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Message from the General Chair 

Welcome to the 7th Heterogeneous Computing Workshop, also known as HCW 98. 
Heterogeneous computing is a growing research area within Computer Science and Engineering, 
and is at the confluence of a number of other sub-disciplines, including parallel processing, 
distributed systems, scheduling and resource management algorithms, and metacomputing. 
Heterogeneous computing systems range from diverse elements within a single computer to 
coordinated, geographically distributed machines with different architectures. A heterogeneous 
computing system provides a variety of capabilities that can be orchestrated to execute multiple 
tasks with varied computational requirements. Applications in these environments achieve 
performance by exploiting the affinity of different tasks to different computational platforms or 
paradigms, while considering the overhead of inter-task communication and the coordination of 
distinct data sources and/or administrative domains. The HCW workshop series includes 
research presentations on these and related topics and is an established forum for the 
dissemination of recent developments and results in heterogeneous computing. These 
proceedings contain the set of papers from the 1998 workshop; I hope you find these informative 
and interesting. 

HCW 98 is the result of the dedication and hard work of a number of people. I thank Richard F. 
Freund, NRaD, for founding this series of workshops and for working hard to ensure its ongoing 
continuity and success. John Antonio of Texas Tech University was this year's Program Chair. 
With the able assistance of a terrific program committee, he has put together an excellent 
program and collection of papers in these proceedings. The Vice-General Chair was Dan 
Watson, who helped with the organization of HCW 98 in many ways, including handling 
workshop publicity. 

Special thanks are due to H. J. Siegel of Purdue University for an enormous amount of help and 
advice with both programmatic and organizational matters. Without his guidance and assistance 
HCW 98 would not have been possible, and we truly appreciate his efforts. Traditionally, HCW 
has been held in conjunction with the International Parallel Processing Symposium (IPPS), which 
has merged with the Symposium on Parallel and Distributed Processing (SPDP) this year. I thank 
the General Co-Chairs of IPPS/SPDP, Viktor Prasanna and Behrooz Shirazi for their cooperation 
and assistance, with special thanks to Viktor for his continued support for HCW since its 
inception. This year, the workshop is sponsored by the IEEE Computer Society and the Office of 
Naval Research. We thank Dr. Andre M. van Tilborg, Director of the Math, Computer, and 
Information Sciences Division of the Office of Naval Research, for supporting publication of 
these proceedings under ONR grant number N00014-98-1-0122. Kristine Kelly, IEEE Computer 
Society Press, deserves special thanks for her promptness and professional, efficient handling of 
all the papers included here, and publication of these proceedings. 

Vaidy Sunderam 
Emory University 

Vll 



Message from the Program Chair 

The field of heterogeneous computing (HC) is motivated by the diverse requirements of 
computational tasks, and the realization that the features of a single architecture are not always 
ideal for a wide range of task requirements. Research in HC ranges from the use of diverse 
computing systems interconnected over a geographically distributed network to the design and 
implementation of a parallel computer architecture consisting of a number of different processor 
types or modes of operation. Thus, the field of HC is quite broad, and requires research in areas 
such as parallel and distributed processing, performance estimation, matching and scheduling, 
task profiling, compiling, and portable programming languages. 

The papers published in these proceedings represent some of the latest and most innovative 
research in the field of HC. The first session in the program consists of four invited papers 
describing case studies and reports on existing HC systems. These papers are very important in 
that they illustrate the practicality of HC, and often involve implementations based on past 
research findings. The papers included in the second and third sessions were selected by the 
program committee from submitted manuscripts. These papers cover topics of great importance 
to HC, including resource management, matching, scheduling, modeling issues, and group 
communications. The program concludes with what is sure to be a lively panel discussion on the 
use of Java for programming HC systems. Position papers from the panel chair and each of the 
panelists are included in these proceedings. 

It has truly been an honor to serve as Program Chair for HCW 98, and I am very proud of the 
quality of this year's program. But coordinating the program was not done in isolation; many 
people contributed. I would like to thank the Program Committee members for their careful and 
prompt review of the papers assigned to them. I would also like to thank all of the authors for 
their technical contributions and insights, and for the careful editing and revising they performed 
on their papers based on reviewer comments. I am grateful to Gul Agha for his willingness to 
organize the Java panel session on relatively short notice. His success in assembling and 
coordinating the outstanding (and diverse) collection of panelists is no doubt a reflection of the 
well-deserved respect he has earned from his peers. 

I am thankful to have worked with Vaidy Sunderam on this workshop. His leadership was 
illustrated in many ways, including his capacity to effectively organize tasks, coordinate ideas 
and concerns, and generally keep things running smoothly. 

It has been a pleasure working with both Deborah Plummer and Kristine Kelly of the IEEE 
Computer Society Press in getting these proceedings published. Special thanks are due to 
Kristine for her patience in implementing some last minute changes before going to press. I 
would also like to give special thanks to my secretary, Marcelia Sawyers, for her assistance with 
my duties related to this workshop. 

Finally, I am indebted to H. J. Siegel for his tireless dedication to this workshop. H. J. provided 
the Program Committee with numerous ideas and suggestions for organizing the program. For 
example, the original idea for including the Java panel came from H. J. In addition to providing 
ideas for the program, H. J. also helped keep me on track by providing "gentle reminders" to 
complete the many tasks that are involved in implementing a successful program. 

John K. Antonio 
Texas Tech University 
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The Globus Project: A Status Report 

Ian Foster Carl Kesselman 

Mathematics and Computer Science Division 
Argonne National Laboratory 

Argonne, IL  60439 

Information Sciences Institute 
University of Southern California 
Marina Del Rey, CA  90292-6695 

Abstract 
The Globus project is a multi-institutional research 

effort that seeks to enable the construction of com- 
putational grids providing pervasive, dependable, and 
consistent access to high-performance computational 
resources, despite geographical distribution of both re- 
sources and users. Computational grid technology 
is being viewed as a critical element of future high- 
performance computing environments that will enable 
entirely new classes of computation-oriented applica- 
tions, much as the World Wide Web fostered the de- 
velopment of new classes of information-oriented ap- 
plications. In this paper, we report on the status of 
the Globus project as of early 1998. We describe the 
progress that has been achieved to date in the devel- 
opment of the Globus toolkit, a set of core services 
for constructing grid tools and applications. We also 
discuss the Globus Ubiquitous Supercomputing Testbed 
(GUSTO) that we have constructed to enable large- 
scale evaluation of Globus technologies, and we review 
early experiences with the development of large-scale 
grid applications on the GUSTO testbed. 

1    Introduction 
Advances in networking technology and compu- 

tational infrastructure make it possible to construct 
large-scale high-performance distributed computing 
environments, or computational grids that provide de- 
pendable, consistent, and pervasive access to high-end 
computational resources. These environments have 
the potential to change fundamentally the way we 
think about computing, as our ability to compute will 
no longer be limited to the resources we currently 
have on hand. For example, the ability to integrate 
TFLOP/s computing resources on demand will allow 
us to integrate sophisticated analysis, image process- 
ing, and real-time control into scientific instruments 
such as microscopes, telescopes, and MRI machines. 
Or, we can call upon the resources of a nationwide 
strategic computing reserve to perform time-critical 

computational tasks in times of crisis, for example to 
perform diverse simulations as we plan responses to 
an oil spill. 

In the past, high-performance distributed compu- 
tation has been achieved on a limited scale by heroic 
efforts such as the CASA Gigabit testbed [26] and the 
I-WAY [12]. The work of ourselves and others on com- 
putational grids differs from these ground-breaking ef- 
forts in that we seek to make commonplace the inte- 
gration of remote resources into a computation. To a 
large extent, the development of usable computational 
grids is hindered not by available hardware capabil- 
ities but by limitations in the software abstractions 
and services that are currently in use. Existing net- 
work tools are focused on supporting communication, 
not computation, while current distributed comput- 
ing systems are not performance driven and typically 
are limited to client/server models of computation. 
Clearly, the success of computational grids will depend 
on the existence of grid-specific middleware that ad- 
dresses the needs of computations including dynamic 
resource allocation, resource co-allocation, heteroge- 
neous and dynamic computational and communica- 
tion substrates, and process-oriented security. 

We have been studying the problems associated 
with constructing usable computational grids since 
1995, first in the context of the I-WAY networking 
experiment [12] and subsequently as part of a project 
called Globus. The goal of Globus is to understand 
application requirements for a usable grid and to de- 
velop the essential technologies required to meet these 
requirements. In pursuit of this goal, we have devel- 
oped a research program comprising three broad ac- 
tivities: 

• developing the basic technology and high-level 
tools required for computational grids; 

• constructing a large-scale, prototype computa- 
tional grid (i.e., testbed) using the basic technolo- 
gies and tools we have developed; and 

0-8186-8365-1/98 $10.00 © 1998 IEEE 



• executing realistic applications on the prototype 
grid, in order to evaluate the utility of our tech- 
nologies and of the grid concept. 

In this paper, we describe the status of the Globus 
project in each of these three areas, as of early 
1998. This description updates the original Globus pa- 
per [13] and a subsequent project summary in [14] by 
providing a more complete and up-to-date description 
of the Globus toolkit and by reviewing early exper- 
iments with the Globus Ubiquitous Supercomputing 
Testbed (GUSTO) grid prototype, the largest compu- 
tational grid constructed to date. 

The organization of this paper is as follows. In the 
next section, we outline the basic architecture of the 
Globus system, identifying the basic principles that 
motivate its design. In Sections 3-7, we describe the 
set of basic services that constitute the Globus toolkit 
that underlies our approach, and in Section 8 we re- 
view some of the higher-level tools that have been con- 
structed with this toolkit. In Section 9, we describe 
our experiences deploying these tools in the GUSTO 
grid testbed, and in Section 10 we review our experi- 
ences developing applications. We conclude the paper 
with a brief survey of some related work (Section 11) 
and a description of our future plans (Section 12). 

2    Globus Overview 
A central element of the Globus system is the 

Globus Metacomputing Toolkit, which defines the ba- 
sic services and capabilities required to construct a 
computational grid. The design of this toolkit was 
guided by the following basic principles. 

The toolkit comprises a set of components that im- 
plement basic services for security, resource location, 
resource management, communication, etc.. The ser- 
vices currently defined by Globus are listed in Table 1. 
Computational grids must support a wide variety of 
applications and programming models. Hence, rather 
than providing a uniform programming model, such 
as the object-oriented model defined by the Legion 
system [18], the Globus toolkit provides a "bag of ser- 
vices" from which developers of specific tools or appli- 
cations can select to meet their needs. 

Because services are distinct and have well-defined 
interfaces, they can be incorporated into applications 
or tools in an incremental fashion. We illustrate this 
mix-and-match approach to metacomputing in Sec- 
tions 8 and 10, where we describe how different parallel 
tools and a large application can be made grid aware 
by incorporating different services. 

The toolkit distinguishes between local services, 
which are kept simple to facilitate deployment,  and 

global services, which are constructed on top of lo- 
cal services and may be more complex. Computa- 
tional grids require that a wide range of services be 
supported on a highly heterogeneous mix of systems 
and that it be possible to define new services with- 
out changing the underlying infrastructure. An estab- 
lished architectural principle in such situations, as ex- 
emplified by the Internet Protocol suite [6], is to adopt 
a layered architecture with an "hourglass" shape (Fig- 
ure 1). A simple, well-defined interface—the neck of 
the hourglass—provides uniform access to diverse im- 
plementations of local services; higher-level global ser- 
vices are then defined in terms of this interface. To 
participate in a grid, a local site need provide only the 
services defined at the neck, and new global services 
can be added without local changes. We discuss this 
organization in greater detail in Section 3. 

Interfaces are defined so as to manage heterogene- 
ity, rather than hiding it. These so-called translucent 
interfaces provide structured mechanisms by which 
tools and applications can discover and control as- 
pects of the underlying system. Such translucency 
can have significant performance advantages because, 
if an implementation of a higher-level service can un- 
derstand characteristics of the lower-level services on 
which the interface is layered, then the higher-level 
service can either control specific behaviors of the un- 
derlying service or adapt its own behavior to that of 
the underlying service. Translucent interfaces do not 
imply complex interfaces. Indeed, we will show that 
translucency can be provided via simple techniques, 
such as adding an attribute argument to the interface. 
We discuss these issues at greater length in Section 4, 
when we describe Globus communication services. 

An information service is an integral component of 
the toolkit. Computational grids are in a constant 
state of flux as utilization and availability of resources 
change, computers and networks fail, old components 
are retired, new systems are added, and software and 
hardware on existing systems are updated and mod- 
ified. It is rarely feasible for programmers to rely on 
standard or default configurations when building ap- 
plications. Rather, applications must discover charac- 
teristics of their execution environment dynamically 
and then either configure aspects of system and ap- 
plication behavior for efficient, robust execution or 
adapt behavior during program execution. A funda- 
mental requirement for discovery, configuration, and 
adaptation is an information-rich environment that 
provides pervasive and uniform access to information 
about the current state of the grid and its underly- 
ing components. In the Globus toolkit, a component 



Table 1: Core Globus services. As of early 1998, these include only those services deemed essential for an evaluation 
of the Globus design philosophy on realistic applications and in medium-scale grid environments. Other services 
such as accounting, auditing, and instrumentation will be addressed in future work 

Service Name Description 

Resource management 
Communication 
Security 
Information 
Health and status 
Remote data access 
Executable management 

GRAM 
Nexus 
GSI 
MDS 
HBM 
GASS 
GEM 

Resource allocation and process management 
Unicast and multicast communication services 
Authentication and related security services 
Distributed access to structure and state information 
Monitoring of health and status of system components 
Remote access to data via sequential and parallel interfaces 
Construction, caching, and location of executables 

TCP    FTP    HTTP 
VIC/VAT     ... 

Ethernet   FDDI    .. 
ATM    SONET 

Resource brokers 
Resource co-allocators 

MPI   CC++   HPC++ 
PAWS    CORBA     ... 

Condor   LSF   NQE 
LoadLeveler  EASY-LL 

IP   Message-passing 
Shared-memory    ATM 

Figure 1: The hourglass principle, as applied in the Internet Protocol suite, Globus resource management services, 
and Globus communication services 



called the Metacomputing Directory Service [9], dis- 
cussed in Section 5, fulfills this role. 

The toolkit uses standards whenever possible for 
both interfaces and implementations. We envision 
computational grids as supporting an important niche 
of applications that must co-exist with more general- 
purpose distributed and networked computing appli- 
cations such as CORBA, DCE, DCOM, and Web- 
based technologies. The Internet community and 
other groups are moving rapidly to develop official and 
de facto standards for interfaces, protocols, and ser- 
vices in many areas relevant to computational grids. 
There is considerable value in adopting these stan- 
dards whenever they do not interfere with other goals. 
Consequently, the Globus components we will describe 
are not, in general, meant to replace existing inter- 
faces, but rather seek to augment them. The utility of 
standards is emphasized in Section 6, which describes 
the Globus security infrastructure. 

3    Resource Management 
We now dexcribe more fully the Globus compo- 

nents listed in Table 1. We start by considering re- 
source management. Both this discussion and the cur- 
rent Globus implementation focus on the management 
of computational resources. Management of memory, 
storage, networks, and other resources is clearly also 
important and is being considered in current research. 

Globus is a layered architecture in which high-level 
global services are built on top of an essential set of 
core local services. At the bottom of this layered ar- 
chitecture, the Globus Resource Allocation Manager 
(GRAM) provides the local component for resource 
management [8]. Each GRAM is responsible for a set 
of resources operating under the same site-specific al- 
location policy, often implemented by a local resource 
management system, such as Load Sharing Facility 
(LSF) or Condor. For example, a single manager could 
provide access to the nodes of a parallel computer, 
a cluster of workstations, or a set of machines oper- 
ating within a Condor pool [25]. Thus, a computa- 
tional grid built with Globus typically contains many 
GRAMs, each responsible for a particular "local" set 
of resources. 

GRAM provides a standard network-enabled inter- 
face to local resource management systems. Hence, 
computational grid tools and applications can express 
resource allocation and process management requests 
in terms of a standard application programming inter- 
face (API), while individual sites are not constrained 
in their choice of resource management tools. GRAM 
can currently operate in conjunction with six different 
local resource management tools:   Network Queuing 

Environment (NQE), EASY-LL, LSF, LoadLeveler, 
Condor, and a simple "fork" daemon. Within the 
GRAM API, resource requests are expressed in terms 
of an extensible resource specification language (RSL); 
as we describe below, this language plays a critical role 
in the definition of global services. 

GRAM services provide building blocks from which 
we can construct a range of global resource manage- 
ment strategies. Building on GRAM, we have defined 
the general resource management architecture [8] il- 
lustrated in Figure 2. RSL is used throughout this 
architecture as a common notation for expressing re- 
source requirements. Resource requirements are ex- 
pressed by an application in terms of a high-level RSL 
expression. A variety of resource brokers implement 
domain-specific resource discovery and selection poli- 
cies by transforming abstract RSL expressions into 
progressively more specific requirements until a spe- 
cific set of resources is identified. For example, an ap- 
plication might specify a computational requirement 
in terms of floating-point performance (MFLOPs). A 
high-level broker might narrow this requirement to a 
specific type of computer (an IBM SP2, for example), 
while another broker might identify a specific set of 
SP2 computers that can fulfill that request. At this 
point, we have a so-called ground RSL expression in 
which a specific set of GRAMs are identified. 

The final step in the resource allocation process is 
to decompose the RSL into a set of separate resource 
allocation requests and to dispatch each request to 
the appropriate GRAM. In high-performance compu- 
tations, it is often important to co-allocate resources 
at this point, ensuring that a given set of resources 
is available for use simultaneously. Within Globus, a 
resource co-allocator is responsible for providing this 
service: breaking the RSL into pieces, distributing it 
to the GRAMs, and coordinating the return values. 
Different co-allocators can be constructed to imple- 
ment different approaches to the problems of allocat- 
ing and managing ensembles of resources. We cur- 
rently have two allocation services implemented. The 
first defines a simple atomic co-allocation semantics. 
If any of the requested resources are unavailable for 
some reason, the entire co-allocation request fails. In 
practice, this strategy has proven to be too inflexible 
in many situations. Based on this experience, we have 
implemented a second co-allocator, which allows com- 
ponents of the submitted RSL expression to be mod- 
ified until the application or broker issues a commit 
operation. 

Notice that a consequence of the Globus resource 
management architecture is that resource and com- 
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Figure 2: The Globus resource management architecture, showing how RSL specifications pass between appli- 
cation, resource brokers, resource co-allocators, and local managers (GRAMs). Notice the central role of the 
information service. 

putation management services are implemented in a 
hierarchical fashion. An individual GRAM supports 
the creation and management of a set of processes, or 
Globus job, on a set of local resources. A computation 
created by a global service may then consist of one or 
more jobs, each created by a request to a GRAM and 
managed via management functions implemented by 
that GRAM. 

This discussion of Globus resource management ser- 
vices illustrates how simple local services, if appropri- 
ately designed, can be used to support a rich set of 
global functionality. 

4    Communication 
Communication services within the Globus toolkit 

are provided by the Nexus communication library [15]. 
As illustrated in Figure 1, Nexus defines a relatively 
low-level communication API that is then used to sup- 
port a wide range of higher-level communication li- 
braries and languages, based on programming mod- 
els as diverse as message passing, as in the Message 
Passing Interface (MPI) [10]; remote procedure call, 
as in CC++ [5]; striped transfer, as in the Paral- 
lel Application Workspace (PAWS); and distributed 
database updates for collaborative environments, as 
in CAVERNsoft. Nexus communication services are 
also used extensively in the implementation of other 
Globus modules. 

The communication needs of computational grid 
applications are diverse, ranging from point-to-point 
message passing to unreliable multicast communica- 

tion. Many applications, such as instrument control 
and teleimmersion, use several modes of communica- 
tion simultaneously. In our view, the Internet Proto- 
col does not meet these needs: its overheads are high, 
particularly on specialized platforms such as parallel 
computers; the TCP streaming model is not appro- 
priate for many interactions; and its interface pro- 
vides little control over low-level behavior. Yet tra- 
ditional high-performance computing communication 
interfaces such as MPI do not provide the rich range 
of communication abstractions that grid applications 
will require. Hence, we define an alternative communi- 
cation interface designed to support the wide variety of 
underlying communication protocols and methods en- 
countered in grid environments and to provide higher- 
level tools with a high degree of control over the map- 
ping between high-level communication requests and 
underlying protocol operations. We call this interface 
Nexus [15, 11]. 

Communication in Nexus is defined in terms of two 
basic abstractions. A communication link is formed by 
binding a communication startpoint to a communica- 
tion endpoint (Figure 4); a communication operation 
is initiated by applying a remote service request (RSR) 
to a startpoint. This one-sided, asynchronous remote 
procedure call transfers data from the startpoint to the 
associated endpoint(s) and then integrates the data 
into the process(es) containing the endpoint(s) by in- 
voking a function in the process (es). More than one 
startpoint can be bound to an endpoint and vice versa, 
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participate in a single resource request 

allowing for the construction of complex communica- 
tion structures. 

The communication link/RSR communication 
model can be mapped into many different communi- 
cation methods, each with potentially different perfor- 
mance characteristics [11]. Communication methods 
include not only communication protocols, but also 
other aspects of communication such as security, reli- 
ability, quality of service, and compression. By associ- 
ating attributes with a specific startpoint or endpoint, 
an application can control the communication method 
used on a per-link basis. For example, an application 
in which some communications must be reliable while 
others require low latencies can establish two links be- 
tween two processes, with one configured for reliable— 
and potentially high-latency—communication and the 
other for low-latency unreliable communication. 

High-level selection and configuration of low-level 
methods is useful only if the information required to 
make intelligent decisions is readily available. Within 
Globus, MDS (discussed in Section 5) maintains a 
wealth of dynamic information about underlying com- 
munication networks and protocols, including network 
connectivity, protocols supported, and network band- 
width and latency. Applications, tools, and higher- 
level libraries can use this information to identify avail- 

able methods and select those best suited for a partic- 
ular purpose. 

High-level management of low-level communication 
methods has many uses. For example, an MPI imple- 
mentation layered on top of Nexus primitives can not 
only select alternative low-level protocols (e.g., mes- 
sage passing, IP, or shared memory) based on network 
topology and the location of sender and receiver [10], 
but can simultaneously apply selective use of encryp- 
tion based on the source and destination of a message. 
The ability to attach network quality of service speci- 
fications to communication links is also useful. 

Nexus illustrates how Globus services use translu- 
cent interfaces to allow applications to manage rather 
than hide heterogeneity. An application or higher- 
level library can express all operations in terms of 
a single uniform API; the resulting programs are 
portable across, and will execute efficiently on, a wide 
variety of computing platforms and networks. To this 
extent Nexus, like other Globus services, hides het- 
erogeneity. However, in situations where performance 
is critical, properties of low-level services can be dis- 
covered. The higher-level library or application can 
then either adapt its behavior appropriately or use a 
control API to manage just how high-level behavior is 
implemented: for example, by specifying that it is ac- 



EP 

Figure 4: Nexus communication mechanisms. The figure shows three processes and three communication links. 
Three startpoints in process 1 reference endpoints in processes 0 and 2. 

ceptable to use an unreliable communication protocol 
for a particular set of communications. 

5    Information 
The dynamic nature of grid environments means 

that toolkit components, programming tools, and ap- 
plications must be able to adapt their behavior in re- 
sponse to changes in system structure and state. The 
Globus Metacomputing Directory Service (MDS) [9] 
is designed to support this type of adaptation by pro- 
viding an information-rich environment in which in- 
formation about system components is always avail- 
able. MDS stores and makes accessible information 
such as the architecture type, operating system ver- 
sion and amount of memory on a computer, network 
bandwidth and latency, available communication pro- 
tocols, and the mapping between IP addresses and 
network technology. 

MDS provides a suite of tools and APIs for dis- 
covering, publishing, and accessing information about 
the structure and state of a computational grid. As 
in other Globus components, official or de facto stan- 
dards are used in MDS whenever possible. In this case, 
the standards in question are the data representation 
and API defined by the Lightweight Directory Access 
Protocol (LDAP) [22], which together provide a uni- 
form, extensible representation for information about 
grid components. LDAP defines a hierarchical, tree- 
structured name space called a directory information 
tree and is designed as a distributed service: arbi- 
trary subtrees can be associated with distinct servers. 
Hence, the local service required to support MDS is ex- 
actly an LDAP server (or a gateway to another LDAP 
server, if multiple sites share a server), plus the utili- 
ties used to populate this server with up-to-date infor- 
mation about the structure and state of the resources 
within that site. The global MDS service is simply the 
ensemble of all these servers. 

An information-rich environment is more than just 
mechanisms for naming and disseminating informa- 

tion: it also requires agents that produce useful in- 
formation and components that access and use that 
information. Within Globus, both these roles are dis- 
tributed over every system component—and poten- 
tially over every application. Every Globus service 
is responsible for producing information that users of 
that service may find useful, and for using information 
to enhance its flexibility and performance. For exam- 
ple, each local resource manager (Section 3) incorpo- 
rates a component called the GRAM reporter respon- 
sible for collecting and publishing information about 
the type of resources being managed, their availabil- 
ity, and so forth. Resource brokers use this and other 
information for resource discovery. 

6    Security 
Security in computational grids is a multifaceted is- 

sue, encompassing authentication, authorization, pri- 
vacy, and other concerns. While the basic crypto- 
graphic algorithms that form the basis of most secu- 
rity systems—such as public key cryptography—are 
relatively simple, it is a challenging task to use these 
algorithms to meet diverse security goals in complex, 
dynamic grid environments, with large and dynamic 
sets of users and resources and fluid relationships be- 
tween users and resources. 

The Globus security infrastructure developed for 
the initial Globus toolkit focuses on just one prob- 
lem, authentication: the process by which one entity 
verifies the identity of another. We focus on authen- 
tication because it is the foundation on which other 
security services, such as authorization and encryp- 
tion, are built; these issues will be addressed in future 
work. 

Authentication solutions for computational grids 
must solve two problems not commonly addressed by 
standard authentication technologies. The first prob- 
lem that must be addressed by a grid authentication 
solution is support for local heterogeneity. Grid re- 
sources are operated by a diverse range of entities, 
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each defining a different administrative domain. Each 
domain will have its own requirements for authenti- 
cation and authorization, and consequently, domains 
will have different local security solutions, mecha- 
nisms, and policies, such as one-time passwords, Ker- 
beros [29], and Secure Shell. We will have limited 
ability to change these administrative decisions, and 
any security solution must confront this heterogeneity. 

The second problem facing security solutions for 
computational grids is the need to support N-way se- 
curity contexts. In traditional client-server applica- 
tions, authentication involves just a single client and 
a single server. In contrast, a grid computation may 
acquire, start processes on, and release many resources 
dynamically during its execution. These processes will 
communicate by using a variety of mechanisms, in- 
cluding unicast and multicast. These processes form 
a single, fully connected logical entity, although low- 
level communication connections (e.g., TCP/IP sock- 
ets) may be created and deleted dynamically during 
program execution. A security solution for a computa- 
tional grid must enable the establishment of a security 
relationship between any two processes in a computa- 
tion. 

A first important step in the design of a security 
architecture, often overlooked, is to define a secu- 
rity policy: that is, to provide a precise definition of 
what it means for the system in question to be se- 
cure. This policy identifies what components are to 
be protected and what these components are to be 
protected against, and defines security operations in 
terms of abstract algorithms. The policy defined for 
Globus is shaped by the need to support N-way se- 
curity contexts and local heterogeneity. The policy 
specifies that a user authenticate just once per com- 
putation, at which time a credential is generated that 
allows processes created on behalf of the user to ac- 
quire resources, and so forth, without additional user 
intervention. Local heterogeneity is handled by map- 
ping a user's Globus identity into local user identities 
at each resource. 

One important aspect of the security policy de- 
fined by Globus is that encrypted channels are not 
used. Globus is intended to be used internationally, 
and several countries (including the United States and 
France) have restrictive laws with respect to encryp- 
tion technology. The Globus policy relies only on dig- 
ital signature mechanisms, which are more easily ex- 
portable from the United States. 

The Globus security policy is implemented by the 
Globus security infrastructure (GSI). GSI, like other 
Globus components, has a modular design in which 

diverse global services are constructed on top of a sim- 
ple local service that addresses issues of local hetero- 
geneity. As illustrated in Figure 5, the local security 
service implements a security gateway that maps au- 
thenticated Globus credentials into locally recognized 
credentials at a particular site: for example, Kerberos 
tickets, or local user names and passwords. A bene- 
fit of this approach is that we do not require "group" 
accounts and so can preserve the integrity of local ac- 
counting and auditing mechanisms. 

The internal design of GSI emphasizes the impor- 
tant role that standards have to play in the definition 
of grid services and toolkits. Several of the problems 
that GSI is designed to solve, namely, support for dif- 
ferent local mechanisms and N-way security contexts, 
are not supported by any existing system. Neverthe- 
less, GSI's ability to interoperate with other systems, 
to achieve independence from low-level mechanisms, 
and to leverage existing code is enhanced by coding 
all security algorithms in terms of the Generic Se- 
curity Service (GSS) standard [24]. GSS defines a 
standard procedure and API for obtaining credentials 
(passwords or certificates), for mutual authentication 
(client and server), and for message-oriented signa- 
ture, encryption and decryption. GSS is independent 
of any particular security mechanism and can be lay- 
ered on top of different security methods. To promote 
interoperability, the GSS standard defines how GSS 
functionality should be implemented on top of Ker- 
beros and public key cryptography. GSS also defines 
a negotiation mechanism that allows two parties to se- 
lect a mutually agreeable suite of security mechanisms, 
should alternatives exist. 

GSI currently supports two security mechanisms, 
both accessible through the GSS interface. The first 
is a plaintext password system, which basically imple- 
ments Unix rlogin type authentication. The plain- 
text implementation has the advantage of being easy 
to develop and debug and is not encumbered by export 
controls. The second mechanism uses public key cryp- 
tography and is based on the authentication protocol 
defined by the Secure Socket Layer (SSL) [21]. This 
implementation has the advantages of much stronger 
security and interoperability with a variety of com- 
modity services, including LDAP and HTTP. We note 
that GSS supports a negotiation mechanism, which 
allows us to support both security mechanisms simul- 
taneously in the Globus environment. 

7    Other Globus Services 
We briefly describe the other three Globus ser- 

vices listed in Table 1: health and status monitoring, 
remote access to files, and executable management. 
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Figure 5: The Globus security infrastructure, showing its support for single sign-on and local heterogeneity 

The Heartbeat Monitor (HBM) service provides sim- 
ple mechanisms for monitoring the health and status 
of a distributed set of processes. The HBM architec- 
ture comprises a client interface and a data-collector 
API. The client interface allows a process to register 
with the HBM service, which then expects to receive 
regular heartbeats from the process. If a heartbeat is 
not received, the HBM service attempts to determine 
whether the process itself is faulty or whether the un- 
derlying network or computer has failed. The data- 
collector API allows another process to obtain infor- 
mation regarding the status of registered process; this 
information can then be used to implement a variety of 
fault detection and, potentially, fault recovery mecha- 
nisms. HBM mechanisms are used to monitor the sta- 
tus of core Globus services, such as GRAM and MDS. 
They can also be used to monitor distributed appli- 
cations and to implement application-specific fault re- 
covery strategies. 

Access to remote files is provided by the Global Ac- 
cess to Secondary Storage (GASS) subsystem. This 
system allows programs that use the C standard 
I/O library to open and subsequently read and write 
files located on remote computers, without requiring 
changes to the code used to perform the reading and 
writing. As illustrated in Figure 6, files opened for 
reading are copied to a local file cache when they are 
opened, hence permitting subsequent read operations 
to proceed without communication and also avoiding 

repeated fetches of the same file. Reference counting 
is used to determine when files can be deleted from 
the cache. Similarly, files opened for writing are cre- 
ated locally and copied to their destination only when 
they are closed. A similar copying strategy is used 
in UFO [2], but our implementation does not rely on 
the Unix-specific proc file system. GASS also allows 
files to be opened for remote appending, in which case 
data is communicated to the remote file as soon as it 
is written; this mode is useful for log files, for exam- 
ple. In addition, GASS supports remote operations 
on caches and hence, for example, program-directed 
prestaging and migration of data. HTTP, FTP, and 
specialized GASS servers are supported. 

Finally, the Globus Executable Management 
(GEM) service, still being designed as of January 
1998, is intended to support the identification, loca- 
tion, and creation of executables in heterogeneous en- 
vironments. GEM provides mechanisms for matching 
the characteristics of a computer in a computational 
grid with the runtime requirements of an executable 
or library. These mechanisms can be used in conjunc- 
tion with other Globus services to implement a vari- 
ety of distributed code management strategies, based 
for example on online executable archives and compile 
servers. 

8    High-Level Tools 
While Globus services can be used directly by ap- 

plication programmers, they are more commonly ac- 
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Figure 6: The Global Access to Secondary Storage (GASS) subsystem allows processes on local computers to 
read and write remote files. Copies of remote files opened for reading and/or writing are maintained in a local file 
cache. A simple database keeps track of the local file name, access mode, reference count, and remote file URL. 

cessed via higher-level tools developed by tool develop- 
ers. We illustrate this type of use with four examples: 
a message-passing library, a parallel language, a re- 
mote I/O library, and a parameter study system. Each 
tool uses different Globus services in a different way 
to support a particular programming model; in each 
case, availability of the Globus toolkit has allowed ex- 
isting tools to be adapted for wide-area execution with 
relatively little effort. 

The Message Passing Interface (MPI) defines a 
standard API for writing message-passing programs 
and is widely used in parallel computing. For grid 
applications, message passing has the advantage of 
providing a higher-level view of communication than 
TCP/IP sockets, while preserving for the program- 
mer a high degree of control over how and when 
communication occurs. Globus services have been 
used to develop a grid-enabled MPI [10] based on 
the MPICH library [20], with Nexus used for com- 
munication, GRAM services for resource allocation, 
and GSI services for authentication. The result is a 
system that allows programmers to use simple, stan- 
dard commands to run MPI programs in a variety of 
metacomputing environments (freely combining het- 
erogeneous workstation and MPP metacomputing re- 
sources), while making efficient use of underlying net- 
works. In future work, the developers of this system 
plan to use MDS information to construct communica- 
tion structures—in particular, collective operations— 

that are optimized for wide-area execution. 

Compositional C+-f- [5], or CC++, is a high- 
level parallel programming language based on C++. 
CC++ defines a global name space through the 
use of global pointers, dynamic resource allocation, 
and support for threading and remote procedure call 
style communication. The Globus implementation of 
CC++ uses the same services as the grid-enabled MPI, 
except that while the MPI implementation relies on 
Globus co-allocation services for resource allocation, 
the task-parallel CC++ model interfaces to GRAM 
directly. 

The Remote I/O (RIO) library [16] is a tool for 
achieving high-speed access from parallel programs to 
files located on remote filesystems. RIO adopts the 
parallel I/O interface defined by MPI-IO [7, 27] and 
hence allows any program that uses MPI-IO to oper- 
ate unchanged in a wide-area environment. The RIO 
implementation, like that of MPI, is constructed by 
using Globus services to adapt an existing system— 
the ROMIO implementation of MPI-IO—to support 
wide-area execution. Specifically, Nexus services are 
used for communication, GSI services for authentica- 
tion, and MDS services for configuration. 

Nimrod-G is a wide-area version of Nimrod [1], a 
tool that automates the creation and management of 
large parametric experiments. Nimrod allows a user 
to run a single application under a wide range of in- 
put conditions and then to aggregate the results of 
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these different runs for interpretation. In effect, it 
transforms file-based programs into interactive "meta- 
applications" that invoke user programs much as we 
might call subroutines. Nimrod-G uses MDS services 
to locate suitable resources when a user first requests 
a computational experiment, and GSI and GRAM ser- 
vices to schedule jobs to resources identified by MDS 
queries. In effect, Nimrod-G implements resource bro- 
kering services specialized for a particular class of ap- 
plication. 

9    The GUSTO Testbed 
Globus technologies have been deployed in 

the Globus Ubiquitous Supercomputing Testbed 
(GUSTO), by several measures the largest computa- 
tional grid testbed ever constructed as of early 1998. 
This testbed uses both dedicated OC3 and commod- 
ity Internet services to link (as of early 1998) 17 sites, 
330 computers, and 3600 processors, providing an ag- 
gregate peak performance of 2 Tflop/s. GUSTO sites 
span the continental United States, Hawaii, Sweden, 
and Germany; additional sites are being added rapidly. 
We discuss briefly our experiences deploying, admin- 
istering, and using this testbed. 

GUSTO was created during the three months prior 
to the November 1997 Supercomputing conference, 
held in San Jose. During this time, the first version 
of the Globus toolkit was completed, deployed at 15 
sites, and applied in 10 different application projects. 

One lesson learned early during this effort was that 
the approach of defining simple local services (and the 
considerable effort put into automatic configuration 
and information discovery tools) was a big win: we 
were able to deploy Globus software at 15 sites with 
relative ease, admittedly with considerable help from 
local staff in some cases. At several sites, computer 
security officers reviewed and approved our code. The 
hardest part of the deployment process was typically 
the development of the GRAM interface to the local 
scheduler. 

Once Globus was deployed, MDS and HBM proved 
valuable as tools for administering a complex collec- 
tion of computer systems. The standard interface pro- 
vided by MDS ensured that GUSTO administrators 
always had up-to-date information about the struc- 
ture and state of the system at their fingertips. This 
information was accessed via both an MDS browser 
and various specialized Web-based tools developed to 
publish specific views of the testbed. 

Ten different groups developed applications for 
GUSTO. One of these applications is discussed in the 
next section; others included remote visualization of 
scientific simulations, real-time analysis of data from 

scientific instruments (meteorological satellite and X- 
ray source), and distributed parameter studies. The 
tools and services used by these different applications 
varied tremendously, with some programming in sock- 
ets and using just the bare minimum of Globus ser- 
vices, and others exploiting the full range of services. 

The security model used for initial GUSTO deploy- 
ment was based on the plain-text GSS implementation 
that we have developed. While the plain-text authen- 
tication model is quite weak, it had the advantage of 
avoiding export control issues. However, the need for 
the stronger, public key implementation was univer- 
sally expressed. An export license for this technology 
is pending, and the currently deployed system will be 
upgraded to this authentication mechanism once such 
a license is issued. 

10    Application Overview 
We provide a brief description of one application 

demonstrated on the initial GUSTO prototype. SF- 
Express is a distributed interactive simulation (DIS) 
application that harnesses multiple supercomputers 
to meet the computational demands of large-scale 
network-based simulation environments. A large sim- 
ulation may involve many tens of thousands of entities 
and requires thousands of processors. Globus services 
can be used to locate, assemble, and manage those 
resources. For example, in one experiment in Novem- 
ber 1997, SF-Express was run on 852 processors dis- 
tributed over 6 GUSTO sites. A more detailed discus- 
sion of SF-Express and how Globus is being used to 
support its execution across multiple supercomputers 
can be found in [4] 

An advantage of the Globus bag of services architec- 
ture is that an application need not be entirely rewrit- 
ten before it can operate in a grid environment: ser- 
vices can be introduced into an application incremen- 
tally, with functionality increasing at each step. As 
illustrated in Table 2 and described briefly in the fol- 
lowing, this approach is being followed as the original 
SF-Express is converted into a grid-enabled applica- 
tion. 

SF-Express Startup and Configuration    Prior to 
the use of Globus services, simply starting SF-Express 
on multiple supercomputers was a painful task. The 
user had to log in to each site in turn and recall the ar- 
cane commands needed to allocate resources and start 
a program. This obstacle to the use of distributed re- 
sources was overcome by encoding resource allocation 
requests in terms of the GRAM API. GRAM and asso- 
ciated GSI services are used to handle authentication, 
resource allocation, and process creation at each site. 
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Table 2: A grid-aware version of SF-Express is being constructed incrementally: Globus services are incorporated 
one by one to improve functionality and reduce application complexity. The Status field indicates code status as 
of early 1998: techniques are in use (Y), are experimental or in partial use (y), or remain to be applied in the 

future (blank).   

Services How used Benefits Status 

GRAM, GSI Start SF-Express Avoid need to log in to Y 

on supercomputers and schedule each system 

+ Co-allocator Distributed startup Avoid application-level Y 

and management check-in and shutdown 

+ MDS Use MDS information 
to configure computation 

Performance, portability y 

+ Resource broker Use broker to locate 
appropriate computers 

Code reuse, portability y 

+ Nexus Encode communication Uniformity of interface, y 
as Nexus RSRs access to unreliable comms 

+ HBM Components check in with Provides degree of Y 

application-level monitor fault tolerance 

+ GASS Use to access terrain Avoid need to prestage 
database files etc. data files 

+ GEM Use to generate and Avoid configuration 
stage executables problems 

Currently, the resources used for a simulation are 
manually specified, using MDS tools to help locate, 
select, and construct RSL specifications for appropri- 
ate supercomputers. As illustrated in Figure 2, these 
tasks can be avoided if we have access to resource 
brokers that can automatically construct the required 
RSL, using information such as the available network 
bandwidth and CPU power to determine the number 
of nodes required from the number of entities being 
simulated, and the number of nodes each router can 
handle. Once the resource set is identified and the 
RSL specification generated, Globus co-allocation ser- 
vices are employed to coordinate startup across multi- 
ple supercomputers, ensuring that the application has 
started on the desired resources before allowing the 
simulation to proceed. 

After startup, the simulation must configure itself. 
In order to execute efficiently on parallel computers 
that have nonuniform access to network interfaces or 
secondary storage, SF-Express is organized such that 
intercomputer communication and I/O activities are 
performed only within specialized servers. Using infor- 
mation contained in the MDS, SF-Express can config- 
ure itself to place these services on appropriate nodes 
within a parallel computer, that is, the node with the 
attached disk or network interface card. 

Finally, SF-Express must read various files describ- 

ing the simulation scenario and the terrain on which 
the simulation is to be performed. In the initial SF- 
Express prototype, these files had to be staged man- 
ually to each site at which SF-Express executed. To 
simplify this task, we are migrating these file opera- 
tions to use the GASS service provided in the Globus 
toolkit. 

Communication. The SF-Express demonstrated 
at SC'97 uses MPI for communication within a sim- 
ulation group, but handwritten socket code for com- 
munication between routers. This approach leads to 
considerable application code complexity and hinders 
portability. One approach we are considering is to 
rewrite the inter-supercomputer communication code 
to use MPI. The grid-enabled MPI discussed in Sec- 
tion 8 can then be used, eliminating the need for ap- 
plication socket code. 

A second approach is to rewrite SF-Express so that 
communication operations are expressed directly by 
using Nexus operations. SF-Express communication 
operations are concerned primarily with the remote 
enqueing of simulation events and, hence, are ex- 
pressed more naturally as Nexus RSRs than as MPI 
calls. A second benefit to using Nexus is that we 
can then, as discussed in Section 4, select an unre- 
liable communication protocol for the distribution of 
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information to routers. This usage is desirable be- 
cause SF-Express, unlike many other distributed sim- 
ulations, does not maintain a global simulation clock. 
Instead, nodes simply discard incoming events with 
timestamps earlier than the local simulation clock. 
Hence, an unreliable protocol that tends to deliver 
most events sooner than an equivalent reliable pro- 
tocol may be preferable. 

11    Related Work 
The primary purpose of this paper is to report on 

the current status of the Globus project rather than 
to provide detailed comparisons with related work. 
Hence, we provide pointers here to just a few represen- 
tative efforts; the reader is referred to our other papers 
listed in the references for more detailed discussion. 

The Legion project [19], like Globus, is investigat- 
ing issues relating to software architectures and base 
technologies for grid environments. In contrast to the 
Globus bag of services architecture, Legion is orga- 
nized around an object-oriented model in which ev- 
ery component of the system is represented by an ob- 
ject [23]. In principle, Globus services can be used 
to implement the Legion object model, so the two 
projects are in many respects pursuing complemen- 
tary goals. 

Condor [25] is a high-throughput computing envi- 
ronment whose goal is to deliver large amounts of com- 
putational capability over long periods of time (weeks 
or months), rather than peak capacity for limited time 
durations (hours or days). Condor addresses the needs 
of a limited, although important class of applications 
whose components are loosely coupled, often orga- 
nized into a task-pool style computation. Currently, 
the GRAM interface to Condor enables Globus users 
to submit jobs to Condor pools. We are working with 
the Condor team to integrate other aspects of the sys- 
tems, such as authentication. 

A number of projects are attempting to build dis- 
tributed computing environments on top of technolo- 
gies and infrastructure developed for the World Wide 
Web. These include specialized systems such as Super- 
Web [3] and WebOS [30] as well as systems leveraging 
basic Web technologies, such as Java Remote Method 
Invocation. 

SNIPE [28] is a metacomputing project that builds 
on the resource management and communication fa- 
cilities provided by the PVM message-passing li- 
brary [17]. Like Globus, SNIPE recognizes the impor- 
tance of information services and uses the Resource 
Cataloging and Distribution System to provide access 
to system resources and metadata. 

12    Summary and Future Work 
We have described the current status of the Globus 

project, which seeks to develop the basic technologies 
required to support the construction and use of com- 
putational grids. A particular focus of the Globus 
effort is the development of a small metacomputing 
toolkit providing essential services that can then be 
used to implement a variety of higher-level program- 
ming models, tools, and applications. As we have ex- 
plained in this brief review, Globus components have 
been deployed in large testbeds and used to implement 
a variety of applications. 

We have referred above to the advantages that we 
perceive in the Globus toolkit approach: in particu- 
lar, the wide range of global services that can be sup- 
ported, because of the decoupling of global and local 
services, and the ability to construct "grid-enabled" 
applications incrementally, by incorporating services 
one by one and/or by taking increasing advantage 
of translucent interfaces. Identification of the weak- 
nesses of the approach will require the construction of 
larger testbeds and further experimentation with ap- 
plications. One concern is that the basic techniques 
might not scale, perhaps because the local services de- 
fined by the Globus toolkit are too complex for broad 
deployment, or because the accuracy of the informa- 
tion provided by MDS declines below a useful level. 
We are investigating these issues. 

We believe that the creation of large-scale testbeds 
must be a central part of any computational grid 
project. Hence, we are working with a variety of in- 
stitutions around the world to create a permanent in- 
frastructure to support experimentation with grid ap- 
plications and grid software. The initial version of this 
GUSTO testbed already includes resources at some 17 
institutions, and we expect this number to increase. 

In current work, we are investigating both grid ap- 
plications and more sophisticated grid services. We 
have started to investigate the construction of so- 
phisticated resource brokers and robust co-allocation 
strategies. We are also studying how MDS can be used 
to support dynamic configuration and adaptation, so 
that applications can maintain high levels of perfor- 
mance in the face of dynamic changes in underly- 
ing system infrastructure. Finally, we are integrating 
quality of service mechanisms into the Globus frame- 
work. Our initial focus is on guaranteeing communi- 
cation performance. However, we will also be study- 
ing how to integrate processor and memory scheduling 
into this framework. 

For more information on the Globus project and 
toolkit, see the papers cited here and also the material 
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at www.globus.org. 
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Abstract 
The NetSolve project, underway at the University of 

Tennessee and at the Oak Ridge National Laboratory, 
allows users to access computational resources dis- 
tributed across the network.   These resources are em- 
bodied in computational servers and allow the user to 
easily perform scientific computing tasks without hav- 
ing any computing facility installed on his/her com- 
puter.    The user access to the servers is facilitated 
by a variety of interfaces: Application Programming 
Interfaces (APIs),  Textual Interactive Interfaces and 
Graphical User Interfaces (GUIs). There are many re- 
search issues involved in the NetSolve system, includ- 
ing fault-tolerance, load balancing, user-interface de- 
sign, computational servers, and network-based com- 
puting.  As the project matures, several promising ex- 
tensions and applications of NetSolve will emerge. In 
this article, we provide an overview of the project and 
examine some of the extensions being developed: An 
interface to the Condor system,  an interface to the 
ScaLAPACK parallel library, a bridge with the Ninf 
system, and an integration of NetSolve and Image Vi- 
sion. 

1     The NetSolve project 
1.1    Basics 

Thanks to advances in hardware, networking infras- 
tructure and algorithms, computing intensive prob- 

lems in many areas can now be successfully attacked 
using networked,  scientific computing.    In the net- 
worked computing paradigm, vital pieces of software 
and information used  by  a computing process  are 
spread  across  the network,   and  are  identified  and 
linked together only at run time. This is in contrast to 
the current software usage model where one acquires 
a copy (or copies) of task-specific software package for 
use on local hosts.   One can distinguish three main 
paradigms for such systems. In proxy computing, the 
data and the program reside on the user's machine and 
are both sent to a server that runs the code on the data 
and returns the result. In code shipping, the program 
resides on the server and is downloaded to the user's 
machine, where it operates on the data and generates 
the result on that machine. This is the paradigm used 
by Java applets within Web browsers.  NetSolve uses 
the remote computing paradigm: the program resides 
on the server;  the user's data is sent to the server, 
where the appropriate programs or numerical libraries 
operate on it; the result is then sent back to the user's 
machine. 

Figure 1 depicts the typical layout of the system. 
NetSolve provides the user with a pool of computa- 
tional resources. These resources are computational 
servers that have access to ready-to-use numerical 
software. As shown in the figure, the computational 
servers can be running on single workstations, net- 
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Figure 1: NetSolve's organization 

works of workstations that can collaborate for solv- 
ing a problem, or MPP (Massively Parallel Proces- 
sor) systems. The user is using one of the NetSolve 
client interfaces. Through these interfaces, he can 
send requests to the NetSolve system asking for his 
numerical computation to be carried out by one of 
the servers. The main role of the NetSolve agent is 
to process this request and to choose the most suit- 
able server for this particular computation in terms of 
execution time. Once a server has been chosen, it is 
assigned the computation, uses its available numeri- 
cal software, and eventually returns the results to the 
user. One of the major advantages of this approach 
is that the agent performs load-balancing among the 
different resources. 

As shown on Figure 1, there can be multiple in- 
stances of the NetSolve agent on the network, and dif- 
ferent clients can contact different agents depending 
on their locations. The agents can exchange infor- 
mation about their different servers and allow access 
from any client to any server if desirable. NetSolve 
can be used either via the Internet or on an intranet, 
such as inside a research department or a university, 
without participating in any Internet based compu- 

tation. Another important aspect of NetSolve is that 
the configuration of the system is entirely flexible: any 
server/agent can be stopped and (re-)started at any 
time without jeopardizing the integrity of the system. 

1.2     The computational resources 
When building the NetSolve system, one of the 

challenges was to design a suitable model for the com- 
putational servers. The NetSolve servers are config- 
urable so that they can be easily upgraded to encom- 
pass ever-increasing sets of numerical functionalities. 
The NetSolve servers are also pre-installed, meaning 
that the end-user does not have to install any numer- 
ical software. Finally, the NetSolve servers provide 
uniform access the the numerical software, in the sense 
that the end-user has the illusion that she is accessing 
numerical subroutines from a single, coherent numer- 
ical library. 

To make the implementation of such a computa- 
tional server model possible, we have designed a gen- 
eral, machine-independent way of describing a numer- 
ical computation, as well as a set of tools to gener- 
ate new computational modules as easily as possible. 
The main component of this framework is a descriptive 
language which is used to describe each separate nu- 
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merical functionality of a computational server. The 
description files written in this language can be com- 
piled by NetSolve into actual computational modules 
executable on any UNIX or NT platform. These files 
can then be exchanged by any institution wanting to 
set up servers: each time a new description file is cre- 
ated, the capabilities of the entire NetSolve system are 
increased. 

A number of description files have been generated 
for a variety of numerical libraries: ARPACK [1], Fit- 
Pack [2], ItPack [3], MinPack [4], FFTPACK [5], LA- 
PACK [6], BLAS [7, 8, 9], QMR [10], and ScaLA- 
PACK [11]. These numerical libraries cover several 
fields of computational science; Linear Algebra, Opti- 
mization, Fast Fourier Transforms, etc. 

NetSolve computational servers providing access to 
these libraries are currently running at the University 
of Tennessee and at other locations world-wide. Real- 
time information on the running servers can be found 
on the NetSolve web-page located at 

http://www.cs.utk.edu/netsolve 

1.3 The client interfaces 
A major concern in designing NetSolve was to pro- 

vide several interfaces for a wide range of users. Net- 
Solve can be invoked through C, Fortran, Java, as well 
as on Matlab. In addition, there is a Web-enabled 
Java GUI. Another concern was keeping the interfaces 
as simple as possible. For example, there are only two 
calls in the MATLAB interface, and they are sufficient 
to allow users to submit problems to the NetSolve 
system. Each interface provides asynchronous calls 
to NetSolve in addition to traditional synchronous or 
blocking calls. When several asynchronous requests 
are sent to a NetSolve agent, they are dispatched 
among the available computational resources accord- 
ing to the load-balancing schemes implemented by the 
agent. Hence, the user—with virtually no effort—can 
achieve coarse-grained parallelism from either a C or 
Fortran program, or from interaction with a high-level 
interface. All the interfaces are described in detail in 
the "NetSolve's Client User's Guide" [12]. 
1.4 The NetSolve agent 
1.4.1     The agent as a database 

Keeping track of what software resources are available 
and on which servers they are located is perhaps the 
most fundamental task of the NetSolve agent. Since 
the computational servers use the same framework to 
contribute software to the system (see Section 1.2), it 
is possible for the agent to maintain a database of dif- 
ferent numerical functionalities available to the users. 

Each time a new server is started, it sends an ap- 
plication request to an instance of the NetSolve agent. 

This request contains general information about the 
server and the list of numerical functions it intends 
to contribute to the system. The agent examines this 
list and detects possible discrepancies with the other 
existing servers in the system. Based on the agent's 
verdict, the server can be integrated into the system 
and available for clients. 

1.4.2    The agent as a resource broker 

The goal of the NetSolve agent is to choose the 
best-suited computational server for each incoming 
request to the system. For each user request, the 
agent determines the set of servers that can han- 
dle the computation and makes a choice between 
all the possible resources. To do so, the agent 
uses computation-specific and resource-specific infor- 
mation. Computation-specific information is mostly 
included in the user request whereas resource-specific 
information is partly static (server's host processor 
speed, memory available, etc.) and partly dynamic 
(processor workload). The agent thus provides the 
user with location transparency for the processor per- 
forming her computation. Rationale and further de- 
tail on these issues can be found in [13], as well as 
a description of how NetSolve ensures fault-tolerance 
among the servers. 
1.5     Conclusion 

Agent-based computing seems to be a promising 
strategy. NetSolve will evolve into a more elaborate 
system in the future and a major part of this evolu- 
tion is to take place within the agent. Such issues as 
user accounting, security, data encryption for instance 
are only partially addressed in the current implemen- 
tation of NetSolve and will be the object of much work 
in the future. As the types of hardware resources and 
the types of numerical software available on the com- 
putational servers become more and more diverse, the 
resource broker embedded in the agent will need to 
become increasingly sophisticated. There are many 
difficulties in providing a uniform performance metric 
that encompasses any type of algorithmic and hard- 
ware considerations in a metacomputing setting, es- 
pecially when different numerical resources, or even 
entire frameworks are integrated into NetSolve. Such 
integrations are described in the following sections. 

2    An interface to the Condor system 
2.1     Overview of Condor 

Condor [14, 15, 16], developed at the University 
of Wisconsin, Madison, is an environment that can 
manage very large collections of distributively owned 
workstations. Its development has been motivated by 

21 



the ever increasing need for scientists and engineers 
to exploit the capacity of such collections, mainly by 
taking advantage of otherwise unused CPU cycles. 

A brief description of Condor's software architec- 
ture follows. A Condor pool consists of any number of 
machines, that are connected by a network. Condor 
daemons constantly monitor the status of the individ- 
ual computers in the cluster. Two daemons run on 
each machine, the startd and the schedd. The startd 
monitors information about the machine itself (load, 
mouse/keyboard activity, etc.) and decides if it is 
available to run a Condor job. The schedd keeps track 
of all the Condor jobs that have been submitted to the 
machine. One of the machine, the Central Manager, 
keeps track of all the resources and jobs in the pool. 
When a job is submitted to Condor, the scheduler on 
the central manager matches a machine in the Con- 
dor pool to that job. Once the job has been started, 
it is periodically checkpointed, can be interrupted and 
migrated to a machine whose architecture is the same 
as the one of the machine on which the execution was 
initiated. This organization is partly depicted in Fig- 
ure 2. More details on the Condor system and the 
software layers can be found in [14]. 

2.2     A Condor pool as a NetSolve resource 
2.2.1 Motivation 

Interfacing NetSolve and Condor is a very natural 
idea. NetSolve provides remote easy access to com- 
putational resources through multiple, attractive user 
interfaces. Condor allows users to harness the power 
of a pool of machines while using otherwise unused 
CPU cycles. The users at the consoles of those ma- 
chines are therefore not penalized by the scheduling 
of Condor jobs. If the pool of machines is reasonably 
large, it is usually the case that Condor jobs can be 
scheduled almost immediately. This could prove to 
be very interesting for a project like NetSolve. In- 
deed, NetSolve servers may be started so that they 
grant local resource access to outside users. Interfac- 
ing NetSolve and Condor could then give priority to 
local users and provide underutilized only CPU cycles 
to outside users. 

2.2.2 Implementation 

Figure 2 shows how an entire Condor pool can be seen 
as a single NetSolve computational resource. The Cen- 
tral Manager runs two daemons in addition to the 
usual startd and schedd: the negotiator and the col- 
lector. One machine also runs a customized version 
of the NetSolve server. When this server receives a 
request from a client, instead of creating a local child 

process running a computational module, it uses the 
Condor tools to submit that module to the Condor 
pool. The negotiator on the Central Manager then 
chooses a target machine for the computational mod- 
ule. Due to fluctuations in the state of the pool, the 
computational module can then be migrated among 
the machines in the pool. When the results of the nu- 
merical computation are obtained, the NetSolve server 
transmits that result back to the client. 

The actual implementation of the NetSolve/Condor 
interface was made easy by the Condor tools provided 
to the Condor user. However, the restrictions that 
apply to a Condor jobs concerning system calls were 
difficult and required quite a few changes to obtain a 
Condor-enabled NetSolve server. A major issue how- 
ever still needs to be addressed; how does the NetSolve 
agent perceive a Condor pool as a resource? Indeed, 
it is rather difficult to predict when the job will be 
scheduled or how often it will be suspended and mi- 
grated. Finding the appropriate performance predic- 
tion technique will be at the focus of the next step in 
the NetSolve/Condor collaboration. 

3    Integrating    parallel    numerical    li- 
braries 

3.1 Motivation 
Integrating parallel packages into NetSolve will al- 

low a user on a workstation to access MPP systems 
to perform large computation. This access can be ex- 
tremely simple and the user may not even be aware 
that he is using a parallel library. 

3.2 Integrating parallel software packages 
into NetSolve 

ScaLAPACK (Scalable Linear Algebra Package) is 
a library of high-performance linear algebra routines 
for distributed-memory message-passing MIMD com- 
puters as well as networks of workstations support- 
ing PVM [17] or MPI [18]. ScaLAPACK was devel- 
oped at the University of Tennessee, Knoxville, the 
Oak Ridge National Laboratory and the University of 
California, Berkeley. It is a continuation of the LA- 
PACK [6] project, and contains routines for solving 
systems of linear equations, least squares problems, 
and eigenvalue problems. ScaLAPACK views the un- 
derlying multi-processor system as a rectangular pro- 
cess grid. Global data is mapped to the local mem- 
ories of the processes in that grid assuming specific 
data-distributions. For performance reasons, ScaLA- 
PACK uses the two-dimensional block cyclic distri- 
bution scheme for dense matrix computations. Inter- 
process communication within ScaLAPACK is done 
via the BLACS (Basic Linear Algebra Communication 
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subprograms) [19, 20]. All the details on ScaLAPACK 
and its software hierarchy can be found in the latest 
edition of the User's Guide [11]. 

Figure 3 is a very simple description of how the Net- 
Solve server has been customized to use the ScaLA- 
PACK library. The customized server receives data 
input from the client in the traditional way. The Net- 
Solve server uses BLACS calls to set up the ScaLA- 
PACK processor grid. ScaLAPACK requires that the 
data already be distributed among the processors prior 
to any library call. This is the reason why each user 
input is first 2-D block cyclic distributed in that grid 
when necessary. The server can then initiate the call 
to ScaLAPACK and wait until completion of the com- 
putation. When the ScaLAPACK call returns, the 
result of the computation is usually available on the 
processors and is 2-D block cyclic distributed as well. 
The server then gathers that result and sends it back 
to the client in the expected format. This process is 
completely transparent to the user who does not even 
realize that a parallel execution is taking place. 

This approach is very promising. A client can use 
MATLAB on a PC and issue a simple call like [x] = 
netsolveCeig' ,a) and have an MPP system use a 

high-performance library to perform a large eigenvalue 
computation. We have designed a prototype of the 
customized server running on top of PVM [17] or MPI 
[18]. There are many research issues arising with in- 
tegrating parallel libraries in NetSolve, including per- 
formance prediction, choices of processor-grid/matrix- 
block size, choice of numerical algorithm, processor 
availability, accounting, etc. 

4    NetSolve and Ninf 
4.1     A brief overview of Ninf 

Ninf, developed at the Electrotechnical Laboratory, 
Tsukuba, is a global network-wide computing infras- 
tructure project which allows users to access compu- 
tational resources including hardware, software, and 
scientific data distributed across a wide area net- 
work with an easy-to-use interface. Computational 
resources are shared as Ninf remote libraries and are 
executable at remote Ninf servers. Users can build an 
application by calling the libraries with the Ninf Re- 
mote Procedure Call, which is designed to provide a 
programming interface similar to conventional func- 
tion calls in existing languages, and is tailored for 
scientific computation. In order to facilitate location 
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transparency and network-wide parallelism, the Ninf 
MetaServer maintains global resource information re- 
garding computational server and databases. It can 
therefore allocate and schedule coarse-grained compu- 
tations to achieve good global load balancing. Ninf 
also interfaces with existing network service such as 
the WWW for easy accessibility. More details on Ninf 
can be found in [21]. Clearly, NetSolve and Ninf bear 
strong similarities both in motivation and general de- 
sign. Allowing the two systems to coexist and collab- 
orate should lead to promising developments. 

4.2     A   gateway  between   Ninf and   Net- 
Solve 

Some design issues prevent an immediate seam- 
less integration of the two softwares (conceptual dif- 
ferences between the NetSolve agent and the Ninf 
Metaserver, problem specifications, user interfaces, 
data transfer protocols, etc.). In order to over- 
come these issues, the Ninf team started developing 
two adapters: a NetSolve-Ninf adapter and a Ninf 
NetSolve-adapter. Thanks to those adapters, Ninf 
clients can use computational resources administrated 
by a NetSolve system and vice-versa. 

Figure 4(i) shows the Ninf-NetSolve adapter allow- 
ing access to Ninf resource from a NetSolve client. The 
adapter is just seen by the NetSolve agent as any other 
NetSolve server. When a NetSolve client sends a re- 
quest to the agent, it can then be told to use the Net- 
Solve adapter.  The adapter performs protocol trans- 

lation, interface translation, and data transfer, asks a 
Ninf server to perform the required computation and 
returns the result to the user. 

In Figure 4(ii), the NetSolve-Ninf adapter can be 
seen by the Ninf MetaServer as a Ninf server, but in 
fact plays the role of a NetSolve client. This is a lit- 
tle different from the Ninf-NetSolve adapter because 
the NetSolve agent is a resource broker whereas the 
Ninf MetaServer is a proxy server. Once the adapter 
receives the result of the computation from some Net- 
Solve server, it transfers that result back to the Ninf 
client. 

There are several advantages of using such 
adapters. Updating the adapters to reflects the evo- 
lutions of NetSolve or Ninf seems to be an easy task. 
Some early implementation evaluations tend to show 
that using either system via an adapter causes accept- 
able overheads, mainly due to additional data trans- 
fers. Those first experiments appear encouraging and 
will definitely be extended to effectively enable an in- 
tegration of NetSolve and Ninf. 

5    Extending Image Vision by the use of 
NetSolve 

In this section, we describe how NetSolve can be 
used as a building block for a general purpose frame- 
work for basic image processing. 
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5.1 Integrating  the  ImageVision  library 
into NetSolve 

This project is under development at the ICG insti- 
tute at Graz University of Technology, Austria. The 
scope of the project is to make basic image processing 
functions available for remote execution over a net- 
work. The goals of the project include two objectives 
that can be leveraged by NetSolve. First, the result- 
ing software should prevent the user from having to 
install complicated image processing libraries. Sec- 
ond, the functionalities should be available via Java- 
based applications. The ImageVision Library (IL) [22] 
is an object-oriented library written in C++ by Silicon 
Graphics, Inc. (SGI) and shipped with newer work- 
stations. It contains typical image processing routines 
to efficiently access, manipulate, display, and store im- 
age data. ImageVision has been judged quite complete 
and mature by the research team at ICG and seems 
therefore a good choice as an "engine" for building 
a remote access image processing framework. Such a 
framework will make IL accessible from any platform 
(and not only from SGI workstations) and is described 
in [23]. 

