
AFIT/DS/ENS/98-1

F%-C

r=)

AN INTEGER PROGRAM DECOMPOSITION

APPROACH TO COMBAT PLANNING

DISSERTATION
John C. Van Hove

Captain, USAF

AFIT/DS/ENS/98-1

Approved for public release; distribution unlimited

The views expressed in this dissertation are those of the author and do not reflect the official policy

or position of the Department of Defense or the United States Government.

AFIT/DS/ENS/98-1

AN INTEGER PROGRAM DECOMPOSITION APPROACH TO COMBAT PLANNING

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy in Operations Research

John C. Van Hove, B.S. in Operations Research, M.S. in Operations Research

Captain, USAF

September, 1998

Approved for public release; distribution unlimited

AFIT/DS/ENS/98-1

AN INTEGER PROGRAM DECOMPOSITION APPROACH TO COMBAT PLANNING

John C. Van Hove, B.S. in Operations Research, M.S. in Operations Research

Captain, USAF

Approved:

Dr. Richard F. Deckro Date V

Committee Chairman

D r. G Lamont Date

2AQ q g
Lt. ol. James T. Moore Date
Committee Member

Lt.mol Jack A. Jacksf Date

Dr. William F. Bai Date
Dean's Represel

Robert A. Calico, Jr
Dean

Acknowledgements

The successful completion of this research would not have been possible without the support and

guidance of many outstanding individuals. I am deeply thankful to my advisor, Dr. Richard

F. Deckro, whose professional experience and technical expertise was invaluable throughout this

research. In addition, I owe many thanks to my committee members, Dr. Gary B. Lamont, Lt.

Col. James T. Moore, and Lt. Col. Jack A. Jackson, for their insightful advice and suggestions. I

must also thank Dr. William F. Bailey, my dean's representative, for working with short suspenses

as deadlines drew near, and First Lieutenant Kelly A. Herd for her much appreciated assistance

with an administrative dilemma. Finally, I thank my family, especially my wife, Tammy, for keeping

me sane during my five years at AFIT. This research is dedicated to them.

John C. Van Hove

111ii

Table of Contents

Page

Acknowledgements iii

List of Figures ix

List of Tables x

Abstract xii

I. Introduction 1

1.1 Background 1

1.2 Research Problem 4

1.3 Research Objectives 5

1.4 Assumptions 6

1.5 Approach 7

1.6 Summary 8

II. Literature Review 9

2.1 Project Management 9

2.1.1 The Project Scheduling Problem 9

2.1.2 The Resource Constrained Project Scheduling Problem. . .. 12

2.1.3 The Generalized Resource Constrained Project Scheduling Prob-

lem 13

2.1.4 Resource Constrained Crashing 15

2.1.5 Activity Crashing 16

2.2 Project Scheduling Algorithms 20

2.2.1 Mathematical Programming 21

2.2.2 Dynamic Programming 23

iv

Page

2.2.3 Implicit Enumeration 23

2.2.4 Branch and Bound 24

2.3 Evolutionary Algorithms 26

2.3.1 Evolutionary Algorithms for Project Scheduling 26

2.3.2 Combining Evolutionary Algorithms with Deterministic Search. 28

2.4 Structure in Project Scheduling Models. 29

2.4.1 Dantzig-Wolfe Decomposition 31

2.4.2 Sweeney-Murphy Decomposition 32

2.5 Parallel Processing. 33

2.5.1 Parallel Evolutionary Algorithms 34

2.5.2 Parallel Tree Search Algorithms 36

2.6 Testing Project Scheduling Algorithms 37

2.7 Summary 38

II. Methodology 39

3.1 Combat Planning Model Formulation. 39

3.1.1 Multi-modal Activities. 40

3.1.2 Doubly Constrained Resources. 42

3.1.3 Generalized Precedence Constraints. 45

3.1.4 Complete Model Formulation 48

3.2 Combat Planning Solution Methods 50

3.2.1 Subproblem Solution Methodology.. 50

3.2.2 Decomposition Methodology. 51

3.2.3 Heuristic Methodology. 52

3.2.4 Test and Evaluation. 53

3.3 Summary 54

v

Page

IV. Subproblem Solution Algorithm 55

4.1 Extending Sprecher 55

4.1.1 Convergence 56

4.1.2 Preprocessing 62

4.1.3 The Basic Algorithm 64

4.1.4 Acceleration Schemes 68

4.1.5 Testing 71

4.1.6 Complexity 81

4.2 Summary 84

V. A Decomposition Algorithm 86

5.1 Sweeney-Murphy Decomposition 86

5.1.1 The Sweeney-Murphy Algorithm 88

5.1.2 Sweeney-Murphy Convergence 90

5.2 Implementing Sweeney-Murphy Decomposition 92

5.2.1 Finding the k-Best Subproblem Solutions 92

5.2.2 Setting and Resetting the Value of ki 95

5.2.3 Finding Lagrangian Multipliers 99

5.2.4 Solving the Sweeney-Murphy Master Problem 103

5.3 Testing the Sweeney-Murphy Implementation 104

5.4 Summary 111

VI. An Evolutionary Algorithm Approach 112

6.1 The Evolutionary Algorithm 112

6.1.1 Basic Approach 113

6.1.2 Individuals 114

6.1.3 Operators 116

6.2 Testing the Evolutionary Algorithm 119

vi

Page

6.2.1 Configuring the Evolutionary Algorithm 119

6.2.2 Comparing the Evolutionary Algorithm to Sweeney-Murphy.. 124

6.3 A Hybrid Approach 125

6.4 Summary 129

VII. Case Study 130

7.1 Problem Generation 130

7.1.1 Scenario 130

7.1.2 Activities and Resources 133

7.1.3 Precedence 137

7.2 Sample Problem Results 142

7.3 Summary 147

VIII. Conclusions and Recommendations 148

8.1 Research 148

8.2 Contributions 151

8.3 Recommendations 152

8.4 Summary 155

Appendix A. Setting ki Values 156

Appendix B. Case Study Problem Data 159

B.1 Target Nomination List 159

B.2 Available Assets 173

B.3 Mission Component Durations 174

B.4 Precedence Networks 187

B.5 Lag Values for Generalized Precedence 190

B.6 The Optimal Solution 215

Bibliography 220

vii

Page

Vita 227

viii

List of Figures

Figure Page

1. Combat Planning Spectrum 2

2. Data Managed by APS 3

3. Generalized Precedence Constraint Sets 14

4. Block-angular Structure 29

5. The Components of Mission Duration 41

6. A Feasible Utilization of Sorties 44

7. A Scenario for Generalized Precedence 46

8. Determining the Minimum Lag Value 47

9. The Complete MMGRCPSP Model Formulation 49

10. MMGRCPSP Model Formulation 59

11. A Comparison of Two Alternate Optimal Solutions 76

12. Theoretical Complexity Comparison 83

13. A Flow Diagram of the Sweeney-Murphy Algorithm 88

14. Empirical Results for k-Best Complexity 97

15. A Flow Diagram of Hartmann's Evolutionary Algorithm 113

16. Average Deviation versus Total Individuals 122

17. Stopping Criteria Threshold Test Results 123

18. Standard Versus Hybrid Decomposition 129

19. A Map for the Case Study Scenario 131

20. Types of Precedence 139

21. Precedence Networks 141

22. Sortie Flow 145

23. Distribution of Solution Time 157

ix

List of Tables

Table Page

1. A Sample TNL Entry 40

2. MMGRCPSP Variables and Parameters 49

3. MMGRCPSP Model Definitions 59

4. Existence Theorem 61

5. Preprocessing Algorithm Definitions 63

6. Preprocessing Algorithm 63

7. Basic Extended Sprecher Algorithm 65

8. Optimality Theorem 68

9. Step 5 for the Accelerated Algorithm 70

10. Precedence Information for the Sample Problem 74

11. Execution Mode Information for the Sample Problem 74

12. K-Best Solution Set for the Sample Problem 75

13. Constant Parameters Used By Sprecher and Drexl 77

14. Variable Parameters Used By Sprecher and Drexl 77

15. Constant Parameters For the First Test Set 78

16. Variable Parameters For the First Test Set 78

17. Solution Times For the First Test Set 79

18. Solution Times For the Second Test Set 80

19. Complexity Parameters 81

20. A Block-Angular Integer Program 86

21. The Sweeney-Murphy Subproblems 87

22. The Sweeney-Murphy Master Problem 88

23. Sweeney-Murphy Algorithm 89

24. Sweeney-Murphy Optimality Theorem 90

25. K-Best Solutions Theorem 94

x

Table Page

26. How k Affects Sweeney-Murphy Complexity 98

27. Finding Lagrangian Multipliers 102

28. Master Problem Solution Algorithm 105

29. Fixed Parameters for the Sweeney-Murphy Test Problems 106

30. Sweeney-Murphy Test Results 107

31. Sweeney-Murphy Test Results Reorganized 109

32. More Sweeney-Murphy Test Results 110

33. Hartmann's Crossover Operator 117

34. Configuring Population Size and Generation Limit 120

35. Comparing the Performance of Decomposition and EA 124

36. Comparing Hybrid and Standard Decomposition Approaches 128

37. Sample TNL Entries 134

38. Problem Resource Information 135

39. Sample Duration Information 137

40. Sample Lag Values 142

41. Sample ATO Solution Data 144

42. Solution Options 146

xi

AFIT/DS/ENS/98-1

Abstract

Over the last two decades, our military forces have been working to incorporate the latest

computer technology into the combat planning process. The earliest efforts use word processors,

spreadsheets, and databases to organize planning data and to display high level summaries for

commanders. Later efforts perform feasibility checks as missions are planned to insure that the

necessary resources are available and that the assets requested are capable of meeting the assigned

scheduling requirements. Some of the most recent computer planning tools have included the ca-

pability to automatically plan individual missions or groups of missions. These automated efforts

have been heuristic in nature due to the time limitations inherent to real-time combat planning. The

methodologies in this research offer effective optimal alternatives to the limited heuristics available

in the current combat planning tools.

This research formulates and solves a new class of project scheduling problems with appli-

cations to both military and civilian planning. It is shown that the solution space for this class of

problems may be reduced in order to improve the effectiveness of both optimal and heuristic solu-

tion methodologies. In addition, a general method for extending implicit enumeration algorithms

to obtain k-best solution sets is developed. The reduced solution space and the general k-best so-

lutions methodology are exploited to develop several efficient solution approaches for this new class

of problems; an implicit enumeration algorithm, a decomposition approach, an evolutionary algo-

rithm, and a hybrid decomposition approach. The applicability and flexibility of the methodology

are demonstrated with a case study that focuses on the force level planning of combat missions for

an air campaign. While the focus of the case study is combat planning, the concepts illustrated are

applicable to the general field of program and project management.

xii

AN INTEGER PROGRAM DECOMPOSITION APPROACH TO COMBAT PLANNING

L Introduction

In the not too distant past, our military forces accomplished all aspects of combat planning with

little more than laminated maps, grease pencils, and paper tablets. The past success of our armed

forces in combat attests to the fact that such systems have worked. However, advanced technology

is beginning to dominate modern combat, which is increasingly characterized by joint operations in-

volving multiple services, and multiple nations, who must work closely together to employ advanced

technologies to their fullest potential. As today's battlefield grows more complex and technology

dependent, precision and coordination are increasingly important. In a world where conflict can

happen at the speed of light, the grease board approach is no longer adequate.

Over the last several decades, specialized software has been introduced into the planning

environment to aid our combat planners in performing their tasks more effectively. In certain cases,

these software tools have attempted to completely automate some combat planning tasks. For

the most part, this automation is accomplished with greedy heuristics, since the available optimal

seeking algorithms have not been operationally feasible in the time-critical, short horizon, combat

planning environment. As will be shown, the process of planning combat missions is very similar

to the process of scheduling activities in a project and can be modeled as a variant of the classic

project scheduling problem. An efficient algorithm for optimally solving this type of problem would

offer a feasible alternative to the greedy heuristics currently in use.

1.1 Background

Computers and specialized software tools have become a part of nearly all areas of combat

planning in today's military [3, 11, 38, 39, 40, 41, 61, 65, 73, 77]. Figure 1 illustrates the spectrum

of combat planning, showing the various levels of planning while also illustrating the joint and

combined responsibilities of the planning function. The levels are shown as the depth of planning

and include campaign level, force level, and unit level. The degree of 'jointness' is labeled as breadth

of planning and shows how a military operation may be planned for a single service branch, multiple

service branches, or even a multi-national force. The profile depicted in Figure 1 illustrates how

combat planning can range from a squadron commander planning the details of a strike against a

single enemy target to the commander of a multi-national force setting the objectives for a major

campaign.

(Breadth of Planning)

Single Multiple Multiple

Service Services Nations

e-1 Ca:ig:evlPlnin :

4. Force Level Planning
0

C: : Unit Level Planning

Figure 1 Combat Planning Spectrum

This research effort develops a general modeling approach that is applicable to the wide

range of problems on the combat planning spectrum illustrated in Figure 1. To demonstrate the

applicability of the approach, the research focuses on the force level planning of an air campaign

and the automated tools that are used in this area. The Advanced Planning System (APS) is the

most recent computer aided combat mission planning tool acquired for the Air Force's force level

combat planners [39, 61]. Inputs to APS include a prioritized, weaponeered Target Nomination List

(TNL), commander's guidance, weather reports, reconnaissance requests, and the various logistical

information that represents what resources are available for use in the next day's combat. The

single output from APS is an Air Tasking Order (ATO), a document generated at the theater level

that tasks assets to strike targets over a 24-hour period [411. The variety of input and output data

managed by APS is displayed by the diagram in Figure 2.

2

The concept of APS was to replace the laminated maps, grease pencils, and paper tablets in

the combat plans shop with digitized maps, user friendly worksheets, and a computer database [39].

APS enforces coordination between the various planners, performs feasibility checks on planned

missions, and makes a number of useful algorithms available to the combat planners. The ultimate

goal is to make the ATO generation process more effective so that more targeting alternatives may

be considered and the ATO generation cycle may be shortened.

Data Managed by the Advanced Planning System

Comnder

The
Combat Air
Clanmnb> Tasking

Order

Figure 2 Data Managed by APS

3

The APS feature that is most important to this research is the heuristic driven capability

to automatically plan combat missions. The current implementation allows the planner to select a

list of targets from the TNL and pass them on to the auto-planner where resources are matched

against targets to build mission lines for the ATO. The auto-planner uses a greedy heuristic that

considers the selected targets one at a time in the order that the planner sends them. For each

target, the auto-planner selects the best resources that are currently available, builds a mission with

that resource/target pairing, and schedules it at the first available time in the ATO day. If there

are no resources left to use against a target, a mission including that target is not planned.

The APS approach is only marginally useful in the planning process. Since the proposed

missions are not necessarily an optimal allocation of available resources, the combat planner often

has to make major adjustments to assure adequate missions are planned for all of the targets. This

type of sub-optimal heuristic was selected over more time-intensive optimal algorithms because

combat planners are often faced with a very short planning horizon when planning operations

during an ongoing event [39, 41, 61].

1.2 Research Problem

The research in this dissertation develops a methodology for performing optimal automatic

combat mission planning in the limited time available to combat planners. As previously stated, the

automatic mission planning problem can be thought of as a variant of the classic project scheduling

problem. However, planning for a scenario of realistic size quickly becomes time prohibitive for any

of the existing solvers for this type of problem [13, 36, 79, 92]. This effort develops a methodology

that takes advantage of the special underlying structure in both project management and combat

planning problems to improve the solution efficiency in terms of the time to find an optimal solution.

In addition, the methodology and algorithms developed for the combat planning problem have direct

application in the area of general program and project management.

4

1.3 Research Objectives

The methodology developed in this dissertation effort utilizes the Sweeney-Murphy method of

integer program decomposition [84] to exploit the special structure of the problem. This research

accomplishes the following specific objectives:

1. To illustrate the applicability of program and project management techniques to combat plan-

ning, the force level mission planing problem for an air campaign is examined and an appro-

priate mathematical programming model is developed in Chapter III.

(a) The model uses multi-modal activities to allow several different weaponeering options to

be considered for every target.

(b) The model uses doubly constrained resources to limit the total number of aircraft and

the total number of sorties available from each unit in a scenario.

