqueue — (klmj ('slack T -I))

^block — ^data — (Qm, — t) — t. slack- (9)

This value is equal to the £siack term defined above.
The definition of the queuing cost function is more elab-

orate. While the blocking cost is a deterministic quantity
(provided that idata and Qmj are accurate) the queuing cost
is stochastic, in that it will depend upon the probability of
future arrivals in the queue. Like the probable queuing cost
definition from the scheduling time policy, this cost func-
tion will depend upon a critical number z. This number
represents the minimum number of averaged-sized tasks
which have to arrive in order for the task to experience
queuing time. As before, z is defined to be

z = 'slack
(10)

However, unlike the scheduling time case, we are not in-
terested in the probability of experiencing queuing delay,
but the probable amount of queuing delay. To determine
this quantity, first consider a simpler task of finding how
much queuing time a task would experience if exactly k
tasks were to arrive in the time interval T. In this case, the
queuing cost is

queue (k) =

f klmj - (islack + T) if klmj > (£slack + T)
\ 0 otherwise

(11)

This expression can then be used to determine the probable
queuing cost, by multiplying by the discrete probability of
exactly k arrivals, and summing over all possible values
ofJfc:

(-'queue — / J 'queue("v-* L^ — k\

= 5^(Wm,. - (Wk + T))P[n = k]

= f^(klm]-(tslack + T))(^T) ■
k=:

k\

(12)

Since it is undesirable to compute an infinite summation,
the expression can be rearranged to become

- 5>'™, - (*slack + D)^£«rA-iT.
k=0

(13)

Now, given these two cost functions Cqueue and Cbiock.
the queuing time policy will place a task in its queue
when the blocking cost is greater than the queuing cost.
However, as mentioned previously, the queuing cost and
blocking cost may not have the same effect upon the sys-
tem. Therefore, an additional parameter 7 will be intro-
duced, in order to modify the relative weight of the two
cost functions. Thus, to decide whether or not to queue
a particular task, the algorithm will compute the quantity
Cqueue - 7Cbiock- Every T time units, the algorithm will
compute this quantity for each of these pending tasks. If,
for a given task, the quantity is negative, the machine will
not place the task in the queue at this time. Otherwise, if
the quantity is positive, the task is placed in the queue. As
was the case for the scheduling time policy, the choice of
the parameter 7 will be examined experimentally in Sec-
tions 5.

5 Results
To evaluate these methods, a series of simulations were

performed, using a custom, event-based simulator. These
simulations examine the effects of the parameters ß and 7,
and compare the performance of the algorithms to the static
DLS algorithm, which uses a more conventional environ-
ment where each user has exclusive use of the machines
for a period of time. A representative set of results are
shown in the figures 4 and 5. In this case, eight 64-task
applications are scheduled on a 16 machine heterogeneous
system. The execution times, task graphs, and computation
costs were randomly generated, and it is possible for a task
not to be able to execute on every machine. The graphs
were generated such that they were capable of using about
8 machines in parallel.

The starting time of each of the applications was chosen
over a random interval between 0 and 200 time units, to
limit any artificial effects from starting all the applications
at the same time. The examination interval T was chosen
to be 1 time unit. The results shown in the graphs are an
average of 5 separate simulations, to minimize any effects
caused by specific graph structures. For each simulation,
the schedule length of the applications was recorded, and
the efficiency of the computation was determined. The ef-
ficiency measures the amount of blocking time in the sys-
tem, relative to the amount of computation. For example,
an efficiency of 0.75 would indicate that 75% of the total
CPU time used was useful computation, and the remain-
ing 25% was blocking time.

76

Schedule Length
Efficiency

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Beta: Miss Probability Gamma: Blocking/Queuing Cost Ratio

Figure 4: Average Schedule Length and Efficiency vs.
Miss Probability (ß).

Figure 5: Average Schedule Length and Efficiency vs.
Blocking/Queuing Cost Ratio (7).

Figure 4 shows the schedule length and efficiency ver-
sus the parameter ß (probability of missing the three fastest
resources). These values are averaged over all of the val-
ues of 7. Overall, the parameter ß has a relatively small
effect upon the schedule length, which is likely due to the
good quality of the loading information presented to the
algorithm. However, for larger values of ß, the schedule
length tends to be long, since there is a higher probability
that a task will have to execute on a suboptimal processor.
Likewise, for very small values of ß, the schedule length
is also long, due to the fact that the scheduling decision
was made with less accurate loading information. The effi-
ciency is more or less constant with respect to ß, since this
parameter has no real effect upon the blocking time of the
system.

Figure 5 shows the other case: the schedule length and
efficiency versus the parameter 7 (queuing/blocking cost
ratio), averaged over all of the values of ß. These results
show the negative effect of blocking time upon the sys-
tem. Using small values of 7, it is possible to get lower
schedule lengths by placing the tasks in the queue early,
and incurring blocking time. However, this has an adverse
effect upon the efficiency, and, for slightly larger values
of 7, tends to have a negative effect upon the schedule
length (since processor resources are wasted). For simula-
tions with more applications, the blocking time has an even
greater impact upon the schedule length. For larger values
of 7, there is a distinct minimum in the graph, represent-
ing the best trade-off between blocking time and queuing
time (for this simulation). At this point, the best schedule
lengths can be obtained without incurring large amounts of
blocking time.

It is also desirable to compare the performance of this
method to a static scheduling paradigm, where each ap-
plication has exclusive use of all (or a portion) of the ma-
chines in the network. To accomplish this, each task graph
was also scheduled using the static DLS algorithm. Us-
ing this data, the speedup was computed to be the total
time needed to execute all eight applications sequentially,
divided by the total time needed to execute all eight ap-
plications in the dynamic environment. Given that each
application used in this experiment is, on average, capa-
ble of utilizing eight machines, the closest comparison of
these two environments is for an eight machine system. In
this case, the maximum speedup over all parameter val-
ues was found to be 1.21, a 21% improvement over the
static environment. The speedup in the 16 machine sys-
tem is considerably higher, since, on average, half of the
machines will remain idle in the static environment (where
all 16 machines are dedicated to the application). In this
case, the maximum speedup was found to be 2.36. As ex-
pected, the dynamic scheduling method outperforms the
static method, since it allows other applications to use com-
putational resources which would be left idle in a static
scheduling paradigm.

6 Conclusions
In this paper, a means of competitively scheduling mul-

tiple DAG-structured applications in a distributed hetero-
geneous environment is presented. Initial results show that
this type of scheduling is practical, and confirm the as-
sumptions made about the behavior of the scheduling en-
vironment. Currently, the authors are working on imple-
menting these algorithms on an actual distributed network,
to better evaluate and refine the techniques presented here.

77

References
[1] G. C. Sih and E. A. Lee, "A compile-time schedul-

ing heuristic for interconnection-constrained hetero-
geneous processor architectures," IEEE Trans. Paral-
lel and Distributed Systems, vol. 4, pp. 175-187, Feb.
1993.

[2] J. B. Andrews and C. D. Polychronopoulos, "An an-
alytical approach to performance/cost modeling of
parallel computers," /. Parallel Distributed Comput-
ing, vol. 12, pp. 345-356,1991.

[3] R. F. Freund and H. J. Siegel, "Heterogeneous pro-
cessing," IEEE Computer, vol. 26, pp. 13-17, June
1993.

[4] A. Khokhar, V. Prasanna, M. Shaaban, and C.-L.
Wang, "Heterogeneous supercomputing: Problems
and issues," in Proc. of the 1992 Workshop on Hetero-
geneous Processing, pp. 3-12, IEEE Computer Soci-
ety Press, Mar. 1992.

[5] C. Leangsuksun and J. Potter, "Designs and experi-
ments on heterogeneous mapping heuristics," in Proc.
of the 1994 Heterogeneous Computing Workshop,
(Cancün, Mexico), pp. 17-22, IEEE Computer So-
ciety Press, Apr. 1994.

[6] M. A. Iverson, F. Özgüner, and G. Folien, "Par-
allelizing existing applications in a distributed het-
erogeneous environment," in Proc. of the 1995 Het-
erogeneous Computing Workshop, (Santa Barbara,
CA), pp. 93-100, IEEE Computer Society Press, Apr.
1995.

[7] S. J. Kim and J. C. Browne, "A general approach to
mapping parallel computations upon multiprocessor
architectures," in the 1988 Inter. Conf. on Parallel
Processing, vol. 3, pp. 1-8, CRC Press, 1988.

[8] H. El-Rewini and T. G. Lewis, "Scheduling paral-
lel program tasks onto arbitrary target machines," J.
Parallel Distributed Computing, vol. 9, pp. 138-153,
1990.

[9] M. M. Eshaghian and Y.-C. Wu, "Mapping and re-
source estimation in network heterogeneous com-
puting," in Heterogeneous Computing (M. M. Es-
haghian, ed.), pp. 197-223, Artech House, 1996.

[10] E. Haddad, "Load distribution optimization in het-
erogeneous multiple processor systems," in Proc. of
the 1993 Workshop on Heterogeneous Processing,
pp. 42-47, IEEE Computer Society Press, 1993.

[11] E. Haddad, "Dynamic optimization of load distri-
bution in heterogeneous systems," in Proc. of the
1994 Heterogeneous Computing Workshop, (Cancün,
Mexico), pp. 29-34, IEEE Computer Society Press,
Apr. 1994.

[12] J. Rost, F.-J. Markus, and L. Yan-Hua, "Agency
scheduling: A model for dynamic task scheduling,"
in Proc. of the 1st Inter. EURO-PAR Conf, (Stock-
holm), pp. 93-100, Springer-Verlag: Lecture Notes
in Computer Science, Aug. 1995.

[13] C.-J. Hou and K. G. Shin, "Load sharing with con-
sideration of future task arrivals in heterogeneous dis-
tributed real-time systems," IEEE Trans. Computers,
vol. 43, pp. 1076-90, Sept. 1994.

Michael Iverson received the B.S. degree in Computer
Engineering at Michigan State University in 1992, and the
M.S. degree in Electrical Engineering at The Ohio State
University in 1994. He is currently researching topics in
heterogeneous distributed computing for his Ph.D. disser-
tation. In addition to his research, Mr. Iverson is building
Internet video conferencing systems and wireless network-
ing systems for University Technology Services at Ohio
State.

Fiisun Özgüner received the M.S. degree in electri-
cal engineering from the Istanbul Technical University in
1972, and the Ph.D. degree in electrical engineering from
the University of Illinois, Urbana-Champaign, in 1975.
She worked at the I.B.M. T.J. Watson Research Center
with the Design Automation group for one year and joined
the faculty at the Department of Electrical Engineering, Is-
tanbul Technical University in 1976. Since January 1981
she has been with The Ohio State University, where she
is presently a Professor of Electrical Engineering. Her
current research interests are parallel and fault-tolerant ar-
chitectures, heterogeneous computing, reconfiguration and
communication in parallel architectures, real-time parallel
computing and parallel algorithm design. She has served
as an associate editor of the IEEE Transactions on Com-
puters and is the Program Vice-Chair for Fault Tolerance
and Reliability for the 1998 International Conference on
Parallel Processing.

78

The Relative Performance of Various Mapping Algorithms is
Independent of Sizable Variances in Run-time Predictions *

Robert Armstrong
Debra Hensgen

Taylor Kidd

Computer Science Department
Naval Postgraduate School

Monterey, CA 93940

Abstract
In this paper we study the performance of four map-

ping algorithms. The four algorithms include two na-
ive ones: Opportunistic Load Balancing (OLB), and
Limited Best Assignment (LBA), and two intelligent
greedy algorithms: an O(nm) greedy algorithm, and an
0(n2m) greedy algorithm. All of these algorithms, ex-
cept OLB, use expected run-times to assign jobs to ma-
chines. As expected run-times are rarely deterministic
in modern networked and server based systems, we
first use experimentation to determine some plausible
run-time distributions. Using these distributions, we
next execute simulations to determine how the map-
ping algorithms perform. Performance comparisons
show that the greedy algorithms produce schedules that,
when executed, perform better than naive algorithms,
even though the exact run-times are not available to
the schedulers. We conclude that the use of intelligent
mapping algorithms is beneficial, even when the expec-
ted time for completion of a job is not deterministic.

1 Introduction
This paper describes the experiments and simula-

tions that we executed to determine the relative per-
formance of certain mapping algorithms in different
heterogeneous environments. In this paper we assume
that all jobs are independent of one another. That is,
they do not communicate or synchronize with one an-
other. This type of architecture is common in today's
LAN-based distributed server environment.

Our goal was to determine whether using intelli-
gent mapping algorithms would be beneficial, even if

"This research was supported by DARPA under contract
number E583. Additional support was provided by the
Naval Postgraduate School and the Institute for Joint Warfare
Analysis.

the jobs did not run for exactly the amount of time
expected. Intelligent mapping algorithms utilize the
expected run-times of each job on each different ma-
chine to attempt to minimize some scalar performance
metric. For our experiments, this metric is the time at
which the last job completes. In particular, we were
concerned about whether it would still be beneficial
to use intelligent mapping if one or several jobs run
for a substantially different amount of time than ex-
pected, but are still accurately characterized statist-
ically. Because determining a perfect mapping is an
NP-complete problem, we examined the performance
of several different (polynomial) heuristics. The al-
gorithms we chose are listed below.

• A naive O(n) algorithm known as Opportunistic Load
Balancing (OLB). This algorithm simply places each
job, in order of arrival, on the next available machine.

• A simple O(nra) algorithm known as Limited Best
Assignment (LBA). This algorithm uses the expected
run-time of each job on each machine. It assigns each
job to the machine on which it has the least expected
run-time, ignoring any other loads on the machines,
including that produced by the jobs that it has as-
signed.

This algorithm, though easily implementable in a
scheduling framework that automatically assigns jobs
to machines, is very similar to the algorithm used by
many users who remotely start their jobs by hand
at supercomputer centers without examining queue
lengths.

• Two greedy algorithms, one of order O(nm) and the
other of order 0(n2m). Both of these algorithms make
use of the expected run-time of each job on each ma-
chine as well as the expected loads on each machine.
These algorithms will be more fully described in Sec-
tion 2.

0-8186-8365-1/98 $10.00 © 1998 IEEE
79

The primary reasons for our study are both that
jobs rarely execute for exactly the expected run-time
and often the expected run-times are not exactly
known. In a system where each job has exclusive use
of a machine, differences between actual and predicted
run-times occur either because (1) all of the compute
characteristics [10] are not known or enumerated by
the designer of the program, or (2) because the time
to access memory and disk is stochastic and not de-
terministic. Of course, in many environments, addi-
tional non-determinism is due to other jobs running on
the machine or simultaneously using a shared network
or a shared file server. This paper focuses on those
cases where one or more of the jobs being scheduled
have run-times that could differ substantially from the
expected run-time. For those cases, we seek to de-
termine whether there is still an advantage to using
an algorithm that makes use of expected run-times or
whether a computationally simpler algorithm that does
not require estimating run-times, such as Opportun-
istic Load Balancing (OLB), might not yield equival-

ently good performance.

In the next section, we describe the two greedy al-
gorithms that we used in our experiments and simu-
lations. We then describe our experiments concerning
the non-determinism of expected run-times and exam-
ine, using the derived distributions in simulations, the
performance of the intelligent algorithms. That is, we
collect run-times for various jobs on various machines,
analyze their distributions, and extrapolate these dis-
tributions for use in our simulations. We conclude the
paper with a short summary and comparison to related

work.

2 The Greedy Algorithms
In addition to the simple OLB and LBA algorithms

described in the previous section, our experiments
used two greedy algorithms. We now describe those
algorithms in detail.

The first algorithm is an 0(nm) algorithm, where n
is the number of jobs and m is the number of machines,
and the second algorithm is of order O(rrm). Each
algorithm first estimates the expected run-time of each
job on each machine, assuming that if a job cannot
execute on a particular machine, the estimation will be
set to some very large number. As we describe these
algorithms we will consider these expected run-times
as elements of a 2-dimensional, n by m matrix called
A. That is, A[i,j] is the expected run-time of job i on
machine j.

The O(nm) algorithm, which, like in the SmartNet
documentation [6], we will call Fast Greedy, considers

the jobs in the order requested1. It first determines
the value Aij, such that A\j < Aiik V k £ {l..m}. It
then assigns job 1 to machine j. Following this, it adds
A\j to all A{j V i £ {2..n}. Then, for each remaining
job, p £ {2..m}, it determines the value Apj, such
that APij < APtk V k £ {l..m}. It then assigns job p to
machine j. Following this, it adds Apj to all A\j V i £
{p+ l..n}. At each step, then, it is assigning each job
to its best machine, given the previous assignments.
We note that the jobs are assigned in the order in which
they were requested.

The 0(n2m) algorithm, which again borrowing
from SmartNet nomenclature we call simply Greedy,
actually computes two mappings using two different
sub-algorithms and then chooses the mapping that
gives the smallest sum of the predicted run-times, min-
imized over all machines. The two sub-algorithms are
similar to the first greedy algorithm above, differing
only in the order in which they assign jobs to machines.
We first enumerate the steps of the first sub-algorithm.

1. Initialize the set {Remaining Jobs} to contain all jobs.

2. V i € {RemainingJobs}, find Aij < Ai:k V k €
{Machines}. Call such an Aij, A,tmin,-

3. Determine p such that APlminp < A;,m!n, V i £
{Remaining Jobs}.

4. Remove p from {RemainingJobs}, scheduling job p
on machine minp.

5. Add APlmmp to Aitm,np V i £ {RemainingJobs}.

6. If {RemainingJobs} is not empty, return to step 2.

The idea behind this first sub-algorithm is that, at
each step, we attempt to minimize the time at which
the last job, which has been thus far scheduled, fin-
ishes.

The second sub-algorithm differs from the first sub-
algorithm in that, at the third step, it finds p such
that AP)minp > Aitmint V i £ {RemainingJobs}. This
algorithm, then tries to minimize the worst case time

at each step.

3 Effect of Non-Determinism on Al-
gorithm Performance

We now examine the effect of non-determinism on
the performance of the greedy and LBA algorithms
that we described above. Our reason for studying this

'In describing these algorithms, we use the term order re-
quested to mean the order in which the job requests have been
placed prior to invocation of the algorithm. We also investig-
ated the performance of these algorithms if jobs are first sorted
before these algorithms are invoked.

80

is because both the LBA and the greedy algorithms use
the expected run-time to produce their mappings. One
of our major motivations for this work is to determ-
ine whether such intelligent algorithms are still useful if
the actual run-time is non-deterministic, that is, essen-
tially sampled from a distribution around the expected
run-time. In order to determine what distributions we
should sample our run-times from in our simulation,
we first conducted some experiments with actual pro-
grams to try to determine what types of distributions
characterize their run-times.
3.1 Job Run-time Distributions

We have already explained why job-machine run-
times are typically not constant, but rather vary ac-
cording to some distribution. To test the performance
of our algorithms, it is essential to draw samples of
the run-times of jobs from a particular distribution;
but first we need to determine some realistic distribu-
tions that we can use in our simulations. Therefore,
we repeatedly executed some parallel and sequential
programs, gathered run-time statistics, and analyzed
them.

We performed several experiments using the NAS
Benchmarks [3]. These benchmarks were used to de-
termine the types of run-time distributions that may
be typical for at least some jobs on some machines.
We needed to determine sample parameters for these
run-time distributions so that they could be repro-
duced by our simulator. While performing our tests,
we controlled the following environmental character-
istics: server location, network and server load, num-
ber of processors, amount of memory, and processor
speed. Table 1 summarizes the configurations of our
machines caesar and elvis upon which we ran our
experiments.

caesar elvis
Type SGI Challenge L Onyx

Proc Speed (MHz) 200 150
Proc Type (MIPS) R4400 R4400
of Processors 4 4

Memory (Mbytes) 64 192
Secondary Unified

Cache 4 Mb 1 Mb

Table 1: Configuration of SGI machines caesar and
elvis, both running IRIX64 v6.2.

The jobs that we used throughout these experiments
were from two sources: NASA's reference implement-
ation for some of the NAS Benchmarks, and our own

implementations of other NAS Benchmarks that met
the required criteria. Four of the experiments use some
version of the NAS Integer Sort (IS) Benchmark, im-
plemented either in parallel oil four processors, or in
single processor mode. Two other experiments used
the NAS Embarrassingly Parallel (EP) Benchmark run
on a single processor. We now explain our experiments
and their results.

3.1.1 Integer Sort, Executed on Four Pro-
cessors

This experiment examined the run-time distribution of
a version of the NAS Integer Sort Benchmark executed
on four processors. We implemented the integer sort
using a counting sort [5, pages 175-178] algorithm. We
used Silicon Graphic's light weight process (thread)
support functions, including mforkQ, to implement
our version of this benchmark.

We ran this sort across a heavily loaded network,
obtaining both the executable and the data from a file
server that was also heavily loaded. When run on
caesar, the run-time distribution, for 100 executions,
appears Gaussian.2 Figure 1 shows a histogram of this
distribution. When run on elvis, the run-time distri-
bution, again for 100 executions, appears exponential
and is shown in Figure 2. We note that the origin
of the exponential distribution shown in Figure 2 is
translated to approximately 3.0. That means that the
sort had to run for at least 3.0 seconds before stopping.
The distribution that we see very closely matches an
exponential distribution with a mean of around 0.20,
translated 3.0 seconds to the right. We expect that
many jobs would have a distribution similar to this,
because all jobs must run at least some amount of
time3.

In these experiments, we also see that memory size,
and so, the need to swap to local disk, can have a
definite effect upon the run-time distribution of a job.
The integer sort on elvis completes, on average, 30%
sooner than the same job on caesar. We note that, in
this case, the amount of memory has more influence

The form of the distributions were determined by carefully
selecting the bin size and then curve fitting. The authors are
familar with both visual and analytical tests for normality, but
analytical tests were not used given the strong visual similarity
of the frequency plots to that of a Normal curve. (The fact that
some sample point frequencies lie above and below the selected
Normal distribution is due to the number of samples being finite.
Such phenomena would have appeared even if 100 data points
had been sampled from a known Normal run-time distribution.)

3An exponential distribution is defined to start at 0.0. If
applied, without translation, in this case, that would mean there
is a strong possibility of near-zero run-times.

81

Parallel Counting Sort on Caesar

/
1 1

"fcaesar.dat" .$...

100 Samples O •
Loaded network

Mean: 9.093 * -
Sigma: 0.0983

■ 4 4.
■

• \ •

/ \ ■

.♦ ■

i •
A

■- VJ i 1 1—

i
i

*

8.9 9 9.1 9.2 9.3 9.4
Run-time, seconds

Figure 1: Forked counting sort, caesar.

3.1.2 Integer Sort, Single Processor

This experiment is the same as that discussed in the
last section, with the exception of being run on a single
processor instead of being distributed across four pro-
cessors. Although a slightly different C++ implement-
ation was used, we again based our program on the
counting sort.

When the integer sort was run on caesar and
elvis, the run-time distribution was not easily char-
acterized; however, it appears related to a Gaussian
distribution. Histograms of the distributions, sim-
ilar to that shown in Figure 4, are possibly multi-
modal, which indicates that multiple distributions may
be present. While this experiment does not provide
us with definitive results, it does point to the fact that
run-time distributions can be quite complex. We sus-
pect that these conditions are related to changes in the
network and server loads.

Counting Sort on Caesar, Single Processor

Parallel Counting Sort on Elvis

01 1
3 3.2 3.4 3.6 3.8

Run-time, seconds

"felvis.dat" -£

100 Samples

Loaded network

Mean: 3.04

Sigma: 0.234

4.2 4.4 4.6

Figure 2: Forked counting sort, elvis.

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9
Run-time, seconds

Figure 3: Counting sort, caesar, single processor.

on the run-time of the job than does the speed of the
processor. Of primary importance, however, is the ob-
servation indicating that the same job, running on two
different machines, not only has different mean run-
times, but the distribution of run-times is different,
yielding a Gaussian-like distribution on one machine
and an exponential-like distribution on the other.

Once again, this set of experiments showed us that
additional memory can greatly enhance run-time per-
formance. The tests on elvis ran 7 times faster than
those run on caesar, which has the faster processors.
The tests also show that run-time distributions can be
very complex, and may be difficult to reproduce in a
simulation. Although our simulations did not use such
complex distributions, they should be modeled in fu-
ture work.

82

30
Counting Sort on Elvis, Single Processor

i

selvis.dat" -fl—

25 100 Samples /

Loaded network ra

Mean: 1.053

■

20
Sigma: 0.0988

*

u
5
3

L.

15

R

■

10

' \
ii

5 ■l\ V
0 ' B ' D LTl ^\}.l.{3—p,,.^. D LT^iV 1 L \

epAl NAS Benchmark on Qesar

0.89 0.895 0.9 0.905 0.91 0.915 0.92 0.925 0:93 0,935
Run-time, seconds

"epAI-caesar.dat" ■*■■

100 Samples

Code on Machine: no network involved

Mean: 743.72

Sigma: 1.57

 ' ' l l '—« 1 »-J—* i *-l--. t

740 745 750 755 760 765 770 775 780

Figure 4: Counting sort, elvis, single processor. Figure 5: epAl NAS Benchmark, with executable residing
on local disk.

3.1.3 Embarrassingly Parallel NAS Bench-
mark

The next set of experiments that we describe com-
pared the run-time distributions of compute intens-
ive jobs run from local disk to those run across the
network from a file server. The tests that we de-
scribe in this section were executed only on caesar be-
cause elvis did not have a sufficiently large local disk
available. We used the reference implementation [3],
from NASA, of the NAS Embarrassingly Parallel (EP)
Benchmark. This implementation uses the portable
Message Passing Interface (MPI) [12] to parallelize the
code. The tests we ran, however, were compiled to be
executed on a single processor4. The EP Benchmark
was run 100 times for each test. See Figures 5 and 6.

3.2 Simulation Experiments

We now describe our simulation experiments that
are aimed at examining how well the mapping al-
gorithms performed when the jobs scheduled did not
execute for exactly the mean run-time. The matrices
that we refer to in the description below have rows in-
dexed by the job and columns indexed by the machine.

• Matrix Format. We used different matrices contain-
ing jobs and machines of varying characteristics. Each
matrix contained mean run-times for each of five dif-
ferent jobs on each of ten different machines. The av-
erage means of the corresponding columns and rows

35
epAl NAS Benchmark or Caesar

i i

"epAl-aquarius.dat" -a—

30 ^^ """-"---.

100 Samples

25 Run over network

Mean: 743.717

Ü
20

Sigma: 1.568

3

15

10

\

5
\ ■

n 1 1 1 L_ i h \

4 The MPI mechanism is still utilized in the EP Benchmark
when it is compiled for a single processor.

742 743 744 745 746 747 748 749
Run-time, seconds

Figure 6: epAl NAS Benchmark, files obtained over a
lightly loaded network.

were the same for all matrices and the jobs themselves
were quite heterogeneous.

• Job Request Sets. In order to obtain different results
for each matrix, we generated two random sequences
of 125 job requests, which we will call 125-1 and
125-2, where each individual request was chosen ac-
cording to a uniform random distribution from among
five different jobs. We also generated two more ran-

83

dorn sets, this time of 500 job requests, calling them
500-3 and 500-4. We did this to look at perform-
ance variations between job request orderings, as well
as to examine any performance differences that might
occur because fewer or more jobs were requested.

• Job Request Format. We generated each of the 5
jobs, for each request, at random. Thus, in these ex-
periments, the jobs were requested in random order.
This was done because the order of job request af-
fects the schedule. The Fast Greedy Algorithm maps
and schedules the jobs on machines in the order in
which they are submitted. The Greedy Algorithm
uses the order to break ties. We chose to execute
these randomly ordered requests both because they
more closely mimic a real environment where differ-
ent jobs are submitted by different users and because
we wished to examine whether these algorithms per-
formed better or worse when unsorted, as opposed to
sorted, requests were submitted.

• Run-time Generation for Simulations. We executed
each simulation 15 times. In each run, a different
value was used to seed the random number generator
that was used to generate the simulated "actual" run-
time duration. The total time required to execute each
schedule was summed and the average was computed.
Multiple seeds were used to ensure that our results
were not skewed5.

• Baseline Calculations. In addition to simulations
where we generated simulated run-times from particu-
lar distributions, we performed some baseline calcu-
lations. These baseline calculations provided results
that were, in effect, equivalent to running the simula-
tion where the run-time of a job on a given machine
was always exactly its expected run-time.

• Actual Run-time Distributions. When we generated
run-times that were different from the mean predicted
run-times, we ran experiments for both Gaussian and
exponential distributions. Based upon our experi-
ments with the NAS IS and EP Benchmarks above,
we chose to implement a translated exponential dis-
tribution.

Again, based upon our earlier experiments described
in Section 3.1, we chose to use a truncated Gaussian
distribution in our simulation experiments to mimic
the Gamma distribution that best fit our data. We
chose to truncate left of the mean at p — a.

3.3 Results of Simulation Experiments
where Jobs Ran for Times Different
from the Predicted Run-times

This set of experiments examined the performance
of intelligent mapping algorithms when job run-times

5This is a common method to reduce the influence of a single
random number generation sequence that may be biased.

differed from the expected run-times that were used to
develop the mappings. Using the distributions identi-
fied in the previous experiments, we instantiated spe-
cific parameters in order to simulate some typical jobs.
We simulated jobs with both exponential and trun-
cated Gaussian run-time distributions. In this pa-
per we summarize results; individual results from ad-
ditional individual experiments, which are consistent
with the conclusions that we make in this paper, can
be found in Armstrong's thesis [2].

The graphs in this section compare the final com-
pletion times of the jobs under the various mappings.
We use the label Baseline to mean that the value rep-
resented would be the completion time if all of the
jobs ran for exactly their predicted mean run-times.
In order to emphasize the differences between the val-
ues that we plot in the graph, we do not include the
OLB run-times. The OLB run-times, for the expo-
nential and Gaussian distribution simulations that we
discuss below, averaged around 10,000 seconds in all
cases shown, i.e., 500 requests.

3.3.1 Exponential Distribution Experiments

The results of these experiments compare the perform-
ance of the various mapping algorithms when all jobs
have an exponential run-time distribution. We re-
call that the sample run-times from those experiments
closely fit a shifted exponential distribution with mean

of 3.0.

Submission Sequence
500-4

I Baseline

E Exponential

fast greedy
greedy

Figure 7: Exponential run-time distribution results,

500-4.

84

We now compare the time at which the last job fin-
ishes if executed according to each of the mappings,
assuming that a job is not started on a machine until
the last job completes. The figures in this section show
both the expected completion time assuming determ-
inistic run-times as well as under the assumption that
the run-times are exponentially distributed, shifted to
the right such that its mean matches the expected run-
time.

Figure 7 shows these comparisons for some matrices
that we used in our simulations. This figure shows
that the schedules built by the intelligent mapping
algorithms are still effective even though the actual
run-time of a given job on a given machine can differ
greatly from its expected run-time.

Submission Sequence
500-3

I Baseline

H T-Gaussian

Iba greedy fast greedy

3.3.2 Truncated Gaussian Experiments

Figure 8: Truncated Gaussian run-time distribution
results, 500-4.

We then performed additional simulations to exam-
ine the performance of the the intelligent mapping al-
gorithms when all jobs had approximately Gamma
run-time distributions. We determined from our ex-
periments that we could approximate such a distribu-
tion by truncating a Gaussian distribution to the left
of the mean at roughly fi — a. Throughout this exper-
iment, the mean, fi, was the expected run-time for the
individual job/machine pair, and a2 was set to 300%
of fi. Therefore, these experiments are useful in de-
termining whether, when the variance is very large for
all jobs, the greedy algorithms still performed much
better than both the LBA and OLB algorithms. No
negative run-times were generated in our experiments
because the truncation value was always positive.

The results in Figure 8 show that the schedules are
finishing up to 25% later than in the previous exper-
iments. This not unexpected, as truncation will shift
the mean of the resulting distribution to the right. In
the next section we provide a theoretical discussion as
to why we would expect the times to be at least 20%
later. The results also show that the greedy algorithms
still perform better than the OLB and LBA algorithms
when job run-time distributions are truncated Gaus-
sian with very large variances. Our experiments, and
the theoretical explanation below, imply that it may
be worthwhile to update the mapping as the jobs are
being executed, to minimize the effect of the large job
variances.

3.3.3 Theoretical Explanation for Longer
Run-times shown in Gaussian Experi-
ments

To theoretically predict the new mean of the truncated
distribution described in the last section, we can use
simple Gaussian statistics [1]. Without loss of general-
ity, our explanation uses a standard Gaussian distribu-
tion with a mean of 0 and a standard deviation of 1. If
A(zi) is the area under the distribution from the mean,
2 = 0, to z = z\, then it can be easily shown that the
new mean, fi„ew, for our truncated distribution is

f^ne - 4-1 .5-.4(1)
(1)

Using this, we see that the new mean should be /J.new =
.20o-.

Unfortunately, the truncation of the Gaussian dis-
tribution only accounts for a 20% increase in the mean.
Therefore, this explanation alone leaves some 5% un-
accounted for. The remaining 5% is due to two factors.
The first can be traced to the fact that we are using a
truncated Gaussian instead of a Gamma distribution.
The second is the fact that the expected value of the
maximum of several Gaussian distributions is not the
maximum of the expected values. The application of
this well-known probability result to quality of service
metrics is documented elsewhere [9].

85

3.3.4 Comparison of the Two Greedy Al-
gorithms

We note that in our results, presented both here and
in Armstrong's thesis, the Greedy and Fast Greedy
algorithms appeared to perform similarly. Over all of
our experiments we only saw the Greedy Algorithm
performing up to 15% better than the Fast Greedy Al-
gorithm. Other work has suggested that the improve-
ment should be much higher. However, the other work,
to our knowledge, was based upon presenting sorted
requests to these mapping algorithms. The theoretical
explanation for these results is beyond the scope of this
paper and is discussed in another paper [7].

4 Related Work
To our knowledge, no one else has studied the

performance of intelligent heterogeneous mapping
algorithms when the run-times of jobs are non-
deterministic, by using the distributions of run-times
for actual programs determined under different re-
source loadings.

Ibarra and Kim [8] were the first to study the
performance of the algorithms upon which we con-
centrated. Their analytical study centered around
determining the worst-case performance of the al-
gorithms. Weissman [15] used simulation to study
interference-based policies; that is, policies that take
into account the fact that as you increase the load on
any shared resource, the rate of execution of other jobs
decreases. Our policies, and simulations, assumed that
the jobs were executed on a first-come, first-served
basis. Although we did not study their performance
here, genetic algorithms have been proposed as a good
way to schedule tasks on heterogeneous resources, par-
ticularly when communication or synchronization is
needed between tasks [13], [14]. Many systems have
followed the lead of SmartNet [6] in implementing in-
telligent schedulers, such as those we describe here, in
their resource management systems [11], [4], [16].

5 Summary
In this paper, we experimented with several applica-

tions on resources with differing loads and fitted their
run-times to distributions. We then used these dis-
tributions to determine via simulation whether, when
the run-times are non-deterministic, it is still benefi-
cial to use intelligent algorithms that make use of the
expected run-times to compute a mapping. We found
that it continues to be beneficial even when the expec-
ted run-time distributions have large variances. As
the distributions in our simulations were derived from
the execution of actual programs, our distributions are
realistic. However, there are additional distributions

that are also realistic that we have not yet examined.
We intend to pursue these in future work.

References
[1] ALDER, H. L., AND ROESSLER, E. B. Introduc-

tion to Probability and Statistics, third ed. Free-
man, London, England, 1964.

[2] ARMSTRONG, R. K. Investigation of Effect of
Different Run-time Distributions on SmartNet
Performance. Master's thesis, U.S. Naval Post-
graduate School, September 1997.

[3] BAILEY, D., ET AL. The NAS Parallel Bench-
marks 2.0. Tech. Rep. NAS-95-020, NASA Ames
Research Center, December 1995.

[4] BEGUELIN, A., ET AL. HeNCE: A User' Guide.
Oak Ridge National Laboratory and University of
Tennessee, December 1992. The document itself
is available on the web at cs.utk.edu.

[5] CORMEN, T. H., LEISERSON, C. E., AND

RIVEST, R. L. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts, 1990.

[6] FREUND, R., KIDD, T., HENSGEN, D., AND

MOORE, L. Smartnet: A Scheduling Frame-
work for Heterogeneous Computing. Proceedings
of the International Symposium on Parallel Ar-
chitectures, Algorithms and Networks (1996).

[7] HENSGEN, D., KIDD, T., AND ARMSTRONG, R.
Comparison of greedy algorithms for scheduling
jobs in a heterogeneous environments. In pro-
gress.

[8] IBARRA, AND KIM. Heuristic Algorithms for
Scheduling Independent Tasks on Nonidentical
Processors. Journal of the ACM (1977).

[9] KIDD, T., AND HENSGEN, D. Why the mean is
inadequate for accurate scheduling decisions. In
progress.

[10] KIDD, T., HENSGEN, D., FREUND, R., KUS-

SOW, M., AND CAMPBELL, M. Compute Char-
acteristics: A Useful Characterization of Job
Runtimes. In preparation for submission (1998).

[11] NEUMAN, B. C, AND RAO, S. The Prospero Re-
source Manager: A Scalable Framework for Pro-
cessor Allocation in Distributed Systems. Con-
currency: Practice and Experience (1994).

[12] PACHECO, P. A User's Guide to MPI. Tech.
rep., Department of Mathematics, University of
San Francisco, March 1995.

[13] SINGH, H., AND YOUSSEF, A. Mapping and
Scheduling Heterogeneous Task Graphs using Ge-
netic Algorithms. Proceedings of the Heterogen-
eous Computing Workshop (1996).

86

[14] WANG, L., SIEGEL, H. J., AND ROYCHOW-
DHURY, V. P. A Genetic-Algorithm-Based Ap-
proach for Task Matching and Scheduling in Het-
erogeneous Computing Environments. Proceed-
ings of the Heterogeneous Computing Workshop
(1996).

[15] WEISSMAN, J. B. The Interference Paradigm for
Network Job Scheduling. Proceedings of the Het-
erogeneous Computing Workshop (1996).

[16] ZHOU, ZHENG, WANG, AND DELISLE. Utopia:
A load sharing facility for läge heterogeneous dis-
tributed computer systems. Software: Practice
and Experience (1993).

Biographies
Major Robert K. Armstrong is currently in

charge of the Modeling and Simulation Laboratory
for the Marine Corps Air Ground Combat Center,
Twentynine Palms, California. He received his BS in
Engineering from the United States Naval Academy in
1985, is a graduate of the Amphibious Warfare School
in Quantico, Virginia, and has earned an MS in Com-
puter Science from the Naval Postgraduate School,
Monterey, California in 1997. Major Armstrong has
served in the capacity of Artillery Officer with the
1st Marine Division in Korea, Somalia, and Kuwait.
His interests include computer architecture, distrib-
uted systems, and modeling and simulation for train-
ing.

Debra Hensgen received her Ph.D. in Computer
Science, in the area of Distributed Operating Systems
from the University of Kentucky in 1989. She is cur-
rently an Associate Professor of Computer Science at
the Naval Postgraduate School in Monterey, Califor-
nia. She moved to Monterey from the University of
Cincinnati three years ago where she was first appoin-
ted as an Assistant Professor and then a tenured Asso-
ciate Professor of Electrical and Computer Engineer-
ing. Her research interests include resource manage-
ment and allocation systems and tools for concurrent
programming. She has authored numerous papers in
these areas. She is currently a Subject Area Editor
for the Journal of Parallel and Distributed Computing
and is the chief architect and a co-Principal Investig-
ator for the DARPA-funded MSHN project which is
part of DARPA's larger QUORUM program.

Taylor Kidd is an Associate Professor of Com-
puter Science at the Naval Postgraduate School (NPS)
in Monterey, California. He received his Ph.D. in Elec-
trical and Computer Engineering from the University
of California at San Diego (UCSD) in 1991. He re-
ceived his MS and BS, also in Electrical and Computer

Engineering, from UCSD in 1986 and 1985 respect-
ively. Prior to accepting a position at the NPS, he was
a researcher at the Navy's NRaD laboratory in San
Diego, California. His current interests include dis-
tributed computing and the application of stochastic
filtering and estimation theory to distributed systems.
He is a co-Principal Investigator, along with Debra
Hensgen, for the DARPA-funded MSHN project which
is part of DARPA's larger QUORUM program.

87

Session III

Modeling Issues
and

Group Communications

Session Chair

David J. Lilja
University of Minnesota, Minneapolis, MN, USA

Modeling the Slowdown of Data-Parallel Applications
in Homogeneous and Heterogeneous Clusters of Workstations

Silvia M. Figueira* and Francine Berman**

Department of Computer Science and Engineering
University of California, San Diego

La Jolla,CA 92093-0114
{silvia,berman} @ cs.ucsd.edu

http://www-cse.ucsd.edu/users/{silvia,berman}

Abstract
Data-parallel applications executing in multi-user
clustered environments share resources with other
applications. Since this sharing of resources dramatically
affects the performance of individual applications, it is
critical to estimate its effect, i.e., the application
slowdown, in order to predict application behavior. In this
paper, we develop a new approach for predicting the
slowdown imposed on data-parallel applications
executing on homogeneous and heterogeneous clusters of
workstations. Our model synthesizes the slowdown on
each machine used by an application into a contention
measure - the aggregate slowdown factor - used to adjust
the execution time of the application to account for the
aggregate load. The model is parameterized by the work
(or data) partitioning policy employed by the targeted
application, the local slowdown (due to contention from
other users) present in each node of the cluster, and the
relative weight (capacity) associated with each node in the
cluster. This model provides a basis for predicting realistic
execution times for distributed data-parallel applications
in production clustered environments.

1. Introduction

Clusters of workstations have been used effectively as
parallel machines for large, data-parallel, scientific
applications [3, 4, 6, 16]. Workstations in such clusters are
typically time-shared, causing competing applications to
split the CPU and memory capacity on each node. The
result of such sharing is that the fraction of resources
available for a single distributed parallel application is
reduced, causing a slowdown in the overall application
performance. In [1], Arpaci et al. have shown that this
slowdown can be significant. When slowdown can be
predicted accurately, this information can be used to

* Supported by a scholarship from CAPES (Brazil).
** Supported in part by NSF contract number ASC-9301788 and ASC-

9701333.

improve scheduling decisions in shared distributed
systems [9].

A number of researchers have investigated how
slowdown might be calculated and used to improve
performance. Slowdown on a single machine has been
used for task scheduling (as shown in [3] and [6]) and to
predict performance (as shown in [10], [13] and [22]). Co-
scheduling algorithms developed for networks of
workstations have taken the slowdown on each machine
into account, as shown in [2] and [7]. Weissman [19] has
proposed a scheduling model based on resource contention
using an interference paradigm. The interference measure
determines how much slower an application will compute
or a parallel application will communicate.

In this paper, we develop a new model for predicting
the slowdown imposed on data-parallel applications
executing on homogeneous and heterogeneous clusters of
workstations. Our model synthesizes the slowdown on
each machine used by an application into a contention
measure - the aggregate slowdown factor - used to adjust
the execution time of the application to account for the
aggregate load. This factor can be combined with the time
to execute the application in dedicated mode (on the same
cluster) to provide an estimate of application performance
in the presence of contention.

The aggregate slowdown factor is based on both
application-specific resource usage and node
computational capacity. Node capacity depends both on
the dedicated capacity (e.g., CPU speed) of the node and
on the load experienced by the node. Note that the
dedicated capacity of nodes in a cluster may be non-
uniform when the nodes are heterogeneous.

This paper is organized as follows. Section 2 introduces
our model and the aggregate slowdown measure. We focus
on aggregate slowdown factors for two common work
partitioning policies (load-dependent and constraint-
based) in Section 3. Section 4 discusses the local

90
0-8186-8365-1/98 $10.00 © 1998 IEEE

slowdown in each node of the cluster. In Sections 5 and 6,
we describe our experiments and evaluate the accuracy of
the model presented. Section 7 concludes with a summary.

2. The Environment
We define a contention measure, the aggregate slowdown
factor, that determines how load in the cluster will retard
the performance of an individual application. Using this
factor, the time X to execute a data-parallel application on
a cluster is given by

X=Xdedxsd, (1)

where sd is the aggregate slowdown factor (dependent on
the aggregate load in the cluster), and Xded is the time to
execute the targeted application on the cluster without
interference from competing applications.

For this paper, we focus on loosely synchronous CPU-
bound applications as defined by Fox [12]. These
applications are coarse-grained data-parallel scientific
applications in which computation and communication
phases alternate. Such applications can profit from
execution in clustered environments.

The computational environment is a cluster of
homogeneous or heterogeneous workstations. Note that
the model is independent of the number of nodes in the
cluster. We assume that the cluster is shared by CPU-
bound serial and/or data-parallel distributed applications,
which execute for the entire duration of the targeted
application. Each node in the cluster has one CPU. We
assume that contention due to CPU-bound applications
sharing resources provides the major source of slowdown.
Developing an accurate contention model for CPU-bound
applications provides a fundamental building block for
contention models for a more heterogeneous job mix in
which competing applications may also be non-CPU
bound.

For this model, we consider the effects due to system
overhead as well as application communication costs to be
minimal. Although considering communication costs
seemed essential at first, our experiments showed that for
representative CPU-bound data-parallel applications the
amount of communication was not significant.

In our experiments, we assumed that each workstation
schedules its processes locally and independently using a
round-robin mechanism. Note that priority-based
mechanisms, usually employed by workstations' operating
systems, reduce to round-robin when the competing
applications are CPU-bound [8].

Finally, we assume that the memory in each node fits
the working set of all the applications executing on the
node and that no delay is imposed by swapping. The
model can be extended to include more varied memory
access costs in a straightforward manner.

3. Aggregate Slowdown

Aggregate slowdown is defined to be the performance
slowdown of an application due to other applications
sharing the cluster. Aggregate slowdown factors must be
calculated based both on the work partitioning policy and
on the capacity of each node. Node capacity is given by
two parameters, each determined for each node in the
cluster:
• sda = the local slowdown at node a and
• wa = the weight of node a.

The local slowdown at node a, sda, is the delay
imposed on an application running on node a as a function
of other applications that share a's CPU. We show how to
calculate the local slowdown in Section 4.

The weight of a node a, wa, reflects its dedicated
capacity relative to the other nodes in the cluster. The
value for wa can be calculated as the ratio of the time to
execute a task on the slowest node s to the time to execute
the same task on node a (as described in [7]). In a
homogeneous cluster, wa - 1, for all a. To calculate
weights for nodes in a heterogeneous cluster, we execute a
serial benchmark in dedicated mode on the different nodes
of the cluster and calculate the weight for each node a * s
as wa - ts I ta, such that the machine with the longest time
ts, has weight ws - 1. Note that weights are dependent on
the benchmark chosen [7, 9].

The following subsections develop aggregate
slowdown factors for two work partitioning policies
commonly used by high-performance data-parallel
applications:
• load-dependent partitioning, in which the amount of

work allocated to each node is calculated based on its
computational capacity, and

• constraint-based partitioning, in which work is parti-
tioned among the nodes according to a set of constraints
(e.g., memory availability).

Note that we base our model on work partitioning (and
not on data partitioning) since the computational effort
required by a node is not always proportional to the
amount of data the node is assigned. Note also that the
model developed does not cover applications that have a
dynamic work partitioning independent of the load, i.e.,
applications for which work partitioning varies throughout
their execution (e.g., particle simulation). The model does
cover these applications when a dynamic rebalance
strategy, which takes the load of each node into account, is
implemented as part of the code.

3.1 Load-Dependent Partitioning

In this partitioning, work is allocated according to the
available computational capacity of each node in the

91

cluster. In this case, work is partitioned so that all nodes
will finish together (ideally), assuming they all started at
the same time. For this partitioning, we determine the
aggregate slowdown in terms of the aggregate capacity
available on the cluster. We define aggregate capacity as
the sum of the available computational capacities of the
nodes. We define capacitya as the available computational
capacity of node a. It is important to note that the available
capacity of each node depends on both its local load and
its weight. For instance, for an unloaded node k, capacity^
= wk, and for a loaded node k, capacity k = wkl sdk.