5.2 NetSolve   as   an   operating   environ- 
ment for ImageVision 

The reasons why NetSolve has been a first choice 
for such a project are diverse. First, NetSolve is easy 
to understand, use, and extend. Second, NetSolve is 
freely available. Third, NetSolve provides language 
binding to Fortran, C, and Java. And finally, Net- 
Solve's agent-based design allows load monitoring and 
balancing among the available servers. New NetSolve 
computational modules corresponding to the desired 
image processing functionalities will be created and 
integrated into the NetSolve servers. A big part of the 
project at ICG is to build a Java GUI to IL. 

Figure 5 shows a simple example of how ImageVi- 
sion can be accessed via NetSolve. A Java GUI can be 
built on top of the NetSolve Java API. As shown on 
the figure, this GUI could offer visualization capabili- 
ties. For computations, it uses an embedded NetSolve 
client and contacts SGI servers that have access to IL. 
The user of the Java GUI does not realize that Net- 
Solve is the back end of the system, or that he uses 
a SGI library without running the GUI on a SGI ma- 
chine! The protocol depicted on Figure 5 is of course 
simplistic. In order to obtain acceptable levels of per- 
formance, the network traffic needs to be minimized. 
There are several ways of attacking this problem. For 
instance, the servers could "keep a state", meaning 
that some data can be cached on the server for fu- 
ture use. Several issues are involved in the design of 
such a mechanism as the cache needs proper invalida- 
tion mechanisms, replacement policies, etc. Another 
possibility would be to combine requests to avoid re- 
transmitting redundant data. Such a change can be 
already emulated my designing appropriate problem 
description file for the NetSolve servers. However, it 
may become preferable to include request combination 
as a standard feature of the NetSolve protocol. The 
current version of the Java API in GUI in NetSolve 
allows to reference objects (e.g. images) via URLs. 
This may prove useful for some applications, and in 
particular to the ImageVision/NetSolve integration. 

6    Conclusion 
The scientific community has long used the Inter- 

net for communication of email, software, and docu- 
mentation. Until recently there has been little use of 
the network for actual computations. This situation 
is changing rapidly and will have an enormous impact 
on the future. 

We have discussed throughout this article how Net- 
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Solve can be customized, extended, and used for a 
variety of purposes. We first described in Sections 2 
and 3 how NetSolve can encompass new types of com- 
puting resources, resulting in a more powerful and flex- 
ible environment and raising new research issues. We 
next discussed in Section 4 how NetSolve and Ninf can 
be merged into a single metacomputing environment. 
Finally, in Section 5, we gave an example of an entire 
application that uses NetSolve as an operating envi- 
ronment to build general image processing framework. 
All these developments take place at different levels in 
the NetSolve project and have had and will continue 
to have an impact on the project itself, causing it to 
improve and expand. 
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Abstract 

A distributed, parallel implementation of the widely 
used Modular Semi-Automated Forces (ModSAF) Dis- 
tributed Interactive Simulation (DIS) is presented, 
with Scalable Parallel Processors (SPPs) used to simu- 
late more than 50,000 individual vehicles. The single- 
SPP code is portable and has been used on a variety 
of different SPP architectures for simulations with up 
to 15,000 vehicles. A general metacomputing frame- 
work for DIS on multiple SPPs is discussed and results 
are presented for an initial system using explicit Gate- 
way processes to manage communications among the 
SPPs. These 50K-vehicle simulations utilized 1,904 
processors at six sites across seven time zones, includ- 
ing platforms from three manufacturers. Ongoing ac- 
tivities to both simplify and enhance the metacomput- 
ing system using Globus are described. 

1    The Large-Scale DIS Problem 
Over the past few years, Distributed Interactive 

Simulation (DIS) [1] has become an increasingly essen- 
tial tool for training, system acquisition, test and eval- 
uation within the Department of Defense. Key compo- 
nents of DIS include: high-fidelity computer-simulated 
individual entities (tanks, trucks, aircraft, ... ); inter- 
actions among entities hosted on different computers 
through network messages; and support for Human In 
Loop (HIL) interactions. Using DIS, it is possible to 
create large-scale virtual representations of real oper- 
ational environments that are inexpensive enough to 
be used repeatedly. 

ModSAF is a particularly important example of 
DIS which is routinely used for cost-effective training 
throughout the armed forces. Generally, it is run us- 
ing an ensemble of workstations communicating over a 

network, typically a LAN. Each workstation is respon- 
sible for simulating some modest number (30-100) of 
entities. These computer-generated Semi-Automated 
Forces (SAF) are intended to mimic realistically the 
behaviors of opposing or support forces within an ex- 
ercise. The entity and environment models are accord- 
ingly quite detailed. 

Individual simulators (workstations) interact 
through the exchange of data messages called PDUs 
(Protocol Data Units) [2]. These PDUs are used 
in ModSAF to describe the state of individual enti- 
ties, weapons firing, detonations, environmental phe- 
nomenon, command and control orders, etc. In stan- 
dard ModSAF, the PDUs are sent as UDP datagrams. 
Due to this unreliable message-delivery mechanism, 
each entity state PDU typically contains a complete 
summary of the vehicle's current state, and PDUs are 
(re)transmitted at frequent, regular "heartbeat" inter- 
vals to compensate for dropped data packets. 

Independent of the nature of the PDU communi- 
cations mechanism, this simplest picture of ModSAF 
is not scalable in that it (implicitly) assumes each sim- 
ulator receives and responds to all PDUs from all other 
simulators—a model that clearly fails as the number of 
simulators and simulated entities increases. Moreover, 
in many realistic large scale simulations, it is invari- 
ably the case that most system-wide PDU traffic is 
irrelevant for the limited set of entities hosted on an 
individual simulator (e.g., tanks separated by tens of 
kilometers generally do not interact). 

The DIS community encountered these issues in 
their STOW-E exercise (Synthetic Theater of War- 
Europe [3]) and ED-1A Engineering Demonstration 
[4], in which ModSAF was used to simulate 5,371 ve- 
hicles hosted at 12 separate sites in the USA and Eu- 
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rope. Increasing the simulated entity count could not 
be achieved by simply adding more workstations to 
the network. Addition of a PDU screening mechanism 
('Interest Management') helped but did not eliminate 
all scaling hurdles. 

This paper describes a new approach to truly 
large-scale DIS, using multiple Scalable Parallel Pro- 
cessors (SPPs) to solve the scaling problems observed 
in STOW-E. After a short summary of project goals 
and accomplishments in Sections 1.1 and 1.2, Section 2 
presents the general method used for porting ModSAF 
to run on an SPP. Sections 3-5 contain, respectively, 
a (long-term) vision for an effective STOW metacom- 
puting model, an analysis of initial multi-SPP Mod- 
SAF accomplishments, and an overview of ongoing ac- 
tivities to enhance and extend the existing software us- 
ing elements from the Globus metacomputing toolkit 

[7], [8]. 

1.1     SF Express Project Overview 
The Synthetic Forces Express project (SF Ex- 

press) [9] began in 1996 to explore the utility of 
Scalable Parallel Processors (SPPs) as a solution to 
the communications bottlenecks of conventional Mod- 
SAF. The SF Express team consists of researchers 
from the California Institute of Technology (Cal- 
tech), the Jet Propulsion Laboratory (JPL), and the 
Space and Naval Warfare Systems Center San Diego 
(SPAWARSYSCEN, formerly known as NRaD). The 
SF Express charter was to demonstrate a scalable com- 
munications architecture simulating 50K vehicles on 
multiple SPPs—an order-of-magnitude increase over 
the size of the STOW-E simulation. 

SPPs provide a natural, attractive alternative to 
networked workstations for large-scale ModSAF runs. 
Most of the processors on an SPP can be devoted to 
independent executions of "SAFSim," the basic Mod- 
SAF simulator code. The reliable high-speed commu- 
nications fabric between processors on an SPP pro- 
vides significantly increased bandwidth over standard 
dataflows among networked workstations. A scalable 
communications scheme was constructed in three main 
steps: 

Interest Specification Procedures: Individual 
data messages were associated with specific inter- 
est class indices, and procedures were developed 
for evaluating the total interest state of an indi- 
vidual simulation processor. 

Intra-SPP Communications: Within an individ- 
ual SPP, certain processors were designated as 
message routers; the number of processors used 
as routers can be selected for each run.   These 

processors receive and store interest declarations 
from the simulator nodes and move simulation 
data packets according to the interest declara- 
tions. 

Inter-SPP Communications: Additional interest- 
restricted data exchange procedures were devel- 
oped to support SF Express execution across mul- 
tiple SPPs. 

The primary technical challenge in porting Mod- 
SAF to run efficiently on SPPs lies in construct- 
ing a suitable network of message-passing router 
nodes/processors. SF Express uses point-to-point SPP 
communications (implemented using the MPI Message 
Passing Interface [10]) to replace the UDP socket calls 
of standard ModSAF. The network of routers man- 
age SPP message traffic, effecting interest-restricted 
communications among simulator nodes. This strat- 
egy allows considerable freedom in constructing the 
router node network. This paper describes a model 
based on statically-allocated communication channels 
among specific subsets of processors within an SPP. 
This Router Network Architecture (RNA) was devel- 
oped at Caltech [11],[12]. 

As the simulation problem size increases beyond 
the capabilities of any single SPP, additional interest- 
restricted communications procedures are needed to 
enable "Metacomputed ModSAF" runs on multiple 
SPPs. After a number of options were considered, an 
implementation using dedicated Gateway processors 
to manage inter-SPP communications was selected. 

1.2    Simulations of 50K+ Vehicles 

On 11 August 1997, the SF Express project per- 
formed two separate simulation runs, each with more 
than 50,000 individually simulated vehicles. The runs 
used three different types of Scalable Parallel Proces- 
sors (SPPs) at six separate sites spanning seven time 
zones, as shown in Fig.(l). These sites were linked 
by a variety of wide-area networks. Specifics for each 
site are listed in Table 1. The majority of the SPPs 
used the RNA communications scheme, while NASA 
Ames and CEWES applied an alternative approach 
developed at JPL [13]. 

The N(P) entries in the table indicate the number 
of processors used at each site. The N(V)j columns in- 
dicate the number of locally simulated vehicles in each 
of the two runs. The 50K-vehicle simulation scenar- 
ios were created by the Exlnit software [14] and fea- 
tured immediate intense interactions among the sim- 
ulated entities, causing high communications levels 
both within and among SPPs. 
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Figure 1: SPP sites and message rates in the 50K SF Express runs 

Table 1: Participating Sites and Simulated Entity Counts for the 50,000 Vehicle SF Express Runs 

Site Hardware N(P) N(V)i     N(V)2 

Caltech, Pasadena CA 
ORNL, Oak Ridge TN 
NASA Ames CA 
CEWES, Vicksburg MS 
MHPCC, Maui HI 
HP/Convex, Richardson TX 

HP Exemplar 
Intel Paragon 

IBM SP2 
IBM SP2 
IBM SP2 

HP Exemplar 

256 
1024 
139 
229 
128 
128 

13,095     12,182 
16,695     15,996 
5,464       5,637 
9,739       9,607 
5,056       7,027 
5,348       6,733 

Total 1,904 55,397     57,182 
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Figure 2: Schematic illustration of a networked ModSAF simulator and notional mapping of the simulator tasks 
onto an SPP 

2 Porting ModSAF to a Scalable Par- 
allel Processor 
The basic strategy used in porting ModSAF to 

an SPP is a heterogeneous assignment of tasks to pro- 
cessors, as illustrated in Fig. (2). The processors are 
divided into three classes: 

Entity Simulators: Most of the SPP's processors 
execute a minimally modified version of SAFSim, 
the standard simulator code. 

Data Servers: A small number of nodes read and 
store simulation data, forwarding it to the SAF- 
Sim nodes through SPP messages. 

Routers: The movement of data among the SAFSim 
nodes is managed by a number of dedicated router 
nodes. The broadcast or multicast socket calls of 
standard ModSAF are replaced by point-to-point 
communications directed by this router network. 

Neither side of Fig. (2) is scalable without the 
imposition of additional interest management logic, 
which limits the number of incoming data for an in- 
dividual SAFSim. Since interest management is an 
active research area, it is important that the SPP im- 
plementation not depend on specifics of any one inter- 
est management scheme. RNA makes only two min- 
imal assumptions in this regard: each PDU can be 
associated with an interest value (an "interest class"), 
and each SAFSim can compute its own interest state 
(the set of all relevant interest values for locally sim- 
ulated vehicles).   The communications network must 

deliver to the SAFSim only those PDUs that overlap 
the SAFSim's declared interest state. 

2.1    The Router Network Architecture 
The basic building block of Router Network Ar- 

chitecture is a fixed set of SAFSim nodes communicat- 
ing with single "Primary Router" node, as illustrated 
in Fig. (3). There are only two essential modifications 
to the standard ModSAF code, as run of the SAFSim 
nodes of Fig. (3): 

1. The usual (broadcast) network reads and writes in 
the ModSAF network communications library are 
replaced by SPP communications with the router 
node. 

2. Each SAFSim node periodically recomputes its 
collective interest state (union of interest states 
for all locally simulated vehicles) and sends this 
information to its router. 

The Primary Router in Fig.(3) receives and (tem- 
porarily) stores PDUs and interest declarations from 
the attached SAFSims and subsequently forwards 
those PDUs that match the SAFSim interest states. 
These tasks are implemented using three straightfor- 
ward constructs: 

1. A large circular buffer that stores active data el- 
ements. 

2. A client list that maintains the current interest 
declaration of the individual attached SAFSims 
and pointers to the next outgoing PDU for each 
client. 
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Figure 3: A Primary Router with its associated SAFSims 

3. A simple interest assessment function that deter- 
mines whether a PDU matches a client's declared 
interest. 

The Primary Router in Fig. (3) is a pure data server 
that waits for and processes requests from SAFSim 
clients. For efficiency, the actual data messages ex- 
changed between SAFSims and Routers are PDU bun- 
dles. 

It has been found that a single Primary Router 
can comfortably manage the communications for a set 
of client SAFSims in Fig.(3) simulating 1K-2K total 
vehicles. Multiple replicas of the Primary Router Clus- 
ter are required once the overall simulation size ex- 
ceeds this limit. In such cases, the basic unit of Fig. (3) 
is first augmented by the addition of two new Router 
nodes (referred to as "Pop-Up" and "Pull Down"). 
This enhanced routing "triad" is replicated, and ad- 
ditional communications links between Pop-Up and 
Pull-Down routers are enabled, giving rise to the full 
router network shown in Fig.(4). 

Communications within the full architecture of 
Fig.(4) are also straightforward. In addition to its 
normal communications with the SAFSim nodes, each 
Primary Router forwards all SAFSim PDUs to its as- 
sociated Pop-Up Router and also sends its collective 
interest state (the union of the SAFSim interest states) 
to its Pull-Down Router. Each Pull-Down router sub- 
sequently collects interest-filtered PDUs from the full 
Pop-Up layer, and delivers these data to the Primary 
Router. Message passing within the router network 
follows a strict set of hierarchical rules. In particular, 
all data exchanges are flow-controlled, being initiated 
by small request packets sent from one node to a router 
in a higher layer within Fig. (4). This approach is used 
to prevent both communications deadlocks and the ar- 
rival of large unanticipated messages that could exceed 
available system buffer space. 

The Pop-Up layer in Fig. (4) provides a distributed 
repository for active messages within the simulation 
(making the Pop-Ups a perfect place to attach data 
loggers for subsequent replays or statistics gather- 
ing). Note that the data collection activities of the 
Pull-Down routers occur in parallel with the Primary 
SAFSim communications. This parallelism minimizes 
the additional time delays for PDUs that must travel 
through the full router network. 

2.2    Performance of the Single-SPP Mod- 
SAF Implementation 

Detailed studies of the RNA model are contained 
in Refs.[ll],[12]. Highlights of these analyses are as 
follows: 

1. The RNA approach has been run successfully on 
a variety of SPP architectures, including the Intel 
Paragon, IBM SP2, HP Exemplar, Silicon Graph- 
ics Origin 2000, and "Beowulf" PC Cluster [15]. 

2. These single-SPP runs have included simulations 
involving up to 18,000 vehicles. 

3. The scaling behavior of RNA as problem size 
increases is well-understood, with "theoretical" 
expectations validated by the measured perfor- 
mance results. 

4. The effective inter-processor communications 
within an SPP reduce PDU communication over- 
head significantly for an individual SAFSim (rel- 
ative to standard ModSAF performance on a 
LAN/WAN network). 

3    Anatomy of a DIS Metacomputer 
"Metacomputing" can be defined as the concur- 

rent use of multiple network-linked resources for solv- 
ing very large computational problems.    However, 
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computing in networked environments has both ad- 
vantages and drawbacks. The state and structure of 
networked resources are often dynamic and quite het- 
erogeneous. Performance and portability may be com- 
promised when trying to deal with heterogeneity. Al- 
ternatively, linking large numbers of diverse resources 
allows access to processing power and unique capabil- 
ities beyond the resources at any one site. It also en- 
ables applications to be solved with a mix of systems, 
assigning appropriate and available assets to specific 
parts of the overall problem. 

For many classes of large distributed applications, 
the aggregate computational power in a collection of 
SPPs is only part of the metacomputing solution. A 
full system would link computational engines, storage 
systems, scientific instruments, advanced display de- 
vices, and human resources, as illustrated in Fig.(5), 
with "HIL" representing some sort of 'Human In Loop' 
interface and "Idesk" ("Immersa-desk") representing a 
typical advanced display device. Data may be gath- 
ered from a remote source (for example, a satellite 
downlink) and streamed into a collection of SPPs for 
real-time simulation processing. During the course 
of the simulation, mechanisms for logging, filtering, 
or compressing data may be employed for subsequent 
post-processing (e.g., visualization, querying, and per- 
sistent storage). 

Distributed heterogeneous computing immedi- 
ately implies diversity in terms of hardware architec- 
tures and performance, operating systems, administra- 
tive domains, network protocols, etc. As the size and 
complexity of the distributed system increases, opera- 
tional issues (e.g., resource scheduling, allocation, and 
data staging) become increasingly important compo- 
nents of the metacomputing model. 

The next two sections describe two initial steps to- 
ward the seamless metacomputing picture of Fig.(5). 
Section 4 presents the Gateway model used by the ini- 
tial 50K-vehicle runs outlined in Table 1. Section 5 
describes subsequent multi-SPP experiments to inte- 
grate parts of the Globus metacomputing toolkit [7], 

[8] in order to remove many operational difficulties en- 
countered during initial large simulations. 

4 SF Express on Multiple SPPs using 
Explicit Gateways 
For large runs on multiple SPPs, some portions 

of the entity state information from each SPP will, 
in general, be relevant for entities simulated on other 
SPPs. Extensions of the single-SPP architecture 
must effect interest-restricted PDU exchanges among 
the SPPs. Dedicated Gateway processors provide a 
straightforward mechanism for this task. 

The Gateway processors are generalizations of the 
intra-SPP routers from Section 2.1, and can be viewed 
as communications servers for two distinct classes of 
clients: 

Local Clients: Router nodes on the same SPP as the 
Gateway that hold the continually changing col- 
lective PDU and Interest State of the local SPP. 
Local Clients send (internal) interest declarations 
and simulation data to the Gateway for subse- 
quent delivery to remote resources. 

External Clients: Processes on remote machines 
that receive and process interest declarations and 
PDU bundles from the local SPP. An external 
client could be a standard ModSAF workstation 
or GUI. For inter-SPP links, an External Client is 
essentially a mirror image of a Local Client that 
resides on the external SPP. 

Gateways manage interest-selected data flow in 
two directions by way of four basic operations: 

1. The collective interest state of the Local SPP is 
sent out to each of the external SPPs. 

2. The corresponding interest declarations are re- 
ceived from the remote SPPs, defining standard 
client interests. The union of these external inter- 
est states defines the collective (external) gateway 
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interest, which is sent up to the local attached 
routers. 

3. The Gateway receives interest-screened data from 
the local routers in the usual manner, and for- 
wards these to the appropriate external hosts. 

4. The Gateway receives data from the external 
SPPs and sends it to the attached local routers 
for subsequent distribution within the local SPP. 

Aside from the fact that a Gateway node has two im- 
portant global interest states (the attached SPP and 
the external world), the overall operation of Gateways 
is extremely similar to that of the router nodes from 
Section 2.1. 

4.1     Gateway Specifics for the Initial 50K- 
Vehicle Runs 

The first metacomputing experiments within the 
SF Express project involved a number of simplify- 
ing assumptions and restrictions on the nature of the 
Gateway processes, in particular: 

1. The communications network among the partici- 
pating SPPs is implemented as a fully connected 
set of links between pairs of SPPs, with each SPP 
dedicating a Gateway processor for each external 
SPP. 

2. Messages between SPPs are sent as UDP/IP data- 
grams. 

3. Interest declaration messages are retransmitted at 
regular intervals ("heartbeats") to accommodate 
the unreliable nature of the UDP messages. 

In Fig. (6), the schematic diagram of the multi-SPP 
environment illustrates the dedicated Gateway links. 

The Gateways in Fig. (6) operate as pure commu- 
nications servers, whose task is to manage the flow 
of requested PDUs and interest states between SPPs. 

Details can be found in Ref. [12]. Timing results for 
Gateway operations in the 50K-vehicle runs are exam- 
ined in Section 4.4. 

The complete connectivity among Gateways in SF 
Express (as in Fig. (6)) should be viewed as a provi- 
sional expediency on the road to a 50K-vehicle sim- 
ulation. With one exception noted below, this model 
easily handled the inter-SPP traffic at rates up to 1,000 
PDUs/sec. However, this initial model does not scale 
well as the number of sites in Fig.(6) increases, and 
has the additional defect that Gateway processors as- 
sociated with low-activity links are a wasted resource. 
Movement towards an architecture linking individual 
SPPs by some form of multicasting (possibly ATM) 
network should be explored. 

4.2    The 50K-Vehicle Scenarios 
The scenarios used by SF Express involve Blue 

and Red forces laid down on the 300 km by 350 km 
SAKI (Saudi Arabia, Kuwait, Iraq) terrain database. 
The full complement of vehicles is organized into a 
number of opposing force groups. The relative pop- 
ulations of vehicles types (tanks, trucks, helicopters, 
...) and the actual laydowns of units and vehicles were 
designed according to standard military doctrine [16] 
including, for example, a roughly 2:1 superiority in 
numbers for the attacking Blue forces. 

Fig.(7) presents a schematic of the force deploy- 
ments in one of the two scenarios used in the 50K- 
vehicle runs. This "Version 2.1" laydown has about 
42K Blue Vehicles and 21K Red Vehicles. Most of 
the vehicles (about 85%) are trucks, as is realistic for 
many actual military campaigns. 

The large boxed areas in Fig. (7) show the assign- 
ments of scenario elements to SPP platforms. The 
evolution of the scenario over time is fairly simple: all 
of the Blue forces move east and attack while the Red 
forces sit and defend. This gives rise to intense interac- 
tions along the dashed "Front Line" in Fig. (7). For the 
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given Force^SPP assignments, this yields significant 
data exchanges between the Ames and CEWES SP2s 
and among the four 64-processor components of the 
Caltech HP Exemplar. Additional non-fighting inter- 
actions occur between some sets of adjacent Blue force 
groups. 

4.3    Porting and Practical Issues 
Initially, SF Express was ported to the Intel 

Paragons at Caltech. Extensive single-node runs were 
required to begin understanding and assessing opti- 
mization possibilities for the very large ModSAF code 
base. Small multiple node runs identified key com- 
munications libraries that would need modification. 
Numerous problems were encountered (system call as- 
sumptions, inadequate bounds checking, ... ). Solu- 
tions developed during the single-node Paragon work 
simplified subsequent ports to other platforms, al- 
though OS-specific assumptions, awkward build proce- 
dures, and occasional cross-compilation issues required 
case-by-case treatments. 

Once the SF Express code had matured to the 
point where simulations with 1K-10K vehicles were be- 
coming routine, initial heterogeneous multi-SPP tests 
began. Coordination and synchronization of simula- 
tion startup was quickly identified as a key issue, along 
with management of the extensive scenario data files. 
A number of intermediate-sized runs, involving 20K- 
30K simulated vehicles at two or three sites, were crit- 
ical first steps before attempting to commandeer six 
SPPs for a block of intersecting dedicated time neces- 
sary for the proposed 50K-vehicle exercise. 

The large, 50K-vehicle runs with six SPPs spread 
across the country involved substantial administrative 
and operational issues. Various sites had different disk 
policies, accounting mechanisms, usage models, and 
schedulers. Ultimately, the success of the large runs 
resulted from moderate to significant system admin- 
istration intervention, competent system support per- 
sonnel, and numerous phone calls. While this was ac- 
ceptable for a demonstration, it is clearly inadequate 
for a production model. Many of the initial Globus 
activities described in Section 5 focus on these opera- 
tional issues. 

4.4    Inter-SPP Highlights of the 50K Runs 
The performance issues for the metacomputing 

model of Fig. (6) center on data movement through the 
Gateway nodes. The results presented in this section 
demonstrate that communications levels were easily 
managed, with one (essentially expected) Paragon ex- 
ception. 

A word on the configuration of the HP Exemplar 
machines is in order here.   At the time of the 50K 

runs, the Caltech machine was available only as four 
independent 64-processor machines (labelled "HP/Cj" 
below); it is now a single 256-processor system. In 
contrast, the 128-processor Exemplar at the Convex 
site ("HP/Tx") was configured as a single system. 

4.4.1    Results from the Version 2.1 Scenarios 

Table 2 summarizes inter-SPP data rates for the V2.1 
scenario run. The rows and columns are labelled by 
SPP site; entries are in Kbytes/sec. Blank entries rep- 
resent links with rates of less than 0.5 Kbytes/sec. 

Many of the RNA-^-RNA communication links 
have no appreciable activity. This is due to the ge- 
ographic separation of the Force groups in Fig.(7) 
and additional restrictions on broadcast PDUs, as dis- 
cussed in Refs.[ll],[12]. The communication model 
running on Ames and CEWES retains a significant 
level of simulation-wide broadcast PDUs, giving rise 
to the constant "background" data rates evident in 
the bottom two rows of Table 2. The values in Table 2 
show the rates at which data are sent from the "Row 
SPP" to the "Column SPP." Due to dropped packets, 
these are not the same as the rate at which data are 
received by the Column SPPs, but they are generally 
close. The exceptions involved links to ORNL, where 
packet loss was often severe. In the worst case, 

MHPCC     Sends 63.9 Kbytes/sec to ORNL 
ORNL        Receives     7.9 Kbytes/sec from MHPCC 

With the exception of communications to ORNL, the 
number of dropped UDP packets within the Version 
2.1 runs is small, and well within the tolerable range 
for ModSAF. 

Table 3 contains a detailed look at three of the 
more active inter-SPP links from Table 2: 

HP/Tx <3> MHPCC: Successful, moder- 
ately high bandwidth communications 
between machines on a Wide-Area Net- 
work. 

MHPCC o ORNL: Saturated/Failed 
communications between machines on a 
Wide-Area Network. 

HP/C1 <S> HP/C2: Successful communi- 
cations between machines on a Local- 
Area Network. 

The "PDU Busy" rows list the fraction of (wall clock) 
time spent in PDU communications within the SPP 
and through the Gateway to the remote SPP. The last 
two rows give the mean times for PDU bundle com- 
munications across the network.   The UDP-ethernet 
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Table 2: Inter-SPP Communications Rates for the V2.1 Scenario Large-Scale Metacomputing Runs 

HP/CO HP/Cl HP/C2 HP/C3 ORNL MHPCC HP/Tx 

HP/CO - 20.7 35.1 
HP/Cl 23.9 - 15.9 14.8 16.1 
HP/C2 64.2 - 15.3 
HP/C3 18.4 5.8 - 
ORNL - 63.9 
MHPCC 22.2 - 67.2 
HP/Tx 3.7 21.0 169.0 - 
AMES 3.3 3.3 3.3 3.3 3.3 3.3 3.3 
CEWES 6.3 6.3 6.3 6.3 17.6 6.3 6.2 

Table 3: Details of Gateway Performance on Three Busy Links of the V2.1 SF Express Run 

Local SPP 
Remote SPP 

HP/Tx 
MHPCC 

MHPCC 
HP/Tx 

ORNL 
MHPCC 

MHPCC 
ORNL 

HP/Cl 
HP/C2 

HP/C2 
HP/Cl 

Local PDU Busy 
Remote PDU Busy 

0.168 
0.147 

0.074 
0.080 

0.041 
0.926 

0.050 
0.032 

0.023 
0.031 

0.014 
0.030 

Read Time [msec] 
Write Time [msec] 

0.60 
0.97 

0.63 
0.28 

22.26 
27.52 

0.77 
0.26 

0.61 
0.45 

0.60 
0.34 

reads and writes on the ORNL Paragon are about 30 
times slower than on the other platforms, leading to an 
overwhelmed Gateway and the significant data losses 
noted above. 

It should be stressed that no attempts were made 
to optimize network communications in these initial 
50K runs. Networks used included ESnet, LosNettos, 
NREN, DREN, ANSnet, and commodity providers. 
Fig. (8) shows a partial network map of communica- 
tions links to the Caltech site, with shaded ellipses 
representing the various network domains. A message 
from Caltech to MHPCC visits 14 routers, while a re- 
turn message travels through 12. Clearly, the SF Ex- 
press 50K-vehicle runs did not use an overly optimized 
network. 

The results in Tables 2 and 3 indicate that some- 
thing more aggressive than simple UDP/IP ethernet 
will be needed to use successfully the ORNL Paragon 
in a large scale, distributed simulation. As was noted 
in Section 4.1, the RNA Gateway strategy can accom- 
modate various transport mechanisms. 

5    An Integrated Metacomputing Envi- 
ronment Using Globus 
The Globus Project [7], [8] is developing a basic 

software infrastructure to support applications that 
need and/or are capable of using geographically dis- 
tributed computational and information resources. A 

key element of Globus is the design and implemen- 
tation of a distributed supercomputing infrastructure 
toolkit that provides an integrated set of services in 
five key areas: 

1. Communications: The Nexus communications 
library provides message-delivery services for a 
variety of communications models in a manner 
that is cognizant of network quality of service pa- 
rameters. 

2. Information: The Metacomputing Directory 
Service (MDS) offers a uniform method for ob- 
taining real-time information on system status 
and structure. 

3. Resource Location/Allocation: The Global 
Resource Allocation Manager (GRAM) provides 
mechanisms for declaring application resource re- 
quirements, identifying and scheduling appropri- 
ate resources, as well as initiating and managing 
the application on these resources. The GRAM 
can be thought of as a low-level scheduler Appli- 
cation Program Interface (API). 

4. Security: The Globus system includes a number 
of basic security services (e.g., authentication and 
authorization), enabling sophisticated application 
specific security mechanisms and single sign-on 
functionality. 
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Figure 8: Partial network connectivity map for the 50K-vehicle simulations 

5. Data   Access:    Mechanisms are provided for 
high-speed remote access to persistent storage. 

5.1    Benefits of the Globus Toolkit 
The modules within the Globus Toolkit directly 

address a number of problems uncovered during the 
initial, manually operated SF Express metacomputing 
runs. 

The Nexus library provides a "resource aware" 
implementation of communication tasks (e.g., data ex- 
changes between the Gateway nodes of Fig. (6)), using 
the best available communications mechanism (UDP 
over IP, HIPPI, ATM, etc.). Simple automatic selec- 
tion rules or user-guided directives determine the ap- 
propriate communications method, with selections dy- 
namically dependent on the status of the available net- 
work services. These features are particularly useful 
for the communications links between Gateway pro- 
cessors, in order to avoid bandwidth saturation, as 
was observed in Section 3 for the ORNL-»MHPCC 
link. The communications layer provides efficient im- 
plementations of native communication methods, in- 
cluding message passing, multicast, distributed shared 
memory, remote procedure calls, etc. The selected 
method must be aware of Quality of Service (QoS) pa- 
rameters, such as reliability, bandwidth, and latency. 
Intelligent, performance-based, application configura- 
tion choices can be made to match the "currently avail- 
able" execution environment, enabling the user to bet- 

ter utilize shared resources and attain higher through- 
put. 

The MDS and GRAM elements of the Globus 
toolkit address the broad problem of resource iden- 
tification, allocation, and task execution within the 
grid of available assets. The MDS provides an au- 
tomated, "information-rich" approach to system con- 
figuration, enabling intelligent automated resource al- 
locations. MDS includes a data model to represent 
dynamically changing capabilities of various parallel 
computers and networks, so that tools and applica- 
tions do not have to rely on stale or programmer- 
supplied knowledge (e.g., use a dedicated HIPPI or 
ATM node instead of garden variety UDP/IP). 

Once the desired distributed assets have been 
identified, GRAM provides a simple, uniform interface 
to local resource allocations. In essence, GRAM en- 
ables the coordinated startup of a metacomputing run 
by a single "go" script that drives the participating 
SPPs, attached displays, etc. This represents a sig- 
nificant improvement over the existing environment, 
in which the non-static differences among operating 
systems and resource schedulers on various platforms 
are coordinated by hand-crafted scripts (and prayers) 
based on detailed knowledge of resource-specific usage 
models. Globus services also provides periodic health 
and status information for each job instantiation and 
allows application-specific tools to hook into generic 
health and status monitor services.   This capability 
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would be an improvement over the existing SF Ex- 
press method using separate monitoring tools on each 
SPP. 

Not all startup and job management concerns are 
addressed with the use of a single script that starts 
program execution on all resources. Determining and 
staging required datasets is another concern. Staging 
of data automatically and efficiently just prior to sim- 
ulation time avoids a number of difficulties associated 
with site-specific disk usage policies. For example, the 
50K scenario datasets could not permanently reside on 
the file systems of the SPPs used in the SF Express 
runs, due to various quota limits and disk policies. 
This situation necessitated tedious (and somewhat er- 
ror prone) manual staging prior to the large runs. 

Simulations to date have involved static assign- 
ments of scenarios to SPPs, such that configuration 
file preparation and data staging could occur prior 
to SPP resource allocation. This approach typically 
wastes disk space and does not allow the application 
to take best advantage of the resources available. The 
Data Access services (remote I/O calls) within Globus 
allow high-speed remote access to persistent storage, 
such as simulation scenarios and behavior files, po- 
tentially saving vast amounts of disk space and fre- 
quent user-intervention required to move large data 
sets both before and after runs (possibly scheduled 
arbitrarily). The more resource-aware an application 
can become, the larger the window for adaptive and 
optimal choices. 

5.2    Initial Experiments with Globus 

The coordinated startup capabilities of Globus 
were successfully tested during two live demonstra- 
tions at the November 1997 High Performance Net- 
working and Computing Conference (SC97) in San 
Jose. These experiments involved 824 processors on 
SPPs at six sites, as shown in Fig.(9), simultaneously 
displaying parts of the simulation on an Immersa-desk 
in the Argonne National Laboratory booth on the 
conference floor. Unlike the fairly conservative force 
group assignments of the initial 50K-vehicle simula- 
tions, these runs involved a more "interleaved" assign- 
ment of scenario files to SPPs, as shown in Fig.(9). 
This was done in order to provide more stressing tests 
of inter-SPP communications. The overall simula- 
tion involved about 40K vehicles (about 50K ModSAF 
entities). The important new aspects using GRAM 
specifications to drive the simulation were successfully 
demonstrated. 

6    Accomplishments and Future Direc- 
tions 
The multi-SPP runs in August 1997 surpassed le 

project goal of a 50,000-vehicle simulation on a het- 
erogeneous collection of SPPs and validated the over- 
all SF Express concept. The Exlnit team generated a 
collection of sound military scenarios featuring intense, 
quick interactions (and fighting) within the one-hour 
time frame of the runs. 

Problem areas in the single-SPP SF Express code 
seemed to center on, not surprisingly, the ModSAF 
simulation engine itself. Of the hundreds of thousands 
of lines of ModSAF source code, less than five percent 
of the libraries were modified to accommodate RNA. 
The core simulation code was purposely left mostly 
alone, due not only to project scope, but also to de- 
couple performance of the communications architec- 
ture from the driving simulation engine. Among other 
issues, simple profiling determined that ModSAF ve- 
hicle table manipulations consumed a substantial frac- 
tion of total CPU time. Possible solutions for expen- 
sive ordered list operations are noted in Ref. [17]. 

Problems in the multi-SPP runs of Section 4 were 
largely operational, arising from the differing environ- 
ments at the six SPP sites. The Globus experiments 
described in Section 5 can be viewed as the first steps 
toward a more user-friendly robust system. 

An attractive near-term direction involves a 
greater exploitation of the unified resource information 
services, resource location and allocation services, and 
data access modules within Globus to eliminate much 
of the configuration file mechanisms within SF Express 
and optimize runtime parameters. Using the currently 
deployed Globus services, initialization and execution 
of a large simulation would proceed roughly as follows: 

1. The user specifies the location of the simulation 
data and the desired simulation size from a single 
place (e.g., console or file). 

2. MDS evaluates the request and locates appro- 
priate resources (with the MDS databases aug- 
mented to understand information on the inher- 
ent simulation capabilities of the individual plat- 
forms) . 

3. Once the appropriate computational assets are al- 
located, GRAM is used to start the distributed 
simulation and to exchange runtime system con- 
figuration information among the participants. 

4. Using the system configuration information from 
GRAM, each SPP takes responsibility for a spe- 
cific subset of the simulation scenario files, retriev- 
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Figure 9: Version 2.1 scenario element assignments for the initial tests with Globus 

ing these data automatically from the staging area 
using the Globus Data Access services. 

In this model, user input is largely restricted to 
the high-level specification of the problem itself (i.e., 
the simulation scenarios), with Globus managing all 
pragmatic issues of resource allocation, data staging, 
job management, and network connectivity needed in 
order to meet the user specified requirements (which 
could well include additional constraints, such as re- 
quired network bandwidths). 

The construction of this Globus-directed meta- 
computing model is a realistic near-term goal. Modifi- 
cations within the existing RNA code base of Ref. [12] 
would largely involve generalizations of the Gateway 
communications procedures to use portable Nexus 
routines in place of socket calls. Additional new logic 
would be needed within the single-SPP initialization 
sequence to support runtime assignments of scenarios 
to SPPs, based on configuration data from GRAM. 
(Neither of these tasks is seen as being particularly dif- 
ficult.) This system would become the next-generation 
SF Express proof-of-concept demonstration, with in- 
telligent resource allocation, simulation startup, and 
data management all done in a simple, user-friendly 
manner. 
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Abstract 
CCS is a resource management system for paral- 

lel high-performance computers. At the user level, 
CCS provides vendor-independent access to parallel 
systems. At the system administrator level, CCS of- 

fers tools for controlling (i.e. specifying, configuring 

and scheduling) the system components that are oper- 
ated in a computing center. Hence the name "Com- 

puting Center Software". CCS provides: 

• hardware-independent   scheduling   of interactive 
and batch jobs, 

• partitioning  of exclusive  and  non-exclusive   re- 
sources, 

• open, extensible interfaces to other resource man- 
agement systems, 

• a high degree of reliability (e.g. automatic restart 
of crashed daemons), 

• fault tolerance in the case of network breakdowns. 

In this paper, we describe CCS as one important 
component for the access, job distribution, and admin- 
istration of networked HPC systems in a metacomput- 
ing environment. 

1     Introduction 
With the increasing availability of fast interconnec- 

tion networks high-performance computing has under- 
gone a metamorphosis from the use of local comput- 
ing facilities towards a distributed, network-centered 
computing paradigm. The motivation is to better 
utilize the available hardware by linking LAN/WAN 
connected supercomputers to a virtual metacomputer 
[33]. While at the time being, there are only few multi- 
site applications that fully exploit the computational 
power of distributed nodes, metacomputing is already 
used on a broader scale for job load sharing and fault 
tolerance purposes. 

Distributed high-performance computing environ- 
ments usually comprise a wide spectrum of resources 
with different capabilities. Here, a resource manage- 
ment system must be able to cope with unreliable net- 
works and with heterogeneity at multiple levels (e.g. 

administrative domains, scheduling policies, operating 
systems, protocols etc.). Because of the dynamic na- 
ture of the metacomputing components, the available 
resources should be identified at runtime. As an ex- 
ample, the performance of shared media (networks) 
varies over time, requiring constant updates on the 
global system state and structure. 

From the user's point of view, a metacomputer 
should be as easy to use as the workstation on 
his/her desk. This means that users need a vendor- 
independent access interface and their applications 
should be transparently mapped onto a set of suitable 
target platforms. 

In this paper, we present the architecture of our 
CCS Computing Center Software. Having started in 
1992 with a comprehensive system that manages all 
computers in a site but gives users only access to a 
single system at a time, CCS was continuously up- 
graded. It now supports multi-site applications and 
has an open interface to metacomputer management 
services. As a long-term goal we want to integrate 
CCS—among other resource management systems— 
into an open global metacomputing environment. 

In the Ath release, three new concepts have been 
introduced: 'CCS Islands' provide management facil- 
ities for administrating single HPC systems in a local 
site. At the next higher level, a 'Center Resource Man- 
ager' coordinates the cooperative administration and 
use of all systems in a computing center, whereas the 
'Center Information Server' provides an active direc- 
tory service for metacomputer access from the outside 
world. 

All modules build on the generic 'Resource and Ser- 
vice Description' that is used for specifying hardware 
and software components. 

The contents of this paper are as follows: First, we 
put CCS in the context of the Globus project. Then 
we present the architecture of the CCS islands and 
their technical implementation. Thereafter, we intro- 
duce the concepts required for metacomputing (Cen- 
ter Resource Manager and Center Information Ser- 
vice) and how they work together.   Our tools for re- 
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source and service description are described in Sec- 
tion 5 and some preliminary results on the use of CCS 
in an industrial metacomputing setting are discussed 
in Section 6. Section 7 gives a brief review on related 
projects and Section 8 presents a summary. 

2    CCS - A Link to Globus? 
While CCS may be seen as "just another resource 

management software" we have always put it in a 
much broader context. In fact, our primary design 
goal was to provide a resource management system 
that can be integrated into metacomputer environ- 
ments like our Metacomputer Online toolbox [32]. 

Because Globus [15], as part of the National Com- 
putational Science Alliance [34], is certainly the most 
well-known metacomputing project throughout the 
world, we now put CCS in relation to Globus. The 
following list gives the most important similarities and 
differences between the two projects. 

The Globus project regards a metacomputer as a 
networked virtual supercomputer constructed dynam- 
ically from geographically distributed resources that 
are linked by high-speed networks. It aims at a verti- 
cally integrated treatment of application, middleware 
and network and it provides a basic infrastructure of 
tools building on each other: 

• resource (al)location: 
Globus Resource Manager GRM [23] 

• communication layer: 
Nexus [13] 

• unified resource information service: 
Metacomputing Directory Service MDS [12] 

• authentication interface: 
Generic Security System GSS [26] 

• data access: 
Remote 10 Facility RIO [16]. 

In the Globus metacomputer, applications are ex- 
pected to configure themselves to fit the execution 
environment delivered by the metacomputing system, 
and then adapt their behavior to subsequent changes 
in the resource characteristics. This concept has been 
named 'Adaptive Wide Area Resource Environment' 
AWARE. 

The Computing Center Software CCS was pri- 
marily designed to manage the resources in a single 
site. They may be geographically distributed but op- 
erate in a single NFS/NIS domain. It provides an 
open interface so that several sites may be joined by 

higher-level tools—a modular approach that proved 
useful in several industrial projects. CCS has a hi- 
erarchical structure with autonomous software layers 
that interact only via message passing: The lowest 
level is a self-sufficient 'island' controlling a single ma- 
chine or cluster which can be operated stand-alone. 
The next higher level consists of the Center Resource 
Manager (CRM) and the Center-Information Server 

(CIS) which build the interfaces of a site to the 'out- 

side world'. 
CCS does not only provide a comfortable user in- 

terface, but it also offers a versatile, almost system- 
independent interface for the administrator. Its open 
framework architecture allows to integrate all kinds of 
HPC systems. Compared to Globus, CCS 

• does not support metacomputing by itself, but it 
provides one important component, 

• has not yet an API, 

• does not support remote I/O, 

• has no dedicated authentication interface. 

3    Computing Center Software 
When the CCS project [9, 30, 31] started in 1992, 

only few competitive systems were available. With 
our background in the operation of massively parallel 
computing systems, we aimed at providing 

• concurrent user access to exclusively owned re- 
sources 

• interactive and batch processing at the same time, 

• optimal system utilization by dynamical parti- 
tioning and scheduling, 

• maximum fault tolerance for remote access via 
WANs. 

CCS became first operationable on a 1024-node 
transputer system and was later adapted to Power- 
Plus systems from Parsytec and also to workstation 
clusters. Aiming at portability, we designed CCS to 
run on UNIX systems, such as Linux, SunOS, Solaris, 
AIX and others. The architecture with its modular 
frame structure allows to integrate a great variety of 
other systems, cf. Sec. 3.2. 

3.1     Architecture 

Island Concept. With its distributed nature, fault 
tolerance is a basic prerequisite for CCS working cor- 
rectly. In earlier versions, the machines of a comput- 
ing center were managed by a single (but physically 
distributed) CCS software.   This caused bottlenecks 
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Figure 1: Architecture of CCS 'islands' 

at the single scheduler serving all machines and re- 
sulted in poor fault tolerance due to the one central 
request handler. With the 4th release, each machine is 
now managed by a dedicated CCS, resulting in set of 
comprehensive, self-sufficient 'islands' shown in Fig- 
ure 1. Each island has six components, which will be 
described in more detail later in the text: 

• The User Interface (UI) offers X- or ASCII-access 
to all capabilities of a machine. It encapsulates 
the physical and technical characteristics for a ho- 
mogeneous access to single or multiple heteroge- 
neous systems. 

• The Access Manager (AM) manages the user in- 
terfaces and is responsible for authorization and 
accounting. 

• The Queue Manager (QM) schedules the user re- 

quests. 

• The Machine Manager (MM) manages the paral- 

lel system. 

• The Island Manager (IM) provides name services 
and watchdog functionalities for reliability. 

• The Operator Shell (OS), not shown in Figure 1, 
allows system administrators to control CCS, e.g. 
by connecting to the single daemons. 

With the island concept scalability, reliability and 
error recovery have been improved by separating the 

management of different machines into different is- 
lands. Each machine uses a dedicated scheduling 
strategy and can therefore be operated in a different 
mode (batch, shared, mixed etc.). Specific user inter- 
faces can be used to reflect special system features. 

Reliability. In heterogeneous distributed environ- 
ments, reliability is of prime importance. For exam- 
ple, a message-passing program that does not receive 
an answer from its partner in time, does not know 

• whether the network is down, 

• or whether it temporarily has a low bandwidth, 

• or whether the communication partner has died. 

This is because the necessary information is not avail- 
able at OSI level 7. We therefore need an instance with 
global and up-to-date information on the status of all 
system components. This instance should be always 
accessible and it should have little or no dependencies 

on other modules. 
In CCS, this instance is the Island Manager (IM). 

At startup and shutdown time all CCS daemons notify 
the IM. Hence the IM has a consistent view on the 
current status of the processes in an island. The IM 
is authorized to stop erroneous daemons or to restart 

crashed ones. 
In its second task, the IM provides name services. 

It maintains an address translation table that matches 
symbolic names to the daemons' physical network ad- 
dress (host ID and port number). This gives a level 
of indirection, allowing the IM to migrate daemons to 
other hosts in the case of overloads or system crashes. 
Symbolic names are given by the triple <center, 
island, process>. As a side effect, this allows to 
run several CCS islands on a single host concurrently. 

User Management. The User Interface (UI) runs 
in a standard UNIX shell environment like tcsh, 
bsh, or ssh. Common UNIX mechanisms for 10- 
redirection, piping and shell scripts can be used and 
all job control signals (ctl-z, ctl-c, ...) are supported. 
Five CCS commands are available: 

• ccsalloc for allocating and/or reserving resources, 

• ccsbind for re-connecting to a lost interactive ap- 
plication/session, 

• ccsinfo for  displaying  information  on   the job 
schedule, users, job status etc., 

• ccsrun for starting jobs on previously reserved re- 

sources, 

• ccskill for resetting or killing jobs and/or for re- 

leasing resources. 
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Figure 2: Scheduler GUI displaying the scheduled 
nodes (vertical axis) over the time axis. 

The Access Manager (AM) analyzes user requests 
and is responsible for authentication, authorization 
and accounting. 

CCS supports project specific user management. 
Privileges can be granted to either a whole project 
or to specific project members, for example 

• access rights per machine 

• allowed time of usage (day, night, weekend, ...) 

• maximum number of concurrently used resources 

• accounting per machine (product of CPU-time 
and #PEs) 

• machine  access   rights   (batch,   interactive,   the 
right for reserving resources) 

User requests are sent to the Queue Manager (QM) 
which schedules the jobs according to the current 
scheduling policy. CCS provides several scheduling 
modules (FCFS, FFIH, FFDH, IVS) that can be 
plugged in by the system administrator, cf. Sec. 3.2 
[18]. 

Job Scheduling. The first CCS release was capa- 
ble of managing exclusive (non-timeshared) resources 
only. With release 4.0, CCS has been upgraded to 
support time-shared resources as well. As in Condor, 
Codine, or LSF, the system administrator may specify 
a maximum load factor that is allowed on the single 
nodes. 

In their resource requests, users must also specify 
the expected finishing time of their jobs. Based on this 

information, CCS determines a fair and determinis- 
tic schedule. Both, batch and interactive requests are 
processed in the same scheduler queue. The request 
scheduling problem is modeled as an n-dimensional 
bin packing problem, where the one dimension cor- 
responds to the continuous time flow, and the other 
n — 1 dimensions represent system characteristics, such 
as the number of processor elements. Currently, CCS 
uses an enhanced first-come-first-serve (FCFS) sched- 
uler, which fits best to the request profile in our cen- 
ter. The waiting times are reduced by first checking 
whether a newly incoming request may fit into a gap 
of the current schedule. The current schedule is dis- 
played in an X-window as illustrated in Figure 2. 

CCS allows to reserve resources for a given time in 
the future. This is a convenient feature when planning 
interactive sessions or online events. As an example, 
consider a user wants to run a parallel application with 
64 processors of the Parsytec GCel from 9 to 11 am at 
13.2.1999. This resource allocation is done with the 
command: 
ccsalloc -m GCel -p 64 -s  9:13.2.99 -t  2h. 

'Deadline scheduling' is another useful feature. 
Here, CCS guarantees the job to be completed at (or 
before) the specified time. A typical scenario for this 
feature is an overnight run that must be finished when 
the user comes back to his/her office in the next morn- 
ing. Deadline scheduling gives CCS the flexibility to 
improve the system utilization by scheduling batch 
jobs at the earliest convenient and at the latest possi- 
ble time. 

The CCS scheduler is able to a handle two kinds of 
requests, those that are fixed in time and the variable 
ones. A resource that has been reserved for a given 
time frame is fixed: It cannot be shifted on the time 
axis (see the hatched rectangles in Fig. 2). Interac- 
tive requests, in contrast, can be scheduled earlier but 
not later than asked for. Such shifts on the time axis 
might occur when resources are released before their 
estimated finishing time. 

System Partitioning. For metacomputing, we 
need a scheduler that computes deterministic sched- 
ules. Additional design objectives were optimal sys- 
tem utilization combined with a high degree of system 
independence. To deal with these conflicting require- 
ments we have split the scheduler software into two 
parts, one of them (QM) being completely indepen- 
dent of the underlying hardware architecture. With 
this separation, the scheduler daemon has no informa- 
tion on the mapping constraints such as the minimum 
cluster size, or the amount/location of the link entries. 
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These machine dependent tasks are performed by a 
separate instance, the Machine Manager (MM). The 
MM verifies whether a schedule given by the QM can 
be mapped onto the hardware at the specified time, 
now also taking concurrent use by other applications 
into account. If the schedule cannot be mapped onto 
the machine, the MM returns an alternative schedule 
to the QM. 

The separation between the hardware-independent 
QM and the system-specific MM also allows to em- 
ploy system-dependent mapping heuristics that are 
implemented in small system-specific modules. Spe- 
cial requests for IO-nodes, partition shapes, memory 
constraints, etc. are taken into consideration in the 
verifying process. Moreover, with the machine-specific 
information encapsulated in the MM, CCS islands can 
be easily adapted to other architectures. 

Process Creation and Control.    At configuration 
time,  the QM sends the user request  to the  MM. 

The MM then allocates the compute nodes, loads and 
starts the application code and releases the resources 

after the run. 
Because the MM also verifies the schedule, which is 

a polynomial or NP-hard problem, a single MM dae- 
mon might become a computational bottleneck. We 
have therefore split the MM into two parts, one for 
the machine administration and one for the job exe- 
cution (see Figure 3). Each part contains a number of 
modules and/or daemons. 

The machine administration part consists of three 
separate daemons (MV, MSM, CM) that execute 
asynchronously as shown in Figure 3. A small Dis- 
patcher coordinates the lower-level components. 

The Machine Verifier (MV) checks whether the 
schedule given by the QM can be realized at the 
specified time with the specified resources. Based on 
its more detailed information on the machine struc- 
ture (hardware and software) it runs system-specific 
scheduling and partitioning schemes. The resulting 
schedule is then returned to the QM. 

The Configuration Manager (CM) provides the in- 
terface to the hardware. It is responsible for booting, 
partitioning, and shutting down the operating system 
software. Depending on the system's capabilities, the 
CM may gather subsequent requests and re-organize 
or combine them for improving the throughput— 
analogously to a hard disk controller. 

The Master Session Manager (MSM) interfaces to 
the job execution level. It sets up the session, includ- 
ing application-specific pre- or post-processing, and it 
maintains information on the status of the application. 

It allocates and synchronizes the system entries of 
the user partition with the help of the Node Session 
Manager (NSM), that is run on each specified entry 
node. The NSM starts and stops jobs and it controls 
the processes. When receiving a command from the 
MSM, the NSM starts an Execution Manager (EM) 
which establishes the user environment (UID, shell set- 
tings, environment variables, etc.) and starts the user 
application. 

On time-sharing systems, the NSM invokes as many 
EMs as needed. It also gathers dynamic load data 
and sends it to the MM and QM where it is used for 
scheduling and mapping purposes. 

Virtual Terminal Concept. With the increasing 
use of supercomputers for interactive simulation and 
design, the support of remote access via WANs be- 
comes more and more important. Unpredictable be- 
havior and even temporary breakdowns of the network 
should (ideally) be hidden from the user. 
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Figure 4: Control and data flow in CCS 

In CCS, this is done by the EM which buffers the 
standard 10 streams (stdin, stdout, stderr) of the user 
application. In case of a network break down, all open 
output streams are sent by e-mail to the user or they 
are written into a file when specified by the user. Users 
can re-bind to interrupted sessions, provided that the 
application is still running. CCS guarantees that no 
data is lost in the meantime. 

In summary, Figure 4 gives a overview on the con- 
trol and data flow in a CCS island. 

3.2     Implementation Aspects 
CCS consists of about 180,000 lines of C code. 

The code is—as far as possible—ANSI compliant and 
POSIX 1003.1-1990 conform. It follows a 'program- 
ming frame approach' by splitting most of the modules 
into two parts, a generic and a system-specific one. 

As an example, Figure 5 shows the MM frame. 
Here, only the mapping module is machine dependent, 
all other parts are generic and can be re-used. 

The daemons are driven by events from incoming 
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Figure 5: The MM frame 

requests or timeouts. Each daemon has a watchdog 
which checks whether the daemon is still alive. If 
not, the watchdog shuts its daemon down. This is 
recognized by the IM, which in turn restarts the dead 
daemon and informs its communication partners to 
re-bind to the new instance. 

All daemons include a wrapped timer that creates 
clock ticks for debugging purposes and for simulating 
incoming requests on a variable time scale. 

Even though CCS is POSIX-conform, we imple- 
mented a Runtime Environment (RTE) layer that 
wraps system calls. This allows for easy porting to 
new operating systems. Currently, the RTE provides 
interfaces for 

• the management of dynamic memory, including 
debugging and usage logging, 

• signal handling, 

• file I/O including filter routines for ASCII-files, 

• manipulation of the process environment, 

• terminal handling (e.g. pty), 

• sending e-mails, 

• logging of warnings and error messages. 

The integration of new schedulers is easy, because 
the QM has an API to plug in new modules. This 
also allows the QM to use several schedulers. At 
runtime, the QM takes the decision which scheduler 
to use, thereby adjusting to specific operating modes 
(e.g. interactive use only or mixed time sharing and 
space sharing). 

Communication Layer. The communication layer 
separates a daemon's code from the communication 
network, allowing to change communication protocols 
without the need to change the source code of the 
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daemons. The communication layer performs the fol- 
lowing tasks: 

• it provides a reliable and hardware-independent 
exchange of data, 

• it allows to dynamically connect/disconnect to 
communication partners, 

• it checks the availability of communication part- 
ners (in cooperation with the IM), 

• it translates symbolic module names (in cooper- 
ation with the IM). 

In our current implementation the daemons com- 
municate through remote procedure calls (RPC). 
Compared to the faster TCP/IP sockets, asynchro- 
nous RPCs provide a more high-level method for 
process interaction—closely related to the client-server 
model of distributed computing. Also, they support 
data conversion with the XDR-library. 

The binding of incoming RPC calls (events) to the 
corresponding callback-functions is done during run- 
time to allow to dynamically add new events by reg- 
istering the corresponding event handler. 

4    CCS Interface to Metacomputing 
With the autonomous islands described in the last 

section we have one important component for meta- 
computer management. The three other components 
are: 

• A passive instance that maintains up-to-date in- 
formation on the system structure and state. 

• An active instance that is responsible for the lo- 
cation and allocation of resources within a center. 
It also coordinates the concurrent use of several 
systems, which may be administered by different 
local resource management systems. 

• A powerful but user-friendly tool that allows sys- 
tem administrators and users to specify classes of 
resources. 

These three components are: The center informa- 
tion manager CIS, the center resource manager CRM, 
and the resource and services description RSD. 

Center Information Server (CIS).    The CIS is 
the 'big brother' of the island manager (IM) at the 
next higher level, the metacomputer level. Like the 
UNIX Network Information Service NIS or the Globus 
Metacomputing Directory Service MDS, our CIS pro- 
vides up-to-date information on the resources in a site. 
Compared to the active IM in the islands, CIS is a pas- 
sive component. 

At startup time, or when the configuration has been 
changed, an island signs on at the CIS and informs it 
about the topology of its machines, the available sys- 
tem software, the features of the user-interfaces, the 
communication interfaces and so on. The CIS main- 
tains a database on the network protocols, the system 
software (programming models, libraries, etc.) and 
the time constraints (for specific connections, etc.). 
The CIS also plays the role of a 'docking station' for 
mobile-agent software or external users. 

For the higher level metacomputer components, the 
CIS data must be compatible or easily convertible to 
the formats used by other resource management sys- 
tems. 

The Center Resource Manager (CRM). Like 
the Globus resource manager, the CRM is a high-level 
but independent tool that lies on top of the CCS is- 
lands. It supports the set-up and execution of multi- 
site applications running concurrently on several plat- 
forms. The term multi-site application can be under- 
stood in two ways: It could be just one application 
that runs on several machines without explicitly being 
programmed for that execution mode [17], or it could 
comprise different modules, each of them executing on 
a machine that is best suited for running that specific 
piece of code. In the latter case the modules can be im- 
plemented in different programming languages using 
different message passing libraries (e.g. PVM, MPI, 
PARIX, MPL etc.).   Multi-communication tools like 
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PLUS [6] are necessary to make this kind of multiple- 
site application possible. 

For executing multi-site applications three tasks 
need to be done: 

• locating the resources, 

• allocating the resources, 

• starting and terminating the modules. 

For locating the resources, the CRM maps the user 
request (given in RSD notation) against the static 
and dynamic information on the available system re- 
sources. 

The static information (e.g. topology of a single 
machine or the site) has been specified by the system 
administrator, while the dynamic information (e.g. 
state of an individual machine, network characteris- 
tics etc.) is gathered at runtime. All this information 
is provided by the CIS. Since our resource descrip- 
tion language is able to describe dependency graphs, 
a user may additionally specify the required commu- 
nication bandwidth for his/her application. In the 
mapping and migration process, the communication 
pattern should also be taken into account. Data on 
the previous runtime behavior can be gathered and 
condensed in an execution profile as described in [19]. 

After the target resources have been located, they 
must be allocated. This can be done in analogy to 
the two-phase-commit protocol in distributed data- 
base management systems: The CRM requests the 
allocation of all required resources at all involved is- 
lands. If not all resources were available, it either re- 
schedules the job or it denies the user request. Oth- 
erwise the job can now be started in a synchronized 
way. Here, machine-specific preprocessing tasks or 
inter-machine specific initializations (e.g. starting of 
special daemons) must be initialized. 

Analogously to the islands level, the CRM is able 
to migrate user resources between machines to achieve 
a better utilization. Accounting and authorization at 
the metacomputer level can also be negotiated at this 
layer. 

The CRM can be implemented in several ways. As 
an example, it could be implemented as a single dae- 
mon or in the form of distributed instances like the 
QM-MM complex at the islands level. 

5    Resource and Service Description 
CCS includes a versatile resource description facil- 

ity, named RSD for Resource and Service Description. 
RSD is used 

• at the administrator level for describing type and 
topology of the available resources, and 
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Figure 7: Graphical RSD editor 

• at the user level for specifying the required system 
configuration for a given application. 

The predecessor of RSD, the resource description 
language RDL [3] served in earlier releases of CCS. In 
general, it was regarded as too complex. Especially 
industrial users did not want to take the burden of 
typing in a textual resource specification when just 
wanting to run a code on a machine with a simple, 
regular topology. It seems, that it was too early for 
the user community to appreciate the full descriptive 
power of a versatile description language. Hence, we 
hided the language interface by easy-to-use command 
line options. But of course, RDL was still used behind. 

With the current trend to distributed computing, 
resource description tools become important again. 
Based on our experiences with RDL, we now provide 
a more generic approach with three interfaces: 

• a graphical interface (GUI) for specifying simple 
topologies and attributes, 

• a language interface for specifying more complex 
and repetitive graphs (mainly intended for the 
system administrator), and 

• an application programming interface (API) for 
access from within an application program. 

The graphical editor stores the graphical and tex- 
tual data in an internal data representation. This data 
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is bundled with the API access methods and sent as 
an attributed object to the target systems, where it is 
matched against other hard- or software descriptions. 

The internal data description can only be accessed 
through the API. For later modifications it is re- 
translated into its original form of graphic primitives 
and textual components. This is possible, because the 
internal data representation also contains a descrip- 
tion of the component's graphical layout. In the fol- 
lowing, we describe the core components of RSD in 
more detail. 

Graphical Interface. The graphical editor pro- 
vides a set of simple modules that can be edited and 
linked together to build a dependency graph of the 
requested resources or a system description. 

At the administrator level, the GUI is used to de- 
scribe a center's resource components in a top down 
manner, starting at the outermost interconnection 
topology, see Figure 7. With drag and drop tech- 
niques, the administrator specifies the available ma- 
chines, their links and the interconnection to the out- 
side world. 

In the next step, the machines are specified in more 
detail by clicking on a node. The editor then opens 
a window to display detailed information on the ma- 
chine, if available. The GUI offers a set of standard 
machine layouts and some generic topologies like tree, 
grid or hypercube. The size and shape is defined ac- 
cording to the available hardware. For a single node, 
detailed attributes like network interface cards, disk 
sizes, I/O throughput, or the automatic start of dae- 
mons may be specified. 

Language Interface. From a system administra- 
tor's point of view, graphical user interfaces are not 
powerful enough for describing complex metacomput- 
ing environments with a large number of services and 
resources. Administrators need an additional tool for 
specifying irregularly interconnected, attributed struc- 
tures. 

Hence, we devised a language interface that is used 
to specify arbitrary topologies. The hierarchical con- 
cept allows different dependency graphs to be grouped 
for building even more complex nodes, that is hypern- 
odes. For a complete formal definition of the language 
interface see [7]. 

Figures 9 and 10 illustrate a resource specifica- 
tion for a metacomputer application Met a running 
on two systems as shown in Figure 8. The meta- 
computer comprises an SCI workstation cluster and 

ATM port ATM port 

*       622 Mbps ATM 

mpp_atm    [\ «'£re_'°_'>ypsmo<fe_port 

Figure 8: RSD example for multi-site application 

NODE Mata { 

DEFINITION: 

PQRTÜ = (SCI, ATM, FDDI); — multi -valued attribute 

DECLARATION — include the two hype r nodes 

INCLUDE "SCI-WSC"; 

INCLUDE "MPP"; 

CONNECTION-!- of the MPP with SCI workstat ion c luster 

EDGE wsc_mpp. atm { 
NODE SCI-WSC PORT ATM <=> NODE MPP PORT ATH;}; 

BANDWIDTH = 622 Mbps; ri 
}: 

Figure 9: RSD specification of Fig. 8 

a massively parallel system, interconnected by a bidi- 
rectional ATM network. 