(c) The model uses generalized precedence constraints to specify the timing required between

certain missions in the ATO.

2. To provide a subproblem solution algorithm for a decomposition approach, an efficient method

for solving small combat planning problem instances is identified in Chapter IV.

(a) The subproblem solution algorithm is extended from the fastest exact solution methods

available in the literature for resource constrained project scheduling.

(b) The subproblem solution algorithm is the first of its kind to support both multi-modal

activities and generalized precedence constraints.

(c) A general extension for implicit enumeration algorithms is developed to allow the sub-

problem solution algorithm to generate k-best solution sets.

3. To obtain optimal solutions to larger problem instances, a decomposition algorithm, based

on Sweeney-Murphy decomposition, is developed and fine tuned for optimal performance on

combat planning problems in Chapter V.

(a) The subproblem solution algorithm supports the Sweeney-Murphy requirement for k-best

solution sets from each subproblem.

(b) Effective strategies are developed for determining Lagrangian multipliers and values for

k in the subproblems.

(c) A specialized algorithm is developed that applies the implicit enumeration extension to

obtain k-best solution sets for the Sweeney-Murphy master problem.

4. To provide a solution alternative for problem instances too large for optimal solution method-

ologies, an evolutionary algorithm approach to the combat planning problem is developed in

Chapter VI.

(a) The evolutionary algorithm approach incorporates multi-modal activities, doubly con-

strained resources, generalized precedence constraints, and k-best solution sets.

(b) A hybrid decomposition approach is developed by combining the evolutionary algorithm

with the Sweeney-Murphy decomposition methodology.

5. To demonstrate the applicability of the model and solution methodologies to the combat plan-

ning problem, a case study is conducted in Chapter VII.

1.4 Assumptions

Development of the mathematical programming formulation and solution methodology for the

combat planning model required the following set of assumptions:

1. It is acceptable to plan the attack missions first and then plan the missions that are necessary

to provide support for those attack missions.

2. Problems are formulated from the data that serves as input to APS. The logistics considera-

tions (human and hardware resource availability) have already been considered.

3. Mission duration for a given resource/target pairing can be approximated by a known, deter-

ministic value.

4. Any resource/target pairing is acceptable if and only if there is an acceptable weaponeering

option in the TNL for that resource against that target.

5. The airfields can accommodate whatever schedule the optimal solution dictates.

6

1.5 Approach

To increase the upper bound on problem size for which it is reasonable to obtain optimal

solutions, the methodologies developed in this dissertation research use decomposition to exploit

block-angular problem structure. First, the combat planning problem is formulated as a mathe-

matical programming model with block-angular structure. The block-angular structure allows the

problem to be decomposed into a number of semi-independent subproblems (divide and conquer)

that have the same form as project scheduling problems with multi-modal activities and generalized

precedence constraints.

The literature is rich with applications of, and solution techniques for, the classic project

scheduling problem. The Critical Path Method (CPM) solves the classic project scheduling prob-

lem as a network flow problem, for which there are very efficient solution methods. Multi-modal

activities, however, change the formulation significantly enough that CPM techniques can no longer

be directly applied. Either further decomposition is employed to exploit the special network struc-

ture or a specialized implicit enumeration technique is used [79].

In either case, the solution technique must be modified to obtain k-best solution sets instead

of a single optimal solution. This is necessary since the Sweeney-Murphy algorithm optimizes

the main problem by exploring combinations of the k-best solutions to the subproblems. This

research develops a general extension to implicit enumeration algorithms that allows an algorithm

to provide the top k problem solutions instead of a single optimal solution. This implicit enumeration

extension is applied to both the subproblem and master problem solution algorithms. While the

k-best subproblem solutions are required by the decomposition method, the k-best master problem

solutions are obtained to provide the benefit of near optimal solution alternatives.

Aside from k-best solution techniques, there are two other aspects of the Sweeney-Murphy

algorithm that are very problem specific. The first is the method for choosing the value of k for

each subproblem. In the few published applications of the Sweeney-Murphy algorithm, these values

were selected arbitrarily, even though the computational time for the decomposition may be greatly

affected by the choice of k. The other problem specific aspect of the Sweeney-Murphy algorithm is

the selection of values for the Lagrangian multipliers that are used in the objective function of each

7

subproblem. These aspects allow the Sweeney-Murphy algorithm to be fine-tuned for the specific

combat planning problem formulation.

After the decomposition algorithm is implemented, a heuristic solution methodology using

evolutionary algorithms is developed. For larger problem instances, it is still too computationally

expensive to use the decomposition algorithm to find an optimal solution. The heuristic approach

may offer a "near" optimal solution in a fraction of the time. In addition, the heuristic approach

is combined with the exact algorithm to form a hybrid approach that is able to obtain an optimal

solution for larger problem instances in less time than the standard exact algorithm.

The solution methodologies developed in this dissertation research are tested on a wide range

of sample problems. The performance of these solution methodologies is compared with any methods

from the literature that accomplish similar objectives. Additionally, the performance of each method

is compared with the performance of all the other methods developed in this dissertation effort in

order to illustrate the relative strengths of all methods. The decomposition approach is tested against

the subproblem solution algorithm, the evolutionary algorithm is tested against the decomposition

approach, and the hybrid approach is tested against the standard decomposition approach. After

all solution approaches were developed and tested, the most effective exact algorithm was applied

in a case study in order to demonstrate the applicability of the approach for combat planning.

1.6 Summary

This chapter presented an overview of the focus of this dissertation. Chapter II presents a

comprehensive review of the literature pertaining to project management, project scheduling algo-

rithms, evolutionary algorithms, decomposition algorithms, and other topics related to the research

in this dissertation. Chapter III presents the formulation for the combat planning problem and

outlines the solution methodologies that are developed to solve this problem. Chapters IV, V, and

VI describe the subproblem solution algorithm, the decomposition algorithm, and the evolutionary

algorithm, respectively. In Chapter VII, a case study is performed to demonstrate the applicabil-

ity of the approach to large combat planning problems. Chapter VIII provides a summary of the

research, its significant contributions, and recommendations for future work.

8

II. Literature Review

The overall thrust of this research is to 1) develop a mathematical programming formulation to model

force level combat mission planning and 2) develop a solution methodology to effectively solve large

problems of this class. A secondary goal of this research is to utilize the methodology to solve

the corresponding class of program and project management scheduling problems. To these ends,

several types of project scheduling models and solution methods from the literature are reviewed.

First, project scheduling algorithms are considered. Evolutionary algorithms for project scheduling

are then covered. Finally, the possibility of using evolutionary algorithms and deterministic search

in a combined approach is examined.

After discussing the various project scheduling models and solution techniques, several ap-

proaches for exploiting structure in both the actual problem and the solution methodology are

explored. The model formulation possesses some network structure, as well as some elements of

classic block-angular structure. For these reasons, several techniques that decompose the main

problem into semi-independent subproblems are examined. Some parallel processing techniques are

then presented that show promise in taking advantage of structure in the solution methodology.

2.1 Project Management

For the purpose of this research, a project is defined as a finite set of activities that must be

accomplished according to certain precedence requirements between activity pairs [921. Depending

on the specific project, certain assumptions can be made concerning activity duration, resource

consumption, and resource availability. Project management deals with the planning and scheduling

of large projects or, in the context of this effort, air tasking orders. The objective of project

scheduling problems is normally to minimize either the overall project cost or completion time.

2.1.1 The Project Scheduling Problem. The simplest project scheduling problem (PSP)

considers only activity duration and precedence information, assuming adequate resources for any

schedule, and generally has an objective of minimizing total project completion time. Model (KM)

below is Ahuja's formulation of Kelley's original model of the classic project scheduling problem.

[1, 45].

9

(KM) Minimize xn - x, (1)

Subject to xj - xi >_ ri V (i,j) E P (2)

xi unrestricted V i E A (3)

In this formulation, the set A is a set of all n activities in the project while P is the set of all

(i, j) activity pairs where activity i must be completed before activity j can begin. The parameter

7i represents the duration of activity i. The decision variable xi represents the earliest start time of

activity i. The objective function, given by Equation (1), is formulated as the difference between

the earliest start times of the first and last activities, the project makespan. This assumes that

there is only one activity with no predecessors (activity 1) and only one activity with no successors

(activity n). If this is not true, dummy source and sink activities may be added to the model to

satisfy the assumption. The precedence constraints, given by Equation (2), restrict activity start

times to insure no activity may start before its predecessors are completed.

This model can also be formulated as a longest path network flow problem and specialized

Critical Path Method (CPM) techniques may be used to find the minimum project completion time

more efficiently than standard linear program (LP) solvers [1]. For this formulation, it is convenient

to develop a network representation of the project scheduling problem. In this case, an activity

on the node representation has been used. In an activity on node representation, each activity is

represented by a node in the network and an arc is directed between nodes i and j if and only if

job i must be completed before job j can begin. There is a parameter ri, the duration of activity i,

associated with every node in the network.

The network representation must have only one source node and one sink node. If there is only

one activity with no predecessors, then its node is the network's source node. Otherwise, a dummy

source node may be added and zero-length arcs are directed from the dummy to each activity node

without a predecessor. Likewise, if there is a single activity with no successors, then its node is the

network's sink node. If not, a dummy sink node may be added and a zero-length arc is directed

from each node without a successor to the dummy sink node. This network representation of the

10

project scheduling problem is a weighted digraph with one source node and one sink node, where

all component arcs are part of at least one source to sink path.

This structure can be used to find the shortest project completion time by applying a network

flow technique to determine the length of the longest path. Each path in the network represents a set

of activities that must be accomplished sequentially to satisfy precedence requirements. To allow

for all precedence relations in a network path to be satisfied, the length of a path is equal to the

sum of the durations of every activity in that path. The project completion time can be no smaller

than the length of any network path; therefore, the length of the longest network path defines the

shortest possible project completion time. The longest network path (or paths) is referred to as a

critical path(s). Model (NF) below is Ahuja's LP formulation of the longest path network flow

problem [1].

(NF) Maximize E riyij (4)

J -1 ifj=l

Subject to Y ij - Yjk = 0 Vj E A- {1,n} (5)
i V (i,j)EP k V (j,k)EP 1 ifj=n

yij> 0 V(i,j)EP (6)

The sets and parameters are the same as those used in the first model formulation, but the

variables are different. Each yij decision variable represents the quantity of flow along the arc

between activity node i and activity node j. This model flows one unit of flow from source to sink

in the network representation of the project scheduling problem. The objective function, given by

Equation (4), moves this one unit of flow across the longest source to sink path by maximizing the

sum of the weights of the component arcs of this path. In effect, finding the string of sequential

activities that has the longest duration, the critical path. The constraints in Equation (5) maintain

conservation of flow while those in Equation (6) restrict flow to be strictly non-negative.

The optimal objective function value of each model is equal to the shortest possible completion

time. In fact, each model can be shown to be the dual of the other [44]. Since model (NF) is a pure

network flow model, its constraint matrix is totally unimodular and thus so is the constraint matrix

11

of model (KM), its dual. With the totally unimodular constraint matrices, the solution obtained by

a standard LP solver is integer as long as the right-hand-side (RHS) values in the model are integer

[44]. This can be a very useful property if the start times of activities are restricted (or scaled) to

integer values in a given project scheduling problem.

2.1.2 The Resource Constrained Project Scheduling Problem. The classic project schedul-

ing model does not account for limited project resources. Therefore, a solution that is optimal for the

classic model may be infeasible to a model that considers available project resources. The Resource

Constrained Project Scheduling Problem (RCPSP) model formulation results from the expansion of

the classic model formulation to handle limited resources. The formulation of the RCPSP presented

here is adapted from Pritsker, Watters, and Wolfe [74]. Of the various RCPSP formulations in the

literature, this one requires the fewest binary variables. This formulation is stated with many of the

same parameters as the previous models, but it requires quite a few additional variable types which

are defined below.

Constants:

A the set of all activities

K the set of all resources

P the set of all activity precedence pairs

g the project deadline

Tr the duration of activity i

ei the earliest completion time for activity i

li the latest completion time for activity i

rik the amount of resource k required by activity i

Rik the amount of resource k available in period j

Variables:

xit = 1 if activity i finishes in period t; 0 otherwise

12

Minimize tXnt - 3 txlt (7)
t=en t=el

In li

Subject to L txnt - txit > T,- V(i,n) E P (8)
t~en t~ei

I+r'i-1

Z rikxit R Rik VkEKandj=l,...,g (9)
iEA t=j

Exit = 1 ViEA (10)
t=ei

Xit E 10,1} V i EAand t =l,...,g (11)

The most profound difference between this RCPSP formulation and the classic project schedul-

ing problem formulation previously presented lies in the decision variables. In the RCPSP formula-

tion, it is necessary to have a series of binary decision variables for each activity to account for per

period resource consumption. This is a significant increase over the number of decision variables in

the classic project scheduling model, which only required a single continuous decision variable for

each activity. In addition, the speed of LP solvers is sacrificed by the need to use binary variables

to accurately model this situation.

The objective function, given by Equation (7), minimizes project completion time, but its

statement is more complex than that of the PSP. Similarly, the precedence constraints stated in

Equation (8) are a more complex statement of the PSP precedence constraints. The constraints

given in Equations (9) and (10) do not appear in the PSP. The constraints expressed in Equation

(9) maintain resource consumption within limits for each resource type available in each period

while the constraints in Equation (10) simply state that each activity can only be completed in one

of the possible time periods.

2.1.3 The Generalized Resource Constrained Project Scheduling Problem. In the formu-

lation just given for the RCPSP, activity timing requirements are enforced by Equation (8). These

constraints specify that activity i must be completed before activity j can begin for all activity

precedence pairs (i,j). Not all project scheduling problems have activity precedence requirements

that conform to this standard. To deal with this, the Generalized Resource Constrained Project

13

Scheduling Problem (GRCPSP) uses four different constraint formulations to model all possible

precedence relations. The four sets of activity precedence relations are defined below and illus-

trated in Figure 3.

H1 start-start activity pair relations with a lag of SSij

H2 start-finish activity pair relations with a lag of SFij

H 3 finish-start activity pair relations with a lag of FS~j

H 4 finish-finish activity pair relations with a lag of FFij

H1 •ssjý H2 -SF ii

--------------- ---------- ~------------------

H3 •FSij• H4 ýFFi

Figure 3 Generalized Precedence Constraint Sets

Figure 3 illustrates the various types of activity precedence conditions in a manner similar to

the traditional Gantt chart used in scheduling theory. A Gantt chart represents activities as blocks

of time with lengths corresponding to the duration of the activity. These blocks are arranged on a

graph where the horizontal axis represents time and the vertical axis represents multiple machines

or some other mechanism for processing activities in parallel. The four sets of activity precedence

conditions are depicted similarly in Figure 3. For example, the simple precedence arrangement used

by all of the models presented thus far could be expressed by a type H1 constraint with SSj, = Ti.

In the H1 portion of the figure, there are blocks representing activities i and j and an illustration

of the constraint that enforces a minimum time of SSij between the start of activity i and the start

of activity j.

14

The other three types of precedence conditions are enforced similarly. The difference is in

which activity endpoints are used. A minimum amount of lag time is enforced between the start of

the predecessor and the completion of the successor for type H2 precedence, between the completion

of the predecessor and the start of the successor for type H3 precedence, and between the completion

of the predecessor and the completion of the successor for type H4 precedence. A GRCPSP model

adapted from [13] applies these four types of generalized precedence relations as follows.

Minimize yn - Yi (12)

1i
Subject to >Ztxit = yi ViEA (13)

t=e?

yj - Y SSij +T7-j - ri V(i,j) E H1 (14)

Yj - Yi > SFij - ri V(i,j) E H2 (15)

Yj - Yi FSij + ri V(i,j) E H3 (16)

yj - yi >FFi V(i,j) EH 4 (17)
j+ri* --1

Z ~ rikXit < Rjk VkEKandj=l,...,g (18)
iEA t=j

li

xit 1 Vi c A (19)
t=ei

xit e {0,1} ViEAandt=1,...,g (20)

yi > 0 ViEA (21)

The difference between this formulation and the RCPSP formulation given previously is the

ability to express a wider variety of precedence requirements which requires additional variables

and constraints. The constraints in Equation (13) define continuous decision variables in terms of

the original, binary decision variables. These variables, yi, represent the completion time of activity

i and serve to simplify the statement of the precedence constraints. Every possible requirement

for timing among activities in a project scheduling problem is covered by the set of precedence

constraints given by Equations (14), (15), (16), and (17).