The aggregate slowdown is given by the ratio of the
aggregate capacity available in the unloaded (or dedicated)
cluster to the aggregate capacity available in the loaded
cluster. We calculate the aggregate slowdown for a cluster
formed by n nodes as

sd =
aggregate capacityded

aggregate capacity

(" ~)
(2)

(» V
y —

Figure 1 illustrates a load-dependent partitioning. The
work for application A is partitioned according to the node
capacities of a set of heterogeneous nodes, as shown in the
figure. If node 4 is twice as slow as the others (i.e., t\ = ?2
= ?3 = r4 / 2), then sd= (2 + 2 + 2+1)/ (2/2 + 2/2 + 2/3
+ 1 / 1) = 7 / 3.67 = 1.9 according to equation (2).

 I 1 A

A A ~f~

X X z A

node 1 node 2 node 3 node 4

Figure 1: Cluster formed by 4 heterogeneous nodes
and shared by three applications: A, X, and Y.
Application As work is divided among the nodes
according to their computational capacity. Each box
represents the amount of work associated with the
corresponding node.

3.2 Constraint-Based Partitioning

When work is partitioned based on a set of constraints,
such as memory availability or data locality, the aggregate
slowdown can be calculated from the extra amount of
work (relative to the work assigned in a uniform
partitioning, in which the work is partitioned evenly
among the nodes) assigned to each node. That is, the time
to execute the part of the application assigned to each node

is formed by two components: the amount of work that
would be performed if the work partitioning were uniform,
and the extra work that must be executed by a node
because the work partitioning is not uniform. Using this
approach, the time to execute the part of the application
assigned to node a in the presence of contention is

timea = (timeadedxsda) + (timea>dedxewaxsda)

= timea^Xsd,,X (l+<"0,
(3)

where
• time ded = time to execute the part of the application

assigned to node a, in dedicated mode,
• ewa - extra work executed by node a, calculated as

ew„ =
\/n

= ((/flx«)-l).

• fa = fraction of work assigned to node a, and
• n is the number of nodes in the cluster.

Note that node a can be assigned less work than it
would be if the partitioning were uniform. In this case,
f < 1/rt and ewn< 0.

■> a a

If all nodes begin execution concurrently, the slowest
node will determine the time to execute the application,
which is given by equation (1). From (1) and (3), we can
calculate the aggregate slowdown as

X
sd =

xded

max
(1 + ewa) x sda

(4)

max
•

(l+gwfl)
w,

where the numerator represents the time it takes to execute
the application in the presence of contention, and the
denominator represents the time it takes to execute the
application in dedicated mode.

Note that the uniform partitioning policy, in which each
node is assigned an equal amount of work, is characterized
by ewa = 0 for all a, and the aggregate slowdown for this
policy can also be calculated by equation (4).

Equation (4) assumes that the targeted application will
use the same constraint-based work partitioning (given by
ewa) in determining both X and Xded. This may not be
always the case, since the work partitionings used for X
and Xded may be determined by different constraints. For
example, if the partitioning depends on the memory
available on each workstation, which varies according to
the load, the partitioning used for the dedicated and non-

92

dedicated executions may not be the same. Therefore, we
must allow for different constraint-based partitionings to
be used for X and Xje(j. Call these constraint-based
partitionings dj and d2- To accommodate for dj (for X) and
d2 (for Xje(j), equation (4) is modified to

max.
j(l+ewa,)x^a[

sd =

max •1
(l+eWfli2)

(5)

where
* ewa,y = extra work executed by node a with partitioning

dy (y = 1, 2), calculated as

eWa,y = \/n

= ((/a,v*«)-!), and

* fay = fraction of work assigned to node a for partitioning
dy(y=l,2).

In the setting where the dedicated time Xjeci is given for
a uniform work partitioning, equation (4) can be reduced
to

\(l+ewa)xsda[
max,.

sd = (6)
maxa{l/wfl}

where the numerator represents the time to execute in the
presence of contention with a constraint-based partitioning
(characterized by ewa), and the denominator represents the
time to execute in dedicated mode with a uniform
partitioning.

Since maxfl {l/wa} = 1, for any set of nodes,
equation (6) can be reduced to

sd = max.
(1 + ewj x sda

(7)

Figure 2 illustrates the constraint-based partitioning. It
shows application A's work partitioning in a four-node
cluster. The application has 12 work units, which are
partitioned among the nodes according to memory
availability. The dotted lines in the figure determine
application A's work units. According to the figure,// = 1 /
12,/2 = 3 / \2,f3 = 3/12, and/4 = 5/12. If the nodes are
homogeneous, nodes 2 and 3 determine the time to
execute application A. This happens because nodes 2 and
3 are both assigned 3 work units, which are delayed by a
factor of 2, whereas node 4 is assigned 5 work units,
which execute in full speed. In this case, according to

equation (7), sd = (1 + 0) x 2 / 1 = 2. However, if the nodes
are heterogeneous and node 4 is twice as slow as the
others, the time to execute application A is determined by
node 4, and sd = (1 + 0.67) x 1 / 1 = 1.67, also according to
equation (7).

A A A
A A A
A A A

X X "Ä"

^
memory
limit

node 1 node 2 node 3 node 4

Figure 2: Cluster formed by 4 nodes and shared by
three applications: A, X, and Y. Application A's 12 units
of work (which are determined by the dotted lines) are
divided among the nodes according to memory
availability. Each box represents the amount of work
associated with the corresponding node.

4. Local Slowdown

The aggregate slowdown sd is calculated based on the
local slowdown sda on each workstation a of the cluster.
The local slowdown on node a is the delay imposed on an
application running on node a as a function of other
applications that share a's CPU. In [10], we presented a
model to calculate the local slowdown based on
information (such as the computation/communication
ratio) about the applications executing on the system.
Since this information may not be always available, in this
paper we present a different way of calculating local
slowdown based on information provided by the system.

If the scheduling policy implemented by the local
scheduler executed on each workstation is reduced to
round-robin (which is generally the case when all tasks are
CPU-bound and have the same priority), the slowdown
imposed by contention on each node a can be calculated
simply as

sda = pa+l, (8)

where pa is the number of extra processes executing on
node a.

Equation (8) - with some slight variations - has been
used for slowdown predictions in [3, 4, 6, 13, 19, 22].
However, it assumes that the competing applications
executing on the nodes of the cluster are well balanced and
executing at full speed (without idle intervals). This may
not be always the case.

When the load is not well-balanced and idle cycles
occur in a node, the local slowdown used in the aggregate
slowdown calculation must be a function of the fraction of
the busy (as opposed to idle) time of the competing
applications. In this case, the slowdown imposed by
contention on node a should be modeled pessimistically as

93

Pa

sda = 1 + *Lbusya,r (9)

where busyai is the fraction of time in which application /
is busy on node a, i.e., application / is either computing
within its own time slice, communicating, or waiting for
its time slice.

The value for busyai depends on the effects of the load
in the cluster, including the targeted application. To
calculate busyai, we use the CPU-usage associated with
application ;' on node a, and we have

*iisy . = min{l, CPU .x (pg+l)} , (10)

where CPUaj is the fraction of a's CPU used by
application /. Note that CPUai is a fraction provided by
the operating system. This fraction can also be predicted
by tools such as the Network Weather Service [21].

According to equation (10), application i is busy all the
time (busyaj = 1) when its CPU-usage corresponds to at
least 1 / (pa + 1). When application i's CPU-usage is less
than 1 / (pa + 1), it does not use the CPU all the time, and
the product of its CPU-usage and the number of
applications in the system gives the fraction of time in
which application /' is busy. Note that, since the targeted
application will affect the amount of time application / is
busy, pa + 1 (not just pa) is used.

Equation (10) is actually an upper bound on the time
that application / is busy. It considers the worst case in
which applications' computation cycles are synchronized
(i.e., all applications compete for the CPU at the same
time) and the targeted application neither has nor induces
idle cycles in the competing applications. When
computation cycles are not synchronized, applications will
compete for the CPU less often. Also, when the targeted
application either has or induces idle cycles in the
competing applications, these applications may stay busy
less time. In these cases, the slowdown on the node will
decrease.

5. Experiments
The formulas presented in Section 3 provide a model for
the aggregate slowdown. To assess the accuracy of this
model, we performed a large collection of experiments on
a wide range of CPU-bound benchmarks commonly found
in high-performance scientific applications. Some
examples of the applications used were: Jacobi2D [5],
Jacobi3D [5], Red-Black SOR [5], Multigrid [5], Genetic
Algorithm [20], and LU Solver [15]. In these experiments,
we compared actual execution times with modeled times
(dedicated time factored by aggregate slowdown) for
applications executing on a cluster of workstations with

CPU-bound synthetic loads. The synthetic loads were
formed by a combination of CPU-bound serial and/or
data-parallel applications distributed over the cluster. In
this paper, we show representative experiments for each
scheduling policy. On all graphs, we show actual times in
contentious (multi-user) environment, predicted times
using our slowdown model, and dedicated (single-user)
actual times for comparison. A more complete list of the
experiments can be found in [9].

All of our experiments show the modeled execution
times to be within 15% of actual execution times. This
demonstrates that, for reasonably accurate dedicated time
performance estimates, aggregate slowdown captures
contention delays in multi-user systems correctly and can
provide an accurate model for performance predictions.
The discrepancy in error between modeled and actual
times is due to a variety of factors. For example, the fact
that the round-robin scheduling policy assumed on each
workstation is not a "perfect" round-robin contributes to
the error.

Our experiments were performed on two platforms: a
cluster of homogeneous nodes, represented by a DEC
Alpha-Farm located at the San Diego Supercomputer
Center, and a cluster of heterogeneous nodes formed by
two DEC Alphas (located in the Computer Systems
Laboratory at UCSD) and two IBM RS-6000s (located in
the Parallel Computation Laboratory, also at UCSD). In
the DEC Alpha-Farm, the nodes are connected by a
GIGAswitch, which is dedicated to the nodes. In the
heterogeneous cluster, the nodes are part of different
Ethernet networks.

In this section, we show a representative subset of the
experiments performed on the homogeneous and
heterogeneous clusters described above.

5.1 Experiments on the Homogeneous Cluster

In the first set of experiments, we targeted clusters of
uniform workstations.

Figure 3 illustrates two representative experiments with
the load-dependent work partitioning policy. Shown is a
distributed SOR application [5] developed using PVM
[18] and executed on 4 nodes of the DEC Alpha-Farm
with two different loads. The parameters for the
experiments are shown in Table 1. In experiment 1 (exp 1),
there is a CPU-bound data-parallel application executing
on two of the nodes. In this case, aggregate capacity = 1 /
2+1/2+1 + 1 =3,and«i = 4/3= 1.33. In experiment 2
(exp 2), there is a CPU-bound data-parallel application
executing on two of the nodes, and two serial CPU-bound
applications executing on another node, as shown in
Figure 1. In this case, aggregate capacity = 1 / 2 + 1 / 2 +
1 / 3 + 1 = 2.33, and the SOR algorithm was slowed by a

94

factor of 4/ 2.33 =1.72.

Table 1: Parameters for the Experiments in Figure 3

1200

Node sd for exp 1 sd for exp 2

1 2 2

2 2 2

3 1 3

4 1 1

1200 r

1000 |-
E-

800

__ — -dedicated mode
▲ measured

^—— modeled

1000 2000 3000 4000
problem size (N)

5000

Figure 3: Time to execute the SOR algorithm on 4
nodes of the DEC Alpha-Farm in dedicated mode and
with 2 different loads.

Figure 4 represents experiments using the constraint-
based work partitioning policy. Shown is a Multigrid
application [5] (developed using KeLP [11] and MPI [14])
executed for different problem sizes (given by NxN) on 4
nodes of the DEC Alpha-farm. Two of the nodes (nodes 2
and 3) also host a CPU-bound data-parallel application,
and one of the nodes (node 1) also hosts two serial, CPU-
bound applications, as shown in Figure 2. The blocks of
data were divided among the nodes according to a set of
constraints resulting in the partitioning shown in Table 2
(column/). Table 2 also shows the other parameters (sd
and ew) used to calculate the aggregate slowdown (3.0).
Note that the dedicated time is given for a uniform work
partitioning.

■ no contention
measured

■ modeled

1000 1500 2000 2500
problem size (N)

3000

Figure 4: Time to execute the Multigrid application on 4
nodes of the DEC Alpha-Farm, with constraint-based
partitioning, in dedicated mode and with contention on
the nodes.

Figure 5 and Figure 6 also represent experiments using
the constraint-based work partitioning policy. They
present examples of a Jacobi3D algorithm [5] (developed
using KeLP [11] and MPI [14]) executing for different
problem sizes (given by NxN). The dedicated time was
given for a uniform work partitioning. Figure 5 shows
modeled and measured times for execution on 4 nodes
where other applications are also executing. In experiment
1 (exp 1), there was a CPU-bound parallel application
executing on two of the nodes as shown in Table 3,
imposing a slowdown of 2 on the execution of the
Jacobi3D algorithm. In experiment 2 (exp 2), there was a
CPU-bound parallel application executing on two of the
nodes, one of which was also shared by a serial CPU-
bound application, as shown in Table 4. In this case, the
Jacobi3D algorithm was slowed by a factor of 3.

Table 3: Parameters for Experiment 1 in Figure 5

Node sd /(%) ew (1 +ew) xsd

1 2 25 0 2

2 2 25 0 2

3 1 25 0 1

4 1 25 0 1

Table 2: Parameters for the Experiment in Figure 4

Node sd /(%) ew (1 +ew) xsd

1 3 25 0 3.00

2 2 17 -0.33 1.34

3 2 25 0 2.00

4 1 33 0.33 1.33

Table 4: Parameters for Experiment 2 in Figure 5

Node sd f(%) ew (1 +ew) xsd

1 3 25 0 3

2 2 25 0 2

3 1 25 0 1

4 1 25 0 1

95

a o

800

600

400

200

220 240 260
problem size (N)

280

Figure 5: Time to execute the Jacobi3D algorithm on 4
nodes of the DEC Alpha-Farm in dedicated mode and
with 2 different loads.

Figure 6 shows an example of the execution of the
Jacobi3D benchmark for different problem sizes (given by
NxN) on 4 nodes, in which the CPU-bound applications
described by Table 5 are also executing. The fractions in
the table represent the amount of time the application is
busy on the respective node. The work partitioning was
constraint-based. The aggregate slowdown factor is 2.375,
even though there are two applications executing on node
4. This is explained by the imbalance due to the work
partitioning of the competing applications. In particular,
this imbalance causes application 2 to be idle part of the
time, increasing node 4's computational capacity. Note
that the dedicated time parameter is given for a uniform
work partitioning.

Table 5: Busy Fractions for the Experiment in Figure 6

Node
Parallel

Application 1
Parallel

Application 2

1

2 2/8

3 1

4 1 3/8

Table 6: Parameters for the Experiment in Figure 6

Node sd /(%) ew (1 +ew) xsd

1 1.000 25 0 1.000

2 1.250 25 0 1.250

3 2.000 25 0 2.000

4 2.375 25 0 2.375

(3 o

600 rrr

400

S 200 J-"

 dedicated mode
A measured

1-..

;

|
 [....^ttf^A.. 1

L "
^7A ; 1 : _— >^

200 220 240 260
problem size (N)

280

Figure 6: Time to execute the Jacobi3D algorithm on 4
nodes of the DEC Alpha-Farm in dedicated mode and
together with the load described in Table 5.

5.2 Experiments on the Heterogeneous Cluster

We now relax the constraints that all the nodes in the
cluster are uniform and communication links within the
cluster are dedicated to the cluster itself.

Figure 7 shows an example of the execution of the SOR
benchmark [5] (developed using PVM [18]) for different
problem sizes (given by NxN) on the 4-node
heterogeneous cluster. The work was divided among the
machines according to their capacity and loads. The
ambient load was formed by one CPU-bound data-parallel
application executing on the DEC Alphas. Table 7
describes the values used to calculate the aggregate
slowdown for this situation, which is 8.14 / 5.08 = 1.6.
Note that the time to execute the SOR benchmark for a
4000x4000 matrix is shorter than the time estimated by
the model because, for this problem size, the round-robin
scheduling policy (assumed on each workstation) is not a
"perfect" round-robin, and the SOR benchmark gets
higher priority.

13 a o

180

160

140

120

100

80

60

■ dedicated mode
measured

■ modeled

4000 4200 4400 4600
problem size (N)

4800

Figure 7: Times for the SOR algorithm executing with
load-dependent work partitioning on a heterogeneous
cluster in dedicated mode and under contention.

96

Table 7: Parameters for the Experiment in Figure 7

Node w sd

alpha i 3.07 2

alpha2 3.07 2

IS, 1.00 1

rs2 1.00 1

Figure 8 represents experiments using a load-
dependent work partitioning policy with a Genetic
Algorithm application [20] developed using PVM [18].
Shown are modeled and measured times for execution
with different problem sizes (given by population size) on
four nodes of the heterogeneous cluster. In this
experiment, the IBM RS-6000s are also executing a CPU-
bound data-parallel application. The parameters for the
experiment are shown in Table 7. The aggregate
slowdown is 1.18.

800

750 r

— — - no contention
—— modeled
▲ measured

500
15000 16000 17000 18000 19000 20000

population size

Figure 8: Times for the Genetic Algorithm executing
with load-dependent work partitioning on a
heterogeneous cluster in dedicated mode and under
contention.

Table 8: Parameters for the Experiment in Figure 8

Node w sd

alpha. 2.3 1

alpha2 2.3 1

rs, 1.0 2

rs2 1.0 2

Figure 9 represents experiments using a constraint-
based work partitioning policy. Shown is a representative
SOR application [5] developed using PVM [18] and
executed for different problem sizes (given by NxN). The

platform is a heterogeneous cluster consisting of two DEC
Alphas and two IBM RS-6000s. Data for the dedicated run
was partitioned according to a set of constraints, resulting
in the partitioning shown in Table 9 (column/).

Table 9: Parameters for Experiments in Figure 9

Node w /(%) (1 + ew() /w{

alpha. 3.07 17 0.22

alpha2 3.07 33 0.43

rs, 1.00 17 0.66

rs2 1.00 33 1.33

In experiment 1 (exp 1) there was an additional CPU-
bound data-parallel application executing on the 2 IBM
RS-öOOOs. Table 10 shows the work partitioning (column
f) and slowdown (sd) parameters used in this experiment.
According to Table 9 and Table 10, the aggregate
slowdown for this case is 2.67 / 1.33 = 2.01.

Table 10: Parameters for Experiment 1 in Figure 9

Node w sd /(%) (1 +ew() xsd/Wj

alpha, 3.07 1 17 0.22

alpha2 3.07 1 33 0.43

rs, 1.00 2 33 2.67

rs2 1.00 2 17 1.33

In experiment 2 (exp 2) there was a CPU-bound data-
parallel application executing on the 2 IBM RS-6000s,
another executing on one IBM RS-6000 and one DEC
Alpha, and three more CPU-bound serial applications
executing on the other Alpha. The fractions in Table 11
represent the amount of time the application is busy on the
respective node. Table 12 shows the work partitioning
(column/) and slowdown (column sd) used in this
experiment. According to Table 9 and Table 12, the
aggregate slowdown for this case is 3.27 / 1.33 = 2.46.
Note that, even though there is one application executing
on alpha2, its local slowdown due to load imbalance is

1.33.

97

Table 11: Busy Fractions for Experiment 2 in Figure 9

Node
Parallel
Appl. 1

Parallel
Appl. 2

Serial
Appl. 3

Serial
Appl. 4

Serial
Appl. 5

alpha) 1 1 1

alpha2 1/3

re, 1 1

rs2 1

Table 12: Parameters for Experiment 2 in Figure 9

Node w sd /(%) (1 +ew) xsd/w.

alpha i 3.07 4.00 27 1.42

alpha2 3.07 1.33 27 0.47

IS, 1.00 3.00 27 3.27

rs2 1.00 2.00 19 1.45

550

„ 450
"O c o

350 :-

"■= 250

150

'—■■ exp 1 ■ dedicated mode
■ modeled
measured

d-i L±J J_l J_J J_l

4000 4100 4200
problem size (N)

4300 4400

Figure 9: Times for two experiments with the SOR
algorithm executing with constraint-based work
partitioning on a heterogeneous cluster in dedicated
mode and with contention.

Figure 10 also represents experiments using the
constraint-based work partitioning policy. It presents
examples of a Jacobi2D benchmark [5] (developed using
KeLP [11] and MPI [14]) executing for different problem
sizes (given by NxN). The graph shows modeled and
measured times for execution on the 4 nodes. One of the
DEC Alphas and one of the IBM RS-6000s are also used
to execute a well-balanced CPU-bound data-parallel task,
as shown in Table 13, causing the aggregate slowdown to
be 2. Note that the time estimated by the model is a little
higher than the measured time because the round-robin
scheduling policy (assumed on each workstation) is not a
"perfect" round-robin and, in this case, Jacobi2D gets

higher priority and executes faster than expected by the
model.

Table 13: Parameters for the Experiment in Figure 10

Node w sd /(%) (1 +ew.) xsd./w-

alpha. 1.00 1 25 1.00

alpha2 1.00 2 25 2.00

rs, 1.84 2 25 1.09

rs2 1.84 1 25 0.54

T3

110

100

90

80

70

60

50

40

; ' ' ' ' ' ' ' ' j ' ' ' ' j ' ' ' ' ;

i . ik

 1 t 7
k : :
: : — — - no contention
: ; ill

i

~, T 7", i , , , ,
4^.^.^..^..^ 1

2800 2850 2900 2950

problem size (N)
3000

Figure 10: Times for the Jacobi2D benchmark
executing with constraint-based work partitioning on
the heterogeneous cluster in dedicated mode and with
contention.

Figure 11 also presents examples of the Jacobi2D
benchmark executing for different problem sizes (given by
NxN). The graph shows modeled and measured times for
execution on the 4 nodes. The work partitioning was
constraint-based. The contention is generated by one
CPU-bound parallel application executing on the IBM
RS6000s, a second one executing on the DEC Alphas, and
a third one executing on one IBM RS-6000 and one DEC
Alpha. This scenario is represented in Table 14. The
aggregate slowdown is 3 due to the load in the most
heavily loaded DEC Alpha, as shown in Table 15.

Table 14: Node Usage for the Experiment in Figure 11

Node
Parallel

Application 1
Parallel

Application 2
Parallel

Application 3

alpha] •

alpha2 • •

rs. • •

rs2 •

98

Table 15: Parameters for the Experiment in Figure 11

Node w sd /(%) (1 +ew) xsd/w.

alpha j 1.00 2 25 2.00

alpha2 1.00 3 25 3.00

rs, 1.84 3 25 1.63

rs2 1.84 2 25 1.09

times to execute the algorithm causes the average error to
be within 12%.

Note that in Figure 13, for problem size 4400x4400,
one execution of the benchmark with contention was
faster than the execution in dedicated mode. This
phenomenon is explained by a variation in the execution
time in dedicated mode [17] caused by traffic in the
network, which is nondedicated in the heterogeneous
cluster. In our experiments, this variation is not significant
because the amount of communication is small.

a o
100 -

80

60

40

 no contention
 modeled

A measured

2800 2850 2900 2950
problem size (N)

3000

Figure 11: Times for the Jacobi2D benchmark
executing with constraint-based work partitioning on
the heterogeneous cluster in dedicated mode and with
contention.

6. Evaluation of the Model

The models presented were developed based on the
amount of busy time of the competing applications. They
assume that the time to execute the targeted application is
longer than the busy/idle cycles of the competing
applications. If the target application is fast in comparison
with the duration of these cycles, i.e., the time to execute
the application is close to (or smaller than) the duration of
one busy/idle cycle, the accuracy of the models decreases.

Figure 12 and Figure 13 illustrate the difference in
accuracy obtained in the prediction of the time to execute
the SOR benchmark on the heterogeneous cluster in two
situations. In both situations, the SOR competes for the
cluster with one CPU-bound data-parallel application that
executes on one DEC Alpha and one IBM RS-6000. In
Figure 12, the time to execute one busy/idle cycle of the
competing application was 15.82 seconds. In this case, the
time to execute the algorithm was longer than one busy/
idle cycle of the competing application, and the average
error was 2%. In Figure 13, the time to execute one busy/
idle cycle of the competing application was 223.76
seconds. In this case, the time to execute the same
algorithm was shorter than one busy/idle cycle of the
competing application, and the variation of the actual

e o

350

300 -

250 -

200 —

150 -

100

 no contention

\
, I I | 1 M I | 1 , I ,_

1 A measured

'-_ J^^^\ \
L-—Hi""i

!— -1 -" "i" "~ t~ "'-

4000 4200 4400 4600
problem size (N)

4800

Figure 12: Time to execute the SOR benchmark in
dedicated mode and competing with one application
that has a 15.82-second busy/idle cycle.

e o

__ _ - - no contention
111

A measured

• ! i

200
A

180

160
A

140

120

k ^>^^ A
l^-H": | j....^..^.-=

\ 5.~<~± I | [:
^"""JiT*"" i j : : "l
-, , , , 1 , , , , 1 - , , , 1 , , . , 1 i , , . 1 , , - , 1 , i, , 1 , , , ,-

4000 4200 4400 4600

problem size (N)

4800

Figure 13: Time to execute the SOR benchmark in
dedicated mode and competing with one application
that has a 223.76-second busy/idle cycle.

7. Summary

In this paper, we have presented a model to predict
contention effects in clustered environments. This model
provides a basis for predicting realistic execution times for
applications on clusters of workstations, a fundamental
component of performance-efficient scheduling. The
model is parameterized by the policy used to partition
application work, the local slowdown present in each node
of the cluster, and the relative weight of each node in the

99

cluster, all of which contribute substantively to application
performance.

To determine the effects of contention, we developed a
measure of aggregate slowdown - the delay on an
individual application due to contention from other
applications sharing the cluster. The determination of
aggregate slowdown varies with the work partitioning
policy and was developed here for two common work
partitioning policies (load-dependent and constraint-
based). We performed a set of experiments comparing
modeled and actual times on a dedicated system with
synthetic load for a set of benchmarks commonly found in
high-performance scientific applications. The
experiments showed our models to predict relatively
accurately - on average within 15% - the delay imposed
on an individual application due to contention on the

cluster. Since the effect caused by contention in a time-
shared environment can be large, as shown by our
experiments, the aggregate slowdown provides a critical
component in the accurate prediction of performance for
data-parallel programs on multi-user clusters of
workstations.

Acknowledgments

We would like to thank our colleagues in the UCSD
Parallel Computation Laboratory and in the San Diego
Supercomputer Center for their support, specially Stephen
Fink, Karan Bhatia, Mike Vildibill, Ken Steube, Cindy
Zheng, and Victor Hazlewood. We would also like to
thank Professor Joseph Pasquale for the usage of the
machines in the Computer Systems Laboratory at UCSD.

References

[1] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E.
Anderson, and D. A. Patterson, "The Interaction of Parallel
and Sequential Workloads on a Network of Workstations",
in Proceedings of SIGMETRlCS'95/PERFORMANCE'95
Joint International Conference on Measurement and Model-
ing of Computer Systems, pp. 267-278, May 1995.

[2] M. Atallah, C. Black, D. Marinescu, H. Siegel, and T. Casa-
vant, "Models and Algorithms for Coscheduling Compute-
Intensive Tasks on a Network of Workstations", Journal of
Parallel and Distributed Computing, vol. 16, pp. 319-327,
1992.

[3] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V.
Sunderam, "Graphical Development Tools for Network-
Based Concurrent Supercomputing", in Proceedings of
Supercomputing 91, pp. 435—444.

[4] A. Bricker, M. Litzkow, and M. Livny, "Condor Technical
Summary", Technical Report #1069, University of Wiscon-
sin, Computer Science Department, May 1992.

[5] W. L. Briggs, "A Multigrid Tutorial", Society for Industrial
and Applied Mathematics, Philadelphia, Pennsylvania,
1987.

[6] H. Dietz, W. Cohen, and B. Grant, "Would you run it
here...or there? (AHS: Automatic Heterogeneous Super-
computing)", in Proceedings of the International Confer-
ence on Parallel Processing, vol. II, pp. 217-221, August
1993.

[7] X. Du and X. Zhang, "Coordinating Parallel Processes on
Networks of Workstations", Technical Report, High Perfor-
mance Computing and Software Lab, University of Texas at
San Antonio, August 1996.

[8] A. C. Dusseau, R. H. Arpaci, and D. E. Culler, "Effective
Distributed Scheduling of Parallel Workloads, in Proceed-
ings ofACMSIGMETRICS'96, pp. 25-36, May 1996.

[9] S. M. Figueira, "Modeling the Effects of Contention on
Application Performance in Multi-User Environments,"
Ph.D. Dissertation, CSE Department, UCSD, December
1996.

[10] S. M. Figueira and F. Berman, "Predicting Slowdown for
Networked Workstations," in Proceedings of the Sixth Inter-
national Symposium on High-Performance Distributed
Computing, August 1997.

[11] S. J. Fink, S. B. Baden, and S. R. Kohn, "Flexible Commu-
nication Mechanisms for Dynamic Structured Applica-
tions", in Proceedings of the Third International Workshop
on Parallel Algorithms for Irregularly Structured Problems,
Santa Barbara, CA, August 1996.

[12] G. Fox, "Hardware and Software Architectures for Irregular
Problem Architectures," in Unstructured Scientific Compu-
tation on Scalable Multiprocessors, P. Mehrotra, J. Saltz,
and R. Voigt, The MIT Press, Cambridge, MA, pp. 125—
160, 1992.

[13] S. Leutenegger and X. Sun, "Distributed Computing Feasi-
bility in a Non-Dedicated Homogeneous Distributed Sys-
tem", NASA - ICASE Technical Report 93-65, September
1993.

[14] Message-Passing Interface Forum, "MPI: A Message-Pass-
ing Interface Standard", University of Tennessee, Knox-
ville,TN, June 1995.

[15] NAS Parallel Benchmarks, http://www.nas.nasa.gov/NAS/
NPB.

[16] NOW, http://now.cs.berkeley.edu.
[17] J. Schopf and F Berman, "Performance Prediction in Pro-

duction Environments," in Proceedings of IPPS/SPDP '98,
to appear.

[18] V. Sunderam, "PVM: A Framework for Parallel Distributed
Computing", Concurrency: Practice and Experience, vol. 2,
n. 4, pp. 315-339, December 1990.

[19] J. Weissman, "The Interference Paradigm for Network Job
Scheduling", in Proceedings of the Heterogeneous Comput-
ing Workshop, pp. 38-45, April 1996.

[20] D. Whitley, T. Starkweather, and DUAnn Fuquay, "Schedul-
ing Problems and Traveling Salesman: The Genetic Edge
Recombination Operator," in Proceedings of International
Conference on Genetic Algorithms, 1989.

[21] R. Wolski, "Dynamically Forecasting Network Performance
to Support Dynamic Scheduling Using the Network
Weather Service," in Proceedings of the 6th High-Perfor-
mance Distributed Computing Conference, August 1997.

[22] X. Zhang and Y. Yan, "A Framework of Performance Pre-
diction of Parallel Computing on Non-dedicated Heteroge-
neous Networks of Workstations", in Proceedings of 1995
International Conference of Parallel Processing, vol. I, pp.
163-167,1995.

100

Biographies

Silvia M. Figueira was born in Rio de Janeiro, Brazil. She
received both her B.S. and M.Sc. degrees in Computer
Science from the Federal University of Rio de Janeiro,
Brazil, in 1988 and 1991, respectively, and her Ph.D.
degree in Computer Science from the University of
California, San Diego in 1997. She was involved in
research as a member of the technical staff of NCE/UFRJ
(The Computing Center of the Federal University of Rio
de Janeiro) from 1985 to 1991. Currently, she is a
Postdoctoral Fellow at the Computer Science Department
of the University of California, San Diego. Her current
research interests are in high-performance distributed
computing.

Francine Berman is Professor of Computer Science and
Engineering at U. C. San Diego and a Senior Fellow at the
San Diego Supercomputer Center. She received her Ph.D.
in 1979 from the University of Washington. Her research
focuses on application scheduling in metacomputing, and
programming environments, models and tools which
support high-performance computing on distributed
networks. Dr. Berman has participated on numerous
Program and Conference Committees and will serve as co-
Chair of the 1999 High Performance Distributed
Computing Conference. She currently serves on the
editorial boards of IEEE Transactions on Parallel and
Distributed Computing, the Journal of Parallel and
Distributed Computing, SIAM Review, and as Area Editor
for Metacomputing at The Journal of Supercomputing.

101

Specification and Control of Cooperative Work in a
Heterogeneous Computing Environment

Guillermo J. Hoyos-Rivera1, Esther Martinez-Gonzalez1, Homero V. Rios-Figueroa
Victor G. Sanchez-Arias2, Hector G. Acosta-Mesa3 and Noe Lopez-Bemtez4

'Maestria en Inteligencia Artificial
Universidad Veracruzana
Sebastian Camacho # 5

Xalapa, Veracruz 91000 MEXICO
Ph. (52 28) 17 29 57 Fax. (52 28) 17 28 55

{ghoyos, emartine}@mia.uv.mx

2Laboratorio Nacional de Informätica Avanzada, LANIA, A.C.
Enrique C. Rebsamen # 80, colonia Isleta

Xalapa, Veracruz 91090 MEXICO
Ph. (52 28) 18 13 02 Fax. (52 28) 18 15 08

{hrios, vsanchez}@xalapa.lania.mx

4Texas Tech University
Computer Science Dept.
College of Engineering
Lubbock, Texas 79410

Ph. (806) 742 1194 Fax (806) 742 3519
nlb@ttu.edu

Abstract

The implementation of an interface to support
cooperative work in a heterogeneous computing
environment is based on previously proposed definitions
referred to as Cooperative Work Model (CWM) and
Cooperative Work Language (CWL). The Interface for
Cooperative Work (ICW) and the Graphical Interface for
Cooperative Work (GICW) are the main two components
of a tool useful in the set up and control of a cooperative
working environment in a general purpose heterogeneous
computing platform. This tool is described in this paper
as well as some desired characteristics to improve its
effectiveness. The specification and control of a virtual

parallel machine are illustrated with an algorithm for
3D-reconstruction from two stereoscopic images. Test
results on this application are also reported.

1. Introduction

Cooperative work involves the coordination of
several tasks during their execution. All tasks share a
common goal and cooperation rules coordinate their
actions that in turn use communication primitives to make
their interaction possible. There are two important factors
behind the motivation of this work. The first one is that
many problems can be organized as a set of cooperative
modules that could be executed in parallel. The second

3Acosta Mesa is now with the Universidad Tecnolögica de la
Mixteca, Huajuapan de Leon, Oaxaca, Mix ico

0-8186-8365-1/98 $10.00 © 1998 IEEE
102

Task A

Figure 1. Hierarchical Layout of Task Processor Assignments

factor is the recognition that message passing
computation is becoming more accessible today. It is no
longer necessary to buy expensive devices to gain access
to large computational power. Existing general purpose
networks can now be used for cooperative work. These
factors lead to the definition of a Cooperative Work
Model (CWM) [18, 23], and a Cooperative Work
Language (CWL) [19] with the purpose of making the
specification of cooperative work, its parallelism and
distribution easier. CWM and CWL are inspired upon the
definition of Communicating Sequential Processes (CSP)
[6], and the basic notions of processes and pipes used in
Unix [17]. The Interface for Cooperative Work (ICW) and
the Graphical Interface for Cooperative Work (GICW)
are the main two components of the tool implemented
based on CWM and CWL. ICW is useful in the set up and
control of a cooperative working environment in a
heterogeneous computing platform. A hierarchical
specification of processes makes ICW different from other
schemes such as Cluster-M [3] and HeNCE [2]. The main
objective of Cluster-M is an efficient mapping of tasks
into a set of processors. HeNCE, on the other hand, seeks
the specification of tasks given in the form of a task graph
such that parallelism is exploited. However, the nodes of
the task graph refer to lower level specification such as
procedures or routines. ICW allows a recursive refinement
such that lower granularity is also possible when the
application so requires it. Other tool that can also be
compared with ICW is the Wisconsin Wind Tunnel (WWT)
[16]. Unlike ICW, WWT is targeted to shared-memory
oriented applications and can be used to simulate the

behavior of hardware systems under design.
This paper describes the implementation of ICW and

GICW. First, in section 2 we review the basic elements of
the CWM model, i.e., tasks, cooperation rules, and
intertask communication. In section 3 and 4,
implementation issues are discussed. Section 5 deals
briefly with the stereoscopic image reconstruction and
section 6 reports some results obtained exploring task
distribution schemes using the tool presented in this
paper.

2. The Cooperative Work Model

The notion of cooperative work as a set of
interrelated tasks arranged in a hierarchical structure was
behind the proposed CWM model. In a distributed
heterogeneous computing environment, some if not all
tasks in the model can be executed in parallel and have
the capability to communicate with each other by explicit
message passing. The execution environment of tasks will
be governed by predefined cooperation rules. Interaction
among tasks will take place by using some established
communication primitives.

Tasks may be assigned to any suitable host in the
system. Figure 1 describes a possible hierarchical
arrangement of sets of tasks. Task_A consists of its own
execution environment and the execution environment of
Task_B and Task_C. Task_B consists of its own execution
environment and that of n replicated tasks denoted as Bt.
Finally Task_C consists of its own execution environment
and that of tasks X in host Sp, Y in any host of architecture

103

Sr, Z in host Sz and W. Tasks X, Y, Z, W and the n copies
B, do not contain other tasks inside them. Task W is a
special case. It should be executed in a particular host that
is not yet known. A search is required to determine the
location of such a task. Note that this specification of
tasks is different from that used for Cluster-M [3]. CWL
specifies a hierarchical order governed by the cooperation
rules between tasks and without regard at this point to any
allocation scheme.

2.1. Tasks

The minimal work unit is the task. It is considered a
completely executable program (a process) following the
binary format of the operating system under which it was
created.

By definition the tasks specified have the following
characteristics:

• Each task starts and ends execution at some point
in time,

• When a task starts execution, optionally receives
some input parameters,

• No task shares memory with any other task, and
• The only way to share information with other

tasks is by explicit message passing.
Any task may be classified according to the four

different criteria described in the next paragraphs.

Types of tasks. A task can be a generic task or a CW
task. A generic task is any general-purpose program that
can be executed by writing the command name in the
operating system prompt, like /bin/Is, /bin/cp,
$HOME/bin/print, etc. This kind of task does not have the
need to communicate with other tasks. A CW task is a
compiled executable program explicitly written for our
interface.

Level in the hierarchy. Under these criteria, any task
can be of any two types: atomic or composed. An atomic
task will be any executable program. It can be either, a
CW task or a generic task. Atomic tasks will consist only
of its own execution environment. A composed task can
only be a CW task. A composed task consists of its own
execution environment and that of one or more atomic or
composed tasks spawned by it. A composed task has its
own executable code. The tasks executed by a composed
task will be called members of a composed task, and the
composed task executing other tasks will be referred to as
the caller task.

Place of execution. According to the possible places
where tasks can be executed, they can be classified as
explicitly located or not explicitly located tasks. A task
not explicitly located is executed in any host of a virtual
parallel computer. The place where these kinds of tasks

are to be executed will be determined dynamically at
runtime. An explicitly located task will be executed
always in the same host, or a set of hosts of the same
architecture. This is due to any of three reasons: (1) the
executable program exists only in one host of the system,
(2) the executable program was compiled for a particular
architecture or (3) it is desirable to execute the program in
some particular host because it may be the most suitable.
A special case occurs when a task can be explicitly
located but the host where the corresponding executable
program resides is unknown. In this case a locator
dynamically finds the host where the executable program
resides.

Number of copies in a concurrent execution. Any
replicated task can be explicitly located or not explicitly
located. If they are explicitly located, then all copies of
the task will be executed concurrently in the same host or
in a subset of hosts of a specified architecture. Otherwise,
each copy will be executed in any host of the system.

2.2. Cooperation Rules

Every member task will have associated with it a
cooperation rule to control its execution. Three basic
cooperation rules are defined: SYNCP, ASYNCP and SEQ.

Tasks i

Tl

Til

T12

Execution time: !■
Wait time:-

t1 1 I I I I I I I I 0
t+l t+3 t+5 t+8 Time

Figure 2. Behavior of SYNCP

SYNCP stands for Synchronous Parallelism. When
some tasks are ruled by SYNCP all of them are started at
the same time and keep working concurrently. The caller
task will not end until all the member tasks have
terminated. However, any member task does not depend
on its caller task, nor on the tasks that were spawned at
the same time. As an example, consider the expression:

T1:SYNCP[T11, T12]

where Tl is the caller task and the member tasks will be
Til and T12. Task Tl will not end until both Til and Til
have terminated. Figure 2 describes SYNCP.

104

Tasks A

Tl

Til

T12

Execution time: i
Wait time: I ■

I I 1 I 1 I I II t>
t+3 t+5 t+S Time

Figure 3. Behavior of ASYNCP

ASYNCP stands for Asynchronous Parallelism. This rule
operates almost in the same way as SYNCP, but in this
case the caller task does not have to wait for all the
member tasks to terminate. Any task, including the caller
task can terminate without having to wait for the
termination of any other task working under this rule. The
same example posed for the last rule is useful for this one,
but with the difference that 77 will be able to terminate
independently of the termination time of tasks Til and
T12. Figure 3 describes the behavior of this rule.

Tasks *

Tl

Til

T12

T13

Execution time: ■
Wait time:»

J I I I I I I 1 I I t>
t+1 t+3 t+6 t+9Time

Figure 4. Behavior of SEQ

SEQ denotes a sequential execution. When using this
rule on a series of member tasks, the next task to be
executed will not be started until the previous one has
finished. Figure 4 depicts its operation.

2.3. Communications

Each cooperating task in a CWL program has a
communication rank that specifies those tasks that
communicate with it. The communication rank of a task T
running in ICW is formed by:

• The composed task that spawned T
• All the tasks spawned at the same time as T
• All the tasks spawned by T

Messages sent are saved in a buffer that is accessed
by the destination process when it is ready. If the message
is not yet in the buffer, the receiving process must wait
until it arrives.

3. Implementation

ICW maps the cooperative work defined by the
model into a specific distributed heterogeneous
environment. The interface provides all the necessary
mechanisms to distribute, replicate and locate any task to
be executed. The execution of the tasks will be monitored
and controlled to guarantee a complete execution of all
the programs or, in case of failure the interface will report
it. The goal of this feature is to make the debugging
process easier. To decide which tools to use in the ICW
implementation, several alternatives were analyzed. Two
of these alternatives include LAM (Local Area
Multicomputer) [14] and PVM (Parallel Virtual
Machine) [4]. LAM is a full extension of the MPI [13]
(Message Passing Interface) standard. We initiated the
implementation of ICW using PVM mainly because it
offered several desirable features and it was available.
Currently the interface is being updated, through GICW,
to work with both, PVM and LAM at the user's choice.

3.1. Cooperative Work Language

A typical program written in CWL is composed of six
sections:

• Architectures declaration (ARCHS)
• Hosts declaration (HOSTS)
• Tasks declaration (TASKS)
• Generic tasks declaration (GTASKS)
• Root task declaration (ROOT)
• Cooperative Work declaration (CW)

The first two sections (ARCHS and HOSTS) contain
the list of names of architectures and hosts respectively.
These sections can be omitted if there are not explicitly
located tasks.

The TASKS section contains the declaration of all the
tasks that are involved in the execution. This section
cannot be omitted.

The GTASKS section lists all the generic tasks. The
interface will not accept any declared generic task to be
used as a composed task. The existence verification of
this type of tasks is carried out at runtime. This section is
optional.

In both sections TASKS and GTASKS it is possible to
indicate that a task is going to be executed in a particular

105

host or a particular architecture. The operator -» indicates
that a task is to be executed in a particular host and the
operator => indicates a particular architecture.

The ROOT declaration indicates which task contains,
directly or indirectly, other tasks. In other words, the task
declared as ROOT is the superset in the hierarchy. The
ROOT task must be declared previously in the TASKS
declaration. If not, or if it is declared in the GTASKS
declaration, it will not be accepted.

Finally, the CW declaration indicates the structure of
the execution, and the rules that control the relation
between tasks. Every task listed in this declaration will be
validated against the tasks declared in the TASKS and
GTASKS sections. A typical CWL program is shown in
Figure 5.

3.2. Writing CW tasks

Programs for the interface are generic C programs
with the only peculiarity that they must be compiled with
the preprocessor directive #include "ICW.h", which
contains all the necessary definitions to control the
execution and all the functions to communicate between
tasks. This file includes two special functions: void
ICW_init (int arge, char *argv[]) and void
ICW_end(void).

ARCHS: SUN4,LINUX;

HOSTS: afrodita, hefestos,
cronos;

TASKS:
test, testl->cronos,test2,
test3 ,test4,test5,
test6 =>LINUX;

GTASKS test7;
ROOT: test;
CW {
test: SYNCP[testl,test2];
test2 : SEQ[test3,test4];
test3 : ASYNCP[test5(3)];
test4

}

: SYNCP[test6(10),test7];

Figure 5. Typical CWL program

ICW_init () must be called as the first executable
instruction of the function main() in every CW task. This
function will receive from the caller the hierarchy of tasks
and then execute them, sending to every task the

appropriate information to trigger execution.
ICW_init() must be called with the standard
arguments received by the C program because that
information is used by the interface to determine the
operating environment.

The last instruction of an ICW program must be
ICW_end (). This function will test the correct
termination of all the tasks spawned by the current task
and will terminate with the appropriate exit code. To
avoid conflicts and unpredictable behavior every internal
function and variable of the interface start with the
characters "ICW_". A minimal expression of an ICW
program is shown in Figure 6.

Communication functions. All communication
primitives to be used in CW programs will be limited by
the communication rank of the tasks. To establish a
communication with any task outside the rank it will
suffice to either use some tasks as intermediaries to send
messages or use directly the PVM identification and
communication functions to determine the identity of the
target task, and to send messages, respectively. For
example, referring to Figure 1, task X may need to send a
message to task B, but this task is outside the
communication rank of X.

The ICW communication functions have been defined
for each possible data type to be transmitted and all of
them follow the same standard.

ttinclude <stdio.h>
#include "ICW.h"

void main(int arge, char *argv[]){
ICW_init(arge, argv);
ICW_end();

}

Figure 6. A minimal expression of a ICW
task program

Typical functions to send and receive data have the
following prototypes:

• ICW_send_<datatype>(char *dest, int copy, int id,
<datatype> *buffer, int len) where <datatype> is a valid
simple datatype in the programming language.

• ICW_send_string(char *dest, int copy, int id, char
*buffer). This function is mainly used to send strings.

• ICW_receive_<datatype> (char *orig, int copy, int id,
<datatype> *buffer, int len, long tout).

106

• ICW_receive_string (char *orig, int copy, int id,
<datatype> *buffer, long tout).

Parameters. The parameters char *dest or char *orig
indicates with an identifier of a program name, the task
sending or receiving messages. The valid identifiers are
ICW_member, ICW_caller, ICW_next,
ICW_previous or a program name. If a program name
is used, ICW will attempt to find a program within the
communication rank of the task that calls the
communication function with the specified name.

In the case of a replicated task with a copy parameter
different from zero, the message will be sent to or
received from the nth copy of the replicated task.

If the ICW_member is used there are three possible
results. To send a message and if the copy parameter is
zero, the message will be sent to all the member tasks. To
send or receive a message, and if the copy parameter is
say n (different from zero), the message will be sent to
or received from the nth task of the member tasks. To
receive a message and if the copy parameter is zero, a
message from any of the member tasks will be accepted.

If ICW_caller identifier is used the message will
be sent to, or accepted from the caller task.