The definition of Met a is straight-forward, see Fig- 
ure 9. Figure 10 shows the specification of the SCI 
cluster component, consisting of 8 nodes, two of them 
with quad-processor systems. For each node, the fol- 
lowing attributes are specified: CPU type, memory 
per node, operating system, and the port of the SCI 
link. All nodes are interconnected by a uni-directional 
SCI ring with 1.0 Gbps. In the example, the first node 
is the gateway to the workstation cluster. It presents 
its ATM port to the next higher node level (see AS- 
SIGN statement in Fig. 10) to allow for remote con- 
nections. 

Internal Data Representation. The abstract 
data type establishes the link between the graphical 
and the text based representation. It is also used to 
store descriptions on disk and to exchange them across 
networks. The internal data representation must be 
capable of describing the following properties: 

• arbitrary graph structures 

• hierarchical systems or organizations 

• nodes and edges with arbitrary sets of valued at- 
tributes 
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NODE SCIJiSC { 
DEFINITION: 
CONST N = 8; 
SHARED; 

number of nodes 
allocate resources for shared use 

DECLARATION: 
— we have 2 SHP nodes (gateways), each with 4 processors 
— each gateway provides one SCI and one ATM port 
FOR i=0 TO 1 DO 

NODE i { 
DECLARATION: 
CPU=ALPHA;   HEH0RY=512;   MULTI.PR0C=4;   PORT»[SCI,ATM]; 

}; 
CD 

— the others are single processor nodes 
— each with one SCI port 
FOR i=2 TO N-l DO 

NODE i { 
DECLARATION: 
CPU=ALPHA; HEH0RY=256; 0S=S0LARIS;P0RT=SCI; 

}; 
OD 

CONNECTION: 
— build the 1.0 Gbps unidirectional ring 
FOR i=0 TO N-l DO 

EDGE edge_$i-to.<((i+l) HOD N) 
{ NODE i PORT SCI => NODE ((i+1) MOD N) PORT SCI; 
BANDWIDTH = 1.0 Gbps; 

}; 
OD 

— establish a special virtual edge from node 0 to the 
— port of the hyper node SCI.HSC (=outside world) 
ASSIGN edge_to_hypernode_port 
{ NODE 0 PORT ATM <=> PORT ATM;}; 

}i 

Figure 10: RSD specification of the SCI part 

Furthermore it should be possible to reconstruct the 
original representation, either graphical or text based. 
This facilitates the maintenance of large descriptions 
(e.g. a complex HPC center) and allows visualization 
at remote sites. 

In order to use RSD in a distributed environment, 
a common format for exchanging RSD data structures 
is needed. The traditional approach would be to use a 
data stream format. However, this would involve two 
additional transformation steps whenever RSD data 
is to be exchanged (internal representation into data 
stream and back). Since the RSD internal representa- 
tion has been defined in an object oriented way, this 
overhead can be avoided, when the complete object is 
sent across the network. 

Today there exists a variety of standards for trans- 
mitting objects over the Internet, e.g. CORBA, Jav- 
aBeans, or Component Object Module COM+. Since 
we do not want to commit on either of these, we only 
define the interfaces of the RSD object class but not its 
private implementation. This allows others to choose 

an implementation that fits best to their own data 
structures. Interoperability between different imple- 
mentations can be improved by defining translating 
constructors, i.e. constructors that take an RSD object 
as an argument and create a copy of it using another 
internal representation. 

6    CCS in Practice 
CCS was first used in an industrial setting in the 

Europort project [8] where large industrial codes were 
ported to PVM, PARMACS and MPI to run them on 
massively parallel systems. While we got much posi- 
tive feedback from the users who praised the stability 
and versatility of CCS, our resource description lan- 
guage RDL (a predecessor of the RSD described here) 
was regarded as 'too complex'. Users complained 
about the tedious task of typing in a long RDL de- 
scription when they just wanted to run a program on 
a simple target architecture. 

Hence, with the 2nd release of CCS we concealed 
RDL, giving the user only a simple command line in- 
terface. But with the advent of metacomputing, re- 
source description became important again. 

Application-Centric Metacomputing. The con- 
cept of CCS 4.0 proved useful in two ESPRIT projects 
[20], both with the goal to provide easy access to 
industrial applications that are run on Internet or 
Intranet-connected HPC systems. In both cases, a vir- 
tual user access point was implemented in Java that 
schedules incoming jobs to the temporarily best suited 
compute server in the Internet. Small and medium 
enterprises are expected to benefit most by the use of 
the distributed HPC services for running their most 
compute-intensive simulation applications - a service 
they could otherwise not afford due to expensive hard- 
ware, maintenance and education cost. 

The keyword to these projects is 'application cen- 
tric metacomputing': We do not simply provide raw 
computing time—as done in several other metacom- 
puting projects—but we rather give access to spe- 
cific pre-registered applications on a pay-per-use basis. 
The reasons are twofold: 

• First, compute-intensive applications are typi- 
cally also data-intensive, some of them repeti- 
tively running queries against very large data- 
bases. Clearly, the databases should be installed 
prior to access time and updated at night time. 

• Second, industrial users are typically not willing 
to learn about vendor-specific HPC access just to 
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run their code; they rather prefer to see the ma- 
chine through their application code's interface. 

This scheme was proven in industrial projects run- 
ning CPU-time intensive CFD simulations on servers 
in France, Germany and Great Britain. Because CFD 
simulations produce a large amount of output for vi- 
sualizing flows and pressures, the server includes a 
caching facility, allowing the user to specify only that 
portion of data that is actually needed. 

In the second project, we implemented a distrib- 
uted pharmaceutical application server that allows 
truely interactive design of drug targets. The distrib- 
uted server contains codes for the prediction of pro- 
tein functions from sequences, for sensitive sequence 
searches, for 3D structure generation and for struc- 
ture comparison. A virtual user access point has been 
implemented in Java with a job load balancing scheme 
based on the CIS concept. Security is ensured by data 
encryption, firewalls and Kerberos authentication. In 
addition, the server can be installed on in-house LANs 
for running the most sensitive drug design projects. 

7    Related Work 
Resource management systems emerged from the 

need for a better utilization of expensive HPC systems. 
The Network Queuing System NQS [25], developed by 
NASA Ames for the Cray2 and Cray Y-MP, might 
be regarded as the ancestor of many modern queuing 
systems like the Cray Network Queuing Environment 
NQE and the Portable Batch System PBS. 

Following another path in the line of ancestors, 
the IBM Load Leveler is a direct descendant of Con- 
dor [27], whereas Codine [21] has its roots in Con- 
dor and DQS. They have been developed to support 
'high-throughput computing' on UNIX workstation 
clusters. In contrast to high-performance computing, 
the goal is here to run a large number of (mostly se- 
quential) batch jobs on workstation clusters without 
affecting interactive use. The Load Sharing Facility 
LSF [28] is another popular software for utilize LAN- 
connected workstations for high-throughput comput- 
ing. For more detailed information on cluster manag- 
ing software, the reader is referred to [2, 24]. 

These systems have been extended for support- 
ing the coordinated execution of parallel applications, 
mostly based on PVM. A multitude of schemes have 
been devised for high-throughput computing on a 
somewhat larger scale, including the Iowa State Uni- 
versity's Batrun [35], the CORBA-based Piranha [29], 
the Dutch Polder initiative [11], the Nimrod project 
[1], and the object-oriented Legion [22] which proved 
useful in a nation-wide cluster.  While these schemes 

emphasize mostly on the application support on ho- 
mogeneous systems, the AppLeS project [5] provides 
application-level scheduling agents on heterogeneous 
systems, taking into account their actual resource per- 
formance. 

For the research presented in this paper, the already 
mentioned Globus project [15] is most important. 
Based on the lessons learned in the I-WAY experiment 
[14], the National Computational Science Alliance [34] 
implements a framework of an adaptive wide area 
metacomputer environment, where Globus, among 
Condor and Symbio (for clustering WindowsNT sys- 
tems) , plays a key role in establishing a national dis- 
tributed computing infrastructure. 

Globus aims at building an adaptive wide area re- 
source environment (AWARE) with a set of tools that 
enables applications to adapt to heterogeneous and 
dynamically changing metacomputing environments. 
Similar to our CIS, a metacomputing directory service 
(MDS) [12] has been proposed to address the need 
for efficient and scalable access to diverse, dynamic, 
and distributed information. The API is vendor- 
independent. MDS is able to handle static and dy- 
namic information. Like our MARS system [19], MDS 
is intended to manage application specific information 
that has been found useful in previous program runs 
(e.g. memory requirements, program structure, com- 
munication patterns). 

8    Summary 
We have presented history, presence and future de- 

velopment of the resource management software CCS. 
The current release 4.0 has the following features: 

• It is modular and autonomous on each layer. New 
machines, networks, protocols, schedulers, system 
software, and meta-layers can be added at any 
point—some of them even without the need to 
re-boot the system. 

• It is reliable. There is no single point of failure. 
Recovery is done at the machine layer. The center 
information manager (CIS) is passive and can be 
restarted or mirrored. 

• It is scalable. There exists no central instance. 
The hierarchical approach allows to connect to 
other centers' resources. This concept has been 
found useful in several industrial projects. 

• It is extensible. Other resource management sys- 
tems (e.g. Codine, LSF, Condor) can be linked 
to CCS without the need to adjust their internal 
control regime. 
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From a software engineering view, each module can 
be implemented in another way, regardless of earlier 
implementations. From an administrators point of 
view, the system is easy to administer (by means of 
RSD and the operator shell), it is reliable, dynamic, 
and offers customized control on each level. 

Compared to the Globus project, there are some 
similarities, but on a somewhat lower level. With this 
respect, CCS may be seen as a testbed for gaining 
valuable experiences with an existing resource man- 
agement system that provides some important fea- 
tures required for practical metacomputing. 

Current Status. Not all of the features have been 
fully implemented yet. We are currently in the tran- 
sition phase between the previous RDL language and 
the here described, more general RSD description tool. 
Both, the CRM and the CIS have not yet been imple- 
mented completely. Furthermore, we plan to change 
the communication layer from RPCs to MPI-2 or 
Nexus. These communication layers support the use of 
multi-threaded daemons, thereby improving the per- 
formance of CCS under heavy load. 
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Abstract 

A heterogeneous computing system provides a 
variety of different machines, orchestrated to perform an 
application whose subtasks have diverse execution 
requirements. The subtasks must be assigned to 
machines (matching) and ordered for execution 
(scheduling) such that the overall application execution 
time is minimized. A new dynamic mapping (matching 
and scheduling) heuristic called the hybrid remapper is 
presented here. The hybrid remapper is based on a cen- 
tralized policy and improves a statically obtained initial 
matching and scheduling by remapping to reduce the 
overall execution time. The remapping is non- 
preemptive and the execution of the hybrid remapper can 
be overlapped with the execution of the subtasks. During 
application execution, the hybrid remapper uses run-time 
values for the subtask completion times and machine 
availability times whenever possible. Therefore, the 
hybrid remapper bases its decisions on a mixture of run- 
time and expected values. The potential of the hybrid 
remapper to improve the performance of initial static 
mappings is demonstrated using simulation studies. 

Keywords: dynamic scheduling, heterogeneous comput- 
ing, list scheduling, mapping, matching, parallel process- 
ing, scheduling. 
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1.     Introduction 

Different portions of a computationally intensive 
application often require different types of computations. 
In general, a given machine architecture with its associ- 
ated compiler, operating system, and programming 
environment does not satisfy the computational require- 
ments of all portions of an application equally well. 
However, a heterogeneous computing (HC) environment 
that consists of a heterogeneous suite of machines and 
high-speed interconnections provides a variety of archi- 
tectural capabilities, which can be orchestrated to per- 
form an application that has diverse computational 
requirements [2, 10, 14, 15]. The performance criterion 
for HC used in this paper is to minimize the completion 
time, i.e., the overall execution time of the application on 
the machine suite. 

One way to exploit an HC environment is to decom- 
pose an application task into subtasks, where each sub- 
task is computationally well suited to a single machine 
architecture. Different subtasks may be best suited for 
different machines. The subtasks may have data depen- 
dencies among them, which could result in the need for 
inter-machine communications. Once the subtasks are 
obtained, each subtask is assigned to a machine 
(matching). The subtasks and inter-machine data 
transfers are ordered (scheduling) such that the overall 
completion time of the application is minimized. It is 
well known that such a matching and scheduling 
(mapping) problem is, in general, NP-complete [3]. 
Therefore,   many  heuristics  have  been  developed  to 
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obtain near-optimal solutions to the mapping problem. 
The heuristics can be either static (matching and schedul- 
ing decisions are made prior to application execution) or 
dynamic (matching and scheduling decisions are made 
during application execution). 

Most static mapping heuristics assume that accurate 
estimates are available for (a) subtask computation times 
on various machines and (b) inter-machine data transfer 
times. Often, it is difficult to accurately estimate the 
above parameters prior to application execution. There- 
fore, this paper proposes a new dynamic algorithm, 
called the hybrid remapper, for improving the initial 
static matching and scheduling. The hybrid remapper 
uses the run-time values that become available for sub- 
task completion times and machine availabilities during 
application execution time. It is called the hybrid 
remapper because it uses some results based on an initial 
static mapping in conjunction with information available 
only at execution time. 

The hybrid remapper heuristics presented here are 
based on the list scheduling class of algorithms (e.g., [1, 
9]). An initial, statically obtained mapping is provided as 
input to the hybrid remapper. If the initial mapping is 
not provided, it should be obtained before running the 
hybrid remapper by executing a static mapping algorithm 
such as the baseline [18], genetic-algorithm-based 
mapper [18], or Levelized Min Time [9]. 

The hybrid remapper executes in two phases. The 
first phase of the hybrid remapper is executed prior to 
application execution. The set of subtasks is partitioned 
into blocks such that the subtasks in a block do not have 
any data dependencies among them. However, the order 
among the blocks is determined by the data dependencies 
that are present among the subtasks of the entire applica- 
tion. The second phase of the hybrid remapper, executed 
during application run time, involves remapping the sub- 
tasks. The remapping of a subtask is performed in an 
overlapped fashion with the execution of other subtasks. 
As the execution of the application proceeds, run-time 
values for some subtask completion times and machine 
availability times can be obtained. The hybrid remapper 
attempts to improve the initial matching and scheduling 
by using the run-time information that becomes available 
during application execution and the information that 
was obtained prior to the execution of the application. 
Thus, hybrid remapper's decisions are based on a mix- 
ture of run-time and expected values. 

This research is part of a DARPA/ITO Quorum Pro- 
gram project called MSHN (Management System for 
Heterogeneous Networks). MSHN is a collaborative 
research effort that includes NPS (Naval Postgraduate 
School), NRaD (a Naval Laboratory), Purdue, and USC 
(University of Southern California). It builds on Smart- 
Net, an operational scheduling framework and system for 

managing resources in a heterogeneous environment 
developed at NRaD [6]. The technical objective of the 
MSHN project is to design, prototype, and refine a distri- 
buted resource management system that leverages the 
heterogeneity of resources and tasks to deliver the 
requested qualities of service. 

The organization of this paper is as follows. The 
matching and scheduling problem and the associated 
assumptions are defined in Section 2. Three variants of 
the hybrid remapper heuristics are described in Section 3. 
Section 4 examines the data obtained from the simulation 
studies conducted to evaluate the performance of the 
hybrid remapper heuristic. In Section 5, related work is 
discussed. Finally, Section 6 gives some future research 
directions. 

2.    Problem Definition 

The following assumptions are made regarding the 
application. The application is decomposed into multiple 
subtasks and the data dependencies among them are 
known and are represented by a directed acyclic graph 
(DAG). That is, the nodes in the DAG represent the sub- 
tasks and the links represent the data dependencies. An 
estimate of the expected computation time of each sub- 
task on each machine in the HC suite is known a priori. 
This assumption is typically made when conducting 
mapping research (e.g., [4, 7, 13, 16]). Finding the 
expected computation time is another research problem. 
Approaches based on analytical benchmarking and task 
profiling are surveyed in [14, 15]. Any loops and data 
conditionals are assumed to be contained inside a sub- 
task. 

It is assumed that the hybrid remapper is running on 
a dedicated workstation and all mapping decisions are 
centralized. Once a subtask is mapped onto a machine it 
is inserted into a local job queue on that particular 
machine. The execution of the subtask is managed by the 
job control environment of the local machine. The sub- 
task executions are non-preemptive. All input data items 
of a subtask must be received before its execution can 
begin, and none of its output data items are available 
until its execution is completed. These assumptions 
make the matching and scheduling problem in HC sys- 
tems more manageable. Nevertheless, solving the 
mapping problem with these assumptions is a significant 
step toward solving the more general problem. 

An application task is decomposed into a set of sub- 
tasks S, where st is the i-th subtask. Let the HC 
environment consist of a set of machines M, where nij 
be the j-th machine. The estimated expected computa- 
tion time of subtask s: on machine m is given by et ■. 
The earliest time at which machine nij is availablFTs 
given by A[j], where \A \ = \ M |. 
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The data communication time between two 
machines has two components: a fixed message latency 
for the first byte to arrive and a per byte message transfer 
time. An | M |x | M | communication matrix is used to 
hold these values for the HC suite. Similar matrices are 
used by other researchers in HC (e.g., [7, 13, 16]). 

To facilitate the discussion in Section 3, a hypotheti- 
cal node called an exit node is defined for the DAG as 
follows. An exit node (subtask) is a node with 0 compu- 
tation time that is appended to the DAG such that there is 
a 0 data transfer time communication link to this node 
from every node in the DAG that does not have an output 
edge. The critical path for a node in the DAG is defined 
as the longest path from the given node to the exit node. 

3.     The Hybrid Remapper Algorithm 

3.1. Overview 

The notion behind most dynamic mapping 
algorithms is that due to the dynamic nature of the 
mapping problem, it is not efficient to use a fixed 
mapping computed statically. Therefore, most dynamic 
mappers regularly either generate the mapping or refine 
an existing mapping at various times during task execu- 
tion. That is, dynamic mapping algorithms solve the 
mapping problem by solving a series of partial mapping 
problems (consisting of only a subset of the original set 
of subtasks). The partial mapping problem is usually 
solved by a static mapping heuristic. Because the 
mapping is performed in real time, it is necessary to use a 
fast algorithm to avoid any machine idle times that occur 
from having to wait for the mapper to complete its exe- 
cution. In the hybrid remapper algorithm presented here, 
the partial mapping problem is solved using a list-based 
scheduling algorithm. 

In the following subsections, three variants of the 
hybrid remapper algorithm are described. The first 
phase, common for all three variants of the hybrid 
remapper, involves partitioning the subtasks into blocks 
and assigning ranks to each subtask (where the rank indi- 
cates the subtask's priority for being mapped, as defined 
below). The variants of the hybrid remapper differ in the 
second phase by the minimization criteria they use and 
by the way they order the subtasks examined by the 
partial mapping problem. One variant of the hybrid 
remapper attempts to minimize the expected partial 
completion time at each remapping step, and the others 
attempt to minimize the overall expected completion 
time. Two variants of the hybrid remapper order the sub- 
tasks at each remapping step using ranks computed at 
compile time, and the other using a parameter computed 
at run time. 

3.2. Partitioning and Rank Assignment 

This first phase uses the initial static mapping, 
expected subtask computation times, and expected data 
transfer times to preprocess the DAG that represents the 
application. Initially, the DAG is partitioned into B 
blocks numbered consecutively from 0 to B—1. The par- 
titioning is done such that the subtasks within a block are 
independent, i.e., there are no data dependencies among 
the subtasks in a block. All subtasks that send data to a 
subtask Sj in block k must be in any of blocks 0 to k—\. 
Furthermore, for each subtask Sj in block k there exists 
at least one incident edge (data dependency) such that the 
source subtask is in block k—\, i.e., an incident edge 
from some st. The (B-l)-fh block includes the subtasks 
without any successors and the 0-th block includes only 
those subtasks without any predecessors. The exit node 
is not included in any block in the DAG partitioning. 
The three blocks obtained using this partitioning 
algorithm for an example seven node DAG is shown in 
Figure 1(a). 

Once the subtasks in the DAG are partitioned, each 
subtask is assigned a rank by examining the subtasks 
from block B-\ to block 0. The rank of each subtask in 
the (B— l)-th block is set to its expected computation 
time on the machine to which it was assigned by the ini- 
tial static matching. Now consider the A:-th block, 
O^k <B-l. Recall eix is the expected computation 
time of the subtask s, on machine mx. Let ct • be the 
data transfer time for a descendent Sj of .?, to "get all the 
relevant data items from Sj. The value of ct] will be 
dependent on the machines assigned to subtasks s-{ and Sj 
by the initial mapping, and the information in the com- 
munication matrix. Let iss(.?,) be the immediate 
successor set of subtask 5,- such that there is an arc from 
5,- to each member of iss(.?,) in the DAG. In the equation 
below, each eijc implies subtask s, is assigned to 
machine mx by the initial mapping. With these 
definitions, the rank of a subtask st is given by: 

rank(5,-) = e,-,x+J. max 
Ätfc'j+rank<J;» 

Figure 1(b) illustrates the rank assignment process 
for the subtask st. The rank of a subtask can be inter- 
preted as the length of the critical path from the point the 
given subtask is located on the DAG to the exit node, 
i.e., the time until the end of the execution of all its des- 
cendents. Two variants of the hybrid remapper described 
here are based on the heuristic idea that by executing the 
subtasks with higher ranks as quickly as possible, the 
overall expected completion time for the application can 
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block 0 block k-1 

block k+1 

(a) (b) 

Figure 1: (a) Partitioning a DAG into blocks and (b) assigning ranks to the nodes of a DAG. 

be minimized. 

3.3. Common Portion of the Run-Time Phase 

In all three variants of the hybrid remapper, the exe- 
cution of the subtasks proceeds from block 0 to block 
B—\. A block k is considered to be executing if at least 
one subtask from block k is running. Also, the execution 
of several blocks can overlap with each other in time, 
i.e., subtasks from different blocks could be running at 
the same time. 

The hybrid remapper changes the matching and 
scheduling of the subtasks in block k while the subtasks 
in block (k-\) or before are being executed. The hybrid 
remapper starts examining the block k subtasks when the 
first block (£-1) subtask begins its execution. When 
block k subtasks are being mapped, it is highly likely 
that run-time completion time information can be used 
for many subtasks from blocks 0 to k—2. There may be 
some subtasks from blocks 0 to k-2 that are still running 
or waiting execution when subtasks from block k are 
being considered for remapping. For such subtasks, 
expected completion times are used. 

3.4. Minimum Partial Completion Time Static 
Priority (PS) Algorithm 

As mentioned earlier, the hybrid remapper uses a 
list-scheduling type of algorithm to recompute the 
matching and scheduling for the subtasks in each block. 
In a list-scheduling type of algorithm, the subtasks are 

first ordered based on some priority. Then, each subtask 
is mapped to a machine by examining the list of subtasks 
from the highest priority subtask to the lowest priority 
subtask. The machine to which each subtask is assigned 
depends on the matching criterion used by the particular 
algorithm. 

In this variant of the hybrid remapper, the priority of 
a subtask is equal to the rank of that subtask that was 
computed statically in the first phase (Subsection 3.2). 
The matching criterion used for subtask st is the minimi- 
zation of the partial completion time, defined below. 
Thus, this variation is referred to as the minimum partial 
completion time static priority (PS) algorithm. 

Let mx be the machine on which s, is being con- 
sidered for execution. Then let pct(s,-,*) denote the 
partial completion time of the subtask s, on machine mx, 
dr(.y,) be the time at which the last data item required by 
Sj to begin its execution arrives at mx, and ips(s,-) be the 
immediate predecessor set for subtask s, such that there 
is an arc to s, from each member of ips(5,) in the DAG. 
For any subtask st in block 0, pct(j/^r) = c,-iX. For any 
subtask S, not in block 0, where Sj e ips(.?,), and Sj is 
currently mapped onto machine mx, 

^^eiJS.O^^W» 
pct(s, ,x) = et   +max(/4 [x ], dr (Sj)) 

In the computation of pcl(shx), the above equation is 
recursively used until subtask Sj is such that its run-time 
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completion time on machine wv is available or subtask s ■ 
is in block 0. The subtask s, is remapped onto the 
machine mx that gives the minimum pct(s,-,*), and A [x] 
is updated using pct(s,,x). Then the next subtask from 
the list is considered for remapping. 

3.5. Minimum Completion Time Static Priority 
(CS) Algorithm 

The notion behind the PS algorithm was that by 
remapping the highest rank subtask s, to execute on the 
machine that will result in the smallest expected partial 
completion time, the overall completion time of the 
application may be minimized. Instead of this approach, 
the variant of the hybrid remapper described here 
attempts to minimize the overall completion time by 
remapping each subtask Sj in block k such that the length 
of the critical path through subtask s, is reduced. Thus, 
this variation is referred to as the minimum completion 
time static priority (CS) algorithm. The reason for con- 
sidering both PS and CS is that in PS the remapping is 
faster but CS attempts to derive a better mapping because 
it considers the whole critical path through st. 

Let mx be the machine on which st is being con- 
sidered for execution. Then let the longest completion 
time path from a block 0 subtask to the exit node through 
the subtask s, be ct(s,,x). The overall completion time 
of the application task is determined by one such longest 
path through a block k subtask. Consider the subtask st 

in Figure 2. Assume that the longest path through s, is 
shown by bold edges in Figure 2. For any subtask st, 

ct(j,- ,x) = s e is™^)(pct(5, ,x )+c, j +rank(5y)) 

max :Pct^^)+,,eissS^J+rank^» 

The subtask st is remapped onto the machine mx that 
gives the minimum ct(s, jc), and A [x ] is updated using 
pct(i, ,x). Then the next subtask in the list is considered 
for remapping. 

3.6. Minimum     Completion     Time    Dynamic 
Priority (CD) Algorithm 

The rank of a subtask 5, is computed prior to appli- 
cation execution. Therefore, if st is remapped to a 
machine other than the one it was assigned to by the ini- 
tial static mapping, the rank of st may not give the length 
of the critical path from s, to the exit node. 

The algorithm presented here is same as the CS 
algorithm, except ranks are no longer used in ordering 
the subtasks within a block. Instead of using the stati- 
cally computed ranks, this algorithm uses the value of 

ct(5, ^c), where mx is the machine assigned to s, in the 
initial mapping, to order the subtasks within a block. 
Thus, this variation is referred to as the minimum 
completion time dynamic priority (CD) algorithm. 

The example shown in Figure 3 illustrates why using 
ranks computed at compile time to order the subtasks 
within a block may not lead to the best overall 
completion time. In the given example, the DAG shown 
in Figure 3(a) is mapped onto two machines m0 and mx. 
Figure 3(b) shows the subtask computation time matrix, 
which gives the computation time of a subtask on dif- 
ferent machines. The initial static mapping is shown in 
Figure 3(c). The numbers inside each bar correspond to 
the subtask index and the execution time of the subtask, 
in "subtask index/execution time" notation. The times 
are given in seconds. The data transfer times are negligi- 
ble if the source and destination machines are the same, 
otherwise, for this example there is a fixed time of two 
seconds for the data transfer. In Figure 3(a), the number 
outside each node indicates the rank of that subtask 
derived using the initial mapping. 

When block 2 is considered for remapping by either 
the PS or CS algorithm, s5 is mapped first and then J4 is 
mapped. Suppose s0 finishes its execution in 20 seconds 
instead of 10 seconds and s} finishes in 10 seconds. This 
causes the subtask s4 to become critical and s5 to become 
non-critical, i.e., s5 is not part of the critical path 
anymore. By using the rank numbers that were statically 
computed, the PS and CS algorithms map s5 before s4. 
Thus, s5 will be mapped to the best machine and this can 
delay the completion of s4. Instead of using the statically 
computed ranks, the CD algorithm considers ct(s,,jc), 
where subtask s, is assigned to mx in the initial mapping. 
For this example, subtask s4 is assigned to machine m0 

and subtask s5 is assigned to machine mx. Therefore, the 
CD algorithm considers ct(s4,0) and ct(s5,l) to determine 
the remapping order. 

ct(.j 4,0) = 20+15+10+10 = 55 

ct(s5,l) = 10+20+10+2+10 = 52 

Because the value of ct(55,l) is less than the value of 
ct(s4,0), 54 is considered for remapping before s5 by the 
CD algorithm. This example illustrates that using ct(s,, 
x), where mx is the machine that is assigned to s{ in the 
initial mapping, enables the remapping algorithm to track 
the critical path better than using the static ranks. 
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pCt(Sj) 

rank I 

block k-2 

block k-1 

block k+1 

Figure 2: Estimating the completion time by considering the longest path through s .. 

4.    Experimental Results and Discussion 

4.1. Simulation Parameters 

A simulator was implemented to evaluate the perfor- 
mance of the hybrid remapper variants. Various parame- 
ters are given as input to the simulator. Some parameters 
are specified as fixed values, e.g., number of machines, 
and others as a range of values with a maximum and a 
minimum value, e.g., subtask computation time. When a 
range is specified, the actual value is set to a random 
value within the specified range. Each data point in the 
results presented in this section is an average of 100 
simulation runs. The experiments were performed on a 
Sun Ultra with a SPARC processor running at 165 MHz. 

To generate a DAG that represents an application, 
the number of subtasks, maximum out degree of a node, 
number of data items to be transferred among different 
subtasks, range for subtask computation times, and range 
for data item sizes are provided as input to the simulator. 
Using these input parameters the simulator creates a 
table with the subtasks along the columns and data items 
along the rows. If a subtask Sj produces a data item dt 

then the cell (/',;') has the label PRODUCER and if the 
subtask sj consumes a data item dt then the cell (/ ,j) has 
the label CONSUMER. A data item has one and only 
one producer, but may have zero or more consumers. 
For a given data item, a producer is randomly picked and 

then consumers are picked such that the resulting graph 
is acyclic and the maximum out degree constraints are 
satisfied. 

To define the HC suite, the number of machines is 
provided as input. The simulator randomly generates 
valid subtask computation times to fill a table that deter- 
mines the subtask computation times on each machine in 
the HC suite. For these experiments it is assumed that a 
fully connected, contention-free communication network 
is used. The inter-machine communication times are 
source and destination dependent. Communication times 
are specified by a range value. The run-time value of a 
parameter such as the subtask execution time or inter- 
subtask data communication time can be different from 
the expected value of the parameter. The variation is 
modeled by generating simulated run-time values by 
sampling a probability distribution function (PDF) that 
has the expected value of the parameter as the mean. 

4.2. Generational Scheduling 

In this subsection, the generational scheduling (GS) 
algorithm [5] is briefly described. The performance of 
the hybrid remapper is compared with the performance 
of the GS algorithm in the next subsection. The GS 
algorithm is a dynamic mapping heuristic for HC sys- 
tems. 
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Figure 3: An example mapping to illustrate the benefit of the CD algorithm: (a) the partitioned DAG, 
(b) the subtask computation time matrix, and (c) the initial mapping. 

Initially, the GS forms a partial scheduling problem 
by pruning all the subtasks with unsatisfied precedence 
constraints from the initial DAG that represents the 
application. The initial partial scheduling problem con- 
sists of subtasks that correspond to those in block 0 of the 
hybrid remapper approach. The subtasks in the initial 
partial scheduling problem are then mapped onto the 
machines using an auxiliary scheduler. The auxiliary 
scheduler considers the subtasks for assignment in a first 
come first serve order. A subtask is assigned to a 
machine that minimizes the completion time of that par- 
ticular subtask. 

When a subtask from the initial partial scheduling 
problem completes its execution, the GS algorithm per- 
forms a remapping. During the remapping, the GS 
revises the partial scheduling problem by adding and 
removing subtasks from it. The completion of the subtask 
that triggered the remapping event may have satisfied the 
precedence constraints of some subtasks. These subtasks 

are added to the initial partial scheduling problem. The 
subtasks that have already started execution are removed 
from the initial partial scheduling problem. Once the 
revised partial scheduling problem is obtained, the sub- 
tasks in it are mapped onto the HC machine suite using 
the auxiliary scheduler. This procedure is iteratively per- 
formed until the completion of all subtasks. 

4.3. Hybrid Remapper 

From the discussions in Section 3, it can be noted 
that the hybrid remapper is provided with an initial 
mapping that is derived prior to application execution 
using a static matching and scheduling algorithm. The 
simulator generates a random DAG, using the parameters 
it receives as input, at the beginning of each simulation 
run. An initial static mapping for this DAG is obtained 
by matching and scheduling this DAG onto the HC suite 
using the baseline algorithm [18]. 
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The baseline algorithm that is used to derive the ini- 
tial mapping is a fast static matching and scheduling 
algorithm. It partitions the subtasks into blocks using an 
algorithm similar to the one described in Subsection 3.2. 
Once the subtasks are partitioned into blocks, they are 
ordered such that a subtask in block k comes before a 
subtask in block /, where k <l. The subtasks in the same 
block are arranged in descending order based on the 
number of descendents of each subtask (ties are broken 
arbitrarily). The subtasks are considered for assignment 
by traversing the list, beginning with block 0 subtasks. A 
subtask is assigned to the machine that gives the shortest 
time for that particular subtask to complete. 

In this simulator, three different PDFs (a) Erlang(2) 
[12], (b) uniform, and (c) skewed uniform are used to 
generate the simulated run-time values. For Erlang(2), 
the expected values are provided as the mean and the 
PDF is sampled to obtain a simulated run-time value. In 
Figure 4, 10,000 consecutive random numbers generated 
by the Erlang(2) random number generator with mean 
ten is shown using a 200-bin histogram. For the skewed 
uniform PDF, the following rule is used to generate the 
simulated run-time value. Let a] be the negative percen- 
tage deviation, a2 be the positive percentage deviation, 
and u be a random number that is uniformly distributed 
in [0,1]. Then, the simulated run-time value of a parame- 
ter x can be modeled as T x (100-a1+(a,+a2)M )/100. For 
the uniform PDF, a, = cc2 = a. For the simulation results 
presented here, Erlang(2) is used unless otherwise noted. 

250 

200 

^ 150 

ft; 100 

10        20        30        40 
bins 

50        60 

Figure 4: A 200-bin histogram for 10,000 
consecutive samples of the Erlang(2) random 
number generator with mean equal to ten. 

In these experiments, baseline refers to first deriving 

a static mapping using the baseline algorithm and 
expected subtask computation and communication times, 
and then, using this mapping, computing the total appli- 
cation execution time based on the simulated run-time 
values for computation and communication times. Also, 
in these experiments, ideal refers to deriving a static 
mapping using the baseline algorithm and simulated 
run-time values (instead of the expected values) for sub- 
task computation and communication times. Note that 
this ideal is used for comparison purposes only, and can- 
not be implemented in practical environments. Also note 
that the ideal is not necessarily the optimal mapping. 
These simulated run-time values are also used to evalu- 
ate the application task completion time with the hybrid 
remapper variants. 

In Figure 5(a), the performance of the PS algorithm 
is compared to the mapping that is obtained using the 
baseline algorithm for ten machines. Figure 5(b) shows a 
similar comparison for the CS algorithm for ten 
machines. The performance of the CD algorithm is 
shown in Figures 6(a) and 6(b). Figure 6(a) compares 
CD and the baseline for varying numbers of subtasks and 
ten machines. Figure 6(b) compares the two approaches 
for varying numbers of machines and 200 subtasks. 

From Figures 5(a), 5(b), and 6(a) it can be observed 
that the performance difference among the three variants 
is almost negligible. The heuristic improvements per- 
formed to obtain the CS and CD variants from the PS 
variant of the hybrid remapper make the CS and CD use 
more initial matching and scheduling derived informa- 
tion. That is, while CS and CD use more information in 
an attempt to derive a better mapping than the PS, the 
information is based on expected values, rather than 
run-time values. Thus, there is no significant improve- 
ment. Also, in these simulation studies, the initial 
mapping is obtained using a simple baseline algorithm. 
The performance of CS and CD may improve if a higher 
quality initial assignment is used, e.g., if a genetic 
algorithm based mapper [18] is used for the initial 
matching and scheduling. 

As the number of subtasks increase, the performance 
difference between each hybrid remapper variant and the 
baseline increases. This increase in performance can be 
attributed to two factors: (a) increased number of remap- 
ping events and (b) increased average number of sub- 
tasks per block. Increasing the number of remapping 
events provides the hybrid remapper with more oppor- 
tunities to exploit the run-time values of parameters that 
are available during application execution. Also, with 
the increased number of subtasks per block the hybrid 
remapper can derive schedules that are very different 
from the initial schedule. Therefore, the average perfor- 
mance of the hybrid remapper increases with increasing 
number of subtasks. 

64 



o 
ü 
<B 

CO 

E 

a> 
a. 
E o o 

140- 

120- 

100- 

80- 

60- 

40- 

20- .> 

PS algorithm 
baseline 

ideal 

~?Ü)Ö 2(50 300 400 
number of subtasks 

(a) 

forming well with a low computation/communication 
ratio is currently under investigation. 

500 

140- CS algorithm   
at baseline — 
r 120- ideal  .- 
o o ^ " 
CO 100- ,**    ^>^ 

+ *           .^^ 

<1> , **      ^0**^ 

E 80- ,''\s^ 
c o 60- ,-\^^ 
CO „ -     j^ 

Q. 
F 40- 
o „*/r 
o 20- 

0- 
160 2A0         360         460         50 

number of subtasks 

(b) 

Figure 5: Performance of the hybrid remapper 
versus the baseline for (a) the PS algorithm and 
(b) the CS algorithm. 

Ten machines and 100 subtasks were used in Figure 
7. In Figure 7(a), the performance of the CD algorithm 
is compared with the baseline for varying 
computation/communication ratios and Figure 7(b) 
shows the performance comparison of the CD algorithm 
with the baseline for varying average number of subtasks 
per block. Figure 7(a) shows that the hybrid remapper 
performs better as the computation/communication ratio 
increases. The computation/communication ratio is the 
average subtask execution time divided by the average 
inter-subtask communication time. In Figure 7(a), the 
low computation/communication ratio denotes the range 
1.0-10.0, medium computation/communication ratio 
denotes the range 10.0-200.0, and high 
computation/communication ratio denotes the range 
200.0-4000.0. With increasing 
computation/communication ratio, the data transfer times 
become less significant compared to the subtask compu- 
tation times. The reason for the hybrid remapper not per- 
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Figure 6: Performance of the CD algorithm 
versus the baseline for (a) varying the subtasks 
and (b) varying the machines. 

From Figure 7(b) it can be noted that the relative 
performance of the CD algorithm increases with increas- 
ing the average number of subtasks per block. When 
there are more subtasks per block, it is possible for the 
hybrid remapper to derive mappings that are very dif- 
ferent from the initial mapping. 

Figure 8(a) compares the performance of the CD 
algorithm with the baseline algorithm for a uniform dis- 
tribution PDF, 20 machines, and 200 subtasks. Figure 
8(b) performs the same comparison for a skewed uni- 
form distribution PDF, 20 machines, and 200 subtasks. 
In the skewed uniform distribution the negative percen- 
tage deviation is half of the positive percentage devia- 
tion. 

As noted earlier, one of the features of the hybrid 
remapper algorithm that is presented here is overlapping 
its operation with the execution of the subtasks.   To 
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Figure 7: Performance of the CD algorithm 
versus the baseline for (a) varying the 
computation/communication ratio and (b) 
varying the average number of subtasks per 
block. 

obtain complete overlap, in the worst case, the remap- 
ping time for a block of subtasks should be less than the 
execution time of the smallest subtask in the previous 
block. More precisely, the time available for remapping 
block k is equal to the difference between the time the 
first block k-\ subtask begins execution and the time the 
first block k subtask can begin execution. Figure 9(a) 
shows the per block remapping time for the CD 
algorithm for varying numbers of subtasks and ten 
machines. In Figure 9(b), the per block remapping time 
for the CD algorithm is shown for varying numbers of 
machines and 200 subtasks. 

In Figure 10, the performance of the CD algorithm is 
compared with the GS algorithm for varying numbers of 
subtasks. From the simulation results it can be observed 
that the CD algorithm is slightly outperforming the GS 
algorithm. From the discussions in Section 3.6, it can be 

CD algorithm   
baseline — 

~~S) T5Ö 150 
positive percentage deviation 

(b) 

200 

Figure 8: Performance of the CD algorithm 
versus the baseline for (a) using the uniform 
distribution for parameter modeling and (b) 
skewed uniform for parameter modeling. 

noted that the CD algorithm attempts to minimize the 
length of the critical path at each remapping step. In the 
GS algorithm, the critical path through the DAG is not 
considered when the subtasks are remapped. This is one 
reason for the better performance of the CD algorithm. 
The GS algorithm has more remapping events compared 
to the hybrid remapper. The number of remapping 
events is equal to the number of subtasks in the GS 
algorithm and equal to the number of blocks in the CD 
algorithm. The increased number of remappings allows 
the GS algorithm to base its assignment decisions on 
more current values. This may be why the GS is per- 
forming only three to four percent worst than the CD 
algorithm even though GS does not consider the critical 
path through the DAG. In the GS algorithm, at least one 
machine may be waiting on the scheduler to finish the 
mapping process. This scheduler induced wait time on 
the HC suite was not included in the GS versus CD com- 
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Figure 9: Per block remapping time of CD for (a) 
varying subtasks and (b) varying machines. 
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Figure 10: Performance of the CD algorithm 
versus the Generational Scheduling algorithm 
for varying numbers of subtasks. 

5. Related Work 

Other groups have also studied dynamic mapping 
heuristics for HC systems (e.g., [5, 8, 11]). A brief 
description of the GS algorithm and an experimental 
comparison of the hybrid remapper with the GS 
algorithm were presented in Section 4. The Self- 
Adjusting Scheduling for Heterogeneous Systems 
(SASH) algorithm is presented in [8]. One of the differ- 
ences between the hybrid remapper and the SASH 
algorithm is that the hybrid remapper uses a list- 
scheduling based algorithm to perform the remappings at 
run time, whereas the SASH algorithm uses a variation 
of the branch and bound algorithm to generate the partial 
mappings at each remapping event. Also, unlike the GS 
and SASH algorithms, the hybrid remapper presented 
here can use any initial mapping to guide its remapping 
decisions, i.e., the initial mapping is used to compute the 
ranks and completion time estimates in the hybrid 
remapper. It is necessary to experimentally determine 
how the quality of the initial mapping impacts the overall 
performance of the hybrid remapper. 

In [11], two mapping algorithms are presented. One 
is based on a distributed model and the other is based on 
a centralized model. The distributed mapping algorithm 
is different from the algorithms presented in [5, 8], and 
the hybrid remapper presented here, which are all cen- 
tralized algorithms. The centralized mapping algorithm 
is based on a global queue equalization algorithm. 

6. Conclusions and Future Work 

The simulation results indicate that the performance 
of a statically obtained initial mapping can be improved 
by the hybrid remapper. From the simulation results 
obtained, performance improvement can be as much as 
15% for some cases. The timings also indicate that the 
remapping time needed per block of subtasks is in the 
order hundreds of milliseconds for up to 50 machines 
and 500 subtasks. In the worst case situation, to obtain 
complete overlap, the computation time for the shortest 
running subtask must be greater than the per block 
remapping time. 

The experimental studies revealed that the hybrid 
remapper performs better than the generational schedul- 
ing, but the margin of difference was only three to four 
percent. The hybrid remapper has a better machine utili- 
zation compared to the generational scheduling 
algorithm, because in the hybrid remapper the mapping 
operations are overlapped with the application execution. 
Further research is necessary to develop ways to improve 
the hybrid remapper's performance. This include exa- 
mining the use of different schemes for partitioning the 
DAG into blocks, exploring the use of different ways of 
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ordering subtasks within a block, and investigating the 
use of different criteria for determining subtask to 
machine assignments. 

The partitioning scheme that is currently used in the 
hybrid remapper does not consider the usage pattern of 
the data items produced by a subtask. The partitioning is 
solely based on the data dependencies. This could cause 
a subtask with low rank value in a block k to be mapped 
before a subtask with high rank value in a block /, where 
I > k. Various alternate partitioning schemes need to be 
explored and evaluated to examine different criteria for 
forming blocks. 

One of the features of the hybrid remapper algorithm 
presented here is the overlap of the execution of the 
hybrid remapper algorithm with the execution of the sub- 
tasks. In the hybrid remapper developed in this research, 
the remapping event for block k is the readiness to exe- 
cute of the first block £-1 subtask. Hence, the number 
of remapping events is equal to the number of blocks. In 
other algorithms, such as the Generational Scheduling 
algorithm [5], the number of remapping events is equal 
to the number of subtasks. It is necessary to study the 
trade-offs of increasing the number of remapping events 
on the performance of the algorithms and the amount of 
machine idle time from having to wait for a mapping 
decision. Also, the interaction of varying the amount of 
uncertainty in the parameter values and increasing the 
number of remapping events needs further research. 

In this paper, the performance of the hybrid 
remapper is compared with the performance of the static 
baseline, and the dynamic generational scheduling 
algorithm [5]. Further simulation studies are necessary 
to compare the performance of the hybrid remapper with 
other dynamic mapping algorithms, such as the queue 
equalization algorithm [11]. 

The hybrid remapper developed in this research 
assumed a fully connected, contention-free communica- 
tion model. This model needs to be improved to accom- 
modate message contention and restricted inter-machine 
network topologies that occur in practical situations. 
Also, enhancements are necessary to support cases where 
a subtask can have multiple sources (machines) for a 
needed data item [17]. 

The performance of the hybrid remapper has been 
studied using simulations in this research. Exploring the 
possibility of obtaining performance bounds using 
analytical methods is yet another possible area of future 
research. 

Another future area of study is to evaluate the per- 
formance of the hybrid remapper when the initial 
mapping is generated by a genetic algorithm (GA) based 
mapper [18]. Also, it would be interesting to compare 
the relative performance of the hybrid remapper and the 
mapping obtained by a static GA-based mapper as the 

run-time values of the parameters deviate from their 
expected values. 

In summary, a new dynamic mapping algorithm 
called the hybrid remapper was presented in this paper. 
The hybrid remapper uses novel heuristic approaches to 
dynamically improve a statically obtained initial 
mapping. The potential of the hybrid remapper to 
improve the performance of initial static mappings was 
demonstrated using simulation studies. 
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Abstract 
With the advent of large scale heterogeneous environ- 

ments, there is a need for matching and scheduling algo- 
rithms which can allow multiple DAG-structured applica- 
tions to share the computational resources of the network. 
This paper presents a matching and scheduling framework 
where multiple applications compete for the computational 
resources on the network. In this environment, each ap- 
plication makes its own scheduling decisions. Thus, no 
centralized scheduling resource is required. Applications 
do not need direct knowledge of the other applications. 
The only knowledge of other applications arrives indirectly 
through load estimates (like queue lengths). This paper 
also presents algorithms for each portion of this schedul- 
ing framework. One of these algorithms is modification of 
a static scheduling algorithm, the DLS algorithm, first pre- 
sented by Sih and Lee [1]. Other algorithms attempt to pre- 
dict the future task arrivals by modeling the task arrivals 
as Poisson random processes. A series of simulations are 
presented to examine the performance of these algorithms 
in this environment. These simulations also compare the 
performance of this environment to a more conventional, 
single user environment. 
Keywords:  Matching and Scheduling, DAG, Multiuser, 
Poisson Random Process, List Scheduling. 

1    Introduction 
Heterogeneous computing has a number of distinct ad- 

vantages [2, 3, 4], centering around the ability to utilize 
the features of different machine architectures. A central 
theme of heterogeneous computing is the ability to con- 
struct a single computational entity from a network of het- 
erogeneous machines. As advanced networking technolo- 
gies become available, the practical size of these hetero- 
geneous environments is growing to a point where it is 
possible to create a single computational resource from a 
set of high performance computers distributed across the 

globe. In such a system, multiple users will be able to 
simultaneously utilize the computational resources of this 
network to execute a variety of large parallel applications. 
The primary challenge of using such a computing environ- 
ment is to obtain a near-optimal solution to the matching 
and scheduling problem. To accomplish this task, there are 
several unique characteristics of this environment which 
must be considered: the dynamic nature of the machine 
and network loads, the size of the network, and the need 
for multiple users to fairly compete for the computational 
resources. 

Given these issues, this paper presents a framework for 
executing multiple applications in this heterogeneous envi- 
ronment. These applications have a directed, acyclic graph 
(DAG) structure. In this framework, each application is 
responsible for scheduling its own tasks. Thus there is no 
centralized scheduling authority. This paper also presents a 
series of algorithms to operate within the framework. One 
of these algorithms is based upon a static matching and 
scheduling algorithm, called the DLS algorithm, first pre- 
sented by Sih and Lee [1]. These algorithms attempt to 
predict the future loads of the machines, by modeling task 
arrivals as a Poisson random process. A series of simula- 
tions are presented to demonstrate these methods. In the 
next section, relevant background material is examined, 
and, in Section 3, an overview of the execution environ- 
ment is presented. Section 4 gives a detailed presentation 
of the algorithms used within this environment. The re- 
sults of a simulation study are discussed in Section 5, and 
conclusions from these results are offered in Section 6. 

2   Background 
The majority of the interest in DAG scheduling has 

been restricted to static environments. One simple and 
efficient type of heterogeneous scheduling method is the 
level-based algorithm, which schedules a task based upon 
that task's depth in the DAG. Some methods which fall into 
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this category include those presented by Leangsuksun and 
Potter [5], who study a variety of simple, heterogeneous 
scheduling heuristics, and a method called the LMT algo- 
rithm, which assigns all of the tasks at a particular depth in 
the DAG at one time [6]. Kim and Browne [7] present a 
static scheduling technique called linear clustering, where 
tasks are clustered into chains of tasks, and these clus- 
ters are mapped onto the physical machines. This hetero- 
geneous scheduling method has limited application to the 
proposed problem, since it assumes that the individual pro- 
cessors perform uniformly for all code types (i.e. the per- 
formance of a task on each heterogeneous processor varies 
only by a scale factor). A more complex static method, 
called the MH algorithm, is presented by El-Rewini and 
Lewis [8]. Again, this method is limited in that it uses the 
same simple model of a heterogeneous system as in [7]. 
Another method is the Cluster-M technique introduced by 
Eshaghian and Wu [9], which clusters tasks together based 
upon architectural compatibility. Of interest to this re- 
search is the method presented by Sih and Lee [1]. This 
static technique, called Dynamic Level Scheduling, sched- 
ules tasks by using a series of changing priorities. The DLS 
algorithm has been shown by Sih and Lee to be superior to 
other static DAG scheduling algorithms for heterogeneous 
systems, and will be discussed in more complete detail be- 
low. 

While most of the DAG scheduling algorithms are 
static, there are a few algorithms that examine the prob- 
lem of scheduling DAGs in a dynamic environment. For 
heterogeneous systems, Haddad [10, 11] presents a dy- 
namic load balancing scheme for DAGs. This scheme dif- 
fers from a conventional scheduling algorithm, in that it 
does not look at the exact structure of a given applica- 
tion. It instead uses a number of metrics that characterize 
the tasks and the task graph, to balance the computational 
load. For homogeneous MIMD systems, Rost et al. [12] 
present a scheduling model called agency scheduling. This 
model supports decentralized scheduling decisions by giv- 
ing a set of distributed scheduling tasks control over a local 
set of processors. Neither of these methods explicitly con- 
sider the problem of scheduling multiple applications in 
a distributed environment. This paper presents a new dy- 
namic scheduling method, which is designed for some of 
the unique features of this environment. In the next section, 
these features are examined in detail. 

3   Definitions 
As stated above, in this environment, multiple appli- 

cations are competing for the computational resources of 
the network. Each application is represented by a set 
of communicating tasks. These tasks are organized us- 
ing a DAG, G = (V, E), where the set of vertices V — 
{vi, t>2, • • •, vn} represents the set of tasks to be executed, 

and the set of weighted, directed edges E represents com- 
munication between tasks. Thus, e^ = (vi,Vj) £ E 
indicates communication from task Vi to Vj, and \eij\ 
represents the volume of data sent between these tasks. 
The execution environment consists of a set of hetero- 
geneous machines, which can be represented by the set 
M = {mi,m2,. ■.,T7ig}. The computation cost function, 
C : V x M -> 5ft, represents the execution cost of each 
task on each available machine. Thus, the cost of execut- 
ing task Vi on machine rrij will be denoted by C(vi,mj). 
If a particular task cannot be executed on a given machine, 
the function will evaluate to infinity. 

In this environment, each machine is limited to execut- 
ing one task at a time. There are several compelling reasons 
to adopt this organization. 

1. In DAG scheduling, when a task is scheduled, it is de- 
sirable to know the time at which the task will com- 
plete execution. In a system where multiple tasks 
can simultaneously execute on a machine, the com- 
pletion time of a given task depends upon the other 
tasks which are also executing on the machine. Since 
tasks from other applications may arrive at any time, 
it is not possible to determine the completion time a 
priori. 

2. When system loads are able to change after a task has 
been assigned, task migration is necessary to balance 
machine loads. Task migration can be difficult in a 
heterogeneous environment, since there is no guaran- 
tee that there is another machine available to execute 
a given task. 

To ensure that each machine can execute only one task 
at a time, each machine will have a FIFO queue. Tasks 
wanting to execute on a machine must wait in the ma- 
chine's queue until the machine is available. However, it is 
possible for a task to receive data from predecessors while 
another task is executing, and likewise send data to suc- 
cessor tasks. Since such communication is not processor 
intensive, it should have little effect upon the execution of 
the running task. 

The above organization does not include any resources 
for making scheduling decisions. Therefore, there will 
be another set machines in the network: scheduling ma- 
chines. Each application will execute a scheduling task 
(on a scheduling machine), which is responsible for mak- 
ing all of the scheduling decisions for that application. 
Ideally, these scheduling machines would be general pur- 
pose workstations (possibly even the user's workstation). 
A conceptual model of this environment is shown in Fig- 
ure 1. 

Since each application is self-scheduling, an applica- 
tion only has direct knowledge of its own tasks.    The 
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Figure 1: Conceptual model of execution environment. 

only information it has about other applications is in the 
form of machine and network load estimates. The schedul- 
ing machines are responsible for maintaining this dynamic 
state information. The load of a particular machine rrij 
is characterized by the queue length Qmj, the task arrival 
rate Xmj, and the average size lm. of the arriving tasks, 
in terms of execution time. Although beyond the scope 
of this paper, techniques will be needed to acquire and es- 
timate this loading data. One such method is presented 
by Hou and Shin [13], who use Bayesian decision theory 
to predict queue lengths using observations which may be 
out-of-date (due to the network latency). 

The communication costs are represented using the 
function D : E x M x M -> K. Thus, the cost of 
sending the message from task vr to task vs (represented 
by edge ers) from machine m* to machine rrij will be 
D(ers,mi,m,j). Communication between tasks compli- 
cates the matching and scheduling process in this environ- 
ment. In order for a task to begin execution, two condi- 
tions must be satisfied: (1) data from previous tasks must 
be available, and (2) the task must be at the head of the 
queue. Ideally, both of these conditions would be satisfied 
at the same time. Achieving this goal is not likely, however. 
Thus, there are two possible scenarios: 

1. Data is available before the task reaches the head of 
the queue. In this case, the task will have to wait to 
begin execution (the task should have been placed in 
the queue earlier). This queuing delay can potentially 
increase the completion time of the application. Other 
applications are unaffected. 

2. Task reaches the head of the queue before data is 
available. In this case, the task was placed in the 
queue too early, and the task will have to wait for 
the data. As it waits, the machine will be idle, and 
the other tasks in the queue will have their progress 
blocked. 

There is a significant problem with having a task block 
the queue. When a task is allowed to block the queue for 
an arbitrary amount of time, it is no longer possible to ac- 
curately determine the completion time of a task when it 
is placed in the queue. However, there is a means of lim- 
iting the effects of this behavior. It is possible to require 
the scheduling algorithm to estimate the amount of block- 
ing time that a task is likely to incur, based upon the queue 
length and the time at which the data is expected to arrive. 
This estimate can then be explicitly included as part of the 
queue length estimates, thus minimizing the effects of any 
blocking time. Even with this modification, blocking time 
still represents a waste of machine resources. 

Some additional definitions are needed by the matching 
and scheduling algorithms defined below. The static level 
of task Vi, istatic(vi), is defined to be the largest sum of 
the median execution times of the tasks along any directed 
path from task vt to an end node of the graph. Since the en- 
vironment is heterogeneous, the median execution time of 
a task vt, denoted C(vi), is used to characterize the over- 
all behavior of that task. If the actual median is infinite, 
the median value will be replaced with the largest finite 
execution time. In order to differentiate between different 
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machines, the term 

A(vi,mj) = C(vi) - C{vi,mj) (1) 

is defined to indicate the speed that machine rrij executes 
task Vi, relative to the median value. A large value of A 
implies a fast machine. Given this set of definitions, the 
details of matching and scheduling in this environment will 
be presented in the next section. 

4   Matching and Scheduling Algorithm 
In this section, we will define a framework for solv- 

ing the matching and scheduling problem in the environ- 
ment defined above, and then present specific algorithms 
for each portion of the framework. The framework will be 
defined as a series of sets containing the tasks of the ap- 
plication, and a series of heuristics to move tasks between 
these sets. The first set will be the set of unscheduled tasks, 
denoted U. As its name implies, the set U will contain 
tasks which have not been scheduled to execute on a partic- 
ular machine. At the beginning of the algorithm, all tasks 
are members of the set U. 

In list scheduling methods, no task can be scheduled un- 
til all of its predecessors have been scheduled. Using this 
ordering, we can define the set of ready tasks R to be the set 
of tasks whose predecessors have been scheduled, and thus 
can be assigned to a machine. From the definition above, 
it is clear that R C U. Below, a heuristic will be defined 
that will choose the best-suited task (and the machine to 
execute it on) from this set of ready tasks R. This will be 
called the matching decision policy. Since much of the in- 
formation used by the matching decision policy is dynamic 
in nature, it is important to consider the time at which the 
matching and scheduling decisions are made. This time 
will be determined by a heuristic called the scheduling time 
policy. The combination of these two policies will move 
tasks from set R to a new set P: the set of pending tasks. 
The set of pending tasks P is the set of tasks which have 
been assigned to execute on a particular machine, but have 
yet to be placed in the appropriate machine's queue. This 
set is partitioned into q subsets Pi,P2,... ,Pq. Each sub- 
set Pj contains the tasks which have been assigned to ma- 
chine rrij. When a task has been placed in the queue, it is 
moved into a final set 5, the set of scheduled tasks. The 
time at which a task is placed in the appropriate queue is 
determined by a heuristic called the queuing time policy. 
Figure 2 illustrates the sets defined above, and the flow of 
tasks from one set to another. 

Given these definitions, the process of making a deci- 
sion within this framework can be broken down into three 
steps: determining how to make a matching and scheduling 
decision (matching decision policy), determining when to 
make a matching and scheduling decision (scheduling time 
policy), and determining when to place a scheduled task in 

Matching Decision Policy & 
Scheduling Time Policy 

P: pending tasks 

Queuing Time 
Policy 

Figure 2: Dynamic DAG Scheduling Framework. 

the chosen queue (queuing time policy). Figure 3 shows 
the algorithm which governs how each of these steps is 
executed. Every T time units, this algorithm will use the 
policies discussed above to move tasks between the vari- 
ous sets. The value of T is called the examination interval. 
In the subsections below, algorithms will be presented for 
each of these policies. The matching decision policy will 
be a dynamic adaptation of the DLS algorithm presented 
by Sih and Lee [1]. The scheduling time and queuing time 
policies will use probabilistic methods to determine the ap- 
propriate time to schedule or queue tasks. 
4.1    Matching Decision Policy 

As mentioned above, the matching decision algorithm 
is based upon a dynamic adaptation of the DLS algorithm. 
Therefore, a brief overview of the relevant portions of the 
original static version of the DLS algorithm will be pre- 
sented first. 

4.1.1    Static DLS Algorithm 

In [1], Sih and Lee present the DLS algorithm: a compile 
time, static algorithm for scheduling a DAG onto a set of 
heterogeneous machines. This algorithm, can be catego- 
rized as a list scheduling algorithm, where the tasks are as- 
signed to the machines in topological order. As with nearly 
all list scheduling algorithms, the DLS algorithm operates 
by assigning a priority, called a level, to each task in that 
graph. This priority is then used to choose among the set of 
tasks which are ready to be scheduled at that time. The the 
DLS algorithm differs from previous algorithms in that the 
level of a task depends upon the tasks which have already 
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While U^<f>,do: 
begin 

While the scheduling time policy indicates 
that tasks should be scheduled: 

begin 
Use matching decision policy to 

choose a task-machine pair 
(choose a task to move from 
set R to set P). 

Check precedence constraints of 
tasks 
(find any tasks which can be 
moved into set R). 

end 
Use queuing time policy to examine 

pending tasks 
(move tasks ready to be queued from 
set P to set S). 

Wait T time units. 
end 

Figure 3: Generic matching and scheduling algorithm for 
the framework 

4.1.2    Dynamic Matching Decision Policy 

As mentioned above, the purpose of the matching decision 
policy, given a set R of tasks ready to be scheduled, is 
to find the "best" task-machine pair from the set of ready 
tasks R. This decision policy can be constructed using a 
modified version of the dynamic level equation presented 
above. 

In order to operate in a dynamic environment, the terms 
of the dynamic level expression, shown in equation 2, will 
require modification. Examining the individual terms of 
this expression, it can be seen that the first and last terms 
do not depend upon any data which is dynamic in nature. 
However, the middle term, max[idata(ui,m:)), ifree(mj)], 
which denotes when the task will be able to begin execu- 
tion on the specified machine, does depend upon dynamic 
information. The two arguments of the max operator repre- 
sent the two independent events which need to be satisfied 
in order for a task to begin executing on a machine. For the 
environment discussed above, the two terms needed are the 
time at which the data is available on the chosen machine 
and the time at which the machine is idle, and thus able to 
execute the task. For this environment, this second quantity 
is defined to be 

been assigned. This concept is called the dynamic level of 
a task, and is defined to be 

^dynamic\^ii 7^1 j ) — 

istatic(vi) - max[tdSita(vi,Tnj),t{Tee(mj)] 

+A(vi,mj), (2) 

where tfiee(m,j) denotes the time at which machine rrij 
will be idle, and idata(vi,mj) denotes the time when 
task Vi 's data will be available on machine rrij. The first 
term of the expression is the static level of the task. This 
term indicates the path length to the end of the graph. Since 
a long path is more likely to be the critical path of the 
graph, a large value of Lstatic will increase the schedul- 
ing priority. The second term indicates when the task can 
begin on the machine, based upon the time when the data 
is available on the machine, and the time at which the ma- 
chine is able to execute the task. An earlier starting time 
will imply a higher priority. The third term indicates how 
fast the machine rrij will execute the task, relative to the 
other machines in the system. With this dynamic level ex- 
pression, making a matching decision is equivalent to find- 
ing the ready task and machine which maximize the above 
expression. Another advantage to this approach is that both 
the task and processor are chosen at the same time. Sih and 
Lee show that this policy is superior to independently se- 
lecting either the task or the processor. 

tfreeirrij) =t + QTl +   X]   c(vk,mj), (3) 

where t is the current time. The second term in the ex- 
pression is the execution time of the tasks in machine rrij's 
queue at this time, and the last term represents the total ex- 
ecution time of the tasks in set Pj (i.e. waiting to be placed 
in machine m/s queue). With this modification, this por- 
tion of the DLS algorithm can be used as the matching de- 
cision policy. The next issue of interest is the process of 
determining when to make a scheduling decision. 

4.2    Scheduling Time Policy 
As shown by Sih and Lee [1], it is better to choose the 

task and machine simultaneously, rather than choose ei- 
ther independently of the other. Thus, the purpose of the 
scheduling time policy is to determine when it is appropri- 
ate to make matching and scheduling decisions, not when 
to schedule a particular task. There is a tradeoff inherent 
in deciding when to schedule a task. Since the loading in- 
formation used by matching decision policy will change 
with time, if a task is scheduled early, the information used 
to make the decision could be too inaccurate to be of use. 
However, if the algorithm waits too long to schedule the 
task, it is possible that a desired machine will be unavail- 
able (due to a long queue) and the task will be forced to 
execute on a suboptimal machine. 

In this paper, the following heuristic is proposed to de- 
termine when scheduling decisions should be made.   A 
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scheduling decision will be made if the probability that 
any ready task will experience queuing delay on its most 
desired machines exceeds a predefined threshold value. To 
simplify the derivation of this probability, consider a single 
machine rrij. Using the above information, we can derive 
an expression defining the probability that a task will expe- 
rience queuing delay on this machine if it is not assigned to 
the machine now (if it is not assigned now, it would have to 
wait a minimum of T time units until the scheduler exam- 
ines the situation again). In other words, we would like to 
find the probability that a sufficient number of tasks from 
other applications will arrive (and be placed in the queue) 
in the next T time units such that the task will be forced to 
experience queuing delay. 