2.1.4 Resource Constrained Crashing. In many cases, the overall project completion time

in a RCPSP is dictated by resource availability and not by the duration of the critical path. For

15

this reason, it may be cost effective in a project to purchase additional resources in order to shorten

the project completion time. This concept is referred to as resource constrained crashing. The

resource constrained crashing formulation given below is an extension of the Pritsker, Watters, and

Wolfe RCPSP model [74] originally proposed by Deckro and Hebert [19].

g

Minimize 1c:jkwjk (22)
kEK j=1

In 1

Subject to L txnt - E tx..t Ž_ 7n V (m, n) E P (23)
t=en t=em

Zrikxi,-wjk V k EkK and j = 1,...,g (24)
iEA t=j

0 <_ Wjk < Pijk VkEKandj=l,...,g (25)

Lxit = 1 ViE A (26)
t=ei

xit E {0,1} ViEAandt=1,...,g (27)

This model makes the assumption that if the project cannot be completed by the deadline

with the current resource availability, more resources may be made available in certain periods in

order to meet the deadline. To model the potential for additional resources, a new set of variables

is added to the original RCPSP model. The new variables, wjk represent the quantity of additional

resource k made available during period j. The additional quantities of resources that can be made

available are restricted according to Equation (25).

The possibility of additional resources affects both the objective function and the resource

constraints of the original RCPSP model formulation. The objective of the original model was to

minimize the overall project completion time; now the goal, given in Equation (22), is to meet

the project deadline at minimal additional resource cost. Other objectives are possible. The new

resource constraints are given in Equation (24) and reflect the possible additional resources available

every period.

2.1.5 Activity Crashing. Resource constrained crashing provides a mechanism for short-

ening overall project completion time by increasing the availability of certain critical resources in

16

key periods to compress as much of the slack time out of a schedule as possible. Activity crashing

provides a similar means of shortening project completion time, but tightens the schedule by cutting

activity duration time instead of slack time between activities. This is accomplished by assigning

an explicit or implicit cost function to activity duration (an activity can be completed more rapidly,

but it may require more resources). The objective of models that use this type of crashing is typ-

ically either to meet a specific deadline at a minimal crashing cost or to optimize a cost function

that balances the positive value of completing a project early against the crashing costs incurred to

make an early completion time possible.

The activity crashing models presented here assume that if the project deadline cannot be

met, additional resources can be applied to shorten the project completion time. The goal here,

just as in the resource crashing models, is to meet the project deadline at a minimal crashing cost.

This type of crashing was originally presented by Kelley [45] who adapted CPM techniques to allow

for shortening project completion time in this manner. The first activity crashing model presented

here is adapted from a Foldes and Soumis [27] model that uses a very generic statement of crashing

costs. This model is a simple extension of the classic project scheduling problem formulation (KM)

given previously in Section 2.1.1.

Minimize E ci(ri) (28)
lEA

Subject to xj - xi - Žri > 0 V(i,j)EP (29)

xn -x1 _ g (30)

ai 7- r: bi ViEA (31)

xi unrestricted V i E A (32)

In this formulation, the activity durations, Ti, have changed from parameters to variables

reflecting the possibility of crashing activity duration. The amount of crashing for any activity

is bounded by Equation (31), the durations are moved to the left-hand-side of the precedence

constraints in Equation (29) since they are no longer constant, and the constraint in Equation

(30) is added to reflect the deadline for project completion. The objective of the model, to meet

the deadline at a minimum crashing cost, is expressed in Equation (28) in very general terms. The

17

function ci(ri) is used to represent the cost of completing activity i with a duration of ri. In general,

it is expected that ci(ri) should increase as ri decreases, but the exact form of the cost function is

left to the discretion of the modeler.

Wiley, Deckro, and Jackson [94] suggest a more specific cost function. This model includes

both crashing and extending of activities and uses linear cost functions for both.

Minimize j Kgiyi - E Eizi (33)
iEA iEA

Subject to xj - xi + yi - zi -i V (i,j) E P (34)

xn -x 1 g (35)

yi •_ Yi V i c A (36)

zi _ Zi V i E A (37)

Yi, Zi 0 ViEA (38)

xi unrestricted V i E A (39)

In this formulation, Ki is the cost of reducing the duration of activity i by one time period, while

Ei is the benefit of extending its duration by one time period. Linear costs are assumed to preserve

the LP form of the model. The activity durations, ri, are once again constants, but the variability

is now included using the crashing and extending variables yi and zi. These variables affect the

formulation of the precedence constraints in Equation (34) and the objective function in Equation

(33). As in the previous model, the duration of each activity is bounded. This is accomplished with

the upper bound constraints given by Equations (36) and (37) where Yi represents the maximum

amount that the duration of activity i may be reduced through crashing and Zi represents the

maximum amount that the duration of activity i may be increased through extending.

The assumption of linear cost functions, however convenient, may not be totally realistic in

some cases. If non-linear cost functions must be used, the model formulation changes from a LP

to a non-linear program (NLP) and solution complexity increases. Non-linear cost functions can

be approximated with piecewise linear functions, but for the purposes of this study, continuous

non-linear cost functions are estimated by a set of discrete points. This is convenient since it is

often the case that resources are only available in discrete units (workers or machines for example)

18

and discrete resources dictate a discrete cost function. This is the concept behind the Multi-Modal

Resource Constrained Project Scheduling Problem (MMRCPSP), the last model presented in this

section.

In the MMRCPSP model, activities can be completed in one of a number of possible execution

modes. The resource consumption and activity duration vary by mode. The multi-modal model

presented below is based on a model expressed by Boctor [7] and closely resembles the RCPSP

model formulation examined previously.

A the set of all activities

K the set of all resources

P the set of all activity precedence pairs

Mi the set of all execution modes for activity i

rim the duration of activity i in mode m

ei the earliest completion time for activity i

1i the latest completion time for activity i

rimk the amount of resource k for activity i in mode m

Rik the amount of resource k available in period j

Ximt = 1 if activity i finishes in period t using mode m

In 11

Minimize L tXnm - L tXlmt (40)
mEMn t=en mEMi t=el

Ii li

Subject to L (t - Tjm)Xjmt - L - tXimt _ 0 V (i,j) E P (41)
mEM, t=ej mEMi t=ei

z rtkXimt _ Rjk V (j, k) (42)
iEA mEMi t=j

1i

L Zxmt= 1 ViEA (43)
mEMi t=ei

ximt E {0,1} V(i,m,t) (44)

The addition of multiple activity execution modes to the general RCPSP model forces a change

in notation. The binary decision variables, Ximt, take a value of one if and only if activity i is to

19

be executed in mode m and completed in period t. Unlike the other crashing models presented,

the crashing cost is not explicitly accounted for in the objective function. The objective function

in Equation (40) has reverted back to modeling the original goal of minimizing overall project

completion time. The cost is implied by the trade-off of scarce resources between the project's

activities (resources are applied where they make the largest impact on project completion time).

2.2 Project Scheduling Algorithms

The classic project scheduling problem presented in Section 2.1.1 has a dual that is a longest

path problem which, as a pure network flow problem, can be solved with algorithms that are more

efficient than a standard simplex approach [44]. One such efficient algorithm is the classic CPM

approach, which is thoroughly covered by Wiest and Levy [92]. In the CPM approach, the classic

project scheduling problem is solved by way of a labeling algorithm that makes both a forward and

backward pass through the activities.

On the forward pass, the nodes are considered in order of precedence (a node cannot be

considered until all of its predecessors have been considered) and an earliest start time is assigned

as the maximum of the earliest finish times of its predecessors. If an activity has no predecessors,

its earliest start time is set to the project start time, usually zero. The earliest finish time for an

activity is calculated as the sum of its earliest start time and its duration. After the forward pass,

the project completion time is available. The project completion time is equal to the maximum

of the earliest finish times of all project activities and some specified horizon limit (the maximum

planning period).

The backward pass of the CPM algorithm is used to provide windows on the possible start

times of all activities if the project completion time found in the forward pass is to be met. On

the backward pass, the activities are considered in reverse order of precedence and latest start and

finish times are assigned to all activities. The latest finish time is found as the minimum of the

latest start times of an activities successors. If the activity has no successors, its latest finish time is

set to the project completion time. The latest start time for an activity is calculated by subtracting

the activity duration from its latest finish time.

20

In these two passes, the labeling algorithm computes the earliest project completion time and

assigns windows for the feasible start and finish times for each activity in the project. Wiest and

Levy [92] give the mathematical programming formulation of the classic project scheduling problem

and point out that the linear programming approach is less efficient but offers the advantages of

duality and sensitivity analysis.

2.2.1 Mathematical Programming. The mathematical program for the classic project

scheduling problem is a pure network flow model. Large problems of this kind can be solved with

a standard LP solver. With the RCPSP, however, the model is a complex integer program where

even relatively small projects have very large integer programming formulations. Wiest and Levy

[92:page 131] give the following example of the daunting size of a RCPSP formulation that does

not even include any additional variables or constraints for crashing activities or resources. This

example uses a model developed by Bowman [8], which is perhaps the worst case when sheer model

size is considered. Others have developed formulations that reduce the number of variables and

constraints, but the resulting models are still intimidating for problems of realistic size.

For example, a project with 50 jobs having 100 precedence relationships and requiring
four different resources over a time span of 30 days has 1,500 variables and over 6,500
constraints (not counting slack variables).

Although the sheer size of integer programming formulations of RCPSP is far from encourag-

ing, the literature is rich with a wide variety of formulations for the many variants of this problem.

The RCPSP model formulation presented in Section 2.1.2 was based on the work of Pritsker, Wat-

ters, and Wolfe [74] and has been extended by Talbot [87]. In this formulation, for every activity

there is a binary decision variable for every period in which it could feasibly be completed. In

Section 2.1.4 an extension of this formulation by Deckro and Hebert [19] was presented that adds

resource crashing to the model. This extension allows additional resources to be obtained at a cost

in order to improve the project completion time.

Deckro and Hebert also extended a RCPSP model formulation from Bowman [8]. In Bowman's

formulation, each activity has one binary decision variable for every time period from the earliest

possible activity start time to the latest possible activity completion time. Inside of this window,

a string of variables take on values of one to represent the time when the activity is being worked

21

on in the proposed schedule. Constraints are used to insure that all of these unitary variables are

sequential to prohibit activity splitting. One strength of this model is that these constraints may be

left out if activity splitting is allowed. Deckro and Hebert [19] add a crashing variable to this model

formulation for each activity that allows activity duration to be reduced at a linear cost within

bounds similar to the Wiley, Deckro, and Jackson [94] model presented in Section 2.1.5.

In Herroelen's review of integer programming approaches to the RCPSP [36] he describes a

binary integer programming model formulation originally proposed by Riester and Schwinn [75]

and then simplified by Franke [28]. This model uses two different sets of binary decision variables;

one set to determine the schedule of the activities and another to determine the completion time of

the project. Franke also presents two alternative formulations that do not require the division of

the planning time-frame into fixed periods. In these formulations, the binary variables are used to

denote whether or not one activity must be completed before some other may begin.

The binary integer programming formulations of the RCPSP given by Bowman [8], Talbot [87],

and Pritsker, Watters, and Wolfe [74] have more recently been extended by Boctor [7] and Sprecher

[79] to handle activities with multiple execution modes. Boctor's formulation is the MMRCPSP

model formulation presented in Section 2.1.5 and is almost identical to the model Sprecher uses.

These model formulations use a set of binary decision variables for each activity, one variable for

every feasible activity/mode/schedule combination. In a feasible solution, exactly one variable from

the set of variables for a given activity has a value of one. All other variables in the set have a

value of zero. The single nonzero variable in the set defines the schedule and execution mode of the

activity in question. The multiple activity execution modes allow a sort of activity crashing since

the shorter modes require more project resources.

On page 21 a quote from Wiest and Levy [92] was given to illustrate the large size of the

integer programming formulation of even a relatively small RCPSP. The example contained no

additional variables or constraints for activity crashing, resource crashing, or multiple activity ex-

ecution modes. For this reason, every RCPSP model presented in this section has an associated

integer programming formulation at least as large as, and in most cases even larger than the Bowman

model. Empirical evidence from the literature shows that solving the RCPSP with straight-forward

integer programming methods becomes computationally inefficient for all but the smallest of prob-

22

lems [13, 36, 79, 92]. Sprecher [79:page 9] states the following about his computational experience

with solving integer programming models of this type.

The linear programming formulation suggests to employ a linear programming based
algorithm, e.g. Branch and Bound with LP-relaxation, but the computational results

... show that even small problems are intractable by this approach.

2.2.2 Dynamic Programming. Several early attempts at solving the RCPSP with a dy-

namic programming approach can be found in the literature, but the curse of dimensionality keeps

these approaches from being an efficient method for problems of interesting size [13, 36]. Carruthers

and Battersby [10] present a dynamic programming approach to a special, disjunctive class of the

RCPSP, but they run into dimensionality problems even with this restricted problem class. Petrovic

[71] looked at the application of dynamic programming methods to the resource leveling problem.

This problem is a variant of the RCPSP where the goal is to even out resource consumption over

all periods in the project by minimizing the sum of the squared deviations from the mean resource

use per period. Petrovic's approach also falls victim to the curse of dimensionality. The discour-

aging results from past work and the lack of current effort leads to the conclusion that dynamic

programming is not currently a promising approach for solving the RCPSP.

2.2.3 Implicit Enumeration. There are many examples in the literature of implicit enu-

meration procedures, particularly branch and bound techniques, for the RCPSP [13, 36, 70]. Balas

[4] formulates a RCPSP and then shows that the problem is similar to a machine-sequencing prob-

lem. He goes on to show that these similar problems can both be reduced to finding an optimal set

of arcs in a disjunctive graph with stability conditions. Using this reduced problem, Balas develops

an implicit enumeration algorithm to solve the RCPSP, but gives no empirical data to gauge the

efficiency of the algorithm.

Davis and Heidorn [18] present an implicit enumeration procedure for the RCPSP based

on techniques originally developed for solving the assembly line balancing problem. To use this

approach, each activity must be split into a number of unit duration activities equal to the duration

of the original activity. The advantages of this approach are that activity preemption can be modeled

and activities with variation in resource usage can be handled (all of the unit duration activities for

23

an original activity do not need to have the same resource requirements). The main disadvantage

of the approach is large memory storage requirements.

Talbot [86, 88] gives another implicit enumeration procedure for the RCPSP that utilizes a

formulation of the problem with general integer variables instead of the usual binary programming

formulations. This formulation requires much less memory than the other approaches. His procedure

evaluates all possible combinations of finish times for all of the activities in the project. His major

contribution was the concept of a cut for eliminating the explicit enumeration of inferior combinations

early in the enumeration scheme. This concept led to stronger fathoming rules than available with

a general implicit enumeration algorithm.

2.2.4 Branch and Bound. The more recent, and more efficient, implicit enumeration

procedures for the RCPSP found in the literature are generally branch and bound type approaches

[13, 70]. Stinson [83] developed a branch and bound procedure for the RCPSP that used a skiptrack-

ing technique to navigate the solution tree. Each node in the solution tree represented one possible

precedence and resource feasible assignment of a subset of the project activities. Any constraints

on activities not in the current subset are ignored at that node in the tree. Stinson's procedure was

tested extensively on both the RCPSP and the job-shop scheduling problem with notable success

[70].

Patterson [70] conducts a comparison of Stinson's branch and bound procedure with the im-

plicit enumeration procedures of Davis [18] and Talbot [86, 88] mentioned in Section 2.2.3. Patterson

collected 110 test problems that contained every RCPSP test problem found in the literature up to

1984. All of these problems consisted of a single project of 7-50 activities requiring 1-3 resource

types. Activity splitting was not allowed, resources were available at a constant level per period,

and activities required resources in constant amounts for their entire duration. Patterson ran each

procedure on all 110 of the test problems and evaluated them on the basis of the number of problems

solved to optimality, the average solution time, and the number of problems where each method was

the fastest. While Talbot's procedure had the smallest memory requirement and Davis's procedure

is the fastest on problems with few precedence-feasible options, Stinson's procedure was significantly

better in all three areas of evaluation.