With ICW_next the message will be sent to or
accepted from the next task in the same level in the
hierarchy. The same happens with ICW_previous, but
in this case, it will be sent to or accepted from the
previous task in the same level in the hierarchy.

int copy indicates the number of copies of a
replicated task, or the number of member tasks a message
is sent to, or received from.

int id is an integer number that must match the
sending and receiving processes. It is used as a validation
of the message. A value of -1 in the receiver tells the
process to receive a message with any id number.

<type> *buffer is a pointer to the buffer that
contains the data to be sent or where it will be received.
Its type must match the type of the data in transit.

int len indicates the length of the data buffer.
Receive functions have an additional parameter:
long tout indicates how long a process should wait

for a message to arrive. If it is zero the waiting time
defaults to 300 seconds.

3.3. Execution of CWL programs

CW tasks must be executed through a CWL program.
This program, although compiled, does not generate any
executable code. If the execution of all tasks is successful
the execution of the CWL program will be successful. If
only one of the tasks fails the overall execution
environment fails. The execution process is divided into

two stages. One stage is the compilation of the CWL
program, and the other stage is the execution of all the
tasks involved in the cooperative work specified.

Compilation stage. The first step of the compilation
stage attempts to contact the PVM daemon. If it is not
possible to do it, the interface attempts to start it up. If this
is not possible the program will not compile and the
interface exits with an appropriate error code. PVM uses a
hosts file to know which hosts will be included in the
parallel virtual machine. The hosts file name is
. icwhosts and resides in the user home directory. The
compiler will check that all the declared architectures in
the ARCHS declaration and hosts declared in the HOSTS
declaration really exist in the PVM environment,
otherwise, the interface will exit with an error. Next, the
compiler will compile the TASKS and GTASKS
declarations. The existence of executable programs in the
hosts of the virtual computer is verified at runtime.
However, the compiler will check the consistency of the
declarations. The compiler will also check that all the
architectures and hosts used in the declaration of the
explicitly located tasks had been previously declared in
the corresponding sections. Finally, it will check that the
ROOT task has been declared in the TASKS declaration as
well as all the tasks referenced in the CW declaration. The
result of compiling the CW section will be an internal
representation of the hierarchy followed during the
execution of tasks. This hierarchy is used at runtime to
determine the behavior of every part of the execution
process.

Execution stage. This stage consists of the execution of
the entire hierarchy of tasks involved in the cooperative
problem. The first to be executed is the ROOT task, which
will be forked and enrolled as a PVM process. The
interface will wait for the end of the execution of the
ROOT task. After three unsuccessful execution attempts
the interface will exit with an error. As previously
mentioned, the complete execution will be successful only
if all its components are executed successfully. If at least
one task fails, the overall execution process fails.

4. The Graphical Interface

An option to build and execute a CWL program is
through the Graphical Interface for Cooperative Work
(GICW). With the GICW is possible to create an efficient
grouping for the objective Cooperative Work in an
interactive and dynamic way. Figure 7 shows a view of
GICW.

The GICW offers two operation modes. The first
mode manages information elements for the Cooperative

107

Work of an application via a set of windows. It integrates
the tasks (proper and generic), hosts and architectures.

; Sr*»t»ie (nttrftot tor (KM***** MM* fctprM&tott --«j«

BH t)Mts laMs jew

H03L-

flrchitoctar»: | flreMtoctur»: 1

T«*» Ota^tey ; Taak Dntwinf

Figure 7. Graphic Interface for Cooperative Work

The second is the Graphic Configuration mode. It
integrates all operations adding a Dynamic Configuration
Area (DCA). The DCA shows the task representation
looking like the graphs in the CWM shown in Figure 1. In
the central part of this area appears the root task
represented by an oval with its name and its cooperative
rule. Within this oval is possible to integrate composed
and atomic tasks required in the cooperative work of the
current application.

A composed task is also represented with a circle
with the name of the task and its cooperation rule. Small
circles are used to represent atomic tasks. To add one task
in the configuration it is selected from the box list located
in the left side of the DCA. The selected task is then
dragged into the root task area or into the area of a
previously created composed task.

To create or modify tasks, hosts, or architectures, it is
important to use the corresponding entries that appear in
the upper side of the configuration area. These windows
are useful to specify directly weather a task will execute
in a particular host or architecture.

To integrate the number of copies of an atomic task is
necessary to select it from de DCA and adjust the number
of copies in the window that appears for this purpose.
Code generation is performed according to the objects
appearing in the DCA and their grouping. The output file
generated is identified with the application name and the
extension .icw. This file contains the CWL specification
of the cooperative work.

The option ICW Execution is selected from the menu
and a window appears to display execution results.

The implementation is based on the scripting
language Tel and its graphical toolkit Tk (version 8.0)
which are widely portable and allow easy GUI
programming [15].

The GICW has no validation mechanism for the
existence of tasks. A parser is used when a configuration
file is loaded. The GICW extensions are based on the MPI
implementation of ICW. The implementation integrates 1)
a state monitor mechanism of the tasks that compound the
current cooperative work application, 2) the search in
alternative paths that are not in the PATH environment
variable, and 3) the dynamic configuration of the host in
the virtual machine.

5. Application: 3D Reconstruction

One of the most important features of human vision
is its capacity for perceiving a three dimensional world.
This perceptual capacity is achieved through a highly
evolved visual system composed of cooperative visual
modules, which are able to recognize objects and describe
the layout, and motion of our surroundings [21]. One
visual module that is most relevant for the perception of
depth is stereopsis [10]. This visual module takes as input
two images of a scene taken from different locations (for
example, one taken by the left eye and the other by the
right eye) and computes the correspondence of features
which most likely originate from the same 3D surface
patch (Figure 8). From the features correspondence is
possible to obtain the depth at these points [7].

We describe a distributed implementation of the
Pollard, Mayhew & Frisby (PMF) algorithm for
stereoscopic reconstruction. Our implementation has
been coded in ICW and runs on a network of SUN and
Silicon Graphics workstations [1]. The main stages of the
PMF algorithm for stereoscopic reconstruction [10] are
the following:

• Edge detection. The points with highest changes
in intensity are detected in each digital image.
This can be achieved with a variety of edge
detectors, such as the Marr-Hildreth operator,
Canny edge detector or Sobel's [5]. For simplicity,
we have taken this last option.

• Stereoscopic correspondence. This is the core part
of the whole algorithm that finds the most likely
correspondences between edges in the left and
right images.

• Reconstruction. Once the correspondences have
been found it is possible to evaluate simple
arithmetic expressions to find the depth at these
locations.

108

* Object

fl„ fl 1 Cameras

+
Digital Images

HB£. .-■•'. - -»ui

Edge detection

1
Correspondence

♦

t

f at

t Depth
computation

Figure 8. Stages in stereoscopic reconstruction

We take images from two cameras with parallel
viewing directions to simplify the problem of stereo
correspondence, because in this case, the corresponding
features lie in epipolar lines. This means, that they are
approximately in the same raster line in the two images.

Using the constraint that corresponding features
usually have a disparity gradient DG less than one, we
apply a search process to find the best matches. The
disparity gradient is defined for a pair of matches, where
each match associates one feature in the left image with
one feature in the right image.

If feature PI = (plx,ply) in the left image is matched
with feature Pr = (prx.pry) in the right one, and feature Ql
= (qlx,qly) in the left is matched with feature Qr =
(qrx,qry) in the right as shown in Figure 9, then the
disparity D for the match (PI, Pr) is obtained as follows:

D(Pl,Pr) = plx - prx.

The disparity difference DD for the pair of matches
(Pl,Pr) and (Ql,Qr) is just the disparity for the P match
minus the disparity for the Q match. That is:

DD((Pl,Pr),(Ql,Qr)) = d(Pl,Pr) -d(Ql,Qr)

Now imagine the two images superimposed. The
cyclopean separation CS is the distance from the mid-
point of the line joining PI and Pr to the mid-point of the
line joining Ql and Qr. The gradient DG is the absolute
value of the disparity difference divided by the cyclopean
separation.

PI Pr
\ \

v Cyclopean
v Separation

01 Or

Figure 9. Geometry of the disparity gradient

In Figure 9, the disparity difference is the difference
in length between the two horizontal lines. The cyclopean
separation is the length of the slanting line. The DG can
be expressed as follows:

DG = DD/SC <1

If a point (X,Y,Z) projects at (xl,y) and (xr,y) in the left
and right image respectively, we can find its position in
space, in terms of the disparity xl - xr, using the formulas
[7]:

v B(xl + xr)

Y =

Z =

2(xl-xr)

By
xl — xr

Bf
xl-xr

where B is the separation between the camera's centers
and/is the focal length.

6. Comparative results

The distributed implementation consists of dividing
each image in bundles of lines and allocating a bundle to
each workstation. Once a bundle is processed, the results
are returned and concentrated by the host computer for
display as described in Figure 10.

109

innut imaaes
limaae

rriaht
imaae

Edae detection and
Distribution of bundles

Division of the imaaes
In bundles.

rJ- rJ- r>

* # *
Terr
bur

Terminal # 1 Terminal # 2 Terminal # 3
fbundleA) bundle B) bundled

Terminal # X
bundles)

Gatherina of
results

fCorresDondencesI

Reconstruction

Figure 10. Distribution of tasks for stereoscopic correspondence

Each processed image is composed of 240 rows and 320
columns. The size of each bundle is obtained as the
number of rows divided by the number of available
workstations. In our implementation the size of the bundle
can vary up to 240/n lines, where n = 1, 2, ..., 12 is the
number of workstations. For a uniform number of
features in each bundle, the lines that compose each
bundle are not taken consecutively but every 240/n lines.
Some results of the reconstruction are shown in Figure 11.

Two sets of tests were carried out. In the first set only
12 SUN units (models ELC, ILC and IPC with 24 Mbytes
of RAM) were used. For the second set of tests Silicon
Graphics (SGI) machines (Indy R4600 with 32 Mbytes of
RAM) where introduced. Under the second scheme, a
SUN unit distributes tasks to SGI units (labeled 1 to 5).
The results obtained are shown in Figures 12 and 13. Both
figures compare results obtained under no workload
conditions and normal workload conditions.

Figure 12 shows a monotonic improvement in the
execution time (this behavior is more consistent under a
normal workload condition) up until the number of units
reaches 10. An increase in the number of workstations

does not show any improvement in the overall execution
time. At this point, very likely the communication costs
involved with further partitioning of the application upset
any gain in execution times. In this regard similar
behavior can be observed with the combination SUN and
SGI workstations in Figure 13. Naturally, the introduction
of SGI units renders a dramatic improvement in the
execution time. However, particularly in the case of no
workload conditions, performance remains constant
indicating again the effect on communication costs. Under
normal workload conditions, improvements are noticeable
with additional units.

The objective of these experiments is to demonstrate
the feasibility of using ICW to execute distributed
applications. The results highlight the need to incorporate
appropriate task allocation and scheduling heuristics [3,
11,12,20] to map the set of tasks in the application to
suitable units in the system and improve execution times.
The integration of these schemes will make ICW a
complete and useful tool in the analysis and
implementation of large-scale parallel and distributed
applications.

110

Left image Right image

Correspondence

Left image Right image

 F-^

Correspondence

1"
* _

1 I ft

■'"- ' ' '"--=-'-""

Figure 11. Results of the reconstruction

7. Conclusions and future work
At this time we have defined a model to specify

cooperative work and completed the implementation of
the first version of the interface (ICW). We are currently
working on LAM 6.1 and refining some management
aspects of CW applications.

ICW is the first implementation of the CWM and the
CWL models and although the project is at an early stage,
trying to define the most desirable features has been the
most time consuming endeavor. This work however,
demonstrates the feasibility of the model, and will be the
base for the analysis and implementation of a more
complete CWL. The tool proposed facilitates the
introduction of scientists into the world of parallel and
distributed processing as it provides an easy interface to
the specification of parallelism, writing, and debugging of
communicating programs using installed general purpose

networked resources.
However, to optimize performance the interface must

be able to evaluate hosts configurations and detect the
states of those processing units used in the distribution.

The tool has been written to deal with C programs.
An upgraded version will incorporate transputers to
facilitate the specification of lower level parallelism.
Another expected development is to improve the
mechanisms to detect and, if possible, recover from
failures. Yet another important future development calls
for the integration of task assignment heuristics and their
evaluation to achieve a much improved task distribution
in terms of execution times and resource utilization. In
terms of future applications for which ICW will be used
include cooperative virtual environments and gesture
recognition [22] algorithms.

Ill

SUN (No workload) SUN (Normal Workload)

5000 T-

4500

4000

3500

«, 3000
■D

o 2500 u
« 2000

1500

1000

500

0

7000

6000

5000

o
«j 3000

2000

1000

0
2 3 4 5 6 7 8 9 10 11 12

Nodes

1 2 3 4 5 6 7 8 9 10 11 12

Nodes

Figure 12. Execution times on a homogeneous system
consisting of SUN workstations only.

SUN-Silicon Graphics
(No Workload)

SUN-Silicon Graphics
(Normal Workload)

6000

5000

«> 4000

O 3000

2000

1000

0

1 Swisses

1Sun/ 1Sun/ iSun/ 1SuiV
1SQI 2SGI 3SGI 4SGI
72$ 704 B84 672

n , n n , n

6000

5000

« 4000

o 3000

•" 2000 (/>
1000

0

1 SUD 48 77

ISun/ 1Sun/ isun/ isun/

SGI 2SGI 3SG, 4SQ,
W£ -A« c-rt

F1 . n . n

Nodes Nodes

Figure 13. Execution times on a combined SUN-SGI configuration.

112

References

[1] H.G. Acosta-Mesa, H.V. Rios-Figueroa, "Implementation
distribuida de un modulo de reconstruction

estereoscöpica", Maestria en Inteligencia Artificial,
Universidad Veracruzana - LANIA, 1996

[2] A. L. Beguelin, J. J. Dongarra, G. A. Geist, R. Mancheck,
and K. Moore "HeNCE: a Heterogeneous Network
Computing Environment", University of Tennessee,
Computer Science Dept. Technical Report No. 93-205,
August 1993.

[3] M. M. Eshaghian and Y-C. Wu, "A Portable
Programming Model for Network Heterogeneous
Computing", in Heterogeneous Computing, Mary M.
Eshagian, ed., Artech House, Inc., 1996.

[4] A. Geist, et al. "PVM: Parallel Virtual Machine. A User's
Guide and Tutorial for Networked Parallel Computing",
MIT Press. 1995

[5] R.C. Gonzalez, R.E Woods, "Digital Image Processing",
(3rd. edition) Addison-Wesley, 1992

[6] C.A.R. Hoare, "Communicating Sequential Processes",
Communications of the ACM, 21(8): 666-667 1978.

[7] B.K.P, Horn, "Robot Vision", The MIT Press, 1987

[8] G.J, Hoyos-Rivera, V.G. Sanchez-Arias "Proposal of an
Interface to Support Cooperative Work in a Distributed
System Environment". I Encuentro de Computaciön.
Taller de Sistemas Distribuidos y Paralelos. Memorias.
Queretaro, Qro. Mexico. September 1997. SMCC,
SMIA, UNAM, Asoc. Filosöfica de Mexico, SMI, UAQ.

[9] G.J. Hoyos-Rivera, "Propuesta de una Interfaz para el
Apoyo al Trabajo Cooperativo en un ambiente de
Arquitectura Paralela y Sistemas Distribuidos", Maestria
en Inteligencia Artificial, Universidad Veracruzana -
LANIA, 1997

[10] J.E.W. Mayhew, J.P. Frisby, "3D Model Recognition
from Stereoscopic Cues", The MIT Press, 1991

[11] A. R. McSpadden, N. Lopez-Benitez, "Stochastic Petri
Nets Applied to the Performance Evaluation of Static
Task Allocations in Heterogeneous Computing
Environments", IEEE Heterogeneous Computing
Workshop, 1997, Geneva, Switzerland.

[12] D. A. Menasce, D. Saha, S.C. Silva Porto, V.A.F.
Almeida, S.K. Tripathi, "Static and Dynamic Processor
Scheduling Disciplines in Heterogeneous Parallel
Architectures", Parallel and Distributed Computing,
Vol.58, 1995, pp. 1-18.

[13] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard CRPC-TR94439, Center for

Research on Parallel Computation, Rice University,
April, 1994,
http://netlib2.cs.utk.edu/papers/mpibook/mpibook.ps

[14] N. Nervin. "The Performance of LAM 6.0 and MPICH
1.0.12 on a Workstation Cluster. Ohio Supercomputer
Center. Technical Report OSC-TR-1996-4 . Columbus
Ohio.

[15] J. K. Ousterhout. Tel and the Tk Toolkit. Addison-
Wesley. Professional Computing Series. September,
1995.

[16] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck,
J.C. Lewis, and D. A. Wood, "The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel Computers",
ACM Sigmetrics Conference, May 1993.

[17] D.M. Ritchie, K. Thompson. "The Unix Time-Sharing
System", The Bell System Technical Journal 57 No. 6
page 2. Jul-Aug, 1984

[18] V.G. Sanchez-Arias, "Arquitectura para el apoyo al
trabajo cooperativo basado en una red de sistemas
paralelos y distribuidos", Reporte interno LANIA, Ri-
ll 24P-A, marzo 1996.

[19] V.G. Sanchez-Arias, G.J. Hoyos-Rivera. "Using PVM to
Build an Interface to Support Cooperative Work in a
Distributed Systems Environment". Lecture Notes in
Computer Science. Proceedings of Recent Advances in
Parallel Virtual Machine and Message Passing Interface
4th European PVM/MPI Users' Group Meeting. Cracow,
Poland, November 1997. pp 127-134

[20] B. Shirazi, M. Wang, G. Pathak, "Analysis and
Evaluation of Heuristic Methods for Static Task
Scheduling", J. of Parallel and Distributed Computing,
Vol. 10, 1990, pp. 222-223.

[21] S. Ullman, "Analysis of Visual Motion by Biological and
Computer Systems" Computer 14, 57-69, 1981.

[22] K. Voss, H. V. Rios-Figueroa and J. Pena. "Head
tracking by glasses detection". Proceedings of the
Workshop on vision and robotics, National Computer
Conference, Mexico, 1997.

[23] Sanchez-Arias, V. G. "Arquitectura para el apoyo al
trabajo cooperativo basado en un ambiente de
architectura paralela y systemas distribuidos",
Proceedings 2nd. International Workshop on Parallel
Processing, DEA-IMAS-UNAM, Mexico, July 1996, pp
8-10.

113

Author Biographies

Guillermo J. Hoyos-Rivera received the BSc degree in
Informatics in 1992, and the MSc degree in Artificial
Intelligence in 1997 from the Universidad Veracruzana
with honors. He has been a Lecturer in the Universidad
Veracruzana as a Lecturer since 1991 and in several other
schools and universities. Currently, he is an associate full-
time Researcher in the Artificial Intelligence department
in the Universidad Veracruzana and the Universidad
Anahuac de Xalapa. His research interest include
operating systems, computer networks,
telecommunications, protocols and parallel and
distributed processing. He is a member of the SMIA
(Mexican Society of Artificial Intelligence).

Esther Martinez-Gonzalez received the BSc degree in
Informatics from the Universidad Nacional Autonoma de
Mexico (UNAM) in 1994. She is about to graduate with
an MSc degree in Artificial Intelligence from the
Universidad Veracruzana. Since 1994 she has been a
Lecturer, first in the UNAM and currently at the
Universidad Veracruzana. She is now engaged with the
Research Coordination of the Universidad Veracruzana.
Her research interest areas are in distributed systems and
cooperative work.

Homero V. Rios-Figueroa received the BSc degree in
Mathematics and the MSc degree in Computer Science
from the Universidad Nacional Autonoma de Mexico
(UNAM) in 1987 and 1989, respectively. The PhD degree
in Computer Science and Artificial Intelligence from the
University of Sussex, England, in 1994. From 1988 to
1990 he was a Lecturer with the UNAM. In 1994, he
joined the Laboratorio Nacional de Informatica
Avanzada (LANIA) in Xalapa, Mexico, where he is now
a full time Researcher. His research interests include
computer vision and virtual reality. He is a member of
the SMIA (Mexican Society of Artificial Intelligence).

Victor G. Sanchez-Arias received the BSc degree in
Control Comunications and Electronics and the MSc
degree in Computer Science from the Universad Nacional
Autonoma de Mexico (UNAM) in 1974 and 1976,
respectively. He obtained the Diplome D'Etudies

Approfondies (DEA) in Informatics from the Ecole
Nationale Superieure de 1'Institut de Mathematiques
Appliquees de Grenoble (IMAG), France. In 1982, he
received the PhD degree in Informatics Engineering from
the IMAG. He was with BULL, Paris, France from 1985
to 1988 where he was engaged in the research and
development of networks, distributed systems and
applications. He was a Researcher at the IMAG (1981-
1984) and at the UNAM (1988-1991). Since 1992, he is
titular Researcher and consultant at the Laboratorio
Nacional de Informatica Avanzada (LANIA). He is a
member of the SMIA (Mexican Society of Artificial
Intelligence) and SMCC (Mexican Society of Computer
Science). His research interest include distibuted and
cooperative systems and parallelism.

Hector G. Acosta-Mesa received the BSc degree in
Computer Systems from the Instituto Technologico de
Veracruz. He also received his MSc degree in Artificial
Intelligence from the Universidad Veracruzana. From
1991 to 1996 he was working for CFE (Comision Federal
de Electriciad) in Xalapa, Veracruz. He is now a
Researcher and Professor in the Universidad
Technologica de la Mixteca in Oaxaca. Areas of research
interest include robotics and computer vision. He is a
member of the SMIA (Mexican Society of Artificial
Intelligence).

Noe Lopez-Benitez received the BSc degree in
Communications and Electronics from the University of
Guadalajara, Guadalajara, Mexico. The MSc degree in
Electrical Engineering from the University of Kentucky,
and the PhD in Electrical Engineering from Purdue
University in 1989. From 1980 to 1983, he was with the
HE (Electrical Research Institute) in Cuernavaca, Mexico.
From 1989 to 1993, he served in the Dept. of Electrical
Engineering at Louisiana Tech University. He is now a
Faculty member in the Dept. of Computer Science at
Texas Tech University. His research interests include
fault-tolerant computing systems, reliability and
performance modeling, and distributed processing. He is a
member of the IEEE, the IEEE Computer Society, and the
ACM.

114

A Mathematical Model, Heuristic, and Simulation Study for
a Basic Data Staging Problem in a Heterogeneous Networking Environment

Min Tan , Mitchell D. Theysf, Howard Jay Siegelf, Noah B. Beckf, and Michael Jurczylqf

/"Parallel Processing Laboratory
*Cisco Systems, Inc.

170 West Tasman Drive
San Jose, CA 95134-1706

mintan@cisco.com

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285, USA
{hj, theys, noah}@ecn.purdue.edu

■^Department of Computer Engineering and Computer Science
University of Missouri at Columbia

201 Engineering Building West
Columbia, MO 65211, USA
mjurczyk@cecs.missouri.edu

Abstract

Data staging is an important data management
problem for a distributed heterogeneous networking
environment, where each data storage location and
intermediate node may have specific data available,
storage limitations, and communication links. Sites in the
network request data items and each item is associated
with a specific deadline and priority. It is assumed that
not all requests can be satisfied by their deadline. This
work concentrates on solving a basic version of the data
staging problem in which all parameter values for the
communication system and the data request information
represent the best known information collected so far
and stay fixed throughout the scheduling process. A
mathematical model for the basic data staging problem
is introduced. Then, a multiple-source shortest-path
algorithm based heuristic for finding a suboptimal
schedule of the communication steps for data staging is
presented. A simulation study is provided, which evalu-
ates the performance of the proposed heuristic. The
results show the advantages of the proposed heuristic
over two random based scheduling techniques. This
research, based on the simplified static model, serves as
a necessary step toward solving the more realistic and
complicated version of the data staging problem involv-
ing dynamic scheduling, fault tolerance, and determining
where to stage data.

This research was supported by DARPA/ISO and the Office of
Naval Research under ONR grant number N00014-97-1-0804,
and by NRaD under contract number N66001-96-M-2277, M. D.
Theys was also supported by a Purdue Benjamin Meisner
Fellowship and an Intel Fellowship.

Keywords: BADD, data staging, data management,
Dijkstra's multiple-source shortest-path algorithm, distri-
buted heterogeneous networking environment, hetero-
geneous computing.

1. Introduction

The DARPA Battlefield Awareness and Data Dis-
semination (BADD) program [12] includes designing an
information system for forwarding (staging) data to
proxy servers prior to their usage by a local application,
using satellite and other communication links. The net-
work combines terrestrial cable and fiber with commer-
cial VSAT (very small aperture terminal) internet and
commercial broadcast. This provides a unique basis for
information management. It will allow web-based infor-
mation access and linkage as well as server-to-server
information linkage. The focus is on providing the ability
to operate in a server-server-client environment to optim-
ize information currency for many critical classes of
information.

Data staging is an important data management
problem that needs to be addressed by the BADD pro-
gram. An informal description of the data staging prob-
lem in a military application is as follows. A warfighter is
in a remote location with a portable computer and needs
data for planning troop movements. The data can include
detailed terrain maps, enemy locations, troop move-
ments, and current weather predictions. The data will be
available from Washington D.C., foreign military bases,
and other data storage locations. Each location may have
specific data available, storage limitations, and communi-
cation links. Also, each data item is associated with a
specific priority, where larger priority value implies

0-8186-8365-1/98 $10.00© 1998 IEEE
115

higher importance. It is assumed that not all requests can
be satisfied by their deadline. Data staging involves posi-
tioning data prior to its use in decision making for facili-
tating a faster transfer time when it is requested.

Positioning the data before it is requested can be
complicated by the dynamic nature of data requests and
network congestion; the limited storage space at certain
sites; the limited bandwidth of links; the changing availa-
bility of links and data; the time constraints of the needed
data; the priority of the needed data; and the determina-
tion of where to stage the data [13]. Also, the associated
garbage collection problem (i.e., determining which data
will be deleted or reverse deployed to rear-sites from the
forward-deployed units) arises when existing storage
limitations become critical [12, 13]. The storage situa-
tion becomes even more difficult when copies of data
items are allowed to reside on different machines in the
network so that there are more available sources from
which the requesting sites can obtain certain data [16],
and so there is an increased level of fault tolerance, in
cases of links or storage locations going off-line.

The simplified data staging problem addressed in
this paper requires a schedule for transmitting data
between pairs of nodes in the corresponding communica-
tion system for satisfying as many of the data requests as
possible, with the high priority requests given pre-
cedence. Each node in the system can be: (1) a source
machine of initial data items, (2) an intermediate node
for storing data temporarily (e.g., routers or switches),
and/or (3) a final destination machine that requests a
specific data item. This problem comes under the topic of
distributed heterogeneous computing [15] because nodes
may have different storage limitations, different com-
munication links available, different data available, and
different data to request. The actual data staging problem
is dynamic in nature, because in reality the network
configuration can change, certain communication links
may become unavailable, new data requests can be sub-
mitted sporadically, priorities of existing requests can be
modified, and certain nodes in the network may fail.

This paper concentrates on solving a simpler ver-
sion of the data staging problem in which all parameter
values for the communication system and the data
request information (e.g., requesting machines and net-
work configuration) represent the best known informa-
tion collected so far and stay fixed throughout the
scheduling process. It is assumed that not all of the
requests can be satisfied due to storage capacity and
communication constraints. Also, the fault tolerance
issues mentioned above are not addressed. The model is
designed to create a schedule for movement of data from
the source of the data to a "staged" location for the data.

It is assumed that the user can easily retrieve the data
from this location. A heuristic is presented and evaluated
that effectively satisfies this simplified data staging prob-
lem. This research, based on the simplified model
presented here, serves as a necessary step toward solving
the more realistic and complicated version of the data
staging problem involving dynamic scheduling, fault
tolerance, and determining where to stage data.

Section 2 provides overviews of work that is
related to the data staging problem. In Section 3, a
mathematical model for a basic data staging problem is
introduced. Section 4 presents a multiple-source
shortest-path algorithm based heuristic for finding a
suboptimal schedule of the communication steps for data
staging. This heuristic adopts the simplified view of the
data staging problem described by the mathematical
model. A simulation study is discussed in Section 5,
which evaluates the performance of the proposed heuris-
tic. A BADD-like network environment has been used in
developing the parameters for conducting this simulation
study. Section 6 summarizes this paper, giving the
current status of this research on data staging, and plans
for future work. A glossary of notation is included in
Section 7 for reference purposes.

2. Related work

To the best of the authors' knowledge, there is
currently no other work presented in the open literature
that addresses the data staging problem, designs a
mathematical model to quantify it, or presents a heuristic
for solving it. A problem that is, at a high level, remotely
similar to data staging is the facility location problem [8]
in management science and operations research. Under
the context of the construction of several new production
facilities, a manufacturing firm needs to arrange the loca-
tions of the facilities and plants effectively, such that the
total cost of transporting individual components from the
inventory facilities to the manufacturing plants for
assembly is minimized. It is required that the firm makes
several interrelated decisions: how large and where
should the plants be, what production method should be
used, and where should the facilities be located? If an
analogy is made between (1) the plants and the destina-
tion nodes that make the data requests, (2) the individual
manufacturing components and the requested data ele-
ments to be transferred, and (3) the facilities and the
source locations of requested data, then at a high level
the facility location problem has features similar to those
of the data staging problem (e.g., use a graph-based
method to reduce the facility location problem to a
shortest-path or minimum spanning tree problem).

116

However, when examing the relationship between
the facility location problem and the data staging prob-
lem carefully, there are significant differences. First,
each component that a plant requests is usually not asso-
ciated with a prioritizing scheme, while in the data stag-
ing problem each data request has a priority. Also, each
component request from a plant commonly does not have
a corresponding deadline related factor, while in the data
staging problem each data request has a deadline. For
the data staging problem, the priority and deadline asso-
ciated with each data request are the two most important
parameters for formulating the optimization criterion.
For example, the minimization of the sum of the
weighted priorities of satisfiable data requests (based on
their deadlines) is used as the optimization criterion in
the mathematical model of a basic data staging problem
presented in Section 3. But for the facility location prob-
lem, in general, researchers adopt optimization criteria
that are related to the physical distances between plants
and facilities in either a continuous or discrete domain
without any prioritizing schemes or deadline related fac-
tors (e.g., [4, 6, 9, 10, 14]). Thus, although lessons can be
drawn from the design of algorithms for different ver-
sions of the facility location problem, there are no obvi-
ous direct correlations between either the formulations or
the potential solutions of those two problems.

Data management problems similar to data staging
for the BADD program are studied for other communica-
tion systems. With the increasing popularity of the World
Wide Web (WWW), the National Science Foundation
(NSF) recently projected that new techniques for organ-
izing cache memories and other buffering schemes are
necessary to alleviate memory and network latency and
to increase bandwidth [3]. More advanced approaches of
directory services, data replication, application-level
naming, and multicasting are being studied to improve
the speed and robustness of the WWW [2]. Evidence has
been shown [7], that several file caches could reduce file
transfer traffic, and hence the volume of traffic on the
internet backbone. In addition, distributed environments
are looking for ways to increase system performance
with intelligent data placement [1]. The study of data
staging can potentially draw lessons from and generate
positive input for the active research in these related, but
not directly comparable, areas of research.

Other research exploring heuristics for use in the
BADD environment is being performed [10]. This work
examines methods for scheduling the ATM-like channels
of the BADD environment efficiently. The work does not
develop a mathematical model and does not include
several parameters considered here, such as deadlines
and starting times. The work does show that "greedy"

heuristics are effective tools for use in the BADD
environment and uses a network simulator to corroborate
this statement.

3. Mathematical model

A mathematical model for a basic data staging
problem is presented in this section. This model serves as
an initial version of a quantitative model for data staging.
It allows the heuristic introduced in Section 4 to be given
formally. As stated and discussed in Section 1, this paper
concentrates on solving a simpler version of the data
staging problem statically, where all parameter values
for the communication system and the data request infor-
mation stay fixed throughout the scheduling process. The
values of all parameters in the following model may
change temporally to reflect the dynamic nature of the
underlying network system when the model is extended
and used in a dynamic situation. In that case, the parame-
ter values represent the best known information collected
at the given point in time (e.g., all requests for data ele-
ments include only those known at any specific time
instant). All necessary parameters for specifying the
communication system and the data request information
are introduced as follows. The model includes informa-
tion about (1) the nodes in the network, (2) the links in
the network, and (3) the data requests in the network.
Each machine has parameters for the storage capacity
and node number. A link has an availability starting
time, availability ending time, bandwidth, latency, source
node and destination node. Every request has an approx-
imate data size, list of sources, and list of destinations.
Each request source consists of a node number and a
time after which the data is available on that node. Each
request destination contains a node number, priority, and
deadline for the data request. This description of the net-
work and associated data requests are used to formulate
the mathematical model to be used in solving the basic
data staging problem. A glossary of notation is included
in Section 7 for the readers convenience.

A communication system M consists of m
machines {M[0], A/[l],..., M[m - 1]}. Each machine can
be a server that stores data elements and a client that
makes data requests to the system. Each machine also
can be an intermediate node for storing a copy of a
specific data item temporarily. Cap[i](t) represents the
available memory storage capacity of machine M[i] (0 <
i < m) at time t.

A network topology graph G^ specifies the con-

nectivity of the communication system for the machines
in M with the following notation. A set of m vertices V =

117

[V[0], V[l], ..., V[m - 1]} is generated that corresponds
to the m machines in the communication system. In this
model, if two machines are connected by the same
transmission link during v non-overlapping and discon-
tinuous time intervals, then v different virtual links
corresponding to the appropriate available time intervals
are used to represent this situation (e.g., the availability
of a satellite link for fifteen minutes each hour). Also,
each transmission link is uni-directional. A bi-directional
link between two machines is represented as two dif-
ferent virtual uni-directional links that correspond to the
transmission link in each direction.

Let Nl[iJ] be the total number of direct virtual
communication hnks from M[i] to M[f\. L[iJ][k] denotes
the k-th direct virtual communication jink from M[i] to
M\j], where 0 < ij < m, i * j, and 0 < k < Nl[ij\. For
each L[/,j][fc], a directed edge E[ij][k] from V[i] to V\J]
is added to Gnt. All the added edges constitute the set of
edges E of Gnt. Each L[iJ][k] is associated with one
unique time frame during which the corresponding link is
available for communication. Let Lst[iJ][k] denote the
Jink starting time when L[iJ][k] becomes available and
Let[ij][k] denote the Jink ending time when L[iJ][kYs
availability terminates. With the above notation, link
L[ij][k] is available between Lst[iJ][k] (starting time)
and Let[ij][k] (ending time).

Let a data item be a block of information that can
be transferred between machines. For any data item d, \d\
represents the size of the associated data set. Let
ß['j]M(M) denote the communication time for transfer-
ring data item d (of size \d\) from machine M[i] to
machine M\j] through their k-th dedicated virtual link
during time frame [Ltf[i,/][£], Let[ij][k]]. D[iJ][k](\d\)
includes all the various hardware and software related
components of the inter-machine communication over-
head (e.g., network latency and the time for data format
conversion between M[i] and M\j] when necessary).
Machines M[i] and/or M[j] may be intermediate nodes
for transferring d rather than the original source or the
final destination node of d.

Suppose n is the number of data items with distinc-
tive names (identifiers) available in the corresponding
communication system M. Let A = {5[0], 8[1], ..., 8[n -
1]} be the set of these data items, where each 8[i] is
unique. For example, a weather map of Europe gen-
erated at 2 p.m. would have a different name than a
weather map of the same region generated at 6 p.m. A
data location table that specifies the initial locations of
the n available data items can be constructed with the
following notation. Let N5[i] be the number of different
machines that the data item b[i] is located at initially.

Source[iJ] denotes the j-th initial source location of the
data item 8[J] (with no implied significance for the order-
ing of the sources), where 0 < i < n, 0 <j < N5[i], and 0 <
Source[ij] < m. Also, 5st[iJ] denotes the starting time at
which &[i] is available at its y'-th initial source location.

Suppose p is the number of the requested data
items with distinctive names (identifiers) in the
corresponding communication system M, where 0 < p <
n. Let Rq = [Rq[0], Rq[l], ..., Rq[p - 1]} be the set of
the requested data items. Each Rq\j] (0 < j < p) is the
name of a data item and there must exist i (0 < / < n),
such that Rq\j] = 8[/]. Each Rq[j] must be unique. A data
request table that specifies the requests of data items can
be constructed with the following notation. Let Nrq\j]
denote the number of different requests for Rq\j].
Request\j,k] denotes the machine from which the k-th
request for data item Rq\j] originates (with no implied
order among the requests), where 0 < j < p, 0 < k <
Nrq\j], and 0 < Request\j,k] < m. Also, Rfi\j,k] denotes
the finishing time (or deadline) after which the data item
Rq\j] on its k-th requesting location is no longer useful
(e.g., data items may be needed before a specific time
when certain decisions must be made). Suppose the
priority of each data request is between 0 and P, where P
is the highest priority possible (i.e., a member of the
class of most important requests). Priority[j,k] denotes
the priority for the data request of the data item Rq[j] on
its k-th requesting location.

Assume that the scheduling procedure of the com-
munication steps starts at time 0. Let S - {S0, Su ...,
Sa_i} denote a set of a distinct schedules for the com-
munication steps of transmitting requested data items.
Consider a specific schedule Sh, where 0 < h < a. The A:-

th request for data item Rq[j] is satisfiable with respect to
Sh if Rqlj] can be obtained by the requesting machine,
M[Request\j,k]], before the deadline, Rfl\J,k]. Let
Srq[Sh] denote the set of two-tuples {(j,k) \ k-th request

of the data item Rq\j] is satisfiable}. Suppose W]i] (0 < i
< P) denotes the relative weight of the i-th priority.
These weightings allow system administrators to specify
the relative importance of priority a data request versus
priority ß data request, where 0 < a,ß < P. The effect,
E[Sh], of the scheduling scheme Sh is defined as

E[Sh] = - (X W[Priority\j,k]\)-
(j,k)eSrq[Sh]

The global optimization criterion is defined as

min E[Sh].
0<h<G

Given this mathematical model, the objective of data

118

staging in this paper for a specific communication system
is to find an Sh such that E[Sh] is minimized (i.e., the
total sum of the weighted priorities of all satisflable data
requests with respect to Sh is maximized). It should be
noted that an exhaustive set of schedules is not created in
this research.

4. Data staging heuristic

4.1. Overview

The heuristic for solving the data staging problem
introduced in this section is based on Dijkstra's algo-
rithm for solving the multiple-source shortest-path prob-
lem on a weighted and directed graph [5]. In Subsection
4.2, background information about Dijkstra's algorithm
is provided. It is summarized from the material in [5].
Only the relevant part with respect to the data staging
heuristic is discussed in detail. Subsection 4.3 presents
the heuristic that is used to schedule the communication
steps. The definition of the shortest-path estimate for
Dijkstra's algorithm and the cost function of a communi-
cation step for local optimization in the heuristic are
defined. The complexity analysis of the heuristic is pro-
vided in Subsection 4.3 as well.

4.2. Dijkstra's algorithm

The multiple-source shortest-path problem is
defined as follows. Let G = (V, E), be a weighted and
directed graph, where V is a set of vertices and £ is a set
of edges. For a single data item, suppose ^cV denotes

a set of source vertices and Vß c V denotes a set of

destination vertices. The goal is to find a shortest path
from any source vertex v, e Vs to every destination ver-

tex vd e VD. The length of a path is the sum of the

weights of its constituent edges. For an established path,
an immediate predecessor vertex 7i[v] of each vertex v e
V is either another vertex or NIL. Any multiple-source
shortest-path algorithm needs to set n[v] properly so that
the chain of predecessors originating at a vertex vd e VD

corresponds to a shortest path from any vs e Vs to vd.

The main technique used in this multiple-source
shortest-path algorithm is relaxation. For each vertex v e
V, an attribute d\v\, which is referred to as a
shortest-path estimate, is maintained. This d[v] is an
upper bound on the length of a shortest path from any
source vertex v^ e Vs to vd e VD. The relaxation pro-
cedure with respect to a directed edge from vertex u to

vertex v consists of testing whether the length of the
shortest path to v found so far can be decreased by going
through u (with known d[u]) via that edge from u to v. If
the above testing results in a positive answer, a relaxation
step decreases the value of the shortest-path estimate d[v]
(e.g., set d[v] as d[u] plus the weight of the edge from u
to v) and updates v's immediate predecessor vertex as u.
Relaxation is the only way by which the shortest-path
estimate d[v] and the predecessor vertex 7t[v] can change.

Algorithms for solving a multiple-source shortest-
path problem may differ in the way by which the edges
are relaxed. In Dijkstra's algorithm, a set of vertices Vj_

(set to be Vs initially), whose final shortest paths from
any vs e Vs have already been determined, is main-
tained. The algorithm repeatedly selects the vertex u e V
- VF with the minimum shortest-path estimate, inserts u
into VF, and relaxes any edge from « to v by updating
d[v] and rc[v] properly, for all v e V- VF. The algorithm
terminates when VF - V.

4.3. Heuristic and complexity analysis

All necessary communication steps are scheduled
by the data staging heuristic presented in this subsection.
The heuristic utilizes the following three strategies col-
lectively:

(i) Choose an order of data transfers that results in a set
of data items being available on intermediate nodes
earlier. This set of data items will be chosen based
on some criteria that will cause the ordering to
satisfy more data requests.

(ii) Maximize the sum of the priorities of the potentially
satisflable data requests.

(iii) Consider the urgency of a request as its deadline
approaches.

A data staging heuristic that has a well-balanced
set of local optimization criteria using the above three
strategies should intuitively perform well. The multiple-
source shortest-path algorithm based heuristic presented
in this subsection is built upon Dijkstra's algorithm and
utilizes all of the above three strategies. The heuristic
iteratively picks which data item to transfer next con-
strained by a cost function. Each iteration of the heuris-
tic involves: (a) running Dijkstra's algorithm for each
data request individually, (b) determining the "cost" to
transfer a data item to its successor in the shortest path,
(c) picking the lowest cost data request and transferring
that data item, (d) updating system parameters to reflect
resources used in (c), and (e) repeating (a) through (d)
until there are no more satisflable requests in the system.

119

1.
2.

3.

4.

5.
6.

7.

For all k (0 < k < Nl[s,r]), do the following steps.
if (AT[i,s]>Lst[s,r][k]){

I* if Rq[i\ is obtained by M[s] after L[s,r][k] is available */
if ([AT[i,s] + D[s,r][k](\Rq[i]\)} < Let[s,r][k])

I* if the available time interval is long enough to transfer Rq[i] via L[s,r][k] */
if (Cap[r](AT[i,s])>\Rq[i]\)

I* if M[r] has enough storage capacity for Rq[i] */
AL[s,r][i][k]=AT[i,s]+D[s,r][k](\Rq[i]\)
I* find "available time" using this link*/

} else { /* if Rq[i\ is obtained by M[s] before L[s,r][k] is available */
if ([Lst[s,r][k] + D[s,r][k](\Rq[i]\)]<Let[s,r][k])

I* if the available time interval is long enough to transfer Rq[i] via L[s,r][k] */
if (Cap[r](Lst[s,r][k])>\Rq[i]\)

I* if M[r] has enough storage capacity for Rq[i] */
AL[s,r][i\[k] = Lst[s,r][k] + D[s,r][k)(\Rq[i]\) }
I* find "available time" using this link */

if(Ar[*>]> ft min {^[5,r][(]W}){
0 < k < Nl[s,r]

I* if smaller shortest-path estimate is found */
AT[iA = n<n< ^ ^Ad^][i][k]} 0<k< Nl[s,r]

/* update the shortest-path estimate for V[r] */
10. ki-k giving minimum in step 9 /* record the virtual link used */

} /* Iq is the argument k that minimizes AL|>,r] [«'][£] */

Figure 1: Pseudocode for implementing the relaxation step.

Source[0,0] Source[0, 1] Source[\, 0]

2) Source[\, 1]

0
^000

Request[0,0] Request[0, 1] Request®, 2] Request [0,3]

5[0]

(a)

Figure 2: An example communication system that requests (a) 8[0] and (b) 8[1].

120

In some cases, Dijkstra's algorithm would not need to be
executed each iteration for a particular data request, i.e.
if the links that the request uses are not affected by
updating the system parameters. Future versions of the
heuristic are planned to take advantage of not having to
recalculate all the shortest paths during each iteration.

For each requested data item Rq[i\] (0 < i] < p),
as stated in Section 3, there exists i2 (0 < i2 < ")» such
that Rq[i]] = 8[i2]. Suppose Vs[ix] is the set of source

vertices corresponding to Rq[i\] in Gnt. Then V[k] e
Vs[ix] (0 < & < m) if and only if there exists ;' (0 < j <
N8[i2]), such that Source[i2, j] = k. This means that
Vs[ii] contains all the vertices of G„, that correspond to
the machines that are the initial locations of Rq[i\] (i.e.,
5[/2])- Suppose VD[i\] is the set of destination vertices

corresponding to Rq[ix] in Gnt. Then V[k] e VD[i}] (0 <
k < m) if and only if there exists ; (0 < j < NrqUj]), such
that Request[iuj] = k. This means that VD[ix] contains
all the vertices of G„, that correspond to the machines
that are making data requests for Rq[i\). Let the length
of a path from a source vertex vs e Vs[ix] to a destina-
tion vertex vd e VD[it] be defined as the difference
between the earliest possible time when data item Rq[i i]
can be available on the machine corresponding to vd via
the machines and the virtual communication links along
the path and the time the data item is available on
vseVs[i\] (this time can be calculated using the various
parameters defined in Section 3). With the above defined
Gnt - (V,E), Vs[i], and VD[i], where 0 < i < p, a separate
multiple-source shortest-path problem is well defined for
each of the p different requested data items in the context
of the data staging problem.

Readers should notice that it may be impossible to
use the individually shortest paths to all vd e VD[i] for
each data item 8[i] (0 < i < p) due to possible communi-
cation link contention in the network for transferring dif-
ferent data items. Also, a multiple-source shortest-path
algorithm for Gnt only attempts to minimize the time
when a given requested data item is obtained by its
corresponding requesting locations. But as clearly stated
in Section 1 and Section 3, other criteria like request
deadlines and the priorities of the satisfiable data requests
must be taken into account as well.

As reviewed in Subsection 4.2, the way of defining
d[v] (i.e., the shortest-path estimate) based on the known
d[u] and information about all edges from «tov (e.g.,
their weights) is essential for applying Dijkstra's algo-
rithm to derive the data staging heuristic. For G„, = (V,
£), Vs[i], and VD[i] (0 < / < p), let the shortest-path esti-
mate of V[j] (corresponding to machine M[j]) for
requested data item Rq[i] be defined as AT[iJ]. This is

the earliest possible available time found so far when the
requested data item Rq[i] is obtained by machine M[j]
with the consideration of the availability of the virtual
links and the available memory capacity of machine
M\j\. Suppose 8[£] = Rq[i] (0 < k < n). Initially,
AT[i,Source[k,q\\ = 8st[k,q] for all 0 < q < N8[k]. That is,
for all initial source locations vs e Vs[i], their shortest-
path estimates are the starting times when b[k] is avail-
able at those nodes.

It is assumed that each machine can send different
data items (each via a different link) to its neighboring
machines in the network simultaneously. Future work
will relax this assumption. Suppose AT[i,s] and AT[i,r]
are known and there are virtual links L|>,r][/:] (0 < k <
Nl[s,r]) from M[s] to M[r]. Let AJs,r][/][fc] denote the

time when the requested data item Rq[i] can be available
on machine M[r] via fetching the copy from M[s]
through the virtual Jink L[s,r][k]. The relaxation step with
respect to the edges from V[s] to V[r] based on the
known AT[i,s] and AT[i,r] is implemented by the C-style
pseudocode in Figure 1.

As illustrated by Step 10 in the above pseudocode,
the exact virtual link L[s,r][ki] used for updating the
shortest-path estimate of V[r] needs to be recorded, due
to the existence of multiple virtual links between M[s]
and M[r]. Thus, the predecessor vertex n[r] in the usual
description of the Dijkstra's algorithm is extended as a
predecessor field and is defined as a two-tuple (s,ki) in
this data staging heuristic, where 5 records the source
machine and kt records the virtual link used. At this
stage, the information about the availability of link
L[s,r\[k{\ does not need to be updated because each exe-
cution of Dijkstra's algorithm is for a single given data
item and the transfer of any specific data item only needs
to use that link once.