To determine an expression for this probability, it is nec- 
essary to define a "critical number" of tasks—the minimum 
number of average-sized tasks which would have to arrive 
within the examination interval T, such that any task as- 
signed at time (T + t) would experience queuing delay. 
Assuming that the arriving tasks are of average size lm., 
the critical number will lie within the interval 

•-slack T + t, slack 

tu 
(4) 

where isiack denotes the difference between the time at 
which the data will be available and the time at which the 
queue will be empty. This term, called the slack time, is 
defined to be 

t slack 

*data — (Qrrij + t)     if tdata > (Qrrij + t) 
0 otherwise 

(5) 

While it is more likely that the critical number will be 
closer to the upper bound of this interval, it is better to 
use the lower bound, due to the behavior of the method in 
the boundary condition (which will be explained below). 
Therefore, in this paper, the critical number of tasks z will 
be defined to be 

'slack 

lr, 
(6) 

Now, assuming that the task arrivals can be reasonably ap- 
proximated using a Poisson random variable, the probabil- 
ity that the number of arrivals k within the interval T will 
be greater than or equal to z can be defined to be 

Pm,[k>z]      =      1-P[k<z] 

k=0 

-\m.T 

k\ 
(7) 

The reason for choosing to use the lower boundary in equa- 
tion 5 is due to the case when £s]ack is equal to zero. By 

defining the quantity z in this manner, equation 7 will eval- 
uate to one. 

This expression only considers the probability of expe- 
riencing queuing delay on a single machine. In reality, it 
is likely that there will be more than one machine avail- 
able to execute the task. It is therefore desirable to expand 
the above expression to consider the possibility of a task 
experiencing queuing delay on more than one of its best 
performing machines. Thus, the scheduling time policy 
will be defined to schedule tasks if there is a ready task 
which has a probability of experiencing queuing delay on 
its three fastest machines that is greater than a predefined 
threshold ß. So, to determine if a task is "in danger" of not 
getting a desired machine, the algorithm finds the machines 
rrii, rrij, and m^ on which the task executes the fastest. 
Then, the algorithm computes the critical number z for 
each of the above machines, (denoted zmi, zmj, and zmie) 
and the probability of experiencing queuing delay on each 
of these machines, using equation 7 above. With these val- 
ues, the overall probability of not getting one of these three 
machines is 

queue — (-*"»,•["' ^ ^rm])' 

(Pmj[k>Zmj})-(Pmk[k>Zmk)). (8) 

The choice of three is clearly a heuristic. The advantage 
of using a fixed number, like three, is primarily computa- 
tional: the algorithm will be more efficient, which is im- 
portant in a dynamic environment. If there are fewer than 
three machines on which a task can execute, the probabil- 
ity will be computed using this lesser number of machines. 
The choice of the value ß is also a heuristic. A series of ex- 
periments are performed to evaluate the choice of a value 
for the parameter ß. These results will be presented in Sec- 
tion 5. 

4.3    Queuing Time Policy 
As discussed above, when placing a task in a queue, 

there are two possible scenarios: the task is placed in the 
queue too early and experiences blocking delay, or the task 
is placed in the queue too late, and experiences queuing 
delay. The ideal time to place a task in the queue lies be- 
tween these two extremes. The formulation of the queuing 
time policy will use a probabilistic formulation similar to 
the scheduling time policy described above. To construct 
a heuristic to attempt to place a task in the queue at the 
appropriate time, a pair of cost functions will be defined. 
The first cost function, Cbiock, will indicate the blocking 
cost the task will experience if it is placed in the queue 
now. The second cost function, Cqueue. will indicate the 
probable queuing cost the task will experience if the queu- 
ing algorithm waits another T time units to assign the task. 
The goal of the queuing time policy is to place each task in 
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the queue in a manner which minimizes both the queuing 
and blocking cost. 

The blocking cost function is defined to be the amount 
of blocking time the machine will experience. Given the 
time at which the data is available, idata> and the queue 
length at time t, Qm., the blocking cost is 

Cqueue — (klmj        ('slack T -I )) 

^block — ^data — (Qm, — t) — t. slack- (9) 

This value is equal to the £siack term defined above. 
The definition of the queuing cost function is more elab- 

orate. While the blocking cost is a deterministic quantity 
(provided that idata and Qmj are accurate) the queuing cost 
is stochastic, in that it will depend upon the probability of 
future arrivals in the queue. Like the probable queuing cost 
definition from the scheduling time policy, this cost func- 
tion will depend upon a critical number z. This number 
represents the minimum number of averaged-sized tasks 
which have to arrive in order for the task to experience 
queuing time. As before, z is defined to be 

z = 'slack 
(10) 

However, unlike the scheduling time case, we are not in- 
terested in the probability of experiencing queuing delay, 
but the probable amount of queuing delay. To determine 
this quantity, first consider a simpler task of finding how 
much queuing time a task would experience if exactly k 
tasks were to arrive in the time interval T. In this case, the 
queuing cost is 

queue (k) = 

f  klmj - (islack + T)    if klmj > (£slack + T) 
\ 0 otherwise 

(11) 

This expression can then be used to determine the probable 
queuing cost, by multiplying by the discrete probability of 
exactly k arrivals, and summing over all possible values 
ofJfc: 

(-'queue —  /  J 'queue("v-*  L^ — k\ 

=    5^(Wm,. - (Wk + T))P[n = k] 

=    f^(klm]-(tslack + T))(^T)  ■ 
k=: 

k\ 

(12) 

Since it is undesirable to compute an infinite summation, 
the expression can be rearranged to become 

- 5>'™, - (*slack + D)^£«rA-iT. 
k=0 

(13) 

Now, given these two cost functions Cqueue and Cbiock. 
the queuing time policy will place a task in its queue 
when the blocking cost is greater than the queuing cost. 
However, as mentioned previously, the queuing cost and 
blocking cost may not have the same effect upon the sys- 
tem. Therefore, an additional parameter 7 will be intro- 
duced, in order to modify the relative weight of the two 
cost functions. Thus, to decide whether or not to queue 
a particular task, the algorithm will compute the quantity 
Cqueue - 7Cbiock- Every T time units, the algorithm will 
compute this quantity for each of these pending tasks. If, 
for a given task, the quantity is negative, the machine will 
not place the task in the queue at this time. Otherwise, if 
the quantity is positive, the task is placed in the queue. As 
was the case for the scheduling time policy, the choice of 
the parameter 7 will be examined experimentally in Sec- 
tions 5. 

5    Results 
To evaluate these methods, a series of simulations were 

performed, using a custom, event-based simulator. These 
simulations examine the effects of the parameters ß and 7, 
and compare the performance of the algorithms to the static 
DLS algorithm, which uses a more conventional environ- 
ment where each user has exclusive use of the machines 
for a period of time. A representative set of results are 
shown in the figures 4 and 5. In this case, eight 64-task 
applications are scheduled on a 16 machine heterogeneous 
system. The execution times, task graphs, and computation 
costs were randomly generated, and it is possible for a task 
not to be able to execute on every machine. The graphs 
were generated such that they were capable of using about 
8 machines in parallel. 

The starting time of each of the applications was chosen 
over a random interval between 0 and 200 time units, to 
limit any artificial effects from starting all the applications 
at the same time. The examination interval T was chosen 
to be 1 time unit. The results shown in the graphs are an 
average of 5 separate simulations, to minimize any effects 
caused by specific graph structures. For each simulation, 
the schedule length of the applications was recorded, and 
the efficiency of the computation was determined. The ef- 
ficiency measures the amount of blocking time in the sys- 
tem, relative to the amount of computation. For example, 
an efficiency of 0.75 would indicate that 75% of the total 
CPU time used was useful computation, and the remain- 
ing 25% was blocking time. 
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Figure 4:   Average Schedule Length and Efficiency vs. 
Miss Probability (ß). 

Figure 5:   Average Schedule Length and Efficiency vs. 
Blocking/Queuing Cost Ratio (7). 

Figure 4 shows the schedule length and efficiency ver- 
sus the parameter ß (probability of missing the three fastest 
resources). These values are averaged over all of the val- 
ues of 7. Overall, the parameter ß has a relatively small 
effect upon the schedule length, which is likely due to the 
good quality of the loading information presented to the 
algorithm. However, for larger values of ß, the schedule 
length tends to be long, since there is a higher probability 
that a task will have to execute on a suboptimal processor. 
Likewise, for very small values of ß, the schedule length 
is also long, due to the fact that the scheduling decision 
was made with less accurate loading information. The effi- 
ciency is more or less constant with respect to ß, since this 
parameter has no real effect upon the blocking time of the 
system. 

Figure 5 shows the other case: the schedule length and 
efficiency versus the parameter 7 (queuing/blocking cost 
ratio), averaged over all of the values of ß. These results 
show the negative effect of blocking time upon the sys- 
tem. Using small values of 7, it is possible to get lower 
schedule lengths by placing the tasks in the queue early, 
and incurring blocking time. However, this has an adverse 
effect upon the efficiency, and, for slightly larger values 
of 7, tends to have a negative effect upon the schedule 
length (since processor resources are wasted). For simula- 
tions with more applications, the blocking time has an even 
greater impact upon the schedule length. For larger values 
of 7, there is a distinct minimum in the graph, represent- 
ing the best trade-off between blocking time and queuing 
time (for this simulation). At this point, the best schedule 
lengths can be obtained without incurring large amounts of 
blocking time. 

It is also desirable to compare the performance of this 
method to a static scheduling paradigm, where each ap- 
plication has exclusive use of all (or a portion) of the ma- 
chines in the network. To accomplish this, each task graph 
was also scheduled using the static DLS algorithm. Us- 
ing this data, the speedup was computed to be the total 
time needed to execute all eight applications sequentially, 
divided by the total time needed to execute all eight ap- 
plications in the dynamic environment. Given that each 
application used in this experiment is, on average, capa- 
ble of utilizing eight machines, the closest comparison of 
these two environments is for an eight machine system. In 
this case, the maximum speedup over all parameter val- 
ues was found to be 1.21, a 21% improvement over the 
static environment. The speedup in the 16 machine sys- 
tem is considerably higher, since, on average, half of the 
machines will remain idle in the static environment (where 
all 16 machines are dedicated to the application). In this 
case, the maximum speedup was found to be 2.36. As ex- 
pected, the dynamic scheduling method outperforms the 
static method, since it allows other applications to use com- 
putational resources which would be left idle in a static 
scheduling paradigm. 

6   Conclusions 
In this paper, a means of competitively scheduling mul- 

tiple DAG-structured applications in a distributed hetero- 
geneous environment is presented. Initial results show that 
this type of scheduling is practical, and confirm the as- 
sumptions made about the behavior of the scheduling en- 
vironment. Currently, the authors are working on imple- 
menting these algorithms on an actual distributed network, 
to better evaluate and refine the techniques presented here. 
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Abstract 
In this paper we study the performance of four map- 

ping algorithms. The four algorithms include two na- 
ive ones: Opportunistic Load Balancing (OLB), and 
Limited Best Assignment (LBA), and two intelligent 
greedy algorithms: an O(nm) greedy algorithm, and an 
0(n2m) greedy algorithm. All of these algorithms, ex- 
cept OLB, use expected run-times to assign jobs to ma- 
chines. As expected run-times are rarely deterministic 
in modern networked and server based systems, we 
first use experimentation to determine some plausible 
run-time distributions. Using these distributions, we 
next execute simulations to determine how the map- 
ping algorithms perform. Performance comparisons 
show that the greedy algorithms produce schedules that, 
when executed, perform better than naive algorithms, 
even though the exact run-times are not available to 
the schedulers. We conclude that the use of intelligent 
mapping algorithms is beneficial, even when the expec- 
ted time for completion of a job is not deterministic. 

1     Introduction 
This paper describes the experiments and simula- 

tions that we executed to determine the relative per- 
formance of certain mapping algorithms in different 
heterogeneous environments. In this paper we assume 
that all jobs are independent of one another. That is, 
they do not communicate or synchronize with one an- 
other. This type of architecture is common in today's 
LAN-based distributed server environment. 

Our goal was to determine whether using intelli- 
gent mapping algorithms would be beneficial, even if 

"This research was supported by DARPA under contract 
number E583. Additional support was provided by the 
Naval Postgraduate School and the Institute for Joint Warfare 
Analysis. 

the jobs did not run for exactly the amount of time 
expected. Intelligent mapping algorithms utilize the 
expected run-times of each job on each different ma- 
chine to attempt to minimize some scalar performance 
metric. For our experiments, this metric is the time at 
which the last job completes. In particular, we were 
concerned about whether it would still be beneficial 
to use intelligent mapping if one or several jobs run 
for a substantially different amount of time than ex- 
pected, but are still accurately characterized statist- 
ically. Because determining a perfect mapping is an 
NP-complete problem, we examined the performance 
of several different (polynomial) heuristics. The al- 
gorithms we chose are listed below. 

• A naive O(n) algorithm known as Opportunistic Load 
Balancing (OLB). This algorithm simply places each 
job, in order of arrival, on the next available machine. 

• A simple O(nra) algorithm known as Limited Best 
Assignment (LBA). This algorithm uses the expected 
run-time of each job on each machine. It assigns each 
job to the machine on which it has the least expected 
run-time, ignoring any other loads on the machines, 
including that produced by the jobs that it has as- 
signed. 

This algorithm, though easily implementable in a 
scheduling framework that automatically assigns jobs 
to machines, is very similar to the algorithm used by 
many users who remotely start their jobs by hand 
at supercomputer centers without examining queue 
lengths. 

• Two greedy algorithms, one of order O(nm) and the 
other of order 0(n2m). Both of these algorithms make 
use of the expected run-time of each job on each ma- 
chine as well as the expected loads on each machine. 
These algorithms will be more fully described in Sec- 
tion 2. 

0-8186-8365-1/98 $10.00 © 1998 IEEE 
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The primary reasons for our study are both that 
jobs rarely execute for exactly the expected run-time 
and often the expected run-times are not exactly 
known. In a system where each job has exclusive use 
of a machine, differences between actual and predicted 
run-times occur either because (1) all of the compute 
characteristics [10] are not known or enumerated by 
the designer of the program, or (2) because the time 
to access memory and disk is stochastic and not de- 
terministic. Of course, in many environments, addi- 
tional non-determinism is due to other jobs running on 
the machine or simultaneously using a shared network 
or a shared file server. This paper focuses on those 
cases where one or more of the jobs being scheduled 
have run-times that could differ substantially from the 
expected run-time. For those cases, we seek to de- 
termine whether there is still an advantage to using 
an algorithm that makes use of expected run-times or 
whether a computationally simpler algorithm that does 
not require estimating run-times, such as Opportun- 
istic Load Balancing (OLB), might not yield equival- 

ently good performance. 

In the next section, we describe the two greedy al- 
gorithms that we used in our experiments and simu- 
lations. We then describe our experiments concerning 
the non-determinism of expected run-times and exam- 
ine, using the derived distributions in simulations, the 
performance of the intelligent algorithms. That is, we 
collect run-times for various jobs on various machines, 
analyze their distributions, and extrapolate these dis- 
tributions for use in our simulations. We conclude the 
paper with a short summary and comparison to related 

work. 

2    The Greedy Algorithms 
In addition to the simple OLB and LBA algorithms 

described in the previous section, our experiments 
used two greedy algorithms. We now describe those 
algorithms in detail. 

The first algorithm is an 0(nm) algorithm, where n 
is the number of jobs and m is the number of machines, 
and the second algorithm is of order O(rrm). Each 
algorithm first estimates the expected run-time of each 
job on each machine, assuming that if a job cannot 
execute on a particular machine, the estimation will be 
set to some very large number. As we describe these 
algorithms we will consider these expected run-times 
as elements of a 2-dimensional, n by m matrix called 
A. That is, A[i,j] is the expected run-time of job i on 
machine j. 

The O(nm) algorithm, which, like in the SmartNet 
documentation [6], we will call Fast Greedy, considers 

the jobs in the order requested1. It first determines 
the value Aij, such that A\j < Aiik V k £ {l..m}. It 
then assigns job 1 to machine j. Following this, it adds 
A\j to all A{j V i £ {2..n}. Then, for each remaining 
job, p £ {2..m}, it determines the value Apj, such 
that APij < APtk V k £ {l..m}. It then assigns job p to 
machine j. Following this, it adds Apj to all A\j V i £ 
{p+ l..n}. At each step, then, it is assigning each job 
to its best machine, given the previous assignments. 
We note that the jobs are assigned in the order in which 
they were requested. 

The 0(n2m) algorithm, which again borrowing 
from SmartNet nomenclature we call simply Greedy, 
actually computes two mappings using two different 
sub-algorithms and then chooses the mapping that 
gives the smallest sum of the predicted run-times, min- 
imized over all machines. The two sub-algorithms are 
similar to the first greedy algorithm above, differing 
only in the order in which they assign jobs to machines. 
We first enumerate the steps of the first sub-algorithm. 

1. Initialize the set {Remaining Jobs} to contain all jobs. 

2. V i  €   {RemainingJobs},  find Aij   <  Ai:k V k  € 
{Machines}. Call such an Aij, A,tmin,- 

3. Determine p such  that  APlminp   <   A;,m!n,   V i   £ 
{Remaining Jobs}. 

4. Remove p from {RemainingJobs}, scheduling job p 
on machine minp. 

5. Add APlmmp to Aitm,np V i £ {RemainingJobs}. 

6. If {RemainingJobs} is not empty, return to step 2. 

The idea behind this first sub-algorithm is that, at 
each step, we attempt to minimize the time at which 
the last job, which has been thus far scheduled, fin- 
ishes. 

The second sub-algorithm differs from the first sub- 
algorithm in that, at the third step, it finds p such 
that AP)minp > Aitmint V i £ {RemainingJobs}. This 
algorithm, then tries to minimize the worst case time 

at each step. 

3    Effect  of Non-Determinism on  Al- 
gorithm Performance 

We now examine the effect of non-determinism on 
the performance of the greedy and LBA algorithms 
that we described above. Our reason for studying this 

'In describing these algorithms, we use the term order re- 
quested to mean the order in which the job requests have been 
placed prior to invocation of the algorithm. We also investig- 
ated the performance of these algorithms if jobs are first sorted 
before these algorithms are invoked. 
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is because both the LBA and the greedy algorithms use 
the expected run-time to produce their mappings. One 
of our major motivations for this work is to determ- 
ine whether such intelligent algorithms are still useful if 
the actual run-time is non-deterministic, that is, essen- 
tially sampled from a distribution around the expected 
run-time. In order to determine what distributions we 
should sample our run-times from in our simulation, 
we first conducted some experiments with actual pro- 
grams to try to determine what types of distributions 
characterize their run-times. 
3.1     Job Run-time Distributions 

We have already explained why job-machine run- 
times are typically not constant, but rather vary ac- 
cording to some distribution. To test the performance 
of our algorithms, it is essential to draw samples of 
the run-times of jobs from a particular distribution; 
but first we need to determine some realistic distribu- 
tions that we can use in our simulations. Therefore, 
we repeatedly executed some parallel and sequential 
programs, gathered run-time statistics, and analyzed 
them. 

We performed several experiments using the NAS 
Benchmarks [3]. These benchmarks were used to de- 
termine the types of run-time distributions that may 
be typical for at least some jobs on some machines. 
We needed to determine sample parameters for these 
run-time distributions so that they could be repro- 
duced by our simulator. While performing our tests, 
we controlled the following environmental character- 
istics: server location, network and server load, num- 
ber of processors, amount of memory, and processor 
speed. Table 1 summarizes the configurations of our 
machines caesar and elvis upon which we ran our 
experiments. 

caesar elvis 
Type SGI Challenge L Onyx 

Proc Speed (MHz) 200 150 
Proc Type (MIPS) R4400 R4400 
# of Processors 4 4 

Memory (Mbytes) 64 192 
Secondary Unified 

Cache 4 Mb 1 Mb 

Table   1:     Configuration   of SGI   machines   caesar and 
elvis, both running IRIX64 v6.2. 

The jobs that we used throughout these experiments 
were from two sources: NASA's reference implement- 
ation for some of the NAS Benchmarks, and our own 

implementations of other NAS Benchmarks that met 
the required criteria. Four of the experiments use some 
version of the NAS Integer Sort (IS) Benchmark, im- 
plemented either in parallel oil four processors, or in 
single processor mode. Two other experiments used 
the NAS Embarrassingly Parallel (EP) Benchmark run 
on a single processor. We now explain our experiments 
and their results. 

3.1.1     Integer  Sort,   Executed  on   Four   Pro- 
cessors 

This experiment examined the run-time distribution of 
a version of the NAS Integer Sort Benchmark executed 
on four processors. We implemented the integer sort 
using a counting sort [5, pages 175-178] algorithm. We 
used Silicon Graphic's light weight process (thread) 
support functions, including mforkQ, to implement 
our version of this benchmark. 

We ran this sort across a heavily loaded network, 
obtaining both the executable and the data from a file 
server that was also heavily loaded. When run on 
caesar, the run-time distribution, for 100 executions, 
appears Gaussian.2 Figure 1 shows a histogram of this 
distribution. When run on elvis, the run-time distri- 
bution, again for 100 executions, appears exponential 
and is shown in Figure 2. We note that the origin 
of the exponential distribution shown in Figure 2 is 
translated to approximately 3.0. That means that the 
sort had to run for at least 3.0 seconds before stopping. 
The distribution that we see very closely matches an 
exponential distribution with a mean of around 0.20, 
translated 3.0 seconds to the right. We expect that 
many jobs would have a distribution similar to this, 
because all jobs must run at least some amount of 
time3. 

In these experiments, we also see that memory size, 
and so, the need to swap to local disk, can have a 
definite effect upon the run-time distribution of a job. 
The integer sort on elvis completes, on average, 30% 
sooner than the same job on caesar. We note that, in 
this case, the amount of memory has more influence 

The form of the distributions were determined by carefully 
selecting the bin size and then curve fitting. The authors are 
familar with both visual and analytical tests for normality, but 
analytical tests were not used given the strong visual similarity 
of the frequency plots to that of a Normal curve. (The fact that 
some sample point frequencies lie above and below the selected 
Normal distribution is due to the number of samples being finite. 
Such phenomena would have appeared even if 100 data points 
had been sampled from a known Normal run-time distribution.) 

3An exponential distribution is defined to start at 0.0. If 
applied, without translation, in this case, that would mean there 
is a strong possibility of near-zero run-times. 
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Figure 1: Forked counting sort, caesar. 

3.1.2     Integer Sort, Single Processor 

This experiment is the same as that discussed in the 
last section, with the exception of being run on a single 
processor instead of being distributed across four pro- 
cessors. Although a slightly different C++ implement- 
ation was used, we again based our program on the 
counting sort. 

When the integer sort was run on caesar and 
elvis, the run-time distribution was not easily char- 
acterized; however, it appears related to a Gaussian 
distribution. Histograms of the distributions, sim- 
ilar to that shown in Figure 4, are possibly multi- 
modal, which indicates that multiple distributions may 
be present. While this experiment does not provide 
us with definitive results, it does point to the fact that 
run-time distributions can be quite complex. We sus- 
pect that these conditions are related to changes in the 
network and server loads. 

Counting Sort on Caesar, Single Processor 

Parallel Counting Sort on Elvis 

01 1 
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Run-time, seconds 
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Figure 2: Forked counting sort, elvis. 
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Figure 3: Counting sort, caesar, single processor. 

on the run-time of the job than does the speed of the 
processor. Of primary importance, however, is the ob- 
servation indicating that the same job, running on two 
different machines, not only has different mean run- 
times, but the distribution of run-times is different, 
yielding a Gaussian-like distribution on one machine 
and an exponential-like distribution on the other. 

Once again, this set of experiments showed us that 
additional memory can greatly enhance run-time per- 
formance. The tests on elvis ran 7 times faster than 
those run on caesar, which has the faster processors. 
The tests also show that run-time distributions can be 
very complex, and may be difficult to reproduce in a 
simulation. Although our simulations did not use such 
complex distributions, they should be modeled in fu- 
ture work. 

82 



30 
Counting Sort on Elvis, Single Processor 

i 

selvis.dat" -fl— 

25 100 Samples                                                  / 

Loaded network                                             ra 

Mean: 1.053 

■ 

20 
Sigma: 0.0988 

* 

u 
5 
3 

L. 

15 

R 

■ 

10 

' \ 
ii 

5 ■l\ V 
0  ' B ' D    LTl    ^\}.l.{3—p,,.^.  D   LT^iV   1 L \ 

epAl NAS Benchmark on Qesar 

0.89    0.895     0.9     0.905    0.91     0.915    0.92    0.925    0:93    0,935 
Run-time, seconds 

"epAI-caesar.dat" ■*■■ 

100 Samples 

Code on Machine: no network involved 

Mean: 743.72 

Sigma: 1.57 

 ' ' l l '—« 1 »-J—* i  *-l--. t 

740 745 750 755 760 765 770 775 780 

Figure 4: Counting sort, elvis, single processor. Figure 5: epAl NAS Benchmark, with executable residing 
on local disk. 

3.1.3     Embarrassingly   Parallel   NAS   Bench- 
mark 

The next set of experiments that we describe com- 
pared the run-time distributions of compute intens- 
ive jobs run from local disk to those run across the 
network from a file server. The tests that we de- 
scribe in this section were executed only on caesar be- 
cause elvis did not have a sufficiently large local disk 
available. We used the reference implementation [3], 
from NASA, of the NAS Embarrassingly Parallel (EP) 
Benchmark. This implementation uses the portable 
Message Passing Interface (MPI) [12] to parallelize the 
code. The tests we ran, however, were compiled to be 
executed on a single processor4. The EP Benchmark 
was run 100 times for each test. See Figures 5 and 6. 

3.2     Simulation Experiments 

We now describe our simulation experiments that 
are aimed at examining how well the mapping al- 
gorithms performed when the jobs scheduled did not 
execute for exactly the mean run-time. The matrices 
that we refer to in the description below have rows in- 
dexed by the job and columns indexed by the machine. 

• Matrix Format. We used different matrices contain- 
ing jobs and machines of varying characteristics. Each 
matrix contained mean run-times for each of five dif- 
ferent jobs on each of ten different machines. The av- 
erage means of the corresponding columns and rows 
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Figure 6:   epAl NAS Benchmark, files obtained over a 
lightly loaded network. 

were the same for all matrices and the jobs themselves 
were quite heterogeneous. 

• Job Request Sets. In order to obtain different results 
for each matrix, we generated two random sequences 
of 125 job requests, which we will call 125-1 and 
125-2, where each individual request was chosen ac- 
cording to a uniform random distribution from among 
five different jobs.   We also generated two more ran- 
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dorn sets, this time of 500 job requests, calling them 
500-3 and 500-4. We did this to look at perform- 
ance variations between job request orderings, as well 
as to examine any performance differences that might 
occur because fewer or more jobs were requested. 

• Job Request Format. We generated each of the 5 
jobs, for each request, at random. Thus, in these ex- 
periments, the jobs were requested in random order. 
This was done because the order of job request af- 
fects the schedule. The Fast Greedy Algorithm maps 
and schedules the jobs on machines in the order in 
which they are submitted. The Greedy Algorithm 
uses the order to break ties. We chose to execute 
these randomly ordered requests both because they 
more closely mimic a real environment where differ- 
ent jobs are submitted by different users and because 
we wished to examine whether these algorithms per- 
formed better or worse when unsorted, as opposed to 
sorted, requests were submitted. 

• Run-time Generation for Simulations. We executed 
each simulation 15 times. In each run, a different 
value was used to seed the random number generator 
that was used to generate the simulated "actual" run- 
time duration. The total time required to execute each 
schedule was summed and the average was computed. 
Multiple seeds were used to ensure that our results 
were not skewed5. 

• Baseline Calculations. In addition to simulations 
where we generated simulated run-times from particu- 
lar distributions, we performed some baseline calcu- 
lations. These baseline calculations provided results 
that were, in effect, equivalent to running the simula- 
tion where the run-time of a job on a given machine 
was always exactly its expected run-time. 

• Actual Run-time Distributions. When we generated 
run-times that were different from the mean predicted 
run-times, we ran experiments for both Gaussian and 
exponential distributions. Based upon our experi- 
ments with the NAS IS and EP Benchmarks above, 
we chose to implement a translated exponential dis- 
tribution. 

Again, based upon our earlier experiments described 
in Section 3.1, we chose to use a truncated Gaussian 
distribution in our simulation experiments to mimic 
the Gamma distribution that best fit our data. We 
chose to truncate left of the mean at p — a. 

3.3 Results of Simulation Experiments 
where Jobs Ran for Times Different 
from the Predicted Run-times 

This set of experiments examined the performance 
of intelligent mapping algorithms when job run-times 

5This is a common method to reduce the influence of a single 
random number generation sequence that may be biased. 

differed from the expected run-times that were used to 
develop the mappings. Using the distributions identi- 
fied in the previous experiments, we instantiated spe- 
cific parameters in order to simulate some typical jobs. 
We simulated jobs with both exponential and trun- 
cated Gaussian run-time distributions. In this pa- 
per we summarize results; individual results from ad- 
ditional individual experiments, which are consistent 
with the conclusions that we make in this paper, can 
be found in Armstrong's thesis   [2]. 

The graphs in this section compare the final com- 
pletion times of the jobs under the various mappings. 
We use the label Baseline to mean that the value rep- 
resented would be the completion time if all of the 
jobs ran for exactly their predicted mean run-times. 
In order to emphasize the differences between the val- 
ues that we plot in the graph, we do not include the 
OLB run-times. The OLB run-times, for the expo- 
nential and Gaussian distribution simulations that we 
discuss below, averaged around 10,000 seconds in all 
cases shown, i.e., 500 requests. 

3.3.1     Exponential Distribution Experiments 

The results of these experiments compare the perform- 
ance of the various mapping algorithms when all jobs 
have an exponential run-time distribution. We re- 
call that the sample run-times from those experiments 
closely fit a shifted exponential distribution with mean 

of 3.0. 

Submission Sequence 
500-4 

I Baseline 

E Exponential 

fast greedy 
greedy 

Figure 7:   Exponential run-time distribution results, 

500-4. 
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We now compare the time at which the last job fin- 
ishes if executed according to each of the mappings, 
assuming that a job is not started on a machine until 
the last job completes. The figures in this section show 
both the expected completion time assuming determ- 
inistic run-times as well as under the assumption that 
the run-times are exponentially distributed, shifted to 
the right such that its mean matches the expected run- 
time. 

Figure 7 shows these comparisons for some matrices 
that we used in our simulations. This figure shows 
that the schedules built by the intelligent mapping 
algorithms are still effective even though the actual 
run-time of a given job on a given machine can differ 
greatly from its expected run-time. 

Submission Sequence 
500-3 

I Baseline 

H T-Gaussian 

Iba       greedy fast greedy 

3.3.2     Truncated Gaussian Experiments 

Figure 8:   Truncated Gaussian run-time distribution 
results, 500-4. 

We then performed additional simulations to exam- 
ine the performance of the the intelligent mapping al- 
gorithms when all jobs had approximately Gamma 
run-time distributions. We determined from our ex- 
periments that we could approximate such a distribu- 
tion by truncating a Gaussian distribution to the left 
of the mean at roughly fi — a. Throughout this exper- 
iment, the mean, fi, was the expected run-time for the 
individual job/machine pair, and a2 was set to 300% 
of fi. Therefore, these experiments are useful in de- 
termining whether, when the variance is very large for 
all jobs, the greedy algorithms still performed much 
better than both the LBA and OLB algorithms. No 
negative run-times were generated in our experiments 
because the truncation value was always positive. 

The results in Figure 8 show that the schedules are 
finishing up to 25% later than in the previous exper- 
iments. This not unexpected, as truncation will shift 
the mean of the resulting distribution to the right. In 
the next section we provide a theoretical discussion as 
to why we would expect the times to be at least 20% 
later. The results also show that the greedy algorithms 
still perform better than the OLB and LBA algorithms 
when job run-time distributions are truncated Gaus- 
sian with very large variances. Our experiments, and 
the theoretical explanation below, imply that it may 
be worthwhile to update the mapping as the jobs are 
being executed, to minimize the effect of the large job 
variances. 

3.3.3 Theoretical Explanation for Longer 
Run-times shown in Gaussian Experi- 
ments 

To theoretically predict the new mean of the truncated 
distribution described in the last section, we can use 
simple Gaussian statistics [1]. Without loss of general- 
ity, our explanation uses a standard Gaussian distribu- 
tion with a mean of 0 and a standard deviation of 1. If 
A(zi) is the area under the distribution from the mean, 
2 = 0, to z = z\, then it can be easily shown that the 
new mean, fi„ew, for our truncated distribution is 

f^ne -   4-1 .5-.4(1) 
(1) 

Using this, we see that the new mean should be /J.new = 
.20o-. 

Unfortunately, the truncation of the Gaussian dis- 
tribution only accounts for a 20% increase in the mean. 
Therefore, this explanation alone leaves some 5% un- 
accounted for. The remaining 5% is due to two factors. 
The first can be traced to the fact that we are using a 
truncated Gaussian instead of a Gamma distribution. 
The second is the fact that the expected value of the 
maximum of several Gaussian distributions is not the 
maximum of the expected values. The application of 
this well-known probability result to quality of service 
metrics is documented elsewhere [9]. 
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3.3.4     Comparison   of  the   Two   Greedy   Al- 
gorithms 

We note that in our results, presented both here and 
in Armstrong's thesis, the Greedy and Fast Greedy 
algorithms appeared to perform similarly. Over all of 
our experiments we only saw the Greedy Algorithm 
performing up to 15% better than the Fast Greedy Al- 
gorithm. Other work has suggested that the improve- 
ment should be much higher. However, the other work, 
to our knowledge, was based upon presenting sorted 
requests to these mapping algorithms. The theoretical 
explanation for these results is beyond the scope of this 
paper and is discussed in another paper [7]. 

4 Related Work 
To our knowledge, no one else has studied the 

performance of intelligent heterogeneous mapping 
algorithms when the run-times of jobs are non- 
deterministic, by using the distributions of run-times 
for actual programs determined under different re- 
source loadings. 

Ibarra and Kim [8] were the first to study the 
performance of the algorithms upon which we con- 
centrated. Their analytical study centered around 
determining the worst-case performance of the al- 
gorithms. Weissman [15] used simulation to study 
interference-based policies; that is, policies that take 
into account the fact that as you increase the load on 
any shared resource, the rate of execution of other jobs 
decreases. Our policies, and simulations, assumed that 
the jobs were executed on a first-come, first-served 
basis. Although we did not study their performance 
here, genetic algorithms have been proposed as a good 
way to schedule tasks on heterogeneous resources, par- 
ticularly when communication or synchronization is 
needed between tasks [13], [14]. Many systems have 
followed the lead of SmartNet [6] in implementing in- 
telligent schedulers, such as those we describe here, in 
their resource management systems [11], [4], [16]. 

5 Summary 
In this paper, we experimented with several applica- 

tions on resources with differing loads and fitted their 
run-times to distributions. We then used these dis- 
tributions to determine via simulation whether, when 
the run-times are non-deterministic, it is still benefi- 
cial to use intelligent algorithms that make use of the 
expected run-times to compute a mapping. We found 
that it continues to be beneficial even when the expec- 
ted run-time distributions have large variances. As 
the distributions in our simulations were derived from 
the execution of actual programs, our distributions are 
realistic.   However, there are additional distributions 

that are also realistic that we have not yet examined. 
We intend to pursue these in future work. 
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Abstract 
Data-parallel applications executing in multi-user 
clustered environments share resources with other 
applications. Since this sharing of resources dramatically 
affects the performance of individual applications, it is 
critical to estimate its effect, i.e., the application 
slowdown, in order to predict application behavior. In this 
paper, we develop a new approach for predicting the 
slowdown imposed on data-parallel applications 
executing on homogeneous and heterogeneous clusters of 
workstations. Our model synthesizes the slowdown on 
each machine used by an application into a contention 
measure - the aggregate slowdown factor - used to adjust 
the execution time of the application to account for the 
aggregate load. The model is parameterized by the work 
(or data) partitioning policy employed by the targeted 
application, the local slowdown (due to contention from 
other users) present in each node of the cluster, and the 
relative weight (capacity) associated with each node in the 
cluster. This model provides a basis for predicting realistic 
execution times for distributed data-parallel applications 
in production clustered environments. 

1. Introduction 

Clusters of workstations have been used effectively as 
parallel machines for large, data-parallel, scientific 
applications [3, 4, 6, 16]. Workstations in such clusters are 
typically time-shared, causing competing applications to 
split the CPU and memory capacity on each node. The 
result of such sharing is that the fraction of resources 
available for a single distributed parallel application is 
reduced, causing a slowdown in the overall application 
performance. In [1], Arpaci et al. have shown that this 
slowdown can be significant. When slowdown can be 
predicted accurately, this information can be used to 

*   Supported by a scholarship from CAPES (Brazil). 
** Supported in part by NSF contract number ASC-9301788 and ASC- 

9701333. 

improve scheduling decisions in shared distributed 
systems [9]. 

A number of researchers have investigated how 
slowdown might be calculated and used to improve 
performance. Slowdown on a single machine has been 
used for task scheduling (as shown in [3] and [6]) and to 
predict performance (as shown in [10], [13] and [22]). Co- 
scheduling algorithms developed for networks of 
workstations have taken the slowdown on each machine 
into account, as shown in [2] and [7]. Weissman [19] has 
proposed a scheduling model based on resource contention 
using an interference paradigm. The interference measure 
determines how much slower an application will compute 
or a parallel application will communicate. 

In this paper, we develop a new model for predicting 
the slowdown imposed on data-parallel applications 
executing on homogeneous and heterogeneous clusters of 
workstations. Our model synthesizes the slowdown on 
each machine used by an application into a contention 
measure - the aggregate slowdown factor - used to adjust 
the execution time of the application to account for the 
aggregate load. This factor can be combined with the time 
to execute the application in dedicated mode (on the same 
cluster) to provide an estimate of application performance 
in the presence of contention. 

The aggregate slowdown factor is based on both 
application-specific resource usage and node 
computational capacity. Node capacity depends both on 
the dedicated capacity (e.g., CPU speed) of the node and 
on the load experienced by the node. Note that the 
dedicated capacity of nodes in a cluster may be non- 
uniform when the nodes are heterogeneous. 

This paper is organized as follows. Section 2 introduces 
our model and the aggregate slowdown measure. We focus 
on aggregate slowdown factors for two common work 
partitioning policies (load-dependent and constraint- 
based) in Section 3. Section 4 discusses the local 
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slowdown in each node of the cluster. In Sections 5 and 6, 
we describe our experiments and evaluate the accuracy of 
the model presented. Section 7 concludes with a summary. 

2. The Environment 
We define a contention measure, the aggregate slowdown 
factor, that determines how load in the cluster will retard 
the performance of an individual application. Using this 
factor, the time X to execute a data-parallel application on 
a cluster is given by 

X=Xdedxsd, (1) 

where sd is the aggregate slowdown factor (dependent on 
the aggregate load in the cluster), and Xded is the time to 
execute the targeted application on the cluster without 
interference from competing applications. 

For this paper, we focus on loosely synchronous CPU- 
bound applications as defined by Fox [12]. These 
applications are coarse-grained data-parallel scientific 
applications in which computation and communication 
phases alternate. Such applications can profit from 
execution in clustered environments. 

The computational environment is a cluster of 
homogeneous or heterogeneous workstations. Note that 
the model is independent of the number of nodes in the 
cluster. We assume that the cluster is shared by CPU- 
bound serial and/or data-parallel distributed applications, 
which execute for the entire duration of the targeted 
application. Each node in the cluster has one CPU. We 
assume that contention due to CPU-bound applications 
sharing resources provides the major source of slowdown. 
Developing an accurate contention model for CPU-bound 
applications provides a fundamental building block for 
contention models for a more heterogeneous job mix in 
which competing applications may also be non-CPU 
bound. 

For this model, we consider the effects due to system 
overhead as well as application communication costs to be 
minimal. Although considering communication costs 
seemed essential at first, our experiments showed that for 
representative CPU-bound data-parallel applications the 
amount of communication was not significant. 

In our experiments, we assumed that each workstation 
schedules its processes locally and independently using a 
round-robin mechanism. Note that priority-based 
mechanisms, usually employed by workstations' operating 
systems, reduce to round-robin when the competing 
applications are CPU-bound [8]. 

Finally, we assume that the memory in each node fits 
the working set of all the applications executing on the 
node and that no delay is imposed by swapping. The 
model can be extended to include more varied memory 
access costs in a straightforward manner. 

3. Aggregate Slowdown 

Aggregate slowdown is defined to be the performance 
slowdown of an application due to other applications 
sharing the cluster. Aggregate slowdown factors must be 
calculated based both on the work partitioning policy and 
on the capacity of each node. Node capacity is given by 
two parameters, each determined for each node in the 
cluster: 
• sda = the local slowdown at node a and 
• wa = the weight of node a. 

The local slowdown at node a, sda, is the delay 
imposed on an application running on node a as a function 
of other applications that share a's CPU. We show how to 
calculate the local slowdown in Section 4. 

The weight of a node a, wa, reflects its dedicated 
capacity relative to the other nodes in the cluster. The 
value for wa can be calculated as the ratio of the time to 
execute a task on the slowest node s to the time to execute 
the same task on node a (as described in [7]). In a 
homogeneous cluster, wa - 1, for all a. To calculate 
weights for nodes in a heterogeneous cluster, we execute a 
serial benchmark in dedicated mode on the different nodes 
of the cluster and calculate the weight for each node a * s 
as wa - ts I ta, such that the machine with the longest time 
ts, has weight ws - 1. Note that weights are dependent on 
the benchmark chosen [7, 9]. 

The following subsections develop aggregate 
slowdown factors for two work partitioning policies 
commonly used by high-performance data-parallel 
applications: 
• load-dependent partitioning, in which the amount of 

work allocated to each node is calculated based on its 
computational capacity, and 

• constraint-based partitioning, in which work is parti- 
tioned among the nodes according to a set of constraints 
(e.g., memory availability). 

Note that we base our model on work partitioning (and 
not on data partitioning) since the computational effort 
required by a node is not always proportional to the 
amount of data the node is assigned. Note also that the 
model developed does not cover applications that have a 
dynamic work partitioning independent of the load, i.e., 
applications for which work partitioning varies throughout 
their execution (e.g., particle simulation). The model does 
cover these applications when a dynamic rebalance 
strategy, which takes the load of each node into account, is 
implemented as part of the code. 

3.1 Load-Dependent Partitioning 

In this partitioning, work is allocated according to the 
available computational capacity of each node in the 
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cluster. In this case, work is partitioned so that all nodes 
will finish together (ideally), assuming they all started at 
the same time. For this partitioning, we determine the 
aggregate slowdown in terms of the aggregate capacity 
available on the cluster. We define aggregate capacity as 
the sum of the available computational capacities of the 
nodes. We define capacitya as the available computational 
capacity of node a. It is important to note that the available 
capacity of each node depends on both its local load and 
its weight. For instance, for an unloaded node k, capacity^ 
= wk, and for a loaded node k, capacity k = wkl sdk. 

The aggregate slowdown is given by the ratio of the 
aggregate capacity available in the unloaded (or dedicated) 
cluster to the aggregate capacity available in the loaded 
cluster. We calculate the aggregate slowdown for a cluster 
formed by n nodes as 

sd = 
aggregate capacityded 

aggregate capacity 

(   "       ~) 
(2) 

(    » V 
y — 

Figure 1 illustrates a load-dependent partitioning. The 
work for application A is partitioned according to the node 
capacities of a set of heterogeneous nodes, as shown in the 
figure. If node 4 is twice as slow as the others (i.e., t\ = ?2 
= ?3 = r4 / 2), then sd= (2 + 2 + 2+1)/ (2/2 + 2/2 + 2/3 
+ 1 / 1) = 7 / 3.67 = 1.9 according to equation (2). 

  I 1 A 

A A ~f~ 

X X z A 

node 1 node 2 node 3 node 4 

Figure 1: Cluster formed by 4 heterogeneous nodes 
and shared by three applications: A, X, and Y. 
Application As work is divided among the nodes 
according to their computational capacity. Each box 
represents the amount of work associated with the 
corresponding node. 

3.2 Constraint-Based Partitioning 

When work is partitioned based on a set of constraints, 
such as memory availability or data locality, the aggregate 
slowdown can be calculated from the extra amount of 
work (relative to the work assigned in a uniform 
partitioning, in which the work is partitioned evenly 
among the nodes) assigned to each node. That is, the time 
to execute the part of the application assigned to each node 

is formed by two components: the amount of work that 
would be performed if the work partitioning were uniform, 
and the extra work that must be executed by a node 
because the work partitioning is not uniform. Using this 
approach, the time to execute the part of the application 
assigned to node a in the presence of contention is 

timea =  (timeadedxsda) + (timea>dedxewaxsda) 

=   timea^Xsd,,X  (l+<"0, 
(3) 

where 
• time   ded = time to execute the part of the application 

assigned to node a, in dedicated mode, 
• ewa - extra work executed by node a, calculated as 

ew„ = 
\/n 

=  ((/flx«)-l). 

• fa = fraction of work assigned to node a, and 
• n is the number of nodes in the cluster. 

Note that node a can be assigned less work than it 
would be if the partitioning were uniform. In this case, 
f < 1/rt and ewn< 0. 

■> a a 

If all nodes begin execution concurrently, the slowest 
node will determine the time to execute the application, 
which is given by equation (1). From (1) and (3), we can 
calculate the aggregate slowdown as 

X 
sd = 

xded 

max 
(1 + ewa) x sda 

(4) 

max 
• 

(l+gwfl) 
w, 

where the numerator represents the time it takes to execute 
the application in the presence of contention, and the 
denominator represents the time it takes to execute the 
application in dedicated mode. 

Note that the uniform partitioning policy, in which each 
node is assigned an equal amount of work, is characterized 
by ewa = 0 for all a, and the aggregate slowdown for this 
policy can also be calculated by equation (4). 

Equation (4) assumes that the targeted application will 
use the same constraint-based work partitioning (given by 
ewa) in determining both X and Xded. This may not be 
always the case, since the work partitionings used for X 
and Xded may be determined by different constraints. For 
example, if the partitioning depends on the memory 
available on each workstation, which varies according to 
the load, the partitioning used for the dedicated and non- 
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dedicated executions may not be the same. Therefore, we 
must allow for different constraint-based partitionings to 
be used for X and Xje(j. Call these constraint-based 
partitionings dj and d2- To accommodate for dj (for X) and 
d2 (for Xje(j), equation (4) is modified to 

max. 
j(l+ewa,)x^a[ 

sd = 

max •1 
(l+eWfli2) 

(5) 

where 
* ewa,y = extra work executed by node a with partitioning 

dy (y = 1, 2), calculated as 

eWa,y = \/n 

=  ((/a,v*«)-!), and 

* fay = fraction of work assigned to node a for partitioning 
dy(y=l,2). 

In the setting where the dedicated time Xjeci is given for 
a uniform work partitioning, equation (4) can be reduced 
to 

\(l+ewa)xsda[ 
max,. 

sd = (6) 
maxa{l/wfl} 

where the numerator represents the time to execute in the 
presence of contention with a constraint-based partitioning 
(characterized by ewa), and the denominator represents the 
time to execute in dedicated mode with a uniform 
partitioning. 

Since maxfl {l/wa}  = 1, for any set of nodes, 
equation (6) can be reduced to 

sd = max. 
(1 + ewj x sda 

(7) 

Figure 2 illustrates the constraint-based partitioning. It 
shows application A's work partitioning in a four-node 
cluster. The application has 12 work units, which are 
partitioned among the nodes according to memory 
availability. The dotted lines in the figure determine 
application A's work units. According to the figure,// = 1 / 
12,/2 = 3 / \2,f3 = 3/12, and/4 = 5/12. If the nodes are 
homogeneous, nodes 2 and 3 determine the time to 
execute application A. This happens because nodes 2 and 
3 are both assigned 3 work units, which are delayed by a 
factor of 2, whereas node 4 is assigned 5 work units, 
which execute in full speed. In this case, according to 

equation (7), sd = (1 + 0) x 2 / 1 = 2. However, if the nodes 
are heterogeneous and node 4 is twice as slow as the 
others, the time to execute application A is determined by 
node 4, and sd = (1 + 0.67) x 1 / 1 = 1.67, also according to 
equation (7). 

A A A 
A A A 
A A A 

X X "Ä" 

^ 
memory 
limit 

node 1       node 2       node 3       node 4 

Figure 2: Cluster formed by 4 nodes and shared by 
three applications: A, X, and Y. Application A's 12 units 
of work (which are determined by the dotted lines) are 
divided among the nodes according to memory 
availability. Each box represents the amount of work 
associated with the corresponding node. 

4. Local Slowdown 

The aggregate slowdown sd is calculated based on the 
local slowdown sda on each workstation a of the cluster. 
The local slowdown on node a is the delay imposed on an 
application running on node a as a function of other 
applications that share a's CPU. In [10], we presented a 
model to calculate the local slowdown based on 
information (such as the computation/communication 
ratio) about the applications executing on the system. 
Since this information may not be always available, in this 
paper we present a different way of calculating local 
slowdown based on information provided by the system. 

If the scheduling policy implemented by the local 
scheduler executed on each workstation is reduced to 
round-robin (which is generally the case when all tasks are 
CPU-bound and have the same priority), the slowdown 
imposed by contention on each node a can be calculated 
simply as 

sda = pa+l, (8) 

where pa is the number of extra processes executing on 
node a. 

Equation (8) - with some slight variations - has been 
used for slowdown predictions in [3, 4, 6, 13, 19, 22]. 
However, it assumes that the competing applications 
executing on the nodes of the cluster are well balanced and 
executing at full speed (without idle intervals). This may 
not be always the case. 

When the load is not well-balanced and idle cycles 
occur in a node, the local slowdown used in the aggregate 
slowdown calculation must be a function of the fraction of 
the busy (as opposed to idle) time of the competing 
applications. In this case, the slowdown imposed by 
contention on node a should be modeled pessimistically as 
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Pa 

sda = 1 + *Lbusya,r (9) 

where busyai is the fraction of time in which application / 
is busy on node a, i.e., application / is either computing 
within its own time slice, communicating, or waiting for 
its time slice. 

The value for busyai depends on the effects of the load 
in the cluster, including the targeted application. To 
calculate busyai, we use the CPU-usage associated with 
application ;' on node a, and we have 

*iisy   . = min{l, CPU   .x (pg+l)} , (10) 

where CPUaj is the fraction of a's CPU used by 
application /. Note that CPUai is a fraction provided by 
the operating system. This fraction can also be predicted 
by tools such as the Network Weather Service [21]. 

According to equation (10), application i is busy all the 
time (busyaj = 1) when its CPU-usage corresponds to at 
least 1 / (pa + 1). When application i's CPU-usage is less 
than 1 / (pa + 1), it does not use the CPU all the time, and 
the product of its CPU-usage and the number of 
applications in the system gives the fraction of time in 
which application /' is busy. Note that, since the targeted 
application will affect the amount of time application / is 
busy, pa + 1 (not just pa) is used. 

Equation (10) is actually an upper bound on the time 
that application / is busy. It considers the worst case in 
which applications' computation cycles are synchronized 
(i.e., all applications compete for the CPU at the same 
time) and the targeted application neither has nor induces 
idle cycles in the competing applications. When 
computation cycles are not synchronized, applications will 
compete for the CPU less often. Also, when the targeted 
application either has or induces idle cycles in the 
competing applications, these applications may stay busy 
less time. In these cases, the slowdown on the node will 
decrease. 

5. Experiments 
The formulas presented in Section 3 provide a model for 
the aggregate slowdown. To assess the accuracy of this 
model, we performed a large collection of experiments on 
a wide range of CPU-bound benchmarks commonly found 
in high-performance scientific applications. Some 
examples of the applications used were: Jacobi2D [5], 
Jacobi3D [5], Red-Black SOR [5], Multigrid [5], Genetic 
Algorithm [20], and LU Solver [15]. In these experiments, 
we compared actual execution times with modeled times 
(dedicated time factored by aggregate slowdown) for 
applications executing on a cluster of workstations with 

CPU-bound synthetic loads. The synthetic loads were 
formed by a combination of CPU-bound serial and/or 
data-parallel applications distributed over the cluster. In 
this paper, we show representative experiments for each 
scheduling policy. On all graphs, we show actual times in 
contentious (multi-user) environment, predicted times 
using our slowdown model, and dedicated (single-user) 
actual times for comparison. A more complete list of the 
experiments can be found in [9]. 

All of our experiments show the modeled execution 
times to be within 15% of actual execution times. This 
demonstrates that, for reasonably accurate dedicated time 
performance estimates, aggregate slowdown captures 
contention delays in multi-user systems correctly and can 
provide an accurate model for performance predictions. 
The discrepancy in error between modeled and actual 
times is due to a variety of factors. For example, the fact 
that the round-robin scheduling policy assumed on each 
workstation is not a "perfect" round-robin contributes to 
the error. 

Our experiments were performed on two platforms: a 
cluster of homogeneous nodes, represented by a DEC 
Alpha-Farm located at the San Diego Supercomputer 
Center, and a cluster of heterogeneous nodes formed by 
two DEC Alphas (located in the Computer Systems 
Laboratory at UCSD) and two IBM RS-6000s (located in 
the Parallel Computation Laboratory, also at UCSD). In 
the DEC Alpha-Farm, the nodes are connected by a 
GIGAswitch, which is dedicated to the nodes. In the 
heterogeneous cluster, the nodes are part of different 
Ethernet networks. 

In this section, we show a representative subset of the 
experiments performed on the homogeneous and 
heterogeneous clusters described above. 

5.1 Experiments on the Homogeneous Cluster 

In the first set of experiments, we targeted clusters of 
uniform workstations. 

Figure 3 illustrates two representative experiments with 
the load-dependent work partitioning policy. Shown is a 
distributed SOR application [5] developed using PVM 
[18] and executed on 4 nodes of the DEC Alpha-Farm 
with two different loads. The parameters for the 
experiments are shown in Table 1. In experiment 1 (exp 1), 
there is a CPU-bound data-parallel application executing 
on two of the nodes. In this case, aggregate capacity = 1 / 
2+1/2+1 + 1 =3,and«i = 4/3= 1.33. In experiment 2 
(exp 2), there is a CPU-bound data-parallel application 
executing on two of the nodes, and two serial CPU-bound 
applications executing on another node, as shown in 
Figure 1. In this case, aggregate capacity = 1 / 2 + 1 / 2 + 
1 / 3 + 1 = 2.33, and the SOR algorithm was slowed by a 
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factor of 4/ 2.33 =1.72. 

Table 1: Parameters for the Experiments in Figure 3 

1200 

Node sd for exp 1 sd for exp 2 

1 2 2 

2 2 2 

3 1 3 

4 1 1 

1200   r 

1000 |- 
E- 

800 

__ — -dedicated mode 
▲      measured 

^—— modeled 

1000 2000 3000 4000 
problem size (N) 

5000 

Figure 3: Time to execute the SOR algorithm on 4 
nodes of the DEC Alpha-Farm in dedicated mode and 
with 2 different loads. 

Figure 4 represents experiments using the constraint- 
based work partitioning policy. Shown is a Multigrid 
application [5] (developed using KeLP [11] and MPI [14]) 
executed for different problem sizes (given by NxN) on 4 
nodes of the DEC Alpha-farm. Two of the nodes (nodes 2 
and 3) also host a CPU-bound data-parallel application, 
and one of the nodes (node 1) also hosts two serial, CPU- 
bound applications, as shown in Figure 2. The blocks of 
data were divided among the nodes according to a set of 
constraints resulting in the partitioning shown in Table 2 
(column/). Table 2 also shows the other parameters (sd 
and ew) used to calculate the aggregate slowdown (3.0). 
Note that the dedicated time is given for a uniform work 
partitioning. 

■ no contention 
measured 

■ modeled 

1000 1500 2000 2500 
problem size (N) 

3000 

Figure 4: Time to execute the Multigrid application on 4 
nodes of the DEC Alpha-Farm, with constraint-based 
partitioning, in dedicated mode and with contention on 
the nodes. 

Figure 5 and Figure 6 also represent experiments using 
the constraint-based work partitioning policy. They 
present examples of a Jacobi3D algorithm [5] (developed 
using KeLP [11] and MPI [14]) executing for different 
problem sizes (given by NxN). The dedicated time was 
given for a uniform work partitioning. Figure 5 shows 
modeled and measured times for execution on 4 nodes 
where other applications are also executing. In experiment 
1 (exp 1), there was a CPU-bound parallel application 
executing on two of the nodes as shown in Table 3, 
imposing a slowdown of 2 on the execution of the 
Jacobi3D algorithm. In experiment 2 (exp 2), there was a 
CPU-bound parallel application executing on two of the 
nodes, one of which was also shared by a serial CPU- 
bound application, as shown in Table 4. In this case, the 
Jacobi3D algorithm was slowed by a factor of 3. 

Table 3: Parameters for Experiment 1 in Figure 5 

Node sd /(%) ew (1 +ew) xsd 

1 2 25 0 2 

2 2 25 0 2 

3 1 25 0 1 

4 1 25 0 1 

Table 2: Parameters for the Experiment in Figure 4 

Node sd /(%) ew (1 +ew) xsd 

1 3 25 0 3.00 

2 2 17 -0.33 1.34 

3 2 25 0 2.00 

4 1 33 0.33 1.33 

Table 4: Parameters for Experiment 2 in Figure 5 

Node sd f(%) ew (1 +ew) xsd 

1 3 25 0 3 

2 2 25 0 2 

3 1 25 0 1 

4 1 25 0 1 
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Figure 5: Time to execute the Jacobi3D algorithm on 4 
nodes of the DEC Alpha-Farm in dedicated mode and 
with 2 different loads. 

Figure 6 shows an example of the execution of the 
Jacobi3D benchmark for different problem sizes (given by 
NxN) on 4 nodes, in which the CPU-bound applications 
described by Table 5 are also executing. The fractions in 
the table represent the amount of time the application is 
busy on the respective node. The work partitioning was 
constraint-based. The aggregate slowdown factor is 2.375, 
even though there are two applications executing on node 
4. This is explained by the imbalance due to the work 
partitioning of the competing applications. In particular, 
this imbalance causes application 2 to be idle part of the 
time, increasing node 4's computational capacity. Note 
that the dedicated time parameter is given for a uniform 
work partitioning. 

Table 5: Busy Fractions for the Experiment in Figure 6 

Node 
Parallel 

Application 1 
Parallel 

Application 2 

1 

2 2/8 

3 1 

4 1 3/8 

Table 6: Parameters for the Experiment in Figure 6 

Node sd /(%) ew (1 +ew) xsd 

1 1.000 25 0 1.000 

2 1.250 25 0 1.250 

3 2.000 25 0 2.000 

4 2.375 25 0 2.375 
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Figure 6: Time to execute the Jacobi3D algorithm on 4 
nodes of the DEC Alpha-Farm in dedicated mode and 
together with the load described in Table 5. 

5.2 Experiments on the Heterogeneous Cluster 

We now relax the constraints that all the nodes in the 
cluster are uniform and communication links within the 
cluster are dedicated to the cluster itself. 

Figure 7 shows an example of the execution of the SOR 
benchmark [5] (developed using PVM [18]) for different 
problem sizes (given by NxN) on the 4-node 
heterogeneous cluster. The work was divided among the 
machines according to their capacity and loads. The 
ambient load was formed by one CPU-bound data-parallel 
application executing on the DEC Alphas. Table 7 
describes the values used to calculate the aggregate 
slowdown for this situation, which is 8.14 / 5.08 = 1.6. 
Note that the time to execute the SOR benchmark for a 
4000x4000 matrix is shorter than the time estimated by 
the model because, for this problem size, the round-robin 
scheduling policy (assumed on each workstation) is not a 
"perfect" round-robin, and the SOR benchmark gets 
higher priority. 

13 a o 
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140 
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80 

60 

■ dedicated mode 
measured 

■ modeled 

4000     4200     4400     4600 
problem size (N) 

4800 

Figure 7: Times for the SOR algorithm executing with 
load-dependent work partitioning on a heterogeneous 
cluster in dedicated mode and under contention. 
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Table 7: Parameters for the Experiment in Figure 7 

Node w sd 

alpha i 3.07 2 

alpha2 3.07 2 

IS, 1.00 1 

rs2 1.00 1 

Figure 8 represents experiments using a load- 
dependent work partitioning policy with a Genetic 
Algorithm application [20] developed using PVM [18]. 
Shown are modeled and measured times for execution 
with different problem sizes (given by population size) on 
four nodes of the heterogeneous cluster. In this 
experiment, the IBM RS-6000s are also executing a CPU- 
bound data-parallel application. The parameters for the 
experiment are shown in Table 7. The aggregate 
slowdown is 1.18. 

800 

750    r 

— — - no contention 
—— modeled 
▲      measured 

500 
15000   16000   17000   18000   19000   20000 

population size 

Figure 8: Times for the Genetic Algorithm executing 
with load-dependent work partitioning on a 
heterogeneous cluster in dedicated mode and under 
contention. 

Table 8: Parameters for the Experiment in Figure 8 

Node w sd 

alpha. 2.3 1 

alpha2 2.3 1 

rs, 1.0 2 

rs2 1.0 2 

Figure 9 represents experiments using a constraint- 
based work partitioning policy. Shown is a representative 
SOR application [5] developed using PVM [18] and 
executed for different problem sizes (given by NxN). The 

platform is a heterogeneous cluster consisting of two DEC 
Alphas and two IBM RS-6000s. Data for the dedicated run 
was partitioned according to a set of constraints, resulting 
in the partitioning shown in Table 9 (column/). 

Table 9: Parameters for Experiments in Figure 9 

Node w /(%) (1 + ew() /w{ 

alpha. 3.07 17 0.22 

alpha2 3.07 33 0.43 

rs, 1.00 17 0.66 

rs2 1.00 33 1.33 

In experiment 1 (exp 1) there was an additional CPU- 
bound data-parallel application executing on the 2 IBM 
RS-öOOOs. Table 10 shows the work partitioning (column 
f) and slowdown (sd) parameters used in this experiment. 
According to Table 9 and Table 10, the aggregate 
slowdown for this case is 2.67 / 1.33 = 2.01. 

Table 10: Parameters for Experiment 1 in Figure 9 

Node w sd /(%) (1 +ew() xsd/Wj 

alpha, 3.07 1 17 0.22 

alpha2 3.07 1 33 0.43 

rs, 1.00 2 33 2.67 

rs2 1.00 2 17 1.33 

In experiment 2 (exp 2) there was a CPU-bound data- 
parallel application executing on the 2 IBM RS-6000s, 
another executing on one IBM RS-6000 and one DEC 
Alpha, and three more CPU-bound serial applications 
executing on the other Alpha. The fractions in Table 11 
represent the amount of time the application is busy on the 
respective node. Table 12 shows the work partitioning 
(column/) and slowdown (column sd) used in this 
experiment. According to Table 9 and Table 12, the 
aggregate slowdown for this case is 3.27 / 1.33 = 2.46. 
Note that, even though there is one application executing 
on alpha2, its local slowdown due to load imbalance is 

1.33. 
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Table 11: Busy Fractions for Experiment 2 in Figure 9 

Node 
Parallel 
Appl. 1 

Parallel 
Appl. 2 

Serial 
Appl. 3 

Serial 
Appl. 4 

Serial 
Appl. 5 

alpha) 1 1 1 

alpha2 1/3 

re, 1 1 

rs2 1 

Table 12: Parameters for Experiment 2 in Figure 9 

Node w sd /(%) (1 +ew) xsd/w. 

alpha i 3.07 4.00 27 1.42 

alpha2 3.07 1.33 27 0.47 

IS, 1.00 3.00 27 3.27 

rs2 1.00 2.00 19 1.45 
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Figure 9: Times for two experiments with the SOR 
algorithm executing with constraint-based work 
partitioning on a heterogeneous cluster in dedicated 
mode and with contention. 

Figure 10 also represents experiments using the 
constraint-based work partitioning policy. It presents 
examples of a Jacobi2D benchmark [5] (developed using 
KeLP [11] and MPI [14]) executing for different problem 
sizes (given by NxN). The graph shows modeled and 
measured times for execution on the 4 nodes. One of the 
DEC Alphas and one of the IBM RS-6000s are also used 
to execute a well-balanced CPU-bound data-parallel task, 
as shown in Table 13, causing the aggregate slowdown to 
be 2. Note that the time estimated by the model is a little 
higher than the measured time because the round-robin 
scheduling policy (assumed on each workstation) is not a 
"perfect" round-robin and, in this case, Jacobi2D gets 

higher priority and executes faster than expected by the 
model. 

Table 13: Parameters for the Experiment in Figure 10 

Node w sd /(%) (1 +ew.) xsd./w- 

alpha. 1.00 1 25 1.00 

alpha2 1.00 2 25 2.00 

rs, 1.84 2 25 1.09 

rs2 1.84 1 25 0.54 
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Figure 10: Times for the Jacobi2D benchmark 
executing with constraint-based work partitioning on 
the heterogeneous cluster in dedicated mode and with 
contention. 