24

Christofides, Alvares-Valdes, and Tamarit [14] present a branch and bound procedure that

uses a depth-first tree search technique, CAT, to solve the RCPSP. Each node in the solution tree

represents a semi-active partial solution that is both precedence and resource feasible. A semi-active

partial solution is a schedule for a subset of the project activities in which none of the scheduled

activities could be scheduled earlier without violating a precedence or resource constraint. Activities

are added to the partial schedule until there is a resource conflict, at which point branching occurs.

A branch is added to the node of the current partial solution for each possible conflict resolution.

The authors claim that the CAT procedure compares favorably with the Stinson procedure, but

when used to solve the 110 Patterson problems, Demeulemeester [24] found that it solved fewer

problems to optimality and had a much higher average solution time.

An extension of the CAT procedure, DH, was given by Demeulemeester and Herroelen [23]

using the same semi-active partial solution nodes. The improvements of the DH procedure over the

CAT procedure are guaranteed convergence to the optimal solution and improved solution time.

These improvements were achieved with the use of better selection rules for adding activities to

partial schedules and better dominance rules for pruning the solution tree. In 1995, Demeulemeester

stated that the DH procedure was the fastest exact solution method for solving the the RCPSP

[13]. The DH procedure has also been extended to handle the Resource Availability Cost Problem

(RACP) [21] and the Preemptive Resource Constrained Project Scheduling Problem (PRCPSP)

[25].

The final branch and bound procedure to be covered in this section was developed by Sprecher

[79] to solve the variant of the RCPSP where the activities have multiple execution modes (MM-

RCPSP). This procedure builds semi-active partial schedules like the DH procedure, but requires

unique rules for selecting activity/mode combinations to add to the partial schedule and for deter-

mining dominance to prune the solution tree. Kolisch and Frase [47] suggest new rules to tighten

the window of feasible activity start times, new dominance rules, and a new feasibility rule all to

increase the efficiency of Sprecher's branch and bound procedure. A more detailed discussion of

Sprecher's algorithm is presented in Chapter IV.

25

2.3 Evolutionary Algorithms

Evolutionary algorithms are heuristic optimization techniques that implement a stochastic

search procedure based on the principle of evolution in nature. This heuristic approach has been

successfully applied to a wide variety of problem areas and has gained a strong following in the

optimization community [29, 30].

The basis of the classic evolutionary algorithm is a population of individuals, represented by

fixed-length binary sequences, that represent possible solutions to an optimization problem. The

quality of these individuals is gauged by a function that measures the fitness of any potential solution

with respect to the objective of the optimization problem at hand. Based on their relative fitness,

individuals are selected for reproduction and produce offspring.

A crossover operator is used to produce one or two children by recombining the binary se-

quences of two parents. The children may undergo mutation, where there is a small probability of

random changes to their binary sequences. The quality of the children is evaluated based on the

fitness function. The population for the next generation is formed by either replacing all of the par-

ents with the most fit children or by selecting the most fit of both parents and children. Evolution

continues in this manner, continually generating new populations of higher quality individuals, until

some stopping criteria has been met.

Many variants of this general evolutionary algorithm approach have been developed and ap-

plied: using non-binary sequences, different recombination operators, different mutation operators,

multiple populations, and local search techniques [29]. These more general evolutionary based

heuristics are sometimes referred to as evolutionary programs [62]. In this research, all heuristic

approaches based on the principle of evolution are referred to as evolutionary algorithms.

2.3.1 Evolutionary Algorithms for Project Scheduling. There are examples of evolutionary

algorithms applied to scheduling problems throughout the literature. Gen and Cheng [29] provide

a good survey of the various evolutionary algorithm techniques that have been applied to flow-shop

sequencing, job-shop scheduling, and machine scheduling problems. Sprecher [79] has shown that

the job-shop scheduling problem is a special case of the RCPSP, but in general there have been very

few evolutionary algorithms proposed for the RCPSP.

26

In their chapter on evolutionary algorithms for job-shop scheduling, Gen and Cheng point

out that evolutionary algorithms are not well suited for fine-tuning structures that are very close

to optimal solutions [29]. They go on to suggest that for scheduling problems it is important to

incorporate conventional heuristics into evolutionary algorithms to make the evolutionary algorithm

more competitive. Several efficient heuristics have been proposed for the MMRCPSP that would

be candidates for use in an evolutionary algorithm approach [7, 68, 69, 78]. The possibilities for

incorporating one or more of these heuristics into an evolutionary algorithm include the following:

"* design the heuristic into the crossover operator

"* design the heuristic into the mutation operator

"* use the heuristic in the generation of the initial population

"* use the heuristic in the fitness function to map individuals to schedules

"* use the heuristic for local search to improve offspring

Lee and Kim [58] were the first to apply evolutionary algorithms to the RCPSP. In their work,

Lee and Kim apply three new heuristic approaches to the RCPSP: simulated annealing, tabu search,

and evolutionary algorithms. They compare the results of these three approaches with results from

six other heuristic methods. The authors claim that the advantages of their heuristics are that 1)

only feasible solutions are generated, 2) no preliminary problem information is required, 3) any

objective can be handled, and 4) the notion is simple and easy to implement. Lee and Kim apply

their three approaches and six other heuristic approaches to the 110 Patterson test problems [70]

as well as some other randomly generated problems. The set of randomly generated problems was

created to include problems with varying levels of number of activities, number of resources, and

tightness of resource constraints. Their empirical results show the simulated annealing, tabu search,

and evolutionary algorithm approaches consistently outperformed the other six heuristic methods.

Hartmann went one step farther than Lee and Kim by applying evolutionary algorithms to the

MMRCPSP [35]. Hartmann points out that the only other application of evolutionary algorithms

to this problem area comes from Ozdamar [66] and is based on priority rule encoding. Hartmann's

approach represents individual population members as a precedence feasible activity sequence and

a mode assignment. This genetic string maps to a schedule by considering the activities sequentially

27

in the order indicated and each activity is scheduled in the assigned mode at the earliest feasible

time. Fitness is measured according to the makespan of the resulting schedule.

An interesting feature of Hartmann's approach is its use of local search to improve the fitness

of individuals by applying problem specific knowledge, a concept introduced by Grefenstette [32].

Hartmann's mapping of genetic strings to schedules results in feasible schedules, but by applying

problem specific knowledge, it is often possible to improve those schedules with very little compu-

tation. To do this Hartmann uses a technique developed by Sprecher [79] called multi-mode left

shift. The technique calls for the activities to be considered sequentially and for each activity it is

determined if it would be resource feasible to use a mode with a shorter duration. By changing the

execution mode of some activities, the makespan can sometimes be shortened and the fitness of the

potential solution is improved.

Hartmann tests his approach against both the latest heuristics and branch and bound algo-

rithms. The branch and bound approach he uses is a truncated version of the method proposed

by Sprecher and Drexl [80, 81]. This truncated approach was presented as a method for using

branch and bound as a heuristic when computation time for an optimal solution to larger problems

is prohibitive. Based upon the criteria of average deviation from optimal, Hartmann's empirical

results show that his evolutionary algorithm outperformed each of the other heuristic methods.

2.3.2 Combining Evolutionary Algorithms with Deterministic Search. Lamont, Gates and

Brown present several ideas on how to increase optimization efficiency by combining the strengths

of deterministic search and evolutionary algorithms [55]. The approach consists of increasing the

efficiency of one method by seeding it with promising solutions from another. The three main

possibilities for applying this approach are as follows.

1. Seed the initial population of an evolutionary algorithm with solutions obtained in the early

stages of a deterministic search algorithm

2. Use the best feasible solution from the latest generation of an evolutionary algorithm as the

starting bound for a deterministic search algorithm

3. Exchange promising solutions back and forth between an evolutionary algorithm and a deter-

ministic search algorithm, possibly in parallel

28

The second possibility, using heuristically obtained solutions to provide a good initial bound

for deterministic search algorithms, is a common optimization technique. Normally in a branch

and bound algorithm, branches cannot be excluded from consideration (fathomed) until a feasible

solution, which provides a bound, has been found. The advantage of obtaining feasible solutions

externally is that fathoming can begin earlier in the search process. The better these initial feasible

solutions are, the earlier fathoming can take place. Slowifiski, Soniewicki and W~glarz provide

an example of such a technique applied to the MMRCPSP [78]. The authors present a decision

support system that uses parallel priority rules and simulated annealing to heuristically generate

good feasible solutions to a MMRCPSP with multiple objectives. If the decision maker is not

satisfied with the quality of the proposed solutions, the solutions are passed on as bounds to a

branch and bound algorithm so as to find better solutions.

2.4 Structure in Project Scheduling Models

This section examines the possibility of exploiting the structure of problems that exhibit the

block-angular structure illustrated in Figure 4. The illustration in Figure 4 represents the constraint

A A2 A3

B1

B2

B3

Figure 4 Block-angular Structure

matrix of a problem whose variables may be partitioned into discrete sets such that certain blocks

of constraints, represented by the matrices Bi, are unique to one set of variables. The constraints

represented by the Ai matrices are referred to as linking constraints.

The block-angular structure illustrated in Figure 4 is found in the multi-project scheduling

problem (MPSP). The MPSP is the natural extension to problems where one large program is

29

composed of several semi-independent projects. By semi-independent, it is meant that most of the

problem's constraints affect only a single project, but there are some constraints, called linking

constraints, that affect more than one project. These might be common resources or requirements.

Such a structure follows naturally from the classic work breakdown structure. Consider the following

general mathematical programming formulation.

Minimize cx (45)

Subject to Ax > b (46)

x > 0 (47)

If the problem modeled by this general formulation had block-angular structure, then its

constraint matrix would have the following form.

A1 A 2 ... AP

BI

A= B 2 (48)

B P

A problem with a constraint matrix of this form is said to have p block-angular structure

since there are p distinct blocks [56]. The Ai are matrices of coefficients for the linking constraints

and the Bi are matrices of coefficients for constraints unique to project i. The advantage of this

problem structure is that large problems which may be computationally prohibitive to solve by

direct methods can be decomposed into a number of subproblems of a more manageable size [56].

The general formulation expressed by Equations (45), (46), and (47) with a constraint matrix of

the form in Equation (48) can be expanded as follows. The constraints in Equation (50) are the

linking constraints and those in Equation (51) are the project unique constraints.

30

P

Minimize cixi (49)
i=l

P

Subject to y Aixi > bo (50)
j=1

Bixi > bi for i=l1, 2,.p (51)

xi > 0 fori=1, 2,...p (52)

2.4.1 Dantzig-Wolfe Decomposition. Problems with block-angular structure can be solved

with decomposition by resources. Techniques that use decomposition by resources fix or relax the

linking constraints in order to arrive at independent subproblems. One classic method of decom-

position by resources is the Dantzig-Wolfe decomposition principle for linear programs [17]. In

Dantzig-Wolfe decomposition, the linking constraints are relaxed to yield an independent subprob-

lem for each block, but they are included in a master problem that considers convex combinations

of subproblem solutions. The dual variables associated with the linking constraints in the mas-

ter problem are used to weight the objective functions of the subproblems in order to guide each

subproblem's solution toward compliance with the linking constraints.

The Dantzig-Wolfe procedure consists of iteratively solving the subproblems, adding the new

subproblem solutions to the master problem, solving the master problem, and deriving new sub-

problem objective functions based on the new dual variables of the master problem. The iterative

procedure continues until the latest subproblem solutions can offer no improvement to the objective

function of the master problem. At this point, the current master problem solution is optimal for

the original problem. The optimal values for the original decision variables are obtained as convex

combinations of the decision variables of the master problem.

Several authors have applied Dantzig-Wolfe type solution techniques to the variants of the

MPSP [5, 91, 93, 94]. The main advantage of this approach is the reduced size of the mathematical

programming formulations that must be solved, allowing faster solution of larger problems. Other

benefits, pointed out by Baumol and Fabian [5], are the insights into cost tradeoffs obtained from

the iterative subproblem solutions. The drawback to a Datzig-Wolfe decomposition approach is

that its application is restricted to linear programming models. The many integer and binary

31

programming model formulations of resource constrained problems cannot be solved with Dantzig-

Wolfe decomposition.

2.4.2 Sweeney-Murphy Decomposition. Sweeney and Murphy [84] developed a method

of decomposition for integer programming models that exhibit block-angular structure. Sweeney-

Murphy decomposition is similar to Dantzig-Wolfe decomposition. The subproblems and the master

problem have the same structure, but the variables are integer rather than continuous and therefore

lack the luxury of dual variables unless the constraint matrices are totally unimodular. Without

dual variables, the ability to guide the solutions of the subproblems towards compliance with the

linking constraints is seriously weakened. In addition, the integer requirement does not allow for

simple convex combinations of the solutions of a subproblem. Instead of a convex combination, the

master problem must select one of the solutions for each of the subproblems.

In Sweeney-Murphy decomposition, a solution for the master problem, and also for the original

problem, is the combination of one k-optimal solution from each of the subproblems. Instead of

generating subproblem solutions iteratively, a set of the top k solutions (a k-best solution set)

to each subproblem is generated in a single step of the procedure. The master problem is then

solved, finding the best combination of these k-optimal subproblem solutions. Sweeney and Murphy

developed an optimality test that either declares a solution optimal or points to specific subproblems

for which the next k solutions must be obtained before optimality can be achieved. They also outline

a procedure to place bounds on the optimal solution once a feasible solution is found. This allows

the decomposition algorithm to be terminated if the current feasible solution is close enough to

optimal.

There are three aspects of the Sweeney-Murphy procedure that are not fully developed in their

presentation. First, since dual variables are not directly available, what are the best weights to use

in the subproblem objective functions? Sweeney and Murphy suggest several possibilities, including

using the dual variables from the LP relaxation of the master problem, but give no empirical study

supporting any one weight selection technique for any specific problem class.

Another open issue is the selection of k, the size of the near-optimal solution sets. According

to the Sweeney-Murphy algorithm, this can be a single, fixed value or a different value for each

subproblem, but again, no guidelines are established. In their one empirical example, Sweeney and

32

Murphy arbitrarily set k to a common value for all of the subproblems, but they gave no reason for

their choice [84]. Clearly, the value of this parameter can effect the efficiency of the entire procedure

so it is important that some thought goes into its selection.

The last open issue is how to obtain the k-best solution sets of the subproblems. Sweeney

and Murphy do not go into the method used in their example. The issue of determining the most

efficient method for obtaining k-best solution sets is highly problem specific. There are several

examples from the literature where algorithms have been developed to find the k-best solutions to

a specific combinatorial optimization problem [9, 34, 57, 63]. It is likely that resolution of the other

two open issues, selecting values for weights and k, are also very specific to the type of problem.

In a later effort, Sweeney and Murphy, apply their integer program decomposition technique

to the specific problem area of multi-item scheduling [85]. The multi-item scheduling problem

involves scheduling the production of many items over time. In this application, the subproblems

have a unique formulation. Each subproblem is a single multiple choice (special ordered set) type

constraint [90] and so it is relatively easy to obtain k-best subproblem solution sets. The authors

demonstrate the usefulness of the proposed approach on three real applications.

In an article on resource constrained project crashing, Deckro and Hebert present a pair

of models for crashing in resource constrained project scheduling problems [19]. They go on to

suggest that there are possibilities for improved calculation through decomposition in each of these

formulations. In another effort, Deckro, Winkofsky, ilebert, and Gagnon outline a procedure for

using Sweeney-Murphy decomposition on the MPSP [20]. As proof of concept, the authors present

empirical results for an illustrative example.

2.5 Parallel Processing

The following definitions are obtained from Kumar's introductory text on parallel computing

[53]. When implementing an algorithm in a parallel environment, the goal is to maximize speedup.

Define T, as the runtime for the fastest sequential algorithm for a given problem and Tp as the runtime

of a parallel algorithm for the same problem executed on p processors. The performance measure

speedup is defined as the ratio of serial runtime to parallel runtime, S = Ts/Tp. Theoretically, the

33

upper bound on speedup is p. Speedup of p is referred to as linear speedup. If superlinear speedup

is achieved (speedup in excess of p), the sequential algorithm is not as efficient as it could be.