For each Rq[i] (0 < i < p) individually, based on
the above defined shortest-path estimate, the shortest
paths for all vd e VD[i] can be generated with respect to
Gnt defined in Section 3. Consider an example shown by
Figure 2, with a communication system consisting of ten
machines. Also, to simplify the presentation, suppose
that there is at most one virtual link between any pair of
machines. There are two data items 8[0] and 5[1] being
requested. Machines 0 and 1 are the sources for 5[0]
(Source[0,0] = 0, Source[0,l] = 1), and machines 0 and 2
are the sources for 8[1] (Source[l,0] = 0, Source[1,1] =
2). The destinations for 8[0] are machines 6, 7, 8, and 9
(Request[0,0] = 7, Request[0,l] = 8, Request[0,2] = 9,
Request[0,3] - 6), and the destinations for 8[1] are
machines 8 and 9 (Request[\,0] = 8, Request[\,\] = 9).
Suppose that the shortest paths generated corresponding
to 8[0] individually are shown in Figure 2(a), and the

121

shortest paths generated corresponding to 8[1] individu-
ally are shown in Figure 2(b). Note that Figure 2(a) and
2(b) correspond to the same machine suite, and that the
links shown in Figure 2(a) and 2(b) collectively are a
subset of all the inter-machine links. This example is
used throughout the rest of this section to illustrate the
proposed data staging heuristic.

A vertex V[r] (corresponding to machine M[r] in
Gnt) is defined as a contingent vertex with respect to
Vs[i], if V[r] e V - Vs[i] and there is an edge entering
into V[r] that starts from a vertex in Vs[i]. For the exam-
ple shown in Figure 2(a), V[2] and V[3] are contingent
vertices with respect to V5[0] = [V[0], V[l]}. For the
example shown in Figure 2(b), V[3], VT4], V[5], and V[7]
are contingent vertices with respect to Vs[\] = [V[0],
V[2]}. M[r] may be an intermediate machine along some
paths from any source vertex in Vs[i] to a set of destina-
tion vertices in VD[i]. Suppose this set of destination
(requesting) vertices associated with a data item 8[i] and
a contingent vertex V[r] is defined as Drq[i,r\. For any
element drq e Drq[i,r], drq is an integer (0 < drq <
Nrq[i]), such that V[Request[i,drq]] e VD[i]. For the
example shown in Figure 2(a), for VT3] (corresponding to
M[3]), Drq[0,3] - {0, 1, 2} corresponding to requests for
8[0] from M[l], M[8], and M[9], respectively. For V[2]
(corresponding to M[2]), Drq[0,2] = {3} corresponding
to the request for 8[0] from M[6]. Similarly, for the
example shown in Figure 2(b), Drq[\,3] = {0}
corresponding to the request of 8[1] from M[8], Drq[l,5]
= {1} corresponding to the request of 8[1] from M[9],
andDrq[l,4]=Drq[l,7] = 0.

After applying the multiple-source shortest-path
algorithm for each requested data item Rq[i] (0 < i < p),
individually, with the associated Vs[i], VD[i], and Gn„ p
sets of shortest paths are generated, one for each of the p
different requested data items. Suppose the predecessor
field of V[r] corresponding to the shortest paths gen-
erated for Rq[i] is (s,k). Each contingent vertex V[r] that
has an incident edge E[s,r][k] from V[s] in Vs[i] and its
associated Drq[i,r] * 0 corresponds to a valid next
communication step to be scheduled. This communica-
tion step is the one that specifies transferring Rq[i] from
M[s] to M[r] via link L[s,r][k]. For the example shown
in Figure 2, there are four valid communication steps that
can be scheduled (specified by asterisks). But different
valid communication steps may have conflicting resource
requirements (e.g., M[0] cannot send 8[0] and 8[1] to
M[3] simultaneously due to network conflict for the
example shown in Figure 2). Thus, a local optimization
criterion is used to select one of the valid communication
steps to be scheduled. The next paragraphs derive a cost
function that is used as the basis for making this selec-

tion. The cost function will involve considerations of
satisfiability, effective priority, and urgency as defined
later.

Suppose AT[iJ] (j € Drq[i,r\) denotes the time

when Rq[i] is received and available at its corresponding
7-th requesting location. A satisfiability function

Sat[i,r](j), is defined as: Sat[i,r](j) = 1, if AT[i,j] <

Rfi[iJ]; and 0, if AT[i,j] > Rfi[iJ]. Note that this shortest
path involves passing through vertex V[r], so if a request
in Drq[i,r] is not satisfied, there is not other path that will
cause it to be satisfied. That is, if Sat[i,r](j) = 1, then the
data request of Rq[i] from machine M[Request[i,j]] is
satisfied. Otherwise, the corresponding data request is
not satisfied. As an example of the definition of
Sat[i,r](j), consider the shortest paths generated by
selecting first the valid communication step for transfer-
ring 8[0] from M[0] to M[3] in the example shown by
Figure 2(a). Suppose T0 = A~T[0,0] = AT[0,7], 7, =
A~T[0,l] = AT[0,i], and T2 = A~T[0,2] = AT[0,9]. Also,
assume that T0 < Rfi[0,0], Tx > Rfi[0,l], and T2 <
7}[0,2]. Then, Sat[0,3](0) = 1, Sar[0,3](l) = 0, and
Sat[0,3](2) = 1. T0,TU and T2 are calculated during the
last execution of the Dijkstra's algorithm with respect to
8[0].

Suppose Efpjij] denotes the effective priority for
the data request of Rq[i] from its 7-th requesting location,
where Efp[iJ] = Sat[i,r](j) x W[Priority[i,j]]. Suppose
Urgency[i, j] denotes the urgency for the data request of
Rq[i] from its j-th requesting location, where
Urgency[i,j] = - Sat[i,r](j) X (Rfi[ij] -A~T[iJ]), where
smaller Urgency[i] implies that it is less urgent to
transfer Rq[i] to the 7-th requesting location. Suppose
WE > 0 is the relative weight for the effective priority

factor and Wy > 0 is the relative weight for the urgency

factor in the scheduling. Readers should notice that (a)
applying Dijkstra's algorithm to obtain AT[i,r] through
shortest paths, (b) maximizing Efp[i,j], and (c) maximiz-
ing Urgency[i,j] follow the three strategies for designing
data relocation heuristics recommended in (i), (ii), and
(iii), respectively, at the beginning of this subsection.
The cost, Cost[s,r][iJ][k], for transferring the requested
data item Rq[i] from machine M[s] to M[r] via link
L[.y,r][&] is defined as:

Cost[s,r][iJ][k] = - WEEJp[iJ) ~ WyUrgencylij}.

The next chosen communication step should be the
one that has the smallest associated cost among all valid
next communication steps for transferring all Rq[i] where
0 < / < p, and Sat[i,r] is not 0 for all r. If Sat[i,r] is 0 for
all r, that request receives no resources and the data does

122

not move from its current locations. The request is not
eliminated from the network. Currently the heuristic is
applied to a static system, as this constraint is loosened
and a dynamic system is explored, links might become
available that would facilitate the delivery of an other-
wise unsatisfiable request. So requests that are at one
point in time unsatisfiable, might become satisfiable at a
later point in time. For the valid communication step for
transferring 8[0] from M[0] to M[3] shown in Figure
2(a), Efp[0,0] = W[Priority[0,O]] and Urgency[0ß] = -
(Rfi[0,0] - T0).

The rationale for choosing the above cost for local
optimization is as follows. First, only a valid next com-
munication step whose associated Sat[i,r] is not 0 for all
r will facilitate satisfying data request(s). Cost[s,r][iJ][k]
attempts to maximize the total priority of the satisfiable
data requests. Furthermore, in order to satisfy as many
data requests as possible, intuitively it is necessary to
transfer a specific data item to the requesting locations
whose deadlines are close to expire. This intuition is cap-
tured by the inclusion of the urgency factor. Thus, collec-
tively with the consideration of the total priority of the
satisfiable data requests and the urgency of those data
requests in this local optimization step, this data staging
heuristic should generate a suboptimal Sh that reasonably
achieves the global optimization criterion presented in
Section 3.

Suppose that the current chosen communication
step for Sh according to Cost[s,r][iJ][k] is to transfer the
requested data item Rq[i] from M[s] to M[r] via link
L[s,r][it] during the time interval between t0 and tv

Before repeating the above multiple-source shortest-path
based heuristic for determining the next communication
step of Sh, the following four categories of information
need to be updated.

(1) Update the network topology graph Gnt — Delete
the edge £[$,/■] [it] corresponding to link L[s,r][£] in
GM. Also, add up to two more edges from V[s] to
V[r] that correspond to two more virtual links. One
with the link starting time as Lst[s,r][k] and link
ending time as t0, and another with link starting
time as t\ and link ending time as Let[s,r][k]. If t0

= Lst[s,r][k] and/or f, = Let[s,r][k], then the above
first and/or second additional virtual links are not
needed.

(2) Update Cap[r](t) — Cap[r](t) is decremented by
\Rq[i]\, where \Rq[i]\ is the size of Rq[i], because
machine M[r] keeps a copy of the data item Rq[i]
(e.g., Cap[3](t) is decremented by |8[0]| for the
communication step shown in Figure 2(a)).

(3) Update the set of source vertices Vs[i] for Rq[i] —
Vs[i] = {latest Vs[i]} U {V[r]}. Also, set the start-
ing time when Rq[i] is available on M[r] as AT[i,r].
For the example communication step for transfer-
ring 8[0] from M[0] to M[3] shown in Figure 2(a),
M[3] becomes a source of 8[0] and its starting time
isAr[0,3].

(4) Update the garbage collection related information
— The copy of Rq[i] on machine M[r] is used as an
intermediate copy for forwarding Rq[i] to some
other machines. Suppose this set of machines is
defined as Im\i,f\. Im[i,r] can be determined by
tracing the shortest paths generated above for each
vd e VD[i]. For the example communication step of
transferring 5[0] from M[0] to A/[3] shown in Fig-
ure 2(a), by tracing the shortest-paths generated for
V[7], V[8], and V[9], Im[0,3] can be determined as
{5, 8}. After all those machines in Im[i,r] have
received the copy of Rq[i] from M[r], the copy of
Rq[i] on machine M[r] can be deleted. Suppose the
time for the last machine in Im[i,r] to xeceive its
copy of Rq[i] from M[r] is RT[i,r], then at this time,

Cap[r](t) is incremented by \Rq[i]\. This above pro-
cedure implements the garbage collection scheme in
data staging.

A single iteration of this multiple-source shortest-
path based heuristic starts at the step for generating shor-
test paths for all remaining data requests (based on the
Dijkstra's algorithm and the current system status (e.g.,
data source locations and link availability)). The iteration
ends at the step for updating the system information
described above. Then with the new Cap[r](t), Gnt, and
Vs[i], execute the above multiple-source shortest-path
based heuristic repeatedly to determine the rest of the
communication steps in Sh. The heuristic terminates
when all remaining data requests are not satisfiable.

For the complexity analysis of this multiple-source
shortest-path based heuristic for determining one com-
munication step in Sh, suppose that |£| is the number of
edges and |V| is the number of vertices in the network
topology graph Gnt. If a Fibonacci heap [5] is used to
implement the priority queue, the worst case asymptotic
complexity of Dijkstra's algorithm is 0(\E\ + |V|lg|V|).
For the network topology graph Gnt terminology
described in (2) of Section 3, |£| = £ NlV> A and

0<i*j<m
\V\ = m. Because in the worst case it is necessary to apply
the multiple-source shortest-path algorithm to all the
requested data items Rq[i] (0 < i < p), the worst case
asymptotic complexity of this heuristic for determining
one communication step in Sh is

123

0[p(mlgm+ X M[iJ])],
0<i*j<m

where p is the total number of requested data items
defined in Section 3.

Given the heuristic approach presented in this sec-
tion uses Dijkstra's algorithm in conjunction with a
minimization criteria, it is called the
Dijkstra/minimization heuristic. It is evaluated in the
next section.

5. Simulation study

To perform the simulation study, network topolo-
gies and data requests must be generated, values for WE

and Wy must be determined, and other scheduling
schemes need to be created to compare to the
Dijkstra/minimization heuristic. Rather than just choos-
ing one network topology and set of data requests,
because one can not accurately reflect the changing data
requests and network availability with one case, 40 test
cases were generated and the Dijkstra/minimization
heuristic was executed using each of these cases and the
results were averaged. The data requests and the underly-
ing communication systems were randomly generated
over a set of parameters (corresponding to the notation
introduced in Section 3) as specified below. All parame-
ters are randomly generated with uniform distributions in
predefined ranges representing systems in a BADD-like
environment. The sources and requesting machines for
all data items are also generated randomly. The test gen-
eration program guarantees that the generated communi-
cation system is strongly connected [5], such that there is
a path consisting of physical transmission links between
any pair of nodes in both directions.

These randomly generated patterns of data
requests and the underlying communication systems are
used for three reasons: (1) it is beneficial to obtain cases
that can demonstrate the performance of the
Dijkstra/minimization heuristic presented over a broad
range of conditions; (2) a generally accepted set of data
staging benchmark tasks does not exist; and (3) it is not
clear what characteristics a "typical" data staging task
would exhibit. Determining a representative set of data
staging benchmark tasks remains an unresolved chal-
lenge in the research field of data staging and is outside
the scope of this paper.

Finding optimal solutions to data staging tasks
with realistic parameter values are intractable problems.
It is currently impractical to directly compare the quality
of the solutions found by the above
Dijkstra/minimization heuristic with those found by

exhaustive searches in which optimal answers can be
obtained by enumerating all the possible schedules of
communication steps. Also, to the best of the authors'
knowledge, there is no other work presented in the open
literature that addresses the data staging problem and
presents a heuristic for solving it (based on a similar
underlying model). Thus, there is no other heuristic for
solving the same problem with which to make a direct
comparison of the Dijkstra/minimization heuristic
presented in this paper.

The performance of the Dijkstra/minimization
heuristic is compared with two random-search based
scheduling procedures. The only difference between the
first random procedure and the above
Dijkstra/minimization heuristic is that, instead of choos-
ing a valid communication step using Cost[s,r][iJ][k] as
discussed for the Dijkstra/minimization heuristic, the
Dijkstra random heuristic randomly chooses an arbitrary
valid communication step to schedule.

The second random-search based scheduling pro-
cedure performs Dijkstra once for each requested data
item, assuming it is the only requested item in the net-
work. Then the paths through the network are scheduled
for each data item, finishing Rq[i] before Rq[i+\]. If a
conflict arises, i.e., the time frame in which a particular
link was originally scheduled by the independent
Dijkstra's for a given request is unavailable, the request
is dropped and not satisfied. This approach is referred to
as single Dijkstra random because Dijkstra's algorithm is
only executed once for each data item.

Each test set for the results shown in Figures 3 and
4 was generated with the following parameters. The
number of machines in the communication system is
between ten and twenty. Each machine has between
10MB to 20GB memory storage capacity. The maximum
outbound degree of a machine M[i] (i.e., the number of
machines that M[i] can transfer data items to directly
through physical transmission links) is five. There are at
most two physical transmission links between any two
machines (there can be none). The total number of data
requests is one to ten times the number of machines in
the system. There can be up to three sources and three
destinations for each of the data requests. Each data item
size ranges from 10KB to 1MB. The priority of each data
item is 1,5, or 10, and the relative weight of a priority is
equal to the priority itself (i.e., W[i] = i, for all 0 < / < P).
Each request has its own priority. The bandwidth of each
physical transmission link is between 10KB/sec and
10MB/sec. The link starting and ending times and the
data item starting (available) and finishing times (or
deadlines) are modeled building on information about the
underlying communication infrastructures and data

124

request patterns in [12, 13]. These parameters were used
as they capture the information about the network that is
necessary to show the functionality of the heuristic over
a variety of network configurations.

Let the E-U ratio be WEIWU. As shown by the
cost function Cost[s,r][ij][k] introduced in Subsection
4.3, the E-U ratio may affect the performance of the
Dijkstra/minimization heuristic. Figures 3 and 4 show the
performance of the Dijkstra/minimization heuristic when
the E-U ratio ranges from 0.001 to 1000 (shown by
dashed-dotted lines). Figure 3 uses the average sum of
the weighted priorities of the satisfiable data requests and
Figure 4 uses the average number of the satisfiable data
requests. Both are averaged over 40 randomly generated
test cases.

In this study, the Dijkstra/random heuristic is exe-
cuted ten times for each of 40 randomly generated cases
(the same 40 cases as used for Dijkstra/minimization).
Then, its average sum of the weighted priorities of the
satisfiable data requests and its average number of the
satisfiable data requests over all ten runs for all 40 cases
are calculated. As shown in Figures 3 and 4, the
Dijkstra/minimization heuristic consistently outperforms
the Dijkstra/random heuristic (shown by the dotted
lines). The difference shows the advantage of using a
minimization criteria to resolve conflicting demands for a
link.

Also shown in Figures 3 and 4, single Dijkstra ran-
dom performs poorly (shown by the pluses) compared to
the Dijkstra/minimization heuristic and the
Dijkstra/random heuristic. The difference between the
Dijkstra/minimization and the single Dijkstra random
shows the advantage of the process of interleaving link
demands from multiple data items.

Solid lines in Figures 3 and 4 show the average
sum of the weighted priorities of all data requests and the
average number of all data requests, respectively.
Readers should notice that not all data requests for a ran-
domly generated test case can be satisfied even with the
optimal scheduling scheme for data staging. The aster-
isks show the average of all the requests that could be
satisfied if each had exclusive use of the network, i.e., it
was the only request in the network. Thus, the asterisks
in Figures 3 and 4 represent a loose upper bound for the
performance of any data staging heuristic. The differ-
ence between the solid line and the asterisks represent
those requests that could never be satisfied due to
insufficient resources of the network, i.e., links or
storage. This information is useful as a prediction tool to
determine changes to the network that would increase the
number of satisfied requests.

250

l *'
a i
= 200

total requested priorities
loose upper bound
Dijkstra/minimization heuristic
Dijkstra/random heuristic
single Dijkstra random

10v

E-U ratio

„1

Figure 3: Comparison in terms of the average
sum of the priorities of the satisfiable
data requests for a lightly loaded
network.

s 40-

total requests
loose upper bound
Dijkstra/minimization heuristic
Dijkstra/random heuristic
single Dijkstra random

10 10 10
E-U ratio

Figure 4: Comparison in terms of the average
number of the satisfiable data requests
for a lightly loaded network.

Figure 5 shows the average sum of the priorities
satisfied for more heavily congested network topologies
and Figure 6 shows the average of the number of
requests satisfied. The network topologies that were
used for these cases had fewer nodes in the network (ten
to twelve), but had more requests (20 to 40 times the
number of nodes), as well as one to five different sources
and one to five different requesting machines. This

125

total requested priorities * * loose upper bound
□-■ -■a Dijkstra/minimization heuristic * • •■* Dijkstra/random heuristic
+ + single Dijkstra random

10 10
E-U ratio

Figure 5: Comparison in terms of the average
sum of the priorities of the satisfiable
data requests for a heavily congested
network.

5 400

with the lightly loaded case, the scheduling the
Dijkstra/minimization heuristic created for the heavily
congested network is better than that of single Dijkstra
random, and that of Dijkstra/random heuristic.

6. Summary and future work

Data staging is an important data management
problem for information systems. It addresses the issues
of distributing and storing over numerous geographically
dispersed locations both repository data and continually
generated data. When certain data with their correspond-
ing priorities need to be collected together at a site with
limited storage capacities in a timely fashion, a heuristic
must be devised to schedule the necessary communica-
tion steps efficiently.

A rigorous mathematical model was created to
describe a simplified static version of the data staging
problem. This model is a first attempt at addressing this
problem. The Dijkstra/minimization heuristic was intro-
duced in Section 4 to solve this version of the data stag-
ing problem. Section 5 presented the results of simulation
testing that shows the performance of the proposed
Dijkstra/minimization heuristic over the Dijkstra/random
heuristic and single Dijkstra random for a class of data
staging tasks.

There are many issues that must be resolved before
a complete heuristic for solving the entire data staging
problem can be presented. The mathematical model
described in this paper serves as a starting point for a
rigorous model for the general data staging problem and
will evolve over time. Also, when dynamic scheduling is
necessary, methods need to be devised to include run-
time information into the selection criterion. Fault toler-
ance issues must be considered as well in order to build a
robust heuristic. The results of this research and its
extensions may impact web management procedures, as
well as the DARPA BADD program.

Figure 6: Comparison in terms of the average
number of the satisfiable data requests
for a heavily congested network.

caused the number of total requested data items, and the
total priorities requested, to be at least an order of magni-
tude higher than in our previous experiments. The E-U
ratio was again varied between 0.001 and 1000 to see
what effect this would have on the results. It can be
observed from Figures 3 and 5 that varying the E-U ratio
has only a small impact, and that either Efp[i,j] or
UrgencyliJ] by itself would be a sufficient criterion. As

7. Glossary of notation

^/.[■V] [/][£]: time when Rq[i\ can be available on
machine M[r] via fetching the copy from M[s]
through the virtual link L[s,r][k]

AT[ij]: the earliest possible time found so far when Rq[i]
is available on M[j]

AT[iJ\: time when Rq[i] is received at its corresponding
7-th requesting location with respect to the gen-
erated shortest path

Cap[i](t): available memory storage capacity of machine
M[i] at time t

126

Cost[s,r][i,j][k]: cost for transferring the requested data
item Rq[i] associated with the y'-th destination,
from machine M[s] to M[r] via link L[s,r][£]

\d\: size of the associated data item d
d[v]: shortest-path estimate for vertex v in Dijkstra's

algorithm
D[ij][£](|d|): communication time for transferring data

item d with size \d\ from M[i] to M\j] through
their k-th dedicated virtual communication link

A: set of data items available in the communication sys-
tem

8[i]: i-th data item available in the communication sys-
tem

8st[iJ]: starting time at which 8[i] is available at its y'-th
initial source location

Drq[i,r]: set of destination vertices associated with a data
item S[(] and a contingent vertex V[r],
Drq[i,r]z{0,l,...,Nrq[i]-l)

E: set of edges in GM that corresponds to all virtual com-
munication links among machines

E: set of edges in G
\E\: number of edges in the network topology graph Gnt

Efp[ij]\ effective priority for the data request of Rq[i]
from its y'-th requesting location

E[iJ][k]: k-tii direct edge from V[i] to V\j] in Gn!

E[Sh\. effect of the scheduling scheme Sh

G: a weighted and directed graph
Gnt: network topology graph of the communication sys-

tem that illustrates the connectivity of the
machines

Im[i,r]: set of machines that M[r] will forward its copy of
Rq[i] to according to the generated shortest paths

kt: the argument k that minimizes /I £[s,r] [/][&]
L[ij][k]: k-th direct virtual communication link from

M[i] to M\j]
Let[ij][k]: link ending time when L[iJ][k]'s availability

terminates
Lst[ij][k]: link starting time when L[ij][k] becomes

available
m: number of machines in the communication system
M[i]: i-th machine in the communication system,

0 < (' < m
n: number of the data items with distinctive values avail-

able in the communication system
N5[i]: number of different machines that the data item

8[i] is located at initially
Nl[iJ]: total number of direct virtual communication

links from M[i] to M\j]
Nrq\j]: number of different machines where a request for

Rq\j] is initiated
P: highest priority possible and implies to be most impor-

tant for any data request
7i[v]: predecessor field (or predecessor vertex) of vertex v

Priority\j,k\. priority for the data request of the data item
Rq\j] on its k-th requesting location

Request\j,k]: k-th location of the request for data item
Rq\j], 0 < Request[j,k] < m

Rft\j,k]: finishing time (or deadline) after which the data
item Rq\j] on its k-th requesting location is no
longer useful

p: number of the requested data items with distinctive
values in the corresponding communication sys-
tem

Rq\j\: y'-th requested data item in the communication sys-
tem

RT[i,r]: time for the last machine in Im[i,r] to receive its
copy of Rq[i] from M[r]

Sat[i,r]Q): satisfiability function associated with a the y'-th
requesting location for data item 8[i] and a con-
tingent vertex V[r]

Sh: a specific schedule for the communication steps of
transmitting requested data items

a: number of distinct schedules for the communication
steps of transmitting requested data items

Source[ij]: y'-th initial source location of the data item
8[i]

Srq[Sh]: set of two-tuples {(j,k) | k-th request of the data
item Rq\j] is satisfiable}

Urgency[iJ]: urgency for the data request of Rq[i] from
its y'-th requesting location

V: set of m vertices for Gnt that corresponds to m
machines

|V|: number of vertices in the network topology graph Gn!

V: set of vertices in G
vd: a specific destination vertex
VD: set of destination vertices
VD[i]: set of destination vertices corresponding to Rq[i]
VF: set of vertices whose final shortest paths from any

vs e V5 have been determined during the execu-
tion of Dijkstra's algorithm

V[i]: i-th vertex of Gnl that corresponds to machine M[i]
vs: a specific source vertex
Vs: set of source vertices
Vs[i]: set of source vertices corresponding to Rq[i]
W[i]: relative weight of the i-th priority
WE: relative weight for the effective priority factor in the

scheduling
Wv: relative weight for the urgency factor in the schedul-

ing

References

[1] S. Acharya and S. B. Zdonik, "An efficient scheme for
dynamic data replication," Tech. Report CS-93-43, Dept.
of Computer Science, Brown Univ., 1993, 25 pp.

127

[2] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P.
Sturm, "Enhancing the web's infrastructure: From cach-
ing to replication," IEEE Internet Computing, Vol. 1, No.
2, March-April 1997, pp. 18-27.

[3] A. Bestavros, "WWW traffic reduction and load balanc-
ing through server-based caching," IEEE Concurrency,
Vol. 5, No. 1, January-March 1997, pp. 56-67.

[4] R. Chandrasekaran and A. Dauchety, "Location on tree
networks: P-centre and n-dispersion problems,"
Mathematics of Operations Research, Vol. 6, No. 1,
February 1981, pp. 50-57.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to algorithms, MIT Press, Cambridge, MA, 1990.

[6] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey,
"Worst-case and probabilistic analysis of algorithms for a
location problem," Operations Research, Vol. 28, No. 4,
July-August 1980, pp. 847-858.

[7] P. Danzig, R. Hall, and M. Schwartz, "A case for caching
file objects inside internetworks," Tech. Report CU-CS-
642-93, Computer Science Dept., Univ. of Colorado,
1993,15 pp.

[8] A. P. Hurter and J. S. Martinich, Facility Location and
The Theory of Production, Kluwer Academic Publishers,
Norwell.MA, 1989.

[9] P. C. Jones, T. J. Lowe, G. Müller, N. Xu, Y. Ye, and J. L.
Zydiak, "Specially structured uncapacitated facility loca-
tion problem," Operations Research, Vol. 43, No. 4,
July-August 1995, pp. 661-669.

[10] M. J. Lemanski and J. C. Benton, Simulation for SmartNet
Scheduling of Asynchronous Transfer Mode Virtual Chan-
nels, Master's Thesis, Dept. of Computer Science, Naval
Postgraduate School, June 1997 (Advisor: D. Hensgen).

[11] I. D. Moon and S. S. Chaudhry, "An analysis of network
location problems with distance constraints," Manage-
ment Science, Vol. 30, No. 3, March 1984, pp. 290-307.

[12] A. J. Rockmore, "BADD functional description," Inter-
nal DARPA Memo, February 1996.

[13] SmartNet/Heterogeneous Computing Team,
"BC2AATACITUS/BADD integration plan," Internal
Report, August 1996.

[14] D. R. Shier, "A min-max theorem for p-center problems
on a tree," Transportation Science, Vol. 11, No. 3,
August 1977, pp. 243-252.

[15] H. J. Siegel, H. G. Dietz, and J. K. Antonio, "Software
support for heterogeneous computing," in The Computer
Science and Engineering Handbook, edited by Allen B.
Tucker, Jr., CRC Press, Boca Raton, FL, 1997, pp. 1886-
1909.

[16] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li,
"Minimizing the application execution time through
scheduling of subtasks and communication traffic in a
heterogeneous computing system," IEEE Trans, on
Parallel and Distributed Systems, Vol. 8, No. 8, August
1997, pp. 857-871.

Biographies

Min Tan received his PhD degree from the School of
Electrical and Computer Engineering at Purdue
University, West Lafayette, Indiana, USA in 1997. He
currently is with the technical staff of Cisco Systems,
Inc. He attended Shanghai Jiao Tong University,
Shanghai, People's Republic of China, in 1988. In
1991, he went to Western Maryland College, Mary-
land, USA, and received a BA degree in Mathematics
and Physics in 1993. In 1994, he received an MSEE
degree from the School of Electrical Engineering at
Purdue University. While at Purdue, he received the
"Estus H. and Vashti L. Magoon Outstanding
Teaching Assistant Award" in 1996. He also served as
a program committee member for the 1998 Heterogene-
ous Computing Workshop. His research interests include
data source management in heterogeneous computing,
data staging issues for network communication, video
compression and financial applications on parallel and
distributed systems, and dynamic partitionability for
reconfigurable parallel processing machines. He has
authored or coauthored 15 technical papers in these and
related areas. He is a member of IEEE, the IEEE Com-
puter Society, and the Eta Kappa Nu honorary society.

Mitchell D. Theys is a PhD student and Research Assis-
tant in the School of Electrical and Computer Engineer-
ing at Purdue University. He received a Bachelor of Sci-
ence in Computer and Electrical Engneering from the
school of Electrical Engineering in 1993 with Highest
Distinction from Purdue University, and an MSEE from
the school of Electrical Engineering at Purdue University
in 1996. He has received a Benjamin Meisner Fellow-
ship from Purdue University for the 1996-1997 academic
year, and an Intel Graduate Fellowship for the 1997-1998
academic year. He is a member of the Eta Kappa Nu
honorary society, IEEE, and IEEE Computer Society. He
was elected President of the Beta Chapter of Eta Kappa
Nu at Purdue University and has held several various
offices during his stay at Purdue. He has held positions
with Compaq Computer Corporation, S&C Electic Com-
pany, and Lawrence Livermore National Laboratory. His
research interests include design of single chip parallel
machines, heterogeneous computing, parallel processing,
and software/hardware design.

H. J. Siegel is a Professor in the School of Electrical and
Computer Engineering at Purdue University. He is a Fel-
low of the IEEE (1990) and a Fellow of the ACM (1998).
He received BS degrees in both electrical engineering
and management (1972) from MIT, and the MA (1974),
MSE (1974), and PhD degrees (1977) from the Depart-

128

ment of Electrical Engineering and Computer Science at
Princeton University. Prof. Siegel has coauthored over
250 technical papers, has coedited seven volumes, and
wrote the book Interconnection Networks for Large-
Scale Parallel Processing (second edition 1990). He
was a Coeditor-in-Chief of the Journal of Parallel and
Distributed Computing (1989-1991), and was on the Edi-
torial Boards of the IEEE Transactions on Parallel and
Distributed Systems (1993-1996) and the IEEE Transac-
tions on Computers (1993-1996). He was Program
Chair/Co-Chair of three conferences, General Chair/Co-
Chair of four conferences, and Chair/Co-Chair of four
workshops. He is an international keynote speaker and
tutorial lecturer, and a consultant for government and
industry.

Prof. Siegel's heterogeneous computing research
includes modeling, mapping heuristics, and minimization
of inter-machine communication. He is the Principal
Investigator of a joint ONR-DARPA/ISO grant to design
efficient methodologies for communication in the hetero-
geneous environment of the Battlefield Awareness and
Data Dissemination (BADD) program. He is an Investi-
gator on the MSHN project, supported by the
DARPA/ITO Quorum program to create a management
system for a heterogeneous network of machines.

Prof. Siegel's other research interests include parallel
algorithms, interconnection networks, and the PASM
reconfigurable parallel machine. His algorithm work
involves minimizing execution time by exploiting archi-
tectural features of parallel machines. Topological pro-
perties and fault tolerance are the focus of his research
on interconnection networks for parallel machines. He is
investigating the utility of the dynamic reconfigurability
and mixed-mode parallelism supported by the PASM
design ideas and the small-scale prototype.

Noah B. Beck is pursuing an MSEE degree from the
School of Electrical and Computer Engineering at Pur-
due University, where he is currently a Research Assis-
tant. His main research topic is data staging in hetero-
geneous networks. He has held many positions support-
ing Siemens Stromberg-Carlson's technical support staff,
and has also worked as a Design Engineer in one of Intel
Corporation's microprocessor design groups. Noah
received his BS degree from Purdue University in 1997
in Computer Engineering. His research interests include
parallel computing, computer architecture and organiza-
tion, and heterogeneous computing. He is an active
member of the Eta Kappa Nu honorary society.

Michael Jurczyk studied Electrical Engineering at Pur-
due University and the University of Bochum, Germany,
where he received his Diploma in 1990. He obtained his
PhD in Electrical Engineering from the University of
Stuttgart, Germany, in 1996, where he studied parallel
simulation and performance issues of interconnection
networks. In 1996, he was a visiting assistant professor
at the School of Electrical and Computer Engineering at
Purdue University. Currently, he is an assistant professor
at the Computer Engineering and Computer Science
Department at the University of Missouri - Columbia.
His research interests include parallel and distributed
systems, interconnection networks for parallel and com-
munication systems, ATM-networking, and networked
multimedia.

129

An Efficient Group Communication Architecture over ATM
Networks

Sung-Yong Park, Joohan Lee, and Salim Hariri
High Performance Distributed Computing (HPDC) Laboratory

Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244

{sypark, jlee, hariri}@cat.syr.edu

Abstract
NYNET (ATM wide-area network testbed in

New York state) Communication System (NCS)
is a multithreaded message-passing tool developed
at Syracuse University that provides low-latency
and high-throughput communication services over
Asynchronous Transfer Mode (ATM)-based high-
performance distributed computing (HPDC) environ-
ments. NCS provides flexible and scalable group com-
munication services based on dynamic grouping and
tree-based multicasting. The NCS architecture, which
separates the data and control functions, allows group
operations to be implemented efficiently by utilizing
the control connections when transferring status in-
formation (e.g., topology information, routing infor-
mation). Furthermore, NCS provides several different
algorithms for group communication and allows pro-
grammers to select an appropriate algorithm at run-
time.

In this paper we overview the general architecture
of NCS and present the multicasting services provided
by NCS. We analyze and compare the performance
of NCS with that of other message-passing tools such
as p4, PVM, and MPI in terms of primitive perfor-
mance and application performance. The benchmark
results show that NCS outperforms other message-
passing tools for both primitive performance and ap-
plication performance.

1 Introduction
We are experiencing a rapid deployment of high-

performance distributed systems (HPDS) that are typ-
ified by a heterogeneous collection of machines with
widely differing performance characteristics and are
connected by one or more high-speed networks. These
systems combine workstations, shared-memory mul-
tiprocessors, and distributed-memory multicomput-

ers. The high-speed network technologies used include
Asynchronous Transfer Mode (ATM) [1], Myrinet [2],
Gigabit Ethernet [3], High Performance Parallel In-
terface (HIPPI) [4], and wireless technologies. Con-
sequently, the development of high-performance dis-
tributed computing (HPDC) applications is a non-
trivial task that requires a thorough understanding
of the application requirements and architecture, and
the communication services provided.

HPDC applications require low-latency and high-
throughput communication services comparable to
that experienced in a bus-based parallel computer.
HPDC applications have different Quality of Service
(QoS) requirements and even one single application
might have multiple QoS requirements during the
course of its execution (e.g., interactive multimedia
applications). Furthermore, a significant fraction of
the traffic in HPDC applications is multi-point (e.g.,
video-conferencing, collaborative computing). In or-
der to meet the requirements of a wide variety of
HPDC applications, the parallel and distributed soft-
ware systems should provide high performance and dy-
namic group communication services. The group com-
munication services provided by traditional message-
passing tools such as p4 [11], Parallel Virtual Machine
(PVM) [12], Message-Passing Interface (MPI) [13],
Express [15], and PARMACS [16] are fixed and thus
can not be changed to meet the requirements of differ-
ent HPDC applications. Furthermore, some message-
passing tools such as PVM implement group commu-
nication operations by repeatedly calling send rou-
tines for each participant, which is computationally
expensive and not scalable. There have been sev-
eral distributed computing software tools specially de-
signed to support group communication services such
as Isis [18], Horus [19], Totem [20] and Transis [21].
However, most of them are designed to support spe-

0-8186-8365-1/98 $10.00 © 1998 IEEE
130

cial functionalities (e.g., fault tolerance, message or-
dering, virtual synchrony, group partition) rather than
to achieve high throughput.

NYNET Communication System (NCS) [7, 8, 9] is
a multithreaded message-passing tool for an ATM-
based HPDC environment that provides low-latency
and high-throughput communication services. NCS
capitalizes on a thread-based programming model to
overlap computation and communication, and develop
a dynamic message-passing environment with separate
data and control paths. This leads to a flexible, adap-
tive message-passing environment that can support
multiple flow-control, error-control, and multicasting
algorithms. This paper overviews the general archi-
tecture of NCS and presents the multicasting services
provided by NCS. NCS multicasting services are based
on dynamic grouping, where each process can dynami-
cally create, join, or leave a group. NCS uses a binary
tree to implement multicasting operations, which is
more efficient and scalable than repetitive techniques
especially when the number of groups is large. Fur-
thermore, NCS group communication services can be
implemented using different group communication al-
gorithms. These algorithms can be selected by the
application at runtime.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the general architecture of NCS. Sec-
tion 3 discusses an approach to implement the NCS
multicasting services. Section 4 analyzes and com-
pares the multicasting performance of NCS with that
of other message-passing tools such as p4, PVM, and
MPI. Section 5 contains the summary and conclusion
of the paper.

2 NCS Overview
In this section we present an overview of the NCS

architecture. Additional details about NCS architec-
ture can be found in [9].

Figure 1 shows the general architecture of NCS.
An NCS application consists of multiple Com-
pute-Threads that include programs to perform the
computations of the application. NCS supports both
the host-node programming model and the Single Pro-
gram Multiple Data (SPMD) programming model. In
both models processes are created at each node by us-
ing the hostfile that specifies the initial configurations
of machines to run NCS applications. After each pro-
cess is spawned, it creates multiple Compute-Threads
according to the computation requirements of the ap-
plication. The advantage of using a thread-based
programming paradigm is that it reduces the cost of
context switching, provides efficient support for fine-
grained applications, and allows the overlapping of

User Application AsXsT User Application I s~\

NYNET Communication System

0 ©
~"\—r-
itnd . " l

00
0©

Data

Qn.tr.». NYNET Ciimmunjcaiiiin System

0:
FC) I EC) (ML*

© ©
00
0 ©

Network Interface

(Socket, ATM API,

Data

Data Connect in

.Trap) \ * 4
Contna \ I /

Information »■. I . ■ / "'
on ^ ' I L

Control Cnnnectiw

Network Interface

C - Compute Thread, MT - Master Thread

FC • Flow Control Thread, EC - Error Control Thread, MC ■ Multicast Thread

CS - Control Send Thread, CR - Control Receive Thread. S - Send Thread. R ■ Receive Thread

Figure 1: NCS General Architecture

computation and communication.
NCS separates control and data functions by pro-

viding two planes (see Figure 1): a control plane
and a data plane. The control plane consists of
several threads that implement important control
functions (e.g., connection management, flow con-
trol, error control) in an independent manner. These
threads include Master-Thread, Flow-Control-Thread,
Error-Control-Thread, Multicast-Thread, Con-
trol Send-Thread, and Control-Receive-Thread (we call
them control threads). The data transfer threads
(Send-Thread and Receive-Thread) in the data plane
are spawned on a per-connection basis by the Mas-
ter-Thread to perform only the data transfers asso-
ciated with a specific connection. Furthermore, the
control and data information from the two planes are
transmitted on separate connections. All control infor-
mation (e.g., flow control, error control, configuration
information) is transferred over the control connec-
tions, while the data connections are used only for the
data transfer functions. The separation of control and
data functions eliminates the process of demultiplex-
ing control and data packets within a single connec-
tion and allows the concurrent processing of control
and data functions. This allows applications to utilize
all available bandwidth for the data transfer functions
and thus improves the performance.

NCS supports multiple flow-control (e.g., window-
based, credit-based, or rate-based), error-control (e.g.,
go-back N or selective repeat), and multicasting al-
gorithms (e.g., repetitive send/receive or a multicast
spanning tree) within the control plane to meet the
QoS requirements of a wide range of HPDC applica-
tions. Each algorithm is implemented as a thread and

131

programmers activate the appropriate thread when es-
tablishing a connection to meet the requirements of a
given connection.

NCS provides three application communication
interfaces such as socket communication interface
(SCI), ATM communication interface (ACI), and
high-performance interface (HPI) in order to support
HPDC applications with different communication re-
quirements. The SCI is provided mainly for applica-
tions that must be portable to many different com-
puting platforms. The ACI provides the services that
are compatible with ATM connection-oriented services
where each connection can be configured to meet the
QoS requirements of that connection. The HPI sup-
ports applications that demand low-latency and high-
throughput communication services.

3 Multicasting Support in NCS
The implemented NCS multicasting algorithm is

based on dynamic grouping, where each NCS process
can dynamically create, join, or leave a group during
the lifetime of the process. Within each group, there is
a single group server that is responsible for intergroup
communications and multicasting. The multicasting
operation in NCS is implemented by using a binary
tree. This approach is more efficient than repetitive
techniques especially when the number of groups is
large. In addition, the separation of control and data
functions facilitates the development of efficient multi-
casting. For example, when the status of each process
has been changed, it can be broadcast promptly to
other processes without interfering with data traffic.
This allows NCS to prepare most of the information
needed to activate multicasting operations (e.g., tree
information, group information) in advance before the
actual multicasting operations are initiated. This re-
duces the set-up time (e.g., time to build a tree at
runtime) of the multicasting operations and thus im-
proves the performance of NCS group communication
services. Other multicasting algorithms can be incor-
porated into NCS and activated at runtime by user
applications without changing the NCS architecture
and its supported group communication services.

In what follows we define the NCS group communi-
cation primitives and describe the NCS multicasting
algorithm to implement these primitives.

3.1 NCS Group Communication Primi-
tives

Figure 2 shows a set of NCS primitives that provide
group communication services.

NCS multicasting primitive (NCS-mcastQ) sup-
ports three classes of multicasting operations: (1)

int NCS-mcast(int mode, char *gname[], NCS.Dtype type,
int tag, char *msg, int len);

- Multicasts a message to the groups specified by gname[].

int NCS„group-create(char *gname, int corn-mode, int fc, int ec,
int mc, struct QoS);

- Creates a group named gname. Returns the group identifier.

int NCS-group-join(char *gname);
- Joins the group specified by gname.

int NCS-group_destroy(char *gname);
- Destroys the group specified by gname.

int NCS~groupJeave(char *gname);
- Leaves the group specified by gname.

int NCS-group-num-members(char *gname);
- Returns the total number of members in the group.

Figure 2: NCS Group Communication Primitives

global broadcast, (2) local broadcast, and (3) global mul-
ticast. The global broadcast is used to transmit mes-
sages to all groups defined in the NCS applications.
The local broadcast is used to transmit messages to
all members within the same group. The global mul-
ticast is used to transmit messages to the specified
groups. For all three operations, the destination end-
point is not the members, but the group servers. They
can be invoked with either a reliable mode or an un-
reliable mode. The data-type of message (e.g., char,
int, float, double, etc) and the message type can be
specified by providing parameters to the NCS-mcast()
primitive.

Users can create a new group by using the
NCS-group_create() primitive. In this case a particular
communication scheme (e.g., error-control algorithm,
flow-control algorithm, multicasting algorithm), a par-
ticular communication interface (e.g., SCI, ACI, HPI),
and ATM QoS parameters can be assigned to the
group communication channel (e.g., binary tree). All
the new processes that join this group by invoking
NCS.group-joinQ primitive use the same communica-
tion scheme and communication interface when send-
ing data over the group communication channel. The
attributes assigned to this channel cannot be changed
by the group members during program execution and
they are released when the group is destroyed by using
the NCS-group„destroy() primitive.

3.2 NCS Multicasting Algorithm
At program startup, a default NCS group called

NCS-GRP is created, and each NCS process in the

132

hostfile joins this group automatically (see Figure 3).
The hostfile is used to specify a list of machines to run
NCS applications. The first process specified in the
hostfile becomes a master group server (MGS). Each
process that creates a new group becomes a local group
server (LGS) of that group. The MGS represents all
the LGSs and coordinates the group communication
operations between these servers. The LGS is respon-
sible for multicasting operations within the local group
and maintains the membership information of the lo-
cal group. A global multicasting tree (GMT) is built
to connect all the LGSs rooted at the MGS. All the
group members within the same group are connected
by a local multicasting tree (LMT) rooted at the LGS
of that group. The MGS and LGSs periodically ex-
change the status information of each group over the
control connections.

Since three classes of multicasting operations (e.g.,
global broadcast, local broadcast, and global multicas-
ting) are implemented using similar schemes, we will
only describe the algorithm for global broadcast. The
multicasting algorithm for global broadcast consists of
six steps, as shown in Figure 4:

1. When the Compute.Thread of a process in-
vokes the NCS.mcastf) primitive, the Multi-
cast.Thread of that process activates the corre-
sponding Send.Thread to transmit an actual mes-
sage to the MGS.

2. The MGS transmits the received message to the
other LGSs using its GMT.

3. If the NCS-mcast() is invoked with reliable mode,
each LGS that received the message sends an ac-
knowledgment back to the MGS along the GMT.

4. An LGS maintains two buffers. The first buffer is
used to assemble the messages, which are then
transferred to the second buffer. The second
buffer is used to retransmit the messages to the
members that have not correctly received the
messages.

5. Each LGS locally multicasts the message to its
group members using its LMT.

6. If the NCS-mcast() is invoked with a reliable
mode, each member that received the message
sends an acknowledgment back to the LGS along
the LMT. If there is any group member that has
not received a message within the timeout period,
the LGS of the group retransmits the message.
This reduces the retransmission traffic from the
source process.

The pseudo code for this algorithm is presented in
Figure 5.

4 Benchmarking Results
In this section we analyze and compare the per-

formance of NCS with that of other message-passing
tools such as p4, PVM, and MPI using two levels of
performance evaluation [10]: tool performance level
(TPL) and application performance level (APL). In
TPL we benchmark the performance of the broad-
casting primitives provided by each message-passing
tool, while in APL we compare the execution time of
two applications (e.g., Back-Propagation Neural Net-
work (BPNN) learning algorithm and static voting al-
gorithm).

All experiments have been conducted over six SUN-
4 workstations and four IBM RS/6000 workstations
interconnected by an IBM 8260 ATM switch and a
Cabletron MMAC-Plus ATM switch. In all mea-
surements we used the NCS implementation over
SCI. Consequently, the effect of error control and
flow control is not considered in these experiments.
The socket buffer size was set to 32 Kbytes and the
TCP-NODELAY option was enabled. It is reported
in [5] that setting those two options improves the
socket throughput. For the PVM (Version 3.3.11)
applications, we used the PVM Direct mode, where
the direct TCP connection is made between two end-
points. The MPICH [14] (Version 1.0.13) was used to
benchmark the MPI applications.

4.1 Tool Performance Level (TPL)
Figure 6 compares the performance of broad-

casting primitives (e.g., NCS-mcast(), pvm.mcastf),
p4„broadcast(), and MPLBcast(J) of four message-
passing tools over an ATM network when message
sizes vary from 1 byte to 32 Kbytes. The group
size varies from two to ten. Since ten heteroge-
neous workstations (six SUN-4 workstations and four
IBM/RS6000 workstations) were used for measuring
the timings, the results for the group size up to six
represent the characteristics of broadcasting primi-
tives over the SUN-4 platform, while the results for
the group sizes of eight and ten represent the charac-
teristics of broadcasting primitives over heterogeneous
platforms.