Figure 11 also presents examples of the Jacobi2D 
benchmark executing for different problem sizes (given by 
NxN). The graph shows modeled and measured times for 
execution on the 4 nodes. The work partitioning was 
constraint-based. The contention is generated by one 
CPU-bound parallel application executing on the IBM 
RS6000s, a second one executing on the DEC Alphas, and 
a third one executing on one IBM RS-6000 and one DEC 
Alpha. This scenario is represented in Table 14. The 
aggregate slowdown is 3 due to the load in the most 
heavily loaded DEC Alpha, as shown in Table 15. 

Table 14: Node Usage for the Experiment in Figure 11 

Node 
Parallel 

Application 1 
Parallel 

Application 2 
Parallel 

Application 3 

alpha] • 

alpha2 • • 

rs. • • 

rs2 • 
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Table 15: Parameters for the Experiment in Figure 11 

Node w sd /(%) (1 +ew) xsd/w. 

alpha j 1.00 2 25 2.00 

alpha2 1.00 3 25 3.00 

rs, 1.84 3 25 1.63 

rs2 1.84 2 25 1.09 

times to execute the algorithm causes the average error to 
be within 12%. 

Note that in Figure 13, for problem size 4400x4400, 
one execution of the benchmark with contention was 
faster than the execution in dedicated mode. This 
phenomenon is explained by a variation in the execution 
time in dedicated mode [17] caused by traffic in the 
network, which is nondedicated in the heterogeneous 
cluster. In our experiments, this variation is not significant 
because the amount of communication is small. 
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Figure 11: Times for the Jacobi2D benchmark 
executing with constraint-based work partitioning on 
the heterogeneous cluster in dedicated mode and with 
contention. 

6. Evaluation of the Model 

The models presented were developed based on the 
amount of busy time of the competing applications. They 
assume that the time to execute the targeted application is 
longer than the busy/idle cycles of the competing 
applications. If the target application is fast in comparison 
with the duration of these cycles, i.e., the time to execute 
the application is close to (or smaller than) the duration of 
one busy/idle cycle, the accuracy of the models decreases. 

Figure 12 and Figure 13 illustrate the difference in 
accuracy obtained in the prediction of the time to execute 
the SOR benchmark on the heterogeneous cluster in two 
situations. In both situations, the SOR competes for the 
cluster with one CPU-bound data-parallel application that 
executes on one DEC Alpha and one IBM RS-6000. In 
Figure 12, the time to execute one busy/idle cycle of the 
competing application was 15.82 seconds. In this case, the 
time to execute the algorithm was longer than one busy/ 
idle cycle of the competing application, and the average 
error was 2%. In Figure 13, the time to execute one busy/ 
idle cycle of the competing application was 223.76 
seconds. In this case, the time to execute the same 
algorithm was shorter than one busy/idle cycle of the 
competing application, and the variation of the actual 
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Figure 12: Time to execute the SOR benchmark in 
dedicated mode and competing with one application 
that has a 15.82-second busy/idle cycle. 
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Figure 13: Time to execute the SOR benchmark in 
dedicated mode and competing with one application 
that has a 223.76-second busy/idle cycle. 

7. Summary 

In this paper, we have presented a model to predict 
contention effects in clustered environments. This model 
provides a basis for predicting realistic execution times for 
applications on clusters of workstations, a fundamental 
component of performance-efficient scheduling. The 
model is parameterized by the policy used to partition 
application work, the local slowdown present in each node 
of the cluster, and the relative weight of each node in the 
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cluster, all of which contribute substantively to application 
performance. 

To determine the effects of contention, we developed a 
measure of aggregate slowdown - the delay on an 
individual application due to contention from other 
applications sharing the cluster. The determination of 
aggregate slowdown varies with the work partitioning 
policy and was developed here for two common work 
partitioning policies (load-dependent and constraint- 
based). We performed a set of experiments comparing 
modeled and actual times on a dedicated system with 
synthetic load for a set of benchmarks commonly found in 
high-performance scientific applications. The 
experiments showed our models to predict relatively 
accurately - on average within 15% - the delay imposed 
on an individual application due to contention on the 

cluster. Since the effect caused by contention in a time- 
shared environment can be large, as shown by our 
experiments, the aggregate slowdown provides a critical 
component in the accurate prediction of performance for 
data-parallel programs on multi-user clusters of 
workstations. 
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Abstract 

The implementation of an interface to support 
cooperative work in a heterogeneous computing 
environment is based on previously proposed definitions 
referred to as Cooperative Work Model (CWM) and 
Cooperative Work Language (CWL). The Interface for 
Cooperative Work (ICW) and the Graphical Interface for 
Cooperative Work (GICW) are the main two components 
of a tool useful in the set up and control of a cooperative 
working environment in a general purpose heterogeneous 
computing platform. This tool is described in this paper 
as well as some desired characteristics to improve its 
effectiveness.   The specification and control of a virtual 

parallel machine are illustrated with an algorithm for 
3D-reconstruction from two stereoscopic images. Test 
results on this application are also reported. 

1. Introduction 

Cooperative work involves the coordination of 
several tasks during their execution. All tasks share a 
common goal and cooperation rules coordinate their 
actions that in turn use communication primitives to make 
their interaction possible. There are two important factors 
behind the motivation of this work. The first one is that 
many problems can be organized as a set of cooperative 
modules that could be executed in parallel. The second 

3Acosta Mesa is now with the Universidad Tecnolögica de la 
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Task A 

Figure 1. Hierarchical Layout of Task Processor Assignments 

factor is the recognition that message passing 
computation is becoming more accessible today. It is no 
longer necessary to buy expensive devices to gain access 
to large computational power. Existing general purpose 
networks can now be used for cooperative work. These 
factors lead to the definition of a Cooperative Work 
Model (CWM) [18, 23], and a Cooperative Work 
Language (CWL) [19] with the purpose of making the 
specification of cooperative work, its parallelism and 
distribution easier. CWM and CWL are inspired upon the 
definition of Communicating Sequential Processes (CSP) 
[6], and the basic notions of processes and pipes used in 
Unix [17]. The Interface for Cooperative Work (ICW) and 
the Graphical Interface for Cooperative Work (GICW) 
are the main two components of the tool implemented 
based on CWM and CWL. ICW is useful in the set up and 
control of a cooperative working environment in a 
heterogeneous computing platform. A hierarchical 
specification of processes makes ICW different from other 
schemes such as Cluster-M [3] and HeNCE [2]. The main 
objective of Cluster-M is an efficient mapping of tasks 
into a set of processors. HeNCE, on the other hand, seeks 
the specification of tasks given in the form of a task graph 
such that parallelism is exploited. However, the nodes of 
the task graph refer to lower level specification such as 
procedures or routines. ICW allows a recursive refinement 
such that lower granularity is also possible when the 
application so requires it. Other tool that can also be 
compared with ICW is the Wisconsin Wind Tunnel (WWT) 
[16]. Unlike ICW, WWT is targeted to shared-memory 
oriented applications and can be used to simulate the 

behavior of hardware systems under design. 
This paper describes the implementation of ICW and 

GICW. First, in section 2 we review the basic elements of 
the CWM model, i.e., tasks, cooperation rules, and 
intertask communication. In section 3 and 4, 
implementation issues are discussed. Section 5 deals 
briefly with the stereoscopic image reconstruction and 
section 6 reports some results obtained exploring task 
distribution schemes using the tool presented in this 
paper. 

2. The Cooperative Work Model 

The notion of cooperative work as a set of 
interrelated tasks arranged in a hierarchical structure was 
behind the proposed CWM model. In a distributed 
heterogeneous computing environment, some if not all 
tasks in the model can be executed in parallel and have 
the capability to communicate with each other by explicit 
message passing. The execution environment of tasks will 
be governed by predefined cooperation rules. Interaction 
among tasks will take place by using some established 
communication primitives. 

Tasks may be assigned to any suitable host in the 
system. Figure 1 describes a possible hierarchical 
arrangement of sets of tasks. Task_A consists of its own 
execution environment and the execution environment of 
Task_B and Task_C. Task_B consists of its own execution 
environment and that of n replicated tasks denoted as Bt. 
Finally Task_C consists of its own execution environment 
and that of tasks X in host Sp, Y in any host of architecture 

103 



Sr, Z in host Sz and W. Tasks X, Y, Z, W and the n copies 
B, do not contain other tasks inside them. Task W is a 
special case. It should be executed in a particular host that 
is not yet known. A search is required to determine the 
location of such a task. Note that this specification of 
tasks is different from that used for Cluster-M [3]. CWL 
specifies a hierarchical order governed by the cooperation 
rules between tasks and without regard at this point to any 
allocation scheme. 

2.1. Tasks 

The minimal work unit is the task. It is considered a 
completely executable program (a process) following the 
binary format of the operating system under which it was 
created. 

By definition the tasks specified have the following 
characteristics: 

• Each task starts and ends execution at some point 
in time, 

• When a task starts execution, optionally receives 
some input parameters, 

• No task shares memory with any other task, and 
• The only way to share information with other 

tasks is by explicit message passing. 
Any task may be classified according to the four 

different criteria described in the next paragraphs. 

Types of tasks. A task can be a generic task or a CW 
task. A generic task is any general-purpose program that 
can be executed by writing the command name in the 
operating system prompt, like /bin/Is, /bin/cp, 
$HOME/bin/print, etc. This kind of task does not have the 
need to communicate with other tasks. A CW task is a 
compiled executable program explicitly written for our 
interface. 

Level in the hierarchy. Under these criteria, any task 
can be of any two types: atomic or composed. An atomic 
task will be any executable program. It can be either, a 
CW task or a generic task. Atomic tasks will consist only 
of its own execution environment. A composed task can 
only be a CW task. A composed task consists of its own 
execution environment and that of one or more atomic or 
composed tasks spawned by it. A composed task has its 
own executable code. The tasks executed by a composed 
task will be called members of a composed task, and the 
composed task executing other tasks will be referred to as 
the caller task. 

Place of execution. According to the possible places 
where tasks can be executed, they can be classified as 
explicitly located or not explicitly located tasks. A task 
not explicitly located is executed in any host of a virtual 
parallel computer. The place where these kinds of tasks 

are to be executed will be determined dynamically at 
runtime. An explicitly located task will be executed 
always in the same host, or a set of hosts of the same 
architecture. This is due to any of three reasons: (1) the 
executable program exists only in one host of the system, 
(2) the executable program was compiled for a particular 
architecture or (3) it is desirable to execute the program in 
some particular host because it may be the most suitable. 
A special case occurs when a task can be explicitly 
located but the host where the corresponding executable 
program resides is unknown. In this case a locator 
dynamically finds the host where the executable program 
resides. 

Number of copies in a concurrent execution. Any 
replicated task can be explicitly located or not explicitly 
located. If they are explicitly located, then all copies of 
the task will be executed concurrently in the same host or 
in a subset of hosts of a specified architecture. Otherwise, 
each copy will be executed in any host of the system. 

2.2. Cooperation Rules 

Every member task will have associated with it a 
cooperation rule to control its execution. Three basic 
cooperation rules are defined: SYNCP, ASYNCP and SEQ. 

Tasks    i 

Tl 

Til 

T12 

Execution time: !■ 
Wait time:- 

t1    1    I    I    I    I    I    I    I    I    0 
t+l      t+3     t+5 t+8       Time 

Figure 2. Behavior of SYNCP 

SYNCP stands for Synchronous Parallelism. When 
some tasks are ruled by SYNCP all of them are started at 
the same time and keep working concurrently. The caller 
task will not end until all the member tasks have 
terminated. However, any member task does not depend 
on its caller task, nor on the tasks that were spawned at 
the same time. As an example, consider the expression: 

T1:SYNCP[T11, T12] 

where Tl is the caller task and the member tasks will be 
Til and T12. Task Tl will not end until both Til and Til 
have terminated. Figure 2 describes SYNCP. 
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Tl 

Til 

T12 

Execution time: i 
Wait time: I ■ 

I    I    1    I    1    I     I    II     t> 
t+3     t+5 t+S Time 

Figure 3. Behavior of ASYNCP 

ASYNCP stands for Asynchronous Parallelism. This rule 
operates almost in the same way as SYNCP, but in this 
case the caller task does not have to wait for all the 
member tasks to terminate. Any task, including the caller 
task can terminate without having to wait for the 
termination of any other task working under this rule. The 
same example posed for the last rule is useful for this one, 
but with the difference that 77 will be able to terminate 
independently of the termination time of tasks Til and 
T12. Figure 3 describes the behavior of this rule. 

Tasks * 

Tl 

Til 

T12 

T13 

Execution time: ■ 
Wait time:» 

J    I    I    I    I    I    I     1    I    I     t> 
t+1      t+3 t+6 t+9Time 

Figure 4. Behavior of SEQ 

SEQ denotes a sequential execution. When using this 
rule on a series of member tasks, the next task to be 
executed will not be started until the previous one has 
finished. Figure 4 depicts its operation. 

2.3. Communications 

Each cooperating task in a CWL program has a 
communication rank that specifies those tasks that 
communicate with it. The communication rank of a task T 
running in ICW is formed by: 

• The composed task that spawned T 
• All the tasks spawned at the same time as T 
• All the tasks spawned by T 

Messages sent are saved in a buffer that is accessed 
by the destination process when it is ready. If the message 
is not yet in the buffer, the receiving process must wait 
until it arrives. 

3. Implementation 

ICW maps the cooperative work defined by the 
model into a specific distributed heterogeneous 
environment. The interface provides all the necessary 
mechanisms to distribute, replicate and locate any task to 
be executed. The execution of the tasks will be monitored 
and controlled to guarantee a complete execution of all 
the programs or, in case of failure the interface will report 
it. The goal of this feature is to make the debugging 
process easier. To decide which tools to use in the ICW 
implementation, several alternatives were analyzed. Two 
of these alternatives include LAM (Local Area 
Multicomputer) [14] and PVM (Parallel Virtual 
Machine) [4]. LAM is a full extension of the MPI [13] 
(Message Passing Interface) standard. We initiated the 
implementation of ICW using PVM mainly because it 
offered several desirable features and it was available. 
Currently the interface is being updated, through GICW, 
to work with both, PVM and LAM at the user's choice. 

3.1. Cooperative Work Language 

A typical program written in CWL is composed of six 
sections: 

• Architectures declaration (ARCHS) 
• Hosts declaration (HOSTS) 
• Tasks declaration (TASKS) 
• Generic tasks declaration (GTASKS) 
• Root task declaration (ROOT) 
• Cooperative Work declaration (CW) 

The first two sections (ARCHS and HOSTS) contain 
the list of names of architectures and hosts respectively. 
These sections can be omitted if there are not explicitly 
located tasks. 

The TASKS section contains the declaration of all the 
tasks that are involved in the execution. This section 
cannot be omitted. 

The GTASKS section lists all the generic tasks. The 
interface will not accept any declared generic task to be 
used as a composed task. The existence verification of 
this type of tasks is carried out at runtime. This section is 
optional. 

In both sections TASKS and GTASKS it is possible to 
indicate that a task is going to be executed in a particular 
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host or a particular architecture. The operator -» indicates 
that a task is to be executed in a particular host and the 
operator => indicates a particular architecture. 

The ROOT declaration indicates which task contains, 
directly or indirectly, other tasks. In other words, the task 
declared as ROOT is the superset in the hierarchy. The 
ROOT task must be declared previously in the TASKS 
declaration. If not, or if it is declared in the GTASKS 
declaration, it will not be accepted. 

Finally, the CW declaration indicates the structure of 
the execution, and the rules that control the relation 
between tasks. Every task listed in this declaration will be 
validated against the tasks declared in the TASKS and 
GTASKS sections. A typical CWL program is shown in 
Figure 5. 

3.2. Writing CW tasks 

Programs for the interface are generic C programs 
with the only peculiarity that they must be compiled with 
the preprocessor directive #include "ICW.h", which 
contains all the necessary definitions to control the 
execution and all the functions to communicate between 
tasks. This file includes two special functions: void 
ICW_init (int arge, char *argv[]) and void 
ICW_end(void). 

ARCHS: SUN4,LINUX; 

HOSTS: afrodita, hefestos, 
cronos; 

TASKS: 
test, testl->cronos,test2, 
test3 ,test4,test5, 
test6 =>LINUX; 

GTASKS test7; 
ROOT: test; 
CW { 
test: SYNCP[testl,test2]; 
test2 : SEQ[test3,test4]; 
test3 : ASYNCP[test5(3)]; 
test4 

} 

: SYNCP[test6(10),test7]; 

Figure 5. Typical CWL program 

ICW_init () must be called as the first executable 
instruction of the function main() in every CW task. This 
function will receive from the caller the hierarchy of tasks 
and  then   execute   them,   sending   to   every  task   the 

appropriate information to trigger execution. 
ICW_init() must be called with the standard 
arguments received by the C program because that 
information is used by the interface to determine the 
operating environment. 

The last instruction of an ICW program must be 
ICW_end (). This function will test the correct 
termination of all the tasks spawned by the current task 
and will terminate with the appropriate exit code. To 
avoid conflicts and unpredictable behavior every internal 
function and variable of the interface start with the 
characters "ICW_". A minimal expression of an ICW 
program is shown in Figure 6. 

Communication functions. All communication 
primitives to be used in CW programs will be limited by 
the communication rank of the tasks. To establish a 
communication with any task outside the rank it will 
suffice to either use some tasks as intermediaries to send 
messages or use directly the PVM identification and 
communication functions to determine the identity of the 
target task, and to send messages, respectively. For 
example, referring to Figure 1, task X may need to send a 
message to task B, but this task is outside the 
communication rank of X. 

The ICW communication functions have been defined 
for each possible data type to be transmitted and all of 
them follow the same standard. 

ttinclude <stdio.h> 
#include "ICW.h" 

void main(int arge, char *argv[]){ 
ICW_init(arge, argv); 
ICW_end(); 

} 

Figure 6. A minimal expression of a ICW 
task program 

Typical functions to send and receive data have the 
following prototypes: 

• ICW_send_<datatype>(char *dest, int copy, int id, 
<datatype> *buffer, int len) where <datatype> is a valid 
simple datatype in the programming language. 

• ICW_send_string(char *dest, int copy, int id, char 
*buffer). This function is mainly used to send strings. 

• ICW_receive_<datatype> (char *orig, int copy, int id, 
<datatype> *buffer, int len, long tout). 
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• ICW_receive_string (char *orig, int copy, int id, 
<datatype> *buffer, long tout). 

Parameters. The parameters char *dest or char *orig 
indicates with an identifier of a program name, the task 
sending or receiving messages. The valid identifiers are 
ICW_member, ICW_caller, ICW_next, 
ICW_previous or a program name. If a program name 
is used, ICW will attempt to find a program within the 
communication rank of the task that calls the 
communication function with the specified name. 

In the case of a replicated task with a copy parameter 
different from zero, the message will be sent to or 
received from the nth copy of the replicated task. 

If the ICW_member is used there are three possible 
results. To send a message and if the copy parameter is 
zero, the message will be sent to all the member tasks. To 
send or receive a message, and if the copy parameter is 
say n (different from zero), the message will be sent to 
or received from the nth task of the member tasks. To 
receive a message and if the copy parameter is zero, a 
message from any of the member tasks will be accepted. 

If ICW_caller identifier is used the message will 
be sent to, or accepted from the caller task. 

With ICW_next the message will be sent to or 
accepted from the next task in the same level in the 
hierarchy. The same happens with ICW_previous, but 
in this case, it will be sent to or accepted from the 
previous task in the same level in the hierarchy. 

int copy indicates the number of copies of a 
replicated task, or the number of member tasks a message 
is sent to, or received from. 

int id is an integer number that must match the 
sending and receiving processes. It is used as a validation 
of the message. A value of -1 in the receiver tells the 
process to receive a message with any id number. 

<type> *buffer is a pointer to the buffer that 
contains the data to be sent or where it will be received. 
Its type must match the type of the data in transit. 

int len indicates the length of the data buffer. 
Receive functions have an additional parameter: 
long tout indicates how long a process should wait 

for a message to arrive. If it is zero the waiting time 
defaults to 300 seconds. 

3.3. Execution of CWL programs 

CW tasks must be executed through a CWL program. 
This program, although compiled, does not generate any 
executable code. If the execution of all tasks is successful 
the execution of the CWL program will be successful. If 
only one of the tasks fails the overall execution 
environment fails. The execution process is divided into 

two stages. One stage is the compilation of the CWL 
program, and the other stage is the execution of all the 
tasks involved in the cooperative work specified. 

Compilation stage. The first step of the compilation 
stage attempts to contact the PVM daemon. If it is not 
possible to do it, the interface attempts to start it up. If this 
is not possible the program will not compile and the 
interface exits with an appropriate error code. PVM uses a 
hosts file to know which hosts will be included in the 
parallel virtual machine. The hosts file name is 
. icwhosts and resides in the user home directory. The 
compiler will check that all the declared architectures in 
the ARCHS declaration and hosts declared in the HOSTS 
declaration really exist in the PVM environment, 
otherwise, the interface will exit with an error. Next, the 
compiler will compile the TASKS and GTASKS 
declarations. The existence of executable programs in the 
hosts of the virtual computer is verified at runtime. 
However, the compiler will check the consistency of the 
declarations. The compiler will also check that all the 
architectures and hosts used in the declaration of the 
explicitly located tasks had been previously declared in 
the corresponding sections. Finally, it will check that the 
ROOT task has been declared in the TASKS declaration as 
well as all the tasks referenced in the CW declaration. The 
result of compiling the CW section will be an internal 
representation of the hierarchy followed during the 
execution of tasks. This hierarchy is used at runtime to 
determine the behavior of every part of the execution 
process. 

Execution stage. This stage consists of the execution of 
the entire hierarchy of tasks involved in the cooperative 
problem. The first to be executed is the ROOT task, which 
will be forked and enrolled as a PVM process. The 
interface will wait for the end of the execution of the 
ROOT task. After three unsuccessful execution attempts 
the interface will exit with an error. As previously 
mentioned, the complete execution will be successful only 
if all its components are executed successfully. If at least 
one task fails, the overall execution process fails. 

4. The Graphical Interface 

An option to build and execute a CWL program is 
through the Graphical Interface for Cooperative Work 
(GICW). With the GICW is possible to create an efficient 
grouping for the objective Cooperative Work in an 
interactive and dynamic way. Figure 7 shows a view of 
GICW. 

The GICW offers two operation modes. The first 
mode manages information elements for the Cooperative 
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Work of an application via a set of windows. It integrates 
the tasks (proper and generic), hosts and architectures. 

; Sr*»t»ie (nttrftot tor (KM***** MM* fctprM&tott --«j« 
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Figure 7. Graphic Interface for Cooperative Work 

The second is the Graphic Configuration mode. It 
integrates all operations adding a Dynamic Configuration 
Area (DCA). The DCA shows the task representation 
looking like the graphs in the CWM shown in Figure 1. In 
the central part of this area appears the root task 
represented by an oval with its name and its cooperative 
rule. Within this oval is possible to integrate composed 
and atomic tasks required in the cooperative work of the 
current application. 

A composed task is also represented with a circle 
with the name of the task and its cooperation rule. Small 
circles are used to represent atomic tasks. To add one task 
in the configuration it is selected from the box list located 
in the left side of the DCA. The selected task is then 
dragged into the root task area or into the area of a 
previously created composed task. 

To create or modify tasks, hosts, or architectures, it is 
important to use the corresponding entries that appear in 
the upper side of the configuration area. These windows 
are useful to specify directly weather a task will execute 
in a particular host or architecture. 

To integrate the number of copies of an atomic task is 
necessary to select it from de DCA and adjust the number 
of copies in the window that appears for this purpose. 
Code generation is performed according to the objects 
appearing in the DCA and their grouping. The output file 
generated is identified with the application name and the 
extension .icw. This file contains the CWL specification 
of the cooperative work. 

The option ICW Execution is selected from the menu 
and a window appears to display execution results. 

The implementation is based on the scripting 
language Tel and its graphical toolkit Tk (version 8.0) 
which are widely portable and allow easy GUI 
programming [15]. 

The GICW has no validation mechanism for the 
existence of tasks. A parser is used when a configuration 
file is loaded. The GICW extensions are based on the MPI 
implementation of ICW. The implementation integrates 1) 
a state monitor mechanism of the tasks that compound the 
current cooperative work application, 2) the search in 
alternative paths that are not in the PATH environment 
variable, and 3) the dynamic configuration of the host in 
the virtual machine. 

5.  Application: 3D Reconstruction 

One of the most important features of human vision 
is its capacity for perceiving a three dimensional world. 
This perceptual capacity is achieved through a highly 
evolved visual system composed of cooperative visual 
modules, which are able to recognize objects and describe 
the layout, and motion of our surroundings [21]. One 
visual module that is most relevant for the perception of 
depth is stereopsis [10]. This visual module takes as input 
two images of a scene taken from different locations (for 
example, one taken by the left eye and the other by the 
right eye) and computes the correspondence of features 
which most likely originate from the same 3D surface 
patch (Figure 8). From the features correspondence is 
possible to obtain the depth at these points [7]. 

We describe a distributed implementation of the 
Pollard, Mayhew & Frisby (PMF) algorithm for 
stereoscopic reconstruction. Our implementation has 
been coded in ICW and runs on a network of SUN and 
Silicon Graphics workstations [1]. The main stages of the 
PMF algorithm for stereoscopic reconstruction [10] are 
the following: 

• Edge detection. The points with highest changes 
in intensity are detected in each digital image. 
This can be achieved with a variety of edge 
detectors, such as the Marr-Hildreth operator, 
Canny edge detector or Sobel's [5]. For simplicity, 
we have taken this last option. 

• Stereoscopic correspondence. This is the core part 
of the whole algorithm that finds the most likely 
correspondences between edges in the left and 
right images. 

• Reconstruction. Once the correspondences have 
been found it is possible to evaluate simple 
arithmetic expressions to find the depth at these 
locations. 
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Figure 8. Stages in stereoscopic reconstruction 

We take images from two cameras with parallel 
viewing directions to simplify the problem of stereo 
correspondence, because in this case, the corresponding 
features lie in epipolar lines. This means, that they are 
approximately in the same raster line in the two images. 

Using the constraint that corresponding features 
usually have a disparity gradient DG less than one, we 
apply a search process to find the best matches. The 
disparity gradient is defined for a pair of matches, where 
each match associates one feature in the left image with 
one feature in the right image. 

If feature PI = (plx,ply) in the left image is matched 
with feature Pr = (prx.pry) in the right one, and feature Ql 
= (qlx,qly) in the left is matched with feature Qr = 
(qrx,qry) in the right as shown in Figure 9, then the 
disparity D for the match (PI, Pr) is obtained as follows: 

D(Pl,Pr) = plx - prx. 

The disparity difference DD for the pair of matches 
(Pl,Pr) and (Ql,Qr) is just the disparity for the P match 
minus the disparity for the Q match. That is: 

DD((Pl,Pr),(Ql,Qr)) = d(Pl,Pr) -d(Ql,Qr) 

Now imagine the two images superimposed. The 
cyclopean separation CS is the distance from the mid- 
point of the line joining PI and Pr to the mid-point of the 
line joining Ql and Qr. The gradient DG is the absolute 
value of the disparity difference divided by the cyclopean 
separation. 

PI Pr 
\ \ 

v          Cyclopean 
v        Separation 

01 Or 

Figure 9. Geometry of the disparity gradient 

In Figure 9, the disparity difference is the difference 
in length between the two horizontal lines. The cyclopean 
separation is the length of the slanting line. The DG can 
be expressed as follows: 

DG = DD/SC <1 

If a point (X,Y,Z) projects at (xl,y) and (xr,y) in the left 
and right image respectively, we can find its position in 
space, in terms of the disparity xl - xr, using the formulas 
[7]: 

v     B(xl + xr) 

Y = 

Z = 

2(xl-xr) 

By 
xl — xr 

Bf 
xl-xr 

where B is the separation between the camera's centers 
and/is the focal length. 

6. Comparative results 

The distributed implementation consists of dividing 
each image in bundles of lines and allocating a bundle to 
each workstation. Once a bundle is processed, the results 
are returned and concentrated by the host computer for 
display as described in Figure 10. 
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Figure 10. Distribution of tasks for stereoscopic correspondence 

Each processed image is composed of 240 rows and 320 
columns. The size of each bundle is obtained as the 
number of rows divided by the number of available 
workstations. In our implementation the size of the bundle 
can vary up to 240/n lines, where n = 1, 2, ..., 12 is the 
number of workstations. For a uniform number of 
features in each bundle, the lines that compose each 
bundle are not taken consecutively but every 240/n lines. 
Some results of the reconstruction are shown in Figure 11. 

Two sets of tests were carried out. In the first set only 
12 SUN units (models ELC, ILC and IPC with 24 Mbytes 
of RAM) were used. For the second set of tests Silicon 
Graphics (SGI) machines (Indy R4600 with 32 Mbytes of 
RAM) where introduced. Under the second scheme, a 
SUN unit distributes tasks to SGI units (labeled 1 to 5). 
The results obtained are shown in Figures 12 and 13. Both 
figures compare results obtained under no workload 
conditions and normal workload conditions. 

Figure 12 shows a monotonic improvement in the 
execution time (this behavior is more consistent under a 
normal workload condition) up until the number of units 
reaches 10. An increase in the number of workstations 

does not show any improvement in the overall execution 
time. At this point, very likely the communication costs 
involved with further partitioning of the application upset 
any gain in execution times. In this regard similar 
behavior can be observed with the combination SUN and 
SGI workstations in Figure 13. Naturally, the introduction 
of SGI units renders a dramatic improvement in the 
execution time. However, particularly in the case of no 
workload conditions, performance remains constant 
indicating again the effect on communication costs. Under 
normal workload conditions, improvements are noticeable 
with additional units. 

The objective of these experiments is to demonstrate 
the feasibility of using ICW to execute distributed 
applications. The results highlight the need to incorporate 
appropriate task allocation and scheduling heuristics [3, 
11,12,20] to map the set of tasks in the application to 
suitable units in the system and improve execution times. 
The integration of these schemes will make ICW a 
complete and useful tool in the analysis and 
implementation of large-scale parallel and distributed 
applications. 
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Figure 11. Results of the reconstruction 

7. Conclusions and future work 
At this time we have defined a model to specify 

cooperative work and completed the implementation of 
the first version of the interface (ICW). We are currently 
working on LAM 6.1 and refining some management 
aspects of CW applications. 

ICW is the first implementation of the CWM and the 
CWL models and although the project is at an early stage, 
trying to define the most desirable features has been the 
most time consuming endeavor. This work however, 
demonstrates the feasibility of the model, and will be the 
base for the analysis and implementation of a more 
complete CWL. The tool proposed facilitates the 
introduction of scientists into the world of parallel and 
distributed processing as it provides an easy interface to 
the specification of parallelism, writing, and debugging of 
communicating programs using installed general purpose 

networked resources. 
However, to optimize performance the interface must 

be able to evaluate hosts configurations and detect the 
states of those processing units used in the distribution. 

The tool has been written to deal with C programs. 
An upgraded version will incorporate transputers to 
facilitate the specification of lower level parallelism. 
Another expected development is to improve the 
mechanisms to detect and, if possible, recover from 
failures. Yet another important future development calls 
for the integration of task assignment heuristics and their 
evaluation to achieve a much improved task distribution 
in terms of execution times and resource utilization. In 
terms of future applications for which ICW will be used 
include cooperative virtual environments and gesture 
recognition [22] algorithms. 
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Figure 12. Execution times on a homogeneous system 
consisting of SUN workstations only. 
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Abstract 

Data staging is an important data management 
problem for a distributed heterogeneous networking 
environment, where each data storage location and 
intermediate node may have specific data available, 
storage limitations, and communication links. Sites in the 
network request data items and each item is associated 
with a specific deadline and priority. It is assumed that 
not all requests can be satisfied by their deadline. This 
work concentrates on solving a basic version of the data 
staging problem in which all parameter values for the 
communication system and the data request information 
represent the best known information collected so far 
and stay fixed throughout the scheduling process. A 
mathematical model for the basic data staging problem 
is introduced. Then, a multiple-source shortest-path 
algorithm based heuristic for finding a suboptimal 
schedule of the communication steps for data staging is 
presented. A simulation study is provided, which evalu- 
ates the performance of the proposed heuristic. The 
results show the advantages of the proposed heuristic 
over two random based scheduling techniques. This 
research, based on the simplified static model, serves as 
a necessary step toward solving the more realistic and 
complicated version of the data staging problem involv- 
ing dynamic scheduling, fault tolerance, and determining 
where to stage data. 

This research was supported by DARPA/ISO and the Office of 
Naval Research under ONR grant number N00014-97-1-0804, 
and by NRaD under contract number N66001-96-M-2277, M. D. 
Theys was also supported by a Purdue Benjamin Meisner 
Fellowship and an Intel Fellowship. 

Keywords: BADD, data staging, data management, 
Dijkstra's multiple-source shortest-path algorithm, distri- 
buted heterogeneous networking environment, hetero- 
geneous computing. 

1. Introduction 

The DARPA Battlefield Awareness and Data Dis- 
semination (BADD) program [12] includes designing an 
information system for forwarding (staging) data to 
proxy servers prior to their usage by a local application, 
using satellite and other communication links. The net- 
work combines terrestrial cable and fiber with commer- 
cial VSAT (very small aperture terminal) internet and 
commercial broadcast. This provides a unique basis for 
information management. It will allow web-based infor- 
mation access and linkage as well as server-to-server 
information linkage. The focus is on providing the ability 
to operate in a server-server-client environment to optim- 
ize information currency for many critical classes of 
information. 

Data staging is an important data management 
problem that needs to be addressed by the BADD pro- 
gram. An informal description of the data staging prob- 
lem in a military application is as follows. A warfighter is 
in a remote location with a portable computer and needs 
data for planning troop movements. The data can include 
detailed terrain maps, enemy locations, troop move- 
ments, and current weather predictions. The data will be 
available from Washington D.C., foreign military bases, 
and other data storage locations. Each location may have 
specific data available, storage limitations, and communi- 
cation links. Also, each data item is associated with a 
specific priority,  where  larger priority  value  implies 
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higher importance. It is assumed that not all requests can 
be satisfied by their deadline. Data staging involves posi- 
tioning data prior to its use in decision making for facili- 
tating a faster transfer time when it is requested. 

Positioning the data before it is requested can be 
complicated by the dynamic nature of data requests and 
network congestion; the limited storage space at certain 
sites; the limited bandwidth of links; the changing availa- 
bility of links and data; the time constraints of the needed 
data; the priority of the needed data; and the determina- 
tion of where to stage the data [13]. Also, the associated 
garbage collection problem (i.e., determining which data 
will be deleted or reverse deployed to rear-sites from the 
forward-deployed units) arises when existing storage 
limitations become critical [12, 13]. The storage situa- 
tion becomes even more difficult when copies of data 
items are allowed to reside on different machines in the 
network so that there are more available sources from 
which the requesting sites can obtain certain data [16], 
and so there is an increased level of fault tolerance, in 
cases of links or storage locations going off-line. 

The simplified data staging problem addressed in 
this paper requires a schedule for transmitting data 
between pairs of nodes in the corresponding communica- 
tion system for satisfying as many of the data requests as 
possible, with the high priority requests given pre- 
cedence. Each node in the system can be: (1) a source 
machine of initial data items, (2) an intermediate node 
for storing data temporarily (e.g., routers or switches), 
and/or (3) a final destination machine that requests a 
specific data item. This problem comes under the topic of 
distributed heterogeneous computing [15] because nodes 
may have different storage limitations, different com- 
munication links available, different data available, and 
different data to request. The actual data staging problem 
is dynamic in nature, because in reality the network 
configuration can change, certain communication links 
may become unavailable, new data requests can be sub- 
mitted sporadically, priorities of existing requests can be 
modified, and certain nodes in the network may fail. 

This paper concentrates on solving a simpler ver- 
sion of the data staging problem in which all parameter 
values for the communication system and the data 
request information (e.g., requesting machines and net- 
work configuration) represent the best known informa- 
tion collected so far and stay fixed throughout the 
scheduling process. It is assumed that not all of the 
requests can be satisfied due to storage capacity and 
communication constraints. Also, the fault tolerance 
issues mentioned above are not addressed. The model is 
designed to create a schedule for movement of data from 
the source of the data to a "staged" location for the data. 

It is assumed that the user can easily retrieve the data 
from this location. A heuristic is presented and evaluated 
that effectively satisfies this simplified data staging prob- 
lem. This research, based on the simplified model 
presented here, serves as a necessary step toward solving 
the more realistic and complicated version of the data 
staging problem involving dynamic scheduling, fault 
tolerance, and determining where to stage data. 

Section 2 provides overviews of work that is 
related to the data staging problem. In Section 3, a 
mathematical model for a basic data staging problem is 
introduced. Section 4 presents a multiple-source 
shortest-path algorithm based heuristic for finding a 
suboptimal schedule of the communication steps for data 
staging. This heuristic adopts the simplified view of the 
data staging problem described by the mathematical 
model. A simulation study is discussed in Section 5, 
which evaluates the performance of the proposed heuris- 
tic. A BADD-like network environment has been used in 
developing the parameters for conducting this simulation 
study. Section 6 summarizes this paper, giving the 
current status of this research on data staging, and plans 
for future work. A glossary of notation is included in 
Section 7 for reference purposes. 

2. Related work 

To the best of the authors' knowledge, there is 
currently no other work presented in the open literature 
that addresses the data staging problem, designs a 
mathematical model to quantify it, or presents a heuristic 
for solving it. A problem that is, at a high level, remotely 
similar to data staging is the facility location problem [8] 
in management science and operations research. Under 
the context of the construction of several new production 
facilities, a manufacturing firm needs to arrange the loca- 
tions of the facilities and plants effectively, such that the 
total cost of transporting individual components from the 
inventory facilities to the manufacturing plants for 
assembly is minimized. It is required that the firm makes 
several interrelated decisions: how large and where 
should the plants be, what production method should be 
used, and where should the facilities be located? If an 
analogy is made between (1) the plants and the destina- 
tion nodes that make the data requests, (2) the individual 
manufacturing components and the requested data ele- 
ments to be transferred, and (3) the facilities and the 
source locations of requested data, then at a high level 
the facility location problem has features similar to those 
of the data staging problem (e.g., use a graph-based 
method to reduce the facility location problem to a 
shortest-path or minimum spanning tree problem). 
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However, when examing the relationship between 
the facility location problem and the data staging prob- 
lem carefully, there are significant differences. First, 
each component that a plant requests is usually not asso- 
ciated with a prioritizing scheme, while in the data stag- 
ing problem each data request has a priority. Also, each 
component request from a plant commonly does not have 
a corresponding deadline related factor, while in the data 
staging problem each data request has a deadline. For 
the data staging problem, the priority and deadline asso- 
ciated with each data request are the two most important 
parameters for formulating the optimization criterion. 
For example, the minimization of the sum of the 
weighted priorities of satisfiable data requests (based on 
their deadlines) is used as the optimization criterion in 
the mathematical model of a basic data staging problem 
presented in Section 3. But for the facility location prob- 
lem, in general, researchers adopt optimization criteria 
that are related to the physical distances between plants 
and facilities in either a continuous or discrete domain 
without any prioritizing schemes or deadline related fac- 
tors (e.g., [4, 6, 9, 10, 14]). Thus, although lessons can be 
drawn from the design of algorithms for different ver- 
sions of the facility location problem, there are no obvi- 
ous direct correlations between either the formulations or 
the potential solutions of those two problems. 

Data management problems similar to data staging 
for the BADD program are studied for other communica- 
tion systems. With the increasing popularity of the World 
Wide Web (WWW), the National Science Foundation 
(NSF) recently projected that new techniques for organ- 
izing cache memories and other buffering schemes are 
necessary to alleviate memory and network latency and 
to increase bandwidth [3]. More advanced approaches of 
directory services, data replication, application-level 
naming, and multicasting are being studied to improve 
the speed and robustness of the WWW [2]. Evidence has 
been shown [7], that several file caches could reduce file 
transfer traffic, and hence the volume of traffic on the 
internet backbone. In addition, distributed environments 
are looking for ways to increase system performance 
with intelligent data placement [1]. The study of data 
staging can potentially draw lessons from and generate 
positive input for the active research in these related, but 
not directly comparable, areas of research. 

Other research exploring heuristics for use in the 
BADD environment is being performed [10]. This work 
examines methods for scheduling the ATM-like channels 
of the BADD environment efficiently. The work does not 
develop a mathematical model and does not include 
several parameters considered here, such as deadlines 
and starting times. The work does show that "greedy" 

heuristics are effective tools for use in the BADD 
environment and uses a network simulator to corroborate 
this statement. 

3. Mathematical model 

A mathematical model for a basic data staging 
problem is presented in this section. This model serves as 
an initial version of a quantitative model for data staging. 
It allows the heuristic introduced in Section 4 to be given 
formally. As stated and discussed in Section 1, this paper 
concentrates on solving a simpler version of the data 
staging problem statically, where all parameter values 
for the communication system and the data request infor- 
mation stay fixed throughout the scheduling process. The 
values of all parameters in the following model may 
change temporally to reflect the dynamic nature of the 
underlying network system when the model is extended 
and used in a dynamic situation. In that case, the parame- 
ter values represent the best known information collected 
at the given point in time (e.g., all requests for data ele- 
ments include only those known at any specific time 
instant). All necessary parameters for specifying the 
communication system and the data request information 
are introduced as follows. The model includes informa- 
tion about (1) the nodes in the network, (2) the links in 
the network, and (3) the data requests in the network. 
Each machine has parameters for the storage capacity 
and node number. A link has an availability starting 
time, availability ending time, bandwidth, latency, source 
node and destination node. Every request has an approx- 
imate data size, list of sources, and list of destinations. 
Each request source consists of a node number and a 
time after which the data is available on that node. Each 
request destination contains a node number, priority, and 
deadline for the data request. This description of the net- 
work and associated data requests are used to formulate 
the mathematical model to be used in solving the basic 
data staging problem. A glossary of notation is included 
in Section 7 for the readers convenience. 

A communication system M consists of m 
machines {M[0], A/[l],..., M[m - 1]}. Each machine can 
be a server that stores data elements and a client that 
makes data requests to the system. Each machine also 
can be an intermediate node for storing a copy of a 
specific data item temporarily. Cap[i](t) represents the 
available memory storage capacity of machine M[i] (0 < 
i < m) at time t. 

A network topology graph G^ specifies the con- 

nectivity of the communication system for the machines 
in M with the following notation. A set of m vertices V = 
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[V[0], V[l], ..., V[m - 1]} is generated that corresponds 
to the m machines in the communication system. In this 
model, if two machines are connected by the same 
transmission link during v non-overlapping and discon- 
tinuous time intervals, then v different virtual links 
corresponding to the appropriate available time intervals 
are used to represent this situation (e.g., the availability 
of a satellite link for fifteen minutes each hour). Also, 
each transmission link is uni-directional. A bi-directional 
link between two machines is represented as two dif- 
ferent virtual uni-directional links that correspond to the 
transmission link in each direction. 

Let Nl[iJ] be the total number of direct virtual 
communication hnks from M[i] to M[f\. L[iJ][k] denotes 
the k-th direct virtual communication jink from M[i] to 
M\j], where 0 < ij < m, i * j, and 0 < k < Nl[ij\. For 
each L[/,j][fc], a directed edge E[ij][k] from V[i] to V\J] 
is added to Gnt. All the added edges constitute the set of 
edges E of Gnt. Each L[iJ][k] is associated with one 
unique time frame during which the corresponding link is 
available for communication. Let Lst[iJ][k] denote the 
Jink starting time when L[iJ][k] becomes available and 
Let[ij][k] denote the Jink ending time when L[iJ][kYs 
availability terminates. With the above notation, link 
L[ij][k] is available between Lst[iJ][k] (starting time) 
and Let[ij][k] (ending time). 

Let a data item be a block of information that can 
be transferred between machines. For any data item d, \d\ 
represents the size of the associated data set. Let 
ß['j]M(M) denote the communication time for transfer- 
ring data item d (of size \d\) from machine M[i] to 
machine M\j] through their k-th dedicated virtual link 
during time frame [Ltf[i,/][£], Let[ij][k]]. D[iJ][k](\d\) 
includes all the various hardware and software related 
components of the inter-machine communication over- 
head (e.g., network latency and the time for data format 
conversion between M[i] and M\j] when necessary). 
Machines M[i] and/or M[j] may be intermediate nodes 
for transferring d rather than the original source or the 
final destination node of d. 

Suppose n is the number of data items with distinc- 
tive names (identifiers) available in the corresponding 
communication system M. Let A = {5[0], 8[1], ..., 8[n - 
1]} be the set of these data items, where each 8[i] is 
unique. For example, a weather map of Europe gen- 
erated at 2 p.m. would have a different name than a 
weather map of the same region generated at 6 p.m. A 
data location table that specifies the initial locations of 
the n available data items can be constructed with the 
following notation. Let N5[i] be the number of different 
machines that the data item b[i] is located at initially. 

Source[iJ] denotes the j-th initial source location of the 
data item 8[J] (with no implied significance for the order- 
ing of the sources), where 0 < i < n, 0 <j < N5[i], and 0 < 
Source[ij] < m. Also, 5st[iJ] denotes the starting time at 
which &[i] is available at its y'-th initial source location. 

Suppose p is the number of the requested data 
items with distinctive names (identifiers) in the 
corresponding communication system M, where 0 < p < 
n. Let Rq = [Rq[0], Rq[l], ..., Rq[p - 1]} be the set of 
the requested data items. Each Rq\j] (0 < j < p) is the 
name of a data item and there must exist i (0 < / < n), 
such that Rq\j] = 8[/]. Each Rq[j] must be unique. A data 
request table that specifies the requests of data items can 
be constructed with the following notation. Let Nrq\j] 
denote the number of different requests for Rq\j]. 
Request\j,k] denotes the machine from which the k-th 
request for data item Rq\j] originates (with no implied 
order among the requests), where 0 < j < p, 0 < k < 
Nrq\j], and 0 < Request\j,k] < m. Also, Rfi\j,k] denotes 
the finishing time (or deadline) after which the data item 
Rq\j] on its k-th requesting location is no longer useful 
(e.g., data items may be needed before a specific time 
when certain decisions must be made). Suppose the 
priority of each data request is between 0 and P, where P 
is the highest priority possible (i.e., a member of the 
class of most important requests). Priority[j,k] denotes 
the priority for the data request of the data item Rq[j] on 
its k-th requesting location. 

Assume that the scheduling procedure of the com- 
munication steps starts at time 0. Let S - {S0, Su ..., 
Sa_i} denote a set of a distinct schedules for the com- 
munication steps of transmitting requested data items. 
Consider a specific schedule Sh, where 0 < h < a. The A:- 

th request for data item Rq[j] is satisfiable with respect to 
Sh if Rqlj] can be obtained by the requesting machine, 
M[Request\j,k]], before the deadline, Rfl\J,k]. Let 
Srq[Sh] denote the set of two-tuples {(j,k) \ k-th request 

of the data item Rq\j] is satisfiable}. Suppose W]i] (0 < i 
< P) denotes the relative weight of the i-th priority. 
These weightings allow system administrators to specify 
the relative importance of priority a data request versus 
priority ß data request, where 0 < a,ß < P. The effect, 
E[Sh], of the scheduling scheme Sh is defined as 

E[Sh] =  - (       X W[Priority\j,k]\)- 
(j,k)eSrq[Sh] 

The global optimization criterion is defined as 

min   E[Sh]. 
0<h<G 

Given this mathematical model, the objective of data 
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staging in this paper for a specific communication system 
is to find an Sh such that E[Sh] is minimized (i.e., the 
total sum of the weighted priorities of all satisflable data 
requests with respect to Sh is maximized). It should be 
noted that an exhaustive set of schedules is not created in 
this research. 

4. Data staging heuristic 

4.1. Overview 

The heuristic for solving the data staging problem 
introduced in this section is based on Dijkstra's algo- 
rithm for solving the multiple-source shortest-path prob- 
lem on a weighted and directed graph [5]. In Subsection 
4.2, background information about Dijkstra's algorithm 
is provided. It is summarized from the material in [5]. 
Only the relevant part with respect to the data staging 
heuristic is discussed in detail. Subsection 4.3 presents 
the heuristic that is used to schedule the communication 
steps. The definition of the shortest-path estimate for 
Dijkstra's algorithm and the cost function of a communi- 
cation step for local optimization in the heuristic are 
defined. The complexity analysis of the heuristic is pro- 
vided in Subsection 4.3 as well. 

4.2.   Dijkstra's algorithm 

The multiple-source shortest-path problem is 
defined as follows. Let G = (V, E), be a weighted and 
directed graph, where V is a set of vertices and £ is a set 
of edges. For a single data item, suppose ^cV denotes 

a set of source vertices and Vß c V denotes a set of 

destination vertices. The goal is to find a shortest path 
from any source vertex v, e Vs to every destination ver- 

tex vd e VD. The length of a path is the sum of the 

weights of its constituent edges. For an established path, 
an immediate predecessor vertex 7i[v] of each vertex v e 
V is either another vertex or NIL. Any multiple-source 
shortest-path algorithm needs to set n[v] properly so that 
the chain of predecessors originating at a vertex vd e VD 

corresponds to a shortest path from any vs e Vs to vd. 

The main technique used in this multiple-source 
shortest-path algorithm is relaxation. For each vertex v e 
V, an attribute d\v\, which is referred to as a 
shortest-path estimate, is maintained. This d[v] is an 
upper bound on the length of a shortest path from any 
source vertex v^ e Vs to vd e VD. The relaxation pro- 
cedure with respect to a directed edge from vertex u to 

vertex v consists of testing whether the length of the 
shortest path to v found so far can be decreased by going 
through u (with known d[u]) via that edge from u to v. If 
the above testing results in a positive answer, a relaxation 
step decreases the value of the shortest-path estimate d[v] 
(e.g., set d[v] as d[u] plus the weight of the edge from u 
to v) and updates v's immediate predecessor vertex as u. 
Relaxation is the only way by which the shortest-path 
estimate d[v] and the predecessor vertex 7t[v] can change. 

Algorithms for solving a multiple-source shortest- 
path problem may differ in the way by which the edges 
are relaxed. In Dijkstra's algorithm, a set of vertices Vj_ 

(set to be Vs initially), whose final shortest paths from 
any vs e Vs have already been determined, is main- 
tained. The algorithm repeatedly selects the vertex u e V 
- VF with the minimum shortest-path estimate, inserts u 
into VF, and relaxes any edge from « to v by updating 
d[v] and rc[v] properly, for all v e V- VF. The algorithm 
terminates when VF - V. 

4.3.   Heuristic and complexity analysis 

All necessary communication steps are scheduled 
by the data staging heuristic presented in this subsection. 
The heuristic utilizes the following three strategies col- 
lectively: 

(i) Choose an order of data transfers that results in a set 
of data items being available on intermediate nodes 
earlier. This set of data items will be chosen based 
on some criteria that will cause the ordering to 
satisfy more data requests. 

(ii) Maximize the sum of the priorities of the potentially 
satisflable data requests. 

(iii) Consider the urgency of a request as its deadline 
approaches. 

A data staging heuristic that has a well-balanced 
set of local optimization criteria using the above three 
strategies should intuitively perform well. The multiple- 
source shortest-path algorithm based heuristic presented 
in this subsection is built upon Dijkstra's algorithm and 
utilizes all of the above three strategies. The heuristic 
iteratively picks which data item to transfer next con- 
strained by a cost function. Each iteration of the heuris- 
tic involves: (a) running Dijkstra's algorithm for each 
data request individually, (b) determining the "cost" to 
transfer a data item to its successor in the shortest path, 
(c) picking the lowest cost data request and transferring 
that data item, (d) updating system parameters to reflect 
resources used in (c), and (e) repeating (a) through (d) 
until there are no more satisflable requests in the system. 
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1. 
2. 

3. 

4. 

5. 
6. 

7. 

For all k (0 < k < Nl[s,r]), do the following steps. 
if (AT[i,s]>Lst[s,r][k]){ 

I* if Rq[i\ is obtained by M[s] after L[s,r][k] is available */ 
if ([AT[i,s] + D[s,r][k](\Rq[i]\)} < Let[s,r][k]) 

I* if the available time interval is long enough to transfer Rq[i] via L[s,r][k] */ 
if (Cap[r](AT[i,s])>\Rq[i]\) 

I* if M[r] has enough storage capacity for Rq[i] */ 
AL[s,r][i][k]=AT[i,s]+D[s,r][k](\Rq[i]\) 
I* find "available time" using this link*/ 

} else { /* if Rq[i\ is obtained by M[s] before L[s,r][k] is available */ 
if ([Lst[s,r][k] + D[s,r][k](\Rq[i]\)]<Let[s,r][k]) 

I* if the available time interval is long enough to transfer Rq[i] via L[s,r][k] */ 
if (Cap[r](Lst[s,r][k])>\Rq[i]\) 

I* if M[r] has enough storage capacity for Rq[i] */ 
AL[s,r][i\[k] = Lst[s,r][k] + D[s,r][k)(\Rq[i]\) } 
I* find "available time" using this link */ 

if(Ar[*>]> ft     min {^[5,r][(]W}){ 
0 < k < Nl[s,r] 

I* if smaller shortest-path estimate is found */ 
AT[iA = n<n<   ^   ^Ad^][i][k]} 0<k< Nl[s,r] 

/* update the shortest-path estimate for V[r] */ 
10.     ki-k giving minimum in step 9 /* record the virtual link used */ 

} /* Iq is the argument k that minimizes AL|>,r] [«'][£] */ 

Figure 1: Pseudocode for implementing the relaxation step. 

Source[0,0]        Source[0, 1] Source[\, 0] 

2  ) Source[\, 1] 

0 
^000 

Request[0,0]       Request[0, 1]       Request®, 2]    Request [0,3] 

5[0] 

(a) 

Figure 2: An example communication system that requests (a) 8[0] and (b) 8[1]. 
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In some cases, Dijkstra's algorithm would not need to be 
executed each iteration for a particular data request, i.e. 
if the links that the request uses are not affected by 
updating the system parameters. Future versions of the 
heuristic are planned to take advantage of not having to 
recalculate all the shortest paths during each iteration. 

For each requested data item Rq[i\] (0 < i] < p), 
as stated in Section 3, there exists i2 (0 < i2 < ")» such 
that Rq[i]] = 8[i2]. Suppose Vs[ix] is the set of source 

vertices corresponding to Rq[i\] in Gnt. Then V[k] e 
Vs[ix] (0 < & < m) if and only if there exists ;' (0 < j < 
N8[i2]), such that Source[i2, j] = k. This means that 
Vs[ii] contains all the vertices of G„, that correspond to 
the machines that are the initial locations of Rq[i\] (i.e., 
5[/2])- Suppose VD[i\] is the set of destination vertices 

corresponding to Rq[ix] in Gnt. Then V[k] e VD[i}] (0 < 
k < m) if and only if there exists ; (0 < j < NrqUj]), such 
that Request[iuj] = k. This means that VD[ix] contains 
all the vertices of G„, that correspond to the machines 
that are making data requests for Rq[i\). Let the length 
of a path from a source vertex vs e Vs[ix] to a destina- 
tion vertex vd e VD[it] be defined as the difference 
between the earliest possible time when data item Rq[i i ] 
can be available on the machine corresponding to vd via 
the machines and the virtual communication links along 
the path and the time the data item is available on 
vseVs[i\] (this time can be calculated using the various 
parameters defined in Section 3). With the above defined 
Gnt - (V,E), Vs[i], and VD[i], where 0 < i < p, a separate 
multiple-source shortest-path problem is well defined for 
each of the p different requested data items in the context 
of the data staging problem. 

Readers should notice that it may be impossible to 
use the individually shortest paths to all vd e VD[i] for 
each data item 8[i] (0 < i < p) due to possible communi- 
cation link contention in the network for transferring dif- 
ferent data items. Also, a multiple-source shortest-path 
algorithm for Gnt only attempts to minimize the time 
when a given requested data item is obtained by its 
corresponding requesting locations. But as clearly stated 
in Section 1 and Section 3, other criteria like request 
deadlines and the priorities of the satisfiable data requests 
must be taken into account as well. 

As reviewed in Subsection 4.2, the way of defining 
d[v] (i.e., the shortest-path estimate) based on the known 
d[u] and information about all edges from «tov (e.g., 
their weights) is essential for applying Dijkstra's algo- 
rithm to derive the data staging heuristic. For G„, = (V, 
£), Vs[i], and VD[i] (0 < / < p), let the shortest-path esti- 
mate of V[j] (corresponding to machine M[j]) for 
requested data item Rq[i] be defined as AT[iJ]. This is 

the earliest possible available time found so far when the 
requested data item Rq[i] is obtained by machine M[j] 
with the consideration of the availability of the virtual 
links and the available memory capacity of machine 
M\j\. Suppose 8[£] = Rq[i] (0 < k < n). Initially, 
AT[i,Source[k,q\\ = 8st[k,q] for all 0 < q < N8[k]. That is, 
for all initial source locations vs e Vs[i], their shortest- 
path estimates are the starting times when b[k] is avail- 
able at those nodes. 

It is assumed that each machine can send different 
data items (each via a different link) to its neighboring 
machines in the network simultaneously. Future work 
will relax this assumption. Suppose AT[i,s] and AT[i,r] 
are known and there are virtual links L|>,r][/:] (0 < k < 
Nl[s,r]) from M[s] to M[r]. Let AJs,r][/][fc] denote the 

time when the requested data item Rq[i] can be available 
on machine M[r] via fetching the copy from M[s] 
through the virtual Jink L[s,r][k]. The relaxation step with 
respect to the edges from V[s] to V[r] based on the 
known AT[i,s] and AT[i,r] is implemented by the C-style 
pseudocode in Figure 1. 

As illustrated by Step 10 in the above pseudocode, 
the exact virtual link L[s,r][ki] used for updating the 
shortest-path estimate of V[r] needs to be recorded, due 
to the existence of multiple virtual links between M[s] 
and M[r]. Thus, the predecessor vertex n[r] in the usual 
description of the Dijkstra's algorithm is extended as a 
predecessor field and is defined as a two-tuple (s,ki) in 
this data staging heuristic, where 5 records the source 
machine and kt records the virtual link used. At this 
stage, the information about the availability of link 
L[s,r\[k{\ does not need to be updated because each exe- 
cution of Dijkstra's algorithm is for a single given data 
item and the transfer of any specific data item only needs 
to use that link once. 

For each Rq[i] (0 < i < p) individually, based on 
the above defined shortest-path estimate, the shortest 
paths for all vd e VD[i] can be generated with respect to 
Gnt defined in Section 3. Consider an example shown by 
Figure 2, with a communication system consisting of ten 
machines. Also, to simplify the presentation, suppose 
that there is at most one virtual link between any pair of 
machines. There are two data items 8[0] and 5[1] being 
requested. Machines 0 and 1 are the sources for 5[0] 
(Source[0,0] = 0, Source[0,l] = 1), and machines 0 and 2 
are the sources for 8[1] (Source[l,0] = 0, Source[ 1,1] = 
2). The destinations for 8[0] are machines 6, 7, 8, and 9 
(Request[0,0] = 7, Request[0,l] = 8, Request[0,2] = 9, 
Request[0,3] - 6), and the destinations for 8[1] are 
machines 8 and 9 (Request[\,0] = 8, Request[\,\] = 9). 
Suppose that the shortest paths generated corresponding 
to 8[0] individually are shown in Figure 2(a), and the 
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shortest paths generated corresponding to 8[1] individu- 
ally are shown in Figure 2(b). Note that Figure 2(a) and 
2(b) correspond to the same machine suite, and that the 
links shown in Figure 2(a) and 2(b) collectively are a 
subset of all the inter-machine links. This example is 
used throughout the rest of this section to illustrate the 
proposed data staging heuristic. 

A vertex V[r] (corresponding to machine M[r] in 
Gnt) is defined as a contingent vertex with respect to 
Vs[i], if V[r] e V - Vs[i] and there is an edge entering 
into V[r] that starts from a vertex in Vs[i]. For the exam- 
ple shown in Figure 2(a), V[2] and V[3] are contingent 
vertices with respect to V5[0] = [V[0], V[l]}. For the 
example shown in Figure 2(b), V[3], VT4], V[5], and V[7] 
are contingent vertices with respect to Vs[\] = [V[0], 
V[2]}. M[r] may be an intermediate machine along some 
paths from any source vertex in Vs[i] to a set of destina- 
tion vertices in VD[i]. Suppose this set of destination 
(requesting) vertices associated with a data item 8[i] and 
a contingent vertex V[r] is defined as Drq[i,r\. For any 
element drq e Drq[i,r], drq is an integer (0 < drq < 
Nrq[i]), such that V[Request[i,drq]] e VD[i]. For the 
example shown in Figure 2(a), for VT3] (corresponding to 
M[3]), Drq[0,3] - {0, 1, 2} corresponding to requests for 
8[0] from M[l], M[8], and M[9], respectively. For V[2] 
(corresponding to M[2]), Drq[0,2] = {3} corresponding 
to the request for 8[0] from M[6]. Similarly, for the 
example shown in Figure 2(b), Drq[\,3] = {0} 
corresponding to the request of 8[1] from M[8], Drq[l,5] 
= {1} corresponding to the request of 8[1] from M[9], 
andDrq[l,4]=Drq[l,7] = 0. 

After applying the multiple-source shortest-path 
algorithm for each requested data item Rq[i] (0 < i < p), 
individually, with the associated Vs[i], VD[i], and Gn„ p 
sets of shortest paths are generated, one for each of the p 
different requested data items. Suppose the predecessor 
field of V[r] corresponding to the shortest paths gen- 
erated for Rq[i] is (s,k). Each contingent vertex V[r] that 
has an incident edge E[s,r][k] from V[s] in Vs[i] and its 
associated Drq[i,r] * 0 corresponds to a valid next 
communication step to be scheduled. This communica- 
tion step is the one that specifies transferring Rq[i] from 
M[s] to M[r] via link L[s,r][k]. For the example shown 
in Figure 2, there are four valid communication steps that 
can be scheduled (specified by asterisks). But different 
valid communication steps may have conflicting resource 
requirements (e.g., M[0] cannot send 8[0] and 8[1] to 
M[3] simultaneously due to network conflict for the 
example shown in Figure 2). Thus, a local optimization 
criterion is used to select one of the valid communication 
steps to be scheduled. The next paragraphs derive a cost 
function that is used as the basis for making this selec- 

tion. The cost function will involve considerations of 
satisfiability, effective priority, and urgency as defined 
later. 

Suppose AT[iJ] (j € Drq[i,r\) denotes the time 

when Rq[i] is received and available at its corresponding 
7-th requesting location. A satisfiability function 

Sat[i,r](j), is defined as: Sat[i,r](j) = 1, if AT[i,j] < 

Rfi[iJ]; and 0, if AT[i,j] > Rfi[iJ]. Note that this shortest 
path involves passing through vertex V[r], so if a request 
in Drq[i,r] is not satisfied, there is not other path that will 
cause it to be satisfied. That is, if Sat[i,r](j) = 1, then the 
data request of Rq[i] from machine M[Request[i,j]] is 
satisfied. Otherwise, the corresponding data request is 
not satisfied. As an example of the definition of 
Sat[i,r](j), consider the shortest paths generated by 
selecting first the valid communication step for transfer- 
ring 8[0] from M[0] to M[3] in the example shown by 
Figure 2(a). Suppose T0 = A~T[0,0] = AT[0,7], 7, = 
A~T[0,l] = AT[0,i], and T2 = A~T[0,2] = AT[0,9]. Also, 
assume that T0 < Rfi[0,0], Tx > Rfi[0,l], and T2 < 
7}[0,2]. Then, Sat[0,3](0) = 1, Sar[0,3](l) = 0, and 
Sat[0,3](2) = 1. T0,TU and T2 are calculated during the 
last execution of the Dijkstra's algorithm with respect to 
8[0]. 

Suppose Efpjij] denotes the effective priority for 
the data request of Rq[i] from its 7-th requesting location, 
where Efp[iJ] = Sat[i,r](j) x W[Priority[i,j]]. Suppose 
Urgency[i, j] denotes the urgency for the data request of 
Rq[i] from its j-th requesting location, where 
Urgency[i,j] = - Sat[i,r](j) X (Rfi[ij] -A~T[iJ]), where 
smaller Urgency[i] implies that it is less urgent to 
transfer Rq[i] to the 7-th requesting location. Suppose 
WE > 0 is the relative weight for the effective priority 

factor and Wy > 0 is the relative weight for the urgency 

factor in the scheduling. Readers should notice that (a) 
applying Dijkstra's algorithm to obtain AT[i,r] through 
shortest paths, (b) maximizing Efp[i,j], and (c) maximiz- 
ing Urgency[i,j] follow the three strategies for designing 
data relocation heuristics recommended in (i), (ii), and 
(iii), respectively, at the beginning of this subsection. 
The cost, Cost[s,r][iJ][k], for transferring the requested 
data item Rq[i] from machine M[s] to M[r] via link 
L[.y,r][&] is defined as: 

Cost[s,r][iJ][k] = - WEEJp[iJ) ~ WyUrgencylij}. 