Another important measure of performance is efficiency. Efficiency is defined as the ratio of

speedup to the number of processors used, E = S/p. Since the upper bound on speedup is p, the

best efficiency that can be achieved is 1. This level of efficiency is typically difficult to achieve due

to the additional communication requirements that occur as a result of accomplishing tasks of an

algorithm on separate processors.

Since the goal in most block-angular decomposition techniques is to relax a few constraints in

order to create independent subproblems, decomposition algorithms are good candidates for parallel

implementation. There are several examples in the literature where LP decomposition techniques

like Dantzig-Wolfe have been implemented in parallel [37, 76, 95]. However, there are no examples

of a parallel integer program decomposition technique.

There are two types of parallelization possible when implementing an algorithm in a parallel

environment, control parallelism and data parallelism. Control parallelism is breaking an algorithm

down into tasks and completing tasks in parallel on separate processors. When a task consists of

performing identical processing on many data items, data parallelism is assigning data elements to

multiple processor to accomplish the identical processing in parallel.

Control parallelism applied to Sweeney-Murphy integer program decomposition would be

straight forward. Each subproblem could be assigned to a separate processor in order to find the

k-best solution sets in parallel. For this step of the algorithm, speedup would be very close to

linear with no communication necessary and the only idle processor time would be caused by the

difference in the size and complexity of the subproblems. Data parallelism, however, would require

re-implementing the subproblem solution algorithm in parallel. Such a parallel implementation po-

tentially involves both evolutionary algorithms and branch and bound algorithms. Parallel versions

of these techniques are addressed in the following sections.

2.5.1 Parallel Evolutionary Algorithms. Kronsj6 and Shumsheruddin provide a good

summary of the four categories of parallel evolutionary algorithm implementations [52]. These four

categories are as follows.

34

1. Synchronous master-slave

2. Semi-synchronous master-slave

3. Distributed, asynchronous concurrent

4. Network

In the first category, there is a master node that controls the selection and mating of individuals

while the evaluation, typically the computational bottleneck, is performed by the slave processors.

Since the computation time involved in evaluation is highly variable, slave processors can have large

idle times waiting for the next individual to evaluate. This leads to the second category which

overcomes the problem of synchronous tasking. The third category eliminates the master node

altogether by storing population information in a common shared memory location and allowing

each processor to perform selection, mating, and evaluation independently. The last category calls

for a number of independent evolutionary algorithms to run in parallel occasionally broadcasting

the best individuals to all of the other populations.

When there is a master-slave relationship, the challenge is to elegantly manage the commu-

nication overhead which increases with the number of slave processors used [26]. A distributed

environment with shared memory for the population information is a similar situation, but access

to the common memory becomes the bottleneck as the number of processors grows. With a network

situation, no global information is available to the individual processors so the issue becomes how

to partition the population and establish local selection rules [31].

Efforts in the network category usually fall into the category of island models [89] or neighbor-

hood models [16, 60]. Island models are the more coarse-grained network variant. In island models,

several separate evolutionary algorithms are run concurrently and fit individuals are exchanged pe-

riodically. Neighborhood models are the fine-grained network variant. In neighborhood models,

the individuals of a population are distributed among the processors of a large mesh and rules are

established for localized selection.

Kohlmorgen, Schmeck, and Haase have applied parallel evolutionary algorithm techniques to

the RCPSP [46]. These authors implemented both island and neighborhood models on the massively

parallel computer MasPar MP1 with 16k processing elements. They used this implementation to

solve a wide variety of problems including the traveling salesman problem, the resource constrained

35

project scheduling problem, the uncapacitated warehouse location problem, the flow shop problem,

and the capacitated lot-sizing problem. Their results with the RCPSP were particularly promising

due to the incorporation of heuristic methods in the evaluation process.

2.5.2 Parallel Tree Search Algorithms. There are a number of different approaches to

implementing branch and bound algorithms in parallel. Kronsj6 and Shumsheruddin categorize the

different methods as follows [52].

1. Parallel expansion of the search tree with different initial bound values

2. Parallel search using different algorithms

3. Perform the expansion of a single node in parallel

4. Parallel evaluation of subproblems

In a minimization problem, a branch and bound algorithm could obtain an initial upper bound

from the best known feasible solution and an initial lower bound from a relaxation of the problem.

The first method of parallelization would start several branch and bound instances on different

processors dividing the range between the actual upper and lower bounds between them. Whenever

a processor finds a feasible solution, a new upper bound is established and any processor whose

work becomes bounded starts over with bounds in the new range. If a processor finishes without

finding a feasible solution, then a new lower bound is established and the processor starts over with

bounds in the new range. Again, any processor whose work becomes bounded must start over with

new bounds. The process terminates when one processor completes the search with an optimal

solution.

The second category of parallel branch and bound methods runs the same problem simultane-

ously on different processors with different branching strategies. For example, one processor could

run a depth first search while another uses a best first search. Typically, it is not known which

strategy works best for a given problem. By running different strategies in parallel, the benefits

of both are combined and there is also the possibility of sharing the bounds obtained when one

processor finds a new feasible solution.

The third method is particularly applicable when the evaluation of each node takes large

computational effort. For example, in integer programming, an LP relaxation of the original problem

36

must be solved at every node. It would be ideal to implement a parallel LP solution algorithm to

speed up the evaluation of nodes. This type of implementation would be highly problem specific.

The final, and most common, method of parallel branch and bound simply divides up the work

of the sequential branch and bound algorithm by using multiple processors to evaluate different

nodes simultaneously. The two most critical factors in an algorithm that takes this approach are

how to divide the work between processors and how to communicate the new feasible solutions of

one processor to all of the other processors. A new feasible solution represents a possible new bound

for the other processors that could reduce their search space, but excessive communication overhead

could slow the algorithm down in the long run.

Optimal parallel runtime is normally defined as Tp = Ts/P and this occurs when there is linear

speedup. With this in mind, the bounds on expected parallel runtime are expressed in Equation

(53).

T" < TP _ TL (53)

P

Tp > T, (54)
TP < T, (55)

P

Equations (54) and (55) represent the anomalies that can occur in parallel branch and bound

implementations. The anomaly illustrated in Equation (54) is called a detrimental anomaly, while

the one in Equation (55) is called an acceleration anomaly [42]. An acceleration anomaly leads to

superlinear speedup and is possible because of the irregular nature of the problem. Detrimental

anomalies are a cause for concern when implementing parallel branch and bound methods. Numer-

ous efforts in the literature have focused on how to define conditions such that this sort of anomaly

is guaranteed not to occur [15, 54, 59].

2.6 Testing Project Scheduling Algorithms

In order to gauge the value of an algorithm for solving project scheduling problems, it is

necessary to obtain a set of sample problems to which the algorithm may be applied. Hall offers some

guidelines for generating a set of project scheduling problems that is unbiased and representative of

37

the full range of possible problem types [33]. Jackson et al., while discussing guidelines on reporting

the results of computational experiments, state the following common deficiencies in sample problem

test sets [43].

1. The test set is usually small compared to the range of potential problems

2. The problems are often small and regular

3. The problems often have similar properties

4. Tuning an algorithm for a set of test problems may not give ideal performance in other settings

5. Inferring performance from a test set is similar to inferring the average height of Americans

by sampling heights of the presidents

Jackson et al. recommend that standard test problem sets or test problem generators be used

whenever possible [43]. In this way, the results from one algorithm may be compared against the

results from other algorithms designed for the same problem and it is easier to support claims of

relative efficiency. The Patterson test problems are the most widely used test set for the RCPSP,

but they do not include problems where activities have multiple execution modes [70]. The only

set of project scheduling problems for the MMRCPSP is contained in PSPLIB, a set of benchmark

instances for resource constrained project scheduling [48, 49].

There are also a few publicly available tools for randomly generating test problems. Hall [33]

and Demeulemeester, Dodin, and Herroelen [22] have developed network generation software to

generate network structures of a specified density to form the precedence constraints of a project

scheduling problem. Kolisch, Sprecher, and Drexl have developed ProGen, a problem generator that

can generate MMRCPSP problem instances of a controlled difficulty [50, 51].

2.7 Summary

This chapter reviewed the literature that provides a background for the research in this disser-

tation. The review focused on the broad area of project scheduling, including model formulations,

solution methodologies, and approaches to testing. In Chapter III, a project scheduling model is

formulated for the force level air campaign planning problem. Additionally, Chapter III outlines the

solution methodologies that this research develops for the air campaign planning problem.

38

III. Methodology

The purpose of this chapter is to provide an overview of the methodology used to accomplish the

research objectives outlined in Chapter I. The overall research goal is to develop an approach

for solving large combat planning problems using integer program decomposition. In order to

achieve this goal, a new variant of the resource constrained project scheduling problem (RCPSP)

is formulated, several algorithms are developed to solve this new problem, and a case study is

accomplished to show the applicability of the approach to joint campaign planning, specifically to

the force level planning of an air campaign.

The chapter is divided into two sections. The first section presents the development of an

original RCPSP formulation which is suitable for modeling the problem of optimally planning combat

missions in an air campaign. The second section provides an overview of the algorithms this research

develops specifically for solving large instances of this combat planning problem.

3.1 Combat Planning Model Formulation

The problem modeled in this section is that of generating all the combat missions to be flown

in an ATO planning period. Recall that generating combat missions for an ATO requires matching

available air assets against nominated targets and then scheduling the resulting combat sorties. At

first glance, it would seem that this process could be modeled as an assignment problem; however,

the assets are not continuously available and it is necessary to enforce certain timing requirements

among the missions.

The requirement for mission scheduling, mission precedence, and resource accounting indicates

that a RCPSP formulation is in order. A review of the literature reveals that none of the available

RCPSP formulations provide for all of the aspects of combat planning that are necessary in an

air campaign. It is necessary to combine features from several RCPSP variants to develop an

appropriate model. This new model formulation includes multi-modal activities, doubly constrained

resources, and generalized precedence constraints. The model is referred to as the multi-modal

generalized resource constrained project scheduling problem (MMGRCPSP).

39

3.1.1 Multi-modal Activities. The first aspect of the MMGRCPSP to consider is the

multi-modal nature of the activities. The activities that occur in an air campaign are the strikes

by friendly air assets against enemy targets. The first component of any strike is the target. The

target nomination list (TNL) may be used to determine the activities in an air campaign planning

problem. Early in the ATO generation cycle, a set of weaponeering options is compiled for every

target on the TNL. These options are determined based on the availability of aircraft, crews, and

munitions as well as a threshold value indicating the acceptable level for probability of kill (PK).

Table 1 provides a sample TNL entry.

Table 1 A Sample TNL Entry
Target Priority Window Option Sorties Aircraft SCL PK

101 1 0800/0900 1 2 Fill Al 85%
2 4 F16 B3 95%

Table 1 gives an example of the type of information that a TNL normally provides to combat

planners. The table contains a TNL entry for target number 101, a priority 1 target with a window

of opportunity from 0800 until 0900. Two weaponeering options have been deemed acceptable for

this target. One option calls for the target to be attacked by a mission of two Fills using standard

configuration load (SCL) Al. The expected PK for this option is 85%. The other option requires

four F16 sorties with SCL B3 and has an expected PK of 95%.

The sample TNL entry in Table 1 indicates that there are two acceptable weaponeering options

for target 101, but this does not necessarily correspond to an activity with two possible execution

modes. Suppose that for a given air campaign planning scenario F16s are located at Base A while

Fills are located at both Base B and Base C. The activity that is used to model target 101 for

this scenario has the following three possible execution modes.

Mode 1 4 F16s from Base A

Mode 2 2 Fills from Base B

Mode 3 2 Fills from Base C

From this example it is clear that the acceptable execution modes for every target, along

with the resources required by each mode, may be taken directly from the TNL. The final piece

of information necessary to completely describe activities in the MMGRCPSP formulation for air

40

campaign planning is activity duration. The duration of an activity depends on the location of the

target modeled by that activity and the type and location of the resources required by the execution

mode selected for that activity. A duration may be determined for each mode of every activity using

the location of the assets, the location of the resources, and nominal air speed values to perform

rudimentary routing calculations.

Aircraft Take Off TOT Egress Aircraft are Available Again
A A A A

Aircraft Turn Time

I Ingress TFT Aircraft Land

: - Total Time Air Assets Are Unavailable For Other Missions - .

Figure 5 The Components of Mission Duration

Figure 5 illustrates the the various mission legs that must be considered when calculating the

duration for each mode of an activity. It is important for resource accounting reasons that activity

durations include the entire mission time from the time the aircraft take off until the time they have

landed, been serviced, and are ready for another mission. In Figure 5, take off and landing are

self explanatory, ingress and egress mark the points in time when the aircraft transition between

friendly and enemy territories, and time on target (TOT) and time off target (TFT) denote the time

window available for the mission to attack its target. It is important to note that the time window

indicated by TOT/TFT represents a window of availability, not a loiter time. It is possible that in

some operational scenarios, more components may be required to accurately model some combat

missions, but in this dissertation, without loss of generality, all missions are modeled with the same

six duration components illustrated in Figure 5.

To model multi-modal activities, the MMGRCPSP formulation for air campaign planning

takes its variables, objective function, and one of its constraints directly from the MMRCPSP

formulation in Chapter II. Every activity i has a set of binary variables, ximt E {0, 1}, that specify

the execution mode and start time for that activity. If Ximt = 1, activity i begins execution in mode

m at time t. Since an activity can only have one start time and one mode of execution, the set of

binary variables for each activity forms a special ordered set. Exactly one variable in each special

41

ordered set must be assigned a value of 1. The formulation of the constraints that enforce this

condition is given by Equation (56).

lram

Z] V Xmt E iA (56)
mEMi t=eir

In Equation (56), A is the set of all activities. Mi is the set of every possible execution mode

for activity i E A. The possible start times for activity i in mode m include every integer value

from the earliest possible start time, eim, to the latest possible start time, lim. The simplest method

of assigning values for the earliest and latest possible start times is to select values that cover

the entire ATO planning period. However, this method leads to a model formulation with a large

number of unnecessary binary variables. CPM methods may be applied to eliminate infeasible start

time/execution mode combinations in order to reduce the range of [eim, lim] and thereby reduce the

number of variables in the model.

The objective of the MMGRCPSP is to minimize makespan, which has the effect of minimizing

the total time to complete all missions. This is accomplished by minimizing the completion time of

the problem's terminal activity, activity d. The duration of activity d in mode m is given by the

parameter Tdm. If the activity d begins execution in mode m at time t, the completion time of the

terminal activity, and the objective function value of the problem, is given as t + 7-dm. The complete

objective function formulation is provided by Equation (57).

Id.

Minimize E S (t + rdm)Xdmt (57)
mEMd t=edm

3.1.2 Doubly Constrained Resources. This section presents the framework that is used

to model air assets as resources in the MMGRCPSP formulation for air campaign planning. The

previous discussion on determining activity execution modes from a target nomination list made

the point that the MMGRCPSP formulation must model each aircraft type/location combination

with a separate project resource. For example, the Fllls at Base B are modeled with a separate

project resource than the resource that is used to represent the Fllls at Base C.

As explained below, each of the resources used to represent these Flll units is both a renew-

able resource and a nonrenewable resource, a condition that is referred to as doubly constrained.