As we can see from Figure 6, the execution time of
each broadcasting primitive increases linearly for small
message sizes up to 1 Kbytes, while it shows different
patterns for large message sizes over 1 Kbytes.

NCS primitive (NCS.mcastQ) achieved better per-
formance (e.g., about five times faster than p4 and
MPI) for various message sizes and group sizes. For

133

\ (Group "Syracuse"] / \ /

*-, ,-' v»% I Group "Rome'"] ,'

MGS - Master Group Server, LGS • Local Group Server, PI - Pn - Processes

Group 1 Group 2

MGS - Masler Group Server, LGS - Local Group Server, PI ~Pn - Processes, Bl-2 - Buffers

Figure 3: Group Structure in the NCS Environ- Figupe 4. Multicasting in tne NCS Environment
ment

Thread Master Group Server (MGS)
repeat Get the requests from other servers or members

if group creation or destruction is requested then
Update the GMT and send the information to the LGSs over the control path

else if a Global Broadcast is requested
Send the message to the LGSs along the GMT
if a reliable multicast is requested then

Check the ACKs from the LGSs and retransmit if necessary
endif

endif
end

Thread Local Group Server (LGS)
repeat Get the requests from other servers or members

if group creation, destruction, join or leave are notified then
Update the local database (or LMT) and send the information to all the members over the control path

else if a message received for Global Broadcast or Global Multicast then
Send the message to all the members along the LMT
Route the message to other LGSs if necessary
if a reliable multicast is requested then

Merge the ACKs from the LGSs and send an ACK to its parent
Check the ACKs from the members and retransmit if necessary

endif
else if a Local Broadcast is requested

Send the message to all the members along the LMT
if a reliable multicast is requested then

Check the ACKs from the members and retransmit if necessary
endif

endif
end

Thread Multicasting Thread
if group creation, destruction, join or leave are notified then

Update the local database for this information
else if Global Broadcasting or Local Broadcasting are requested then

Send the message to the MGS (Global Broadcasting) or LGS (Local Broadcasting)
else if a Global Multicasting is requested then

Setup a spanning tree at runtime and send the message to the LGSs along the new spanning tree
endif

Figure 5: Pseudo code for the Multicasting Protocol

134

Broadcasting Performance over ATM (Message Size = 1 Byte) 1
y

NCS -•- *
P4 -i— ,/
MPI -B--

■

«--
^^ — '~~.'-l

--"'' .--'''-'■■&"' -^""

'^ -s-'"^''-'^^^''^ .
-..&^i'--'~'^>***^

■

! 1

'

Group Size
Broadcasting Performance over ATM (Message Size = 4 KBytes

Group Size
Broadcasting Performance over ATM (Message Size = 16 KBytes)

NCS -—-
P4 —-

MPI -a-
PVM -*--

—i ' 1

1

NCS -—
P4 -t—

MPI -B-
PVM -»-

/■

• ,-^

■ ^ ß
■

' ^

^-""""
.B -"jZ^

 --^^i^

.
...-:".. ■^^^

s^-"^""^
 1

Broadcasting Performance ov Br ATM (Message Size = 1 KBytes)

20

18

NCS -•—
P4 -•—

MPI -B«
PVM «

s:

16 " >.^"""" ,i

14

12

10

.x-"'

■■a' ---"^^*****^

^

8

'^
--^J^-^""""^

.&^^^ ■

e
..-EJ'v*^

4 ..■■■?££^ ■

! r-;-^^^ , ,
Group Size

Broadcasting Performance over ATM (Message Size =

NCS •*-
P4 -<--

MPI -B-
PVM »

—1
 r

■

y"'

■■' .x—"

.--■ -^

,-"T

"
.■■a'~-

— z

.••.;;-;'" "

' 1

Group Size
Broadcasting Performance over ATM (Message Size = 32 KBytes) 1

200

NCS -•- / ,'
P4 -+--

MPI -Q--
PVM ■■*■■■■- .;•'

150

,--'' -a'

100
'''*"' ..-'*""' ,.....-■*

50

--''' ,-"-7^'H"'

'-- " _..-•■'" ^__^~—"-*

Group Size

Figure 6: Comparison of Broadcasting Performance over ATM

135

example, given a message size of 32 Kbytes, the NCS
broadcasting time is 42.966 m?7feeconds, while p4,
PVM, and MPI took 227.568 milliseconds, 109.403
milliseconds, and 249.961 milliseconds, respectively.
Furthermore, NCS.mcastQ primitive shows almost
similar performance for large group sizes as we in-
crease the message size. For a message size of 16
Kbytes, the NCS broadcasting time using six mem-
bers is 22.596 ro?7feeconds and the broadcasting time
using ten members is 24.623 milliseconds. In the
NCS.mcast() primitive where most of the information
for performing group communications (e.g., setup bi-
nary tree, setup routing information) is set up in ad-
vance by using the control connections, the start-up
time for the broadcasting operations is very small.
Also, the tree-based broadcasting scheme improves
the performance as the group size gets larger. Con-
sequently, the larger the message size and group size,
the better is the performance of NCS when compared
to that of other message-passing tools.

The performance of p4 primitive (p4-broadcast()) is
comparably good except for large message sizes. For
message size of 32 Kbytes, p4 performance gets worse
rapidly as we increase the group size. One of the
reasons for this is that p4 has also low performance
for point-to-point communications with large message
sizes, as shown in Figures 7 and 8.

The performance of PVM primitive (pvm-mcast())
is poor for small message sizes but as the message size
and group size increase, its performance improves. In
the pvmjmcastQ where the broadcasting operation is
implemented by repeatedly invoking a send primitive,
the performance is expected to increase linearly as we
increase the group size. Moreover, pvm.mcast() con-
structs a multicasting group internally for every invo-
cation of the primitive, which results in a high start-
up time when transmitting small messages as shown
in Figure 6 (message size 1 byte and 1 Kbytes).

The MPI primitive (MPLBcastQ) shows compara-
ble performance to NCS and p4 for relatively small
message sizes (e.g., up to 1 Kbyte) and small group
sizes (e.g., up to 6 members) but its performance
degrades drastically for message sizes larger than 4
Kbytes and large group sizes (e.g., over six members).

4.2 Application Performance Level
(APL)

In this subsection we compare the performance of
NCS with that of other message-passing tools by mea-
suring the execution time of two applications (i.e.,
BPNN learning algorithm and static voting algorithm)
that require intensive group communication services.

BPNN Learning Algorithm

Training BPNN for character recognition is one of the
problems in Artificial Intelligence (AI) area that re-
quires intensive group communications. We used a
master/slave programming model to parallelize this
application, as shown in Figure 9. In this algorithm
the master process distributes the weight vectors be-
tween the input layer and the hidden layer to the slave
processes. The slave processes receive weight vectors
from the master process and compute the output val-
ues of the hidden nodes allocated to them, then trans-
mit those output values back to the master process.
After the master process receives the output values
of the hidden nodes from the slave processes, it com-
putes the output values of the output nodes, computes
mean-squared error, and updates the weights vectors
between input layer and hidden layer, and between
hidden layer and output layer. These steps continue
until the value of the mean-squared error falls un-
der an appropriate value. This application intensively
uses the broadcasting primitives when distributing the
weight vectors to all the slave processes. The BPNN
used in this experiment has 100 input nodes, 630 hid-
den nodes, and 4 output nodes to train 16 input vec-
tors which represent the hexadecimal digits from 0x01
to OxOF.

Static Voting Algorithm

Replicating data at different locations is a common
approach to achieve fault tolerance in distributed com-
puting systems. One well-known technique to manage
replicated data is voting mechanisms. The algorithm
used in this experiment is based on the static voting
scheme proposed by Gifford [22]. In this algorithm
(See Figure 10) we assume that there is a file server
process in each node that handles read and write re-
quests for a given file. Each file server process issues
arbitrary read and write requests that were produced
randomly using a random number generator. When-
ever a server process issues a file access request, it
sends a LockJiequest message for that file to the local
lock manager and broadcasts a Vote-Request message
to all other server processes. When the server pro-
cess receives a VoteJiequest message from other server
processes, it sends a Lock_Request message for the re-
quested file to the local lock manager. The server
process then returns the version number of the replica
and the number of votes assigned to the replica to the
server process that initiated the VoteJiequest. Based
on the information returned from other server pro-
cesses, the server process decides if the file access is
granted and the file is the latest copy. If the local

136

Point-to-Point Communication Performanc« over ATM (SUN 4/SunOS 5.5) Point-to-Point Communication Pertormanco over ATM (RS6000/AIX 4.1)

 1

NCS -»-
P4 t—

MPI B-
PVM ■■*--

 1

I

- //

- ...;»''
>/

•
..-i-.'--*'-'"'"^"

.-.■-"i9"'"' _ ^y

 i *«•■— •*■ " ' ,
8K 16K

Message Size (Bytes)
32K 64K 4K 8K 16K

Message Size (Bytes)

Figure 7: Point-to-Point Communication Performance over ATM Using Same Platform

Point-to-Poinl Communication Pertormanco over ATM (SUN/RS6000)

E

\ p 200

1
 1 ■ ' , 1

1

NCS -•—
P4 -<--

MPI a-
PVM -»- / -

■
"

■

.-••ET'

..a'

,D

.

 e
 »-« ^rr:

8K 16K
Message Size (Bytes)

32K 64K

Figure 8: Point-to-Point Communication Performance over ATM Using Heterogeneous Platform

137

Input Layer Size = N, Hidden Layer Size = M, Output Layer Size = 4

Figure 9: Back-Propagation Neural Network
(BPNN) Learning Algorithm

URead/Write Request, 2=Vote_Request, 3=Version Number and Votes

4=Ri-quesl Latest Copy, 5=Return Latest Copy, 6=Release_Lock

Figure 10: Static Voting Algorithm

copy is different from those replicated at other server
processes, it gets the latest copy from other server
processes. Finally, the file server process broadcasts
a Release J^ock message to all other file servers if the
file access is granted. In this experiment we assumed
that there are 50 different files replicated at each node
and each file server process generates 500 read ox write
requests for arbitrary files.

Performance Comparison

Figure 11 shows the performance of each message-
passing tool to implement these two applications
running over four homogeneous workstations (e.g.,
four SUN-4 workstations running SunOS 5.5 or four
IBM/RS6000 workstations running AIX 4.1) and eight
heterogeneous workstations (e.g., four SUN-4 worksta-
tions and four IBM/RS6000 workstations) intercon-
nected by an ATM network. Due to the restrictions
of the MPI broadcasting primitive (MPLBcast(J), we
couldn't implement the static voting algorithm us-
ing MPI. In MPI all messages broadcast using the
MPLBcastQ should be received by other processes us-
ing the MPI_Bcast() primitive instead of the receive
primitive. Furthermore, one of the argument of this
primitive represents the rank of the root process that
initiated the broadcasting operation and this value
should be identical on all processes that receive the
message. Since the broadcasting operations in static
voting algorithm are initiated randomly by different

processes, it is difficult to obtain the root of the broad-
casting operation. Consequently, implementing static
voting algorithm using MPI is not straightforward.

As shown in Figure 11, the message-passing tool
that has the best performance at TPL also has the
best performance at APL. For example, NCS appli-
cations outperform other implementations regardless
of the platform used. In the BPNN application us-
ing eight heterogeneous workstations, the execution
time of NCS is 135 seconds, while p4, PVM, and MPI
took 1088 seconds, 429 seconds, and 620 seconds, re-
spectively. In the BPNN application where large mes-
sages are broadcast repeatedly, the performance im-
provement is noticeable and it improves further as we
increase the group size. In the static voting applica-
tion where the sizes of the broadcasting messages are
small and the communications take place randomly,
the performance of NCS is comparable to that of other
message-passing tools for small size groups but the
performance gap gets wider as we increase the group
size. We believe that most of the improvements of
NCS are due to overlapping of communications and
computations and the use of tree-based broadcasting
algorithm.

On the other hand, PVM implementations show
better performance than MPI and p4 implementations
in heterogeneous environment.

138

Backpropagatiort Neural Network (Input Nodes:10O, Hidden Nodes:630, Output Nodes:4) Backpropagation Neural Network (Input Nodes:100, Hidden Nodes:630. Output Nodes:4)

SUN IBM
Workstation Platform

Static Voting Algorithm (Files = 50, Requests = 500)

I I

Number of Workstations
Static Voting Algorithm (Files = 50, Requests = 500)

LI i
Workstation Platform Number of Workstations

Figure 11: Comparison of Application Performance

139

5 Conclusion
In this paper we have presented NCS architecture

that provides efficient and flexible group communica-
tion services over an ATM network. We have evalu-
ated the performance of NCS group communication
primitives and applications. The benchmark results
showed that NCS outperforms other message-passing
tools. It is clear that the NCS novel architecture,
which separates the data and control functions and
the use of tree-based multicasting scheme played an
important role in improving the performance of the
communication primitives and applications.

References
[1] J. Y. Le Boudec, "The Asynchronous Transfer

Mode: a tutorial", Computer Networks and ISDN
Systems, Vol. 24, No. 4, pp. 279-309, 1992.

[2] N. J. Moden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su,
"Myrinet: A Gigabit-per-second Local Area Net-
work", IEEE Micro, Vol. 15, No. 1, pp. 29-36,
February 1995.

[3] Gigabit Ethernet Alliance, "Gigabit Ethernet
Overview", White Paper, September 1997.

[4] D. Tolmie, and J. Renwick, "HIPPI: Simplicity
Yields Success", IEEE Network, pp. 28-32, Jan-
uary 1993.

[5] M. Lin, J. Hsieh, D. Du, and J. Thomas, "Dis-
tributed Network Computing over Local ATM
Networks", IEEE Journal on Selected Areas in
Communications, Vol. 13, No. 4, pp. 733-747, May
1995.

[6] S. Hariri, S. Y. Park, R. Reddy, M. Subramanyan,
R. Yadav, and M. Parashar, "Software Tool Eval-
uation Methodology", Proc. of the 15th Interna-
tional Conference on Distributed Computing Sys-
tems, pp. 3-10, May 1995.

[7] S. Y. Park, S. Hariri, Y. H. Kim, J. S. Har-
ris, and R. Yadav, "NYNET Communication Sys-
tem (NCS): A Multithreaded Message Passing
Tool over ATM Network", Proc. of the 5th In-
ternational Symposium on High Performance Dis-
tributed Computing, pp. 460-469, August 1996.

[8] S. Y. Park and S. Hariri, "A High Performance
Message Passing System for Network of Worksta-
tions", The Journal of Supercomputing, to appear.

[9] S. Y. Park, J. Lee, and S. Hariri, "A Multithreaded
Communication System for ATM-Based High Per-
formance Distributed Computing Environments",
Submitted to IEEE Transactions on Parallel and
Distributed Systems, 1997.

[10] S. Y. Park, J. Lee, and S. Hariri, "An Evalu-
ation Methodology for Parallel/Distributed Soft-
ware Tools", Submitted to IEEE Transactions on
Parallel and Distributed Systems, 1997.

[11] R. Butler and E. Lusk, "Monitors, message, and
clusters: The p4 parallel programming system",
Parallel Computing, Vol. 20, pp. 547-564, April
1994.

[12] V. S. Sunderam, "PVM: A Framework for Paral-
lel Distributed Computing", Concurrency: Prac-
tice and Experience, Vol. 2, No. 4, pp. 315-340,
December 1990.

[13] MPI Forum, "MPI: A Message Passing Inter-
face", Proc. of Supercomputing '93, pp. 878-883,
November 1993.

[14] B. Gropp, R. Lusk, T. Skjellum, and N. Doss,
"Portable MPI Model Implementation", Argonne
National Laboratory, July 1994.

[15] J. Flower, and A. Kolawa, "Express is not just a
message passing system. Current and future direc-
tions in Express", Journal of Parallel Computing,
Vol. 20, No. 4, pp. 597-614, April 1994.

[16] S. Gillich, and B. Ries, "Flexible, portable per-
formance analysis for PARM ACS and MPI", Proc.
of High Performance Computing and Networking:
International Conference and Exhibition, May,
1995.

[17] L. Dorrmann, and M. Herdieckerhoff, "Parallel
Processing Performance in a Linda System", In-
ternational Conference on Parallel Processing, pp.
151-158, 1989.

[18] K. P. Birman, R. Cooper, T. A. Joseph, K.
P. Kane, F. Schmuck, and M. Wood, "Isis - A
Distributed Programming Environment", User's
Guide and Reference Manual, Cornell University,
June 1990.

[19] R. Renesse, T. Hickey, and K. Birman, "Design
and performance of Horus: A lightweight group
communications system", Technical Report TR94-
1442, Cornell University, 1994.

140

[20] L. E. Moser, P. M. Melliar-Smith, D. A.
Agarwal, R. K. Budhia and C. A. Lingley-
Papadopoulos, "Totem: A Fault-Tolerant Multi-
cast Group Communication System", Communi-
cations of the ACM, Vol. 39, No. 4, pp. 54-63,1996.

[21] D. Dolev and D. Malki, "The Transis Approach to
High Availability Cluster Communication", Com-
munications of the ACM, Vol. 39, No. 4, pp. 64-70,
1996.

[22] D. K. Gifford, "Weighed Voting for Replicated
Data", Proc. of the 7th ACM Symposium on Op-
erating System, pp. 150-162, December, 1979.

Biographies

Sung-Yong Park received a BS degree in computer
science from Sogang University, Korea, in 1987 and
MS degree in computer science from Syracuse Univer-
sity, Syracuse, NY in 1994. He is currently working
toward the PhD degree in computer science at Syra-
cuse University. From 1987 to 1992, he has worked as
a research engineer at LG Electronics (former Gold-
star Telecommunication), Korea. From 1993 to 1996,
he has worked at the Northeast Parallel Architectures
Center (NPAC) at Syracuse University as a research
assistant on ISDN and ATM networking. Since 1996,
he has been with Computer Applications and Software
Engineering Center (CASE) at Syracuse University.
His research interests include high performance dis-
tributed systems, high speed networks, network com-
puting, and multimedia.

Joohan Lee received BS and MS degrees in computer
science from Sogang University, Korea, in 1993 and
1995 respectively, where he worked in artificial intelli-
gence. He is currently pursuing a Ph.D. degree in com-
puter science at Syracuse University. Since 1996, he
has worked at High Performance Distributed Comput-
ing Laboratory at Computer Applications and Soft-
ware Engineering Center (CASE) in Syracuse Univer-
sity. His research interests include high performance
distributed computing and multimedia.

Salim Hariri is currently an Associate Profes-
sor in the Department of Electrical Engineer-
ing and Computer Science at Syracuse University.
He is the director of the High Performance Dis-
tributed Computing Laboratory at Syracuse Univer-
sity (www.atm.syr.edu). He received his Ph.D. in
computer engineering from University of Southern
California in 1986and an MSc from the Ohio State uni-
versity in 1982. His current research focuses on high

performance distributed computing, high speed net-
works and protocols, network management, and per-
formance.

141

Panel Session

Is Java the Answer for
Programming Heterogenous

Computing Systems?

Panel Chair

GulA.Agha
University of Illinois, Urbana-Champaign, IL, USA

Panel Description:
One factor that complicates the programming of heterogenous computing systems is the
absence of a portable, high-performance programming language. The widespread
interest and use of Java for remote execution on the Web has demonstrated the ease
and practicality of using high-level programming for heterogeneous computing. The
focus of this panel is the use of Java for programming heterogenous computing systems
with a higher degree of both inter- and intra-machine concurrency. Representative
questions addressed by the panelists include:

Can Java deliver the potential of HC systems for high-performance, availability, etc.?

What additional constructs are needed for Java to effectively support concurrency and
distribution?

Does Java provide true portability and mobility?

Will Java be accepted by application programmers of HC systems?

What are the challenges in using machine-dependent libraries with Java?

Modular Heterogeneous System Development:
A Critical Analysis of Java

Gul A. Agha, Mark Astley, Jamil A. Sheikh, and Carlos Varela
Department of Computer Science

Univ. of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Phone: (217) 244-3087
Email: aghaQcs. uiuc. edu

Abstract
Java supports heterogeneous applications by trans-

forming a heterogeneous network of machines into a
homogeneous network of Java virtual machines. This
approach abstracts over many of the complications that
arise from heterogeneity, providing a uniform API
to all components of an application. However, for
many applications heterogeneity is an intentional fea-
ture where components and resources are co-located
for optimal performance. We argue that Java's API
does not provide an effective means for building ap-
plications in such an environment. Specifically, we
suggest improvements to Java's existing mechanisms
for maintaining consistency (e.g. synchronized,), and
controlling resources (e.g. thread scheduling). We also
consider the recent addition of a CORBA API in JDK
1.2. We argue that while such an approach provides
greater flexibility for heterogeneous applications, many
key problems still exist from an architectural stand-
point. Finally, we consider the future of Java as a
foundation for component-based software in heteroge-
neous environments and suggest architectural abstrac-
tions which will prove key to the successful develop-
ment of such systems. We drive the discussion with
examples and suggestions from our own work on the
Actor model of computation.

1 Classifying Heterogeneity
Heterogeneous computing environments arise in

practice for a number of different reasons; heterogene-
ity, however, generates the same basic set of prob-
lems: code is not portable, shared data may need to
be converted, the utilization of certain resources may
be restricted to specific nodes, and so on. Nonethe-
less, the solution for these problems depends heavily
on the types of applications that are deployed in the
heterogeneous environment. As an example, consider

the following two instances of heterogeneity:

• System Evolution: Corporate computing en-
vironments are continually evolving as outdated
systems are gradually replaced with newer, more
powerful systems. However, although the hard-
ware is constantly replaced, corporations are of-
ten dependent on monolithic applications that
must continue to run correctly in the presence
of new hardware.

• Specialized Hardware: Certain computing en-
vironments are intentionally designed to be het-
erogeneous in order to utilize specialized hard-
ware. Numeric simulations, for example, may
be executed on massively parallel systems while
monitoring and analysis is performed on graphics-
intensive workstations. As another example,
servers with high availability requirements are
placed on hardware with large pools of avail-
able resources whereas clients execute on low-end
workstations designed for single users.

The solution for an evolving corporate system de-
pending on existing software might involve the de-
velopment of a common execution environment atop
each physical node. Thus, as long as existing applica-
tions are written in terms of this uniform environment,
they will continue to be usable as future improvements
are made. On the other hand, specialized hardware
might be handled using an environment in which cus-
tomized objects, targeted for specific hardware, coor-
dinate with one another through a common interface
for interactions. Still other environments, may utilize
a hybrid of these two solutions.

Many languages and programming environments
exist for managing heterogeneous computing environ-
ments. The Java programming language is an example

0-8186-8365-1/98 $10.00 © 1998 IEEE
144

which directly addresses the technical problems cre-
ated by a heterogeneous environment. In the words of
its designers [6]:

Java is designed to meet the challenges of
application development in the context of
heterogeneous, network-wide distributed en-
vironments. Paramount among these chal-
lenges is secure delivery of applications that
consume the minimum of system resources,
can run on any hardware and software plat-
form, and can be extended dynamically.

CORBA, COM and other Object Request Bro-
ker (ORB) based environments represent so called
"middle-ware" solutions. That is, rather than address
heterogeneity directly, these environments provide a
mechanism for allowing interactions between applica-
tions executing in heterogeneous environments.

In general, we may characterize the Java approach
as the transformation of a heterogeneous network of
machines into a homogeneous network of Java vir-
tual machines. Java makes no effort to abstract over
network features or cater to highly-optimized (but
non-portable) implementations. However, Java does
greatly simplify network access and provides a native
method interface as a loop-hole for incorporating non-
Java code. On the other hand, ORB-based systems
make little or no effort to transform heterogeneous
systems into homogeneous ones. Instead, ORBs solve
the problem of interactions between heterogeneous en-
vironments. While such a solution limits mobility, ap-
plications may directly access high-performance im-
plementations executing on dedicated hardware.

Both the Java and ORB-based solution have their
merits. However, we argue that in order for Java
to become "the answer" for programming heteroge-
neous computing systems, it must incorporate many
of the features already present in ORBs. In particular,
to answer the challenge of high-performance systems,
Java must make local, optimized servers more avail-
able to Java clients. Currently, there are joint efforts
between Sun and OSF to link CORBA and Java for
precisely this reason [11]. However, we believe that
while Java should be more ORB-like, it should also
overcome many of the weaknesses of existing ORBs
such as the inability to customize interactions between
ORB-served objects. Moreover, to effectively support
concurrency and distribution, we claim that Java re-
quires more powerful constructs for controlling syn-
chronization and coordination between distributed en-
tities. We find existing Java synchronization (e.g. the
synchronized keyword) to be too low-level and un-
suitable for distributed needs. The lack of control over

resource management tasks such as thread scheduling
is also undesirable.

We envision Java as evolving to support distributed
collections of objects executing over heterogeneous
computing environments. In such an environment,
application developers may specify services consisting
of (possibly) distributed collections of Java and na-
tive objects. Services would be composed with poli-
cies which manage both interactions as well as deploy-
ment. These policies would encapsulate many of the
solutions currently employed for heterogeneous envi-
ronments: protocols which marshal arguments, rout-
ing mechanisms which link client requests to optimized
objects executing on custom hardware, and so on.

In the next section, we discuss some weaknesses of
the current version of Java as well as potential solu-
tions. In Section 3, we describe features of ORB-based
models which we believe should be incorporated into
Java. In addition, we propose solutions for a Java-
ORB system which overcomes many of the current
weaknesses of the ORB-based model. In Section 4, we
present a future vision of Java as a tool for implement-
ing large grain coordination and management for het-
erogeneous applications. We describe lessons learned
from our research in Actor [2] systems and propose
several abstractions to be incorporated in future Java
developments. We present concluding remarks in Sec-
tion 5.

2 Heterogeneity in Java
Software executing in a heterogeneous environment

is naturally segmented into a collection of distributed,
coordinating objects. As a result, desirable system
features such as ease of management and high per-
formance depend on the ability to specify error-free
coordination mechanisms which exploit available con-
currency. Java uses a passive object model in which
threads and objects are separate entities. As a re-
sult, Java objects serve as surrogates for thread coor-
dination and do not abstract over a unit of concur-
rency. We view this relationship between Java objects
and threads to be a serious limiting factor in the util-
ity of Java for heterogeneous systems. Specifically,
while multiple threads may be active in a Java ob-
ject, Java only provides the low-level synchronized
keyword for controlling object state, and lacks higher-
level linguistic mechanisms for more carefully charac-
terizing the conditions under which object methods
may be invoked. Java programmers often overuse
synchronized and deadlock is a common bug in
multi-threaded Java programs.

Java's passive object model also limits mechanisms
for thread interaction. In particular, threads ex-

145

change data through objects using either polling or
wait\notif y pairs to coordinate the exchange. In de-
coupled environments, where asynchronous or event-
based communication yield better performance, Java
programmers must build their own libraries which im-
plement asynchronous messaging in terms of these
primitive thread interaction mechanisms. Active ob-
jects, on the other hand, greatly simplify such coordi-
nation and are a natural atomic unit for system build-
ing, but no such alternative is available in the current
version of Java.

Finally, we find Java's position on thread schedul-
ing to be inadequate. While it is reasonable to not
require applications to use fairly scheduled threads,
we believe that system builders should have the op-
tion of selecting fair scheduling if necessary. The lack
of fair threads is a particularly devious source of race
conditions which makes debugging multi-threaded ap-
plications all the more difficult.

In the remainder of this section, we elaborate on
each of these criticisms and describe potential solu-
tions.

2.1 Linguistic Support for Synchroniza-
tion

Synchronization in Java is necessary to protect
state properties associated with objects. For example,
the standard class java.util.Hashtable defines a syn-
chronized put method for adding key-value pairs, and
a synchronized get method for hashing keys. Both
methods are synchronized to avoid corrupting state
when methods are simultaneously invoked by sepa-
rate threads. This mechanism works well for classes
like Hashtable because methods in these classes have
relatively simple behavior and do not participate in
complex interactions with other classes.

A side-effect of the convenience and simplicity of
synchronized, however, is that it tends to be over-
used by application programmers: when software de-
velopers are not certain as to the context in which
a method may be called, a rule of thumb is to make
it synchronized. This approach guarantees safety in
Java's passive object model, but does not guarantee
liveness and is a common source of deadlock. Typ-
ically, such deadlocks result because of interactions
between classes with synchronized methods. For ex-
ample, consider the threads tl and t2 in Figure 1. The
thread tl executes the synchronized method m which
attempts to invoke the synchronized method n in class
B. Similarly, the thread t2 executes the synchronized
method n which attempts to invoke the synchronized
method m in class A. In a trace in which both threads

class A implements Runnable{
B b;
synchronized void m() {

...b.n();...
}
public void run() { m(); }

}

class B implements Runnable{
A a;
synchronized void n() {

...a.m();...
}
public void run() { n(); }

}

class Test {
public static void main(String[] args){

A a = new A();
B b = new B();
a.b = b;
b.a = a;
Thread tl = new Thread(a).start();
Thread t2 = new Thread(b).start();

>
>

Figure 1: A simple example of thread interactions
which may result in deadlock.

first acquire their local locks, this simple example re-
sults in a deadlock.

We view the synchronized keyword as too low-
level for effective use by application developers.
Specifically, requiring developers to implement sophis-
ticated synchronization constraints in terms of low-
level primitives is error prone and difficult to debug.
Synchronizers [4, 3] are linguistic abstractions which
describe synchronization constraints over collections
of actors (see Figure 2). In particular, synchroniz-
ers allow the specification of message patterns which
are associated with rules that enable or disable meth-
ods on actors. Synchronizers may also have state and
predicates may be defined which use state in order to
enable or disable methods.

Note that synchronizers are much more abstract
than the low-level synchronization support provided in
Java. Synchronizers may be placed on individual ac-
tors as well as overlapping collections of actors. More-
over, separating synchronization into a distinct lin-
guistic abstraction, rather than embedding it in class

146

Key:

•

Constrained
object groups

Object

Atomicity constraints

Disabled pattern

Enabled patterns

Messages

Figure 2: Synchronization constraints over a collection of actors.

definitions, allows constraints to be reused over differ-
ent classes. As a simple example of how synchronizers
may be specified linguistically, consider two resource
managers, adml and adm2, which distribute resources
to clients. We wish to place a bound on the total num-
ber of resources allocated collectively by both man-
agers. This can be achieved by defining the synchro-
nizer given in Figure 3. The field max determines the
total number of resources allocated by both managers.

We believe that heterogeneous environments, in
which a wide variety of synchronization properties will
be required, argue for an approach similar to synchro-
nizers rather than the current Java solution of embed-
ding low-level synchronization within classes.

2.2 Flexible Interactions
Distributed, heterogeneous systems require the

ability to asynchronously participate in interactions in
order to take advantage of available local concurrency.
Because Java uses a passive object model, threads on a
single virtual machine may interact either by polling
on shared objects, or using wait\notify. Although
these heavily synchronized methods of interaction are
the most common in Java applications, asynchronous
interactions may be implemented by spawning extra
threads to handle interactions (see Figure 4).

As in the case of synchronization discussed in the
last section, requiring the application developer to ex-
plicitly code such interaction mechanisms is prone to
error. Asynchronous interactions are an important ba-

sic service that we believe should be standard in a
heterogeneous programming environment. Thus, we
argue for higher-level linguistic support in Java which
provides such interaction mechanisms.

We believe that asynchronous interactions are best
supported by an active object model such as that pro-
vided by actors. In such a model, method invoca-
tions are buffered in a mailbox and handled in a seri-
alized fashion by a dedicated master thread. Active
objects are thus a natural unit of concurrency and
synchronization. Moreover, such objects need not be
strictly serialized: intra-object concurrency may be
added by allowing the master thread to spawn new
threads which access specific internal methods. This
form of intra-object concurrency differs from that in
Java in that the master thread controls the conditions
under which multiple methods may be active, rather
than allowing arbitrary threads to execute in an ob-
ject.

2.3 Resource Control
A final concern with using Java to develop hetero-

geneous systems is the lack of effective Java support
for controlling system resources. A particular exam-
ple is the ability of application programmers to control
thread scheduling. While the Java language specifica-
tion [5] encourages language implementors to write fair
schedulers, this rule is not enforced. Hence, different
environments may provide different schedulers empha-
sizing particular applications. A common solution is

147

AllocationPolicy(adml,adm2,max)
{ init prev := 0

prev >= max disables (adml.request or adm2.request) ,
(adml.request or adm2.request) updates prev := prev + 1,
(adml.release or adm2.release) updates prev := prev - 1

}

Figure 3: A Synchronizer that enforces collective bound on allocated resources.

class C {
void m(){...}
void am(){

Runnable r = new Runnable {
public void run()-[

m();

}
>
new Thread(r).start();
// Code to continue executing
// after asynchronous method call

Figure 4: A Java class which uses separate threads to
handle interactions and execute local behavior.

to favor threads which are responsible for maintaining
graphical user interfaces. However, while such an ap-
proach may be feasible for certain applications, other
applications may fail as a result. Unfortunately, Java
provides no mechanism for selecting features of the
scheduler, leaving the application developer with the
task of implementing custom scheduling if needed.

One possible solution is to include standardized
thread scheduling libraries which may be invoked by
applications desiring more control over scheduling.
However, a user-level approach may not apply to
certain critical threads in a system. For example,
Java's RMI [12] package handles remote invocations
using a separate, non-user controlled thread which in-
vokes methods on user-defined objects. Because this
thread is not under user control (and hence not sub-
ject to a user-level scheduling solution), unexpected
pre-emption and deadlock may result1. As a specific
solution, we favor the inclusion of lower-level policy se-

1It is possible to "hack" around this problem by modifying
the RMI-created thread's properties once within a user-defined
method. However, this may have unexpected side-effects since
the thread was created for use by RMI.

lection which allows application developers to specify
their scheduling needs. At a more general level, ap-
plication developers should be able to specify abstract
policies which govern more general classes of resources
(see Section 4).

3 Object Request Brokers
As of JDK 1.2, Java will incorporate an interface

to the Common Object Request Broker Architecture
(CORBA). The inclusion of ORB-based technology in
Java indicates the widespread acceptance of Java as
a platform for distributed computing, as well as the
acceptance of CORBA as an appropriate technology
for building component-based systems. In consider-
ing this recent combination of technologies, it is in-
teresting to compare the Java Transaction Services
(JTS) to the Object Transaction Services (OTS) used
in CORBA. These two services are used to manage is-
sues which arise in handling interactions between dis-
tributed objects. For example, marshaling data types,
handling remote references, etc.

The design decisions evident in the JTS and OTS
are a symptom of the relevant strengths and weak-
nesses of Java and CORBA, and attempt to combine
the best of both worlds in a single package. Both
Java and CORBA have their strong points and both
have been used to develop successful applications. As
discussed in the introduction, Java is a rich language
with many features designed to simplify programming
in heterogeneous environments. However, Java does
not provide extensive support for matching clients to
servers based on a service description. CORBA, on
the other hand, facilitates service location and in-
teraction in a heterogeneous environment. In par-
ticular, CORBA allows service description in terms
of an Interface Definition Language (IDL), and pro-
vides mechanisms for locating services based on IDL
descriptions. IDL specifications are an abstract spec-
ification of service which are independent of low-level
system features such as resource requirements, proce-
dural behavior, control-flow and so-on. Unfortunately,
CORBA limits the types of data that can be commu-

148

nicated in interactions, and prohibits the passing of
object references which is required to take advantage
Java's more powerful features. The combination of
Java and CORBA is intended to alleviate many (but
not all) of these problems, while carrying over as much
functionality as possible from existing remote interac-
tion mechanisms in Java and CORBA.

In the remainder of this section we discuss some of
the motivation behind combining ORB-based technol-
ogy with Java. While we favor this marriage of tech-
nologies, we argue that such a combination still lacks
many important features necessary for effective het-
erogeneous programming. Specifically, CORBA and
its relatives still provide a closed model for interac-
tions, and force application developers to embed in-
teraction protocols within client and server code. En-
cryption protocols, for example, can not be defined
as a property of the connection. Instead, both the
client and server must embed appropriate endpoints
for the protocol within the existing code for handling
interactions. We propose an alternative approach in
which these types of protocols may be factored out
of application code and specified independently on a
per-interaction basis.

3.1 Why Add ORB Technology?
Providing services among a collection of objects ac-

cessible via a shared network requires a common inter-
action layer which links clients, which request services,
to servers, which implement those services. CORBA
and related ORBs enable the construction and inte-
gration of distributed applications by providing such
a layer. In particular, CORBA allows the dynamic
placement and update of objects which implement ser-
vices in a distributed, heterogeneous network. More-
over, these objects may be accessed using a common
data exchange framework with many features critical
to the development of heterogeneous systems. These
features include:

• Multi-threading
• Debugging and Network Monitoring
• Connection Groups
• Synchronous and Asynchronous calls to servers
• Virtual Callbacks from the server
• Asynchronous operation
• Location Brokering for location transparency
• Naming Service t
• Event Service
• Life Cycle Service f
• Transaction Service f
• Concurrency Control Service
• Relationship Service f

• Query Service f
• Licensing Service
• Security Ser idee f
• Object Trader Service f

Those items marked with a f indicate features that
are present in the JTS as well as the OTS. A detailed
description of each of these features is not within the
scope of this paper. We refer the interested reader to
[7] for more details.

In addition to the features described above, ORBs
provide several other features which simplify system
development. Among these are the ability to quickly
design and implement larger object oriented systems,
and a communication backplane with consistent se-
mantics regardless of whether a system executes on a
heterogeneous network or a single machine. However,
as we discussed in the introduction, ORBs make no
attempt to transform heterogeneous systems into ho-
mogeneous environments. As a result, although ORBs
have been used for some time, it is only recently that
issues such as load balancing, security, and transac-
tions have received appreciable attention.

3.2 Other ORB-based Systems
CORBA is the most well-known ORB and is based

on the Object Management Group's (OMG) Object
Model. This model is backed by a large consortium of
commercial system developers and hence has a signifi-
cant role to play in the future of system development.
However, although CORBA has achieved widespread
success, several other systems have been developed
which support a variety of object models (including
CORBA).

The Top-ORB system from NCR will allow the con-
nection of CORBA objects, Java Beans, DCOM ob-
jects and many other type of objects using the Top
End framework as the underlying infrastructure. Top
End is part of the Top End Service Interface Repos-
itory (TESIR) model designed by NCR for support-
ing access to legacy applications, and which defines a
general object service mechanism [1]. NCR plans to
launch the underlying infrastructure of Top-ORB in
1998.

The Solaris NEO system from Sun is similar to
CORBA and designed around the same object model.
JOE is another Sun product which provides for dis-
tributed client-server applications, and complies with
the CORBA 2.0 standard. While supporting CORBA
standards, both NEO and JOE also allow for the con-
nectivity of Java applets to applications running on
distributed servers. In particular, the object request
broker used in JOE may be automatically downloaded

149

into web browsers, and used to connect Java applets
to remote NEO objects. Another useful feature pro-
vided by JOE is an IDL compiler which generates Java
classes from interface definitions of CORBA objects.

Finally, Java's Remote Method Invocation (RMI)
provides for more primitive client-server functionality.
In particular, RMI is not CORBA compliant, but does
support interoperability among Java objects in dis-
tributed environments. However, RMI does not pro-
vide any explicit support for incorporating legacy (i.e.
non-Java) objects. Such objects may only be included
by adding a Java front-end which interacts with RMI.

3.3 Adding ORB Functionality to Java
The current release of Java supports RMI and Jav-

aBeans and hence does not allow for integration with
CORBA-like models of object systems. Despite the
various other benefits of ORBs, however, ORB ven-
dors including the OMG and Sun have placed techni-
cal emphasis on incorporating several object models
within a single framework, rather than attempting to
increase the functionality of ORB models as a whole.
This trend is expected to continue as no single stan-
dard (i.e. object model) has been adopted for ORB-
based systems.

Thus, while the next release of Java will provide
greater flexibility in terms of incorporating existing
object models, several key problems with ORBs are
inherited with the new approach. Specifically, remote
procedure call (RPC) remains as the primary mech-
anism for building distributed interactions. As with
the synchronized keyword discussed in the previ-
ous section, RPC is often abused in the context of
distributed interactions and leads to heavily synchro-
nized, and therefore poorly performing applications.
We have already argued for asynchronous modes of
interaction in the previous section. More importantly,
however, ORBs currently do not provide a mechanism
for flexible specification of connection properties. Ap-
plications requiring specific policies must either use a
custom coded ORB implementation, or embed policy
code within clients and servers. Both approaches are
error-prone and make systems less modular.

Our research in Actors has lead to a novel ap-
proach for separating communication policies from ap-
plication code. Communicators [10] rely on a meta-
architecture to abstract over the communication be-
havior of Actors. In particular, actor interactions are
represented abstractly in terms of three operations
(see Figure 5):

• A transmit operation is invoked when an actor
attempts to send a message;

• A deliver operation is invoked when the system
receives a message on behalf of an actor; and,

• A dispatch operation is invoked when an actor is
ready to process the next message.

The communication behavior of actors are cus-
tomized by installing meta-actors which redefine one
or more of the basic actor operations. This technique
may be used to implement a wide variety of protocols.
For example, consider a simple protocol for imple-
menting a FIFO channel between two actors. Figure 6
gives a Communicator specification which defines such
a protocol.

Communicators effectively separate protocol code
from application code allowing system designers to
pick and choose the protocols necessary for inter-
actions, without complicating code development by
changing clients and servers. We believe that an ORB-
Java combination must include similar abstractions in
order to be an effective tool in distributed, heteroge-
neous environments.

4 Component-Based Systems
In the previous sections we have discussed the near-

term limitations of Java as a tool for building hetero-
geneous systems. In this section, we present a future
vision of software for heterogeneous systems and the
features we expect to be incorporated into Java to
make it a viable development environment.

The next logical step for component-based hetero-
geneous system development is higher-levels of gran-
ularity in which distributed collections of objects are
managed as individual components and services. Cur-
rently, this is an active area of research in the soft-
ware architecture community in which such systems
are viewed as consisting of a collection of components,
which encapsulate computation, and a collection of
connectors, which describe how components are inte-
grated into the architecture [9]. This separation of
design concerns favors a compositional approach to
system design; a methodology which is particularly
important when specifying architectures for hetero-
geneous distributed systems. Heterogeneity, failure,
and the potential for unpredictable interactions yield
evolving systems which require complex management
policies. Allowing architectural specifications in which
these policies are separated into abstract connectors
has clear advantages for system design, verification
and reuse.

Note that policies for managing such systems (e.g.
reliability protocols, load balance and placement, se-
curity constraints, coordination, etc.) not only assert

150

Transmission

V A j

Delivery Dispatch

Causal Connection
(Reflection)

Standard Message

Non-reflecting send

Message Contents

Figure 5: Customizing the communication operations of an actor. Actors B and C are meta-level customizations
of actor A. Each operation of A results in an operation on B and/or C.

properties on the connections between component in-
terfaces, but must also enforce constraints on how re-
sources are allocated to components. For example, a
reliable server may be developed by adding a backup
to an existing server and installing an instance of the
primary backup protocol. In addition to recording in-
teractions at the backup, the primary backup protocol
must also ensure that the backup and server use sep-
arate, failure-independent resources (e.g. they must
execute on separate processors). The resulting collec-
tion of policies is quite different from those required to
manage interactions in, for example, ORB-based mod-
els, and therefore requires new abstractions with the
goal of fitting components to architectural contexts,
rather than defining interconnections between com-
ponent interfaces. Specifically, component interfaces
abstract over functionality but not resource manage-
ment. In the remainder of this section, we elaborate
further on this po'int, and describe recent research us-
ing the Actor model which proposes a solution to these
problems.

4.1 Extending Component Interfaces and
Architectural Policies

Current notions of component interfaces are based
on a functional representation of the services provided
by a component. This abstraction is a natural exten-
sion of the object model. However, when placing an
object in a heterogeneous architecture, this model fails
to describe many important features such as:

• Locality properties: The distribution and com-
munication behavior of internal computational el-
ements.

• Resource usage patterns: Distinctions such as
computation bound versus I/O bound elements,
degree of concurrency, hardware dependencies,
and the resources corresponding to critical and
transient state.

• Inter-level dependencies: The relationships
between management policies at various levels of
granularity.

In general, components should provide a comprehen-
sive model of architectural context: the relationships
between component behavior and architectural fea-
tures such as those described above. A natural so-
lution would be to extend current interfaces with ad-
ditional functional entry points for selecting, for in-
stance, placement policies, reliability features (e.g.
fault-tolerance protocols), and so on. However, such
an approach complicates component code by em-
bedding orthogonal, context-specific concerns. The
more preferable approach would be to design gener-
alized components which may be customized to par-
ticular architectural contexts. Connectors would en-
capsulate these customizations, preserving composi-
tional system development. Note that such a solu-
tion solves both sides of the heterogeneity problem:
general components may be adapted to new environ-
ments by composing them with appropriate policies,
while hardware-sensitive components may be used in
a general context by adding policies which guarantee
appropriate resource allocation to this class of compo-
nents.

A key challenge for specifying more general,
resource-based policies is the problem of compos-
ing policies while respecting object-integrity. The
connection-oriented customizations we described in

151

Manager Promote Liaison Interactions Between
Components

protocol FIFO-channel {

Installation asymmetric;
Isolated-Interaction;

role local-client { }

role client {
int tag;

method init() {
tag = 0;

}

method out(msg m) {
server.taggedJn(tag, m)
tag = tag + 1;

}}

role server {
MsgBag delays;
int intag;

method init() {
intag = 0;

method tagged.in(int t.msg m) {
msg next;

if (t == intag) {
next = m;
while (next) {

deliver next;
intag = intag + 1;
next = delays.get(intag);

}
} else delays.put(t.m);

}}

Figure 6: The Communicator specification for a FIFO
channel between actors.

Encapsulated Interaction

Figure 7: Components are an encapsulated collection
of actors. Liaisons are a subset of the collection which
may participate in external interactions. The manager
negotiates new connections and promotes actors to li-
aisons.

Section 3 avoid this problem because they operate
strictly on component interfaces. However, specifying
policies which control the allocation of resources may
require access to component internals. Thus, abstrac-
tions which support these policies must be carefully
designed to avoid exposing object features which are
not normally exported through an interface. We de-
scribe our model for such policy composition in the
next section.

4.2 Specifying Policies for Connection
and Context

In order to reason about architectural context, we
require a model of component computation which rep-
resents component behavior in terms of interactions
with a set of default system services. Relative to com-
putational behavior, the semantics of these services
will remain the same regardless of architectural con-
text. However, the semantics of the implementation
of these services will vary as components are placed in
different architectures. This distinction allows com-
positional development, in which generalized compo-
nents are fitted to particular architectures, not by
changing their computational behavior (which would
break encapsulation), but by customizing the interac-
tions between components and the particular imple-
mentation of underlying services.

We build on the actor model extensions described in
previous sections by modeling components as encap-
sulated collections of actors in which a distinguished
subset, called liaisons, are used for interactions with
other components (see Figure 7). Interactions be-
tween liaisons in different components define compo-
nent connection properties. In particular, by cus-
tomizing these interactions, specific protocols may be
enforced. Moreover, the architectural context of a
component is represented by the service invocation be-
havior of internal (i.e. non-liaison) actors. Thus, the

152

collective behavior of a component relative to architec-
tural features is captured by the interactions through
its liaisons and the resource access patterns of its inter-
nal actors. Both behaviors are represented uniformly
in terms of invocations of the basic actor primitives,
providing a clean representation for architectural cus-
tomization.