The next chosen communication step should be the 
one that has the smallest associated cost among all valid 
next communication steps for transferring all Rq[i] where 
0 < / < p, and Sat[i,r] is not 0 for all r. If Sat[i,r] is 0 for 
all r, that request receives no resources and the data does 
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not move from its current locations. The request is not 
eliminated from the network. Currently the heuristic is 
applied to a static system, as this constraint is loosened 
and a dynamic system is explored, links might become 
available that would facilitate the delivery of an other- 
wise unsatisfiable request. So requests that are at one 
point in time unsatisfiable, might become satisfiable at a 
later point in time. For the valid communication step for 
transferring 8[0] from M[0] to M[3] shown in Figure 
2(a), Efp[0,0] = W[Priority[0,O]] and Urgency[0ß] = - 
(Rfi[0,0] - T0). 

The rationale for choosing the above cost for local 
optimization is as follows. First, only a valid next com- 
munication step whose associated Sat[i,r] is not 0 for all 
r will facilitate satisfying data request(s). Cost[s,r][iJ][k] 
attempts to maximize the total priority of the satisfiable 
data requests. Furthermore, in order to satisfy as many 
data requests as possible, intuitively it is necessary to 
transfer a specific data item to the requesting locations 
whose deadlines are close to expire. This intuition is cap- 
tured by the inclusion of the urgency factor. Thus, collec- 
tively with the consideration of the total priority of the 
satisfiable data requests and the urgency of those data 
requests in this local optimization step, this data staging 
heuristic should generate a suboptimal Sh that reasonably 
achieves the global optimization criterion presented in 
Section 3. 

Suppose that the current chosen communication 
step for Sh according to Cost[s,r][iJ][k] is to transfer the 
requested data item Rq[i] from M[s] to M[r] via link 
L[s,r][it] during the time interval between t0 and tv 

Before repeating the above multiple-source shortest-path 
based heuristic for determining the next communication 
step of Sh, the following four categories of information 
need to be updated. 

(1) Update the network topology graph Gnt — Delete 
the edge £[$,/■] [it] corresponding to link L[s,r][£] in 
GM. Also, add up to two more edges from V[s] to 
V[r] that correspond to two more virtual links. One 
with the link starting time as Lst[s,r][k] and link 
ending time as t0, and another with link starting 
time as t\ and link ending time as Let[s,r][k]. If t0 

= Lst[s,r][k] and/or f, = Let[s,r][k], then the above 
first and/or second additional virtual links are not 
needed. 

(2) Update Cap[r](t) — Cap[r](t) is decremented by 
\Rq[i]\, where \Rq[i]\ is the size of Rq[i], because 
machine M[r] keeps a copy of the data item Rq[i] 
(e.g., Cap[3](t) is decremented by |8[0]| for the 
communication step shown in Figure 2(a)). 

(3) Update the set of source vertices Vs[i] for Rq[i] — 
Vs[i] = {latest Vs[i]} U {V[r]}. Also, set the start- 
ing time when Rq[i] is available on M[r] as AT[i,r]. 
For the example communication step for transfer- 
ring 8[0] from M[0] to M[3] shown in Figure 2(a), 
M[3] becomes a source of 8[0] and its starting time 
isAr[0,3]. 

(4) Update the garbage collection related information 
— The copy of Rq[i] on machine M[r] is used as an 
intermediate copy for forwarding Rq[i] to some 
other machines. Suppose this set of machines is 
defined as Im\i,f\. Im[i,r] can be determined by 
tracing the shortest paths generated above for each 
vd e VD[i]. For the example communication step of 
transferring 5[0] from M[0] to A/[3] shown in Fig- 
ure 2(a), by tracing the shortest-paths generated for 
V[7], V[8], and V[9], Im[0,3] can be determined as 
{5, 8}. After all those machines in Im[i,r] have 
received the copy of Rq[i] from M[r], the copy of 
Rq[i] on machine M[r] can be deleted. Suppose the 
time for the last machine in Im[i,r] to xeceive its 
copy of Rq[i] from M[r] is RT[i,r], then at this time, 

Cap[r](t) is incremented by \Rq[i]\. This above pro- 
cedure implements the garbage collection scheme in 
data staging. 

A single iteration of this multiple-source shortest- 
path based heuristic starts at the step for generating shor- 
test paths for all remaining data requests (based on the 
Dijkstra's algorithm and the current system status (e.g., 
data source locations and link availability)). The iteration 
ends at the step for updating the system information 
described above. Then with the new Cap[r](t), Gnt, and 
Vs[i], execute the above multiple-source shortest-path 
based heuristic repeatedly to determine the rest of the 
communication steps in Sh. The heuristic terminates 
when all remaining data requests are not satisfiable. 

For the complexity analysis of this multiple-source 
shortest-path based heuristic for determining one com- 
munication step in Sh, suppose that |£| is the number of 
edges and |V| is the number of vertices in the network 
topology graph Gnt. If a Fibonacci heap [5] is used to 
implement the priority queue, the worst case asymptotic 
complexity of Dijkstra's algorithm is 0(\E\ + |V|lg|V|). 
For   the   network   topology   graph   Gnt   terminology 
described in (2) of Section 3, |£| =        £       NlV> A and 

0<i*j<m 
\V\ = m. Because in the worst case it is necessary to apply 
the multiple-source shortest-path algorithm to all the 
requested data items Rq[i] (0 < i < p), the worst case 
asymptotic complexity of this heuristic for determining 
one communication step in Sh is 
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0[p(mlgm+       X       M[iJ])], 
0<i*j<m 

where p is the total number of requested data items 
defined in Section 3. 

Given the heuristic approach presented in this sec- 
tion uses Dijkstra's algorithm in conjunction with a 
minimization criteria, it is called the 
Dijkstra/minimization heuristic. It is evaluated in the 
next section. 

5. Simulation study 

To perform the simulation study, network topolo- 
gies and data requests must be generated, values for WE 

and Wy must be determined, and other scheduling 
schemes need to be created to compare to the 
Dijkstra/minimization heuristic. Rather than just choos- 
ing one network topology and set of data requests, 
because one can not accurately reflect the changing data 
requests and network availability with one case, 40 test 
cases were generated and the Dijkstra/minimization 
heuristic was executed using each of these cases and the 
results were averaged. The data requests and the underly- 
ing communication systems were randomly generated 
over a set of parameters (corresponding to the notation 
introduced in Section 3) as specified below. All parame- 
ters are randomly generated with uniform distributions in 
predefined ranges representing systems in a BADD-like 
environment. The sources and requesting machines for 
all data items are also generated randomly. The test gen- 
eration program guarantees that the generated communi- 
cation system is strongly connected [5], such that there is 
a path consisting of physical transmission links between 
any pair of nodes in both directions. 

These randomly generated patterns of data 
requests and the underlying communication systems are 
used for three reasons: (1) it is beneficial to obtain cases 
that can demonstrate the performance of the 
Dijkstra/minimization heuristic presented over a broad 
range of conditions; (2) a generally accepted set of data 
staging benchmark tasks does not exist; and (3) it is not 
clear what characteristics a "typical" data staging task 
would exhibit. Determining a representative set of data 
staging benchmark tasks remains an unresolved chal- 
lenge in the research field of data staging and is outside 
the scope of this paper. 

Finding optimal solutions to data staging tasks 
with realistic parameter values are intractable problems. 
It is currently impractical to directly compare the quality 
of the solutions found by the above 
Dijkstra/minimization   heuristic   with   those   found   by 

exhaustive searches in which optimal answers can be 
obtained by enumerating all the possible schedules of 
communication steps. Also, to the best of the authors' 
knowledge, there is no other work presented in the open 
literature that addresses the data staging problem and 
presents a heuristic for solving it (based on a similar 
underlying model). Thus, there is no other heuristic for 
solving the same problem with which to make a direct 
comparison of the Dijkstra/minimization heuristic 
presented in this paper. 

The performance of the Dijkstra/minimization 
heuristic is compared with two random-search based 
scheduling procedures. The only difference between the 
first random procedure and the above 
Dijkstra/minimization heuristic is that, instead of choos- 
ing a valid communication step using Cost[s,r][iJ][k] as 
discussed for the Dijkstra/minimization heuristic, the 
Dijkstra random heuristic randomly chooses an arbitrary 
valid communication step to schedule. 

The second random-search based scheduling pro- 
cedure performs Dijkstra once for each requested data 
item, assuming it is the only requested item in the net- 
work. Then the paths through the network are scheduled 
for each data item, finishing Rq[i] before Rq[i+\]. If a 
conflict arises, i.e., the time frame in which a particular 
link was originally scheduled by the independent 
Dijkstra's for a given request is unavailable, the request 
is dropped and not satisfied. This approach is referred to 
as single Dijkstra random because Dijkstra's algorithm is 
only executed once for each data item. 

Each test set for the results shown in Figures 3 and 
4 was generated with the following parameters. The 
number of machines in the communication system is 
between ten and twenty. Each machine has between 
10MB to 20GB memory storage capacity. The maximum 
outbound degree of a machine M[i] (i.e., the number of 
machines that M[i] can transfer data items to directly 
through physical transmission links) is five. There are at 
most two physical transmission links between any two 
machines (there can be none). The total number of data 
requests is one to ten times the number of machines in 
the system. There can be up to three sources and three 
destinations for each of the data requests. Each data item 
size ranges from 10KB to 1MB. The priority of each data 
item is 1,5, or 10, and the relative weight of a priority is 
equal to the priority itself (i.e., W[i] = i, for all 0 < / < P). 
Each request has its own priority. The bandwidth of each 
physical transmission link is between 10KB/sec and 
10MB/sec. The link starting and ending times and the 
data item starting (available) and finishing times (or 
deadlines) are modeled building on information about the 
underlying   communication    infrastructures    and   data 
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request patterns in [12, 13]. These parameters were used 
as they capture the information about the network that is 
necessary to show the functionality of the heuristic over 
a variety of network configurations. 

Let the E-U ratio be WEIWU. As shown by the 
cost function Cost[s,r][ij][k] introduced in Subsection 
4.3, the E-U ratio may affect the performance of the 
Dijkstra/minimization heuristic. Figures 3 and 4 show the 
performance of the Dijkstra/minimization heuristic when 
the E-U ratio ranges from 0.001 to 1000 (shown by 
dashed-dotted lines). Figure 3 uses the average sum of 
the weighted priorities of the satisfiable data requests and 
Figure 4 uses the average number of the satisfiable data 
requests. Both are averaged over 40 randomly generated 
test cases. 

In this study, the Dijkstra/random heuristic is exe- 
cuted ten times for each of 40 randomly generated cases 
(the same 40 cases as used for Dijkstra/minimization). 
Then, its average sum of the weighted priorities of the 
satisfiable data requests and its average number of the 
satisfiable data requests over all ten runs for all 40 cases 
are calculated. As shown in Figures 3 and 4, the 
Dijkstra/minimization heuristic consistently outperforms 
the Dijkstra/random heuristic (shown by the dotted 
lines). The difference shows the advantage of using a 
minimization criteria to resolve conflicting demands for a 
link. 

Also shown in Figures 3 and 4, single Dijkstra ran- 
dom performs poorly (shown by the pluses) compared to 
the Dijkstra/minimization heuristic and the 
Dijkstra/random heuristic. The difference between the 
Dijkstra/minimization and the single Dijkstra random 
shows the advantage of the process of interleaving link 
demands from multiple data items. 

Solid lines in Figures 3 and 4 show the average 
sum of the weighted priorities of all data requests and the 
average number of all data requests, respectively. 
Readers should notice that not all data requests for a ran- 
domly generated test case can be satisfied even with the 
optimal scheduling scheme for data staging. The aster- 
isks show the average of all the requests that could be 
satisfied if each had exclusive use of the network, i.e., it 
was the only request in the network. Thus, the asterisks 
in Figures 3 and 4 represent a loose upper bound for the 
performance of any data staging heuristic. The differ- 
ence between the solid line and the asterisks represent 
those requests that could never be satisfied due to 
insufficient resources of the network, i.e., links or 
storage. This information is useful as a prediction tool to 
determine changes to the network that would increase the 
number of satisfied requests. 

250 

l *' 
a       i 
= 200 

total requested priorities 
loose upper bound 
Dijkstra/minimization heuristic 
Dijkstra/random heuristic 
single Dijkstra random 

10v 

E-U ratio 

„1 

Figure 3: Comparison in terms of the average 
sum of the priorities of the satisfiable 
data requests for a lightly loaded 
network. 
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Figure 4: Comparison in terms of the average 
number of the satisfiable data requests 
for a lightly loaded network. 

Figure 5 shows the average sum of the priorities 
satisfied for more heavily congested network topologies 
and Figure 6 shows the average of the number of 
requests satisfied. The network topologies that were 
used for these cases had fewer nodes in the network (ten 
to twelve), but had more requests (20 to 40 times the 
number of nodes), as well as one to five different sources 
and one to five different requesting machines.   This 
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Figure 5: Comparison in terms of the average 
sum of the priorities of the satisfiable 
data requests for a heavily congested 
network. 
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with the lightly loaded case, the scheduling the 
Dijkstra/minimization heuristic created for the heavily 
congested network is better than that of single Dijkstra 
random, and that of Dijkstra/random heuristic. 

6. Summary and future work 

Data staging is an important data management 
problem for information systems. It addresses the issues 
of distributing and storing over numerous geographically 
dispersed locations both repository data and continually 
generated data. When certain data with their correspond- 
ing priorities need to be collected together at a site with 
limited storage capacities in a timely fashion, a heuristic 
must be devised to schedule the necessary communica- 
tion steps efficiently. 

A rigorous mathematical model was created to 
describe a simplified static version of the data staging 
problem. This model is a first attempt at addressing this 
problem. The Dijkstra/minimization heuristic was intro- 
duced in Section 4 to solve this version of the data stag- 
ing problem. Section 5 presented the results of simulation 
testing that shows the performance of the proposed 
Dijkstra/minimization heuristic over the Dijkstra/random 
heuristic and single Dijkstra random for a class of data 
staging tasks. 

There are many issues that must be resolved before 
a complete heuristic for solving the entire data staging 
problem can be presented. The mathematical model 
described in this paper serves as a starting point for a 
rigorous model for the general data staging problem and 
will evolve over time. Also, when dynamic scheduling is 
necessary, methods need to be devised to include run- 
time information into the selection criterion. Fault toler- 
ance issues must be considered as well in order to build a 
robust heuristic. The results of this research and its 
extensions may impact web management procedures, as 
well as the DARPA BADD program. 

Figure 6: Comparison in terms of the average 
number of the satisfiable data requests 
for a heavily congested network. 

caused the number of total requested data items, and the 
total priorities requested, to be at least an order of magni- 
tude higher than in our previous experiments. The E-U 
ratio was again varied between 0.001 and 1000 to see 
what effect this would have on the results. It can be 
observed from Figures 3 and 5 that varying the E-U ratio 
has only a small impact, and that either Efp[i,j] or 
UrgencyliJ] by itself would be a sufficient criterion. As 

7. Glossary of notation 

^/.[■V] [/][£]: time when Rq[i\ can be available on 
machine M[r] via fetching the copy from M[s] 
through the virtual link L[s,r][k] 

AT[ij]: the earliest possible time found so far when Rq[i] 
is available on M[j] 

AT[iJ\: time when Rq[i] is received at its corresponding 
7-th requesting location with respect to the gen- 
erated shortest path 

Cap[i](t): available memory storage capacity of machine 
M[i] at time t 
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Cost[s,r][i,j][k]: cost for transferring the requested data 
item Rq[i] associated with the y'-th destination, 
from machine M[s] to M[r] via link L[s,r][£] 

\d\: size of the associated data item d 
d[v]: shortest-path estimate for vertex v in Dijkstra's 

algorithm 
D[ij][£](|d|): communication time for transferring data 

item d with size \d\ from M[i] to M\j] through 
their k-th dedicated virtual communication link 

A: set of data items available in the communication sys- 
tem 

8[i]: i-th data item available in the communication sys- 
tem 

8st[iJ]: starting time at which 8[i] is available at its y'-th 
initial source location 

Drq[i,r]: set of destination vertices associated with a data 
item S[(] and a contingent vertex V[r], 
Drq[i,r]z{0,l,...,Nrq[i]-l) 

E: set of edges in GM that corresponds to all virtual com- 
munication links among machines 

E: set of edges in G 
\E\: number of edges in the network topology graph Gnt 

Efp[ij]\ effective priority for the data request of Rq[i] 
from its y'-th requesting location 

E[iJ][k]: k-tii direct edge from V[i] to V\j] in Gn! 

E[Sh\. effect of the scheduling scheme Sh 

G: a weighted and directed graph 
Gnt: network topology graph of the communication sys- 

tem that illustrates the connectivity of the 
machines 

Im[i,r]: set of machines that M[r] will forward its copy of 
Rq[i] to according to the generated shortest paths 

kt: the argument k that minimizes /I £[s,r] [/][&] 
L[ij][k]: k-th direct virtual communication link from 

M[i] to M\j] 
Let[ij][k]: link ending time when L[iJ][k]'s availability 

terminates 
Lst[ij][k]: link starting time when L[ij][k] becomes 

available 
m: number of machines in the communication system 
M[i]: i-th machine in the communication system, 

0 < (' < m 
n: number of the data items with distinctive values avail- 

able in the communication system 
N5[i]: number of different machines that the data item 

8[i] is located at initially 
Nl[iJ]: total number of direct virtual communication 

links from M[i] to M\j] 
Nrq\j]: number of different machines where a request for 

Rq\j] is initiated 
P: highest priority possible and implies to be most impor- 

tant for any data request 
7i[v]: predecessor field (or predecessor vertex) of vertex v 

Priority\j,k\. priority for the data request of the data item 
Rq\j] on its k-th requesting location 

Request\j,k]: k-th location of the request for data item 
Rq\j], 0 < Request[j,k] < m 

Rft\j,k]: finishing time (or deadline) after which the data 
item Rq\j] on its k-th requesting location is no 
longer useful 

p: number of the requested data items with distinctive 
values in the corresponding communication sys- 
tem 

Rq\j\: y'-th requested data item in the communication sys- 
tem 

RT[i,r]: time for the last machine in Im[i,r] to receive its 
copy of Rq[i] from M[r] 

Sat[i,r]Q): satisfiability function associated with a the y'-th 
requesting location for data item 8[i] and a con- 
tingent vertex V[r] 

Sh: a specific schedule for the communication steps of 
transmitting requested data items 

a: number of distinct schedules for the communication 
steps of transmitting requested data items 

Source[ij]: y'-th initial source location of the data item 
8[i] 

Srq[Sh]: set of two-tuples {(j,k) | k-th request of the data 
item Rq\j] is satisfiable} 

Urgency[iJ]: urgency for the data request of Rq[i] from 
its y'-th requesting location 

V: set of m vertices for Gnt that corresponds to m 
machines 

|V|: number of vertices in the network topology graph Gn! 

V: set of vertices in G 
vd: a specific destination vertex 
VD: set of destination vertices 
VD[i]: set of destination vertices corresponding to Rq[i] 
VF: set of vertices whose final shortest paths from any 

vs e V5 have been determined during the execu- 
tion of Dijkstra's algorithm 

V[i]: i-th vertex of Gnl that corresponds to machine M[i] 
vs: a specific source vertex 
Vs: set of source vertices 
Vs[i]: set of source vertices corresponding to Rq[i] 
W[i]: relative weight of the i-th priority 
WE: relative weight for the effective priority factor in the 

scheduling 
Wv: relative weight for the urgency factor in the schedul- 

ing 
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Abstract 
NYNET (ATM wide-area network testbed in 

New York state) Communication System (NCS) 
is a multithreaded message-passing tool developed 
at Syracuse University that provides low-latency 
and high-throughput communication services over 
Asynchronous Transfer Mode (ATM)-based high- 
performance distributed computing (HPDC) environ- 
ments. NCS provides flexible and scalable group com- 
munication services based on dynamic grouping and 
tree-based multicasting. The NCS architecture, which 
separates the data and control functions, allows group 
operations to be implemented efficiently by utilizing 
the control connections when transferring status in- 
formation (e.g., topology information, routing infor- 
mation). Furthermore, NCS provides several different 
algorithms for group communication and allows pro- 
grammers to select an appropriate algorithm at run- 
time. 

In this paper we overview the general architecture 
of NCS and present the multicasting services provided 
by NCS. We analyze and compare the performance 
of NCS with that of other message-passing tools such 
as p4, PVM, and MPI in terms of primitive perfor- 
mance and application performance. The benchmark 
results show that NCS outperforms other message- 
passing tools for both primitive performance and ap- 
plication performance. 

1     Introduction 
We are experiencing a rapid deployment of high- 

performance distributed systems (HPDS) that are typ- 
ified by a heterogeneous collection of machines with 
widely differing performance characteristics and are 
connected by one or more high-speed networks. These 
systems combine workstations, shared-memory mul- 
tiprocessors,   and  distributed-memory multicomput- 

ers. The high-speed network technologies used include 
Asynchronous Transfer Mode (ATM) [1], Myrinet [2], 
Gigabit Ethernet [3], High Performance Parallel In- 
terface (HIPPI) [4], and wireless technologies. Con- 
sequently, the development of high-performance dis- 
tributed computing (HPDC) applications is a non- 
trivial task that requires a thorough understanding 
of the application requirements and architecture, and 
the communication services provided. 

HPDC applications require low-latency and high- 
throughput communication services comparable to 
that experienced in a bus-based parallel computer. 
HPDC applications have different Quality of Service 
(QoS) requirements and even one single application 
might have multiple QoS requirements during the 
course of its execution (e.g., interactive multimedia 
applications). Furthermore, a significant fraction of 
the traffic in HPDC applications is multi-point (e.g., 
video-conferencing, collaborative computing). In or- 
der to meet the requirements of a wide variety of 
HPDC applications, the parallel and distributed soft- 
ware systems should provide high performance and dy- 
namic group communication services. The group com- 
munication services provided by traditional message- 
passing tools such as p4 [11], Parallel Virtual Machine 
(PVM) [12], Message-Passing Interface (MPI) [13], 
Express [15], and PARMACS [16] are fixed and thus 
can not be changed to meet the requirements of differ- 
ent HPDC applications. Furthermore, some message- 
passing tools such as PVM implement group commu- 
nication operations by repeatedly calling send rou- 
tines for each participant, which is computationally 
expensive and not scalable. There have been sev- 
eral distributed computing software tools specially de- 
signed to support group communication services such 
as Isis [18], Horus [19], Totem [20] and Transis [21]. 
However, most of them are designed to support spe- 
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cial functionalities (e.g., fault tolerance, message or- 
dering, virtual synchrony, group partition) rather than 
to achieve high throughput. 

NYNET Communication System (NCS) [7, 8, 9] is 
a multithreaded message-passing tool for an ATM- 
based HPDC environment that provides low-latency 
and high-throughput communication services. NCS 
capitalizes on a thread-based programming model to 
overlap computation and communication, and develop 
a dynamic message-passing environment with separate 
data and control paths. This leads to a flexible, adap- 
tive message-passing environment that can support 
multiple flow-control, error-control, and multicasting 
algorithms. This paper overviews the general archi- 
tecture of NCS and presents the multicasting services 
provided by NCS. NCS multicasting services are based 
on dynamic grouping, where each process can dynami- 
cally create, join, or leave a group. NCS uses a binary 
tree to implement multicasting operations, which is 
more efficient and scalable than repetitive techniques 
especially when the number of groups is large. Fur- 
thermore, NCS group communication services can be 
implemented using different group communication al- 
gorithms. These algorithms can be selected by the 
application at runtime. 

The rest of the paper is organized as follows. Sec- 
tion 2 outlines the general architecture of NCS. Sec- 
tion 3 discusses an approach to implement the NCS 
multicasting services. Section 4 analyzes and com- 
pares the multicasting performance of NCS with that 
of other message-passing tools such as p4, PVM, and 
MPI. Section 5 contains the summary and conclusion 
of the paper. 

2    NCS Overview 
In this section we present an overview of the NCS 

architecture. Additional details about NCS architec- 
ture can be found in [9]. 

Figure 1 shows the general architecture of NCS. 
An NCS application consists of multiple Com- 
pute-Threads that include programs to perform the 
computations of the application. NCS supports both 
the host-node programming model and the Single Pro- 
gram Multiple Data (SPMD) programming model. In 
both models processes are created at each node by us- 
ing the hostfile that specifies the initial configurations 
of machines to run NCS applications. After each pro- 
cess is spawned, it creates multiple Compute-Threads 
according to the computation requirements of the ap- 
plication. The advantage of using a thread-based 
programming paradigm is that it reduces the cost of 
context switching, provides efficient support for fine- 
grained applications, and allows the overlapping of 
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Figure 1: NCS General Architecture 

computation and communication. 
NCS separates control and data functions by pro- 

viding two planes (see Figure 1): a control plane 
and a data plane. The control plane consists of 
several threads that implement important control 
functions (e.g., connection management, flow con- 
trol, error control) in an independent manner. These 
threads include Master-Thread, Flow-Control-Thread, 
Error-Control-Thread, Multicast-Thread, Con- 
trol Send-Thread, and Control-Receive-Thread (we call 
them control threads). The data transfer threads 
(Send-Thread and Receive-Thread) in the data plane 
are spawned on a per-connection basis by the Mas- 
ter-Thread to perform only the data transfers asso- 
ciated with a specific connection. Furthermore, the 
control and data information from the two planes are 
transmitted on separate connections. All control infor- 
mation (e.g., flow control, error control, configuration 
information) is transferred over the control connec- 
tions, while the data connections are used only for the 
data transfer functions. The separation of control and 
data functions eliminates the process of demultiplex- 
ing control and data packets within a single connec- 
tion and allows the concurrent processing of control 
and data functions. This allows applications to utilize 
all available bandwidth for the data transfer functions 
and thus improves the performance. 

NCS supports multiple flow-control (e.g., window- 
based, credit-based, or rate-based), error-control (e.g., 
go-back N or selective repeat), and multicasting al- 
gorithms (e.g., repetitive send/receive or a multicast 
spanning tree) within the control plane to meet the 
QoS requirements of a wide range of HPDC applica- 
tions. Each algorithm is implemented as a thread and 
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programmers activate the appropriate thread when es- 
tablishing a connection to meet the requirements of a 
given connection. 

NCS provides three application communication 
interfaces such as socket communication interface 
(SCI), ATM communication interface (ACI), and 
high-performance interface (HPI) in order to support 
HPDC applications with different communication re- 
quirements. The SCI is provided mainly for applica- 
tions that must be portable to many different com- 
puting platforms. The ACI provides the services that 
are compatible with ATM connection-oriented services 
where each connection can be configured to meet the 
QoS requirements of that connection. The HPI sup- 
ports applications that demand low-latency and high- 
throughput communication services. 

3    Multicasting Support in NCS 
The implemented NCS multicasting algorithm is 

based on dynamic grouping, where each NCS process 
can dynamically create, join, or leave a group during 
the lifetime of the process. Within each group, there is 
a single group server that is responsible for intergroup 
communications and multicasting. The multicasting 
operation in NCS is implemented by using a binary 
tree. This approach is more efficient than repetitive 
techniques especially when the number of groups is 
large. In addition, the separation of control and data 
functions facilitates the development of efficient multi- 
casting. For example, when the status of each process 
has been changed, it can be broadcast promptly to 
other processes without interfering with data traffic. 
This allows NCS to prepare most of the information 
needed to activate multicasting operations (e.g., tree 
information, group information) in advance before the 
actual multicasting operations are initiated. This re- 
duces the set-up time (e.g., time to build a tree at 
runtime) of the multicasting operations and thus im- 
proves the performance of NCS group communication 
services. Other multicasting algorithms can be incor- 
porated into NCS and activated at runtime by user 
applications without changing the NCS architecture 
and its supported group communication services. 

In what follows we define the NCS group communi- 
cation primitives and describe the NCS multicasting 
algorithm to implement these primitives. 

3.1     NCS   Group   Communication   Primi- 
tives 

Figure 2 shows a set of NCS primitives that provide 
group communication services. 

NCS multicasting primitive (NCS-mcastQ) sup- 
ports three  classes of multicasting operations:    (1) 

int NCS-mcast(int mode, char *gname[], NCS.Dtype type, 
int tag, char *msg, int len); 

- Multicasts a message to the groups specified by gname[]. 

int NCS„group-create(char *gname, int corn-mode, int fc, int ec, 
int mc, struct QoS); 

- Creates a group named gname. Returns the group identifier. 

int NCS-group-join(char *gname); 
- Joins the group specified by gname. 

int NCS-group_destroy(char *gname); 
- Destroys the group specified by gname. 

int NCS~groupJeave(char *gname); 
- Leaves the group specified by gname. 

int NCS-group-num-members(char *gname); 
- Returns the total number of members in the group. 

Figure 2: NCS Group Communication Primitives 

global broadcast, (2) local broadcast, and (3) global mul- 
ticast. The global broadcast is used to transmit mes- 
sages to all groups defined in the NCS applications. 
The local broadcast is used to transmit messages to 
all members within the same group. The global mul- 
ticast is used to transmit messages to the specified 
groups. For all three operations, the destination end- 
point is not the members, but the group servers. They 
can be invoked with either a reliable mode or an un- 
reliable mode. The data-type of message (e.g., char, 
int, float, double, etc) and the message type can be 
specified by providing parameters to the NCS-mcast() 
primitive. 

Users can create a new group by using the 
NCS-group_create() primitive. In this case a particular 
communication scheme (e.g., error-control algorithm, 
flow-control algorithm, multicasting algorithm), a par- 
ticular communication interface (e.g., SCI, ACI, HPI), 
and ATM QoS parameters can be assigned to the 
group communication channel (e.g., binary tree). All 
the new processes that join this group by invoking 
NCS.group-joinQ primitive use the same communica- 
tion scheme and communication interface when send- 
ing data over the group communication channel. The 
attributes assigned to this channel cannot be changed 
by the group members during program execution and 
they are released when the group is destroyed by using 
the NCS-group„destroy() primitive. 

3.2    NCS Multicasting Algorithm 
At program startup, a default NCS group called 

NCS-GRP is created, and each NCS process in the 
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hostfile joins this group automatically (see Figure 3). 
The hostfile is used to specify a list of machines to run 
NCS applications. The first process specified in the 
hostfile becomes a master group server (MGS). Each 
process that creates a new group becomes a local group 
server (LGS) of that group. The MGS represents all 
the LGSs and coordinates the group communication 
operations between these servers. The LGS is respon- 
sible for multicasting operations within the local group 
and maintains the membership information of the lo- 
cal group. A global multicasting tree (GMT) is built 
to connect all the LGSs rooted at the MGS. All the 
group members within the same group are connected 
by a local multicasting tree (LMT) rooted at the LGS 
of that group. The MGS and LGSs periodically ex- 
change the status information of each group over the 
control connections. 

Since three classes of multicasting operations (e.g., 
global broadcast, local broadcast, and global multicas- 
ting) are implemented using similar schemes, we will 
only describe the algorithm for global broadcast. The 
multicasting algorithm for global broadcast consists of 
six steps, as shown in Figure 4: 

1. When the Compute.Thread of a process in- 
vokes the NCS.mcastf) primitive, the Multi- 
cast.Thread of that process activates the corre- 
sponding Send.Thread to transmit an actual mes- 
sage to the MGS. 

2. The MGS transmits the received message to the 
other LGSs using its GMT. 

3. If the NCS-mcast() is invoked with reliable mode, 
each LGS that received the message sends an ac- 
knowledgment back to the MGS along the GMT. 

4. An LGS maintains two buffers. The first buffer is 
used to assemble the messages, which are then 
transferred to the second buffer. The second 
buffer is used to retransmit the messages to the 
members that have not correctly received the 
messages. 

5. Each LGS locally multicasts the message to its 
group members using its LMT. 

6. If the NCS-mcast() is invoked with a reliable 
mode, each member that received the message 
sends an acknowledgment back to the LGS along 
the LMT. If there is any group member that has 
not received a message within the timeout period, 
the LGS of the group retransmits the message. 
This reduces the retransmission traffic from the 
source process. 

The pseudo code for this algorithm is presented in 
Figure 5. 

4    Benchmarking Results 
In this section we analyze and compare the per- 

formance of NCS with that of other message-passing 
tools such as p4, PVM, and MPI using two levels of 
performance evaluation [10]: tool performance level 
(TPL) and application performance level (APL). In 
TPL we benchmark the performance of the broad- 
casting primitives provided by each message-passing 
tool, while in APL we compare the execution time of 
two applications (e.g., Back-Propagation Neural Net- 
work (BPNN) learning algorithm and static voting al- 
gorithm). 

All experiments have been conducted over six SUN- 
4 workstations and four IBM RS/6000 workstations 
interconnected by an IBM 8260 ATM switch and a 
Cabletron MMAC-Plus ATM switch. In all mea- 
surements we used the NCS implementation over 
SCI. Consequently, the effect of error control and 
flow control is not considered in these experiments. 
The socket buffer size was set to 32 Kbytes and the 
TCP-NODELAY option was enabled. It is reported 
in [5] that setting those two options improves the 
socket throughput. For the PVM (Version 3.3.11) 
applications, we used the PVM Direct mode, where 
the direct TCP connection is made between two end- 
points. The MPICH [14] (Version 1.0.13) was used to 
benchmark the MPI applications. 

4.1     Tool Performance Level (TPL) 
Figure 6 compares the performance of broad- 

casting primitives (e.g., NCS-mcast(), pvm.mcastf), 
p4„broadcast(), and MPLBcast(J) of four message- 
passing tools over an ATM network when message 
sizes vary from 1 byte to 32 Kbytes. The group 
size varies from two to ten. Since ten heteroge- 
neous workstations (six SUN-4 workstations and four 
IBM/RS6000 workstations) were used for measuring 
the timings, the results for the group size up to six 
represent the characteristics of broadcasting primi- 
tives over the SUN-4 platform, while the results for 
the group sizes of eight and ten represent the charac- 
teristics of broadcasting primitives over heterogeneous 
platforms. 

As we can see from Figure 6, the execution time of 
each broadcasting primitive increases linearly for small 
message sizes up to 1 Kbytes, while it shows different 
patterns for large message sizes over 1 Kbytes. 

NCS primitive (NCS.mcastQ) achieved better per- 
formance (e.g., about five times faster than p4 and 
MPI) for various message sizes and group sizes.   For 
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ment 

Thread Master Group Server (MGS) 
repeat Get the requests from other servers or members 

if group creation or destruction is requested then 
Update the GMT and send the information to the LGSs over the control path 

else if a Global Broadcast is requested 
Send the message to the LGSs along the GMT 
if a reliable multicast is requested then 

Check the ACKs from the LGSs and retransmit if necessary 
endif 

endif 
end 

Thread Local Group Server (LGS) 
repeat Get the requests from other servers or members 

if group creation, destruction, join or leave are notified then 
Update the local database (or LMT) and send the information to all the members over the control path 

else if a message received for Global Broadcast or Global Multicast then 
Send the message to all the members along the LMT 
Route the message to other LGSs if necessary 
if a reliable multicast is requested then 

Merge the ACKs from the LGSs and send an ACK to its parent 
Check the ACKs from the members and retransmit if necessary 

endif 
else if a Local Broadcast is requested 

Send the message to all the members along the LMT 
if a reliable multicast is requested then 

Check the ACKs from the members and retransmit if necessary 
endif 

endif 
end 

Thread Multicasting Thread 
if group creation, destruction, join or leave are notified then 

Update the local database for this information 
else if Global Broadcasting or Local Broadcasting are requested then 

Send the message to the MGS (Global Broadcasting) or LGS (Local Broadcasting) 
else if a Global Multicasting is requested then 

Setup a spanning tree at runtime and send the message to the LGSs along the new spanning tree 
endif 

Figure 5: Pseudo code for the Multicasting Protocol 
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example, given a message size of 32 Kbytes, the NCS 
broadcasting time is 42.966 m?7feeconds, while p4, 
PVM, and MPI took 227.568 milliseconds, 109.403 
milliseconds, and 249.961 milliseconds, respectively. 
Furthermore, NCS.mcastQ primitive shows almost 
similar performance for large group sizes as we in- 
crease the message size. For a message size of 16 
Kbytes, the NCS broadcasting time using six mem- 
bers is 22.596 ro?7feeconds and the broadcasting time 
using ten members is 24.623 milliseconds. In the 
NCS.mcast() primitive where most of the information 
for performing group communications (e.g., setup bi- 
nary tree, setup routing information) is set up in ad- 
vance by using the control connections, the start-up 
time for the broadcasting operations is very small. 
Also, the tree-based broadcasting scheme improves 
the performance as the group size gets larger. Con- 
sequently, the larger the message size and group size, 
the better is the performance of NCS when compared 
to that of other message-passing tools. 

The performance of p4 primitive (p4-broadcast()) is 
comparably good except for large message sizes. For 
message size of 32 Kbytes, p4 performance gets worse 
rapidly as we increase the group size. One of the 
reasons for this is that p4 has also low performance 
for point-to-point communications with large message 
sizes, as shown in Figures 7 and 8. 

The performance of PVM primitive (pvm-mcast()) 
is poor for small message sizes but as the message size 
and group size increase, its performance improves. In 
the pvmjmcastQ where the broadcasting operation is 
implemented by repeatedly invoking a send primitive, 
the performance is expected to increase linearly as we 
increase the group size. Moreover, pvm.mcast() con- 
structs a multicasting group internally for every invo- 
cation of the primitive, which results in a high start- 
up time when transmitting small messages as shown 
in Figure 6 (message size 1 byte and 1 Kbytes). 

The MPI primitive (MPLBcastQ) shows compara- 
ble performance to NCS and p4 for relatively small 
message sizes (e.g., up to 1 Kbyte) and small group 
sizes (e.g., up to 6 members) but its performance 
degrades drastically for message sizes larger than 4 
Kbytes and large group sizes (e.g., over six members). 

4.2    Application        Performance       Level 
(APL) 

In this subsection we compare the performance of 
NCS with that of other message-passing tools by mea- 
suring the execution time of two applications (i.e., 
BPNN learning algorithm and static voting algorithm) 
that require intensive group communication services. 

BPNN Learning Algorithm 

Training BPNN for character recognition is one of the 
problems in Artificial Intelligence (AI) area that re- 
quires intensive group communications. We used a 
master/slave programming model to parallelize this 
application, as shown in Figure 9. In this algorithm 
the master process distributes the weight vectors be- 
tween the input layer and the hidden layer to the slave 
processes. The slave processes receive weight vectors 
from the master process and compute the output val- 
ues of the hidden nodes allocated to them, then trans- 
mit those output values back to the master process. 
After the master process receives the output values 
of the hidden nodes from the slave processes, it com- 
putes the output values of the output nodes, computes 
mean-squared error, and updates the weights vectors 
between input layer and hidden layer, and between 
hidden layer and output layer. These steps continue 
until the value of the mean-squared error falls un- 
der an appropriate value. This application intensively 
uses the broadcasting primitives when distributing the 
weight vectors to all the slave processes. The BPNN 
used in this experiment has 100 input nodes, 630 hid- 
den nodes, and 4 output nodes to train 16 input vec- 
tors which represent the hexadecimal digits from 0x01 
to OxOF. 

Static Voting Algorithm 

Replicating data at different locations is a common 
approach to achieve fault tolerance in distributed com- 
puting systems. One well-known technique to manage 
replicated data is voting mechanisms. The algorithm 
used in this experiment is based on the static voting 
scheme proposed by Gifford [22]. In this algorithm 
(See Figure 10) we assume that there is a file server 
process in each node that handles read and write re- 
quests for a given file. Each file server process issues 
arbitrary read and write requests that were produced 
randomly using a random number generator. When- 
ever a server process issues a file access request, it 
sends a LockJiequest message for that file to the local 
lock manager and broadcasts a Vote-Request message 
to all other server processes. When the server pro- 
cess receives a VoteJiequest message from other server 
processes, it sends a Lock_Request message for the re- 
quested file to the local lock manager. The server 
process then returns the version number of the replica 
and the number of votes assigned to the replica to the 
server process that initiated the VoteJiequest. Based 
on the information returned from other server pro- 
cesses, the server process decides if the file access is 
granted and the file is the latest copy.   If the local 
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Figure   9:     Back-Propagation   Neural   Network 
(BPNN) Learning Algorithm 
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Figure 10: Static Voting Algorithm 

copy is different from those replicated at other server 
processes, it gets the latest copy from other server 
processes. Finally, the file server process broadcasts 
a Release J^ock message to all other file servers if the 
file access is granted. In this experiment we assumed 
that there are 50 different files replicated at each node 
and each file server process generates 500 read ox write 
requests for arbitrary files. 

Performance Comparison 

Figure 11 shows the performance of each message- 
passing tool to implement these two applications 
running over four homogeneous workstations (e.g., 
four SUN-4 workstations running SunOS 5.5 or four 
IBM/RS6000 workstations running AIX 4.1) and eight 
heterogeneous workstations (e.g., four SUN-4 worksta- 
tions and four IBM/RS6000 workstations) intercon- 
nected by an ATM network. Due to the restrictions 
of the MPI broadcasting primitive (MPLBcast(J), we 
couldn't implement the static voting algorithm us- 
ing MPI. In MPI all messages broadcast using the 
MPLBcastQ should be received by other processes us- 
ing the MPI_Bcast() primitive instead of the receive 
primitive. Furthermore, one of the argument of this 
primitive represents the rank of the root process that 
initiated the broadcasting operation and this value 
should be identical on all processes that receive the 
message. Since the broadcasting operations in static 
voting algorithm are initiated randomly by different 

processes, it is difficult to obtain the root of the broad- 
casting operation. Consequently, implementing static 
voting algorithm using MPI is not straightforward. 

As shown in Figure 11, the message-passing tool 
that has the best performance at TPL also has the 
best performance at APL. For example, NCS appli- 
cations outperform other implementations regardless 
of the platform used. In the BPNN application us- 
ing eight heterogeneous workstations, the execution 
time of NCS is 135 seconds, while p4, PVM, and MPI 
took 1088 seconds, 429 seconds, and 620 seconds, re- 
spectively. In the BPNN application where large mes- 
sages are broadcast repeatedly, the performance im- 
provement is noticeable and it improves further as we 
increase the group size. In the static voting applica- 
tion where the sizes of the broadcasting messages are 
small and the communications take place randomly, 
the performance of NCS is comparable to that of other 
message-passing tools for small size groups but the 
performance gap gets wider as we increase the group 
size. We believe that most of the improvements of 
NCS are due to overlapping of communications and 
computations and the use of tree-based broadcasting 
algorithm. 

On the other hand, PVM implementations show 
better performance than MPI and p4 implementations 
in heterogeneous environment. 
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5    Conclusion 
In this paper we have presented NCS architecture 

that provides efficient and flexible group communica- 
tion services over an ATM network. We have evalu- 
ated the performance of NCS group communication 
primitives and applications. The benchmark results 
showed that NCS outperforms other message-passing 
tools. It is clear that the NCS novel architecture, 
which separates the data and control functions and 
the use of tree-based multicasting scheme played an 
important role in improving the performance of the 
communication primitives and applications. 
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Abstract 
Java supports heterogeneous applications by trans- 

forming a heterogeneous network of machines into a 
homogeneous network of Java virtual machines. This 
approach abstracts over many of the complications that 
arise from heterogeneity, providing a uniform API 
to all components of an application. However, for 
many applications heterogeneity is an intentional fea- 
ture where components and resources are co-located 
for optimal performance. We argue that Java's API 
does not provide an effective means for building ap- 
plications in such an environment. Specifically, we 
suggest improvements to Java's existing mechanisms 
for maintaining consistency (e.g. synchronized,), and 
controlling resources (e.g. thread scheduling). We also 
consider the recent addition of a CORBA API in JDK 
1.2. We argue that while such an approach provides 
greater flexibility for heterogeneous applications, many 
key problems still exist from an architectural stand- 
point. Finally, we consider the future of Java as a 
foundation for component-based software in heteroge- 
neous environments and suggest architectural abstrac- 
tions which will prove key to the successful develop- 
ment of such systems. We drive the discussion with 
examples and suggestions from our own work on the 
Actor model of computation. 

1    Classifying Heterogeneity 
Heterogeneous computing environments arise in 

practice for a number of different reasons; heterogene- 
ity, however, generates the same basic set of prob- 
lems: code is not portable, shared data may need to 
be converted, the utilization of certain resources may 
be restricted to specific nodes, and so on. Nonethe- 
less, the solution for these problems depends heavily 
on the types of applications that are deployed in the 
heterogeneous environment. As an example, consider 

the following two instances of heterogeneity: 

• System Evolution: Corporate computing en- 
vironments are continually evolving as outdated 
systems are gradually replaced with newer, more 
powerful systems. However, although the hard- 
ware is constantly replaced, corporations are of- 
ten dependent on monolithic applications that 
must continue to run correctly in the presence 
of new hardware. 

• Specialized Hardware: Certain computing en- 
vironments are intentionally designed to be het- 
erogeneous in order to utilize specialized hard- 
ware. Numeric simulations, for example, may 
be executed on massively parallel systems while 
monitoring and analysis is performed on graphics- 
intensive workstations. As another example, 
servers with high availability requirements are 
placed on hardware with large pools of avail- 
able resources whereas clients execute on low-end 
workstations designed for single users. 

The solution for an evolving corporate system de- 
pending on existing software might involve the de- 
velopment of a common execution environment atop 
each physical node. Thus, as long as existing applica- 
tions are written in terms of this uniform environment, 
they will continue to be usable as future improvements 
are made. On the other hand, specialized hardware 
might be handled using an environment in which cus- 
tomized objects, targeted for specific hardware, coor- 
dinate with one another through a common interface 
for interactions. Still other environments, may utilize 
a hybrid of these two solutions. 

Many languages and programming environments 
exist for managing heterogeneous computing environ- 
ments. The Java programming language is an example 
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which directly addresses the technical problems cre- 
ated by a heterogeneous environment. In the words of 
its designers [6]: 

Java is designed to meet the challenges of 
application development in the context of 
heterogeneous, network-wide distributed en- 
vironments. Paramount among these chal- 
lenges is secure delivery of applications that 
consume the minimum of system resources, 
can run on any hardware and software plat- 
form, and can be extended dynamically. 

CORBA, COM and other Object Request Bro- 
ker (ORB) based environments represent so called 
"middle-ware" solutions. That is, rather than address 
heterogeneity directly, these environments provide a 
mechanism for allowing interactions between applica- 
tions executing in heterogeneous environments. 

In general, we may characterize the Java approach 
as the transformation of a heterogeneous network of 
machines into a homogeneous network of Java vir- 
tual machines. Java makes no effort to abstract over 
network features or cater to highly-optimized (but 
non-portable) implementations. However, Java does 
greatly simplify network access and provides a native 
method interface as a loop-hole for incorporating non- 
Java code. On the other hand, ORB-based systems 
make little or no effort to transform heterogeneous 
systems into homogeneous ones. Instead, ORBs solve 
the problem of interactions between heterogeneous en- 
vironments. While such a solution limits mobility, ap- 
plications may directly access high-performance im- 
plementations executing on dedicated hardware. 

Both the Java and ORB-based solution have their 
merits. However, we argue that in order for Java 
to become "the answer" for programming heteroge- 
neous computing systems, it must incorporate many 
of the features already present in ORBs. In particular, 
to answer the challenge of high-performance systems, 
Java must make local, optimized servers more avail- 
able to Java clients. Currently, there are joint efforts 
between Sun and OSF to link CORBA and Java for 
precisely this reason [11]. However, we believe that 
while Java should be more ORB-like, it should also 
overcome many of the weaknesses of existing ORBs 
such as the inability to customize interactions between 
ORB-served objects. Moreover, to effectively support 
concurrency and distribution, we claim that Java re- 
quires more powerful constructs for controlling syn- 
chronization and coordination between distributed en- 
tities. We find existing Java synchronization (e.g. the 
synchronized keyword) to be too low-level and un- 
suitable for distributed needs. The lack of control over 

resource management tasks such as thread scheduling 
is also undesirable. 

We envision Java as evolving to support distributed 
collections of objects executing over heterogeneous 
computing environments. In such an environment, 
application developers may specify services consisting 
of (possibly) distributed collections of Java and na- 
tive objects. Services would be composed with poli- 
cies which manage both interactions as well as deploy- 
ment. These policies would encapsulate many of the 
solutions currently employed for heterogeneous envi- 
ronments: protocols which marshal arguments, rout- 
ing mechanisms which link client requests to optimized 
objects executing on custom hardware, and so on. 

In the next section, we discuss some weaknesses of 
the current version of Java as well as potential solu- 
tions. In Section 3, we describe features of ORB-based 
models which we believe should be incorporated into 
Java. In addition, we propose solutions for a Java- 
ORB system which overcomes many of the current 
weaknesses of the ORB-based model. In Section 4, we 
present a future vision of Java as a tool for implement- 
ing large grain coordination and management for het- 
erogeneous applications. We describe lessons learned 
from our research in Actor [2] systems and propose 
several abstractions to be incorporated in future Java 
developments. We present concluding remarks in Sec- 
tion 5. 

2    Heterogeneity in Java 
Software executing in a heterogeneous environment 

is naturally segmented into a collection of distributed, 
coordinating objects. As a result, desirable system 
features such as ease of management and high per- 
formance depend on the ability to specify error-free 
coordination mechanisms which exploit available con- 
currency. Java uses a passive object model in which 
threads and objects are separate entities. As a re- 
sult, Java objects serve as surrogates for thread coor- 
dination and do not abstract over a unit of concur- 
rency. We view this relationship between Java objects 
and threads to be a serious limiting factor in the util- 
ity of Java for heterogeneous systems. Specifically, 
while multiple threads may be active in a Java ob- 
ject, Java only provides the low-level synchronized 
keyword for controlling object state, and lacks higher- 
level linguistic mechanisms for more carefully charac- 
terizing the conditions under which object methods 
may be invoked. Java programmers often overuse 
synchronized and deadlock is a common bug in 
multi-threaded Java programs. 

Java's passive object model also limits mechanisms 
for thread interaction.     In particular,  threads ex- 
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change data through objects using either polling or 
wait\notif y pairs to coordinate the exchange. In de- 
coupled environments, where asynchronous or event- 
based communication yield better performance, Java 
programmers must build their own libraries which im- 
plement asynchronous messaging in terms of these 
primitive thread interaction mechanisms. Active ob- 
jects, on the other hand, greatly simplify such coordi- 
nation and are a natural atomic unit for system build- 
ing, but no such alternative is available in the current 
version of Java. 

Finally, we find Java's position on thread schedul- 
ing to be inadequate. While it is reasonable to not 
require applications to use fairly scheduled threads, 
we believe that system builders should have the op- 
tion of selecting fair scheduling if necessary. The lack 
of fair threads is a particularly devious source of race 
conditions which makes debugging multi-threaded ap- 
plications all the more difficult. 

In the remainder of this section, we elaborate on 
each of these criticisms and describe potential solu- 
tions. 

2.1    Linguistic  Support  for  Synchroniza- 
tion 

Synchronization in Java is necessary to protect 
state properties associated with objects. For example, 
the standard class java.util.Hashtable defines a syn- 
chronized put method for adding key-value pairs, and 
a synchronized get method for hashing keys. Both 
methods are synchronized to avoid corrupting state 
when methods are simultaneously invoked by sepa- 
rate threads. This mechanism works well for classes 
like Hashtable because methods in these classes have 
relatively simple behavior and do not participate in 
complex interactions with other classes. 

A side-effect of the convenience and simplicity of 
synchronized, however, is that it tends to be over- 
used by application programmers: when software de- 
velopers are not certain as to the context in which 
a method may be called, a rule of thumb is to make 
it synchronized. This approach guarantees safety in 
Java's passive object model, but does not guarantee 
liveness and is a common source of deadlock. Typ- 
ically, such deadlocks result because of interactions 
between classes with synchronized methods. For ex- 
ample, consider the threads tl and t2 in Figure 1. The 
thread tl executes the synchronized method m which 
attempts to invoke the synchronized method n in class 
B. Similarly, the thread t2 executes the synchronized 
method n which attempts to invoke the synchronized 
method m in class A. In a trace in which both threads 

class A implements Runnable{ 
B b; 
synchronized void m() { 

...b.n();... 
} 
public void run() { m(); } 

} 

class B implements Runnable{ 
A a; 
synchronized void n() { 

...a.m();... 
} 
public void run() { n(); } 

} 

class Test { 
public static void main(String[] args){ 

A a = new A(); 
B b = new B(); 
a.b = b; 
b.a = a; 
Thread tl = new Thread(a).start(); 
Thread t2 = new Thread(b).start(); 

> 
> 

Figure 1:   A simple example of thread interactions 
which may result in deadlock. 

first acquire their local locks, this simple example re- 
sults in a deadlock. 

We view the synchronized keyword as too low- 
level for effective use by application developers. 
Specifically, requiring developers to implement sophis- 
ticated synchronization constraints in terms of low- 
level primitives is error prone and difficult to debug. 
Synchronizers [4, 3] are linguistic abstractions which 
describe synchronization constraints over collections 
of actors (see Figure 2). In particular, synchroniz- 
ers allow the specification of message patterns which 
are associated with rules that enable or disable meth- 
ods on actors. Synchronizers may also have state and 
predicates may be defined which use state in order to 
enable or disable methods. 

Note that synchronizers are much more abstract 
than the low-level synchronization support provided in 
Java. Synchronizers may be placed on individual ac- 
tors as well as overlapping collections of actors. More- 
over, separating synchronization into a distinct lin- 
guistic abstraction, rather than embedding it in class 
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• 

Constrained 
object groups 

Object 

Atomicity constraints 

Disabled pattern 

Enabled patterns 

Messages 

Figure 2: Synchronization constraints over a collection of actors. 

definitions, allows constraints to be reused over differ- 
ent classes. As a simple example of how synchronizers 
may be specified linguistically, consider two resource 
managers, adml and adm2, which distribute resources 
to clients. We wish to place a bound on the total num- 
ber of resources allocated collectively by both man- 
agers. This can be achieved by defining the synchro- 
nizer given in Figure 3. The field max determines the 
total number of resources allocated by both managers. 

We believe that heterogeneous environments, in 
which a wide variety of synchronization properties will 
be required, argue for an approach similar to synchro- 
nizers rather than the current Java solution of embed- 
ding low-level synchronization within classes. 

2.2    Flexible Interactions 
Distributed, heterogeneous systems require the 

ability to asynchronously participate in interactions in 
order to take advantage of available local concurrency. 
Because Java uses a passive object model, threads on a 
single virtual machine may interact either by polling 
on shared objects, or using wait\notify. Although 
these heavily synchronized methods of interaction are 
the most common in Java applications, asynchronous 
interactions may be implemented by spawning extra 
threads to handle interactions (see Figure 4). 

As in the case of synchronization discussed in the 
last section, requiring the application developer to ex- 
plicitly code such interaction mechanisms is prone to 
error. Asynchronous interactions are an important ba- 

sic service that we believe should be standard in a 
heterogeneous programming environment. Thus, we 
argue for higher-level linguistic support in Java which 
provides such interaction mechanisms. 

We believe that asynchronous interactions are best 
supported by an active object model such as that pro- 
vided by actors. In such a model, method invoca- 
tions are buffered in a mailbox and handled in a seri- 
alized fashion by a dedicated master thread. Active 
objects are thus a natural unit of concurrency and 
synchronization. Moreover, such objects need not be 
strictly serialized: intra-object concurrency may be 
added by allowing the master thread to spawn new 
threads which access specific internal methods. This 
form of intra-object concurrency differs from that in 
Java in that the master thread controls the conditions 
under which multiple methods may be active, rather 
than allowing arbitrary threads to execute in an ob- 
ject. 

2.3    Resource Control 
A final concern with using Java to develop hetero- 

geneous systems is the lack of effective Java support 
for controlling system resources. A particular exam- 
ple is the ability of application programmers to control 
thread scheduling. While the Java language specifica- 
tion [5] encourages language implementors to write fair 
schedulers, this rule is not enforced. Hence, different 
environments may provide different schedulers empha- 
sizing particular applications.  A common solution is 
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AllocationPolicy(adml,adm2,max) 
{ init prev   := 0 

prev >= max disables  (adml.request or adm2.request) , 
(adml.request or adm2.request)  updates prev  := prev + 1, 
(adml.release or adm2.release) updates prev  := prev - 1 

} 

Figure 3: A Synchronizer that enforces collective bound on allocated resources. 

class C { 
void m(){...} 
void am(){ 

Runnable r = new Runnable { 
public void run()-[ 

m(); 

} 
> 
new Thread(r).start(); 
// Code to continue executing 
// after asynchronous method call 

Figure 4: A Java class which uses separate threads to 
handle interactions and execute local behavior. 

to favor threads which are responsible for maintaining 
graphical user interfaces. However, while such an ap- 
proach may be feasible for certain applications, other 
applications may fail as a result. Unfortunately, Java 
provides no mechanism for selecting features of the 
scheduler, leaving the application developer with the 
task of implementing custom scheduling if needed. 

One possible solution is to include standardized 
thread scheduling libraries which may be invoked by 
applications desiring more control over scheduling. 
However, a user-level approach may not apply to 
certain critical threads in a system. For example, 
Java's RMI [12] package handles remote invocations 
using a separate, non-user controlled thread which in- 
vokes methods on user-defined objects. Because this 
thread is not under user control (and hence not sub- 
ject to a user-level scheduling solution), unexpected 
pre-emption and deadlock may result1. As a specific 
solution, we favor the inclusion of lower-level policy se- 

1It is possible to "hack" around this problem by modifying 
the RMI-created thread's properties once within a user-defined 
method. However, this may have unexpected side-effects since 
the thread was created for use by RMI. 

lection which allows application developers to specify 
their scheduling needs. At a more general level, ap- 
plication developers should be able to specify abstract 
policies which govern more general classes of resources 
(see Section 4). 

3    Object Request Brokers 
As of JDK 1.2, Java will incorporate an interface 

to the Common Object Request Broker Architecture 
(CORBA). The inclusion of ORB-based technology in 
Java indicates the widespread acceptance of Java as 
a platform for distributed computing, as well as the 
acceptance of CORBA as an appropriate technology 
for building component-based systems. In consider- 
ing this recent combination of technologies, it is in- 
teresting to compare the Java Transaction Services 
(JTS) to the Object Transaction Services (OTS) used 
in CORBA. These two services are used to manage is- 
sues which arise in handling interactions between dis- 
tributed objects. For example, marshaling data types, 
handling remote references, etc. 

The design decisions evident in the JTS and OTS 
are a symptom of the relevant strengths and weak- 
nesses of Java and CORBA, and attempt to combine 
the best of both worlds in a single package. Both 
Java and CORBA have their strong points and both 
have been used to develop successful applications. As 
discussed in the introduction, Java is a rich language 
with many features designed to simplify programming 
in heterogeneous environments. However, Java does 
not provide extensive support for matching clients to 
servers based on a service description. CORBA, on 
the other hand, facilitates service location and in- 
teraction in a heterogeneous environment. In par- 
ticular, CORBA allows service description in terms 
of an Interface Definition Language (IDL), and pro- 
vides mechanisms for locating services based on IDL 
descriptions. IDL specifications are an abstract spec- 
ification of service which are independent of low-level 
system features such as resource requirements, proce- 
dural behavior, control-flow and so-on. Unfortunately, 
CORBA limits the types of data that can be commu- 
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nicated in interactions, and prohibits the passing of 
object references which is required to take advantage 
Java's more powerful features. The combination of 
Java and CORBA is intended to alleviate many (but 
not all) of these problems, while carrying over as much 
functionality as possible from existing remote interac- 
tion mechanisms in Java and CORBA. 

In the remainder of this section we discuss some of 
the motivation behind combining ORB-based technol- 
ogy with Java. While we favor this marriage of tech- 
nologies, we argue that such a combination still lacks 
many important features necessary for effective het- 
erogeneous programming. Specifically, CORBA and 
its relatives still provide a closed model for interac- 
tions, and force application developers to embed in- 
teraction protocols within client and server code. En- 
cryption protocols, for example, can not be defined 
as a property of the connection. Instead, both the 
client and server must embed appropriate endpoints 
for the protocol within the existing code for handling 
interactions. We propose an alternative approach in 
which these types of protocols may be factored out 
of application code and specified independently on a 
per-interaction basis. 

3.1    Why Add ORB Technology? 
Providing services among a collection of objects ac- 

cessible via a shared network requires a common inter- 
action layer which links clients, which request services, 
to servers, which implement those services. CORBA 
and related ORBs enable the construction and inte- 
gration of distributed applications by providing such 
a layer. In particular, CORBA allows the dynamic 
placement and update of objects which implement ser- 
vices in a distributed, heterogeneous network. More- 
over, these objects may be accessed using a common 
data exchange framework with many features critical 
to the development of heterogeneous systems. These 
features include: 

• Multi-threading 
• Debugging and Network Monitoring 
• Connection Groups 
• Synchronous and Asynchronous calls to servers 
• Virtual Callbacks from the server 
• Asynchronous operation 
• Location Brokering for location transparency 
• Naming Service t 
• Event Service 
• Life Cycle Service f 
• Transaction Service f 
• Concurrency Control Service 
• Relationship Service f 

• Query Service f 
• Licensing Service 
• Security Ser idee f 
• Object Trader Service f 

Those items marked with a f indicate features that 
are present in the JTS as well as the OTS. A detailed 
description of each of these features is not within the 
scope of this paper. We refer the interested reader to 
[7] for more details. 

In addition to the features described above, ORBs 
provide several other features which simplify system 
development. Among these are the ability to quickly 
design and implement larger object oriented systems, 
and a communication backplane with consistent se- 
mantics regardless of whether a system executes on a 
heterogeneous network or a single machine. However, 
as we discussed in the introduction, ORBs make no 
attempt to transform heterogeneous systems into ho- 
mogeneous environments. As a result, although ORBs 
have been used for some time, it is only recently that 
issues such as load balancing, security, and transac- 
tions have received appreciable attention. 

3.2    Other ORB-based Systems 
CORBA is the most well-known ORB and is based 

on the Object Management Group's (OMG) Object 
Model. This model is backed by a large consortium of 
commercial system developers and hence has a signifi- 
cant role to play in the future of system development. 
However, although CORBA has achieved widespread 
success, several other systems have been developed 
which support a variety of object models (including 
CORBA). 

The Top-ORB system from NCR will allow the con- 
nection of CORBA objects, Java Beans, DCOM ob- 
jects and many other type of objects using the Top 
End framework as the underlying infrastructure. Top 
End is part of the Top End Service Interface Repos- 
itory (TESIR) model designed by NCR for support- 
ing access to legacy applications, and which defines a 
general object service mechanism [1]. NCR plans to 
launch the underlying infrastructure of Top-ORB in 
1998. 

The Solaris NEO system from Sun is similar to 
CORBA and designed around the same object model. 
JOE is another Sun product which provides for dis- 
tributed client-server applications, and complies with 
the CORBA 2.0 standard. While supporting CORBA 
standards, both NEO and JOE also allow for the con- 
nectivity of Java applets to applications running on 
distributed servers. In particular, the object request 
broker used in JOE may be automatically downloaded 
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into web browsers, and used to connect Java applets 
to remote NEO objects. Another useful feature pro- 
vided by JOE is an IDL compiler which generates Java 
classes from interface definitions of CORBA objects. 

Finally, Java's Remote Method Invocation (RMI) 
provides for more primitive client-server functionality. 
In particular, RMI is not CORBA compliant, but does 
support interoperability among Java objects in dis- 
tributed environments. However, RMI does not pro- 
vide any explicit support for incorporating legacy (i.e. 
non-Java) objects. Such objects may only be included 
by adding a Java front-end which interacts with RMI. 

3.3    Adding ORB Functionality to Java 
The current release of Java supports RMI and Jav- 

aBeans and hence does not allow for integration with 
CORBA-like models of object systems. Despite the 
various other benefits of ORBs, however, ORB ven- 
dors including the OMG and Sun have placed techni- 
cal emphasis on incorporating several object models 
within a single framework, rather than attempting to 
increase the functionality of ORB models as a whole. 
This trend is expected to continue as no single stan- 
dard (i.e. object model) has been adopted for ORB- 
based systems. 

Thus, while the next release of Java will provide 
greater flexibility in terms of incorporating existing 
object models, several key problems with ORBs are 
inherited with the new approach. Specifically, remote 
procedure call (RPC) remains as the primary mech- 
anism for building distributed interactions. As with 
the synchronized keyword discussed in the previ- 
ous section, RPC is often abused in the context of 
distributed interactions and leads to heavily synchro- 
nized, and therefore poorly performing applications. 
We have already argued for asynchronous modes of 
interaction in the previous section. More importantly, 
however, ORBs currently do not provide a mechanism 
for flexible specification of connection properties. Ap- 
plications requiring specific policies must either use a 
custom coded ORB implementation, or embed policy 
code within clients and servers. Both approaches are 
error-prone and make systems less modular. 