42

Every unit in an air campaign planning scenario is represented as a doubly constrained resource in

the MMGRCPSP formulation. K is the set of all doubly constrained resources (units) in the prob-

lem. The renewable aspect of each resource k C K is the limit dictated by Rk, the actual number

of aircraft that make up the unit represented by resource k. At any given time during the ATO

planning period, no more than Rk units of resource k E K may be in use. The formulation of the

constraints that enforce this condition is given by Equation (58). In this constraint formulation, g

represents the project deadline (the end of the ATO day) and rimk is the number of units of resource

k required by activity i when executed in mode m.

z z rimkximt _• Rk V k E K and j = 1,...,g (58)
iEA mEMi t=j-'rim+1

The nonrenewable aspect of each resource k C K is the limit dictated by Nk, the number of

sorties that unit k can generate in a given ATO planning period. Generally, each aircraft in a unit

can fly more than one mission in a given ATO day as long as there are crews, fuel, and munitions

available. Each unit is assigned a turn rate value trk and the number of sorties available from

that unit is given as Nk = Rk x trk. This number is truncated to the nearest integer. While Rk

represents the maximum number of units of resources k that may be in use at any given time, Nk

provides the upper bound on the total number of units of resource k available. The formulation of

the constraints that enforce the nonrenewable resource condition is given by Equation (59).

tira

z riinkXimt•<Nk V k EK (59)
iEA mEMi =ei.n

To illustrate how the constraints given by Equations (58) and (59) enforce the limitations on

both the number of aircraft in a unit and the number of sorties that unit can provide, consider a unit

of 16 F16s that has a turn rate of three. This turn rate indicates that each aircraft can fly at most

three missions in a given ATO day. The renewable resource constraints limit the number of sorties

available from that unit at any given time to 16 or less. The nonrenewable resource constraints limit

the total number of sorties flown by that unit to 48 or less. Figure 6 shows a sortie utilization for this

unit that is feasible with respect to both the renewable and the nonrenewable resource constraints.

43

4F-16s 4F-16s 4F-16s [

2F-[s4F-16s [2F-16s][2F-16s [

164F-16s 2F-16s 2F-16s

21F-16s 4F-16s

Gantt Chart for the Unit's Sortie Flow

16A

12--

4-

0--T
Aircraft Utilization Chart

Figure 6 A Feasible Utilization of Sorties

The horizontal axis for both graphs in Figure 6 represents time. Each of the 16 rectangles

on the Gantt chart depicts the entire duration of a combat mission flown by the F16 unit in the

example. Of the 16 missions on the Gantt chart, eight require four sorties from the unit and the

other eight require only two sorties. This indicates a requirement for a total of 48 sorties which is

feasible according to the nonrenewable resource constraint described previously.

The second chart in Figure 6 translates the sortie utilization illustrated by the Gantt chart

into a function of aircraft utilization over time. The dotted line on the aircraft utilization chart

represents the number of aircraft that make up the unit. Since the function of aircraft utilization

over time never exceeds the threshold value given by the dotted line, the sortie utilization shown is

feasible with respect to the renewable resource constraints described previously.

The charts in Figure 6 provide more than just feasibility information. While the solution

corresponding to this utilization of resources may be feasible, it also has some less favorable qualities.

The utilization of both aircraft and sorties is at the upper bound indicating that the loss of a single

aircraft makes the solution infeasible. This resource utilization information might prove useful when

a commander can choose between several near optimal solutions.

44

3.1.3 Generalized Precedence Constraints. The final component of the MMGRCPSP for-

mulation for air campaign planning is mission precedence. The variables and constraints formulated

so far provide for activities and resources. All that remains is to specify the constraints to enforce

the timing between various activities. Standard end to start activity precedence relations are not

flexible enough to enforce the mission sequencing necessary in air campaign planning. It is necessary

to use generalized precedence constraints.

Standard end to start activity precedence specifies that if activity i is a predecessor of activity

j, activity j cannot begin execution until the execution of activity i has terminated. This type of

precedence applied to combat missions would only be able to enforce that mission j may not take

off until all aircraft involved in the execution of mission i have landed and been serviced. This is

not the precision strike timing for which our Air Force is noted.

Generalized precedence constraints, on the other hand, may be used to enforce any timing

requirement called for in an operational scenario. An example of the type of mission sequencing

that may be modeled using generalized precedence constraints is provided by Figure 7. The generic

map in Figure 7 depicts friendly airspace and enemy airspace divided by a line denoting the forward

line own troops (FLOT). On the friendly side there are two bases and on the enemy side there are

two targets.

Suppose the target nearer the FLOT is an enemy air defense target and the other is a deep

interdiction target, perhaps a headquarters building. Note that the dashed line that represents the

path of the interdiction mission passes close to the the enemy air defense site. It might be important

to a combat planner that the mission to destroy the enemy air defense target, the dotted line on

the map, hits its target before the interdiction mission enters enemy airspace. This type of mission

timing may be enforced by applying generalized precedence constraints to dictate a minimum lag

time between the start of the enemy air defense mission and the start of the interdiction mission.

This minimum lag time value depends on the execution modes of both the predecessor and the

successor missions.

45

CIl

0 0C
0- 0n Cn4~

00

...............

4~46

a.
-- S '-S

-S -

%% "•• " %"'" S

"C.) -S- -S -- S

-S -S°•"

' S -S::
-S -

-S-SS-

• \ 46

Figure 8 demonstrates how to determine the value for the minimum lag between the start

of the enemy air defense mission i in mode m and the start of the interdiction mission j in mode

n. The figure illustrates that the ingress of mission j, the successor mission, must occur after the

attack window of mission i, the predecessor mission. Let STi be the start time of mission i, STj

be the start time of mission j, 6i be the time between the take off of mission i and the end of its

attack window, and 6j be the time between the take off of mission j and its ingress. The minimum

lag value is given by Aijmn = 6? - 63 and the generalized precedence constraint is summarized by

STj - ST> Aijmn.

TFr

I I I ~~Predecessor Msin

~iV Successor Missi~on
I I

A• • Ingress
I !

Figure 8 Determining the Minimum Lag Value

It must be stressed that since the components of mission duration depend on the location of

both assets and targets, as well as the nominal air speed of the aircraft involved, there is a different

minimum lag value associated with every possible combination of execution modes (m, n). If there

are three possible execution modes for activity i and four possible execution modes for activity j,

there are a total of 12 possible minimum lag values that correspond to 12 different formulations for

the constraint that enforces precedence between activities i and j. All but one of these precedence

constraints must be relaxed depending on the choice of modes for activities i and j.

Standard integer program formulation techniques might be applied to formulate all 12 possible

precedence constraints and use additional binary variables to selectively enforce or relax each con-

straint depending on the execution modes of activities i and j. While this approach would achieve

the goal of modeling generalized precedence constraints, it would require the addition of a large

number of variables and constraints to a model that is already unwieldy. The constraint formu-

lation given by Equation (60) allows all 12 possible precedence formulations to be included using

47

three constraints and the existing model variables to implement the logic that selectively enforces or

relaxes the various precedence conditions. In this constraint formulation, Si is the set of all general

successors to activity i.

1371 uintrn

Z •E (Aijmln - t)xjnt + Z tXim't •_ j Z Ygximt V i E A,j E Si,m' E Mi (60)
nEM3 t=e 371 t-e 'i mE(MAm') tzeim

To clarify the logic enforced by the constraint set given by Equation (60), consider the con-

straint corresponding to some predecessor activity i, its general successor activity j E Si, and one

of its possible execution modes m' E Mi. Let m be the execution mode selected for activity i and

let n be the execution mode selected for activity j. The precedence constraint associated with i, j,

and m' can be reduced to one of two possible forms depending on the relationship of m' to m.

* IF m'= m THEN Aij,mn - STj + STt < 0 ST3 - STj Ž_ Aijmn

e IF m' m THEN Aijm'n - STj + 0 < g STj > Aijmln - g

The constraint is only important if m' = m. If m' j m, the constraint becomes redundant

since Aijm'n - g is a large negative number and all start times are already constrained to be

positive. When m' = m, the constraint enforces the appropriate minimum lag between the start

times of activities i and j in modes m and n.

This formulation of precedence constraints is significant for two reasons. First, a review of the

literature shows that none of the available RCPSP models incorporate both multi-modal activities

and generalized precedence constraints. Second, the formulation is significant for its unique method

of enforcing precedence condition selection logic with a minimal number of constraints and no

additional variables.

3.1.4 Complete Model Formulation. The complete MMGRCPSP model formulation for

air campaign planning is summarized by Table 2 and Figure 9.

48

Table 2 MMGRCPSP Variables and Parameters
A the set of all activities
d the index of the terminal activity

eim the earliest start for activity i in mode m

lim the latest start for activity i in mode m
Mi the set of all execution modes for activity i
Tim the duration of activity i in mode m
Si the set of generalized successors of activity i

Aijmn the minimum lag between the start time of
activity i in mode m and the start time of
activity j E Si in mode n

K the set of all doubly constrained resources
rimk the number of units of resource k required by

activity i when being executed in mode m
Rk the per period availability of resource k
Nk the total amount of resource k available
g the deadline for the project under consideration

Ximt 1 if activity i starts in period t using mode m

Idin

Minimize 1: (t + Tdm)Xdmt

mEMd t-edn

Ii.n

Subject to E rimkXimt • Nk V k E K
iEA mEMA t=eim

Z Z Z rimkXimt < Rk VkEK, j 1,...,g
iEA mEMA t=j-rim+l

Ijn lim' lim

S:E (Aijm'n - t)xj.t + 1 txim't E gximt V i E Aj E Si,m' E Mi
nEMj t=ejn t=emm, nE(MA\m') t=eim

Iira

Z E Ximt = 1 ViEA
mEMi t=eim

ximt E {0,1} V (i,m,t)

Figure 9 The Complete MMGRCPSP Model Formulation

49

3.2 Combat Planning Solution Methods

The research in this dissertation is presented in blocks such that the first block develops a

solution methodology for the MMGRCPSP. Each additional block offers extensions that build on

the previous blocks in order to exploit the structure of large problem instances to reduce solution

times. Each major block of research is provided in a separate chapter with one additional chapter

to present a case study that demonstrates the applicability of the solution methodologies to a large

combat planning problem.

The overall goal of the research is to develop an effective integer program decomposition

approach to combat planning, but before a decomposition algorithm may be implemented, it is

necessary to develop a subproblem solution methodology. Therefore, the first block of research

is devoted to developing an algorithm for solving small to medium sized MMGRCPSP instances.

The next block of research develops an integer program decomposition approach for solving large

block-angular MMGRCPSP instances. The last block of research develops a heuristic approach to

the problem using evolutionary algorithm techniques and then combines the evolutionary algorithm

with the decomposition algorithm in a hybrid approach.

3.2.1 Subproblem Solution Methodology. The most efficient exact solution procedures

found in the literature review for resource constrained project scheduling problems were the implicit

enumeration algorithms presented by Demeulemeester [21, 23, 24, 25] and Sprecher [79, 80, 81]. Of

the procedures found in these works, Sprecher's procedure for the MMRCPSP is the closest to

what is required for the subproblems developed in this research. Sprecher's procedure can handle

multiple activity execution modes, doubly constrained resources, and minimum makespan objective

functions.

However, one important feature not included in Sprecher's procedure is the capability to ad-

dress the generalized precedence requirements required to accurately model combat mission timing

in an air campaign planning problem. Another important consideration for the subproblem solu-

tion methodology is the type of decomposition to be used. The Sweeney-Murphy decomposition

algorithm requires that k-best solution sets be generated for the subproblems; another important

feature that Sprecher's procedure does not provide.

50

While Sprecher's algorithm may not be applied directly to the subproblems of the decomposi-

tion effort in this dissertation, it serves as a starting point for developing a specialized algorithm for

the MMGRCPSP. The first step in developing the subproblem solution algorithm is to prove that

Sprecher's implicit enumeration approach, extended to allow for generalized precedence and k-best

solution sets, is guaranteed to find an optimal solution for every feasible MMGRCPSP instance. The

mechanics of the extended algorithm are then defined and the solution methodology is implemented

in C to allow performance of empirical tests.

3.2.2 Decomposition Methodology. The decomposition methodology selected for use in

this dissertation is an integer program decomposition technique developed by Sweeney and Mur-

phy [84]. Sweeney-Murphy decomposition is the only general decomposition approach available

in the literature for block-angular integer programs. While Sweeney-Murphy decomposition is a

theoretically sound technique, there are limited applications of the approach in the literature.

There are some potentially cumbersome aspects of the Sweeney-Murphy approach. The first

of these cumbersome aspects is the requirement to generate k-best subproblem solution sets. The

literature offers no generalized procedure for obtaining k-best solution sets to integer problems other

than iteratively solving the problem and then cutting the optimal solution out of the feasible region.

This brute force approach to the subproblems may require so much computational effort that the

decomposition approach loses its appeal.

Another open question in using Sweeney-Murphy decomposition is the requirement for La-

grangian multipliers to formulate the subproblems. The techniques that Sweeney and Murphy offer

for calculating multipliers are not feasible for all types of integer problems. For certain classes of

problems, including the MMGRCPSP, it is difficult to obtain appropriate multipliers and inappro-

priate multiplier values may lead to excessive computation time.

The final open issue of Sweeney-Murphy decomposition involves setting and resetting the

values of ki that control the progress of the overall algorithm. The k selection strategy used in an

implementation of the Sweeney-Murphy approach has a large effect on the computational efficiency

of the algorithm. However, in every instance where Sweeney-Murphy decomposition is used in the

literature, the k selection strategy is arbitrary with no justification given for the values used.

51

The challenge of the decomposition research in this dissertation is to develop a solution

methodology that overcomes the cumbersome aspects of Sweeney-Murphy decomposition and of-

fers an effective approach that exploits block-angular structure in large MMGRCPSP instances to

reduce solution time. The resulting decomposition algorithm is implemented in C to allow empirical

testing.

3.2.3 Heuristic Methodology. Given that there are always limitations imposed by the

time and hardware available, it is not always feasible to use exact solution methodologies on every

problem instance. For this reason, the last block of research in this dissertation develops a heuristic

approach to the MMGRCPSP. This approach applies evolutionary algorithm techniques to provide

a heuristic solution methodology for problems that for reasons of size or lack of structure are not

suitable for the exact methods developed in this dissertation.

There are several evolutionary algorithm approaches to resource constrained project schedul-

ing available in the literature. However, none of these approaches offer the combination of multi-

modal activities and generalized precedence constraints that is necessary for the air campaign

planning model developed in this dissertation. Fortunately, Hartmann provides an evolutionary

algorithm for the MMRCPSP formulation [35].

Since Hartmann's evolutionary algorithm stochastically searches the same solution space that is

implicitly enumerated by Sprecher's algorithm, no further work is necessary to show that Hartmann's

approach may be extended to include generalized precedence. The proof offered for the subproblem

solution algorithm applies directly to the evolutionary algorithm efforts. Once the mechanics of the

extended evolutionary algorithm have been defined, the approach is implemented in C, allowing

empirical tests to be performed.

Beyond its value as a heuristic alternative to exact solution methodologies, the evolutionary

algorithm developed in this dissertation provides a means of developing a hybrid decomposition

approach that may reduce the solution time required for large problem instances. The standard

decomposition approach developed in this dissertation requires repeated solution of the subproblems

in order to use parametric analysis to estimate Lagrangian multiplier values. The same parametric

analysis may be performed using the evolutionary algorithm to obtain the same type of estimates

52

at a much smaller cost in terms of computation time. The hybrid decomposition approach is

implemented in C, allowing empirical tests to be performed.

3.2.4 Test and Evaluation. The testing performed in this dissertation is accomplished in

three phases. In the first phase, the basic subproblem solution algorithm is applied to a wide range of

test problems in order to evaluate its performance on various types of problems. As each additional

block of research is presented, further testing is conducted to estimate the reduction in solution time

offered by each extension to the basic subproblem solution methodology. The final phase of testing

consists of a case study that demonstrates the applicability of the solution methodologies to a large

combat planning problem.

In all but the final phase of testing, the test problems are generated using ProGen, a problem

generator for project scheduling problems developed by Kolisch, Sprecher, and Drexl [50, 51]. This

program, presented in 1995, has become the standard for generating project scheduling test prob-

lems. Three parameters that may be used to characterize resource constrained project scheduling

problem instances are resource demand, resource availability, and precedence constraint network

density. ProGen provides the ability to automatically generate test problems that exhibit whatever

levels of these parameters are of interest. With this ability, ProGen may be used to generate sets of

test problems that span the possible levels of these parameters in order to determine what parame-

ter levels lead to the the most difficult problem instances [12]. However, ProGen does not generate

problems with generalized precedence relations. It is necessary to transform the precedence relations

in the test problems provided by ProGen in order to obtain sample MMGRCPSP instances.

The final phase of testing involves a case study. The case study discusses how to formulate

a MMGRCPSP from the data available in an actual air campaign planning scenario. However,

the problem that is investigated in the case study is a notional example. The example problem is

generated in order to demonstrate several different approaches to problem decomposition and several

different applications of generalized precedence constraints. The hybrid decomposition approach is

applied to the example problem to obtain the optimal solution along with a number of near optimal

solution alternatives and several criteria are presented to discriminate among near optimal solutions

on the basis of resources utilization.