Components are customized by designing policies
which define how components access a collection of
basic system services (see Figure 8). Liaisons are the
only externally visible elements of a component. Thus,
connectors which specify protocols between compo-
nents are naturally represented in terms of customiza-
tions applied to individual liaisons. However, con-
nectors which specify resource management policies
are more challenging because they customize inter-
nal component elements. In particular, we would
like to specify arbitrary customizations of internal ac-
tors while respecting the encapsulation properties of a
component. To this end, policies are constructed from
two types of meta-level behavior:

• Roles: A role is a specific customization applied
to one or more liaisons. Roles are used to im-
plement protocols on connections between com-
ponents. For example, an encryption protocol
may be implemented by customizing the "send"
behavior of one liaison (e.g. to encrypt outgoing
messages) and the "receive" behavior of another
(e.g. to decrypt incoming messages). Roles are
installed explicitly on a set of liaisons.

• Context: A context is a single meta-level be-
havior which customizes all actors within a com-
ponent and is automatically installed on any dy-
namically created actors. Contexts are used to
manage the 'allocation of resources. For exam-
ple, a local load balancing strategy may be im-
plemented by customizing the "create" behavior
of all actors within a component.

Because roles are installed on liaisons, there is no
danger of compromising object integrity as liaisons
are already exported by components. Contexts, on
the other hand, must be installed on internal compo-
nent members. However, the structure of the meta-
level architecture and the encapsulation properties of
components prohibit contexts from destroying inter-
nal component elements or exporting non-liaison ad-
dresses. Specifically, a meta-level customization may
only modify actor interactions with system services,
and may not change the internal behavior of an ac-
tor. Similarly, regardless of meta-level customizations,

managers control component namespaces and deter-
mine which actors may participate in external inter-
actions.

A remaining open issue is the question of whether or
not policies are composable (both with components or
with other policies). In particular, as component com-
positions encompass larger systems, there is a greater
potential for detrimental interactions between existing
policies on sub-components. We are currently in the
process of extending our abstractions to model and
reason about such interference.

5 Conclusion
We have discussed the Java approach to solving the

heterogeneity problem and identified several areas for
improvement in the current release of Java. In par-
ticular, we claim that relative to the needs of het-
erogeneous computing, current synchronization mech-
anisms in Java are too low-level and hence prone to
misuse. Similarly, we argue that Java does not pro-
vide enough control over resource usage, particularly
threads, and that existing interaction mechanisms be-
tween Java tasks (i.e. threads) are too heavily synchro-
nized and lack an alternative communication medium
such as asynchronous messaging. We presented sev-
eral examples from our own work on Actors which
demonstrate the utility of more powerful synchroniza-
tion constructs.

We have considered the recent marriage between
Java-based computing and existing CORBA-like sys-
tems in the context of heterogeneous computing.
While incorporating ORB-based technology into Java
is a significant step, we argue that ORBs are still too
closed with respect to interaction policies. We pre-
sented several examples of policies which may be fac-
tored out of object code and applied to the endpoints
which implement the connection itself. Such an ap-
proach simplifies debugging and makes components
more reusable. Moreover, system designers may select
only those policies appropriate to their environment,
rather than having to pay the price of layering policies
atop an existing interaction mechanism.

Finally, we discussed the future of Java in the
realm of component-based software development and
described our preliminary work on policies for resource
management in a distributed, heterogeneous setting.
We model components as hierarchical collections of
actors with interfaces defined as dynamic sets of ac-
tors called liaisons. Components are customized ac-
cording to the needs of a particular environment by
accessing an open implementation of the interface be-
tween actors and their underlying system services. We
factor customizations into two categories: roles are ex-

153

Connector Managing
Resource Usage

Invoke Distributed
Services

Physical Node

Figure 8: Components are customized by policies which redefine interactions between liaisons, and the invocation
of basic system services.

plicit customizations of liaisons, while contexts are im-
plicit customizations of all actors within a component.
Roles allow the enforcement of interaction policies over
connections between components. Contexts support
component-wide resource management and coordina-
tion. Composition at the meta-level allows multiple
customizations to be applied to a single component.

Despite our reservations, we believe that Java is an
important step towards developing appropriate tools
for building heterogeneous systems. In particular, we
have used Java as the development environment for
a prototype actor system which incorporates many of
the abstractions described above [8].

Acknowledgments

We thank past and present members of the Open
Systems Laboratory who aided in this research. The
research described has been made possible in part by
support from the National Science Foundation (NSF
CCR-9619522) and the Air Force Office of Science Re-
search (AF BASAR 2689 ANTIC).

References
[1] YOU'RE THE TOP: A research note

from the standish group. Available at
http://www.ncr.com/product/integrated
/analyst jreports/standish-your/index.htm.

[2] G. Agha. Actors: A Model of Concurrent Compu-
tation in Distributed Systems. MIT Press, 1986.

[3] S. Fr0lund. Coordinating Distributed Objects: An
Actor-Based Approach to Synchronization. MIT
Press, 1996.

[4] S. Fr0lund and G. Agha. Object-Based Models
and Languages for Concurrent Systems, chapter
Abstracting Interactions Based on Message Sets.
Lecture Notes in Computer Science. Springer-
Verlag, 1995.

[5] J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification. Addison Wesley, 1996.

[6] J. Gosling and H. McGilton. The Java language
environment: A white paper. Technical report,
Sun Microsystems Inc., May 1996. Available at
http://www.j avasoft.com/docs
/white/index.html.

[7] Object Management Group. CORBA ser-
vices: Common object services specification
version 2. Technical report, Object Man-
agement Group, June 1997. Available at
http://www.omg.org/corba.

[8] Open Systems Lab. The actor foundry:
A java-based actor programming environ-
ment. Available for download at http://www-
osl.cs.uiuc.edu/~astley/foundry.html.

[9] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross,
D. M. Young, and G. Zelesnik. Abstractions
for software architecture and tools to support

154

them. IEEE Transactions on Software Engineer-
ing, April 1995.

[10] D. C. Sturman. Modular Specification of Interac-
tion Policies in Distributed Computing. PhD the-
sis, University of Illinois at Urbana-Champaign,
May 1996.

[11] The Java Team. JDK 1.2
Beta specification. Available at
http://developer.javasoft.com/developer/
early Access/jdkl2.

[12] The Java Team. Rmi specification. Available at
ftp://ftp.javasoft.eom/docs/jdkl.l/rmi-spec.ps.

Biography

Gul Agha is director of the Open Systems Labora-
tory at the University of Illinois at Urbana-Champaign
and an associate professor in the Department of Com-
puter Science. He serves as editor-in-chief of IEEE
Concurrency, associate editor of ACM Computing
Surveys, and associate editor of Theory and Practice
of Object Systems. His research interests include mod-
els, languages and tools for parallel computing and
open distributed systems. Agha has received the In-
centives for Excellence Award from Digital Equipment
Corporation in 1989, and he was named a Naval Young
Investigator by the US Office of Naval Research in
1990. He received an MS and PhD in computer and
communication science, and an MA in psychology, all
from the University of Michigan, Ann Arbor, and a
BS in an interdisciplinary program from the Califor-
nia Institute of Technology.

Mark Astley is a doctoral candidate and research
assistant in the Open Systems Laboratory at the Uni-
versity of Illinois at Urbana-Champaign. His research
interests include visualization, and architecture de-
scription languages and environments for open dis-
tributed systems. He received an MS in 1996 in com-
puter science from the University of Illinois at Urbana-
Champaign, and a BS in computer science and BS in
mathematics, magna cum laude with honors, in 1993
from the University of Alaska - Fairbanks.

Jamil A. Sheikh is a visiting scholar in the Open
Systems Laboratory at the University of Illinois at
Urbana-Champaign and doctoral candidate at Quaid-
e-Azam University - Islamabad. Previously he served
as a Computer Systems Engineer at the Department
of Nuclear Power. His research interests include

real-time distributed computing, concurrent object-
oriented programming and high-speed computer net-
works. He received an MS in 1994 in Nuclear, Com-
puter & Control Engineering from Quaid-e-Azam Uni-
versity, and a BS in Computer Systems Engineering in
1992 from NED University - Karachi.

Carlos Varela is a doctoral candidate and research
assistant in the Open Systems Laboratory at the Uni-
versity of Illinois at Urbana-Champaign. His research
interests include web-based applications and concur-
rent programming in Java. He received an MS in 1997
in computer science, and a BS in 1992 in computer sci-
ence with honors, both from the University of Illinois
at Urbana-Champaign.

155

Fault-Tolerance: Java's Missing Buzzword

Lorenzo Alvisi
Department of Computer Sciences
The University of Texas at Austin

Austin TX 78712

Abstract
Java has been described as a simple, object-oriented,

distributed, interpreted, robust, secure, architectural
neutral, portable, high-performance, multithreaded and
dynamic language, prompting some to describe it as
the first buzzword-compliant programming language.
We submit that to deserve full certification—and in
the process establish itself as the natural choice for
developing large-scale distributed applications—Java
misses a crucial buzzword: fault-tolerant. We outline
some promising research directions for building reli-
able Java-based applications.

1 Introduction
Java may well be the most exciting technology

of our time [2], but the excitement never appeared
to leave its proponents speechless. Simple, object-
oriented, distributed, interpreted, robust, secure, ar-
chitectural neutral, portable, high-performance, mul-
tithreaded and dynamic [5]—these are some of the
buzzwords that have been used to characterize Java
since its first introduction. The vision of enterprise
computing—a seamless integration of data and com-
munication across thousands of machines to provide
better services to citizens and greater opportunities
to businesses—seemed to be at hand.

Remarkably, Java has substantially fulfilled many
of the promises behind these buzzwords. Today, Java
stands unchallenged in its ability to support true
platform-independence and in its integration of secu-
rity mechanisms. In addition, Java provides adequate
support for distribution through Remote Method In-
vocation and run-time loading of classes. Performance
is also becoming acceptable, thanks to the develop-
ment of ever more sophisticated Just-in-Time compil-
ers.

And yet, we submit that Java will fall short of what
is required to realize the vision of enterprise computing
until it explicitly addresses a conspicuous buzzword
that it has so far overlooked: fault-tolerance.

2 Fault-Tolerance: the Ugly Duckling
Building distributed applications forces one to con-

sider the possibility of partial failures. In fact, the
kind of wide-area network applications that are likely
to be programmed in Java are more vulnerable to
partial failures than the relatively constrained appli-
cations that are common today. Furthermore, even
as languages such as Java make it easier to develop
distributed applications and to launch them on the
Internet, they do not relieve programmers from the
challenge of writing correct distributed algorithms. As
distributed applications become common-place, we en-
vision that fault-tolerance will become a pressing con-
cern for many more application users and developers.

That Java makes no explicit provisions for fault-
tolerance may be partly due to historical reasons: Java
was originally conceived as a language for developing
software for consumer electronics operating in an envi-
ronment much more reliable than the Internet. Also, it
probably does not help that fault-tolerance is hardly
a source for sexy demos. Finally, in a marketplace
that rewards the products that reach the market first,
fault-tolerance is bound to be an afterthought at best.

There is no fundamental reason, however, that pre-
vents Java from addressing fault-tolerance effectively.
Indeed, Java's architecture provides an excellent op-
portunity to address the issue at the core of all fault-
tolerance techniques: controlling nondeterminism.
2.1 Fault-Tolerance and Nondeterminism

If processes were deterministic, then tolerating fail-
ures would be trivial: a faulty process could be recov-
ered simply by restarting it from its initial state and
rolling it forward. In general, however, the state of a
process depends on events that are non-deterministic.
To recover a failed process, it is necessary to repro-
duce the non-deterministic choices that the process
made before failing. For instance, in an asynchronous
distributed system in which processes communicate by
exchanging messages, the state of a process depends
on the order in which a process delivers messages,
which in turn depends on many factors, including pro-

0-8186-8365-1/98 $10.00 © 1998 IEEE
156

cess scheduling, routing, and flow control. Unless the
order of message delivery is somehow recorded and
reproduced during recovery, it will not in general be
possible to restore a failed process to a state that is
consistent both with the states of the other processes
in the system and with the external environment.

Other examples of non-deterministic events that
may affect a process state include preemptive schedul-
ing of threads, readings of the processor clock, and
responding to signals.

3 Fault-Tolerance in Java
There are two obvious levels at which non-

deterministc events can be captured in Java:

1. At the virtual machine level

2. At the method invocation level

Capturing Nondeterminism in the JVM The
idea of using a virtual machine to manage nonde-
terminism has been first explored by Bressoud and
Schneider [1], who implemented a virtual machine
for HP's PA-RISC architecture. In their scheme,
fault-tolerance is achieved by replicating the com-
putation on two independently failing processes, us-
ing a well-known technique called the state-machine
approach [3]. To make this technique work, how-
ever, the two replicas must be deterministic. To
ensure this, Bressoud and Schneider identified the
non-deterministic commands processed by their vir-
tual machine and designed protocols that guarantee
that any non-deterministic choice is resolved identi-
cally at both replicas. For instance, their implemen-
tation guarantees that virtual-machine interrupts are
delivered at the same point in the execution of both
replicas, and that instructions that read the time-of-
day clock return the same values for both replicas.

In Java, a virtual machine is already available for
free. Typical implementations of the Java Virtual Ma-
chine (JVM), however, do not support deterministic
replication of non-deterministic commands. Indeed,
it is not obvious which non-deterministic commands
are executed by the JVM, although it is reasonable
to expect that many will occur at the Java Native In-
terface. One expects that once these commands have
been identified, the techniques developed in [1] and [4]
could be used to guarantee the reproducibility of non-
deterministic choices during recovery.

Capturing Nondeterminism through Method
Logging The logging of message ordering informa-
tion described above can be generalized easily to

distributed object computation systems. Instead of
recording the messages delivered to a process, method
logging protocols record the method invocations made
upon an object. Not only do most of the mes-
sage logging mechanisms apply to method logging,
but method logging provides opportunities to improve
upon these mechanisms.

Two of the main reasons that make capturing non-
deterministic events a challenge are that these events
are not easy to identify, and that they can be executed
frequently, making it expensive to keep track of their
effects.

The object-oriented context of method logging
should help in capturing and limiting the effects of
nondeterministic execution. For example, nondeter-
ministic events could be encapsulated in method invo-
cations that are tagged in their class definitions. The
compiler could then use data flow analysis techniques
to determine whether the value produced by a nonde-
terministic method invocation might affect the value
of a parameter in a subsequent method invocation. If
it does not, then the non-deterministic choice would
not need to be recorded.

4 Conclusions
Java is in a uniquely positioned to emerge as the

platform that will finally enable distributed comput-
ing to become, in the words of Ken Birman, a mass-
market commodity. We believe that the key to Java's
long-term success will depend on its ability to support
the development of truly reliable applications, capable
of tolerating both intentional security attacks and the
less glamorous, but potentially as disruptive, sponta-
neous failure of subsets of their components.

References
[1] T. Bressoud and F.B. Schneider. Hypervisor-based

fault-tolerance. ACM Transactions on Computer
Systems, 14(l):41-79, February 1996.

[2] Sun Microsystems Computer Company. Java com-
puting home page, http://www.sun.com/java/,
January 1998.

[3] Fred B. Schneider. Implementing fault-tolerant
services using the state machine approach: A tuto-
rial. Computing Surveys, 22(3):299-319, Septem-
ber 1990.

[4] J.H. Slye and E.N. Elnozahy. Supporting nonde-
terministic execution in fault-tolerant systems. In
Proceedings of the 26th IEEE International Sym-
posium on Fault-Tolerant Computing, pages 250-
259, June 1996.

157

[5] Sun Microsystems Computer Company. Java Lan-
guage Overview. White paper avail-
able at ftp://ftp.javasoft.com/docs/papers/java-
overview.ps.

158

Heterogeneous Parallel Computing With Java:
Jabber Or Justified?

H. G. Dietz

Purdue University, School of Electrical and Computer Engineering
West Lafayette, IN 47907-1285

http://dynamo.ecn.purdue.edu/~hankd/

Is Java a good language for programming heterogeneous
parallel computing systems? It is a well-designed modern
language that, combined with the Java Virtual Machine (JVM),
offers a myriad of modern programming features and excellent
portability. However, in speedup-oriented heterogeneous
computing, our primary concern is obtaining the best possible
execution speed from the heterogeneous system. This paper
briefly discusses what heterogeneous parallel computing is
really about, lists some of the key features of Java, and finally
summarizes how well Java matches the task of programming for
heterogeneous parallel computing.

1. What Is Heterogeneous Computing?

Heterogeneous computing refers to the concept of using a
collection of machines, in which each machine may have
properties somewhat different from the others, to achieve
speedup on a computation.

1.1. Architecture

Generally, a heterogeneous collection of machines will be
arranged as either a cluster or a group of networked computers.

A cluster is a parallel system whose component
computers are both physically and. logically near each other.
For example, a group of workstations and supercomputers
within a single facility, all connected by SCI, HiPPI, Myrinet,
PAPERS, or other high-performance networks, would be a
typical cluster configuration.

The alternative is a more loosely connected group of
networked computers, in which communication between
machines is possible, but perhaps very indirect, with limited
bandwidth and high latency. The largest example of this type of
heterogeneous system is the Internet, although many groups of
computers connected by LANs (local area networks) are also
best viewed in this way.

Both arrangements of machines are possible and useful,
but the focus is different. Machines in a heterogeneous cluster
can truly cooperate, whereas the loose coupling of networked
computers generally requires that machines be able to work
independently for relatively long periods of time. Note that the
time a processor can operate independently is related to how
much memory space is available— having more memory
frequently allows local buffering of data to be substituted for
some communication operations.

Another significant difference is that clusters are
generally assembled by design, whereas networked computers
are often simply whatever machines happened to be available.
Heterogeneous clusters tend to have heterogeneity because it is

directly useful; for example, integrating a SIMD supercomputer
with a shared-memory MIMD supercomputer so that different
portions of a parallel program can each be executed using the
parallel execution model that yields the best speedup. In
contrast, heterogeneous networked computers often are
workstations from several not-quite-compatible vendors, with
essentially the same execution model and only minor
performance variations.

1.2. Speedup

In a heterogeneous system, speedup can be achieved by
two separate mechanisms. Parallelism across machines
achieves speedup, ideally proportional to the number of
machines, by simultaneously executing portions of the
computation simultaneously on different machines. However,
speedup also can be achieved by increasing the
appropriateness/efficiency of the mapping of the computation
onto the special abilities of each machine. In most cases, this
centers on use of parallelism within each machine.

Clearly, the nature of the hardware heterogeneity places
emphasis on one or the other of these two mechanisms.
Performance of a cluster containing a few parallel
supercomputers will critically hinge on the effective use of
parallelism within each machine; performance of a network
mixing comparable DEC, HP, Sun, SGI, etc., workstations will
just as critically depend on parallelism across these machines.
Of course, failing to use all appropriate machines or failing to
use each machine efficiently lowers performance no matter
what structure the heterogeneous system has.

1.3. Portability

Because all we care about is being able to execute the
appropriate portions of a program on each machine, and there is
nothing (excluding development and maintenance time and
cost) to prevent us from writing code specifically tailored to
each machine, portability simply is not a requirement. Indeed,
if the machines are heterogeneous in the sense that some
machines have access to specialized I/O devices that others
cannot access, portability is meaningless: running code ported
from a computer-controlled milling machine on a workstation is
unlikely to get any parts milled. It can be just as difficult to
achieve good results when porting a SIMD-optimized algorithm
implementation to a MIMD machine.

Accepting that portability is not required, it is a highly
desirable goal that all programs be expressed in portable
notations. Further, if a program is primarily concerned with
"pure" computation rather than I/O, the goal of portability can
be achieved. There are two basic approaches.

159
0-8186-8365-1/98 $10.00 © 1998 IEEE

Portability by simulation: typically, this is done by
compiling each program to an idealized, simplified, architecture
which is in turn simulated by software on the target machine.
This approach first became widely accepted in the form of P-
Code implementations of Pascal. In fact, the Java Byte Code
and Java Virtual Machine have many striking similarities to the
UCSD Pascal P-System (which also incorporated graphics
support and a protected operating environment).

Portability by transformability: instead of simulating
another target, one can use a combination of compiler analysis
and transformation technologies to literally re-write and
optimize the program for the specific features of the target
machine. Transformation is more difficult to implement than
simulation, but the benefit is higher performance.

As a general rule, simulation works best when the
idealized architecture has data types and other basic properties
that are very similar to the actual target hardware
characteristics, but "instructions" that are typically much
higher-level than individual target machine instructions. The
need for basic properties to be similar is obvious; the need for
higher-level instructions is due to the fact that overhead to
decode and prepare each simulated instruction for execution
generally is typically about 20 target machine instructions.
Simulating a "matrix multiply" instruction easily hides a
20-instruction overhead, while simulating "32-bit integer add"
may result in a 20x slowdown relative to executing the
operation transformed directly into native target code.

Many simulators now incorporate incremental compilers
that can perform some of these transformations, however, the
apparent simplicity of transforming an add instruction into
machine code is misleading. The major complication is
essentially the use of parallelism.

1.4. Transformability

If the simulated instructions are simple and not parallel,
but the target machine is parallel, we are confronted with the
age old problem of automatically parallelizing. Perhaps even
more complex is the problem of transforming parallel
instructions into a different target parallelism. There are at least
three key aspects of a parallel execution model that must be
matched when generating code: execution mode,
communication model, and grain size/data layout.

1.4.1. Execution Mode

SIMD, MIMD, and VLIW/Superscalar execution modes
each perform best under different circumstances, but it is very
difficult, for example, to transform arbitrary MIMD code into
efficient SIMD code.

SIMD (Single Instruction Stream Single Data
Stream), which is now the most common parallel execution
mode (what do you think all those multimedia enhancements
are?), is very effective in implementing algorithms that require
tight synchronization of similar activities across many
processing elements. For example, communication operations
do not need buffering, interrupts, etc., because it is trivial for all
processing elements to know precisely when data exchanges
will occur. However, SIMD serializes operations that are
different on each processing element.

MIMD (Multiple Instruction Stream Multiple Data
Stream) is the most general parallel execution mode, capable of
simultaneously executing arbitrary operations on different
processing elements. Because each processing element can
have its own independent clock and program counter,
processing elements do not have to wait for the slowest to
complete each operation before advancing to the next.
However, this independence comes at the expense of the ability
to efficiently, globally, coordinate actions as we described for
SIMD communications.

VLIW (Very Long Instruction Word) and Superscalar
execution models are logically somewhere between SIMD and
MIMD, offering more generality than SIMD while preserving
the ability to globally coordinate parallel actions. The problem
is that these techniques require structures that do not scale well,
so parallelism width is generally limited as compared to SIMD
or MIMD models.

1.4.2. Communication Model

There are at least three fundamentally different classes of
communication models, and the best choice for each algorithm
or target machine varies.

A shared memory model communicates using what
appear to be simple memory load/store operations, but there are
many flavors differing in how much of memory is shared by
which processing elements (shared everything vs. shared
something), access time as a function of address reference
pattern (logical, physical, and cache structures), and even rules
for atomicity and coherence (what references are atomic, how
are access races resolved). These complications make shared
memory models the most difficult to use efficiently and
correctly, and also the most difficult to transform into other
communication models — even into other shared memory
models. Unfortunately, these are also the most efficient models
for many machines.

A message passing model creates, sends, and receives
messages, generally with one sender and one receiver for each
message. The key advantage in message passing systems is the
ability of a single message to contain a large data payload; this
makes it more effective than shared memory models in utilizing
reasonable-bandwidth, high-latency, interconnection
mechanisms like UDP or TCP protocols over fast Ethernet.
There are also various flavors of message passing, differing
primarily in the types and lengths of messages allowed and the
possible orderings of sends and receives.

An aggregate function model, unlike the other two
models, allows any number of processing elements to directly
participate in each communication operation. The simplest
example is a barrier synchronization, in which no processor
enters the next phase of a computation until all have signaled
completion of the current phase. More complex aggregates
include "collective communications" such as permutations,
multi-broadcasts, personalized all-to-all, associative reductions,
scans (parallel prefix operations), voting operations, etc.
Because aggregates are N-ary operations, whereas shared
memory and message passing operations tend to be point-to-
point, aggregates offer much better performance on hardware
that supports them... aggregates also are the key to efficiently

160

implementing SIMD and VLIW execution modes on what
would generally be considered MIMD hardware.

Not only is it difficult to transform between these three
different classes of models, but it also can be difficult to convert
between different models within the same class. For example, it
can be surprisingly complex to convert between two shared
memory models that differ only in atomicity and coherence
properties.

1.4.3. Grain Size And Data Layout

The amount of computation that each processing element
will do between communication operations, and the layout of
data structures across processors to make data accesses within a
granule local, vary widely depending on the target machine, and
transformations are difficult. For example, the HPF (High-
Performance Fortran) effort was largely driven by the desire to
have programmers specify the data layouts — compiler
technology to automatically pick the best layout, or even to
efficiently transform between specified parallel layouts, is still
under development.

1.4.4. Semantics Enable Transformation

In summary, it is very difficult in the general case
(perhaps impossible) to transform code written in one form into
efficient code in a different form. Put another way, the above
are all really execution model characteristics. A
programming model should be designed to use only constructs
that have known efficient implementations for a wide range of
execution models.

For example, consider an abstract parallel if statement:

if (parallel_expr) I
then_action;

} else {
else_action;

}

SIMD semantics would specify that then_action would
execution before else_action in the case that
parallel_expr was true for some processing elements and
false for others. This implies that side-effects, such as
communications in each actions, are strictly ordered with
respect to each other, and thus are inherently race-free.

In contrast, MIMD semantics would permit
then_action and else_action to execute
simultaneously, thus requiring other mechanisms to enforce
ordering of communications within the actions.

The point is simply that, to be efficiently transformable, a
parallel language (or programming model) must facilitate
transformation into efficient code for any target by using
semantics that are consistent with all possible target models.
Thus, our parallel if statement should have semantics that
allow both actions to occur simultaneously, but do not require
this.

The result is that when compiling for a SIMD target,
there may be redundant synchronizations in the source program
(that were placed there to enforce communication ordering for
MIMD execution of the actions), but these are easily

mechanically removed by existing compiler technology. Thus,
careful selection of transformable parallel semantics is the key
to making a parallel programming model directly support
heterogeneous supercomputing.

2. Java

Java is a well-designed modern language that, combined
with the Java Virtual Machine (JVM, also known as the Java
byte code interpreter), offers both flexibility and portability.
There is a lot to like about Java, and about its byte code (which,
for analysis and transformation purposes, is nearly equivalent to
the Java source code).

2.1. Data Types

Java specifies the size of basic data types: byte is -128
to 127, short is -32768 to 32767, int is -2147483648 to
2147483647, long is -9223372036854775808 to
9223372036854775807, and char is 0 to 65535. This is a
great benefit for heterogeneous computing in that it removes
precision differences from our concerns in using a variety of
machines. Although the lack of unsigned types is somewhat
disturbing, they are effectively supported by unsigned operators:
>>> is the unsigned shift right operator.

Another benefit in Java's type handling is the use of IEEE
floating point features such as NaN (Not-A-Number), Infinity,
and +/-0 instead of exception mechanisms. The need to create a
valid state when an exception occurs is a subtle, yet serious,
constraint on the compiler's ability to transform code for
parallel execution; Java's definition removes this problem.

Java's high-level handling of arrays as single objects, and
the deliberate omission of C-style pointers, make data alias
analysis significantly easier for typical constructs than it is for
C. The handling of object allocation/deallocation is also
cleaner, although the garbage collection scheme significantly
complicates the runtime environment and may seriously
degrade performance using threads.

2.2. Object Oriented

One of the most praised features of Java is its support for
object-oriented programming. In many ways, this is a useful
abstraction, but object-oriented indirect function calls make
static analysis for parallelization more difficult and less
effective.

Java further complicates matters by allowing functions to
be specified in a way that facilitates using independently-
developed binary code modules together within a program.
This very late binding of function calls to code makes it very
difficult for static compiler analysis to perform global
optimizations, such as those needed for some types of
parallelism transformations (e.g., conversion from MIMD to
SIMD). Just-in-time or other incremental compilation
technologies can help in this respect, but these are not really
good solutions, largely because the analysis would be repeated
at runtime for each new run by each machine. It is also
important to note that, for example, a SIMD supercomputer,
which seriously needs the global analysis and transformation,
may be a totally inappropriate machine on which to execute the
analysis and transformation compiler code.

161

23. Threads

Java directly supports parallel execution using a built-in
version of threads. Although Java threads essentially
implement a shared memory model, unlike most thread
libraries, Java precisely specifies how threads distinguish
between actions taken on a thread's local working memory and
effects on main memory. The result is a model somewhat more
flexible with respect to ordering of accesses, thus hopefully
more efficiently implementable on a variety of other shared
memory mechanisms. As in C, volatile attribute is
provided to enforce the programmed ordering of accesses.

In comparison to thread libraries, Java provides higher-
level synchronization primitives that take advantage of the
difference between a library call and a language construct. The
standard lock management to ensure that only one thread is
allowed to be within a particular segment of code at any given
time (mutual exclusion) is remarkably clean in Java:

synchronized(t) {
// exclusively executed code

}

This construct not only manages the locking at entry and
unlocking at a normal exit of the segment, but also correctly
handles unlocking for any other type of exit from that segment.

2.4. Java, The Standard Language

One of the best aspects of Java is the speed with which a
precise standard definition of the language has emerged. There
is currently an international standardization effort in progress.

The reason that the standard has moved so quickly is
because Sun is essentially in full control. As a general rule,
international standards are not created by a single for-profit
company, but by non-profit groups; .when the vote was taken in
late 1997 on formation of an ISO standard for Java, the United
States cast its vote against the standardization effort largely
because Sun is placed in a controlling position. In fact, Sun
even retains all rights to their trademark on the name Java. The
vote passed, although the US was not alone in its concern about
Sun's control of the standard.

Despite this tightly-controlled approach to popularizing
Java, it is important to acknowledge that Sun has done a very
good job thus far. Not only is Java a relatively clean language
design, but Sun has employed some of their best people to
ensure that the language is a success. Sun is also pushing a
100% Java certification effort to discourage people from using
non-standard features.

I like the 100% effort; it is the only way to achieve the
portability that Java seeks. However, it is important to note that
a program that calls native routines is not 100% Java. In other
words, Java does not provide any way to use parallelism other
than threads; any other parallelism would violate the 100%
certification rules. This is a fundamental problem with respect
to using Java for high performance computing.

US. Support For Networking

Java supports network communication via sockets, and
provides library routines for higher-level protocols such as

HTTP and FTP. It is easy to imagine, or to create, pure Java
code library functions for higher-level parallel-processing
message passing. Unfortunately, the basic socket interface,
although portable, is not particularly efficient, especially within
a cluster connected by SAN (System Area Network) hardware.

2.6. Graphics Support

Java provides a very strong set of graphics facilities that
are remarkably portable, independent of host machine OS,
windowing system, etc. Then again, you already knew this
from watching a certain little Java Aplet wave at you from
within your WWW browser.... Java is an excellent way to
graphically present and browse data, even within a
heterogeneous parallel computation, provided that the graphics
computations are not too intense.

3. Conclusions

Is Java appropriate for speedup-oriented heterogeneous
parallel computing? The answer really depends on what type of
heterogeneity your target system employs.

The thought of thousands of random workstations, PCs
(Personal Computers), and NCs (Network Computers) scattered
across the Internet being used as a parallel computer appalls
me... but I've actually participated in such efforts. Virtually all
of these machines are relatively minor variations on the same
uniprocessor 32-bit architecture, heterogeneous primarily in the
sense that some level of product differentiation is important in
establishing a vendor's marketing strategy. The same Java code
easily runs on all these machines, and it is relatively simple for
the Java code to send an occasional message from one machine
to another.

However, the Java byte code will be interpreted very
slowly, and with variable and difficult to predict performance,
on most machines. Of course, a factor of 20x slowdown on
each machine can be repaired by simply using 20x more
machines... if you have enough parallelism and machines avail-
able. Still, more parallelism means more communication unless
you can buffer nearly all data in local memories, and Java com-
munication is also slow. In my opinion, the class of applica-
tions for which one should be able to achieve both reasonable
efficiency per unit of compute hardware used and good speedup
is vanishingly small.

The more important definition of a heterogeneous system
is the one in which the component machines truly do offer a
variety of special characteristics, especially clusters in which
each machine may offer a different type of internal parallelism.
In these cases, Java does not solve any of the key problems and
non-Java code would need to be invoked to efficiently use the
hardware parallelism. Use of Java threads can be seen as
creating serious problems by forcing a non-transformable
shared-memory MIMD execution model.

In summary, Java has many features that should be a part
of a programming model for heterogeneous parallel computing.
Unfortunately, 100% Java is not an appropriate model.

162

On the Interaction between Mobile Processes and Objects

Suresh Jagannathan Richard Kelsey
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

sureshIkelseyOresearch.nj.nee.com

Abstract
Java's remote method invocation mechanism pro-

vides a number of features that extend the functionality
of traditional client/server-based distributed systems.
However, there are a number of characteristics of the
language that influence its utility as a vehicle in which
to express lightweight mobile processes. Among these
are its highly imperative sequential core, the close cou-
pling of control and state as a consequence of its object
model, and the fact remote method calls are not prop-
erly tail-recursive. These features impact the likelihood
that Java can easily support process and object mobil-
ity for programs which exhibit complex communication
and distribution patterns.

1 Introduction
Distributed systems have historically been con-

cerned with issues concerning the partitioning and
transmission of data among a collection of ma-
chines [15]. Typically, these systems allow code to
be distributed and accessed in one of two ways. In
some systems, each node holds code controlling the
resources found on that node. In others, the same
code image is found on all nodes. In either case, some
form of message-passing [19] is used to invoke oper-
ations on remote sites. By and large, mobility has
not been an issue of significant importance. In client-
server based systems, process mobility is essentially ir-
relevant: tasks are heavyweight and control resources
resident on a particular machine. In systems where
all machines share the same code image, process mo-
bility may be used to help performance by improving
locality and load-balancing. However, tasks typically
execute heavyweight procedures often closed over a
large amount of local state, making task migration ex-
pensive. Indeed, devising an efficient task migration
policy that has a simple well-understood semantics is
still a subject of active research.

The past few years has seen an increasingly appar-
ent shift to a new computational paradigm. Instead of

regarding the locus of an executing program as a single
address-space physically resident on a single processor,
or as a collection of independent programs distributed
among a set of processors, the advent of languages like
Java [8] has offered a compelling alternative. By allow-
ing concurrent threads of control to execute on top of a
portable, distributed virtual machine, Java presents a
view of computation in which a single program can be
seamlessly distributed among a collection of hetero-
geneous processors. Unlike distributed systems that
require the same code to be resident on all machines
prior to execution, Java allows new code to be trans-
mited and linked to an executing process. This fea-
ture allows Java to upload functionality dynamically
in ways not possible in a traditional distributed sys-
tem.

Currently, the Java core only supports migration
of whole programs; threads of control are not trans-
mitted among machines. However, extensions like
Java/RMI [20] that enable client-server (RPC-style)
semantics do allow data as well as code to be com-
municated among machines in a Java ensemble. Such
extensions permit Java programmers to view a compu-
tation not merely as a single monolithic unit moving
from machine to machine in the form of applets, but
as a distributed entity, partitioned among a collection
of machines. By using a architecture independent vir-
tual machine, information from one active portion of
a computation can be sent to another without deep
knowledge of the underlying network infrastructure
connecting these pieces together.

In this paper, we explore how distributed exten-
sions to Java such as RMI handle issues pertinent to
lightweight task migration. We are particularly in-
terested in how Java's object model, which pervades
all aspects of its design and implementation, affects
lightweight task and object migration. Some of the
questions we examine include:

1. What impact does the close coupling of data and

0-8186-8365-1/98 $10.00 © 1998 IEEE
163

code in Java have on the implementation of mo-
bile processes?

2. How does Java's imperative sequential core influ-
ence influence the design of its distributed exten-
sions?

3. How does a synchronous client-server communica-
tion model affect the construction of mobile ob-
jects?

4. How do we express where a task should execute,
and how an object should migrate as part of an
object's behavior? In other words, can we sepa-
rate issues of concurrency and distribution from
issues related to an object's sequential behavior?

Using Java/RMI as a base example, we conclude
that features endemic to the Java design make it dif-
ficult to express lightweight process mobility. On the
other hand, Java's object system significantly extends
the functionality found in other distributed languages,
most notably in its support for- distributed dynamic
linking of new code objects.

Our foucs will be on the interaction between mobile
processes and objects. After providing some motiva-
tion, we present a simple view of a distributed sys-
tem in the context of an Algol-like (imperative) set-
ting. We then discuss interface description languages
like CORBA [14], and their approach to handling dis-
tribution. Finally, we describe distributed computa-
tion from the Java perspective, and contrast these ap-
proaches. We conclude that while Java with RMI sup-
port offers significant advantages over its more tra-
ditional counterparts to programming heterogeneous
networks, it lacks certain features that would enhance
its expressivity.

2 Motivation
Like many distributed languages [3, 5], Java's se-

quential core is object-based. A Java class defines a
datatype, and an object is an instance of that type.
Operationally, an object defines a collection of data
along with operations on that data. A distributed
Java program can be now viewed as a collection of ob-
jects resident on different address spaces or machines,
communicating with each other through visible meth-
ods declared by these objects. Under a static view
of a distributed computation, processes executing on
different machines provide a global service or protect
some shared resource. Once allocated to a given ma-
chine, however, processes remain stationary. Objects
are a natural abstraction for expressing the behavior
of distributed processes since they encapsulate shared

data through instance variables, and define the op-
erations permitted on this data by other processes
through methods and interfaces. For example, a client
of a resource need only have access to the operations
provided by that resource, and not the actual data ma-
nipulated by the resource in. order to use the resource
effectively. Indeed, for many distributed applications,
a static partitioning of shared resources and services
via distributed objects is ideal.

Nonetheless, not all applications exhibit such static
behavior. As the size of distributed systems grows, or
as the complexity of an application increases, defin-
ing an efficient static partition of a collection of log-
ically distributed processes becomes problematic. In
this case, finer mobility of code and data becomes im-
portant [10]. For example, a process executing on a
machine in an overloaded network ensemble may need
to migrate dynamically to a less-loaded one. In highly
heterogeneous systems like the Internet, this function-
ality becomes even more pronounced: an application
may be distributed over many different kinds of ma-
chines with widely different capabilities, and may need
to be frequently reconfigured to take advantage of
changing work-loads or conditions among the nodes
on which it executes. To achieve mobility of this kind,
code and data must be more loosely coupled: migrat-
ing a process from one machine to another should not
necessarily entail copying all of the data it may poten-
tially reference as well. Similarly, moving data closer
to where a computation requires it, should not entail
copying all other processes that also happen to share
references to that data. A mobile process should be
able to move among a collection of nodes without com-
municating its intention to the node from whence it
came.

3 Mobility in an Imperative Context
We first consider distributed execution in the con-

text of an imperative Algol-like language. These lan-
guages have two features that inhibit distribution in
general and mobility in particular. The first is that
programs generally make progress via side effects, ei-
ther by updating variables or modifying data struc-
tures. The second is that they are first order. Proce-
dures can neither be returned from other procedures,
or passed as arguments except in the most trivial
cases. The only data available to a procedure are ar-
guments and global variables. It is difficult to only
use procedures to simulate the behavior of objects
in object-oriented languages, or closures in functional
languages.

The result is that computation involves frequent
modifications to shared global data, which is exactly

164

what a distributed program needs to avoid. There
are two basic approaches to dealing with the problem:
distributed shared memory (DSM) [2, 13] and remote
procedure call (RPC) [4, 18]. With DSM, the dis-
tributed nature of the computation is largely invisible
to the programmer, at a high cost in implementation
complexity and communication overhead. All data is
conceptually associated with a global address. Thus,
the machine where a thread executes no longer influ-
ences the behavior of the program: dereferencing a
global address may involve a remote communication
to the node "owning" the contents of that address.
While DSM provides a mechanism to implement par-
allel dialects of imperative languages in a distributed
environment, programmers have little control in spec-
ifying how coherence and consistency are realized. In
particular, issues of process mobility become largely
irrelevant since the distribution of data and tasks is
implicitly handled by the implementation, and not ex-
plicitly managed by the program. The high communi-
cation costs associated with DSM make it unattractive
in a truly distributed environment. The alternative is
to move the burden of handling communication from
the implementation to the programmer.

Remote procedure call provides a way of breaking
a program into discrete parts each of which runs in its
own address space. Unlike DSM, communication is ex-
plicit in the program, so programmers have complete
control over costs. The difficulty is that the semantics
of RPC is substantially different from that of an or-
dinary procedure call. When procedure P makes an
RPC call to Q, the arguments to Q are marshalled and
shipped to the machine where the computation should
be performed. Stub generators on procedures linked to
the application program are responsible for handling
representation conversion and messaging. Arguments
passed to a remote procedure are passed by copying.
Thus, side effects to shared structures can no longer be
used for communication between caller and callee. As
a result, imperative programs must be substantially
modified to run in a distributed environment using
RPC.

Process mobility is especially difficult [16, 6, 17].
The imperative nature of these languages means that
a large percentage of data found in programs must be
global. Communication among processes is enabled
via side-effect, and not via allocation and copy. Thus,
the advantages of having mobile processes is greatly
mitigated. Conceptually, processes are highly mobile
in these languages because they carry no state, but
because they must frequently reference global (shared)
data, process migration becomes useful only if the data

they access moves along with the process requiring
them. Given that global data is likely to be shared
among several processes, the implicit coupling of data
and code in imperative languages greatly weakens the
utility of process mobility in these languages.

4 Distributed Glue Languages
CORBA [14] and ILU [9] are two well-known

object-oriented glue languages that can be used to
connect sequential components into a distributed pro-
gram. The sequential components can be written
in a variety of languages and components written in
different languages can be freely intermixed within
a single distributed program. These glue languages
are based on object-oriented interface description lan-
guages. The programmer writes a description of each
component in the interface language which is then
compiled into stub programs. One stub program, in
the language in which the component is written, is
used by the component to communicate with clients.
The rest are used by clients to communicate with the
server and can be generated in any of the languages
the glue language supports.

Unlike imperative languages, the use of objects al-
leviates the problems caused by limiting procedures to
being first-order. Because each instance of an object
has its own local state, the number of side effects on
the program's global state is reduced. Unfortunately,
commication between components is still done using
RPC. The values that may be sent between compo-
nents are immutable ones: numbers, characters, se-
quences of values, and so forth. The only references
that can be sent over the wire are references to the glue
language's global objects. Because components may
be written in different languages, each component has
not only its own address space but, potentially, its own
data representations. A data format used in one com-
ponent may unrepresentable in another. For example,
ILU can be used to connect a component written in C
with one written in Common Lisp; the representation
of arrays in C, and the operations on them, are quite
different from those in Common Lisp. There is no way
to send either code or mutable data between compo-
nents. An object resides permanently on the machine
on which it is created. Thus, these distributed glue
languages work for large-grain distributed programs
with simple, static interfaces. Unlike imperative lan-
guages that provide little support for distributed com-
munication, glue languages allow data (either in the
form of base types or objects referenced via a global
handle) to be accessed in a distributed setting. How-
ever, since a CORBA program may consist of modules
written in many different languages, there is no sup-

165

port for code or process mobility. Processes run in an
address space executing a language processor for the
language in which they were written.

Programs written in distributed glue languages are
likely to perform well if written in a client/server
style. The client/server model partitions computation
among nodes in a network: all server-related compu-
tation is exercised on the node where the particular
server object resides, and all client-related computa-
tion is exercised on the client. Because the location
of clients and servers is highly static, decisions on
where computation is executed is static as well. Once
a remote method is invoked, control-flow within the
method body remains on the node of the correspond-
ing remote object; the caller of the remote method
blocks until the remote method returns.

As long as computation is uniformily distributed
among clients and servers, having code remain resident
on the remote object site is acceptable. However, for
mobile computations, a client/server model is clearly
inappropriate. For applications in which computation
is non-uniform or which is not. easily partitioned into
client- and server-code, a more flexible distribution
model is required.

Consider a thread of control T executing on some
machine M. Suppose T makes a remote method call
to a remote object O (possibly written in a different
language) executing on some other machine M'. The
execution of this method can occur in one of two ways.
The method can execute on M as part of T's control-
flow, or it can execute on M' as part of a newly in-
stantiated thread. The first option, rejected by dis-
tributed glue languages, is useful if references to O
within M are infrequent. In this case, the overhead
of introducing a new thread control on M' may quite
likely be greater than the overhead of retrieving neces-
sary state information from O. The second approach
transfers control-flow to M'; this is the approach taken
in Java/RMI.

5 Threads and Distributed Objects
In contrast to imperative languages, class-based

object-oriented languages like Java encapsulate data
and code together. A computational unit in Java is
an object. An object includes a collection of data
called instances variables, and a set of operations
called methods to operate on this data. Object state
is accessed and manipulated from the outside through
publically visible methods. Because it provides a natu-
ral form of encapsulation, an object-oriented paradigm
seems well-suited for a distributed environment. Ob-
jects provide regulated access to shared resources and
services. In contrast to distributed glue languages,

distributed extensions of Java permit objects as well
as base types to be communicated. Moreover, certain
implementations such as Java/RMI also permit code
to be dynamically linked into an address space on a
remote site.

Since a primary goal of Java was to support code
migration in a distributed environment, the language
provides a socket mechanism through which processes
on different machines in a distributed network may
communicate. Sockets, however, are a flexible low-
level communication abstraction. Applications using
sockets must layer an application-level protocol on top
of this network layer, responsible for encoding and de-
coding messages, performing type-checking and verifi-
cation, etc. This is generally agreed to be error-prone
and cumbersome.

5.1 Remote Method Invocation
As we discussed earlier, RPC provides one way of

abstracting low-details necessary to use sockets. RPC
is a poor fit, however, to an object system. In Java,
for example, communication takes place among ob-
jects, not procedures per se. Requiring methods in
different objects to communicate directly with one an-
other would break object boundaries and thus would
violate the basis of Java's object model. Java/RMI
is a variant of remote procedure call tailored for the
object semantics defined by Java's sequential core. In-
stead of using procedure call as the basis for separat-
ing local and remote computation, Java/RMI uses ob-
jects. A remote computation is initiated by invoking a
method on a remote object. Clients access remote ob-
jects through surrogate objects found on their nodes.
These objects are generated automatically by the com-
piler, and compile to code that handles marshalling of
arguments, etc. Like any other Java object, remote
objects are first-class, and may be passed as arguments
to or returned as results from a method call. Remote
objects are implicitly associated with global handles or
uids, and thus are never copied across nodes. However,
any argument which is not a remote object in a remote
object method call is copied, in much the same way as
in an RPC semantics. This means that remote calls
have different semantics from local ones even though
they appear identical syntactically. The fact that Java
is highly imperative means that distributed programs
must be carefully crafted to avoid unexpected behav-
ior due to unwanted copying of shared data.

Nonetheless, Java/RMI does fit into Java's object
model in a number of other ways. Communication
takes place via proxies to remote objects, and the en-
capsulation benefits provided by objects is preserved.
In addition, Java/RMI supports a number of features

166

not available in distributed extensions of imperative
languages or distributed glue languages. Most impor-
tant among them is the ability to transfer behavior to
and from clients and servers. Consider a remote in-
terface / that defines some abstraction. A server may
implement this interface, providing a specific behav-
ior. When a client first requests this object, it gets the
code defining the implementation. In other words, as
long as clients and servers agree on a policy, the par-
ticular mechanism used to implement this policy can
be altered dynamically. Clients can send behavior to
servers by packaging them as tasks which can then be
directly executed on the server. Again, if the method
to be executed is not already found on the server, it is
fetched from the client. Remote interfaces thus pro-
vide a powerful device to dynamically ship executable
content with state among a distributed collection of
machines.

5.2 Tail Recursive Communication and
Mobility

Although Java/RMI can be used to express non-
client/server style applications; we expect" this will not
often be the case. By default, a remote method call
in Java/RMI is synchronous: the caller waits for the
callee to return before proceeding. Stated another
way, remote method calls in Java/RMI are never prop-
erly tail-recursive. For example, suppose method A on
machine Mi wishes to make a remote method call to
method C on M3 supplying the result of calling re-
mote method B on M2. Ideally, we would like to have
B invoke C directly. However, to do this requires mod-
ifying B's implementation. In certain agent-based sys-
tems [11], or distributed systems which support first-
class continuations [1, 7], B may invoke C directly,
wrapping A's continuation around the call. When C
finishes, it returns immediately to A, avoiding an un-
necessary communication with B. Although a form
of asynchronous communication can be expressed in
Java/RMI using an agent interface, it is cumbersome.
(See Fig. 1.)