Our research in Actors has lead to a novel ap- 
proach for separating communication policies from ap- 
plication code. Communicators [10] rely on a meta- 
architecture to abstract over the communication be- 
havior of Actors. In particular, actor interactions are 
represented abstractly in terms of three operations 
(see Figure 5): 

• A transmit operation is invoked when an actor 
attempts to send a message; 

• A deliver operation is invoked when the system 
receives a message on behalf of an actor; and, 

• A dispatch operation is invoked when an actor is 
ready to process the next message. 

The communication behavior of actors are cus- 
tomized by installing meta-actors which redefine one 
or more of the basic actor operations. This technique 
may be used to implement a wide variety of protocols. 
For example, consider a simple protocol for imple- 
menting a FIFO channel between two actors. Figure 6 
gives a Communicator specification which defines such 
a protocol. 

Communicators effectively separate protocol code 
from application code allowing system designers to 
pick and choose the protocols necessary for inter- 
actions, without complicating code development by 
changing clients and servers. We believe that an ORB- 
Java combination must include similar abstractions in 
order to be an effective tool in distributed, heteroge- 
neous environments. 

4    Component-Based Systems 
In the previous sections we have discussed the near- 

term limitations of Java as a tool for building hetero- 
geneous systems. In this section, we present a future 
vision of software for heterogeneous systems and the 
features we expect to be incorporated into Java to 
make it a viable development environment. 

The next logical step for component-based hetero- 
geneous system development is higher-levels of gran- 
ularity in which distributed collections of objects are 
managed as individual components and services. Cur- 
rently, this is an active area of research in the soft- 
ware architecture community in which such systems 
are viewed as consisting of a collection of components, 
which encapsulate computation, and a collection of 
connectors, which describe how components are inte- 
grated into the architecture [9]. This separation of 
design concerns favors a compositional approach to 
system design; a methodology which is particularly 
important when specifying architectures for hetero- 
geneous distributed systems. Heterogeneity, failure, 
and the potential for unpredictable interactions yield 
evolving systems which require complex management 
policies. Allowing architectural specifications in which 
these policies are separated into abstract connectors 
has clear advantages for system design, verification 
and reuse. 

Note that policies for managing such systems (e.g. 
reliability protocols, load balance and placement, se- 
curity constraints, coordination, etc.) not only assert 
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Figure 5: Customizing the communication operations of an actor. Actors B and C are meta-level customizations 
of actor A. Each operation of A results in an operation on B and/or C. 

properties on the connections between component in- 
terfaces, but must also enforce constraints on how re- 
sources are allocated to components. For example, a 
reliable server may be developed by adding a backup 
to an existing server and installing an instance of the 
primary backup protocol. In addition to recording in- 
teractions at the backup, the primary backup protocol 
must also ensure that the backup and server use sep- 
arate, failure-independent resources (e.g. they must 
execute on separate processors). The resulting collec- 
tion of policies is quite different from those required to 
manage interactions in, for example, ORB-based mod- 
els, and therefore requires new abstractions with the 
goal of fitting components to architectural contexts, 
rather than defining interconnections between com- 
ponent interfaces. Specifically, component interfaces 
abstract over functionality but not resource manage- 
ment. In the remainder of this section, we elaborate 
further on this po'int, and describe recent research us- 
ing the Actor model which proposes a solution to these 
problems. 

4.1    Extending Component Interfaces and 
Architectural Policies 

Current notions of component interfaces are based 
on a functional representation of the services provided 
by a component. This abstraction is a natural exten- 
sion of the object model. However, when placing an 
object in a heterogeneous architecture, this model fails 
to describe many important features such as: 

• Locality properties: The distribution and com- 
munication behavior of internal computational el- 
ements. 

• Resource usage patterns: Distinctions such as 
computation bound versus I/O bound elements, 
degree of concurrency, hardware dependencies, 
and the resources corresponding to critical and 
transient state. 

• Inter-level dependencies: The relationships 
between management policies at various levels of 
granularity. 

In general, components should provide a comprehen- 
sive model of architectural context: the relationships 
between component behavior and architectural fea- 
tures such as those described above. A natural so- 
lution would be to extend current interfaces with ad- 
ditional functional entry points for selecting, for in- 
stance, placement policies, reliability features (e.g. 
fault-tolerance protocols), and so on. However, such 
an approach complicates component code by em- 
bedding orthogonal, context-specific concerns. The 
more preferable approach would be to design gener- 
alized components which may be customized to par- 
ticular architectural contexts. Connectors would en- 
capsulate these customizations, preserving composi- 
tional system development. Note that such a solu- 
tion solves both sides of the heterogeneity problem: 
general components may be adapted to new environ- 
ments by composing them with appropriate policies, 
while hardware-sensitive components may be used in 
a general context by adding policies which guarantee 
appropriate resource allocation to this class of compo- 
nents. 

A key challenge for specifying more general, 
resource-based policies is the problem of compos- 
ing policies while respecting object-integrity. The 
connection-oriented customizations we described in 
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Manager Promote Liaison Interactions Between 
Components 

protocol FIFO-channel { 

Installation asymmetric; 
Isolated-Interaction; 

role local-client { } 

role client { 
int tag; 

method init() { 
tag = 0; 

} 

method out(msg m) { 
server.taggedJn(tag, m) 
tag = tag + 1; 

}} 

role server { 
MsgBag delays; 
int intag; 

method init() { 
intag = 0; 

method tagged.in(int t.msg m) { 
msg next; 

if (t == intag) { 
next = m; 
while (next) { 

deliver next; 
intag = intag + 1; 
next = delays.get(intag); 

} 
} else delays.put(t.m); 

}} 

Figure 6: The Communicator specification for a FIFO 
channel between actors. 

Encapsulated Interaction 

Figure 7: Components are an encapsulated collection 
of actors. Liaisons are a subset of the collection which 
may participate in external interactions. The manager 
negotiates new connections and promotes actors to li- 
aisons. 

Section 3 avoid this problem because they operate 
strictly on component interfaces. However, specifying 
policies which control the allocation of resources may 
require access to component internals. Thus, abstrac- 
tions which support these policies must be carefully 
designed to avoid exposing object features which are 
not normally exported through an interface. We de- 
scribe our model for such policy composition in the 
next section. 

4.2    Specifying   Policies   for   Connection 
and Context 

In order to reason about architectural context, we 
require a model of component computation which rep- 
resents component behavior in terms of interactions 
with a set of default system services. Relative to com- 
putational behavior, the semantics of these services 
will remain the same regardless of architectural con- 
text. However, the semantics of the implementation 
of these services will vary as components are placed in 
different architectures. This distinction allows com- 
positional development, in which generalized compo- 
nents are fitted to particular architectures, not by 
changing their computational behavior (which would 
break encapsulation), but by customizing the interac- 
tions between components and the particular imple- 
mentation of underlying services. 

We build on the actor model extensions described in 
previous sections by modeling components as encap- 
sulated collections of actors in which a distinguished 
subset, called liaisons, are used for interactions with 
other components (see Figure 7). Interactions be- 
tween liaisons in different components define compo- 
nent connection properties. In particular, by cus- 
tomizing these interactions, specific protocols may be 
enforced. Moreover, the architectural context of a 
component is represented by the service invocation be- 
havior of internal (i.e. non-liaison) actors. Thus, the 
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collective behavior of a component relative to architec- 
tural features is captured by the interactions through 
its liaisons and the resource access patterns of its inter- 
nal actors. Both behaviors are represented uniformly 
in terms of invocations of the basic actor primitives, 
providing a clean representation for architectural cus- 
tomization. 

Components are customized by designing policies 
which define how components access a collection of 
basic system services (see Figure 8). Liaisons are the 
only externally visible elements of a component. Thus, 
connectors which specify protocols between compo- 
nents are naturally represented in terms of customiza- 
tions applied to individual liaisons. However, con- 
nectors which specify resource management policies 
are more challenging because they customize inter- 
nal component elements. In particular, we would 
like to specify arbitrary customizations of internal ac- 
tors while respecting the encapsulation properties of a 
component. To this end, policies are constructed from 
two types of meta-level behavior: 

• Roles: A role is a specific customization applied 
to one or more liaisons. Roles are used to im- 
plement protocols on connections between com- 
ponents. For example, an encryption protocol 
may be implemented by customizing the "send" 
behavior of one liaison (e.g. to encrypt outgoing 
messages) and the "receive" behavior of another 
(e.g. to decrypt incoming messages). Roles are 
installed explicitly on a set of liaisons. 

• Context: A context is a single meta-level be- 
havior which customizes all actors within a com- 
ponent and is automatically installed on any dy- 
namically created actors. Contexts are used to 
manage the 'allocation of resources. For exam- 
ple, a local load balancing strategy may be im- 
plemented by customizing the "create" behavior 
of all actors within a component. 

Because roles are installed on liaisons, there is no 
danger of compromising object integrity as liaisons 
are already exported by components. Contexts, on 
the other hand, must be installed on internal compo- 
nent members. However, the structure of the meta- 
level architecture and the encapsulation properties of 
components prohibit contexts from destroying inter- 
nal component elements or exporting non-liaison ad- 
dresses. Specifically, a meta-level customization may 
only modify actor interactions with system services, 
and may not change the internal behavior of an ac- 
tor. Similarly, regardless of meta-level customizations, 

managers control component namespaces and deter- 
mine which actors may participate in external inter- 
actions. 

A remaining open issue is the question of whether or 
not policies are composable (both with components or 
with other policies). In particular, as component com- 
positions encompass larger systems, there is a greater 
potential for detrimental interactions between existing 
policies on sub-components. We are currently in the 
process of extending our abstractions to model and 
reason about such interference. 

5    Conclusion 
We have discussed the Java approach to solving the 

heterogeneity problem and identified several areas for 
improvement in the current release of Java. In par- 
ticular, we claim that relative to the needs of het- 
erogeneous computing, current synchronization mech- 
anisms in Java are too low-level and hence prone to 
misuse. Similarly, we argue that Java does not pro- 
vide enough control over resource usage, particularly 
threads, and that existing interaction mechanisms be- 
tween Java tasks (i.e. threads) are too heavily synchro- 
nized and lack an alternative communication medium 
such as asynchronous messaging. We presented sev- 
eral examples from our own work on Actors which 
demonstrate the utility of more powerful synchroniza- 
tion constructs. 

We have considered the recent marriage between 
Java-based computing and existing CORBA-like sys- 
tems in the context of heterogeneous computing. 
While incorporating ORB-based technology into Java 
is a significant step, we argue that ORBs are still too 
closed with respect to interaction policies. We pre- 
sented several examples of policies which may be fac- 
tored out of object code and applied to the endpoints 
which implement the connection itself. Such an ap- 
proach simplifies debugging and makes components 
more reusable. Moreover, system designers may select 
only those policies appropriate to their environment, 
rather than having to pay the price of layering policies 
atop an existing interaction mechanism. 

Finally, we discussed the future of Java in the 
realm of component-based software development and 
described our preliminary work on policies for resource 
management in a distributed, heterogeneous setting. 
We model components as hierarchical collections of 
actors with interfaces defined as dynamic sets of ac- 
tors called liaisons. Components are customized ac- 
cording to the needs of a particular environment by 
accessing an open implementation of the interface be- 
tween actors and their underlying system services. We 
factor customizations into two categories: roles are ex- 
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Figure 8: Components are customized by policies which redefine interactions between liaisons, and the invocation 
of basic system services. 

plicit customizations of liaisons, while contexts are im- 
plicit customizations of all actors within a component. 
Roles allow the enforcement of interaction policies over 
connections between components. Contexts support 
component-wide resource management and coordina- 
tion. Composition at the meta-level allows multiple 
customizations to be applied to a single component. 

Despite our reservations, we believe that Java is an 
important step towards developing appropriate tools 
for building heterogeneous systems. In particular, we 
have used Java as the development environment for 
a prototype actor system which incorporates many of 
the abstractions described above [8]. 
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Abstract 
Java has been described as a simple, object-oriented, 

distributed, interpreted, robust, secure, architectural 
neutral, portable, high-performance, multithreaded and 
dynamic language, prompting some to describe it as 
the first buzzword-compliant programming language. 
We submit that to deserve full certification—and in 
the process establish itself as the natural choice for 
developing large-scale distributed applications—Java 
misses a crucial buzzword: fault-tolerant. We outline 
some promising research directions for building reli- 
able Java-based applications. 

1    Introduction 
Java may well be the most exciting technology 

of our time [2], but the excitement never appeared 
to leave its proponents speechless. Simple, object- 
oriented, distributed, interpreted, robust, secure, ar- 
chitectural neutral, portable, high-performance, mul- 
tithreaded and dynamic [5]—these are some of the 
buzzwords that have been used to characterize Java 
since its first introduction. The vision of enterprise 
computing—a seamless integration of data and com- 
munication across thousands of machines to provide 
better services to citizens and greater opportunities 
to businesses—seemed to be at hand. 

Remarkably, Java has substantially fulfilled many 
of the promises behind these buzzwords. Today, Java 
stands unchallenged in its ability to support true 
platform-independence and in its integration of secu- 
rity mechanisms. In addition, Java provides adequate 
support for distribution through Remote Method In- 
vocation and run-time loading of classes. Performance 
is also becoming acceptable, thanks to the develop- 
ment of ever more sophisticated Just-in-Time compil- 
ers. 

And yet, we submit that Java will fall short of what 
is required to realize the vision of enterprise computing 
until it explicitly addresses a conspicuous buzzword 
that it has so far overlooked: fault-tolerance. 

2    Fault-Tolerance: the Ugly Duckling 
Building distributed applications forces one to con- 

sider the possibility of partial failures. In fact, the 
kind of wide-area network applications that are likely 
to be programmed in Java are more vulnerable to 
partial failures than the relatively constrained appli- 
cations that are common today. Furthermore, even 
as languages such as Java make it easier to develop 
distributed applications and to launch them on the 
Internet, they do not relieve programmers from the 
challenge of writing correct distributed algorithms. As 
distributed applications become common-place, we en- 
vision that fault-tolerance will become a pressing con- 
cern for many more application users and developers. 

That Java makes no explicit provisions for fault- 
tolerance may be partly due to historical reasons: Java 
was originally conceived as a language for developing 
software for consumer electronics operating in an envi- 
ronment much more reliable than the Internet. Also, it 
probably does not help that fault-tolerance is hardly 
a source for sexy demos. Finally, in a marketplace 
that rewards the products that reach the market first, 
fault-tolerance is bound to be an afterthought at best. 

There is no fundamental reason, however, that pre- 
vents Java from addressing fault-tolerance effectively. 
Indeed, Java's architecture provides an excellent op- 
portunity to address the issue at the core of all fault- 
tolerance techniques: controlling nondeterminism. 
2.1    Fault-Tolerance and Nondeterminism 

If processes were deterministic, then tolerating fail- 
ures would be trivial: a faulty process could be recov- 
ered simply by restarting it from its initial state and 
rolling it forward. In general, however, the state of a 
process depends on events that are non-deterministic. 
To recover a failed process, it is necessary to repro- 
duce the non-deterministic choices that the process 
made before failing. For instance, in an asynchronous 
distributed system in which processes communicate by 
exchanging messages, the state of a process depends 
on the order in which a process delivers messages, 
which in turn depends on many factors, including pro- 
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cess scheduling, routing, and flow control. Unless the 
order of message delivery is somehow recorded and 
reproduced during recovery, it will not in general be 
possible to restore a failed process to a state that is 
consistent both with the states of the other processes 
in the system and with the external environment. 

Other examples of non-deterministic events that 
may affect a process state include preemptive schedul- 
ing of threads, readings of the processor clock, and 
responding to signals. 

3    Fault-Tolerance in Java 
There are two obvious levels at which non- 

deterministc events can be captured in Java: 

1. At the virtual machine level 

2. At the method invocation level 

Capturing Nondeterminism in the JVM    The 
idea of using a virtual machine to manage nonde- 
terminism has been first explored by Bressoud and 
Schneider [1], who implemented a virtual machine 
for HP's PA-RISC architecture. In their scheme, 
fault-tolerance is achieved by replicating the com- 
putation on two independently failing processes, us- 
ing a well-known technique called the state-machine 
approach [3]. To make this technique work, how- 
ever, the two replicas must be deterministic. To 
ensure this, Bressoud and Schneider identified the 
non-deterministic commands processed by their vir- 
tual machine and designed protocols that guarantee 
that any non-deterministic choice is resolved identi- 
cally at both replicas. For instance, their implemen- 
tation guarantees that virtual-machine interrupts are 
delivered at the same point in the execution of both 
replicas, and that instructions that read the time-of- 
day clock return the same values for both replicas. 

In Java, a virtual machine is already available for 
free. Typical implementations of the Java Virtual Ma- 
chine (JVM), however, do not support deterministic 
replication of non-deterministic commands. Indeed, 
it is not obvious which non-deterministic commands 
are executed by the JVM, although it is reasonable 
to expect that many will occur at the Java Native In- 
terface. One expects that once these commands have 
been identified, the techniques developed in [1] and [4] 
could be used to guarantee the reproducibility of non- 
deterministic choices during recovery. 

Capturing Nondeterminism through Method 
Logging The logging of message ordering informa- 
tion described  above can be generalized easily to 

distributed object computation systems. Instead of 
recording the messages delivered to a process, method 
logging protocols record the method invocations made 
upon an object. Not only do most of the mes- 
sage logging mechanisms apply to method logging, 
but method logging provides opportunities to improve 
upon these mechanisms. 

Two of the main reasons that make capturing non- 
deterministic events a challenge are that these events 
are not easy to identify, and that they can be executed 
frequently, making it expensive to keep track of their 
effects. 

The object-oriented context of method logging 
should help in capturing and limiting the effects of 
nondeterministic execution. For example, nondeter- 
ministic events could be encapsulated in method invo- 
cations that are tagged in their class definitions. The 
compiler could then use data flow analysis techniques 
to determine whether the value produced by a nonde- 
terministic method invocation might affect the value 
of a parameter in a subsequent method invocation. If 
it does not, then the non-deterministic choice would 
not need to be recorded. 

4    Conclusions 
Java is in a uniquely positioned to emerge as the 

platform that will finally enable distributed comput- 
ing to become, in the words of Ken Birman, a mass- 
market commodity. We believe that the key to Java's 
long-term success will depend on its ability to support 
the development of truly reliable applications, capable 
of tolerating both intentional security attacks and the 
less glamorous, but potentially as disruptive, sponta- 
neous failure of subsets of their components. 
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Is Java a good language for programming heterogeneous 
parallel computing systems? It is a well-designed modern 
language that, combined with the Java Virtual Machine (JVM), 
offers a myriad of modern programming features and excellent 
portability. However, in speedup-oriented heterogeneous 
computing, our primary concern is obtaining the best possible 
execution speed from the heterogeneous system. This paper 
briefly discusses what heterogeneous parallel computing is 
really about, lists some of the key features of Java, and finally 
summarizes how well Java matches the task of programming for 
heterogeneous parallel computing. 

1. What Is Heterogeneous Computing? 

Heterogeneous computing refers to the concept of using a 
collection of machines, in which each machine may have 
properties somewhat different from the others, to achieve 
speedup on a computation. 

1.1. Architecture 

Generally, a heterogeneous collection of machines will be 
arranged as either a cluster or a group of networked computers. 

A cluster is a parallel system whose component 
computers are both physically and. logically near each other. 
For example, a group of workstations and supercomputers 
within a single facility, all connected by SCI, HiPPI, Myrinet, 
PAPERS, or other high-performance networks, would be a 
typical cluster configuration. 

The alternative is a more loosely connected group of 
networked computers, in which communication between 
machines is possible, but perhaps very indirect, with limited 
bandwidth and high latency. The largest example of this type of 
heterogeneous system is the Internet, although many groups of 
computers connected by LANs (local area networks) are also 
best viewed in this way. 

Both arrangements of machines are possible and useful, 
but the focus is different. Machines in a heterogeneous cluster 
can truly cooperate, whereas the loose coupling of networked 
computers generally requires that machines be able to work 
independently for relatively long periods of time. Note that the 
time a processor can operate independently is related to how 
much memory space is available— having more memory 
frequently allows local buffering of data to be substituted for 
some communication operations. 

Another significant difference is that clusters are 
generally assembled by design, whereas networked computers 
are often simply whatever machines happened to be available. 
Heterogeneous clusters tend to have heterogeneity because it is 

directly useful; for example, integrating a SIMD supercomputer 
with a shared-memory MIMD supercomputer so that different 
portions of a parallel program can each be executed using the 
parallel execution model that yields the best speedup. In 
contrast, heterogeneous networked computers often are 
workstations from several not-quite-compatible vendors, with 
essentially the same execution model and only minor 
performance variations. 

1.2. Speedup 

In a heterogeneous system, speedup can be achieved by 
two separate mechanisms. Parallelism across machines 
achieves speedup, ideally proportional to the number of 
machines, by simultaneously executing portions of the 
computation simultaneously on different machines. However, 
speedup also can be achieved by increasing the 
appropriateness/efficiency of the mapping of the computation 
onto the special abilities of each machine. In most cases, this 
centers on use of parallelism within each machine. 

Clearly, the nature of the hardware heterogeneity places 
emphasis on one or the other of these two mechanisms. 
Performance of a cluster containing a few parallel 
supercomputers will critically hinge on the effective use of 
parallelism within each machine; performance of a network 
mixing comparable DEC, HP, Sun, SGI, etc., workstations will 
just as critically depend on parallelism across these machines. 
Of course, failing to use all appropriate machines or failing to 
use each machine efficiently lowers performance no matter 
what structure the heterogeneous system has. 

1.3. Portability 

Because all we care about is being able to execute the 
appropriate portions of a program on each machine, and there is 
nothing (excluding development and maintenance time and 
cost) to prevent us from writing code specifically tailored to 
each machine, portability simply is not a requirement. Indeed, 
if the machines are heterogeneous in the sense that some 
machines have access to specialized I/O devices that others 
cannot access, portability is meaningless: running code ported 
from a computer-controlled milling machine on a workstation is 
unlikely to get any parts milled. It can be just as difficult to 
achieve good results when porting a SIMD-optimized algorithm 
implementation to a MIMD machine. 

Accepting that portability is not required, it is a highly 
desirable goal that all programs be expressed in portable 
notations. Further, if a program is primarily concerned with 
"pure" computation rather than I/O, the goal of portability can 
be achieved. There are two basic approaches. 
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Portability by simulation: typically, this is done by 
compiling each program to an idealized, simplified, architecture 
which is in turn simulated by software on the target machine. 
This approach first became widely accepted in the form of P- 
Code implementations of Pascal. In fact, the Java Byte Code 
and Java Virtual Machine have many striking similarities to the 
UCSD Pascal P-System (which also incorporated graphics 
support and a protected operating environment). 

Portability by transformability: instead of simulating 
another target, one can use a combination of compiler analysis 
and transformation technologies to literally re-write and 
optimize the program for the specific features of the target 
machine. Transformation is more difficult to implement than 
simulation, but the benefit is higher performance. 

As a general rule, simulation works best when the 
idealized architecture has data types and other basic properties 
that are very similar to the actual target hardware 
characteristics, but "instructions" that are typically much 
higher-level than individual target machine instructions. The 
need for basic properties to be similar is obvious; the need for 
higher-level instructions is due to the fact that overhead to 
decode and prepare each simulated instruction for execution 
generally is typically about 20 target machine instructions. 
Simulating a "matrix multiply" instruction easily hides a 
20-instruction overhead, while simulating "32-bit integer add" 
may result in a 20x slowdown relative to executing the 
operation transformed directly into native target code. 

Many simulators now incorporate incremental compilers 
that can perform some of these transformations, however, the 
apparent simplicity of transforming an add instruction into 
machine code is misleading. The major complication is 
essentially the use of parallelism. 

1.4. Transformability 

If the simulated instructions are simple and not parallel, 
but the target machine is parallel, we are confronted with the 
age old problem of automatically parallelizing. Perhaps even 
more complex is the problem of transforming parallel 
instructions into a different target parallelism. There are at least 
three key aspects of a parallel execution model that must be 
matched when generating code: execution mode, 
communication model, and grain size/data layout. 

1.4.1. Execution Mode 

SIMD, MIMD, and VLIW/Superscalar execution modes 
each perform best under different circumstances, but it is very 
difficult, for example, to transform arbitrary MIMD code into 
efficient SIMD code. 

SIMD (Single Instruction Stream Single Data 
Stream), which is now the most common parallel execution 
mode (what do you think all those multimedia enhancements 
are?), is very effective in implementing algorithms that require 
tight synchronization of similar activities across many 
processing elements. For example, communication operations 
do not need buffering, interrupts, etc., because it is trivial for all 
processing elements to know precisely when data exchanges 
will occur. However, SIMD serializes operations that are 
different on each processing element. 

MIMD (Multiple Instruction Stream Multiple Data 
Stream) is the most general parallel execution mode, capable of 
simultaneously executing arbitrary operations on different 
processing elements. Because each processing element can 
have its own independent clock and program counter, 
processing elements do not have to wait for the slowest to 
complete each operation before advancing to the next. 
However, this independence comes at the expense of the ability 
to efficiently, globally, coordinate actions as we described for 
SIMD communications. 

VLIW (Very Long Instruction Word) and Superscalar 
execution models are logically somewhere between SIMD and 
MIMD, offering more generality than SIMD while preserving 
the ability to globally coordinate parallel actions. The problem 
is that these techniques require structures that do not scale well, 
so parallelism width is generally limited as compared to SIMD 
or MIMD models. 

1.4.2. Communication Model 

There are at least three fundamentally different classes of 
communication models, and the best choice for each algorithm 
or target machine varies. 

A shared memory model communicates using what 
appear to be simple memory load/store operations, but there are 
many flavors differing in how much of memory is shared by 
which processing elements (shared everything vs. shared 
something), access time as a function of address reference 
pattern (logical, physical, and cache structures), and even rules 
for atomicity and coherence (what references are atomic, how 
are access races resolved). These complications make shared 
memory models the most difficult to use efficiently and 
correctly, and also the most difficult to transform into other 
communication models — even into other shared memory 
models. Unfortunately, these are also the most efficient models 
for many machines. 

A message passing model creates, sends, and receives 
messages, generally with one sender and one receiver for each 
message. The key advantage in message passing systems is the 
ability of a single message to contain a large data payload; this 
makes it more effective than shared memory models in utilizing 
reasonable-bandwidth, high-latency, interconnection 
mechanisms like UDP or TCP protocols over fast Ethernet. 
There are also various flavors of message passing, differing 
primarily in the types and lengths of messages allowed and the 
possible orderings of sends and receives. 

An aggregate function model, unlike the other two 
models, allows any number of processing elements to directly 
participate in each communication operation. The simplest 
example is a barrier synchronization, in which no processor 
enters the next phase of a computation until all have signaled 
completion of the current phase. More complex aggregates 
include "collective communications" such as permutations, 
multi-broadcasts, personalized all-to-all, associative reductions, 
scans (parallel prefix operations), voting operations, etc. 
Because aggregates are N-ary operations, whereas shared 
memory and message passing operations tend to be point-to- 
point, aggregates offer much better performance on hardware 
that supports them...  aggregates also are the key to efficiently 
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implementing SIMD and VLIW execution modes on what 
would generally be considered MIMD hardware. 

Not only is it difficult to transform between these three 
different classes of models, but it also can be difficult to convert 
between different models within the same class. For example, it 
can be surprisingly complex to convert between two shared 
memory models that differ only in atomicity and coherence 
properties. 

1.4.3. Grain Size And Data Layout 

The amount of computation that each processing element 
will do between communication operations, and the layout of 
data structures across processors to make data accesses within a 
granule local, vary widely depending on the target machine, and 
transformations are difficult. For example, the HPF (High- 
Performance Fortran) effort was largely driven by the desire to 
have programmers specify the data layouts — compiler 
technology to automatically pick the best layout, or even to 
efficiently transform between specified parallel layouts, is still 
under development. 

1.4.4. Semantics Enable Transformation 

In summary, it is very difficult in the general case 
(perhaps impossible) to transform code written in one form into 
efficient code in a different form. Put another way, the above 
are all really execution model characteristics. A 
programming model should be designed to use only constructs 
that have known efficient implementations for a wide range of 
execution models. 

For example, consider an abstract parallel if statement: 

if   (parallel_expr)   I 
then_action; 

}   else   { 
else_action; 

} 

SIMD semantics would specify that then_action would 
execution before else_action in the case that 
parallel_expr was true for some processing elements and 
false for others. This implies that side-effects, such as 
communications in each actions, are strictly ordered with 
respect to each other, and thus are inherently race-free. 

In     contrast,     MIMD     semantics     would permit 
then_action       and       else_action      to execute 
simultaneously, thus requiring other mechanisms to enforce 
ordering of communications within the actions. 

The point is simply that, to be efficiently transformable, a 
parallel language (or programming model) must facilitate 
transformation into efficient code for any target by using 
semantics that are consistent with all possible target models. 
Thus, our parallel if statement should have semantics that 
allow both actions to occur simultaneously, but do not require 
this. 

The result is that when compiling for a SIMD target, 
there may be redundant synchronizations in the source program 
(that were placed there to enforce communication ordering for 
MIMD   execution   of   the   actions),   but   these   are   easily 

mechanically removed by existing compiler technology. Thus, 
careful selection of transformable parallel semantics is the key 
to making a parallel programming model directly support 
heterogeneous supercomputing. 

2. Java 

Java is a well-designed modern language that, combined 
with the Java Virtual Machine (JVM, also known as the Java 
byte code interpreter), offers both flexibility and portability. 
There is a lot to like about Java, and about its byte code (which, 
for analysis and transformation purposes, is nearly equivalent to 
the Java source code). 

2.1. Data Types 

Java specifies the size of basic data types: byte is -128 
to 127, short is -32768 to 32767, int is -2147483648 to 
2147483647, long is -9223372036854775808 to 
9223372036854775807, and char is 0 to 65535. This is a 
great benefit for heterogeneous computing in that it removes 
precision differences from our concerns in using a variety of 
machines. Although the lack of unsigned types is somewhat 
disturbing, they are effectively supported by unsigned operators: 
>>> is the unsigned shift right operator. 

Another benefit in Java's type handling is the use of IEEE 
floating point features such as NaN (Not-A-Number), Infinity, 
and +/-0 instead of exception mechanisms. The need to create a 
valid state when an exception occurs is a subtle, yet serious, 
constraint on the compiler's ability to transform code for 
parallel execution; Java's definition removes this problem. 

Java's high-level handling of arrays as single objects, and 
the deliberate omission of C-style pointers, make data alias 
analysis significantly easier for typical constructs than it is for 
C. The handling of object allocation/deallocation is also 
cleaner, although the garbage collection scheme significantly 
complicates the runtime environment and may seriously 
degrade performance using threads. 

2.2. Object Oriented 

One of the most praised features of Java is its support for 
object-oriented programming. In many ways, this is a useful 
abstraction, but object-oriented indirect function calls make 
static analysis for parallelization more difficult and less 
effective. 

Java further complicates matters by allowing functions to 
be specified in a way that facilitates using independently- 
developed binary code modules together within a program. 
This very late binding of function calls to code makes it very 
difficult for static compiler analysis to perform global 
optimizations, such as those needed for some types of 
parallelism transformations (e.g., conversion from MIMD to 
SIMD). Just-in-time or other incremental compilation 
technologies can help in this respect, but these are not really 
good solutions, largely because the analysis would be repeated 
at runtime for each new run by each machine. It is also 
important to note that, for example, a SIMD supercomputer, 
which seriously needs the global analysis and transformation, 
may be a totally inappropriate machine on which to execute the 
analysis and transformation compiler code. 
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23. Threads 

Java directly supports parallel execution using a built-in 
version of threads. Although Java threads essentially 
implement a shared memory model, unlike most thread 
libraries, Java precisely specifies how threads distinguish 
between actions taken on a thread's local working memory and 
effects on main memory. The result is a model somewhat more 
flexible with respect to ordering of accesses, thus hopefully 
more efficiently implementable on a variety of other shared 
memory mechanisms. As in C, volatile attribute is 
provided to enforce the programmed ordering of accesses. 

In comparison to thread libraries, Java provides higher- 
level synchronization primitives that take advantage of the 
difference between a library call and a language construct. The 
standard lock management to ensure that only one thread is 
allowed to be within a particular segment of code at any given 
time (mutual exclusion) is remarkably clean in Java: 

synchronized(t) { 
// exclusively executed code 

} 

This construct not only manages the locking at entry and 
unlocking at a normal exit of the segment, but also correctly 
handles unlocking for any other type of exit from that segment. 

2.4. Java, The Standard Language 

One of the best aspects of Java is the speed with which a 
precise standard definition of the language has emerged. There 
is currently an international standardization effort in progress. 

The reason that the standard has moved so quickly is 
because Sun is essentially in full control. As a general rule, 
international standards are not created by a single for-profit 
company, but by non-profit groups; .when the vote was taken in 
late 1997 on formation of an ISO standard for Java, the United 
States cast its vote against the standardization effort largely 
because Sun is placed in a controlling position. In fact, Sun 
even retains all rights to their trademark on the name Java. The 
vote passed, although the US was not alone in its concern about 
Sun's control of the standard. 

Despite this tightly-controlled approach to popularizing 
Java, it is important to acknowledge that Sun has done a very 
good job thus far. Not only is Java a relatively clean language 
design, but Sun has employed some of their best people to 
ensure that the language is a success. Sun is also pushing a 
100% Java certification effort to discourage people from using 
non-standard features. 

I like the 100% effort; it is the only way to achieve the 
portability that Java seeks. However, it is important to note that 
a program that calls native routines is not 100% Java. In other 
words, Java does not provide any way to use parallelism other 
than threads; any other parallelism would violate the 100% 
certification rules. This is a fundamental problem with respect 
to using Java for high performance computing. 

US. Support For Networking 

Java supports network communication via sockets, and 
provides library routines for higher-level protocols such as 

HTTP and FTP. It is easy to imagine, or to create, pure Java 
code library functions for higher-level parallel-processing 
message passing. Unfortunately, the basic socket interface, 
although portable, is not particularly efficient, especially within 
a cluster connected by SAN (System Area Network) hardware. 

2.6. Graphics Support 

Java provides a very strong set of graphics facilities that 
are remarkably portable, independent of host machine OS, 
windowing system, etc. Then again, you already knew this 
from watching a certain little Java Aplet wave at you from 
within your WWW browser.... Java is an excellent way to 
graphically present and browse data, even within a 
heterogeneous parallel computation, provided that the graphics 
computations are not too intense. 

3. Conclusions 

Is Java appropriate for speedup-oriented heterogeneous 
parallel computing? The answer really depends on what type of 
heterogeneity your target system employs. 

The thought of thousands of random workstations, PCs 
(Personal Computers), and NCs (Network Computers) scattered 
across the Internet being used as a parallel computer appalls 
me... but I've actually participated in such efforts. Virtually all 
of these machines are relatively minor variations on the same 
uniprocessor 32-bit architecture, heterogeneous primarily in the 
sense that some level of product differentiation is important in 
establishing a vendor's marketing strategy. The same Java code 
easily runs on all these machines, and it is relatively simple for 
the Java code to send an occasional message from one machine 
to another. 

However, the Java byte code will be interpreted very 
slowly, and with variable and difficult to predict performance, 
on most machines. Of course, a factor of 20x slowdown on 
each machine can be repaired by simply using 20x more 
machines... if you have enough parallelism and machines avail- 
able. Still, more parallelism means more communication unless 
you can buffer nearly all data in local memories, and Java com- 
munication is also slow. In my opinion, the class of applica- 
tions for which one should be able to achieve both reasonable 
efficiency per unit of compute hardware used and good speedup 
is vanishingly small. 

The more important definition of a heterogeneous system 
is the one in which the component machines truly do offer a 
variety of special characteristics, especially clusters in which 
each machine may offer a different type of internal parallelism. 
In these cases, Java does not solve any of the key problems and 
non-Java code would need to be invoked to efficiently use the 
hardware parallelism. Use of Java threads can be seen as 
creating serious problems by forcing a non-transformable 
shared-memory MIMD execution model. 

In summary, Java has many features that should be a part 
of a programming model for heterogeneous parallel computing. 
Unfortunately, 100% Java is not an appropriate model. 
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Abstract 
Java's remote method invocation mechanism pro- 

vides a number of features that extend the functionality 
of traditional client/server-based distributed systems. 
However, there are a number of characteristics of the 
language that influence its utility as a vehicle in which 
to express lightweight mobile processes. Among these 
are its highly imperative sequential core, the close cou- 
pling of control and state as a consequence of its object 
model, and the fact remote method calls are not prop- 
erly tail-recursive. These features impact the likelihood 
that Java can easily support process and object mobil- 
ity for programs which exhibit complex communication 
and distribution patterns. 

1    Introduction 
Distributed systems have historically been con- 

cerned with issues concerning the partitioning and 
transmission of data among a collection of ma- 
chines [15]. Typically, these systems allow code to 
be distributed and accessed in one of two ways. In 
some systems, each node holds code controlling the 
resources found on that node. In others, the same 
code image is found on all nodes. In either case, some 
form of message-passing [19] is used to invoke oper- 
ations on remote sites. By and large, mobility has 
not been an issue of significant importance. In client- 
server based systems, process mobility is essentially ir- 
relevant: tasks are heavyweight and control resources 
resident on a particular machine. In systems where 
all machines share the same code image, process mo- 
bility may be used to help performance by improving 
locality and load-balancing. However, tasks typically 
execute heavyweight procedures often closed over a 
large amount of local state, making task migration ex- 
pensive. Indeed, devising an efficient task migration 
policy that has a simple well-understood semantics is 
still a subject of active research. 

The past few years has seen an increasingly appar- 
ent shift to a new computational paradigm. Instead of 

regarding the locus of an executing program as a single 
address-space physically resident on a single processor, 
or as a collection of independent programs distributed 
among a set of processors, the advent of languages like 
Java [8] has offered a compelling alternative. By allow- 
ing concurrent threads of control to execute on top of a 
portable, distributed virtual machine, Java presents a 
view of computation in which a single program can be 
seamlessly distributed among a collection of hetero- 
geneous processors. Unlike distributed systems that 
require the same code to be resident on all machines 
prior to execution, Java allows new code to be trans- 
mited and linked to an executing process. This fea- 
ture allows Java to upload functionality dynamically 
in ways not possible in a traditional distributed sys- 
tem. 

Currently, the Java core only supports migration 
of whole programs; threads of control are not trans- 
mitted among machines. However, extensions like 
Java/RMI [20] that enable client-server (RPC-style) 
semantics do allow data as well as code to be com- 
municated among machines in a Java ensemble. Such 
extensions permit Java programmers to view a compu- 
tation not merely as a single monolithic unit moving 
from machine to machine in the form of applets, but 
as a distributed entity, partitioned among a collection 
of machines. By using a architecture independent vir- 
tual machine, information from one active portion of 
a computation can be sent to another without deep 
knowledge of the underlying network infrastructure 
connecting these pieces together. 

In this paper, we explore how distributed exten- 
sions to Java such as RMI handle issues pertinent to 
lightweight task migration. We are particularly in- 
terested in how Java's object model, which pervades 
all aspects of its design and implementation, affects 
lightweight task and object migration. Some of the 
questions we examine include: 

1. What impact does the close coupling of data and 
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code in Java have on the implementation of mo- 
bile processes? 

2. How does Java's imperative sequential core influ- 
ence influence the design of its distributed exten- 
sions? 

3. How does a synchronous client-server communica- 
tion model affect the construction of mobile ob- 
jects? 

4. How do we express where a task should execute, 
and how an object should migrate as part of an 
object's behavior? In other words, can we sepa- 
rate issues of concurrency and distribution from 
issues related to an object's sequential behavior? 

Using Java/RMI as a base example, we conclude 
that features endemic to the Java design make it dif- 
ficult to express lightweight process mobility. On the 
other hand, Java's object system significantly extends 
the functionality found in other distributed languages, 
most notably in its support for- distributed dynamic 
linking of new code objects. 

Our foucs will be on the interaction between mobile 
processes and objects. After providing some motiva- 
tion, we present a simple view of a distributed sys- 
tem in the context of an Algol-like (imperative) set- 
ting. We then discuss interface description languages 
like CORBA [14], and their approach to handling dis- 
tribution. Finally, we describe distributed computa- 
tion from the Java perspective, and contrast these ap- 
proaches. We conclude that while Java with RMI sup- 
port offers significant advantages over its more tra- 
ditional counterparts to programming heterogeneous 
networks, it lacks certain features that would enhance 
its expressivity. 

2    Motivation 
Like many distributed languages [3, 5], Java's se- 

quential core is object-based. A Java class defines a 
datatype, and an object is an instance of that type. 
Operationally, an object defines a collection of data 
along with operations on that data. A distributed 
Java program can be now viewed as a collection of ob- 
jects resident on different address spaces or machines, 
communicating with each other through visible meth- 
ods declared by these objects. Under a static view 
of a distributed computation, processes executing on 
different machines provide a global service or protect 
some shared resource. Once allocated to a given ma- 
chine, however, processes remain stationary. Objects 
are a natural abstraction for expressing the behavior 
of distributed processes since they encapsulate shared 

data through instance variables, and define the op- 
erations permitted on this data by other processes 
through methods and interfaces. For example, a client 
of a resource need only have access to the operations 
provided by that resource, and not the actual data ma- 
nipulated by the resource in. order to use the resource 
effectively. Indeed, for many distributed applications, 
a static partitioning of shared resources and services 
via distributed objects is ideal. 

Nonetheless, not all applications exhibit such static 
behavior. As the size of distributed systems grows, or 
as the complexity of an application increases, defin- 
ing an efficient static partition of a collection of log- 
ically distributed processes becomes problematic. In 
this case, finer mobility of code and data becomes im- 
portant [10]. For example, a process executing on a 
machine in an overloaded network ensemble may need 
to migrate dynamically to a less-loaded one. In highly 
heterogeneous systems like the Internet, this function- 
ality becomes even more pronounced: an application 
may be distributed over many different kinds of ma- 
chines with widely different capabilities, and may need 
to be frequently reconfigured to take advantage of 
changing work-loads or conditions among the nodes 
on which it executes. To achieve mobility of this kind, 
code and data must be more loosely coupled: migrat- 
ing a process from one machine to another should not 
necessarily entail copying all of the data it may poten- 
tially reference as well. Similarly, moving data closer 
to where a computation requires it, should not entail 
copying all other processes that also happen to share 
references to that data. A mobile process should be 
able to move among a collection of nodes without com- 
municating its intention to the node from whence it 
came. 

3    Mobility in an Imperative Context 
We first consider distributed execution in the con- 

text of an imperative Algol-like language. These lan- 
guages have two features that inhibit distribution in 
general and mobility in particular. The first is that 
programs generally make progress via side effects, ei- 
ther by updating variables or modifying data struc- 
tures. The second is that they are first order. Proce- 
dures can neither be returned from other procedures, 
or passed as arguments except in the most trivial 
cases. The only data available to a procedure are ar- 
guments and global variables. It is difficult to only 
use procedures to simulate the behavior of objects 
in object-oriented languages, or closures in functional 
languages. 

The result is that computation involves frequent 
modifications to shared global data, which is exactly 
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what a distributed program needs to avoid. There 
are two basic approaches to dealing with the problem: 
distributed shared memory (DSM) [2, 13] and remote 
procedure call (RPC) [4, 18]. With DSM, the dis- 
tributed nature of the computation is largely invisible 
to the programmer, at a high cost in implementation 
complexity and communication overhead. All data is 
conceptually associated with a global address. Thus, 
the machine where a thread executes no longer influ- 
ences the behavior of the program: dereferencing a 
global address may involve a remote communication 
to the node "owning" the contents of that address. 
While DSM provides a mechanism to implement par- 
allel dialects of imperative languages in a distributed 
environment, programmers have little control in spec- 
ifying how coherence and consistency are realized. In 
particular, issues of process mobility become largely 
irrelevant since the distribution of data and tasks is 
implicitly handled by the implementation, and not ex- 
plicitly managed by the program. The high communi- 
cation costs associated with DSM make it unattractive 
in a truly distributed environment. The alternative is 
to move the burden of handling communication from 
the implementation to the programmer. 

Remote procedure call provides a way of breaking 
a program into discrete parts each of which runs in its 
own address space. Unlike DSM, communication is ex- 
plicit in the program, so programmers have complete 
control over costs. The difficulty is that the semantics 
of RPC is substantially different from that of an or- 
dinary procedure call. When procedure P makes an 
RPC call to Q, the arguments to Q are marshalled and 
shipped to the machine where the computation should 
be performed. Stub generators on procedures linked to 
the application program are responsible for handling 
representation conversion and messaging. Arguments 
passed to a remote procedure are passed by copying. 
Thus, side effects to shared structures can no longer be 
used for communication between caller and callee. As 
a result, imperative programs must be substantially 
modified to run in a distributed environment using 
RPC. 

Process mobility is especially difficult [16, 6, 17]. 
The imperative nature of these languages means that 
a large percentage of data found in programs must be 
global. Communication among processes is enabled 
via side-effect, and not via allocation and copy. Thus, 
the advantages of having mobile processes is greatly 
mitigated. Conceptually, processes are highly mobile 
in these languages because they carry no state, but 
because they must frequently reference global (shared) 
data, process migration becomes useful only if the data 

they access moves along with the process requiring 
them. Given that global data is likely to be shared 
among several processes, the implicit coupling of data 
and code in imperative languages greatly weakens the 
utility of process mobility in these languages. 

4    Distributed Glue Languages 
CORBA [14] and ILU [9] are two well-known 

object-oriented glue languages that can be used to 
connect sequential components into a distributed pro- 
gram. The sequential components can be written 
in a variety of languages and components written in 
different languages can be freely intermixed within 
a single distributed program. These glue languages 
are based on object-oriented interface description lan- 
guages. The programmer writes a description of each 
component in the interface language which is then 
compiled into stub programs. One stub program, in 
the language in which the component is written, is 
used by the component to communicate with clients. 
The rest are used by clients to communicate with the 
server and can be generated in any of the languages 
the glue language supports. 

Unlike imperative languages, the use of objects al- 
leviates the problems caused by limiting procedures to 
being first-order. Because each instance of an object 
has its own local state, the number of side effects on 
the program's global state is reduced. Unfortunately, 
commication between components is still done using 
RPC. The values that may be sent between compo- 
nents are immutable ones: numbers, characters, se- 
quences of values, and so forth. The only references 
that can be sent over the wire are references to the glue 
language's global objects. Because components may 
be written in different languages, each component has 
not only its own address space but, potentially, its own 
data representations. A data format used in one com- 
ponent may unrepresentable in another. For example, 
ILU can be used to connect a component written in C 
with one written in Common Lisp; the representation 
of arrays in C, and the operations on them, are quite 
different from those in Common Lisp. There is no way 
to send either code or mutable data between compo- 
nents. An object resides permanently on the machine 
on which it is created. Thus, these distributed glue 
languages work for large-grain distributed programs 
with simple, static interfaces. Unlike imperative lan- 
guages that provide little support for distributed com- 
munication, glue languages allow data (either in the 
form of base types or objects referenced via a global 
handle) to be accessed in a distributed setting. How- 
ever, since a CORBA program may consist of modules 
written in many different languages, there is no sup- 
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port for code or process mobility. Processes run in an 
address space executing a language processor for the 
language in which they were written. 

Programs written in distributed glue languages are 
likely to perform well if written in a client/server 
style. The client/server model partitions computation 
among nodes in a network: all server-related compu- 
tation is exercised on the node where the particular 
server object resides, and all client-related computa- 
tion is exercised on the client. Because the location 
of clients and servers is highly static, decisions on 
where computation is executed is static as well. Once 
a remote method is invoked, control-flow within the 
method body remains on the node of the correspond- 
ing remote object; the caller of the remote method 
blocks until the remote method returns. 

As long as computation is uniformily distributed 
among clients and servers, having code remain resident 
on the remote object site is acceptable. However, for 
mobile computations, a client/server model is clearly 
inappropriate. For applications in which computation 
is non-uniform or which is not. easily partitioned into 
client- and server-code, a more flexible distribution 
model is required. 

Consider a thread of control T executing on some 
machine M. Suppose T makes a remote method call 
to a remote object O (possibly written in a different 
language) executing on some other machine M'. The 
execution of this method can occur in one of two ways. 
The method can execute on M as part of T's control- 
flow, or it can execute on M' as part of a newly in- 
stantiated thread. The first option, rejected by dis- 
tributed glue languages, is useful if references to O 
within M are infrequent. In this case, the overhead 
of introducing a new thread control on M' may quite 
likely be greater than the overhead of retrieving neces- 
sary state information from O. The second approach 
transfers control-flow to M'; this is the approach taken 
in Java/RMI. 

5    Threads and Distributed Objects 
In contrast to imperative languages, class-based 

object-oriented languages like Java encapsulate data 
and code together. A computational unit in Java is 
an object. An object includes a collection of data 
called instances variables, and a set of operations 
called methods to operate on this data. Object state 
is accessed and manipulated from the outside through 
publically visible methods. Because it provides a natu- 
ral form of encapsulation, an object-oriented paradigm 
seems well-suited for a distributed environment. Ob- 
jects provide regulated access to shared resources and 
services.   In contrast to distributed glue languages, 

distributed extensions of Java permit objects as well 
as base types to be communicated. Moreover, certain 
implementations such as Java/RMI also permit code 
to be dynamically linked into an address space on a 
remote site. 

Since a primary goal of Java was to support code 
migration in a distributed environment, the language 
provides a socket mechanism through which processes 
on different machines in a distributed network may 
communicate. Sockets, however, are a flexible low- 
level communication abstraction. Applications using 
sockets must layer an application-level protocol on top 
of this network layer, responsible for encoding and de- 
coding messages, performing type-checking and verifi- 
cation, etc. This is generally agreed to be error-prone 
and cumbersome. 

5.1    Remote Method Invocation 
As we discussed earlier, RPC provides one way of 

abstracting low-details necessary to use sockets. RPC 
is a poor fit, however, to an object system. In Java, 
for example, communication takes place among ob- 
jects, not procedures per se. Requiring methods in 
different objects to communicate directly with one an- 
other would break object boundaries and thus would 
violate the basis of Java's object model. Java/RMI 
is a variant of remote procedure call tailored for the 
object semantics defined by Java's sequential core. In- 
stead of using procedure call as the basis for separat- 
ing local and remote computation, Java/RMI uses ob- 
jects. A remote computation is initiated by invoking a 
method on a remote object. Clients access remote ob- 
jects through surrogate objects found on their nodes. 
These objects are generated automatically by the com- 
piler, and compile to code that handles marshalling of 
arguments, etc. Like any other Java object, remote 
objects are first-class, and may be passed as arguments 
to or returned as results from a method call. Remote 
objects are implicitly associated with global handles or 
uids, and thus are never copied across nodes. However, 
any argument which is not a remote object in a remote 
object method call is copied, in much the same way as 
in an RPC semantics. This means that remote calls 
have different semantics from local ones even though 
they appear identical syntactically. The fact that Java 
is highly imperative means that distributed programs 
must be carefully crafted to avoid unexpected behav- 
ior due to unwanted copying of shared data. 

Nonetheless, Java/RMI does fit into Java's object 
model in a number of other ways. Communication 
takes place via proxies to remote objects, and the en- 
capsulation benefits provided by objects is preserved. 
In addition, Java/RMI supports a number of features 
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not available in distributed extensions of imperative 
languages or distributed glue languages. Most impor- 
tant among them is the ability to transfer behavior to 
and from clients and servers. Consider a remote in- 
terface / that defines some abstraction. A server may 
implement this interface, providing a specific behav- 
ior. When a client first requests this object, it gets the 
code defining the implementation. In other words, as 
long as clients and servers agree on a policy, the par- 
ticular mechanism used to implement this policy can 
be altered dynamically. Clients can send behavior to 
servers by packaging them as tasks which can then be 
directly executed on the server. Again, if the method 
to be executed is not already found on the server, it is 
fetched from the client. Remote interfaces thus pro- 
vide a powerful device to dynamically ship executable 
content with state among a distributed collection of 
machines. 

5.2 Tail  Recursive   Communication  and 
Mobility 

Although Java/RMI can be used to express non- 
client/server style applications; we expect" this will not 
often be the case. By default, a remote method call 
in Java/RMI is synchronous: the caller waits for the 
callee to return before proceeding. Stated another 
way, remote method calls in Java/RMI are never prop- 
erly tail-recursive. For example, suppose method A on 
machine Mi wishes to make a remote method call to 
method C on M3 supplying the result of calling re- 
mote method B on M2. Ideally, we would like to have 
B invoke C directly. However, to do this requires mod- 
ifying B's implementation. In certain agent-based sys- 
tems [11], or distributed systems which support first- 
class continuations [1, 7], B may invoke C directly, 
wrapping A's continuation around the call. When C 
finishes, it returns immediately to A, avoiding an un- 
necessary communication with B. Although a form 
of asynchronous communication can be expressed in 
Java/RMI using an agent interface, it is cumbersome. 
(See Fig. 1.) 

5.3 Thread and Object Migration 
Despite its added functionality over distributed 

glue languages, Java's object model (like other object- 
based distributed systems [10]) encourages a close cou- 
pling of code and data. Because all non-local variable 
references in a method are either global, or refer to 
instance variables of the object (via self), the envi- 
ronment within which a method executes is explic- 
itly expressed in the definition of the corresponding 
class. Unlike imperative languages, the location where 
a thread executes thus becomes very important. Since 
threads represent control-flow through methods, and 

methods are the only means of accessing internal ob- 
ject state, distributed object-oriented languages usu- 
ally dicate that a thread executing a method evalu- 
ate on the same node as the method's object. Hence, 
thread migration is difficult to express: migrating a 
thread moves it away from the state accessed by the 
executed method via self. Indeed, Java/RMI pro- 
vides no programmer-controlled mechanism to express 
thread migration: once a thread begins execution on 
a node, it remains resident on that node until the 
method it is executing completes. Furthermore, since 
objects contain mutable state, copying data to where 
the caller resides is likely not to be beneficial since the 
data must written back to the object when the method 
completes. 

Part of the reason why thread migration appears to 
be a concept ill-suited in Java is because Java's thread 
model is so closely tied to its object model. Any object 
that inherits from the basic thread class, and provides 
a run method can be instantiated as a thread [12]. The 
code executed by the thread is the code found in the 
object's run method. Because threads are no different 
from any other object, thread and object migration are 
essentially the same. Moving a thread from one node 
to another is tantamount to moving an entire object, 
not just control. To achieve the benefits of lightweight 
thread migration, however, two features are required. 
First, we should be able to separate code from data, 
or at least not be required to explicitly package the 
two together. Second, we should be able to denote a 
piece of code as a thread without having to first de- 
fine a class template. An arbitrary Java expression 
can be viewed as a thread only if it is encapsulated as 
a method within an object whose class implements or 
extends the basic Thread class. This leads to a sig- 
nificantly greater burden on the programmer to build 
lightweight threads. 

5.4    Specifying a Locus of Control 
Another ramification of code and data coupling is 

that decisions about whether a method is remote or 
not is hardwired as part of the class specification in 
which the method is defined. Any object instanti- 
ated from a class that implements a Remote inter- 
face is treated as remote. Thus, all calls to methods 
found in such objects are executed remotely on the 
site where the object is located. It is not possible 
to have some methods execute locally and others exe- 
cute remotely without having them defined in separate 
classes. For example, consider a class that contains an 
array. Methods which operate on all the elements in 
the array are best implemented via remote method 
call since it may be potentially expensive to move the 
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Figure 1: A client-server communication model requires control always to return back to the sender. In agent- 
based systems, control may move freely among nodes before ultimately returning. 

array frequently to the object's clients. On the other 
hand, it may be more efficient to execute a method 
which extracts a particular fieldand operates on that 
field exclusively locally on the client since communi- 
cation overhead is likely to be small in this case. In 
Java/RMI, these two methods cannot co-exist in the 
same object. 

We believe that the choice of where methods exe- 
cute should be under programmer control. By default, 
control should remain resident on the node where the 
thread making the call is currently executing. Field 
accesses thus involve copying data from the associated 
object's home. On the other hand, when a method M 
is annotated as an RPC method, calls to M trans- 
late to a shift in control to the location where M's 
object O is found. If O subsequently migrates while 
M is still executing, the corresponding thread created 
to evaluate M migrates as well. Neither of these pro- 
tocols influence correctness, but their choice impacts 
efficiency. This finer granularity on control-flow would 
permit a given object to define methods that support 
both protocols. 

Taken together, these features of Java (and simi- 
lar class-based languages) make it unwieldy as a lan- 
guage in which to express mobile processes, and dy- 
namic thread and object migration. Because remote 
calls by default are not tail-recursive, the creator of 
a thread on a remote node is closely coupled with 
the thread itself, limiting opportunities for the thread 
to migrate freely. Requiring that concurrency be ex- 
pressed through the object system means that ex- 
pression whose evaluation is to take place in a sep- 
arate thread must be named as a method found in a 

Runnable object. Since Java provides no mechanism 
to reify scheduler state, programmers do not have the 
ability to capture a runnable thread, and move it to 
another node, or manipulate it in other ways. Any 
thread or object migration decisions are handled ex- 
clusively within the virtual machine. The close explicit 
coupling between state and code means that moving 
object state necessarily causes the locus of control for 
executing methods in that object to shift as well. This 
is because a class defines an explicit packaging of state 
used by the methods it defines. Because state refer- 
enced by a method is not implicitly constructed by the 
implementation, it is meaningless to consider mecha- 
nisms to distribute control (i.e., threads) as any differ- 
ent from mechanisms to distribute state (i.e., objects). 

One way that Java addresses the latter point is 
through the use of inner classes. An inner class pro- 
vides many of the features that closures in functional 
languages provide; in particular, an inner class, allows 
the same piece of code (an inner class definition) to 
be closed over many different environments. However, 
the Java specification requires that free variables in 
an inner class be final, i.e., immutable. In a func- 
tional language, such a requirement does not impose 
great burdens on expressivity, but functional program- 
ming in Java is hard to do because many of its most 
important features are defined in an imperative style. 
Thus, we suspect implementations are unlikely to view 
task migration as a critical issue because distributed 
programs written in Java will not be able to take ad- 
vantage of inner classes to separate control from state. 
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6    Conclusions 
Distributed extensions of Java such as Java/RMI 

combine features found in both agent-based languages 
and more traditional RPC-based distributed systems. 
While providing the encapsulation and protection ben- 
efits of traditional client/server RPC systems, Java's 
program model allows code to be dynamically linked 
and executed on remote nodes. 

However, we have identified three fundamental 
characteristics of Java that we believe make it hard 
to express lightweight distributed mobile processes. 
First, the highly imperative nature of its sequential 
core complicates the semantics of distributed program- 
ming via message passing. The semantics of remote 
method invocation differs substantially from that of 
local method inocation. Second, a client/server com- 
munication model requires a remote call to return back 
to the sender once the call is complete. Since the con- 
tinuation of the call cannot be explicitly supplied, mo- 
bility is hampered. Third, the close coupling of data 
and state make it difficult to express task migration as 
an issue orthogonal to object migration even though 
the circumstances under which the two would be ex- 
ercised are very different. 

We expect that there is much to be gained by ex- 
ploring the interaction between an object semantics 
and distributed programming via mobile^ processes. 
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Abstract 
Java's design goals of portability, safety, and ubiq- 

uity make it a potentially ideal language for large-scale 
heterogeneous computing. One of the remaining chal- 
lenges is to create performance models and associated 
specifications and programming constructs that can be 
used to reason about performance properties of systems 
implemented in Java. 

1 Introduction 
Java is the first mass-market concurrent, dis- 

tributed, object-oriented language. To the extent that 
heterogeneous computing requires near-universal plat- 
form support for a given language ("Write once, run 
anywhere"), Java is currently the only answer for pro- 
gramming non-experimental heterogeneous systems. 
But is Java a good enough answer? Can it become 
good enough? 

Java provides support for the common demands of 
system-wide heterogeneous computing: Concurrency 
via threads, locks and monitors; Distribution via Re- 
mote Method Invocation (RMI) and related frame- 
works; User interaction via the AWT; Persistence via 
serialization and database connections; Mobility via 
class loaders; and Security via principals, security 
managers, etc. Across all of these domains, as well 
as base language constructs, the primary design goals 
have surrounded portability, safety, historical prece- 
dent, and minimality. These goals have been traded off 
against performance, exploitation of machine-specific 
capabilities, and availability and real-time guarantees. 

2 Performance Models 
Reasoning about performance is an integral part 

of system-level development. Currently, system de- 
velopers face more extreme versions of the kinds of 
problems that beset early developers of simple Java 
applets and applications. Developers could not be 
confident that a given Java Virtual Machine (JVM) 
would meet even the most minimal correctness and 
performance criteria needed for acceptable execu- 
tion.    The widespread deployment of Just-In-Time 

compilers, dynamic compilation, and more efficient 
run-time systems have alleviated some of these con- 
cerns. Others have been addressed by providing high- 
level, portable choices for mapping designs to imple- 
mentations with different performance characteristics. 
For example, user interface programmers may now 
choose between "heavyweight" AWT components that 
are implemented directly by native windowing sys- 
tems versus "lightweight" components that are imple- 
mented mainly in Java proper. Neither is always best 
with respect to performance and other design criteria. 

However, these concerns become much more chal- 
lenging at a systems level, and have yet to be ad- 
dressed systematically by JVM implementors. Exam- 
ple issues include: 

• How are threads mapped to different processors 
in SMPs? 

• How is persistence mapped to high-performance 
random access devices (mainly disks), serial de- 
vices (mainly networks), transactional processing, 
etc? 

• How is locality exploited in message-based remote 
communication? 

• How is Java synchronization mapped to spinlocks 
versus JVM scheduling versus kernel scheduling? 

• How are known regularities exploited for resource 
management? 

• How can system-wide control and monitoring be 
extended, for example to include checkpointing 
and deadlock detection? 

• How can soft-real-time requirements be used to 
influence scheduling? 

Java is currently silent about most of these issues, 
leaving too much freedom in the hands of JVM and 
Java library and tool implementors, and hence too 
much uncertainty for developers to be able to reason 
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about performance. Right now, the only way for de- 
velopers to deal with this is to build their own custom 
JVMs, support libraries, and/or tools. While the lax- 
ity of Java specifications allows this, it is an unaccept- 
able solution in the long run since it allows developers 
to reason about performance only on particular imple- 
mentations. 

An alternative is to construct a portable system- 
level performance model for Java, that is honored 
by JVM, library, and tool implementors. Aspects of 
such models have been implicit in most in-the-small 
performance-related efforts. However, they must be 
made explicit to scale to systems-level concerns. The 
heart of a performance model is an abstraction of 
a computer system providing just enough detail to 
express mappings and choices among mappings, yet 
noncommittal enough to apply to JVMs residing on 
smartcards, supercomputers, and everything in be- 
tween. Such a model could then be used to provide 
various styles of rules: 

• System-specified mappings: If a capability exists, 
it will be mapped in a certain fashion. 

• Default mappings: Rules that apply unless over- 
ridden by programmers. 

• Programmer-specified hints: Constructions that 
allow programmers to heuristically influence or 
tune parameters of a mapping. These need not 
take the form of tuning APIs, but may instead for 
example associate performance properties with 
different programming constructions. 

• Programmer-specified mappings: APIs that allow 
programmers to plug in control modules and the 
like. 

• Multiple mappings: Different APIs with differ- 
ent performance characteristics, that program- 
mers may choose among. 

• Intentional opacity: Reserving the right of imple- 
mentors to make any mapping choice, unknow- 
able by programmers. 

The main challenge is to identify those components 
of a performance model that significantly impact the 
ability to reason about performance, yet can be used 
as the basis of usable, portable, and readily imple- 
mentable programming constructions. Members of 
the heterogeneous computing community have much 
to contribute toward such efforts. 

Perhaps in an ideal world, all rules would be of the 
first type, requiring "optimal" mappings to system 

capabilities. However, the world is rarely this ideal. 
For example, the benefit of placing threads on differ- 
ent processors of an SMP generally varies inversely 
with communication rates among threads. It is hard 
to imagine placement strategies that would not ben- 
efit from information that reveals expected communi- 
cation rates. Such hints would of course be ignored 
or used in some other heuristic fashion (for example 
to help choose between user-level versus kernel-level 
threads) when programs are run on uniprocessors. 

And even in an ideal world, some mappings must 
remain opaque; for example those that would other- 
wise reveal information that would compromise safety 
and security properties. 

JVM-level performance models may in turn give 
rise to application-level models. For example, a com- 
mon Java programming dilemna surrounds how to 
map object communication to any of many available 
forms, including direct method invocations, notifica- 
tions among threads, JavaBean-style events, struc- 
tured RMI-style messages, applet-style class trans- 
port, serialized mobile-code-style commands, database 
transactions, and so on. While performance concerns 
are typically only one factor in such decisions, the abil- 
ity to approximately predict the performance charac- 
teristics of different choices can lead to development 
of more usable and more useful Java-based systems. 
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Abstract 

The heterogeneous parallel processing community has 
long been struggling to bring its approach to computation 
into the mainstream. One major impediment is that no 
popular programming language supports a sufficiently 
wide range of models of parallelism. The recent emergence 
of Java as a popular programming language may offer an 
opportunity to change this situation. This article begins 
with a review of the special linguistic and computational 
needs of heterogeneous parallel processing by considering 
the user communities that would benefit most from the 
approach. It then reviews the pros and cons of Java as a 
language for expressing and realizing heterogeneity, and 
concludes with some possible changes that would make 
Java more suitable for such use. 