53

3.3 Summary

This chapter presented an overview of the methodology of this dissertation. The air campaign

planning model formulation was described in detail and the solution methodologies developed for this

model were summarized. Chapter IV presents the results of the first block of research, developing

a subproblem solution algorithm. The algorithm from the literature that serves as the basis for the

subproblem solution algorithm is described, an implicit enumeration approach for the MMGRCPSP

is developed, and empirical results are obtained by applying the approach to representative sets of

test problems.

54

IV. Subproblem Solution Algorithm

Any attempt to apply decomposition techniques to MMGRCPSP instances requires a method for

solving the subproblems. These subproblems are merely smaller instances of the original MMGR-

CPSP being decomposed. With this in mind, the subproblem solution algorithm must be able to

solve small to moderate size MMGRCPSP instances as rapidly as possible. The subproblem solution

algorithm must also be able to generate the top k solutions for each subproblem in order to form

the k-best solution sets required for the Sweeney-Murphy integer program decomposition method.

This chapter presents an algorithm for solving the subproblems of a decomposed MMGR-

CPSP instance. The algorithm is an implicit enumeration approach based on a similar approach

proposed by Sprecher [79]. To solve the MMGRCPSP subproblems, Sprecher's algorithm is ex-

tended to deal with problems having generalized precedence constraints. Sprecher's algorithm is

also extended to generate the k-best solution sets required by the Sweeney-Murphy algorithm. The

resulting subproblem solution algorithm is applied to test problems to investigate the relationship

between problem solution time and the value of certain parameters that govern the complexity of

MMGRCPSP instances.

4.1 Extending Sprecher

The RCPSP has received a great deal of attention in the literature. Many algorithmic and

heuristic approaches have been presented for the numerous variants of this general problem. Recent

research in this area has focused on the multi-modal formulation of the problem, the MMRCPSP.

This effort looks at a variant that includes activities with both multiple execution modes and

generalized precedence constraints, the MMGRCPSP. Specialized algorithms have been developed

to handle activities with multiple execution modes and standard end to start precedence relations,

but a review of the literature has not revealed research addressing multi-modal activities with

generalized precedence constraints [13].

A transformation may be applied to convert the precedence constraints in any project schedul-

ing problem from the generalized form to the standard form by breaking each of the original project

activities up into several smaller component activities. Unfortunately, the resulting problem for-

mulation of such a division of activities requires more constraints and variables than the original

55

formulation. If the additions are not too numerous, existing specialized algorithms may be applied

to such a larger formulation. While specialized algorithms may solve this expanded problem for-

mulation faster than a standard integer program solver could solve the original, smaller problem

formulation, the increase in variables and constraints limits the scale of problems that may be ap-

proached. The goal of this section is to develop a specialized algorithm for the MMGRCPSP itself

rather than reformulating it as a larger MMRCPSP and using existing algorithms.

A review of the literature shows that although there is no specialized algorithm available

for the MMGRCPSP, there are many algorithms available for other variants of the RCPSP. Of

the algorithms available, Sprecher's algorithm addresses more aspects of the MMGRCPSP than

any of the others, and therefore provides a good starting point for developing a subproblem solution

algorithm for the proposed decomposition approach. Sprecher's algorithm is an implicit enumeration

approach and is currently the fastest exact algorithm available in the published literature for the

MMRCPSP [72, 80]. The following sections address how Sprecher's algorithm is extended to include

k-best solution sets, generalized precedence constraints, and regular performance measures other

than makespan.

4.1.1 Convergence. Sprecher, Kolisch, and Drexl review several standard job shop problem

definitions, then extend and formalize them for the RCPSP [82]. These definitions, given below, are

extended here to address the issue of multiple execution modes and are necessary for a discussion

of the convergence of Sprecher's implicit enumeration algorithm.

Definition 1 Consider a project with J multi-modal activities. Let STj and mj represent the start

time and execution mode of activity j, respectively. A schedule, S = (S, M), is a combination of

two J-tuples, S = (ST1,..., STj) and M = (mi,... , mj), where S and M provide the start time

and execution mode for every project activity j, where j = 1,..., J.

Definition 2 Consider a feasible schedule S = (S, M). A left shift of activity j, 1 < j •_ J, is an

operation on the J-tuple of start times, S, which derives some new feasible J-tuple of start times,

S', such that ST <STj and ST[= STi for i, where i = 1,...,J and i 5 j.

Definition 3 A left shift of activity j, 1 < j < J, is called a one-period left shift, if STj - ST = 1.

56

Definition 4 A local left shift of activity j, 1 < j < J, is a left shift of activity j which is obtainable

by one or more successively applied one-period left shifts of activity j.

Definition 5 A global left shift of activity j, 1 < j < J, is a left shift of activity j which is not

obtainable by a local left shift.

Definition 6 A semi-active schedule is a feasible schedule, where none of the activities j, 1 < j •

J, can be locally left shifted.

Definition 7 An active schedule is a feasible schedule, where none of the activities j, 1 < j < J,

can be locally or globally left shifted.

RCPSP implicit enumeration algorithms like Sprecher's build solutions incrementally as they

explore deeper into the solution tree. At each level i of the tree, some activity gi is scheduled

to begin execution in mode min at time STgi. At all but the final stage of the algorithm, only a

subset of the project's activities have been scheduled. The scheduling information for this subset of

activities is called a partial schedule and is defined as follows:

Definition 8 For some i < J, an i-partial schedule PSi is an i-tuple of quadruples

1 2 ... i

Psi g1 2 *'" gi

m 9 1 m 9 2 ... mi

STg9 STg, ... STg,

where (j, gj, m9j, ST9,) outlines that on level j, activity gj is scheduled to begin execution in mode

M.9 at time STq,.

Definition 9 Let PSi be an i-partial schedule. Now, consider the schedule S' = (S', M'), where

S' = (ST, , STj) and M' = (m,,...., inj). Schedule S' is called a completion of the i-partial

schedule PSi if m',k = m., and ST' = STg, for all k i.

Two additional definitions are required before the convergence of Sprecher's algorithm may

be discussed. The first definition describes the type of solutions the algorithm implicitly enumerates

57

and the second defines the class of performance measures for which the algorithm is guaranteed to

converge.

Definition 10 Consider a permutation of all activities 1,...,J denoted by the J-tuple ! = (gl,. . .,gj).

Let S = (8, M) be a feasible schedule where the activity start times are obtained by considering the

activities individually in the sequence defined by ! and scheduled to begin execution in the mode

defined by M at the earliest possible time such that no precedence or resource constraint is vio-

lated and STgi <_ STgi+ for all i = 1,..., (J - 1). The schedule S is called an active permutation

schedule.

Definition 11 Consider a scheduling problem where the objective is to minimize b, a measure of

schedule fitness. Let S = (S, M) be a feasible schedule for the problem and let d(S, M) represent

the fitness of schedule S. 4ý is called a regular measure of performance if P(S, M) < ((S', M)

implies that STj < ST for at least one j, j e {1,..., J}.

The variable and parameter definitions in Table 3, along with Equations (61) through (66) in

Figure 10, give the complete formulation of the MMGRCPSP used in this dissertation. The signif-

icant difference between this formulation and Sprecher's MMRCPSP formulation is the statement

of generalized precedence relations given by Equation (64).

Sprecher's algorithm implicitly enumerates every feasible active permutation schedule for a

given problem [79]. Sprecher shows that his implicit enumeration algorithm converges to optimality

for any regular measure of performance by proving that if a problem is feasible, it must have an

active permutation schedule that is optimal. His proof uses the properties of standard end to start

activity precedence to show convergence. For this reason, the proof does not apply directly to the

MMGRCPSP. It is necessary to prove that an extension of Sprecher's algorithm for generalized

precedence is still guaranteed to converge.

The task at hand is to develop a solution algorithm for the subproblems of the decomposi-

tion method proposed in this dissertation. Since the subproblems are merely smaller instances of

the complete MMGRCPSP being decomposed, the form of these subproblems is the same as that

given in Table 3 and Figure 10. If the subproblems of the decomposition had standard precedence

requirements, Sprecher's algorithm could be used as he originally developed it. Since this is not the

58

Table 3 MMGRCPSP Model Definitions
A the set of all activities
d the index of the terminal activity

eim the earliest start for activity i in mode m

Ii. the latest start for activity i in mode m
Mi the set of all execution modes for activity i
Tim the duration of activity i in mode m
Si the set of generalized successors of activity i

Aijmn the minimum lag between the start time of

activity i in mode m and the start time of
activity j C Si in mode n

K the set of all doubly constrained resources
Timk the number of units of resource k required by

activity i when being executed in mode m
Rk the per period availability of resource k
Nk the total amount of resource k available
g the deadline for the project under consideration

Ximt 1 if activity i starts in period t using mode m

'dm

Minimize E (t + Tdm)Xdmt (61)
mEMd

t -edm

lir

Subject to E rimkXimt < Nk V k c K (62)
iEA mEMi t=eim

Z Y rimkXimt _ Rk V k c K (63)E YM E -i~nl E [1,g9]
iEA mEM2 t= 3 12 rim+I

tinm' tr.l i i E A

Z : (Aijm'n -t)Xjnt + 1 fXim't gX:aimt V j E Si (64)
nEMj t=ejn t=eiml mE(Mi\m') t=eim m I E Mi

lim

Y Ximt = 1 iEA (65)
mEMi -Ceim

Ximt E {,O1} V m E Mi (66)
1t E [eim,Ii.]

Figure 10 MMGRCPSP Model Formulation

59

case, Sprecher's algorithm must be extended to handle the generalized precedence relations found

in this study's subproblems.

The extended algorithm presented here, like Sprecher's algorithm, implicitly enumerates every

active permutation schedule for a given problem. To guarantee convergence, it is necessary to prove

that for every feasible problem, there exists an active permutation schedule that is optimal for

that problem. As long as the algorithm's bounding rules only prune dominated branches from the

solution tree, the algorithm is guaranteed to converge.

There could be a problem establishing convergence for the formulation in Figure 10. The

generalized precedence constraints expressed by Equation (64) allow for an activity i to have some

other activity j as both a predecessor and a successor if the corresponding lags are both equal

to zero. Such a precedence condition represents an activity pair (ij) that is constrained to have

simultaneous start times. While this is a valid constraint, its use in the problem formulation would

make it possible for a feasible problem to have no active permutation schedule that is optimal.

This is due to the fact that when constructing an active permutation schedule, the feasibility of an

activity's start time is only checked with respect to its predecessors, not its successors.

To deal with the problem posed by the possibility of simultaneous start time constraints, the

following restriction is placed on the generalized successor sets, Si.

itSjES, ViEA

This restriction prohibits an activity j from being both predecessor and successor to any other

activity i. The disadvantage of imposing this restriction is that simultaneous start time constraints

can no longer be modeled. It is possible to finesse this difficulty by modeling two or more activities

with simultaneous start times as a single activity with aggregate resource requirements. In this way,

the simultaneous start time condition can be modeled and the extended algorithm is still guaranteed

to converge to optimality. With the simultaneous start time restriction in place, it is possible to

prove that an extension of Sprecher's algorithm for generalized precedence constraints converges for

any feasible problem instance.

The first step in proving convergence for an extended Sprecher algorithm is to prove the

existence of an optimal active permutation schedule for every feasible problem instance. This is

60

Table 4 Existence Theorem

Theorem If P is a feasible MMGRCPSP with a regular performance measure for an objective
function, then there exists an active permutation schedule that is optimal for P.

Proof:
Let P be a MMGRCPSP with objective function 4b, a regular performance measure.
If P is feasible, then 3 some schedule S = (S, M) that is optimal for P.
Assume S is not an active permutation schedule and show that 3 an

active permutation schedule S' = (S', M) such that 4I)(S', M) < I)(S, M).
Set S'= =S (STf =STi Vi= 1,...,J).
Let PSi, i = 1,..., J, be the partial schedules that S' completes.
Since S' is not an active permutation schedule, 3 at least one PSi that is not an

active partial schedule.
Let k be the lowest index among the inactive partial schedules of S'.

We know that PSk is not an active partial schedule of S'.
= 3 at least one left shift (Is) for activity k in PSk.
Let LSk be the set of all possible left shifts for activity k in PSk.
Set STk to the minimum start time for activity k over all Is E LSk.
We need to show that S' is still feasible after the left shift of activity k.
To show feasibility, we must consider the following two cases.
Case 1: Consider the feasibility of an activity i where i C PSk.

A left shift was performed on activity k in partial schedule PSk.
By definition, a left shift operation results in a feasible schedule.
Therefore, the resulting partial schedule, PS', is feasible.

Case 2: Consider the feasibility of an activity i where i V_ PSk.
Activity i was feasible in S' before the left shift to activity k.
The only resulting schedule change is a new start time STk' < STk.
Since i V PSk, i is either a successor of k or they have no precedence relation.
If i E Sk, STk• < ST"' : STk' < STk• < ST'.
Therefore, activity i is precedence feasible after the left shift.
Let 0' be the span of time that activities i and k overlap in S'.
Let 0" be the span of this overlap after the left shift of activity k.
Since STk' < STk' < ST' and activity durations are unchanged, 0" C 0'.
Activity i was resource feasible before the left shift and 0" C 0'.
Therefore, activity i is resource feasible after the left shift.
Activity i is both precedence and resource feasible after the left shift.

If there are still inactive partial schedules, repeat logic for the lowest index, k.
When there are no more inactive PSi, let 9 = (gi,...,gj) be a permutation of all

activities 1,..., J such that ST < ST.i+1 Vi= 1,..., J- 1.
The schedule (S', M) is a feasible active permutation schedule with permutation 9.
4t is a regular performance measure and ST"' • STi V i E A so I)(S', M) •< tI(S, M),

but S is optimal so i(S',AM) >_ t(S, M) =# (I(S', M) = $(S, M).
=> Schedule S' = (S', M) is an optimal active permutation schedule for P.
Therefore, 3 an optimal active permutation schedule for any feasible P.

61

done by showing that for any feasible problem instance, it is possible to take an optimal schedule

and transform it using left shift operators. The transformation results in an active permutation

schedule that, due to the properties of regular measures of performance, has the same objective

function value as the original schedule. Since the active permutation schedule resulting from the

left shift transformation has the same objective function value as the original optimal schedule, it is

an optimal active permutation schedule, and existence has been shown. The details of the existence

proof are given in Table 4. After the extended algorithm is presented, a convergence proof is given.

4.1.2 Preprocessing. In the development of his algorithm, Sprecher focused primarily on

problems with the objective of minimizing the overall project makespan. He used the latest activity

start and finish times to show dominance and to fathom, or prune, branches in his search tree. The

latest start and finish times for all activities are determined before the algorithm is begun and then

adjusted each time a new solution is found. The initial values are found by setting the latest finish

time for the terminal activity to an upper bound on project makespan and then making a CPM-type

backward pass to obtain the latest start and finish times for all of the project activities.

In Sprecher's algorithm, every time a solution is found that is better than the current best

solution, it represents a tighter upper bound on the optimal project makespan and the latest activity

start and finish times are adjusted accordingly. Since these values are obtained without consideration

for the availability of limited project resources, they are optimistic, but not necessarily feasible,

estimates. However, they require very little computation time to generate, thus allowing quick

evaluation of nodes in the search tree.

The extended Sprecher subproblem solution algorithm is applied to problems with objectives

other than makespan, but the latest activity start and finish times still play an important role in

establishing upper bounds for any regular performance measure. Although the straight-forward,

CPM-based approach Sprecher uses to obtain these values does not apply once generalized prece-

dence is considered, similar logic can be applied to develop an algorithm for generating latest activity

start and finish times under generalized precedence. Table 5 provides definitions for some additional

parameters that are required by the preprocessing algorithm that obtains these values.