5.3 Thread and Object Migration
Despite its added functionality over distributed

glue languages, Java's object model (like other object-
based distributed systems [10]) encourages a close cou-
pling of code and data. Because all non-local variable
references in a method are either global, or refer to
instance variables of the object (via self), the envi-
ronment within which a method executes is explic-
itly expressed in the definition of the corresponding
class. Unlike imperative languages, the location where
a thread executes thus becomes very important. Since
threads represent control-flow through methods, and

methods are the only means of accessing internal ob-
ject state, distributed object-oriented languages usu-
ally dicate that a thread executing a method evalu-
ate on the same node as the method's object. Hence,
thread migration is difficult to express: migrating a
thread moves it away from the state accessed by the
executed method via self. Indeed, Java/RMI pro-
vides no programmer-controlled mechanism to express
thread migration: once a thread begins execution on
a node, it remains resident on that node until the
method it is executing completes. Furthermore, since
objects contain mutable state, copying data to where
the caller resides is likely not to be beneficial since the
data must written back to the object when the method
completes.

Part of the reason why thread migration appears to
be a concept ill-suited in Java is because Java's thread
model is so closely tied to its object model. Any object
that inherits from the basic thread class, and provides
a run method can be instantiated as a thread [12]. The
code executed by the thread is the code found in the
object's run method. Because threads are no different
from any other object, thread and object migration are
essentially the same. Moving a thread from one node
to another is tantamount to moving an entire object,
not just control. To achieve the benefits of lightweight
thread migration, however, two features are required.
First, we should be able to separate code from data,
or at least not be required to explicitly package the
two together. Second, we should be able to denote a
piece of code as a thread without having to first de-
fine a class template. An arbitrary Java expression
can be viewed as a thread only if it is encapsulated as
a method within an object whose class implements or
extends the basic Thread class. This leads to a sig-
nificantly greater burden on the programmer to build
lightweight threads.

5.4 Specifying a Locus of Control
Another ramification of code and data coupling is

that decisions about whether a method is remote or
not is hardwired as part of the class specification in
which the method is defined. Any object instanti-
ated from a class that implements a Remote inter-
face is treated as remote. Thus, all calls to methods
found in such objects are executed remotely on the
site where the object is located. It is not possible
to have some methods execute locally and others exe-
cute remotely without having them defined in separate
classes. For example, consider a class that contains an
array. Methods which operate on all the elements in
the array are best implemented via remote method
call since it may be potentially expensive to move the

167

Figure 1: A client-server communication model requires control always to return back to the sender. In agent-
based systems, control may move freely among nodes before ultimately returning.

array frequently to the object's clients. On the other
hand, it may be more efficient to execute a method
which extracts a particular fieldand operates on that
field exclusively locally on the client since communi-
cation overhead is likely to be small in this case. In
Java/RMI, these two methods cannot co-exist in the
same object.

We believe that the choice of where methods exe-
cute should be under programmer control. By default,
control should remain resident on the node where the
thread making the call is currently executing. Field
accesses thus involve copying data from the associated
object's home. On the other hand, when a method M
is annotated as an RPC method, calls to M trans-
late to a shift in control to the location where M's
object O is found. If O subsequently migrates while
M is still executing, the corresponding thread created
to evaluate M migrates as well. Neither of these pro-
tocols influence correctness, but their choice impacts
efficiency. This finer granularity on control-flow would
permit a given object to define methods that support
both protocols.

Taken together, these features of Java (and simi-
lar class-based languages) make it unwieldy as a lan-
guage in which to express mobile processes, and dy-
namic thread and object migration. Because remote
calls by default are not tail-recursive, the creator of
a thread on a remote node is closely coupled with
the thread itself, limiting opportunities for the thread
to migrate freely. Requiring that concurrency be ex-
pressed through the object system means that ex-
pression whose evaluation is to take place in a sep-
arate thread must be named as a method found in a

Runnable object. Since Java provides no mechanism
to reify scheduler state, programmers do not have the
ability to capture a runnable thread, and move it to
another node, or manipulate it in other ways. Any
thread or object migration decisions are handled ex-
clusively within the virtual machine. The close explicit
coupling between state and code means that moving
object state necessarily causes the locus of control for
executing methods in that object to shift as well. This
is because a class defines an explicit packaging of state
used by the methods it defines. Because state refer-
enced by a method is not implicitly constructed by the
implementation, it is meaningless to consider mecha-
nisms to distribute control (i.e., threads) as any differ-
ent from mechanisms to distribute state (i.e., objects).

One way that Java addresses the latter point is
through the use of inner classes. An inner class pro-
vides many of the features that closures in functional
languages provide; in particular, an inner class, allows
the same piece of code (an inner class definition) to
be closed over many different environments. However,
the Java specification requires that free variables in
an inner class be final, i.e., immutable. In a func-
tional language, such a requirement does not impose
great burdens on expressivity, but functional program-
ming in Java is hard to do because many of its most
important features are defined in an imperative style.
Thus, we suspect implementations are unlikely to view
task migration as a critical issue because distributed
programs written in Java will not be able to take ad-
vantage of inner classes to separate control from state.

168

6 Conclusions
Distributed extensions of Java such as Java/RMI

combine features found in both agent-based languages
and more traditional RPC-based distributed systems.
While providing the encapsulation and protection ben-
efits of traditional client/server RPC systems, Java's
program model allows code to be dynamically linked
and executed on remote nodes.

However, we have identified three fundamental
characteristics of Java that we believe make it hard
to express lightweight distributed mobile processes.
First, the highly imperative nature of its sequential
core complicates the semantics of distributed program-
ming via message passing. The semantics of remote
method invocation differs substantially from that of
local method inocation. Second, a client/server com-
munication model requires a remote call to return back
to the sender once the call is complete. Since the con-
tinuation of the call cannot be explicitly supplied, mo-
bility is hampered. Third, the close coupling of data
and state make it difficult to express task migration as
an issue orthogonal to object migration even though
the circumstances under which the two would be ex-
ercised are very different.

We expect that there is much to be gained by ex-
ploring the interaction between an object semantics
and distributed programming via mobile^ processes.

References
[1] AGHA, G. Actors: A Model of Concurrent Com-

putation in Distributed Systems. MIT Press,
Cambridge, Mass., 1986.

[2] BENNETT, J. K., CARTER, J. B., AND

ZWAENEPOEL, W. Munin: Distributed Shared
Memory Based on Type-Specific Memory Coher-
ence. In Symposium on Principles and Practice
of Parallel Programming (March 1990).

[3] BIRRELL, A., NELSON, G., OWICKI, S., AND

WOBBER, E. Network Objects. In 14th
ACM Symposium on Operating Systems Princi-
ples (1993 December).

[4] BIRRELL, A. D., AND NELSON, B. Implement-
ing remote procedure call. A CM Transactions on
Computer Systems 2, 1 (1984), 39-59.

[5] BLACK, A., HUTCHINSON, N., JUL, E., LEVY,

H., AND CARTER, L. Distribution and abstract
data types in emerald. IEEE Transactions on
Software Engineering 13,1 (1987), 65-76.

[6] CARRIERO, N., GELERNTER, D., JOURDENAIS,

M., AND KAMINSKY, D. Piranha scheduling:

Strategies and their implementation. Interna-
tional Journal of Parallel Programming 23, 1
(1995), 5-35.

[7] CEJTIN, H., JAGANNATHAN, S., AND KELSEY,

R. Higher-Order Distributed Objects. ACM
Transactions on Programming Languages and
Systems 17, 5 (1995), 704-739.

[8] GOSLING, J., JOY, B., AND STEELE, G. The
Java Language Specification. Sun Microsystems,
Inc., 1995.

[9] JANSEN, B., SPREITZER, M., LARNER, D., AND

JACOBI, C. ILU 2.0alphal2 Reference Manual.
Xerox Corporation, 1997.

[10] JUL, E., LEVY, H., HUTCHINSON, N., AND

BLACK, A. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems
6, 1 (January 1988), 109-133.

[11] KOTZ, D., GRAY, R., NOG, S., RUS, S.,
CHAWLA, S., AND CYBENKO, G. AGENT TCL:
Targeting the Needs of Mobile Computers. IEEE
Internet Computing 1, 4 (1997), 58-67.

[12] LEA, D. Concurrent Programming in Java: De-
sign Principles and Patterns. Sun Microsystems,
Inc., 1996.

[13] Ll, K., AND HUDAK, P. Memory coherence in
shared virtual memory systems. ACM Transac-
tions on Computer Systems 7, 4 (1989), 321-359.

[14] MOWBRAY, T., AND ZAHAVI, R. The Essential
CORBA: Systems Integration Using Distributed
Objects. Wiley, 1996.

[15] MULLENDER, S., Ed. Distributed Systems.
Addison-Welsey, Reading, Mass., 1993.

[16] POWELL, M., AND MILLER, B. Process mi-
gration in demos/mp. In Proceedings of the 9th
ACM Symposium on Operating Systems Princi-
ples (New York, 1983), ACM, pp. 110-119.

[17] ROGERS, A., CARLISLE, M., REPPY, J., AND

HENDREN, L. Supporting Dynamic Data Struc-
tures on Distributed-Memory Machines. ACM
Transactions on Programming Languages and
Systems 17, 2 (1995), 233-263.

[18] SCHRODER, M., AND BURROWS, M. Perfor-
mance of firefly rpc. ACM Transations on Com-
puter Systems 8, 1 (1990), 1-17.

169

[19] SNIR, M. MPI: The Complete Reference. MIT
Press, 1996.

[20] WOLLRATH, A., WALDO, J., AND RIGS, R.
Java-Centric Distributed Computing. IEEE Mi-
cro 2, 72 (May 1997), 44-53.

Biographies
Suresh Jagannathan received his Ph.D from the

Massachusetts Institute of Technology in 1989. He has
spent the past eight years as a Research Scientist at
the NEC Research Institute. Prior to joining NECI,
he was a Research Faculty member at Yale Univer-
sity. His interests are in the areas of program analysis
for mostly-functional languages, compiler design, and
distributed programming languages.

Richard Kelsey received his Ph.D from Yale Univer-
sity in 1989. He joined the NEC Research Institute as
a research scientist in 1993 after spending three years
on the faculty of Northeastern University. His inter-
ests are in the areas of programming language design
and implementation, usually concentrating on Scheme
and similar languages and on building simple, general-
purpose compilers.

170

Steps toward Understanding Performance in Java

Doug Lea
Computer Science Department

State University of New York at Oswego
Oswego NY 13126

Abstract
Java's design goals of portability, safety, and ubiq-

uity make it a potentially ideal language for large-scale
heterogeneous computing. One of the remaining chal-
lenges is to create performance models and associated
specifications and programming constructs that can be
used to reason about performance properties of systems
implemented in Java.

1 Introduction
Java is the first mass-market concurrent, dis-

tributed, object-oriented language. To the extent that
heterogeneous computing requires near-universal plat-
form support for a given language ("Write once, run
anywhere"), Java is currently the only answer for pro-
gramming non-experimental heterogeneous systems.
But is Java a good enough answer? Can it become
good enough?

Java provides support for the common demands of
system-wide heterogeneous computing: Concurrency
via threads, locks and monitors; Distribution via Re-
mote Method Invocation (RMI) and related frame-
works; User interaction via the AWT; Persistence via
serialization and database connections; Mobility via
class loaders; and Security via principals, security
managers, etc. Across all of these domains, as well
as base language constructs, the primary design goals
have surrounded portability, safety, historical prece-
dent, and minimality. These goals have been traded off
against performance, exploitation of machine-specific
capabilities, and availability and real-time guarantees.

2 Performance Models
Reasoning about performance is an integral part

of system-level development. Currently, system de-
velopers face more extreme versions of the kinds of
problems that beset early developers of simple Java
applets and applications. Developers could not be
confident that a given Java Virtual Machine (JVM)
would meet even the most minimal correctness and
performance criteria needed for acceptable execu-
tion. The widespread deployment of Just-In-Time

compilers, dynamic compilation, and more efficient
run-time systems have alleviated some of these con-
cerns. Others have been addressed by providing high-
level, portable choices for mapping designs to imple-
mentations with different performance characteristics.
For example, user interface programmers may now
choose between "heavyweight" AWT components that
are implemented directly by native windowing sys-
tems versus "lightweight" components that are imple-
mented mainly in Java proper. Neither is always best
with respect to performance and other design criteria.

However, these concerns become much more chal-
lenging at a systems level, and have yet to be ad-
dressed systematically by JVM implementors. Exam-
ple issues include:

• How are threads mapped to different processors
in SMPs?

• How is persistence mapped to high-performance
random access devices (mainly disks), serial de-
vices (mainly networks), transactional processing,
etc?

• How is locality exploited in message-based remote
communication?

• How is Java synchronization mapped to spinlocks
versus JVM scheduling versus kernel scheduling?

• How are known regularities exploited for resource
management?

• How can system-wide control and monitoring be
extended, for example to include checkpointing
and deadlock detection?

• How can soft-real-time requirements be used to
influence scheduling?

Java is currently silent about most of these issues,
leaving too much freedom in the hands of JVM and
Java library and tool implementors, and hence too
much uncertainty for developers to be able to reason

171
0-8186-8365-1/98 $10.00 © 1998 IEEE

about performance. Right now, the only way for de-
velopers to deal with this is to build their own custom
JVMs, support libraries, and/or tools. While the lax-
ity of Java specifications allows this, it is an unaccept-
able solution in the long run since it allows developers
to reason about performance only on particular imple-
mentations.

An alternative is to construct a portable system-
level performance model for Java, that is honored
by JVM, library, and tool implementors. Aspects of
such models have been implicit in most in-the-small
performance-related efforts. However, they must be
made explicit to scale to systems-level concerns. The
heart of a performance model is an abstraction of
a computer system providing just enough detail to
express mappings and choices among mappings, yet
noncommittal enough to apply to JVMs residing on
smartcards, supercomputers, and everything in be-
tween. Such a model could then be used to provide
various styles of rules:

• System-specified mappings: If a capability exists,
it will be mapped in a certain fashion.

• Default mappings: Rules that apply unless over-
ridden by programmers.

• Programmer-specified hints: Constructions that
allow programmers to heuristically influence or
tune parameters of a mapping. These need not
take the form of tuning APIs, but may instead for
example associate performance properties with
different programming constructions.

• Programmer-specified mappings: APIs that allow
programmers to plug in control modules and the
like.

• Multiple mappings: Different APIs with differ-
ent performance characteristics, that program-
mers may choose among.

• Intentional opacity: Reserving the right of imple-
mentors to make any mapping choice, unknow-
able by programmers.

The main challenge is to identify those components
of a performance model that significantly impact the
ability to reason about performance, yet can be used
as the basis of usable, portable, and readily imple-
mentable programming constructions. Members of
the heterogeneous computing community have much
to contribute toward such efforts.

Perhaps in an ideal world, all rules would be of the
first type, requiring "optimal" mappings to system

capabilities. However, the world is rarely this ideal.
For example, the benefit of placing threads on differ-
ent processors of an SMP generally varies inversely
with communication rates among threads. It is hard
to imagine placement strategies that would not ben-
efit from information that reveals expected communi-
cation rates. Such hints would of course be ignored
or used in some other heuristic fashion (for example
to help choose between user-level versus kernel-level
threads) when programs are run on uniprocessors.

And even in an ideal world, some mappings must
remain opaque; for example those that would other-
wise reveal information that would compromise safety
and security properties.

JVM-level performance models may in turn give
rise to application-level models. For example, a com-
mon Java programming dilemna surrounds how to
map object communication to any of many available
forms, including direct method invocations, notifica-
tions among threads, JavaBean-style events, struc-
tured RMI-style messages, applet-style class trans-
port, serialized mobile-code-style commands, database
transactions, and so on. While performance concerns
are typically only one factor in such decisions, the abil-
ity to approximately predict the performance charac-
teristics of different choices can lead to development
of more usable and more useful Java-based systems.

172

Heterogeneous Programming with Java:
Gourmet Blend or just a Hill of Beans?

Charles C. Weems Jr.
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

weems @ cs.umass .edu

Abstract

The heterogeneous parallel processing community has
long been struggling to bring its approach to computation
into the mainstream. One major impediment is that no
popular programming language supports a sufficiently
wide range of models of parallelism. The recent emergence
of Java as a popular programming language may offer an
opportunity to change this situation. This article begins
with a review of the special linguistic and computational
needs of heterogeneous parallel processing by considering
the user communities that would benefit most from the
approach. It then reviews the pros and cons of Java as a
language for expressing and realizing heterogeneity, and
concludes with some possible changes that would make
Java more suitable for such use.

1. Heterogeneous
Needs It?

Programming: Who

Before we look at the relationship between Java and
heterogeneous programming, we should first review what
is involved in programming heterogeneous systems:
where are they used and how? Once we identify the
requirements for supporting software development for
heterogeneous systems, we have a better basis for judging
the applicability of a programming language. What
follows is not meant to be an exhaustive survey of the
field, but merely a discussion of some well-known
examples to motivate the identification of a set of
requirements.

There are three basic reasons for writing programs
that involve heterogeneous parallelism: because we need
to use heterogeneous hardware, because our problem is
inherently heterogeneous in nature, or because we are faced
with some combination of the two. In practice there are
many gray areas between these distinctions. For example,
to some applications, a distributed shared memory parallel

processor may be completely homogeneous, whereas
others may be sensitive to differences in memory access
time and thus see such hardware as heterogeneous.
Likewise, while one approach to solving a problem may
be inherently heterogeneous, there may be other
approaches that are more homogeneous in nature. In what
follows it is implicit that programmers are always faced
with a spectrum of choices and that the use of
heterogeneity in any given instance is a matter of degree
rather than absolute.

2. Heterogeneous Hardware Users

In some situations, the system architect is forced to turn
to heterogeneous hardware. The necessity for heterogeneity
can be due to space and power requirements as in embedded
processing, or due to cost considerations as in clustered
workstation farms, or simply a matter of physical
limitations of technology as with large-scale shared
memory multiprocessors. Heterogeneity can also result
from systems that change their configuration dynamically,
as in the case of adaptive computing hardware or network
computing in which the availability of nodes is subject to
change. In the sections that follow, we consider some of
the special programming issues that are associated with
each of these situations.

2.1 Embedded Systems

Most embedded systems are strongly constrained by
limitations such as size, weight, power and cost. Many
embedded systems are not high-performance in nature, and
the goal is simply to minimize cost while achieving the
necessary level of performance. However, when
requirements for high performance are combined with
embedded system limitations, there is often a considerable
benefit to employing heterogeneous parallelism. For
example, combining a digital signal processor (DSP) with
a microprocessor and some custom logic can be more cost

0-8186-8365-1/98 $10.00 © 1998 IEEE
173

effective or achieve a higher level of performance than
using multiple identical microprocessors.

Achieving high performance with DSP and custom
logic, however, involves an especially high degree of
optimization of certain algorithms for the hardware. There
may be just a single way of optimally coding an
algorithm for a DSP that was specifically envisioned by
its designer. For example, some DSP architectures include
address arithmetic instructions that are unique to a Fast
Fourier Transform (FFT), and their use can speed up the
inner loop of that algorithm by nearly an order of
magnitude. Typically, these algorithms are hand-coded in
assembly language and provided as external libraries.

While the library approach works in limited
situations, it presents problems of portability and
flexibility. One of the goals of heterogeneous
programming is to reduce the dependence on hard-coded
machine-specific libraries so that code can be ported to
different heterogeneous platforms with minimal effort. A
program that is written with such library calls can't be
ported to another platform (or even run on a uniprocessor)
until the library is rewritten for the new platform.

The alternative is that we write the library's
algorithms in a high level programming language so they
can be compiled for whatever system we choose. Of
course, we then generate suboptimal object code for the
DSP. While we could perhaps build a compiler to
recognize and optimize certain key DSP algorithms
carefully written in some canonical form, it would be
difficult to handle the broader spectrum of DSP algorithms
or even minor variations on the key subset.

A simple but effective solution is to provide the
programmer with the ability to uniquely name an
algorithm that is implemented in multiple ways (i.e., in
high-level code and in libraries) and to indicate either a
specific target or the conditions that determine the
appropriate target for each implementation. For example,
a program might include the code for a generic FFT, and
the compiler might detect that there is a corresponding
FFT library function for one of the target processors.
Depending on how the code is partitioned among the
processors, the compiler either generates new FFT code or
a library call. Database researchers refer to this as ad-hoc
polymorphism, and we have previously called it
pseudomorphism [Weemsl994] because it is analogous to
the mineralogical form of the same name in which a
crystal is chemically replaced by another compound in
such a manner that the external appearance remains
unchanged.

Implicit in the foregoing discussion is the notion that
the compiler or some other tool is able to partition code
among processors of multiple types. Partitioning implies
that there is some means of estimating the performance

and cost of mapping code segments to processors. While
it is sometimes possible for partitioning tools to analyze
code and identify first-order factors affecting its
performance, it is also the case that the programmer may
have specific information that can help to guide
partitioning, and should be given a means to express it.

Partitioning tools also need hardware-specific cost
estimators both for the individual target processors and for
the communication mechanisms that connect them. This
can either be in the form of dedicated software for each
target or more general software that bases its estimates on
hardware descriptions expressed in some language. This
isn't necessarily the same language that the programmer
uses, but it is difficult to decide whether it is best to create
a whole new language or to extend an existing language
with constructs that most programmers will never use.

2.2 Adaptive Computing

Processors that can change their configuration, such as
field programmable gate arrays (FPGA) present challenges
that are similar to heterogeneous computing systems.
They are usually employed in embedded applications
where separate processing phases require different custom
computing hardware and thus it is possible to use a single
component that reconfigures itself between phases.
Adaptive hardware is often used as a coprocessor in a
system that includes a DSP or traditional microprocessor.

Like DSP systems, adaptive systems often rely on
libraries of manually optimized functions. An alternative
approach for programming adaptive devices is to generate
configurations automatically. Currently this is done only
from hardware description languages (HDL) or from
customized high-level languages that enable users to
express computations in ways that are more suited to
hardware layout (e.g., dataflow with datapath width
information).

In terms of heterogeneous programming, the
implications of the library approach are similar to those
for DSP-based embedded systems. However, for automatic
generation of configurations, the implications are that a
language should provide some features similar to those of
hardware description languages, including pipelining,
clocking and synchronous communication, datapaths and
functional units of varying widths.

The implications of adaptive computing for
partitioning and mapping are that the cost model is more
complex and performance estimates depend more on
detailed analyses of the actual circuitry. Because there are
many ways to lay out a particular circuit that affect
different aspects of its performance, there is a larger
mapping space to explore. The mapping space could be

174

considerably constrained by additional information from
the programmer.

2.3 Clustered Workstations

Heterogeneous computing is often most closely associated
with networked workstations in which multiple models
are employed so that nodes differ significantly from each
other in terms of performance and capacity. In many cases,
the workstations are used in a manner similar to a
homogeneous parallel processor and it is simply a matter
of partitioning operations in parallel across the available
resources. The reason for adopting this approach is
typically to save cost by using existing hardware resources
and free software to build an ad-hoc parallel processor,
although some clusters are purpose-built.

Because clusters typically employ a standard computer
network, communication between nodes has high latency
and limited bandwidth. Thus it is common to partition
jobs in a manner that minimizes communication, such as
having a master processor distribute work to slaves that
compute intensively for some period before returning a
result. Partitionings of this nature are naturally expressed
via message passing, and a significant amount of legacy
code now exists that uses either the PVM or MPI library.
Thus, in the near term a language must support interfaces
to these libraries.

In the long term, a goal of heterogeneous computing
research should be to support more automation of code
partitioning, mapping, and distribution in these
environments. However, their sheer diversity combined
with a focus on low cost and modest software effort may
make it difficult to provide a more sophisticated solution
that is acceptable to this particular user community.

2.4 Nonuniform Memory Access

As MIMD parallel processors scale up in size, they
encounter various physical limits that force their designers
to sacrifice uniformity of memory access latency. One
approach that has been adopted is to cluster processors in
groups of two to eight within which they have uniform
access latency, and access to shared memory outside of the
cluster is slower (Figure 1). In some cases, the clusters are
also grouped into a hierarchy. Another approach is to
connect the clusters with a message-passing network with
the result that programs can either employ a
heterogeneous mixture of shared and distributed memory,
or they can use software emulation of shared memory
outside of clusters with a resultant increase in latency.

All of these architectures benefit from appropriate
partitioning and mapping to enhance locality of reference.
Traditional memory placement optimizations can be

modified to some extent to deal with the nonuniform
access latencies, and in doing so start to resemble
partitioning strategies for heterogeneous systems. High
Performance Fortran (HPF) is a recent attempt to extend a
language with constructs that enable the programmer to
provide additional information to aid the partitioning of
data.

Shared Memory

Node Node Node

Network
Interface

Node

Shared Memory

Node Node Node

Network
Interface

Node

Figure 1. Clustered Parallel Architecture

While some sort of programmer-provided partitioning
information is probably needed, the HPF extensions and
especially their interactions with the Fortran-90 parallel
extensions have proved to be particularly troublesome to
compiler writers. Thus, an important consideration in
evaluating a language for heterogeneous programming is
to ensure that its features do not conflict with each other.

3. Solvers of Heterogeneous Problems

As we move beyond embarrassingly parallel applications
to address problems with greater complexity, we find that
they are often most naturally expressed with a
combination of parallel processing modes. In the previous
sections, we focused on the language features that are
needed to enable users to inform partitioning tools so that
they can distribute code onto heterogeneous hardware. In
the sections that follow, we consider via some examples
the language features needed to express the natural
heterogeneity of parallelism in some applications.

175

3.1 Scientific Computing 3.2 Computer Vision

Scientific codes are relying more on irregular
computations, as in the case of simulating turbulent fluid
flow, in which areas outside of turbulence zones are
regular and sparse but within turbulence zones meshes are
dense and irregular in their topology. Applications such as
these require language features that support the definition
of appropriate data structures, such as variable density
triangular meshes, and new arithmetic operators that
process them. One approach to implementing these is to
use an index array that points into a data array and
explicitly manage the adjacencies in the mesh. A set of
functions can be written to carry out arithmetic operations
on the mesh. However, all of this structure obscures the
true relationships between the data elements and between
operators, making it difficult to optimize them.

Expressing an irregular data structure at a higher level
should both simplify programming and optimization. For
example, making the property of adjacency explicit might
enable programmers to define an adjacency matrix and
automatically inherit certain operations that depend on
adjacency. While this could be syntactically expressed
with a class hierarchy, the compiler sees only the
underlying implementation and cannot take advantage of
higher level aspects of adjacency as a property in
optimizing computations.

Linguistically, the ability to overload arithmetic
operators provides a convenient syntactic sugarcoating that
hides the functional implementation of operations on new
data types. But overloading by itself does not enable the
compiler to optimize expressions of these new operators
in the same way that it optimizes expressions made up of
built-in operators. The ability to add semantic property
information to definitions to facilitate optimization is a
necessity. Such a capability need not resort to the
generality and complexity of mechanisms such as
denotational semantics [Gordon 1979]. Rather, simply
having a list of properties that the compiler recognizes and
which can be attached to definitions would be adequate.

Simulations of whole systems or processes are a
natural source of heterogeneous parallelism. For example,
simulating an entire jet engine involves various stages of
compression, fuel-air mixture, combustion and exhaust, as
well as mechanical stresses and thermodynamics.
Simulating each of these aspects of the engine involves
different computational techniques with different degrees of
parallelism, connected in a dataflow structure that mimics
the physical relationships between the engine
components.

The complexity of interpreting visual information
necessitates many different processing techniques. Image
processing and feature extraction provide opportunities for
fine-grained data parallel processing. Image sequences can
be processed in a pipelined manner and multiple features
can be extracted simultaneously with MISD parallelism.
Extracted features can be combined with SPMD
parallelism into larger structures, and shared memory
MIMD parallelism can be used to search the extracted
features for matches to multiple objects at once. The
overall processing may be coordinated with a data flow
model.

The implications of our two example application
domains for a programming language are that it must be
able to support a wider range of modes of parallelism than
merely data parallel and multiprocessing in order to
facilitate programming of heterogeneous applications. In
addition, it must support novel combinations of
parallelism. Ideally, it would also enable the programmer
to define new models of parallelism to suit a specific
problem.

4. Summary of Requirements

From the foregoing discussion, we list the following
requirements for a programming language suited to
heterogeneous programming:

• The ability to uniquely identify algorithms.
• Express partitioning and mapping information.
• Interface to PVM, MPI, etc.
• Support message passing over networks.
• Avoidance of conflicting language constructs.
• Overloading of arithmetic operators.
• Ability to add semantic information.
• Ability to define irregular structures.
• Express structural relationships such as adjacency.
• Support a wide range of parallel models, including

• SIMD,
• SPMD,
• MISD,
• MIMD,
• shared and distributed memory,
• dataflow,
• pipelining.

• Allow parallel models to be combined flexibly.
• Permit extension to new models of parallelism.

In our previous survey of programming languages for
heterogeneous parallelism [Weemsl994], we identified a

176

set of requirements that make up the abilities to flexibly
combine models of parallelism into new models:

• Support for a range of data and control grain sizes.
• Ability to define a communication abstraction.
• Ability to define a synchronization abstraction.
• Ability to specify patterns of data distribution.
• Ability to specify patterns of process distribution.
• Able to define new first-class types.

5. Why Java?

5.1 It's Hot.

At one time, introducing a new programming language
was just a matter of creating a compiler and making it
available. In the world of computing today, where legacy
code and compatibility tend to dominate the economics of
software development, it takes a confluence of many
factors to enable a new programming language to enter the
mainstream. Java appears to be the right language to
emerge at the right place and the right time.

Because Java is rising fast but is also still evolving,
it presents an opportunity for many special interests to try
to influence the design of what may become the dominant
programming language of the next decade. The parallel and
heterogeneous computing communities have been
struggling for years to develop languages that would gain
some measure of acceptance. If Java can be made suitable
for their purposes with just a few minor additions, then
perhaps those approaches will finally enter the mainstream
and researchers can move on to new levels of research.
Java was originally designed for embedded systems, so it
would superficially appear that it should address the
concerns of that segment of the heterogeneous processing
community.

5.2 It's Simple

In comparison to other modern object-oriented languages,
the essential syntax of Java is reasonably simple, and it's
core is familiar to any C programmer [Gosling 1996]. It
avoids many of the pitfalls of larger languages like C++
and Ada95 but does not sacrifice convenience for the sake
of minimalistic purity. It may certainly be argued that
there are syntactically "better" languages, but there is
general agreement that Java is an improvement over many
of its predecessors.

Simplicity also implies that a language will be easier
to learn, Java thus has the potential to win over converts
from existing languages used in heterogeneous, parallel,
embedded, and adaptive programming such as Fortran, C,
C++, Ada, and VHDL. Of course, to do so, it must also

provide a similar level of convenience of expression of
essential constructs in each of those domains.

Being syntactically simple, Java offers a better base
upon which to add constructs in support of heterogeneity,
if necessary, because the resulting interactions between
new and old constructs are easier to enumerate. Java's
simplicity includes the avoidance of many features of
earlier languages that were machine-dependent or that gave
the user too much low-level control (e.g., common,
equivalence, pointer address arithmetic, explicit memory
management). It thus offers a stronger foundation for
extensions.

5.3 It's Portable

Because Java targets a virtual machine (the JVM
[Lindholml997]), it can be executed on any machine with
an implementation of the JVM. This approach to a run-
time environment overcomes many of the difficulties that
are faced in trying to distribute code across heterogeneous
systems. Issues of word size, endianness, register file size,
operating system, and display environment all disappear.
In effect, Java homogenizes the heterogeneous world for
us through its virtual machine.

The result of this homogenization is that we can
focus on the bigger picture of high-level performance
characterization in support of partitioning and mapping.
All code is generated for a single instruction set and
descriptions of target machines can be in simpler terms
such as memory capacity and performance on some Java
benchmark kernels.

5.4 It's Object-Oriented

Besides being a popular buzzword, object-orientation gives
a language great syntactic power for extension. It is
possible to develop classes that provide convenient
abstractions for many forms of parallelism. For example,
one could build an irregular array class that makes it
simple to express the kinds of computations that are
performed in turbulent fluid-flow simulations. That
abstract interface can hide either a sequential or a parallel
implementation.

Object orientation also offers greater potential for
reuse and extension of user constructs by others. Given
classes that implement different models of parallelism, we
could combine them in a variety of ways to enable
heterogeneity to be expressed.

5.5 It's Garbage Collected

By avoiding explicit memory management by the
programmer, Java greatly reduces the opportunity for

177

errors resulting from memory leaks or bad address
arithmetic. However, for parallel processing, garbage
collection offers an opportunity for redistribution of
processing load. As a garbage collector sweeps through
memory compacting live and dead values, instead of
merely gathering the live values into one place it could
redistribute them to other (possibly heterogeneous)
computational nodes.

5.6 It's Threaded

Java's threads provide a simple but powerful mechanism
for expressing shared-memory parallelism. Many models
of concurrent programming can be expressed with the
Java's threads [Leal997]. It's runtime system, the JVM,
already supports multiprocessing so that a consistent
abstract parallel environment can be used on all targets.

5.7 It's Network Aware

Java applets provide a means for distributing code across a
local area network. In addition, its object-oriented
approach can be used as a form of message passing
through the remote method invocation facility. More
directly, it has the ability to explicitly handle network
connections as streams. When this is combined with
Java's reflection capabilities, we find that there are many
options for implementing parallelism in Java.

6. Java Weaknesses

6.1 It's Hot

The fact that Java is new and being influenced by many
interest groups means that the language itself is
continuing to evolve at a fast pace, making it difficult to
identify specific extensions without risking conflicts that
could arise from other proposed extensions. Java may still
evolve into a language with features that make it
unsuitable for heterogeneous parallel applications. Given
the ongoing battle between Microsoft and Sun over Java
standards, it is even still possible that Java will fail to
reach a critical level of acceptance or be replaced by a
different language.

Because of Java's perceived popularity, the
heterogeneous programming community has very little
influence over Java's evolution, and so must ride the
coattails of others in any effort to extend Java for their
benefit. A domain-specific language would not be subject
to the same restrictions.

6.2 It's Simple

One of the key simplifications that the Java designers
chose was to avoid operator overloading. Unfortunately,
the lack of operator overloading precludes programmers
from writing new arithmetic classes that are as convenient
to use as the built-in arithmetic types. Without operator
overloading, it will be difficult to convince scientific and
engineering users of languages like Fortran 90, HPF,
C++, and Ada to switch to Java. In effect, they must
return to the levels of notational convenience that were
available in Fortran 77, C and Pascal.

While Java provides access to the IEEE floating point
standard's special values of plus and minus infinity, plus
and minus zero and not-a-number, it does not provide the
ability to control the various states of the IEEE standard,
such as the rounding mode or the use of subnormal
values. Java does not generate any exceptions for floating
point operations, and for integers the only exception is
division (or remainder) by zero. In particular, overflow and
underflow are not detected. These limitations do not help
to convince programmers of numerically-oriented
applications to switch to Java.

6.3 It's Portable

Java's portability comes at the price of another layer of
abstraction (the JVM), which reduces performance. If the
abstraction layer is implemented by a bytecode interpreter,
then the cost is quite high over native code execution,
both in terms of time and space. If JIT compilation of the
bytecodes is used, then the time penalty can be reduced as
long as the compilation time can be amortized over
enough execution time for each run. Off-line translation of
bytecodes into native code avoids the JIT compilation cost
on each run, but bytecodes are then effectively a low-level
intermediate representation of the program that prevents
the translator from applying higher-level optimizations
before generating code. The result is object code that is
less optimized than a native compiler could produce from
source code.

Java's approach to portability thus results in a
significant reduction in performance. This should be
anticipated simply from the way in which Java attempts
to homogenize the world of processor architectures. There
is little point in using heterogeneous hardware if it will be
programmed in a manner that ignores the special hardware
features that were selected to improve performance. Java's
bytecodes were designed in part to facilitate embedded
processing such as appliance controllers, but not high-
performance embedded processing such as DSP.

178

6.4 It's Object-Oriented

Object orientation provides only the illusion of language
extensibility. However, there is still a rigid distinction
between the first-class constructs and types of the
language and user-defined objects. First-class objects carry
additional semantic properties that are used for key
optimizations. The programmer has no way of providing
similar semantic information when defining new objects.
The programmer cannot even indicate that existing
semantic properties associated with first-class types apply
equally to a new type or operator. For example, in
defining a new numeric type, the programmer has no way
to indicate that the addition operator is associative.

While object oriented programming can be used to
define a triangular mesh data type that syntactically
simplifies the coding of applications, the compiler has to
optimize at a much lower level of abstraction and will
miss opportunities for high-level optimizations. This is
problematic for partitioning and mapping in
heterogeneous systems, where knowing the organization
and access patterns of larger structures is especially
valuable.

6.5 It's Garbage Collected

The time-penalty of garbage collection is difficult to
predict. Depending on the available system memory and
on the data being processed, the frequency with which the
garbage collector is invoked and the time that it takes can
vary considerably. In many systems, long pauses for batch
collection are unacceptable, but incremental garbage
collection can be used to distribute the time so that the
user does not notice delays but merely sees some
variations in performance.

In hard real-time embedded systems, however, the
performance of the processor must be highly predictable to
avoid missing deadlines. The alternative is to assume a
worst-case execution time that is so great that much of a
processor's performance goes unused because tasks are
scheduled under the assumption that they will all suffer a
maximum penalty for garbage collection.

6.6 It's Threaded

While threading provides at least one native model of
parallelism in the language, it is not sufficient by itself
for efficiently defining all other models of parallelism.
Combining threads with object-oriented techniques and
other features of the language could make it possible to
syntactically express other models at least in a round
about way. For example, SPMD parallelism could be
crudely implemented with an array of threads, onto which

data arrays are partitioned, and locks could be manually
programmed to ensure synchronization at the end of each
basic block. However, that is far less convenient than a
FORALL or PARDO construct.

The appearance of SIMD parallelism could be
obtained with suitable whole-structure operators on
structured classes. But the only actual means of
implementation would be external library calls. Without
operator overloading and semantic extensibility, however,
there would be no opportunity for optimizing across calls.
For example, an expression (written as method calls) that
operates on a parallel array type could not have common
subexpressions eliminated, nor could the registers of the
parallel hardware be scheduled efficiently.

In essence, Java provides one basic approach to
parallelism, and does not facilitate the use of other
models. It thus neglects the needs of people who need to
solve heterogeneous problems. It has also been noted that
the primitive nature of Java's threading facility is
analogous to the combination of pointer arithmetic and
explicit memory management in C in that it provides
sufficient rope to hang the programmer [Lewis 1997].
Various user communities would be better served by a
parallelism facility that is less prone to deadlock, livelock,
and orphaned threads.

6.7 It's Network Aware

Java's network awareness is built on top of TCP/IP and
HTML. Connections are established between Java
programs using internet addresses and port numbers, and
applets are referenced by internet addresses plus file names.
While this greatly simplifies the network interface and
makes it widely portable, the latency of the layered
network protocol is significant. For a cluster of
workstations, where the communication network is also
built around this protocol, there is little choice but to
accept the high latency. However, in purpose-built
clusters or distributed-memory parallel processors, where
communication is mainly between trusted peers, the
latency is unnecessary.

While this is partly an operating system issue, Java
does not inherently provide a mechanism to distinguish
between secure communication and trusted low-latency
communication. Adding a library built on special OS calls
would allow programmers to work around this limitation,
but then their code would not be portable.

There are no provisions in Java's model of network
communication to support parallel operations such as
broadcast and reduction. Again, these could be provided
with manual workarounds, such as a native interface to
MPI, but the bottom line is that Java was not designed for
parallel processing network communication.

179

7. Making Gourmet Java

The foregoing discussion highlights various features of
Java that make it both attractive and unsuitable for
heterogeneous programming. In this section we consider
some possible changes that would make Java more
suitable for heterogeneous programming. It should be
noted that these are not all syntax changes. Some of the
changes involve the compiler and the virtual machine.

7.1 Syntactic Additions

Operator overloading is a key syntactic addition that is
needed to enable programmers to write new numeric
classes that match the expressiveness of other languages.
Syntactically this is a minor change to the language if it
is restricted to overloading the existing operators,
although it significantly affects parsing, conversions, and
promotions. If generalized to enable arbitrary monadic and
dyadic operator forms for method invocations, then it
would be a more significant syntactic change.

To support pseudomorphism, the syntax for the
implements clause in a class declaration should be
extended to support multiple implementations of the same
interface by classes with the same name in a single
package. The redundant classes must then be distinguished
by a predicate. For example, we might write

implements interface-list When Boolean-expression

to indicate the conditions that determine when a particular
class from the set of identical classes is selected as the
appropriate implementation of an interface.

The conditions could be resolved at compile time,
load time, or run time, according to the information that
they depend on, which implies that the compiler, loader,
and JVM must all be extended to perform these tests in a
heterogeneous environment. For example, a condition
might call getProperties to determine the type of target
onto which it is being loaded so that only the
implementations appropriate to the target would be loaded
onto it. If multiple implementations are loaded at run
time, then when the first member of the interface is
invoked, the run-time system must test their conditions to
identify the one that will be used. Once an
implementation has been selected, it is used for as long as
the class instance exists. If the conditions for multiple
implementations are satisfied then the run-time system
chooses the implementation. If none of the conditions are
satisfied, then an exception is thrown.

If conditions change such that it would be desirable to
switch to a different implementation (e.g., due to
changing system load), then the class instance must be

destroyed and a new instance created using the alternate
implementation. It would be up to the programmer to
decide how to convert the state of one implementation
into another in such a transition.

7.2 Semantic Extensibility

A limited but sufficient mechanism for semantic
extensibility could be achieved by enriching the set of
attributes explicitly recognized by the Java compiler and
virtual machine, and making them accessible at the source
level. The existing attribute facility of the virtual machine
is sufficient to tag any class, field, or method with
additional information. For example, the ConstantValue
attribute indicates to the JVM that a field is a constant.

If the list of attributes is extended to explicitly
include all of the currently implicit semantic properties
used to trigger or enable optimizations, and these are made
available to the programmer, then it becomes possible to
extend the language with new first class types. For
example, we might write the following form (which also
assumes an extension for overloading arithmetic
operators):

attributes(associative, commutative)
static complex dyadic +

(complex left, complex right)

This code would define a new + operator for a
complex type that would carry the built-in attributes
necessary to enable high-level optimizations of
expressions containing it.

If the user specifies an attribute that does not exist in
the system, a warning would be issued, but it would not
result in a fatal error. The JVM is specified to ignore
unrecognized attributes. This would allow
implementations to carry attributes that are specific to
certain JVMs but not others (e.g., a parallel JVM). In
addition, because the attributes are carried through to the
bytecode representation, it is possible for a bytecode to
native code translator to employ some of its own high-
level optimizations. For example, the translator could use
the attributes to enable more aggressive register
scheduling.

One attribute that would facilitate the creation of
irregular types would be a means of indicating the
adjacency relationships between elements in a data
structure. Attributes could also be used to carry
information to guide partitioning and mapping of
structures.

180

7.3 Compiling

Compiling Java in a heterogeneous environment is likely
to involve the initial bytecode generation, together with
native code generation (either off-line or JIT) once the
bytecodes are downloaded to a specific target. As
mentioned in the previous section, a wider range of
attributes must be carried in the class file containing the
bytecodes to enable delayed optimization. It may, in fact,
be necessary to carry a higher-level intermediate
representation (IR) of the code in the class file to enable
all of the desired optimizations. The IR might end up
being comparable in sophistication to a program
dependence graph augmented with source node-type
information and links to the generated bytecode. In
essence, this would enable the native code translator to
start with a higher level view of the code and generate all
new code for the particular target. Having such
information available would especially facilitate target-
specific partitioning of parallel operations.

7.4 Garbage Collection

Currently, Java supports the gc method to force garbage
collection to occur. However, there is no way to ensure
that collection does not occur during a time-critical section
of code. The gc method should be extended to accept
various parameters, such as gc(FALSE) to turn off
collection until it is either explicitly enabled with
gc(TRUE), or the current method exits.

In addition, the user could be given more control over
the collection process, such as indicating whether a more
costly incremental collection should be run to minimize
pauses or that a faster periodic sweep that results in
noticeable pauses is acceptable.

7.5 Other Mode'ls of Parallelism

There are other extensions that would make it easier to
explicitly write certain kinds of parallel code, such as
FORALL or WHERE, but it can also be argued that
parallelizing compiler technology can often identify these
cases when normal loops are written to directly implement
sequential versions of them.

Directly supporting multiple models of parallelism in
Java depends not so much on changes to the language as
to the JVM, which currently recognizes only threads as
being concurrent. Given operator overloading,
pseudomorphism, and semantic extensibility, we can
express nearly all forms of parallelism. For example, the
features of a data parallel language like ZPL [Snyderl994]
can be realized with object-oriented techniques, although
not with the same syntactic simplicity. Consider that ZPL

regions can be implemented as arrays with the appropriate
attributes and region specifiers can be written as methods
that manage a global context variable. The result will not
be as pretty, but if it carries the appropriate attributes
through to a parallel runtime environment, the resulting
code should have similar efficiency.

Of course, the ultimate in extensibility would be the
capability to define new control structures. However, such
an extension would involve the ability to pass expressions
and code blocks to methods, where they could be executed
with some level of intervention. When combined with
support for pseudomorphism, however, the result would
be the ability to directly express parallel operations whose
implementation is determined by the available hardware;
which is precisely what users of heterogeneous processing
are seeking.

8. Conclusion

Java offers a combination of opportunities and features
that make it an attractive language for heterogeneous
parallel processing. However, a deeper study reveals some
serious shortcomings that will make it difficult to attract
users from the major communities that need
heterogeneity. In particular, it lacks key support for
scientific and high-performance embedded processing. In
addition, the way in which it homogenizes the world to
achieve portability directly conflicts with the fundamental
reason for employing heterogeneity.

However, with some modest extensions to the
language, and suitable restructuring of the compiler,
loader, and run-time system (including native code
generation from bytecodes and a higher level IR), Java
could be made much more suitable for heterogeneous
parallel processing. The major syntactic changes would be
to enable operator overloading, extend the implements
clause so that multiple classes with the same name can
implement an interface in a manner that allows the system
to choose between them, and make an enriched set of
standard attributes accessible to the programmer. Support
for user-defined control structures would be a significant
change in syntax and semantics, but would allow
expression of parallel operations with the syntactic
directness of parallel languages such as Fortran90, HPF,
and ZPL.

9. Acknowledgments

This work was supported in part by a grant from the
Defense Advanced Research Projects Agency, monitored
by the Naval Research Laboratory under contract number
N00014-94-1-0742. The author wishes also to thank Eliot
Moss, Kathryn McKinley, Steve Dropsho, Brendan

181

Cahoon, Glen weaver and John Cavazos for their helpful
discussions and comments. Some of the ideas presented
here are closely related to concepts behind the
heterogeneous compiler, Scale, which we are presently
building.

10. References

[Gordonl979] Michael Gordon, "The Denotational
Description of Programming Languages", Springer-Verlag,
New York, 1979.

[Goslingl996] James Gosling, Bill Joy, Guy Steele, "The
Java Language Specification", Addison Wesley Pub. ,
Reading, MA, 1996.

[Leal997] Doug Lea, "Concurrent Programming in Java",
Addison Wesley Pub. , Reading, MA, 1997.

[Lewisl997] Ted Lewis, "If Java Is the Answer, What Was the
Question?", IEEE Computer, Vol. 30, No. 3, March, 1997,
pp. 133-136

[Lindholm 1997] Tim Lindholm, Frank Yellin, 'The Java
Virtual Machine Specification", Addison Wesley Pub. ,
Reading, MA, 1997.