1.    Heterogeneous 
Needs It? 

Programming:    Who 

Before we look at the relationship between Java and 
heterogeneous programming, we should first review what 
is involved in programming heterogeneous systems: 
where are they used and how? Once we identify the 
requirements for supporting software development for 
heterogeneous systems, we have a better basis for judging 
the applicability of a programming language. What 
follows is not meant to be an exhaustive survey of the 
field, but merely a discussion of some well-known 
examples to motivate the identification of a set of 
requirements. 

There are three basic reasons for writing programs 
that involve heterogeneous parallelism: because we need 
to use heterogeneous hardware, because our problem is 
inherently heterogeneous in nature, or because we are faced 
with some combination of the two. In practice there are 
many gray areas between these distinctions. For example, 
to some applications, a distributed shared memory parallel 

processor may be completely homogeneous, whereas 
others may be sensitive to differences in memory access 
time and thus see such hardware as heterogeneous. 
Likewise, while one approach to solving a problem may 
be inherently heterogeneous, there may be other 
approaches that are more homogeneous in nature. In what 
follows it is implicit that programmers are always faced 
with a spectrum of choices and that the use of 
heterogeneity in any given instance is a matter of degree 
rather than absolute. 

2. Heterogeneous Hardware Users 

In some situations, the system architect is forced to turn 
to heterogeneous hardware. The necessity for heterogeneity 
can be due to space and power requirements as in embedded 
processing, or due to cost considerations as in clustered 
workstation farms, or simply a matter of physical 
limitations of technology as with large-scale shared 
memory multiprocessors. Heterogeneity can also result 
from systems that change their configuration dynamically, 
as in the case of adaptive computing hardware or network 
computing in which the availability of nodes is subject to 
change. In the sections that follow, we consider some of 
the special programming issues that are associated with 
each of these situations. 

2.1 Embedded Systems 

Most embedded systems are strongly constrained by 
limitations such as size, weight, power and cost. Many 
embedded systems are not high-performance in nature, and 
the goal is simply to minimize cost while achieving the 
necessary level of performance. However, when 
requirements for high performance are combined with 
embedded system limitations, there is often a considerable 
benefit to employing heterogeneous parallelism. For 
example, combining a digital signal processor (DSP) with 
a microprocessor and some custom logic can be more cost 
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effective or achieve a higher level of performance than 
using multiple identical microprocessors. 

Achieving high performance with DSP and custom 
logic, however, involves an especially high degree of 
optimization of certain algorithms for the hardware. There 
may be just a single way of optimally coding an 
algorithm for a DSP that was specifically envisioned by 
its designer. For example, some DSP architectures include 
address arithmetic instructions that are unique to a Fast 
Fourier Transform (FFT), and their use can speed up the 
inner loop of that algorithm by nearly an order of 
magnitude. Typically, these algorithms are hand-coded in 
assembly language and provided as external libraries. 

While the library approach works in limited 
situations, it presents problems of portability and 
flexibility. One of the goals of heterogeneous 
programming is to reduce the dependence on hard-coded 
machine-specific libraries so that code can be ported to 
different heterogeneous platforms with minimal effort. A 
program that is written with such library calls can't be 
ported to another platform (or even run on a uniprocessor) 
until the library is rewritten for the new platform. 

The alternative is that we write the library's 
algorithms in a high level programming language so they 
can be compiled for whatever system we choose. Of 
course, we then generate suboptimal object code for the 
DSP. While we could perhaps build a compiler to 
recognize and optimize certain key DSP algorithms 
carefully written in some canonical form, it would be 
difficult to handle the broader spectrum of DSP algorithms 
or even minor variations on the key subset. 

A simple but effective solution is to provide the 
programmer with the ability to uniquely name an 
algorithm that is implemented in multiple ways (i.e., in 
high-level code and in libraries) and to indicate either a 
specific target or the conditions that determine the 
appropriate target for each implementation. For example, 
a program might include the code for a generic FFT, and 
the compiler might detect that there is a corresponding 
FFT library function for one of the target processors. 
Depending on how the code is partitioned among the 
processors, the compiler either generates new FFT code or 
a library call. Database researchers refer to this as ad-hoc 
polymorphism, and we have previously called it 
pseudomorphism [Weemsl994] because it is analogous to 
the mineralogical form of the same name in which a 
crystal is chemically replaced by another compound in 
such a manner that the external appearance remains 
unchanged. 

Implicit in the foregoing discussion is the notion that 
the compiler or some other tool is able to partition code 
among processors of multiple types. Partitioning implies 
that there is some means of estimating the performance 

and cost of mapping code segments to processors. While 
it is sometimes possible for partitioning tools to analyze 
code and identify first-order factors affecting its 
performance, it is also the case that the programmer may 
have specific information that can help to guide 
partitioning, and should be given a means to express it. 

Partitioning tools also need hardware-specific cost 
estimators both for the individual target processors and for 
the communication mechanisms that connect them. This 
can either be in the form of dedicated software for each 
target or more general software that bases its estimates on 
hardware descriptions expressed in some language. This 
isn't necessarily the same language that the programmer 
uses, but it is difficult to decide whether it is best to create 
a whole new language or to extend an existing language 
with constructs that most programmers will never use. 

2.2 Adaptive Computing 

Processors that can change their configuration, such as 
field programmable gate arrays (FPGA) present challenges 
that are similar to heterogeneous computing systems. 
They are usually employed in embedded applications 
where separate processing phases require different custom 
computing hardware and thus it is possible to use a single 
component that reconfigures itself between phases. 
Adaptive hardware is often used as a coprocessor in a 
system that includes a DSP or traditional microprocessor. 

Like DSP systems, adaptive systems often rely on 
libraries of manually optimized functions. An alternative 
approach for programming adaptive devices is to generate 
configurations automatically. Currently this is done only 
from hardware description languages (HDL) or from 
customized high-level languages that enable users to 
express computations in ways that are more suited to 
hardware layout (e.g., dataflow with datapath width 
information). 

In terms of heterogeneous programming, the 
implications of the library approach are similar to those 
for DSP-based embedded systems. However, for automatic 
generation of configurations, the implications are that a 
language should provide some features similar to those of 
hardware description languages, including pipelining, 
clocking and synchronous communication, datapaths and 
functional units of varying widths. 

The implications of adaptive computing for 
partitioning and mapping are that the cost model is more 
complex and performance estimates depend more on 
detailed analyses of the actual circuitry. Because there are 
many ways to lay out a particular circuit that affect 
different aspects of its performance, there is a larger 
mapping space to explore. The mapping space could be 
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considerably constrained by additional information from 
the programmer. 

2.3 Clustered Workstations 

Heterogeneous computing is often most closely associated 
with networked workstations in which multiple models 
are employed so that nodes differ significantly from each 
other in terms of performance and capacity. In many cases, 
the workstations are used in a manner similar to a 
homogeneous parallel processor and it is simply a matter 
of partitioning operations in parallel across the available 
resources. The reason for adopting this approach is 
typically to save cost by using existing hardware resources 
and free software to build an ad-hoc parallel processor, 
although some clusters are purpose-built. 

Because clusters typically employ a standard computer 
network, communication between nodes has high latency 
and limited bandwidth. Thus it is common to partition 
jobs in a manner that minimizes communication, such as 
having a master processor distribute work to slaves that 
compute intensively for some period before returning a 
result. Partitionings of this nature are naturally expressed 
via message passing, and a significant amount of legacy 
code now exists that uses either the PVM or MPI library. 
Thus, in the near term a language must support interfaces 
to these libraries. 

In the long term, a goal of heterogeneous computing 
research should be to support more automation of code 
partitioning, mapping, and distribution in these 
environments. However, their sheer diversity combined 
with a focus on low cost and modest software effort may 
make it difficult to provide a more sophisticated solution 
that is acceptable to this particular user community. 

2.4 Nonuniform Memory Access 

As MIMD parallel processors scale up in size, they 
encounter various physical limits that force their designers 
to sacrifice uniformity of memory access latency. One 
approach that has been adopted is to cluster processors in 
groups of two to eight within which they have uniform 
access latency, and access to shared memory outside of the 
cluster is slower (Figure 1). In some cases, the clusters are 
also grouped into a hierarchy. Another approach is to 
connect the clusters with a message-passing network with 
the result that programs can either employ a 
heterogeneous mixture of shared and distributed memory, 
or they can use software emulation of shared memory 
outside of clusters with a resultant increase in latency. 

All of these architectures benefit from appropriate 
partitioning and mapping to enhance locality of reference. 
Traditional   memory   placement   optimizations   can   be 

modified to some extent to deal with the nonuniform 
access latencies, and in doing so start to resemble 
partitioning strategies for heterogeneous systems. High 
Performance Fortran (HPF) is a recent attempt to extend a 
language with constructs that enable the programmer to 
provide additional information to aid the partitioning of 
data. 
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Figure 1. Clustered Parallel Architecture 

While some sort of programmer-provided partitioning 
information is probably needed, the HPF extensions and 
especially their interactions with the Fortran-90 parallel 
extensions have proved to be particularly troublesome to 
compiler writers. Thus, an important consideration in 
evaluating a language for heterogeneous programming is 
to ensure that its features do not conflict with each other. 

3. Solvers of Heterogeneous Problems 

As we move beyond embarrassingly parallel applications 
to address problems with greater complexity, we find that 
they are often most naturally expressed with a 
combination of parallel processing modes. In the previous 
sections, we focused on the language features that are 
needed to enable users to inform partitioning tools so that 
they can distribute code onto heterogeneous hardware. In 
the sections that follow, we consider via some examples 
the language features needed to express the natural 
heterogeneity of parallelism in some applications. 
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3.1 Scientific Computing 3.2 Computer Vision 

Scientific codes are relying more on irregular 
computations, as in the case of simulating turbulent fluid 
flow, in which areas outside of turbulence zones are 
regular and sparse but within turbulence zones meshes are 
dense and irregular in their topology. Applications such as 
these require language features that support the definition 
of appropriate data structures, such as variable density 
triangular meshes, and new arithmetic operators that 
process them. One approach to implementing these is to 
use an index array that points into a data array and 
explicitly manage the adjacencies in the mesh. A set of 
functions can be written to carry out arithmetic operations 
on the mesh. However, all of this structure obscures the 
true relationships between the data elements and between 
operators, making it difficult to optimize them. 

Expressing an irregular data structure at a higher level 
should both simplify programming and optimization. For 
example, making the property of adjacency explicit might 
enable programmers to define an adjacency matrix and 
automatically inherit certain operations that depend on 
adjacency. While this could be syntactically expressed 
with a class hierarchy, the compiler sees only the 
underlying implementation and cannot take advantage of 
higher level aspects of adjacency as a property in 
optimizing computations. 

Linguistically, the ability to overload arithmetic 
operators provides a convenient syntactic sugarcoating that 
hides the functional implementation of operations on new 
data types. But overloading by itself does not enable the 
compiler to optimize expressions of these new operators 
in the same way that it optimizes expressions made up of 
built-in operators. The ability to add semantic property 
information to definitions to facilitate optimization is a 
necessity. Such a capability need not resort to the 
generality and complexity of mechanisms such as 
denotational semantics [Gordon 1979]. Rather, simply 
having a list of properties that the compiler recognizes and 
which can be attached to definitions would be adequate. 

Simulations of whole systems or processes are a 
natural source of heterogeneous parallelism. For example, 
simulating an entire jet engine involves various stages of 
compression, fuel-air mixture, combustion and exhaust, as 
well as mechanical stresses and thermodynamics. 
Simulating each of these aspects of the engine involves 
different computational techniques with different degrees of 
parallelism, connected in a dataflow structure that mimics 
the physical relationships between the engine 
components. 

The complexity of interpreting visual information 
necessitates many different processing techniques. Image 
processing and feature extraction provide opportunities for 
fine-grained data parallel processing. Image sequences can 
be processed in a pipelined manner and multiple features 
can be extracted simultaneously with MISD parallelism. 
Extracted features can be combined with SPMD 
parallelism into larger structures, and shared memory 
MIMD parallelism can be used to search the extracted 
features for matches to multiple objects at once. The 
overall processing may be coordinated with a data flow 
model. 

The implications of our two example application 
domains for a programming language are that it must be 
able to support a wider range of modes of parallelism than 
merely data parallel and multiprocessing in order to 
facilitate programming of heterogeneous applications. In 
addition, it must support novel combinations of 
parallelism. Ideally, it would also enable the programmer 
to define new models of parallelism to suit a specific 
problem. 

4. Summary of Requirements 

From the foregoing discussion, we list the following 
requirements for a programming language suited to 
heterogeneous programming: 

• The ability to uniquely identify algorithms. 
• Express partitioning and mapping information. 
• Interface to PVM, MPI, etc. 
• Support message passing over networks. 
• Avoidance of conflicting language constructs. 
• Overloading of arithmetic operators. 
• Ability to add semantic information. 
• Ability to define irregular structures. 
• Express structural relationships such as adjacency. 
• Support a wide range of parallel models, including 

• SIMD, 
• SPMD, 
• MISD, 
• MIMD, 
• shared and distributed memory, 
• dataflow, 
• pipelining. 

• Allow parallel models to be combined flexibly. 
• Permit extension to new models of parallelism. 

In our previous survey of programming languages for 
heterogeneous parallelism [Weemsl994], we identified a 
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set of requirements that make up the abilities to flexibly 
combine models of parallelism into new models: 

• Support for a range of data and control grain sizes. 
• Ability to define a communication abstraction. 
• Ability to define a synchronization abstraction. 
• Ability to specify patterns of data distribution. 
• Ability to specify patterns of process distribution. 
• Able to define new first-class types. 

5. Why Java? 

5.1 It's Hot. 

At one time, introducing a new programming language 
was just a matter of creating a compiler and making it 
available. In the world of computing today, where legacy 
code and compatibility tend to dominate the economics of 
software development, it takes a confluence of many 
factors to enable a new programming language to enter the 
mainstream. Java appears to be the right language to 
emerge at the right place and the right time. 

Because Java is rising fast but is also still evolving, 
it presents an opportunity for many special interests to try 
to influence the design of what may become the dominant 
programming language of the next decade. The parallel and 
heterogeneous computing communities have been 
struggling for years to develop languages that would gain 
some measure of acceptance. If Java can be made suitable 
for their purposes with just a few minor additions, then 
perhaps those approaches will finally enter the mainstream 
and researchers can move on to new levels of research. 
Java was originally designed for embedded systems, so it 
would superficially appear that it should address the 
concerns of that segment of the heterogeneous processing 
community. 

5.2 It's Simple 

In comparison to other modern object-oriented languages, 
the essential syntax of Java is reasonably simple, and it's 
core is familiar to any C programmer [Gosling 1996]. It 
avoids many of the pitfalls of larger languages like C++ 
and Ada95 but does not sacrifice convenience for the sake 
of minimalistic purity. It may certainly be argued that 
there are syntactically "better" languages, but there is 
general agreement that Java is an improvement over many 
of its predecessors. 

Simplicity also implies that a language will be easier 
to learn, Java thus has the potential to win over converts 
from existing languages used in heterogeneous, parallel, 
embedded, and adaptive programming such as Fortran, C, 
C++, Ada, and VHDL. Of course, to do so, it must also 

provide a similar level of convenience of expression of 
essential constructs in each of those domains. 

Being syntactically simple, Java offers a better base 
upon which to add constructs in support of heterogeneity, 
if necessary, because the resulting interactions between 
new and old constructs are easier to enumerate. Java's 
simplicity includes the avoidance of many features of 
earlier languages that were machine-dependent or that gave 
the user too much low-level control (e.g., common, 
equivalence, pointer address arithmetic, explicit memory 
management). It thus offers a stronger foundation for 
extensions. 

5.3 It's Portable 

Because Java targets a virtual machine (the JVM 
[Lindholml997]), it can be executed on any machine with 
an implementation of the JVM. This approach to a run- 
time environment overcomes many of the difficulties that 
are faced in trying to distribute code across heterogeneous 
systems. Issues of word size, endianness, register file size, 
operating system, and display environment all disappear. 
In effect, Java homogenizes the heterogeneous world for 
us through its virtual machine. 

The result of this homogenization is that we can 
focus on the bigger picture of high-level performance 
characterization in support of partitioning and mapping. 
All code is generated for a single instruction set and 
descriptions of target machines can be in simpler terms 
such as memory capacity and performance on some Java 
benchmark kernels. 

5.4 It's Object-Oriented 

Besides being a popular buzzword, object-orientation gives 
a language great syntactic power for extension. It is 
possible to develop classes that provide convenient 
abstractions for many forms of parallelism. For example, 
one could build an irregular array class that makes it 
simple to express the kinds of computations that are 
performed in turbulent fluid-flow simulations. That 
abstract interface can hide either a sequential or a parallel 
implementation. 

Object orientation also offers greater potential for 
reuse and extension of user constructs by others. Given 
classes that implement different models of parallelism, we 
could combine them in a variety of ways to enable 
heterogeneity to be expressed. 

5.5 It's Garbage Collected 

By avoiding explicit memory management by the 
programmer, Java greatly  reduces the  opportunity  for 
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errors resulting from memory leaks or bad address 
arithmetic. However, for parallel processing, garbage 
collection offers an opportunity for redistribution of 
processing load. As a garbage collector sweeps through 
memory compacting live and dead values, instead of 
merely gathering the live values into one place it could 
redistribute them to other (possibly heterogeneous) 
computational nodes. 

5.6 It's Threaded 

Java's threads provide a simple but powerful mechanism 
for expressing shared-memory parallelism. Many models 
of concurrent programming can be expressed with the 
Java's threads [Leal997]. It's runtime system, the JVM, 
already supports multiprocessing so that a consistent 
abstract parallel environment can be used on all targets. 

5.7 It's Network Aware 

Java applets provide a means for distributing code across a 
local area network. In addition, its object-oriented 
approach can be used as a form of message passing 
through the remote method invocation facility. More 
directly, it has the ability to explicitly handle network 
connections as streams. When this is combined with 
Java's reflection capabilities, we find that there are many 
options for implementing parallelism in Java. 

6. Java Weaknesses 

6.1 It's Hot 

The fact that Java is new and being influenced by many 
interest groups means that the language itself is 
continuing to evolve at a fast pace, making it difficult to 
identify specific extensions without risking conflicts that 
could arise from other proposed extensions. Java may still 
evolve into a language with features that make it 
unsuitable for heterogeneous parallel applications. Given 
the ongoing battle between Microsoft and Sun over Java 
standards, it is even still possible that Java will fail to 
reach a critical level of acceptance or be replaced by a 
different language. 

Because of Java's perceived popularity, the 
heterogeneous programming community has very little 
influence over Java's evolution, and so must ride the 
coattails of others in any effort to extend Java for their 
benefit. A domain-specific language would not be subject 
to the same restrictions. 

6.2 It's Simple 

One of the key simplifications that the Java designers 
chose was to avoid operator overloading. Unfortunately, 
the lack of operator overloading precludes programmers 
from writing new arithmetic classes that are as convenient 
to use as the built-in arithmetic types. Without operator 
overloading, it will be difficult to convince scientific and 
engineering users of languages like Fortran 90, HPF, 
C++, and Ada to switch to Java. In effect, they must 
return to the levels of notational convenience that were 
available in Fortran 77, C and Pascal. 

While Java provides access to the IEEE floating point 
standard's special values of plus and minus infinity, plus 
and minus zero and not-a-number, it does not provide the 
ability to control the various states of the IEEE standard, 
such as the rounding mode or the use of subnormal 
values. Java does not generate any exceptions for floating 
point operations, and for integers the only exception is 
division (or remainder) by zero. In particular, overflow and 
underflow are not detected. These limitations do not help 
to convince programmers of numerically-oriented 
applications to switch to Java. 

6.3 It's Portable 

Java's portability comes at the price of another layer of 
abstraction (the JVM), which reduces performance. If the 
abstraction layer is implemented by a bytecode interpreter, 
then the cost is quite high over native code execution, 
both in terms of time and space. If JIT compilation of the 
bytecodes is used, then the time penalty can be reduced as 
long as the compilation time can be amortized over 
enough execution time for each run. Off-line translation of 
bytecodes into native code avoids the JIT compilation cost 
on each run, but bytecodes are then effectively a low-level 
intermediate representation of the program that prevents 
the translator from applying higher-level optimizations 
before generating code. The result is object code that is 
less optimized than a native compiler could produce from 
source code. 

Java's approach to portability thus results in a 
significant reduction in performance. This should be 
anticipated simply from the way in which Java attempts 
to homogenize the world of processor architectures. There 
is little point in using heterogeneous hardware if it will be 
programmed in a manner that ignores the special hardware 
features that were selected to improve performance. Java's 
bytecodes were designed in part to facilitate embedded 
processing such as appliance controllers, but not high- 
performance embedded processing such as DSP. 
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6.4 It's Object-Oriented 

Object orientation provides only the illusion of language 
extensibility. However, there is still a rigid distinction 
between the first-class constructs and types of the 
language and user-defined objects. First-class objects carry 
additional semantic properties that are used for key 
optimizations. The programmer has no way of providing 
similar semantic information when defining new objects. 
The programmer cannot even indicate that existing 
semantic properties associated with first-class types apply 
equally to a new type or operator. For example, in 
defining a new numeric type, the programmer has no way 
to indicate that the addition operator is associative. 

While object oriented programming can be used to 
define a triangular mesh data type that syntactically 
simplifies the coding of applications, the compiler has to 
optimize at a much lower level of abstraction and will 
miss opportunities for high-level optimizations. This is 
problematic for partitioning and mapping in 
heterogeneous systems, where knowing the organization 
and access patterns of larger structures is especially 
valuable. 

6.5 It's Garbage Collected 

The time-penalty of garbage collection is difficult to 
predict. Depending on the available system memory and 
on the data being processed, the frequency with which the 
garbage collector is invoked and the time that it takes can 
vary considerably. In many systems, long pauses for batch 
collection are unacceptable, but incremental garbage 
collection can be used to distribute the time so that the 
user does not notice delays but merely sees some 
variations in performance. 

In hard real-time embedded systems, however, the 
performance of the processor must be highly predictable to 
avoid missing deadlines. The alternative is to assume a 
worst-case execution time that is so great that much of a 
processor's performance goes unused because tasks are 
scheduled under the assumption that they will all suffer a 
maximum penalty for garbage collection. 

6.6 It's Threaded 

While threading provides at least one native model of 
parallelism in the language, it is not sufficient by itself 
for efficiently defining all other models of parallelism. 
Combining threads with object-oriented techniques and 
other features of the language could make it possible to 
syntactically express other models at least in a round 
about way. For example, SPMD parallelism could be 
crudely implemented with an array of threads, onto which 

data arrays are partitioned, and locks could be manually 
programmed to ensure synchronization at the end of each 
basic block. However, that is far less convenient than a 
FORALL or PARDO construct. 

The appearance of SIMD parallelism could be 
obtained with suitable whole-structure operators on 
structured classes. But the only actual means of 
implementation would be external library calls. Without 
operator overloading and semantic extensibility, however, 
there would be no opportunity for optimizing across calls. 
For example, an expression (written as method calls) that 
operates on a parallel array type could not have common 
subexpressions eliminated, nor could the registers of the 
parallel hardware be scheduled efficiently. 

In essence, Java provides one basic approach to 
parallelism, and does not facilitate the use of other 
models. It thus neglects the needs of people who need to 
solve heterogeneous problems. It has also been noted that 
the primitive nature of Java's threading facility is 
analogous to the combination of pointer arithmetic and 
explicit memory management in C in that it provides 
sufficient rope to hang the programmer [Lewis 1997]. 
Various user communities would be better served by a 
parallelism facility that is less prone to deadlock, livelock, 
and orphaned threads. 

6.7 It's Network Aware 

Java's network awareness is built on top of TCP/IP and 
HTML. Connections are established between Java 
programs using internet addresses and port numbers, and 
applets are referenced by internet addresses plus file names. 
While this greatly simplifies the network interface and 
makes it widely portable, the latency of the layered 
network protocol is significant. For a cluster of 
workstations, where the communication network is also 
built around this protocol, there is little choice but to 
accept the high latency. However, in purpose-built 
clusters or distributed-memory parallel processors, where 
communication is mainly between trusted peers, the 
latency is unnecessary. 

While this is partly an operating system issue, Java 
does not inherently provide a mechanism to distinguish 
between secure communication and trusted low-latency 
communication. Adding a library built on special OS calls 
would allow programmers to work around this limitation, 
but then their code would not be portable. 

There are no provisions in Java's model of network 
communication to support parallel operations such as 
broadcast and reduction. Again, these could be provided 
with manual workarounds, such as a native interface to 
MPI, but the bottom line is that Java was not designed for 
parallel processing network communication. 
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7. Making Gourmet Java 

The foregoing discussion highlights various features of 
Java that make it both attractive and unsuitable for 
heterogeneous programming. In this section we consider 
some possible changes that would make Java more 
suitable for heterogeneous programming. It should be 
noted that these are not all syntax changes. Some of the 
changes involve the compiler and the virtual machine. 

7.1 Syntactic Additions 

Operator overloading is a key syntactic addition that is 
needed to enable programmers to write new numeric 
classes that match the expressiveness of other languages. 
Syntactically this is a minor change to the language if it 
is restricted to overloading the existing operators, 
although it significantly affects parsing, conversions, and 
promotions. If generalized to enable arbitrary monadic and 
dyadic operator forms for method invocations, then it 
would be a more significant syntactic change. 

To support pseudomorphism, the syntax for the 
implements clause in a class declaration should be 
extended to support multiple implementations of the same 
interface by classes with the same name in a single 
package. The redundant classes must then be distinguished 
by a predicate. For example, we might write 

implements interface-list When Boolean-expression 

to indicate the conditions that determine when a particular 
class from the set of identical classes is selected as the 
appropriate implementation of an interface. 

The conditions could be resolved at compile time, 
load time, or run time, according to the information that 
they depend on, which implies that the compiler, loader, 
and JVM must all be extended to perform these tests in a 
heterogeneous environment. For example, a condition 
might call getProperties to determine the type of target 
onto which it is being loaded so that only the 
implementations appropriate to the target would be loaded 
onto it. If multiple implementations are loaded at run 
time, then when the first member of the interface is 
invoked, the run-time system must test their conditions to 
identify the one that will be used. Once an 
implementation has been selected, it is used for as long as 
the class instance exists. If the conditions for multiple 
implementations are satisfied then the run-time system 
chooses the implementation. If none of the conditions are 
satisfied, then an exception is thrown. 

If conditions change such that it would be desirable to 
switch to a different implementation (e.g., due to 
changing system load), then the class instance must be 

destroyed and a new instance created using the alternate 
implementation. It would be up to the programmer to 
decide how to convert the state of one implementation 
into another in such a transition. 

7.2 Semantic Extensibility 

A limited but sufficient mechanism for semantic 
extensibility could be achieved by enriching the set of 
attributes explicitly recognized by the Java compiler and 
virtual machine, and making them accessible at the source 
level. The existing attribute facility of the virtual machine 
is sufficient to tag any class, field, or method with 
additional information. For example, the ConstantValue 
attribute indicates to the JVM that a field is a constant. 

If the list of attributes is extended to explicitly 
include all of the currently implicit semantic properties 
used to trigger or enable optimizations, and these are made 
available to the programmer, then it becomes possible to 
extend the language with new first class types. For 
example, we might write the following form (which also 
assumes an extension for overloading arithmetic 
operators): 

attributes(associative,  commutative) 
static complex dyadic + 

(complex left, complex right) 

This code would define a new + operator for a 
complex type that would carry the built-in attributes 
necessary to enable high-level optimizations of 
expressions containing it. 

If the user specifies an attribute that does not exist in 
the system, a warning would be issued, but it would not 
result in a fatal error. The JVM is specified to ignore 
unrecognized attributes. This would allow 
implementations to carry attributes that are specific to 
certain JVMs but not others (e.g., a parallel JVM). In 
addition, because the attributes are carried through to the 
bytecode representation, it is possible for a bytecode to 
native code translator to employ some of its own high- 
level optimizations. For example, the translator could use 
the attributes to enable more aggressive register 
scheduling. 

One attribute that would facilitate the creation of 
irregular types would be a means of indicating the 
adjacency relationships between elements in a data 
structure. Attributes could also be used to carry 
information to guide partitioning and mapping of 
structures. 
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7.3 Compiling 

Compiling Java in a heterogeneous environment is likely 
to involve the initial bytecode generation, together with 
native code generation (either off-line or JIT) once the 
bytecodes are downloaded to a specific target. As 
mentioned in the previous section, a wider range of 
attributes must be carried in the class file containing the 
bytecodes to enable delayed optimization. It may, in fact, 
be necessary to carry a higher-level intermediate 
representation (IR) of the code in the class file to enable 
all of the desired optimizations. The IR might end up 
being comparable in sophistication to a program 
dependence graph augmented with source node-type 
information and links to the generated bytecode. In 
essence, this would enable the native code translator to 
start with a higher level view of the code and generate all 
new code for the particular target. Having such 
information available would especially facilitate target- 
specific partitioning of parallel operations. 

7.4 Garbage Collection 

Currently, Java supports the gc method to force garbage 
collection to occur. However, there is no way to ensure 
that collection does not occur during a time-critical section 
of code. The gc method should be extended to accept 
various parameters, such as gc(FALSE) to turn off 
collection until it is either explicitly enabled with 
gc(TRUE), or the current method exits. 

In addition, the user could be given more control over 
the collection process, such as indicating whether a more 
costly incremental collection should be run to minimize 
pauses or that a faster periodic sweep that results in 
noticeable pauses is acceptable. 

7.5 Other Mode'ls of Parallelism 

There are other extensions that would make it easier to 
explicitly write certain kinds of parallel code, such as 
FORALL or WHERE, but it can also be argued that 
parallelizing compiler technology can often identify these 
cases when normal loops are written to directly implement 
sequential versions of them. 

Directly supporting multiple models of parallelism in 
Java depends not so much on changes to the language as 
to the JVM, which currently recognizes only threads as 
being concurrent. Given operator overloading, 
pseudomorphism, and semantic extensibility, we can 
express nearly all forms of parallelism. For example, the 
features of a data parallel language like ZPL [Snyderl994] 
can be realized with object-oriented techniques, although 
not with the same syntactic simplicity. Consider that ZPL 

regions can be implemented as arrays with the appropriate 
attributes and region specifiers can be written as methods 
that manage a global context variable. The result will not 
be as pretty, but if it carries the appropriate attributes 
through to a parallel runtime environment, the resulting 
code should have similar efficiency. 

Of course, the ultimate in extensibility would be the 
capability to define new control structures. However, such 
an extension would involve the ability to pass expressions 
and code blocks to methods, where they could be executed 
with some level of intervention. When combined with 
support for pseudomorphism, however, the result would 
be the ability to directly express parallel operations whose 
implementation is determined by the available hardware; 
which is precisely what users of heterogeneous processing 
are seeking. 

8.   Conclusion 

Java offers a combination of opportunities and features 
that make it an attractive language for heterogeneous 
parallel processing. However, a deeper study reveals some 
serious shortcomings that will make it difficult to attract 
users from the major communities that need 
heterogeneity. In particular, it lacks key support for 
scientific and high-performance embedded processing. In 
addition, the way in which it homogenizes the world to 
achieve portability directly conflicts with the fundamental 
reason for employing heterogeneity. 

However, with some modest extensions to the 
language, and suitable restructuring of the compiler, 
loader, and run-time system (including native code 
generation from bytecodes and a higher level IR), Java 
could be made much more suitable for heterogeneous 
parallel processing. The major syntactic changes would be 
to enable operator overloading, extend the implements 
clause so that multiple classes with the same name can 
implement an interface in a manner that allows the system 
to choose between them, and make an enriched set of 
standard attributes accessible to the programmer. Support 
for user-defined control structures would be a significant 
change in syntax and semantics, but would allow 
expression of parallel operations with the syntactic 
directness of parallel languages such as Fortran90, HPF, 
and ZPL. 
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Abstract 
It is increasingly common for computer users to 

have access to several computers on a network, and 
hence to be able to execute many of their tasks on any 
of several computers. The choice of which comput- 
ers execute which tasks is commonly determined by 
users based on a knowledge of computer speeds for 
each task and the current load on each computer. A 
number of task scheduling systems have been devel- 
oped that balance the load of the computers on the net- 
work, but such systems tend to minimize the idle time 
of the computers rather than minimize the idle time 
of the users. This paper focuses on the benefits that 
can be achieved when the scheduling system considers 
both the computer availabilities and the performance of 
each task on each computer. The SmartNet resource 
scheduling system is described and compared to two 
different resource allocation strategies: load balancing 
and user directed assignment. Results are presented 
where the operation of hundreds of different networks 
of computers running thousands of different mixes of 
tasks are simulated in a batch environment. These 
results indicate that, for the computer environments 
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simulated, SmartNet outperforms both load balancing 
and user directed assignments, based on the maximum 
time users must wait for their tasks to finish. 

1     Introduction 
1.1     Overview 

The computational resources available to an indi- 
vidual user may range from a personal computer to 
workstations to a variety of high-performance comput- 
ers, all connected through combinations of local and 
wide area networks. In this distributed computing en- 
vironment, the jobs of a single user are often affected 
by the jobs of other users, computer unavailability, 
and network congestion. It is not unusual for a user's 
jobs to be significantly delayed because of other jobs 
saturating network routes or sharing computational 
resources. Although in some cases this may be un- 
avoidable, in many cases a user's jobs can be executed 
on alternate computers on the network. A resource 
manager with a global perspective of the network re- 
sources might be able to get the user's jobs completed 
in less time by executing these jobs on such alternate 
computers. 

SmartNet is a resource scheduling system for dis- 
tributed computing environments. It allows users to 
execute jobs on complex networks of different com- 
puters as if they were a single machine, or metacom- 
puter. A user need not be concerned with the activi- 
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ties of other users, nor even whether various machines 
in the metacomputer are temporarily unavailable. To 
allow users to continue with interfaces with which they 
are familiar, SmartNet can also function as a schedul- 
ing advisor to existing resource management tools [24]. 

SmartNet schedules and can manage the execution 
of each user's jobs in coordination with the other jobs 
in the metacomputer in a attempt to maximize the 
performance of the metacomputer for all users. From 
this global perspective, the emphasis is not on maxi- 
mizing the efficient use of the machines in the meta- 
computer, but rather on maximizing the efficiency of 
the users of the metacomputer. The SmartNet per- 
formance metrics are based on how well the users are 
served, rather than on how well each machine is used. 

Section 2 describes the current capabilities of the 
SmartNet system. This includes the ability to obey 
data dependencies between jobs, to account for the ef- 
fect of different inputs on job execution times, and to 
use a variety of scheduling algorithms. In Section 3, 
the performance of a metacomputer from a global per- 
spective is measured by the maximum amount of time 
any user must wait for jobs to finish. Using this met- 
ric and some basic assumptions regarding the use of a 
metacomputer (specified in Section 3), it is shown that 
for a network of heterogeneous machines, a scheduling 
system that considers both the machine availabilities 
and the affinity of jobs to machines significantly out- 
performs a scheduling system that attempts to balance 
the load across machines in the network, and also out- 
performs a system where users select the fastest ma- 
chine to execute each of their jobs. Section 4 describes 
the future direction of SmartNet development. 

1.2     Implementing Superconcurrency 
The term superconcurrency [14, 15, 36] has been 

used to describe* a technique for selecting the opti- 
mal suite of machines in a metacomputer to execute 
a given set of jobs [17]. To fully exploit the capabili- 
ties of a metacomputer, a single job must be decom- 
posed into tasks, such that each task has relatively ho- 
mogeneous computational requirements. These com- 
putational requirements are defined by the different 
machine architectures available in the metacomputer. 
This decomposition allows full exploitation of the fact 
that different tasks execute at different speeds on the 
different machines in the metacomputer. 

Job decomposition can occur at several levels. In 
many cases, large projects are decomposed by devel- 
opers into programs that can be executed separately 
by a computer operating system. Often each program 
is written to take advantage of the special computa- 
tional abilities of a given computer architecture. Such 

programs can share data by reading and writing files. 
In what follows, an executable program will be called 
a task, and a project consisting of one or more tasks 
with data dependencies will be called a job. This pa- 
per focuses on the benefits that can be achieved when 
the full heterogeneity among the tasks in the the jobs 
and among the machines in the metacomputer is con- 
sidered when scheduling the execution of the jobs on 
the metacomputer. 

For some tasks, a finer level of decomposition may 
be beneficial. In this case a task may be decomposed 
into subtasks, each with homogeneous computational 
requirements [33]. Considerable effort has been ap- 
plied to perform this decomposition automatically, but 
many open problems remain [34]. Several language 
extensions for parallel computation have been devel- 
oped that allow this decomposition to be done by pro- 
grammers. Systems that use such language features 
include AHS [8], HeNCE/PVM [2, 35], Legion [20], 
Mentat [19], and P4 [5]. These systems allow pro- 
grammers to decompose tasks into subtasks to fully 
utilize the heterogeneous processing capabilities of a 
metacomputer. Although this paper concentrates on 
scheduling tasks on a metacomputer, scheduling sub- 
tasks on a metacomputer involves many of the same 
issues. 
1.3     Task Scheduling on a Metacomputer 

with Multiple Users 
How tasks are assigned to the machines of a meta- 

computer is an important factor that affects the per- 
formance of the metacomputer. The assignment of 
a task to a machine on which it executes slowly can 
significantly reduce overall performance. Likewise, re- 
source contention must be considered when scheduling 
tasks on a metacomputer with multiple users. For ex- 
ample, an optimal assignment of tasks to idle machines 
can easily become suboptimal if one of the machines is 
suddenly loaded with a task from another user. There 
are several important issues that a scheduler for a net- 
work of heterogeneous machines with multiple users 
should consider. 

Heterogeneity: A number of systems have been de- 
veloped for managing the execution of tasks on 
a network of machines. Examples include Con- 
dor [4], OSF DCE [29], and PBS [22]. Such sys- 
tems schedule tasks in order to evenly balance the 
load on the machines in the metacomputer [27]. 
Many of these load balancing schemes are mod- 
ified in an attempt to account for differences in 
the capabilities between machines. One common 
method is to adjust the load on a machine based 
on its speed on a single task relative to the other 
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machines. However, this does not account for 
the different affinities between tasks and machines 
that occur as a result of heterogeneity [15]. 

Figure 1 shows a simple example where the sched- 
ule that minimizes the completion time of all the 
tasks of a given set of jobs (the schedule length 
[6]) distributes the load unevenly among three 
machines, actually leaving one of the machines 
in the metacomputer idle. Specifically, execut- 
ing any task on machine 2 will cause the schedule 
length to be at least 8 time units, whereas if ma- 
chine 2 is left idle a schedule length of 6 is pos- 
sible. This shows the importance of considering 
task and machine affinities in scheduling tasks on 
a metacomputer. 

The importance of considering heterogeneity is 
further demonstrated in table (a) of Figure 1 
where machine 1 is four times as fast as machine 2 
on every task, but the speed of machine 3 rela- 
tive to machine 1 varies depending on the task it 
is executing. This is an appropriate model if, for 
example, machine 3 is a vector machine and some 
of the tasks are not vectorizable. Tasks that are 
vectorizable would tend to execute more quickly 
on the vector machine. 

Figure 1 also shows that the optimal schedule 
does not assign task A to its best machine (ma- 
chine 3) but rather to its second best machine 
(machine 1). If the user of task A assigns this task 
to machine 3, its best machine, then the other 
tasks will not finish until at least time 8. This il- 
lustrates that simply allowing users to assign their 
tasks to the machines that execute them fastest 
may not provide all users with the best perfor- 
mance of the metacomputer. A scheduler that 
considers all the tasks of the metacomputer may 
improve its performance for most users. 

Task Execution Times: To exploit the heterogene- 
ity among the tasks in the jobs and among the 
machines in a metacomputer, it is beneficial to 
estimate the execution time of each task on each 
machine. Such estimates can usually be made 
empirically, although some deterministic models 
have been developed [1, 38]. Section 3 presents 
simulation results showing that variations in the 
estimate of task execution times has a secondary 
effect on scheduler performance compared to the 
appropriate consideration of heterogeneity. 

Of course, different input data can dramatically 
affect the execution times of many tasks, and this 

effect can vary depending on the machine execut- 
ing the task. It is assumed the effect of input 
data on the execution time of a task on a given 
machine is deterministic. For example, the ex- 
ecution time of a Monte Carlo simulation task 
on a single processor machine might tend to be 
linearly related to the number of iterations speci- 
fied in its input data. A scheduler can benefit by 
having access to both the characteristics of the 
input data that affect a task's execution time and 
an equation for how the task execution time can 
be estimated from these characteristics when ex- 
ecuted on a given machine. 

Network Usage: To fully exploit the capabilities of 
a metacomputer, it is not only beneficial to esti- 
mate the execution times of the tasks, but also to 
estimate the network traffic that occurs as tasks 
communicate. If the tasks of one user are heavily 
loading a network route between two machines, 
it may be beneficial to schedule other tasks on 
machines where a different network route can be 
used. 

Sections 2 and 4 describe SmartNet's current and fu- 
ture approaches, respectively, to address these issues. 
1.4     Relationships with Other Work 

The importance of scheduling for the efficient use of 
distributed systems is well known, e.g., [10]. However, 
much of this research has been directed at schedul- 
ing the tasks of a single job on a network of proces- 
sors, where there are no conflicting jobs or where the 
resource requirements of other jobs are unknown to 
the scheduler. In contrast, the SmartNet scheduler 
was designed to address multiple users competing for 
the resources of a metacomputer, and is most effec- 
tive when the resource usage requirements of the jobs 
of each user can be estimated. 

The importance of scheduling to achieve acceptable 
performance from a metacomputer with multiple users 
is also a major theme of the AppLeS [3] system. In this 
system, each task (called an application in AppLeS) 
would have its own AppLeS agent to select the meta- 
computer resources that will best meet that task's per- 
formance criteria. Because each agent schedules to 
maximize the performance of its associated task, the 
schedule that results would differ from the SmartNet 
schedule. As illustrated in Figure 1, SmartNet would 
attempt to minimize the longest execution time over 
all users. The emphasis in AppLeS is for each agent 
to optimize its own performance criteria rather than 
to cooperate with other agents to minimize a perfor- 
mance criteria shared by all the metacomputer users. 
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Figure 1: An example where neither load balancing nor user directed assignments are the best scheduling strategies 
for a metacomputer. Table (a) gives the execution times of each task of a set of jobs on each machine. A Gantt 
chart of the schedule that minimizes the schedule length is shown in (b). 

2     Current Implementation 
2.1 Overview 

The first version of SmartNet was operational in 
early 1994, and work has continued since then to in- 
crease its capabilities. The current version has proven 
to be useful in improving the performance of networks 
of heterogeneous machines, as will be shown in Sec- 
tion 3. Experience with this version has directed fu- 
ture efforts to enhance the system, and these will be 
described in Section 4. 

Because batch systems such as Condor [4], OSF 
DCE [29], and PBS [22] perform many of the opera- 
tions to manage the execution of scheduled tasks, this 
section will concentrate on the SmartNet scheduling 
capabilities not found in these systems. In fact, the 
SmartNet scheduling algorithms have been added to 
local versions of Condor [24] and Cray Research Inc.'s 
NQE. 

2.2 How a Metacomputer and Tasks are 
Modeled in SmartNet 

As described in Section 1.2, this paper will focus on 
scheduling executable tasks on a network of heteroge- 
neous machines. The current version of Smartnet uses 
a directed acyclic graph (DAG) to specify data 
dependencies among the tasks of a job, and all the 
tasks of a single job communicate this data through 
files on a file server shared by all the tasks of the job. 
Different jobs may have different file servers. Commu- 
nication among tasks can occur at the start or finish 
of a task. It is also assumed that tasks use a constant 
percentage of the processing and memory resources of 
the machine to which they are assigned, and that the 
executable program for each task is locally available 
to each machine which may execute the task. 

It is assumed that the execution time of each task- 

on each machine can be reasonably estimated. Task 
execution times are generally a function of a small 
number of input parameters, and better schedules re- 
sult if both the values of these parameters and the 
appropriate time complexity function is available at 
the time the task is scheduled. For example, it may 
be possible to estimate the execution time of a task 
that contains a doubly nested loop by computing: 

execution time = anm, 

where a is a constant that may be found empirically, 
and n and m are the bounds on the loops. The 
user could provide this execution time formula to the 
SmartNet database for this task on the given machine, 
and the values of n and m could be given by the user 
when the task is submitted to the scheduler. Smart- 
Net uses interpolation and extrapolation algorithms 
to extend rote learning of task execution times if ei- 
ther the parameters or the function are missing or only 
approximately correct. 

The current version of SmartNet can account for 
latency and bandwidth between remote sites of the 
metacomputer, and also between the machines and a 
file server. Task priorities and data dependencies can 
be enforced by the scheduler. A background load on 
each machine and each network route can be consid- 
ered when scheduling, however many complex network 
and processor contention issues are not considered in 
the current version. Although in many cases these net- 
work contention effects are negligible, there are prob- 
lem domains where these effects are significant. 
2.3     SmartNet Scheduling Algorithms 

As shown in Figure 1, neither load balancing nor 
user directed assignment of resources may be as ef- 
fective as a global scheduler for networks of heteroge- 
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neous machines. To most effectively schedule tasks on 
a metacompiler, the SmartNet scheduling heuristics 
all require estimates of the task execution times, and 
in some cases additional information about commu- 
nication, memory, and processor usage. Estimates of 
task execution times are obtained through a combi- 
nation of experiential information gathered automati- 
cally from trial runs, and, optionally, by time complex- 
ity equations (see Section 2.2) provided by the user. 

In general, optimal multiprocessor scheduling is 
NP-complete [18], and hence SmartNet uses a variety 
of scheduling algorithms to attempt to obtain near- 
optimal schedules for different problems. The algo- 
rithms described below use a deterministic execu- 
tion simulation [28] which performs a deterministic 
simulation of each task assuming the task execution 
times are equal to their estimated average values. A 
brief description of several of the SmartNet scheduling 
algorithms follows. 

Maxmin and Minmin Algorithms: 
If all the tasks to schedule are independent and 
compute intensive, then several of the algorithms 
described in [25] can be used. Specifically, al- 
gorithms D and E in [25] have been implemented 
and are called maxmin and minmin algorithms, 
respectively. Both have time complexities of 
ö(mn2), where m is the number of machines in 
the metacomputer and n is the number of tasks 
to schedule. 

Both the maxmin and minmin algorithms con- 
sider a hypothetical assignment of tasks to ma- 
chines, projecting when a machine will become 
idle based on the hypothetical assignment. Both 
algorithms determine, for each unassigned task, 
the earliest (minimum) time the task can be com- 
pleted given the projected idle times of each ma- 
chine and the estimated execution time of the task 
on each machine. The algorithms differ in their 
selection of which task to assign next given these 
minimum finish times. The maxmin algorithm 
selects the task that will take the maximum time 
to finish, whereas the minmin algorithm selects 
the task that could finish in the minimum time. 
Once selected, the task is assigned, the projected 
machine idle time is updated, and the task is re- 
moved from the set of unassigned tasks. The pro- 
cess is repeated until all tasks are assigned. 

A schedule for 1000 tasks on a metacomputer 
of 100 machines can be determined in less than 
a minute using a typical workstation. Although 
[25] shows pathological problems where the re- 

sulting schedule length may be up to a factor of m 
worse than optimal, tests with environments such 
as those described in Section 3 have indicated 
that the schedule lengths are generally within 
20% of optimal. Such tests were performed us- 
ing simulations of small metacomputers and few 
tasks in order to perform an exhaustive search for 
an optimal schedule to be used for comparisons. 
In addition, for large metacomputers with many 
tasks, comparisons were possible against sched- 
ule lengths that were provably shorter than the 
optimal value [31]. 

Dependency Algorithms: 
The following algorithms compute schedules 
when there are data dependencies between tasks. 
Although these tend to be the most frequently 
used SmartNet scheduling algorithms, a discus- 
sion of their effectiveness is outside the scope 
of this paper. A brief description is provided 
for completeness. For the experiments described 
in Section 3, there are no dependencies between 
tasks. 

A Generational Algorithm: 
This is a straightforward, cyclic method for 
mapping a set of dependent tasks onto avail- 
able machines, that provides comparatively 
good schedules in a relatively short time [16]. 
During each cycle, a limited part of the 
scheduling problem is considered. Each task 
that has not satisfied all of its precedence 
constraints is considered ineligible for exe- 
cution. All ineligible tasks are filtered out 
of the scheduling problem, forming a new 
smaller scheduling problem composed only 
of those tasks immediately eligible for exe- 
cution. An auxiliary scheduling algorithm 
is then used to determine a schedule for the 
non-precedence-constrained problem. Upon 
detection of a rescheduling event, a new 
precedence-constrained scheduling problem 
is formed and the process repeats. One pos- 
sible (indeed likely) rescheduling event is the 
completion of a previously scheduled task. 

This generational algorithm is closely re- 
lated to scheduling strategies such as Heavi- 
est Node First scheduling [31] and Mapping 
Heuristic scheduling [9]. However this algo- 
rithm differs from these schedulers in that 
(1) all eligible tasks are rescheduled at each 
rescheduling event, and (2) the algorithm is 
designed to run dynamically as new task sets 
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are constantly added and completed. 

A Clustering Algorithm: 
A clustering algorithm [10] is provided for 
scheduling tasks with data dependencies 
that only use a portion of the available pro- 
cessing resources. For example, some tasks 
may consistently use only 50% of the CPU 
due to file I/O operations. In such cases, 
it is best to schedule several such tasks on a 
single machine (provided the machine has an 
operating system capable of multiprogram- 
ming [7], such as UNIX). In this case, the 
scheduler ensures that the memory require- 
ments of the concurrent tasks are within the 
memory available on the machine, and that 
the concurrent tasks do not exceed the avail- 
able network bandwidth. 

Other Techniques: 
A variety of experimental scheduling algorithms 
are also included in the current release of Smart- 
Net. These include an algorithm using evolution- 
ary programming [12], and another using a com- 
bination of genetic algorithms and simulated an- 
nealing [23, 32]. 

The added complexity of considering data dependen- 
cies in both the generational and clustering algorithms 
make these methods several times slower than the 
maxmin and minmin algorithms. 

3    Simulation Results 
3.1     Overview 

It is difficult to precisely evaluate the performance 
of a scheduling algorithm for a metacomputer because 
this is dependent on many factors, such as the dis- 
tribution of task execution times and characteristics 
of the metacomputer hardware. Tests using a spe- 
cific metacomputer are not conclusive because the re- 
sults are only valid for that metacomputer. Simulation 
studies provide the ability to demonstrate the effec- 
tiveness of a scheduling algorithm over a broad range 
of conditions, although there is no generally accepted 
set of benchmarks. 

Although a large number of different metacomput- 
ers can be tested using simulation studies, there is 
an issue with the accuracy of the simulation. This 
section presents simulation studies where all tasks to 
be run are known initially (batch processing), tasks 
are independent, and network use is not significant, 
hence the need to accurately model specific features 
of a metacomputer for accurate simulation results are 
minimized.   In addition, in this case, an assumption 

of single-programming (i.e., each machine executes a 
single task at a time) is appropriate to maximize the 
performance of the metacomputer. 

Two simulation studies will be presented where 
a large number of randomly generated problems are 
scheduled. Section 3.2 describes simulations that were 
performed with results from the NAS parallel bench- 
marks [30] to model a metacomputer used in a typical 
production environment. Section 3.3 presents simu- 
lations that model a typical academic environment. 
Section 3.4 evaluates the effect of variations in the 
estimated task completion times for both the produc- 
tion and academic environments. As described in Sec- 
tion 2, there are SmartNet schedulers that consider 
communications between tasks, but the evaluation of 
these algorithms is outside the scope of this paper. 
The focus here is on demonstrating the benefits of con- 
sidering heterogeneity in task scheduling. Additional 
information about SmartNet can be found in [13]. 

3.2    Simulating a Typical Production En- 
vironment 

In the production environment modeled here, it 
is assumed that tasks tend to have long execution 
times. This would be typical of, say, batch jobs run 
overnight using a sizable metacomputer. To model 
this case, random sets of task execution times and 
machine speeds were generated using the NAS paral- 
lel benchmarks [30] as a template. 

Specifically, ten machines were arbitrarily selected 
from the NAS database and the execution times of 
the eight NAS benchmarks on these machines (using 
the class A data size) were used. Table 1 shows the 
selected machines, and Table 2 shows the correspond- 
ing job execution times on each machine given in [30]. 
Notice the significant heterogeneity both in machine 
speeds for the same job (across rows) and job exe- 
cution times for the same machine (across columns) 
shown in Table 2. No single machine is fastest on all 
the jobs, and the ratio of execution times on different 
machines is very much dependent on the job being 
executed. 

Each test problem modeled a network of 20 ma- 
chines with 100 tasks. The problems were randomly 
generated from Tables 1 and 2 as follows. Each of 
the 20 machines was selected by randomly picking 
one of the ten machines listed in Table 1 using a uni- 
form distribution with replacement. Similarly, each of 
the 100 tasks was selected to correspond to one of the 
eight NAS jobs shown in Table 2. A complete 100 x 20 
matrix of execution times was then created using the 
corresponding times in Table 2. 

For these tests the maxmin algorithm was used by 
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index Machine Processors 
1 HP/Convex Exemplar SPP2000 16 
2 CRAY C90 16 
3 CRAY T3E 256 
4 CRAY Y-MP 8 
5 DEC Alpha Server 8400 5/440 (437 MHz) 12 
6 Fujitsu VPP700 32 
7 IBM RS/6000 SP Thin-node2 (67 MHz) 128 
8 Intel Paragon MP (SunMos turbo) 512 
9 Kendell Square KSR2 64 

10 SGI Origin2000 (195 MHz) 32 

Table 1: The arbitrarily selected machines from the NAS database used to generate random test cases. 

Machine 
job 1 2 3 4 5 6 7 8 9 10 
EP 10.5 2.36 0.4 15.87 8.46 1.03 1.31 0.87 13.0 3.55 
MG 4.3 0.71 0.2 2.96 NA 0.25 0.63 1.36 5.7 2.12 
CG 2.7 0.34 0.4 2.38 NA 0.67 1.48 NA 6.1 2.04 
FT NA 0.80 0.2 4.19 NA 0.33 1.30 1.92 6.5 3.16 
IS 2.21 0.27 0.2 1.85 NA 0.98 0.61 2.29 3.9 1.21 
LU NA 10.17 4.2 49.5 67.97 10.06 15.9 NA 102.0 18.9 
SP 56.6 12.82 6.0 64.6 91.43 4.53 20.6 NA 131.0 30.5 
BT 55.3 20.3 6.2 114.0 103.5 4.93 20.8 113.0 130.0 30.0 

Table 2: The execution times of each NAS job on the selected machines. 
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SmartNet, and both a load balancing algorithm and 
a user directed assignment algorithm were used for 
comparisons. The load balancing algorithm sched- 
ules each task on the machine that becomes idle first. 
Thus, load balancing considers machine availability, 
but ignores heterogeneity issues. The user directed 
assignment algorithm schedules each task on the ma- 
chine that executes it fastest. Thus, user directed as- 
signment considers heterogeneity, but ignores machine 
availability issues. The SmartNet maxmin algorithm, 
described in Section 2.3, considers both heterogeneity 
and machine availability. 

Figure 2 shows the distribution of the ratio of the 
schedule length from the load balancing algorithm 
over the SmartNet schedule length for 1000 test prob- 
lems. On average, the SmartNet schedule length is 36 
times shorter than the load balance schedule length. 
Figure 3 shows the distribution of the ratio of the 
schedule length from the user directed assignment 
algorithm over the schedule length from SmartNet 
for 1000 test problems. On average, SmartNet per- 
forms two times better than the algorithm simulating 
user assignment. 

3.3     Simulating a Typical Academic Envi- 
ronment 

It has been shown [21] that the execution times of 
tasks are distributed exponentially in typical academic 
environments. This is quite different than the distri- 
bution of task execution times used in Section 3.2, 
which modeled a typical production environment us- 
ing the NAS benchmarks. A similar series of tests 
as described in Section 3.2 were performed where this 
exponential distribution was used rather than the dis- 
tribution based on the NAS benchmarks. Again, a 
batch submission of tasks is assumed. 

Specifically, task execution times were randomly se- 
lected using an exponential distribution with a mini- 
mum of 10 and a mean of 1000. The results of 1000 
samples from this distribution is shown in Figure 4. 
To provide some heterogeneity in the network, it was 
assumed that all machines had identical architectures 
but some were faster than others. Unlike the NAS 
case described in Section 3.2, the faster machines run 
all tasks faster than slower machines. The relative 
speeds of each of the 20 machines on the network were 
determined by randomly drawing from an exponential 
distribution with a minimum of 1 and a mean of 5. 

It was found that the minmin algorithm was su- 
perior to the maxmin algorithm for this environment, 
and hence SmartNet was run using the minmin algo- 
rithm to schedule the tasks. Figure 5 shows the dis- 
tribution of the ratio of the schedule length from the 

load balancing algorithm over the SmartNet schedule 
length for 1000 test problems. On average, the Smart- 
Net schedule length is 2.2 times shorter than the load 
balance schedule length for this environment. Figure 6 
shows the distribution of the ratio of the schedule 
length from the user directed assignment algorithm 
over the schedule length from SmartNet for 1000 test 
problems. On average, the SmartNet schedule length 
is 2.8 times shorter than the user assignment schedule 
length for this environment. 

3.4 The Effects of Variations in Actual 
Task Execution Times on SmartNet 
Scheduling 

The test results described in Sections 3.2 and 3.3 as- 
sume that the execution times of all the tasks on each 
machine were known prior to actually executing these 
tasks. The technique of load balancing is dynamic in 
that such information is not needed by the algorithm. 
When a task finally finishes, the machine on which 
it was running becomes idle and the next task in the 
queue can be started on that machine. In contrast, all 
the SmartNet schedulers assign all tasks to machines 
prior to the execution of any of these tasks. 

To determine the sensitivity of the SmartNet sched- 
ulers to inaccurate estimates of task execution times, 
the tests described above were repeated with random 
noise added to the estimated task execution times. 
Specifically, after the SmartNet scheduler had deter- 
mined the assignment of tasks to machines, the actual 
execution time of each task was determined by draw- 
ing a random time from a normal distribution with 
a mean of the estimated task execution time and a 
standard deviation a percent of the estimated task ex- 
ecution time. The load balancing algorithm used this 
actual task execution time rather than the estimated 
time used by the SmartNet scheduler. 

Figure 7 shows a gradual increase in the load bal- 
ance schedule length that results from adding random 
noise in this fashion to the task execution times. Al- 
though the average task execution time is not changed 
by adding this noise, the maximum execution time 
does increase. Because the load balancing scheduler 
occasionally assigns a task to the machine with one 
of these worst case times, and these bad assignments 
tend to dominate the schedule length, the schedule 
length can be seen in Figure 7 to increase as the noise 
level increases. 

Figures 8 and 9 compare this dynamic load bal- 
ancing schedule length with the SmartNet schedule 
length. Because the SmartNet schedulers consider het- 
erogeneity, they are seen to be no more sensitive than a 
dynamic load balancing scheduler to this type of noise 

191 



o v> o 
tN 

e 
CJ 
h O 
3 >/-> 
o i—" 

CJ 
o 
4- o 
o o 
UH 

1—1 

o 
X> 
E o 
Z ID 

o     J 

—I— 

20 40 60 

Schedule Length Ratio (Load Balance / SmartNet) 

Figure 2:  A comparison of the performance of a SmartNet scheduler to a load balancing scheduler using 1000 
random problems modeling a typical production environment. 
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Figure 3:   A comparison of the performance of a SmartNet scheduler to a scheduler simulating user directed 
assignment in a typical production environment. 
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in the estimated task execution times. In fact, Fig- 
ure 8 shows that the SmartNet scheduler is actually 
slightly better than the dynamic load balancing sched- 
uler as the noise level is increased in this production 
environment. 

4    The      Future     of     Metacomputer 
Scheduling 

Although an optimal solution to the task scheduling 
problem for a metacomputer is intractable, there are a 
number of polynomial time heuristic algorithms that 
provide solutions that are significantly better than 
merely balancing the load on all machines, or specify- 
ing a fixed assignment of tasks to machines. Section 3 
presented several demonstrations of such an improve- 
ment in the simple case of tasks with no data depen- 
dencies or communication delays. Experiments using 
SmartNet to schedule problems where data dependen- 
cies and communication delays are included show that 
the improvements in the schedule length similar to 
those shown in Sections 3.2 and 3.4 is achieved, due to 
the benefit of scheduling tasks on the machines that 
run them best. Additional studies using SmartNet 
for scheduling tasks with data dependencies are doc- 
umented in [26]. 

The SmartNet system has been operational since 
1994 and is in its eighth release. Each release has 
significantly improved its ability to accurately model 
real-world computing environments. The develop- 
ment team has a Software Engineering Institute (SEI) 
level 3 rating, indicating the maturity and stability of 
the software. The system has been used for a variety 
of DARPA sponsored projects, as well as at the NIH, 
and is being tested for use at NASA. Section 2 has 
briefly outlined the current capabilities of the system. 
Future releases are planned to better account for net- 
works and multiprogrammed machines. Specifically: 

Network Routing: 
A metacomputer can include numerous machines 
on several networks. Future versions of Smart- 
Net are planned to better account for communi- 
cation delays between tasks with data dependen- 
cies when tasks are scheduled on machines that 
require this communication to occur over several 
networks. Scheduling considering the contention 
effects of complex network routing has been a sec- 
ondary concern due to increasing network speeds 
and the compute intensive nature of the applica- 
tions that have been studied. 

Resource Contention: 
In many cases, it is appropriate to assume that a 

task controls a percentage of a resource through- 
out its entire execution time. Provided this por- 
tion of the resource is available, the task execution 
time is not affected by other tasks using other por- 
tions of the resource. This is the model used in 
the current SmartNet release. However it is also 
common that resources are shared among tasks, 
and such sharing causes the task execution times 
to be extended. This effect has been called inter- 
ference in [37] and slowdown in [11]. Future 
releases of SmartNet will consider the effects of 
resource sharing on the execution time of tasks. 

Optimization Criteria: 
As described in Section 1, the SmartNet sched- 
ulers all attempt to minimize the schedule length. 
In some cases, notably for highly interactive envi- 
ronments, minimizing the average task finish time 
may be a more appropriate optimization criteria. 
It is planned that future releases of SmartNet will 
include schedulers that minimize this average task 
finish time (called flow time in [6]). 

5     Conclusions 
It has been shown in several cases that scheduling 

tasks considering both the machine availabilities and 
the heterogeneity of the machines in a metacomputer 
can increase the metacomputer performance. The ob- 
jective of such scheduling is to minimize the total time 
users must wait for their tasks to finish. 

Many scheduling approaches have been based on 
load balancing, which minimizes the idle time of the 
machines on the network rather than the idle time of 
the users of the network. In networks of homogeneous 
machines, the idle time of users can be minimized by 
minimizing the idle time of the machines. This is not 
the case in networks of heterogeneous machines. The 
schedulers used in the SmartNet system account for 
the heterogeneity of both the network machines and 
the user tasks. There are many factors that may create 
heterogeneity in what would appear to be a network 
of homogeneous machines, such as memory size differ- 
ences between machines, network differences, or even 
differences in background loads. 

The benefits of a global, centralized scheduler such 
as SmartNet diminish as the number of machines in 
the metacomputer grows large, due both to the time 
delays of the scheduling process itself, and to the as- 
sociated increase in network traffic to and from the 
centralized scheduler. However, the simulation results 
described in Section 3 demonstrate conditions where 
a global scheduler like SmartNet is beneficial. For a 
metacomputer that covers the machines accessible to 
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estimated task execution times are not accurate. Each data point represents 100 random problems based on the 
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a typical department at a university, or a corporation, 
such global control is manageable. However, problems 
with scale clearly arise as the size of the metacom- 
puter grows large [20]. Other tests, not described in 
this paper, indicate that the performance benefits of a 
global scheduler are still possible with metacomputers 
of several hundred machines when the task execution 
times are sufficiently long. For larger metacomputers, 
a hierarchy of SmartNet schedulers is currently being 
investigated. 

Unlike many of the systems mentioned in Section 1, 
SmartNet does not constrain the user to a particular 
programming language, nor does it require the con- 
struction of special wrapper code for legacy programs. 
For best results, users need only provide a description 
of the time complexity of their tasks, and there are 
many tools that can help provide this information. By 
coordinating the execution time of user tasks; consid- 
ering both machine availability and heterogeneity, the 
performance of a metacomputer may be substantially 
improved. 
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