[Snyderl994] Lawrence Snyder, "A ZPL Programming Guide",
Dept. of Computer Science and Engineering, Univ. of
Washington, 1994.

[Weemsl994] Charles Weems, Glen Weaver, Steve Dropsho,
"Linguistic Support for Heterogeneous Parallel Processing: A
Survey and an Approach", Proc. IEEE Heterogeneous
Computing Workshop, April, 1994, Cancun, Mexico, IEEE
Press, Los Alamitos, CA, pp. 81-88.

Biography

Charles C. Weems, B.S. 1977 (honors) and M.A.
1979, Oregon State University, Ph.D. 1984, University
of Massachusetts at Amherst. Since 1984 he has directed
the Specialized Parallel Architectures research group at the
University of Massachusetts, where he is an Associate
Professor. His research interests include parallel
architectures for computer vision, benchmarks for vision,
heterogeneous and adaptive parallel architectures,
compilation for heterogeneous and adaptive systems,
architectural issues for hard real-time systems, and parallel
vision algorithms. He led the development of two
generations of both the hardware and software for a
heterogeneous parallel processor for machine vision, called
the Image Understanding Architecture, under DARPA
support. He is the author of numerous technical articles,
has served on over a dozen program committees, is
chairing the 1997 IEEE International Workshop on
Computer Architecture for Machine Perception, the 1998
IEEE Symposium on the Frontiers of Massively Parallel
Processing, and co-chairing the 1999 IEEE International
Parallel Processing Symposium. He edited special issues
of Machine Vision and Applications and IEEE Computer,
serves on the board of ACSIOM Inc., is a member of the
technical advisory committee to the board of Amerinex
Applied Imaging, Inc., and is also the co-author of four
widely used introductory computer science texts, and co-
edited a book entitled Associative Processing and
Processors. Dr. Weems is a member of ACM, a Senior
Member of IEEE, a member of the Executive Committee
of the IEEE TC on Parallel Processing, the IAPR TC on
Special Purpose Architectures, and is an area editor for the
Journal of Parallel and Distributed Computing and the
SPIE/IEEE series on Imaging Science and Engineering.

182

Addendum

Scheduling Resources in Multi-User, Heterogeneous, Computing
Environments with SmartNet

Richard F. Freund*
Michael Gherrity*

Stephen Ambrosius*
Mark Campbell1,

Mike Halderman*
Debra Hensgen1

Elaine Keith1

Taylor Kidd*
Matt Kussow1

John D. Lima1

Francesca Mirabile*
Lantz Moore§
Brad Rust1

H. J. Siegel'

Abstract
It is increasingly common for computer users to

have access to several computers on a network, and
hence to be able to execute many of their tasks on any
of several computers. The choice of which comput-
ers execute which tasks is commonly determined by
users based on a knowledge of computer speeds for
each task and the current load on each computer. A
number of task scheduling systems have been devel-
oped that balance the load of the computers on the net-
work, but such systems tend to minimize the idle time
of the computers rather than minimize the idle time
of the users. This paper focuses on the benefits that
can be achieved when the scheduling system considers
both the computer availabilities and the performance of
each task on each computer. The SmartNet resource
scheduling system is described and compared to two
different resource allocation strategies: load balancing
and user directed assignment. Results are presented
where the operation of hundreds of different networks
of computers running thousands of different mixes of
tasks are simulated in a batch environment. These
results indicate that, for the computer environments

•NCCOSC RDT&E Division (NRaD)
t Science Applications International Corporation
'Naval Postgraduate School
5 University of Cincinnati
'Purdue University

simulated, SmartNet outperforms both load balancing
and user directed assignments, based on the maximum
time users must wait for their tasks to finish.

1 Introduction
1.1 Overview

The computational resources available to an indi-
vidual user may range from a personal computer to
workstations to a variety of high-performance comput-
ers, all connected through combinations of local and
wide area networks. In this distributed computing en-
vironment, the jobs of a single user are often affected
by the jobs of other users, computer unavailability,
and network congestion. It is not unusual for a user's
jobs to be significantly delayed because of other jobs
saturating network routes or sharing computational
resources. Although in some cases this may be un-
avoidable, in many cases a user's jobs can be executed
on alternate computers on the network. A resource
manager with a global perspective of the network re-
sources might be able to get the user's jobs completed
in less time by executing these jobs on such alternate
computers.

SmartNet is a resource scheduling system for dis-
tributed computing environments. It allows users to
execute jobs on complex networks of different com-
puters as if they were a single machine, or metacom-
puter. A user need not be concerned with the activi-

0-8186-8365-1/98 $10.00© 1998 IEEE
184

ties of other users, nor even whether various machines
in the metacomputer are temporarily unavailable. To
allow users to continue with interfaces with which they
are familiar, SmartNet can also function as a schedul-
ing advisor to existing resource management tools [24].

SmartNet schedules and can manage the execution
of each user's jobs in coordination with the other jobs
in the metacomputer in a attempt to maximize the
performance of the metacomputer for all users. From
this global perspective, the emphasis is not on maxi-
mizing the efficient use of the machines in the meta-
computer, but rather on maximizing the efficiency of
the users of the metacomputer. The SmartNet per-
formance metrics are based on how well the users are
served, rather than on how well each machine is used.

Section 2 describes the current capabilities of the
SmartNet system. This includes the ability to obey
data dependencies between jobs, to account for the ef-
fect of different inputs on job execution times, and to
use a variety of scheduling algorithms. In Section 3,
the performance of a metacomputer from a global per-
spective is measured by the maximum amount of time
any user must wait for jobs to finish. Using this met-
ric and some basic assumptions regarding the use of a
metacomputer (specified in Section 3), it is shown that
for a network of heterogeneous machines, a scheduling
system that considers both the machine availabilities
and the affinity of jobs to machines significantly out-
performs a scheduling system that attempts to balance
the load across machines in the network, and also out-
performs a system where users select the fastest ma-
chine to execute each of their jobs. Section 4 describes
the future direction of SmartNet development.

1.2 Implementing Superconcurrency
The term superconcurrency [14, 15, 36] has been

used to describe* a technique for selecting the opti-
mal suite of machines in a metacomputer to execute
a given set of jobs [17]. To fully exploit the capabili-
ties of a metacomputer, a single job must be decom-
posed into tasks, such that each task has relatively ho-
mogeneous computational requirements. These com-
putational requirements are defined by the different
machine architectures available in the metacomputer.
This decomposition allows full exploitation of the fact
that different tasks execute at different speeds on the
different machines in the metacomputer.

Job decomposition can occur at several levels. In
many cases, large projects are decomposed by devel-
opers into programs that can be executed separately
by a computer operating system. Often each program
is written to take advantage of the special computa-
tional abilities of a given computer architecture. Such

programs can share data by reading and writing files.
In what follows, an executable program will be called
a task, and a project consisting of one or more tasks
with data dependencies will be called a job. This pa-
per focuses on the benefits that can be achieved when
the full heterogeneity among the tasks in the the jobs
and among the machines in the metacomputer is con-
sidered when scheduling the execution of the jobs on
the metacomputer.

For some tasks, a finer level of decomposition may
be beneficial. In this case a task may be decomposed
into subtasks, each with homogeneous computational
requirements [33]. Considerable effort has been ap-
plied to perform this decomposition automatically, but
many open problems remain [34]. Several language
extensions for parallel computation have been devel-
oped that allow this decomposition to be done by pro-
grammers. Systems that use such language features
include AHS [8], HeNCE/PVM [2, 35], Legion [20],
Mentat [19], and P4 [5]. These systems allow pro-
grammers to decompose tasks into subtasks to fully
utilize the heterogeneous processing capabilities of a
metacomputer. Although this paper concentrates on
scheduling tasks on a metacomputer, scheduling sub-
tasks on a metacomputer involves many of the same
issues.
1.3 Task Scheduling on a Metacomputer

with Multiple Users
How tasks are assigned to the machines of a meta-

computer is an important factor that affects the per-
formance of the metacomputer. The assignment of
a task to a machine on which it executes slowly can
significantly reduce overall performance. Likewise, re-
source contention must be considered when scheduling
tasks on a metacomputer with multiple users. For ex-
ample, an optimal assignment of tasks to idle machines
can easily become suboptimal if one of the machines is
suddenly loaded with a task from another user. There
are several important issues that a scheduler for a net-
work of heterogeneous machines with multiple users
should consider.

Heterogeneity: A number of systems have been de-
veloped for managing the execution of tasks on
a network of machines. Examples include Con-
dor [4], OSF DCE [29], and PBS [22]. Such sys-
tems schedule tasks in order to evenly balance the
load on the machines in the metacomputer [27].
Many of these load balancing schemes are mod-
ified in an attempt to account for differences in
the capabilities between machines. One common
method is to adjust the load on a machine based
on its speed on a single task relative to the other

185

machines. However, this does not account for
the different affinities between tasks and machines
that occur as a result of heterogeneity [15].

Figure 1 shows a simple example where the sched-
ule that minimizes the completion time of all the
tasks of a given set of jobs (the schedule length
[6]) distributes the load unevenly among three
machines, actually leaving one of the machines
in the metacomputer idle. Specifically, execut-
ing any task on machine 2 will cause the schedule
length to be at least 8 time units, whereas if ma-
chine 2 is left idle a schedule length of 6 is pos-
sible. This shows the importance of considering
task and machine affinities in scheduling tasks on
a metacomputer.

The importance of considering heterogeneity is
further demonstrated in table (a) of Figure 1
where machine 1 is four times as fast as machine 2
on every task, but the speed of machine 3 rela-
tive to machine 1 varies depending on the task it
is executing. This is an appropriate model if, for
example, machine 3 is a vector machine and some
of the tasks are not vectorizable. Tasks that are
vectorizable would tend to execute more quickly
on the vector machine.

Figure 1 also shows that the optimal schedule
does not assign task A to its best machine (ma-
chine 3) but rather to its second best machine
(machine 1). If the user of task A assigns this task
to machine 3, its best machine, then the other
tasks will not finish until at least time 8. This il-
lustrates that simply allowing users to assign their
tasks to the machines that execute them fastest
may not provide all users with the best perfor-
mance of the metacomputer. A scheduler that
considers all the tasks of the metacomputer may
improve its performance for most users.

Task Execution Times: To exploit the heterogene-
ity among the tasks in the jobs and among the
machines in a metacomputer, it is beneficial to
estimate the execution time of each task on each
machine. Such estimates can usually be made
empirically, although some deterministic models
have been developed [1, 38]. Section 3 presents
simulation results showing that variations in the
estimate of task execution times has a secondary
effect on scheduler performance compared to the
appropriate consideration of heterogeneity.

Of course, different input data can dramatically
affect the execution times of many tasks, and this

effect can vary depending on the machine execut-
ing the task. It is assumed the effect of input
data on the execution time of a task on a given
machine is deterministic. For example, the ex-
ecution time of a Monte Carlo simulation task
on a single processor machine might tend to be
linearly related to the number of iterations speci-
fied in its input data. A scheduler can benefit by
having access to both the characteristics of the
input data that affect a task's execution time and
an equation for how the task execution time can
be estimated from these characteristics when ex-
ecuted on a given machine.

Network Usage: To fully exploit the capabilities of
a metacomputer, it is not only beneficial to esti-
mate the execution times of the tasks, but also to
estimate the network traffic that occurs as tasks
communicate. If the tasks of one user are heavily
loading a network route between two machines,
it may be beneficial to schedule other tasks on
machines where a different network route can be
used.

Sections 2 and 4 describe SmartNet's current and fu-
ture approaches, respectively, to address these issues.
1.4 Relationships with Other Work

The importance of scheduling for the efficient use of
distributed systems is well known, e.g., [10]. However,
much of this research has been directed at schedul-
ing the tasks of a single job on a network of proces-
sors, where there are no conflicting jobs or where the
resource requirements of other jobs are unknown to
the scheduler. In contrast, the SmartNet scheduler
was designed to address multiple users competing for
the resources of a metacomputer, and is most effec-
tive when the resource usage requirements of the jobs
of each user can be estimated.

The importance of scheduling to achieve acceptable
performance from a metacomputer with multiple users
is also a major theme of the AppLeS [3] system. In this
system, each task (called an application in AppLeS)
would have its own AppLeS agent to select the meta-
computer resources that will best meet that task's per-
formance criteria. Because each agent schedules to
maximize the performance of its associated task, the
schedule that results would differ from the SmartNet
schedule. As illustrated in Figure 1, SmartNet would
attempt to minimize the longest execution time over
all users. The emphasis in AppLeS is for each agent
to optimize its own performance criteria rather than
to cooperate with other agents to minimize a perfor-
mance criteria shared by all the metacomputer users.

186

Computer

Task 1 2 3

A 6 24 5

B 2 8 1

C 8 32 4

D 2 8 1

Schedule

Task Execution Times

(a)

3

O
U

1 A

2

3 B D C
I

2 4
Time

(b)

Figure 1: An example where neither load balancing nor user directed assignments are the best scheduling strategies
for a metacomputer. Table (a) gives the execution times of each task of a set of jobs on each machine. A Gantt
chart of the schedule that minimizes the schedule length is shown in (b).

2 Current Implementation
2.1 Overview

The first version of SmartNet was operational in
early 1994, and work has continued since then to in-
crease its capabilities. The current version has proven
to be useful in improving the performance of networks
of heterogeneous machines, as will be shown in Sec-
tion 3. Experience with this version has directed fu-
ture efforts to enhance the system, and these will be
described in Section 4.

Because batch systems such as Condor [4], OSF
DCE [29], and PBS [22] perform many of the opera-
tions to manage the execution of scheduled tasks, this
section will concentrate on the SmartNet scheduling
capabilities not found in these systems. In fact, the
SmartNet scheduling algorithms have been added to
local versions of Condor [24] and Cray Research Inc.'s
NQE.

2.2 How a Metacomputer and Tasks are
Modeled in SmartNet

As described in Section 1.2, this paper will focus on
scheduling executable tasks on a network of heteroge-
neous machines. The current version of Smartnet uses
a directed acyclic graph (DAG) to specify data
dependencies among the tasks of a job, and all the
tasks of a single job communicate this data through
files on a file server shared by all the tasks of the job.
Different jobs may have different file servers. Commu-
nication among tasks can occur at the start or finish
of a task. It is also assumed that tasks use a constant
percentage of the processing and memory resources of
the machine to which they are assigned, and that the
executable program for each task is locally available
to each machine which may execute the task.

It is assumed that the execution time of each task-

on each machine can be reasonably estimated. Task
execution times are generally a function of a small
number of input parameters, and better schedules re-
sult if both the values of these parameters and the
appropriate time complexity function is available at
the time the task is scheduled. For example, it may
be possible to estimate the execution time of a task
that contains a doubly nested loop by computing:

execution time = anm,

where a is a constant that may be found empirically,
and n and m are the bounds on the loops. The
user could provide this execution time formula to the
SmartNet database for this task on the given machine,
and the values of n and m could be given by the user
when the task is submitted to the scheduler. Smart-
Net uses interpolation and extrapolation algorithms
to extend rote learning of task execution times if ei-
ther the parameters or the function are missing or only
approximately correct.

The current version of SmartNet can account for
latency and bandwidth between remote sites of the
metacomputer, and also between the machines and a
file server. Task priorities and data dependencies can
be enforced by the scheduler. A background load on
each machine and each network route can be consid-
ered when scheduling, however many complex network
and processor contention issues are not considered in
the current version. Although in many cases these net-
work contention effects are negligible, there are prob-
lem domains where these effects are significant.
2.3 SmartNet Scheduling Algorithms

As shown in Figure 1, neither load balancing nor
user directed assignment of resources may be as ef-
fective as a global scheduler for networks of heteroge-

187

neous machines. To most effectively schedule tasks on
a metacompiler, the SmartNet scheduling heuristics
all require estimates of the task execution times, and
in some cases additional information about commu-
nication, memory, and processor usage. Estimates of
task execution times are obtained through a combi-
nation of experiential information gathered automati-
cally from trial runs, and, optionally, by time complex-
ity equations (see Section 2.2) provided by the user.

In general, optimal multiprocessor scheduling is
NP-complete [18], and hence SmartNet uses a variety
of scheduling algorithms to attempt to obtain near-
optimal schedules for different problems. The algo-
rithms described below use a deterministic execu-
tion simulation [28] which performs a deterministic
simulation of each task assuming the task execution
times are equal to their estimated average values. A
brief description of several of the SmartNet scheduling
algorithms follows.

Maxmin and Minmin Algorithms:
If all the tasks to schedule are independent and
compute intensive, then several of the algorithms
described in [25] can be used. Specifically, al-
gorithms D and E in [25] have been implemented
and are called maxmin and minmin algorithms,
respectively. Both have time complexities of
ö(mn2), where m is the number of machines in
the metacomputer and n is the number of tasks
to schedule.

Both the maxmin and minmin algorithms con-
sider a hypothetical assignment of tasks to ma-
chines, projecting when a machine will become
idle based on the hypothetical assignment. Both
algorithms determine, for each unassigned task,
the earliest (minimum) time the task can be com-
pleted given the projected idle times of each ma-
chine and the estimated execution time of the task
on each machine. The algorithms differ in their
selection of which task to assign next given these
minimum finish times. The maxmin algorithm
selects the task that will take the maximum time
to finish, whereas the minmin algorithm selects
the task that could finish in the minimum time.
Once selected, the task is assigned, the projected
machine idle time is updated, and the task is re-
moved from the set of unassigned tasks. The pro-
cess is repeated until all tasks are assigned.

A schedule for 1000 tasks on a metacomputer
of 100 machines can be determined in less than
a minute using a typical workstation. Although
[25] shows pathological problems where the re-

sulting schedule length may be up to a factor of m
worse than optimal, tests with environments such
as those described in Section 3 have indicated
that the schedule lengths are generally within
20% of optimal. Such tests were performed us-
ing simulations of small metacomputers and few
tasks in order to perform an exhaustive search for
an optimal schedule to be used for comparisons.
In addition, for large metacomputers with many
tasks, comparisons were possible against sched-
ule lengths that were provably shorter than the
optimal value [31].

Dependency Algorithms:
The following algorithms compute schedules
when there are data dependencies between tasks.
Although these tend to be the most frequently
used SmartNet scheduling algorithms, a discus-
sion of their effectiveness is outside the scope
of this paper. A brief description is provided
for completeness. For the experiments described
in Section 3, there are no dependencies between
tasks.

A Generational Algorithm:
This is a straightforward, cyclic method for
mapping a set of dependent tasks onto avail-
able machines, that provides comparatively
good schedules in a relatively short time [16].
During each cycle, a limited part of the
scheduling problem is considered. Each task
that has not satisfied all of its precedence
constraints is considered ineligible for exe-
cution. All ineligible tasks are filtered out
of the scheduling problem, forming a new
smaller scheduling problem composed only
of those tasks immediately eligible for exe-
cution. An auxiliary scheduling algorithm
is then used to determine a schedule for the
non-precedence-constrained problem. Upon
detection of a rescheduling event, a new
precedence-constrained scheduling problem
is formed and the process repeats. One pos-
sible (indeed likely) rescheduling event is the
completion of a previously scheduled task.

This generational algorithm is closely re-
lated to scheduling strategies such as Heavi-
est Node First scheduling [31] and Mapping
Heuristic scheduling [9]. However this algo-
rithm differs from these schedulers in that
(1) all eligible tasks are rescheduled at each
rescheduling event, and (2) the algorithm is
designed to run dynamically as new task sets

188

are constantly added and completed.

A Clustering Algorithm:
A clustering algorithm [10] is provided for
scheduling tasks with data dependencies
that only use a portion of the available pro-
cessing resources. For example, some tasks
may consistently use only 50% of the CPU
due to file I/O operations. In such cases,
it is best to schedule several such tasks on a
single machine (provided the machine has an
operating system capable of multiprogram-
ming [7], such as UNIX). In this case, the
scheduler ensures that the memory require-
ments of the concurrent tasks are within the
memory available on the machine, and that
the concurrent tasks do not exceed the avail-
able network bandwidth.

Other Techniques:
A variety of experimental scheduling algorithms
are also included in the current release of Smart-
Net. These include an algorithm using evolution-
ary programming [12], and another using a com-
bination of genetic algorithms and simulated an-
nealing [23, 32].

The added complexity of considering data dependen-
cies in both the generational and clustering algorithms
make these methods several times slower than the
maxmin and minmin algorithms.

3 Simulation Results
3.1 Overview

It is difficult to precisely evaluate the performance
of a scheduling algorithm for a metacomputer because
this is dependent on many factors, such as the dis-
tribution of task execution times and characteristics
of the metacomputer hardware. Tests using a spe-
cific metacomputer are not conclusive because the re-
sults are only valid for that metacomputer. Simulation
studies provide the ability to demonstrate the effec-
tiveness of a scheduling algorithm over a broad range
of conditions, although there is no generally accepted
set of benchmarks.

Although a large number of different metacomput-
ers can be tested using simulation studies, there is
an issue with the accuracy of the simulation. This
section presents simulation studies where all tasks to
be run are known initially (batch processing), tasks
are independent, and network use is not significant,
hence the need to accurately model specific features
of a metacomputer for accurate simulation results are
minimized. In addition, in this case, an assumption

of single-programming (i.e., each machine executes a
single task at a time) is appropriate to maximize the
performance of the metacomputer.

Two simulation studies will be presented where
a large number of randomly generated problems are
scheduled. Section 3.2 describes simulations that were
performed with results from the NAS parallel bench-
marks [30] to model a metacomputer used in a typical
production environment. Section 3.3 presents simu-
lations that model a typical academic environment.
Section 3.4 evaluates the effect of variations in the
estimated task completion times for both the produc-
tion and academic environments. As described in Sec-
tion 2, there are SmartNet schedulers that consider
communications between tasks, but the evaluation of
these algorithms is outside the scope of this paper.
The focus here is on demonstrating the benefits of con-
sidering heterogeneity in task scheduling. Additional
information about SmartNet can be found in [13].

3.2 Simulating a Typical Production En-
vironment

In the production environment modeled here, it
is assumed that tasks tend to have long execution
times. This would be typical of, say, batch jobs run
overnight using a sizable metacomputer. To model
this case, random sets of task execution times and
machine speeds were generated using the NAS paral-
lel benchmarks [30] as a template.

Specifically, ten machines were arbitrarily selected
from the NAS database and the execution times of
the eight NAS benchmarks on these machines (using
the class A data size) were used. Table 1 shows the
selected machines, and Table 2 shows the correspond-
ing job execution times on each machine given in [30].
Notice the significant heterogeneity both in machine
speeds for the same job (across rows) and job exe-
cution times for the same machine (across columns)
shown in Table 2. No single machine is fastest on all
the jobs, and the ratio of execution times on different
machines is very much dependent on the job being
executed.

Each test problem modeled a network of 20 ma-
chines with 100 tasks. The problems were randomly
generated from Tables 1 and 2 as follows. Each of
the 20 machines was selected by randomly picking
one of the ten machines listed in Table 1 using a uni-
form distribution with replacement. Similarly, each of
the 100 tasks was selected to correspond to one of the
eight NAS jobs shown in Table 2. A complete 100 x 20
matrix of execution times was then created using the
corresponding times in Table 2.

For these tests the maxmin algorithm was used by

189

index Machine Processors
1 HP/Convex Exemplar SPP2000 16
2 CRAY C90 16
3 CRAY T3E 256
4 CRAY Y-MP 8
5 DEC Alpha Server 8400 5/440 (437 MHz) 12
6 Fujitsu VPP700 32
7 IBM RS/6000 SP Thin-node2 (67 MHz) 128
8 Intel Paragon MP (SunMos turbo) 512
9 Kendell Square KSR2 64

10 SGI Origin2000 (195 MHz) 32

Table 1: The arbitrarily selected machines from the NAS database used to generate random test cases.

Machine
job 1 2 3 4 5 6 7 8 9 10
EP 10.5 2.36 0.4 15.87 8.46 1.03 1.31 0.87 13.0 3.55
MG 4.3 0.71 0.2 2.96 NA 0.25 0.63 1.36 5.7 2.12
CG 2.7 0.34 0.4 2.38 NA 0.67 1.48 NA 6.1 2.04
FT NA 0.80 0.2 4.19 NA 0.33 1.30 1.92 6.5 3.16
IS 2.21 0.27 0.2 1.85 NA 0.98 0.61 2.29 3.9 1.21
LU NA 10.17 4.2 49.5 67.97 10.06 15.9 NA 102.0 18.9
SP 56.6 12.82 6.0 64.6 91.43 4.53 20.6 NA 131.0 30.5
BT 55.3 20.3 6.2 114.0 103.5 4.93 20.8 113.0 130.0 30.0

Table 2: The execution times of each NAS job on the selected machines.

190

SmartNet, and both a load balancing algorithm and
a user directed assignment algorithm were used for
comparisons. The load balancing algorithm sched-
ules each task on the machine that becomes idle first.
Thus, load balancing considers machine availability,
but ignores heterogeneity issues. The user directed
assignment algorithm schedules each task on the ma-
chine that executes it fastest. Thus, user directed as-
signment considers heterogeneity, but ignores machine
availability issues. The SmartNet maxmin algorithm,
described in Section 2.3, considers both heterogeneity
and machine availability.

Figure 2 shows the distribution of the ratio of the
schedule length from the load balancing algorithm
over the SmartNet schedule length for 1000 test prob-
lems. On average, the SmartNet schedule length is 36
times shorter than the load balance schedule length.
Figure 3 shows the distribution of the ratio of the
schedule length from the user directed assignment
algorithm over the schedule length from SmartNet
for 1000 test problems. On average, SmartNet per-
forms two times better than the algorithm simulating
user assignment.

3.3 Simulating a Typical Academic Envi-
ronment

It has been shown [21] that the execution times of
tasks are distributed exponentially in typical academic
environments. This is quite different than the distri-
bution of task execution times used in Section 3.2,
which modeled a typical production environment us-
ing the NAS benchmarks. A similar series of tests
as described in Section 3.2 were performed where this
exponential distribution was used rather than the dis-
tribution based on the NAS benchmarks. Again, a
batch submission of tasks is assumed.

Specifically, task execution times were randomly se-
lected using an exponential distribution with a mini-
mum of 10 and a mean of 1000. The results of 1000
samples from this distribution is shown in Figure 4.
To provide some heterogeneity in the network, it was
assumed that all machines had identical architectures
but some were faster than others. Unlike the NAS
case described in Section 3.2, the faster machines run
all tasks faster than slower machines. The relative
speeds of each of the 20 machines on the network were
determined by randomly drawing from an exponential
distribution with a minimum of 1 and a mean of 5.

It was found that the minmin algorithm was su-
perior to the maxmin algorithm for this environment,
and hence SmartNet was run using the minmin algo-
rithm to schedule the tasks. Figure 5 shows the dis-
tribution of the ratio of the schedule length from the

load balancing algorithm over the SmartNet schedule
length for 1000 test problems. On average, the Smart-
Net schedule length is 2.2 times shorter than the load
balance schedule length for this environment. Figure 6
shows the distribution of the ratio of the schedule
length from the user directed assignment algorithm
over the schedule length from SmartNet for 1000 test
problems. On average, the SmartNet schedule length
is 2.8 times shorter than the user assignment schedule
length for this environment.

3.4 The Effects of Variations in Actual
Task Execution Times on SmartNet
Scheduling

The test results described in Sections 3.2 and 3.3 as-
sume that the execution times of all the tasks on each
machine were known prior to actually executing these
tasks. The technique of load balancing is dynamic in
that such information is not needed by the algorithm.
When a task finally finishes, the machine on which
it was running becomes idle and the next task in the
queue can be started on that machine. In contrast, all
the SmartNet schedulers assign all tasks to machines
prior to the execution of any of these tasks.

To determine the sensitivity of the SmartNet sched-
ulers to inaccurate estimates of task execution times,
the tests described above were repeated with random
noise added to the estimated task execution times.
Specifically, after the SmartNet scheduler had deter-
mined the assignment of tasks to machines, the actual
execution time of each task was determined by draw-
ing a random time from a normal distribution with
a mean of the estimated task execution time and a
standard deviation a percent of the estimated task ex-
ecution time. The load balancing algorithm used this
actual task execution time rather than the estimated
time used by the SmartNet scheduler.

Figure 7 shows a gradual increase in the load bal-
ance schedule length that results from adding random
noise in this fashion to the task execution times. Al-
though the average task execution time is not changed
by adding this noise, the maximum execution time
does increase. Because the load balancing scheduler
occasionally assigns a task to the machine with one
of these worst case times, and these bad assignments
tend to dominate the schedule length, the schedule
length can be seen in Figure 7 to increase as the noise
level increases.

Figures 8 and 9 compare this dynamic load bal-
ancing schedule length with the SmartNet schedule
length. Because the SmartNet schedulers consider het-
erogeneity, they are seen to be no more sensitive than a
dynamic load balancing scheduler to this type of noise

191

o v> o
tN

e
CJ
h O
3 >/->
o i—"

CJ
o
4- o
o o
UH

1—1

o
X>
E o
Z ID

o J

—I—

20 40 60

Schedule Length Ratio (Load Balance / SmartNet)

Figure 2: A comparison of the performance of a SmartNet scheduler to a load balancing scheduler using 1000
random problems modeling a typical production environment.

c
CJ

fc
3
O
CJ o

CJ

E
3

o o
CN

o

O o

o

0 1 2 3

Schedule Length Ratio (User Directed / SmartNet)

Figure 3: A comparison of the performance of a SmartNet scheduler to a scheduler simulating user directed
assignment in a typical production environment.

192

es
H

6
3

O o
c»1

o o

2000 4000 6000

Task Execution Time

8000

Figure 4: The distribution of task execution times used to simulate a typical academic environment. The results
of 1000 random samples are shown.

O
O

c rn
D
fc
3
O O
o O

<*- o
LH

U
£ O
E
3

O

2 4 6

Schedule Length Ratio (Load Balance / SmartNet)

Figure 5: A comparison of the performance of a SmartNet scheduler to a load balancing scheduler using 1000
random problems modeling a typical academic environment with little heterogeneity.

193

CJ
C

g 3 o o o

O o

X>

o

_J I 1 w^
I 1 I

2 4 6

Schedule Length Ratio (User Directed / SmartNet)

Figure 6: A comparison of the performance of a SmartNet scheduler to a scheduler simulating user directed
assignment using 1000 random problems modeling a typical academic environment with little heterogeneity.

3
■o

<D
x:
o

co
"O u N

O

.X'

..X
Production Env
Academic Env

.-■X'"'

.-*""

 -X"''

i i 1 1 1

0 10 20 30 40 50

Standard Deviation as a Percent of Estimated Task Execution Times

Figure 7: The performance of a dynamic load balancing scheduler when random noise is added to the task
execution times. Each data point represents 100 random problems.

194

in the estimated task execution times. In fact, Fig-
ure 8 shows that the SmartNet scheduler is actually
slightly better than the dynamic load balancing sched-
uler as the noise level is increased in this production
environment.

4 The Future of Metacomputer
Scheduling

Although an optimal solution to the task scheduling
problem for a metacomputer is intractable, there are a
number of polynomial time heuristic algorithms that
provide solutions that are significantly better than
merely balancing the load on all machines, or specify-
ing a fixed assignment of tasks to machines. Section 3
presented several demonstrations of such an improve-
ment in the simple case of tasks with no data depen-
dencies or communication delays. Experiments using
SmartNet to schedule problems where data dependen-
cies and communication delays are included show that
the improvements in the schedule length similar to
those shown in Sections 3.2 and 3.4 is achieved, due to
the benefit of scheduling tasks on the machines that
run them best. Additional studies using SmartNet
for scheduling tasks with data dependencies are doc-
umented in [26].

The SmartNet system has been operational since
1994 and is in its eighth release. Each release has
significantly improved its ability to accurately model
real-world computing environments. The develop-
ment team has a Software Engineering Institute (SEI)
level 3 rating, indicating the maturity and stability of
the software. The system has been used for a variety
of DARPA sponsored projects, as well as at the NIH,
and is being tested for use at NASA. Section 2 has
briefly outlined the current capabilities of the system.
Future releases are planned to better account for net-
works and multiprogrammed machines. Specifically:

Network Routing:
A metacomputer can include numerous machines
on several networks. Future versions of Smart-
Net are planned to better account for communi-
cation delays between tasks with data dependen-
cies when tasks are scheduled on machines that
require this communication to occur over several
networks. Scheduling considering the contention
effects of complex network routing has been a sec-
ondary concern due to increasing network speeds
and the compute intensive nature of the applica-
tions that have been studied.

Resource Contention:
In many cases, it is appropriate to assume that a

task controls a percentage of a resource through-
out its entire execution time. Provided this por-
tion of the resource is available, the task execution
time is not affected by other tasks using other por-
tions of the resource. This is the model used in
the current SmartNet release. However it is also
common that resources are shared among tasks,
and such sharing causes the task execution times
to be extended. This effect has been called inter-
ference in [37] and slowdown in [11]. Future
releases of SmartNet will consider the effects of
resource sharing on the execution time of tasks.

Optimization Criteria:
As described in Section 1, the SmartNet sched-
ulers all attempt to minimize the schedule length.
In some cases, notably for highly interactive envi-
ronments, minimizing the average task finish time
may be a more appropriate optimization criteria.
It is planned that future releases of SmartNet will
include schedulers that minimize this average task
finish time (called flow time in [6]).

5 Conclusions
It has been shown in several cases that scheduling

tasks considering both the machine availabilities and
the heterogeneity of the machines in a metacomputer
can increase the metacomputer performance. The ob-
jective of such scheduling is to minimize the total time
users must wait for their tasks to finish.

Many scheduling approaches have been based on
load balancing, which minimizes the idle time of the
machines on the network rather than the idle time of
the users of the network. In networks of homogeneous
machines, the idle time of users can be minimized by
minimizing the idle time of the machines. This is not
the case in networks of heterogeneous machines. The
schedulers used in the SmartNet system account for
the heterogeneity of both the network machines and
the user tasks. There are many factors that may create
heterogeneity in what would appear to be a network
of homogeneous machines, such as memory size differ-
ences between machines, network differences, or even
differences in background loads.

The benefits of a global, centralized scheduler such
as SmartNet diminish as the number of machines in
the metacomputer grows large, due both to the time
delays of the scheduling process itself, and to the as-
sociated increase in network traffic to and from the
centralized scheduler. However, the simulation results
described in Section 3 demonstrate conditions where
a global scheduler like SmartNet is beneficial. For a
metacomputer that covers the machines accessible to

195

<u
7, o >/">
i- a
c

00 o ~~* •*
o u
c
53 O
a fl

m
T3 a O
O ts

-1 v—•'
o \s c m ■—

oi
£

c o
u
J

0 10 20 30 40 50

Standard Deviation as a Percent of Estimated Task Execution Times

Figure 8: A comparison of the performance of a SmartNet scheduler to a load balancing scheduler when the
estimated task execution times are not accurate. Each data point represents 100 random problems based on the
NAS benchmarks.

o
7-, u->

CM
a
E

00 o
~-~ CN
ID o
c
C3 «/->
C3 ^^
m
T3
at O
O —
o

u-i
CS o

0Ä
JS

00 o
c o <u

_l

0 10 20 30 40 50

Standard Deviation as a Percent of Estimated Task Execution Times

Figure 9: A comparison of the performance of a SmartNet scheduler to a load balancing scheduler when the
estimated task execution times are not accurate. Each data point represents 100 random problems modeling a
typical academic environment with little heterogeneity.

196

a typical department at a university, or a corporation,
such global control is manageable. However, problems
with scale clearly arise as the size of the metacom-
puter grows large [20]. Other tests, not described in
this paper, indicate that the performance benefits of a
global scheduler are still possible with metacomputers
of several hundred machines when the task execution
times are sufficiently long. For larger metacomputers,
a hierarchy of SmartNet schedulers is currently being
investigated.

Unlike many of the systems mentioned in Section 1,
SmartNet does not constrain the user to a particular
programming language, nor does it require the con-
struction of special wrapper code for legacy programs.
For best results, users need only provide a description
of the time complexity of their tasks, and there are
many tools that can help provide this information. By
coordinating the execution time of user tasks; consid-
ering both machine availability and heterogeneity, the
performance of a metacomputer may be substantially
improved.

Acknowledgments
Portions of this work were supported by the NRaD

Independent Research program, NASA, and DARPA.
The authors thank the many people who have con-
tributed to the SmartNet project, including Bill Ad-
sit, Thomas Bayless, Michael Godfrey, Mitch Gre-
gory, Joan Hammond, Roberta Hilton, Terry Koyama,
Wanda Lam, Mary Lewis, Kathy Nolan, Sue Patter-
son, Bruce Rickard, Rod Roberts, Dave Schwarze, Dan
Watson, Marc Weissman, and Bob Wellington.

References
[1] V. S. Adve. Analyzing the Behavior and Perfor-

mance of Parallel Systems. PhD thesis, Univer-
sity of Wisconsin-Madison, December 1993.

[2] A. Beguelin, J. Dongarra, A. Geist, and
R. Manchek. HeNCE: A heterogeneous network
computing environment. Scientific Programming,
3(l):49-60, 1994.

[3] F. Berman and R. Wolski. Scheduling from the
perspective of the application. In The Fifth IEEE
International Symposium on High Performance
Distributed Computing, August 1996.

[4] A. Bricker, M. Litzkow, and M. Livny. Con-
dor Technical Summary. University of Wisconsin,
Madison, version 4.1b edition, January 1992.

[5] R. M. Butler and E. L. Lusk. Monitors, mes-
sages, and clusters: the p4 parallel programming

system. Technical report, Mathematics and Com-
puter Science division, Argonne National Labora-
tory, Argonne, Illinois, 1992.

[6] E. G. Coffman, Jr. Introduction to deterministic
scheduling theory. In E. G. Coffman, Jr., edi-
tor, Computer and Job-Shop Scheduling Theory,
chapter 1, pages 1-50. John Wiley & Sons, New
York, 1976.

[7] H. M. Deitel. An Introduction to Operating Sys-
tems. Addison-Wesley Publishing Co., Reading,
Massachusetts, 1984.

[8] H. G. Dietz, W. E. Cohen, and B. K. Grant.
Would you run it here... or there? (AHS: Au-
tomatic heterogeneous supercomputing). In The
1993 International Conference on Parallel Pro-
cessing, volume II, pages 217-222, Saint Charles,
Illinois, August 1993.

[9] H. El-Rewini and T. G. Lewis. Scheduling paral-
lel program tasks onto arbitrary target machines.
Journal of Parallel and Distributed Computing,
9(2):138-153, 1990.

[10] H. El-Rewini, T. G. Lewis, and H. H. Ali. Task
Scheduling in Parallel and Distributed Systems.
PTR Prentice Hall, Englewood Cliffs, New Jer-
sey, 1994.

[11] S. M. Figueira and F. Berman. Modeling the ef-
fects of contention on the performance of hetero-
geneous applications. In The High Performance
Distributed Computing Conference, 1996.

[12] D. B. Fogel. Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence. IEEE
Press, New York, 1995.

[13] R. Freund, T. Kidd, D. Hensgen, and L. Moore.
Smartnet: A scheduling framework for heteroge-
neous computing. In The International Sympo-
sium on Parallel Architectures, Algorithms, and
Networks, Beijing, China, June 1996. IEEE Com-
puter Society Press.

[14] R. F. Freund. Optimal selection theory for super-
concurrency. In Supercomputing '89, pages 699-
703, New York, NY, November 1989. ACM Press.

[15] R. F. Freund. SuperC or distributed heteroge-
neous HPC. Computing Systems in Engineering,
2(4):349-355, 1991.

197

[16] R. F. Freund, B. R. Carter, D. W. Watson,
E. Keith, and F. Mirabile. Generational schedul-
ing for heterogeneous computing systems. In
International Conference on Parallel and Dis-
tributed Processing Techniques and Applications,
pages 769-778, August 1996.

[17] R. F. Freund and H. J. Siegel. Heterogeneous
processing. Computer, 26(6):13-17, June 1993.

[18] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company,
New York, 1979.

[19] A. S. Grimshaw, J. B. Weissman, and W. T.
Strayer. Portable run-time support for dynamic
object-oriented parallel processing. A CM Trans-
actions on Computer Systems, 14(2):139-170,
May 1996.

[20] A. S. Grimshaw, Wm. A. Wulf, and the Le-
gion team. The Legion vision of a worldwide
virtual computer. Communications of the ACM,
40(1), January 1997.

[21] M. Harchol-Bulter and A. B. Downey. Exploit-
ing process lifetime distributions for dynamic
load balancing. Technical Report UCB/CSD-95-
887, University of California, Berkeley, November
1995.

[22] R. L. Henderson and D. Tweten. PBS: Portable
Batch System requirements specification. NASA
Ames Research Center, April 1995.

[23] R. A. Henry, N. S. Flann, and D. W. Watson.
A massively parallel SIMD algorithm for combi-
natorial optimization. In The 1996 International
Conference on Parallel Processing, vol. II, pages
46-49, August 1996.

[24] D. A. Hensgen, L. Moore, T. Kidd, R. Freund,
E. Keith, M. Kussow, J. Lima, and M. Campbell.
Adding rescheduling to and integrating Condor
with Smartnet. In The 4th Heterogeneous Com-
puting Workshop, pages 4-12, April 1995.

[25] O. H. Ibarra and C. E. Kim. Heuristic algorithms
for scheduling independent tasks on nonidentical
processors. Journal of the Association for Com-
puting Machinery, 24(2):280-289, April 1977.

[26] M. Janakiraman. Simulation results for heuris-
tic algorithms for scheduling precedence-related
tasks in heterogeneous environments. Master's
thesis, University of Cincinnati, 1996.

[27] J. A. Kaplan and M. L. Nelson. A comparison
of queueing, cluster and distributed computing
systems. Technical Report NASA TM 109025,
NASA Langley'Research Center, June 1994.

[28] D. A. Menasce, D. Saha, S. C. Da Silva Porto,
V. A. F. Almeida, and S. K. Tripathi. Static
and dynamic processor scheduling disciplines in
heterogeneous parallel architectures. Journal of
Parallel and Distributed Computing, 28(1):1—18,
1995.

[29] Open Software Foundation, 11 Cambridge Cen-
ter, Cambridge, Massachusetts. Distributed Com-
puting Environment: An overview, January 1992.

[30] S. Saini and D. H. Bailey. NAS parallel bench-
mark (version 1.0) results 11-96. Technical Re-
port NAS-96-18, NASA Ames Research Center,
November 1996.

[31] B. Shirazi, M. Wang, and G. Pathak. Analysis
and evaluation of heuristic methods for static task
scheduling. Journal of Parallel and Distributed
Computing, 10(3):222-232, November 1990.

[32] P. Shroff, D. W. Watson, N. S. Flann, and R. F.
Freund. Genetic simulated annealing for schedul-
ing data-dependent tasks in heterogeneous envi-
ronments. In The 4th Heterogeneous Computing
Workshop, pages 98-104, April 1995.

[33] H. J. Siegel, J. K. Antonio, R. C. Metzger,
M. Tan, and Y. A. Li. Heterogeneous computing.
In A. Y. Zomaya, editor, Parallel and Distributed
Computing Handbook, chapter 25, pages 725-761.
McGraw-Hill, New York, NY, 1996.

[34] H. J. Siegel, H. G. Dietz, and J. K. Antonio. Soft-
ware support for heterogeneous computing. In
A. B. Tucker, Jr., editor, The Computer Science
and Engineering Handbook. CRC Press, Boca Ra-
ton, FL, 1997.

[35] V. S. Sunderam. PVM: A framework for paral-
lel distributed computing. Concurrency: Practice

and Experience, 2(4):315-339, December 1990.

[36] M-C. Wang, S-D. Kim, M. A. Nichols, R. F. Fre-
und, H. J. Siegel, and W. G. Nation. Augment-
ing the optimal selection theory for superconcur-
rency. In Workshop on Heterogeneous Process-
ing, pages 13-22, Los Alamitos, California, March
1992. IEEE Computer Society Press.

198

[37] J. Weissman. The interference paradigm for net-
work job scheduling. In The 5th Heterogeneous
Computing Workshop, pages 38-45. IEEE Com-
puter Society Press, April 1996.

[38] Y. Yan, X. Zhang, and Y. Song. An effective and
practical performance prediction model for par-
allel computing on non-dedicated heterogeneous
NOW. Journal of Parallel and Distributed Com-
puting, 38(l):63-80, October 1996.

199

Author Index

Acosta-Mesa, H.G 102

Agha,G.A 144

Alvisi, L 156

Ambrosius, S 184

Armstrong, R 79

Astley, M 144

Beck, N.B 115

Berman, F 90

Brünett, S 29

Campbell, M 184

Casanova, H 19

Davis, D 29

Dietz, H.G 159
Dongarra, J.J 19
Figueira, S.M 90
Foster, 1 4
Freund, R.F 184
Gherrity, M 184
Gottschalk, T 29

Halderman, M 184
Hariri, S 130
Hensgen, D 79, 184
Hoyos-Rivera, G.J 102

Iverson, M 70
Jagannathan, S 163

Jurczyk, M 115

Keith, E 184

Keller, A 44

Kelsey, R 163

Kesselman, C 4, 29

Kidd,T 79, 184

Kussow, M 184

Lea,D 171

Lee, J 130
Lima, J.D 184

Löpez-Benitez, N 102

Maheswaran, M 57

Martinez-Gonzalez, E 102

Messina, P 29
Mirabile, F 184

Moore, L 184
Özgüner, F 70
Park, S.-Y 130
Reinefeld, A 44
Rios-Figueroa, H.V 102

Rust, B 184
Sänchez-Arias, V.G 102

Sheikh, JA 144
Siegel, H.J 57, 115, 184

Tan, M 115
Theys, M.D 115

Varela, C 144
Weems Jr., C.C 173

201

1

IEEE

COMPUTER
SOCIETY

Press Activities Board

Vice President:
I. Mark Haas
Managing Partner
Haas Associates
P.O. Box 451177
Garland, TX 75045-1177
m.haas@computer.org

Jon T. Butler, Naval Postgraduate School
James J. Farrell III, Motorola
Mohamed E. Fayad, University of Nevada
I. Mark Haas, Haas Associates
Ronald G. Hoelzeman, University of Pittsburgh
Gene F. Hoffnagle, IBM Corporation
John R. Nicol, GTE Laboratories
Yale N. Patt, University of Michigan
Benjamin W. Wah, University of Illinois
Ronald D. Williams, University of Virginia

Editor-in-Chief
Advances in Computer Science and Engineering Board
Pradip Srimani
Colorado State University
Dept. of Computer Science
601 South Hows Lane
Fort Collins, CO 80525
Phone: 970-491-5862 FAX: 970-491-2466
srimani@cs.colostate.edu

Editor-in-Chief
Practices for Computer Science and Engineering Board
Mohamed E. Fayad
Computer Science, MS/171
Bldg. LME, Room 308
University of Nevada
Reno, NV 89557
Phone: 702-784-4356 FAX: 702-784-1833
fayad@cs.unr.edu

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director

Matthew S. Loeb, Publisher

IEEE Computer Society Publications
The world-renowned Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available in two formats:
100 percent original material by authors preeminent in their field who focus on relevant topics and
cutting-edge research, and reprint collections consisting of carefully selected groups of previously
published papers with accompanying original introductory and explanatory text.

Submission of proposals: For guidelines and information on Computer Society books, send e-mail
to cs.books@computer.org or write to the Acquisitions Editor, IEEE Computer Society, P.O. Box 3014,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380.
FAX +1 714-761-1784.

IEEE Computer Society Proceedings

The Computer Society also produces and actively promotes the proceedings of more than 130 ac-
claimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on Computer Society proceedings, send e-mail to cs.books@computer.org or write to
Proceedings, IEEE Computer Society, P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1314. Telephone +1 714-821-8380. FAX +1 714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings,
CD-ROMs, videos, and books can also be accessed from our web site at
http://computer.org/cspress