Along with the definitions given in Table 5, the preprocessing algorithm requires several

assumptions. First, the algorithm assumes that for each activity, the execution modes are stored

62

Table 5 Preprocessing Algorithm Definitions
Pi the set of generalized predecessors of activity i
T the upper bound on the optimal project makespan

LSi the upper bound on the latest start time for activity i
LFi the upper bound on the latest finish time for activity i
A' the set of all scheduled (labeled) activities
A' the set of all eligible activities

in ascending order. This means that ril is the shortest possible duration for activity i. Second, it

is assumed that activity 1 is the only activity that has no predecessors and that activity J is the

only activity that has no successors. Dummy activities can be used to insure that this assumption

is met. Finally, the initial upper bound on the optimal project makespan requires the assumption

that Aijmn •_ rim for all predecessor/successor pairs (i,j) and every possible combination of modes

(m, n). If this last assumption is not met, the algorithm is still applicable, but the initial upper

bound on the optimal project makespan must be modified to insure that it covers the absolute worst

case. This could be accomplished by increasing T by maxmEM,nEMj {Aijmn - Tim} for every (i, j)

predecessor/successor pair that violates the assumption that Aijmn < Tim.

Table 6 Preprocessing Algorithm
Step 1: (Find an initial upper bound for the optimal project makespan)

Set T = Z-i=l maxmEMi{fim}•

Step 2: (Initialize)
Set LFj = T, LSj = T - rgl, AS = {J}, and Ae = Pj.

Step 3: (Set the upper bounds for an eligible activity)
Let i be the highest activity index in the set A'.
Set LSi = maxmEM {minjES, {LSj - minnEM3 { Aijmn}}}.

Set LFi = maxmEM,{minjESi{LSj - minnEMj{Aijmn}} + Tim}.
Step 4: (Update accounting sets and iterate until finished)

Set AS = AsU{i} and A" = {AC\{i}}U{j:j E Pi,SjA)}.
If i 5$ 1, go to Step 3.

Table 6 shows the preprocessing algorithm that obtains latest start and finish times for every

activity in a given project. Step 1 of the algorithm finds the worst case optimal project makespan

by assuming that the nonrenewable resource levels are such that every activity must execute in

its longest duration mode and the renewable resource levels prohibit any activities from executing

concurrently. As mentioned previously, if Aijmn > Tim for any (i, j) predecessor/successor pairs,

63

the upper bound must be adjusted accordingly to be sure to account for the absolute worst case

schedule.

The preprocessing algorithm makes a pass through a project's set of activities starting at the

terminal activity and working backward, labeling an activity with latest start and finish times only

after all of its successors have been labeled. Step 2 of the algorithm labels the terminal activity and

initializes Ae, the set of activities that are eligible to be labeled, and A 8, the set of activities that

have already been labeled. The latest finish time for the terminal activity is set to the upper bound

on the optimal project makespan and the latest start time is obtained by subtracting the terminal

activity's shortest duration time from its latest finish time. At initialization, set A8 includes only the

terminal activity and the set Ae includes only those activities that are the immediate predecessors

of the terminal activity.

The main iteration of the algorithm occurs in Steps 3 and 4 where some activity i is selected

from the eligible set. Activity i is labeled with latest start and finish times and then moved from

the eligible set to the labeled set. Any predecessors of activity i are then added to the eligible set if

all of their successors have already been labeled. During each iteration, the latest start and finish

times for activity i are found by considering all combinations of execution modes for activity i and

its immediate successors. The algorithm terminates when all of the project's activities have been

labeled.

4.1.3 The Basic Algorithm. Once the preprocessing algorithm (described in Table 6) has

been run, the basic tree search algorithm implicitly enumerates every possible active permutation

schedule in approximately the same manner as Sprecher's algorithm. The major differences are that

data structures are added to keep track of the top k solutions encountered and that the bounding

procedure accommodates both generalized precedence and regular measures of performance. The

basic algorithm, described in Table 7, uses only a simple upper bound for pruning dominated

branches from the search tree. Sprecher has developed several more complex bounding strategies

that accelerate the execution of his algorithm. Some of these acceleration schemes are applicable to

the extended algorithm and are addressed in later sections.

The extended algorithm shown in Table 7 implicitly enumerates every resource and precedence

feasible active permutation schedule for a given MMGRCPSP. Since the goal of the algorithm is to

64

Table 7 Basic Extended Sprecher Algorithm
Step 1: (Find an initial upper bound for the optimal solution)

The bound that is used for pruning dominated branches is the value of the
current kth best solution so obtain k feasible solutions by either searching
the tree or by use of some heuristic method.

Step 2: (Initialize)
Initialize the available renewable, nonrenewable, and doubly constrained resources.
Let i be the current level and set i = 1.
Let gi be the activity scheduled on level i and set g, = 1.
Set AS = 0, A' = 0, and m.1 = 0.
For completeness, set go = 0 and STgo = 0.

Step 3: (Identify the next branch to consider)
If mgi < 1MgiI, set mgi = m9 i + 1 and go to Step 5.
If Aq i 0, choose gi E Aq, then set Aq = Aq \{gi}, set mqi = 1, and go to Step 5.

Step 4: (Backtrack up one level)
Set i=i-1 andif i=0, STOP.
Set A' = A' \ {gi} and adjust the available resources.
Go to Step 3.

Step 5: (Attempt to schedule activity gi in mode min)
Let ESq, be the earliest precedence feasible start time for activity g9 in mode mgn.
Set ESg, = max(STl_-, f{STj + Ajgimjmg, : j E Pgi})"

Find t, the earliest resource feasible start time for gi in mode mn such that
ES9 i < t < LFg - rimgi.

If no t E [ES2 ,,LFq, - im.g,] is resource feasible or if, given ST9 , = t, the best

completion to PSi is dominated by the current bound, go to Step 3.
Set STi = t, A' = AS U {gi}, and adjust the available resources.
If i = J, go to Step 7.

Step 6: (Set up the next level)
Set i=i+l andAq = {jj:jVAs,Pj _As}.
Choose gi E Aq, then set Aq = Aq \ {gi} and ig, = 0.
Go to Step 3.

Step 7: (Store the new solution)
Remove the kth best solution from the k-best solution set and add the new solution.
Set the upper bound for pruning to the value of the new kth best solution.
Set A' = A' \ {gi} and adjust the available resources.
Go to Step 3.

65

find the k-best solutions, the algorithm uses the objective function value of the kth solution to prune

dominated branches. In Step 1 of the algorithm, k feasible solutions can be externally supplied to

allow the algorithm to begin pruning branches immediately. The better these k initial solutions,

the tighter the initial bound, and the faster the algorithm can converge. If no initial solutions are

supplied, the algorithm traverses the solution tree without pruning any branches until k feasible

solutions have been observed and recorded. Once the kth feasible solution has been found, pruning

may begin.

In Step 2, the data structures that control the algorithm's execution are initialized. The

variable i keeps track of what level of the solution tree the algorithm is currently investigating. As

discussed previously, one activity is scheduled at each level so the greater the value of i, the more

activities are included in the current partial schedule. The initial value of i is 1. The variable gi

identifies the activity that is scheduled at level i in the current partial schedule. It is assumed that

activity 1 is the only activity without any predecessors so the initial value for g, is 1. The variable

mi identifies the mode that activity gi is scheduled in at level i of the current partial schedule. The

set A' is the set of activities included in the current partial schedule and is initially empty. The set

Aq is the set of activities that are eligible for scheduling at level i in the current partial schedule

and initially, the set A' is empty.

At a given level of the solution tree, i, there is a fork for every mode of every activity in the set

of eligible activities, Aq. The algorithm keeps track of which of these forks have been explored or

pruned and which are candidates for further exploration. In Step 3, the algorithm selects the next

unexplored/unpruned fork for branching, sets the variables gi and mgi to the activity and mode

number that correspond to the selected fork, and then moves on to Step 5. If all of the forks at

the current level have been explored or pruned, the algorithm moves to Step 4 where activity gi is

removed from the set of scheduled activities, the associated resources are freed, and the algorithm

moves up one level in the solution tree and goes back to Step 3. The algorithm cannot move up a

level from level 1 so the algorithm terminates in Step 4 if the current level is 1.

Once a fork has been selected, the algorithm attempts to schedule activity gi in mode mg, at

level i in the current partial schedule. If a feasible start time cannot be found, the current fork is

considered pruned and the algorithm returns to Step 3 to select a different fork to explore. If a

66

feasible start time can be found, STg. is set equal to the earliest resource and precedence feasible

start time for activity gi in mode mg• at level i in the current partial schedule. If the most optimistic

completion (MOC) of the current partial schedule (including activity gi) is bounded by the objective

function value of the current kth best solution, the the current fork is considered pruned and the

algorithm returns to Step 3.

The process of finding the most optimistic completion of a partial schedule depends on the

objective function being used. For a simple makespan objective function, the MOC can be expressed

as maxjEps,{STj + (LFj - LSj)}. The other objective function that is used in this dissertation

is makespan weighted by resource cost. The MOC for this objective function is found by adding

the cost of the resources used by the activities in the current partial schedule and the cost of the

resources for the most efficient mode of each activity not in the current partial schedule to the most

optimistic makespan.

If activity gi can be feasibly scheduled in mode mgq without being bounded, it is scheduled

to start execution at STg2 at level i of the current partial schedule. Activity gi is then added to the

set AS and the available resources are decremented according to the resources required by activity

gi in mode ing,. If the current partial schedule includes all of the project activities, the algorithm

moves to Step 7 to store the new solution. If there are still activities that need to be scheduled, the

algorithm goes to Step 6 to move a level deeper into the solution tree.

Moving a level deeper into the solution tree, Step 6 of the algorithm fills the data structures

that contain all of the possible forks given the current partial solution. The variable i is incremented

to reflect the new level and the set AX is populated with every unscheduled activity for which all

predecessors are already included in the current partial schedule. At level i, there is a fork for

every execution mode of every activity included in the set AX. After the forks have been set up, the

algorithm moves on to Step 3 where a fork is selected to be explored.

When the current partial schedule gets to the point where it includes every project activity, a

feasible solution has been found and the objective function value of that solution is at least better

than the current kth best solution. At this point, Step 7 of the algorithm inserts this new solution

into the appropriate position in a sorted list of the current k best solutions. The solution that was

previously ranked kth is dropped from the list and the new kth best objective function value becomes

67

the new bound for pruning dominated branches. After the new solution is recorded, activity gi is

removed from the current partial schedule, the resources it required are freed, and the algorithm

returns to Step 3 where a new fork is selected for exploration.

By following the steps outlined in Table 7, the extended algorithm implicitly enumerates every

active permutation schedule for a given MMGRCPSP problem instance. As the solution tree is

traversed, the algorithm maintains a list of the top k solutions found and only prunes branches that

are bounded by the objective function value of the current kth best solution. It is already proven

that there exists an optimal active permutation schedule for every feasible problem instance. To

show convergence, it is now necessary to prove that the algorithm does not prune any nondominated

solutions from the solution tree. The details of the convergence proof are given in Table 8.

Table 8 Optimality Theorem
Theorem If P is a feasible MMGRCPSP with a regular performance measure for an

objective function, the best solution found by the extended Sprecher
algorithm is an optimal solution for P.

Proof:
Let P be a feasible MMGRCPSP with objective function 4P, a regular measure

of performance.
P must have an optimal active permutation schedule (Existence Theorem).
=# The best active permutation schedule is optimal for P.
We need to show that the extended Sprecher algorithm obtains the best active

permutation schedule for P.
The algorithm tracks the best solution found, but not all solutions are examined.
Let S be the best active permutation schedule found by the extended algorithm.
Suppose 3 an active permutation schedule S' that is lower than S.
(D(S') < -P(S).

If S' was not found by extended Sprecher, S' must be a completion of one of the
partial schedules that was pruned from the solution tree.

But we know that the extended algorithm only prunes partial schedules if the best
possible completion is dominated • O(S') > P(S).

This is a contradiction.
Therefore, extended Sprecher must find the best active permutation schedule for P.
Since the best active permutation schedule is optimal, the extended algorithm
has found the optimal solution.

4.1.4 Acceleration Schemes. Sprecher describes several additional bounding rules that

can be implemented to reduce the computation time required to solve a given problem [79]. Some

68

of these rules do not apply to the MMGRCPSP. However, the following four bounding rules are

directly applicable to the extended algorithm as outlined in the previous sections.

Bounding Rule 1 If at some level in the solution tree, say level i, some eligible activity gi G Aq

cannot be feasibly scheduled in any mode, then there exists no feasible completion to the current

partial schedule PSi. For this reason, all forks at level i may be pruned and the algorithm can

backtrack up one level in the solution tree.

Bounding Rule 2 Consider the following two active partial schedules.

1 2 ... i i+1 i+2
gl 92 •1 92 gi gi+1 gi+2

PSi+2=(

m91 m92 .mi mgi+l mgi+2

STg' ST'2 ... STa, STg,+1 STy,+2

(1 2 ... i i+1 i+2

PSi+2= 1 92 ... gi gi+l gi+2

ST51 ST9 2 ... STT T+ STT3 +2

Now, suppose that gj = Vj, min9 = T5, and STg, = STT3 for all j=1,...,i.

Suppose further that gi+1 = gi+2, gi+2 = gi+, img+l = 75i+2 , mgi+ 2 = mi+, STgi+1 =

STyi+2, and STgi+2 = -ST2 +,.

Given these conditions, the partial schedules PSi+2 and PSi+2 are essentially the same. They

include the same subset of activities, executing in the same modes, at the same times, and consuming

the same resources. Therefore, they have the same set of feasible completions and if the algorithm

encounters this situation, only one of the two forks needs to be explored.

Bounding Rule 3 Let i be the current level in the solution tree and let t be the earliest resource

and precedence feasible start time for eligible activity gi, in mode mgi , in the current partial schedule

PSi. If t < STi- 1, then the fork associated with activity gi and mode mgi at level i in the solution

tree is dominated and may be pruned.

69

Bounding Rule 4 Let Nk(PSi) be the nonrenewable quantity of resource k still available after

scheduling the subset of activities included in partial schedule PSi. Let -S be the set of activities

that are not included in partial schedule PSi. If Nk(PSi) < E,-• minmEM1 {rjmk} for any resource

k E K, then there is no resource feasible completion to the current partial schedule PSi and the

current fork may be pruned from the solution tree.

Table 9 shows how Step 5 of the basic extended algorithm is modified to implement all four

of the new bounding rules along with the simple dominance rule used previously. Bounding Rules 3

and 4 are added with simple checks that require no additional algorithm data structures. For these

two rules, the algorithm simply compares the earliest resource and precedence feasible start time

for activity gi with the start time of activity gi-1 in the current partial schedule.

Table 9 Step 5 for the Accelerated Algorithm
Step 5: (Attempt to schedule activity gi in mode Min)

Let ESgj be the earliest precedence feasible start time for activity gi in mode mqin.

Set ESgi = max{S T j + Ajg~mjmjmg j E Pg,}.
Find t E [ES9 ,, LFg, - rim], the earliest resource feasible start for gi in mode mgi.
If no t E [ESg,, LFgi - rim9 .] is resource feasible, set status of current fork to -1.

Then, if gi is not schedulable in any mode, go to Step 4, else go to Step 3.
If t < STgi,_, set status of current fork to -1 and go to Step 3.
If t = ST 9,_1 and status of the fork for activity gi in mode mi, at level i1 is0,

set status of current fork to -1 and go to Step 3.
If there is no resource feasible completion of the current partial schedule,

set status of current fork to -1 and go to Step 3.
If, given STg, = t, the most optimistic completion for PSi is dominated,

set status of current fork to -1 and go to Step 3.
Set fork status to 1, ST91 = t, A8 = AS U {gi}, and adjust the available resources.
If i = J, go to Step 7.

If gi can feasibly begin execution prior to the start time of activity gi-j, then the conditions

of Bounding Rule 3 have been met and the current fork may be pruned. If the earliest start for

activity gi is later than the start time for activity gi-1, then the algorithm computes the minimum

nonrenewable resource demand for the activities not yet included in the current partial schedule. If

there is not enough available resources to meet this minimum demand, the conditions of Bounding

Rule 4 have been met and the current fork may be pruned.

The mechanics of the basic algorithm require a set of possible forks be maintained at every

level of the solution tree. Each fork is associated with an activity/mode combination that could

70

be scheduled at that level. Bounding Rules 1 and 2 require that one additional data element, fork

status, be recorded for every fork. Each time the algorithm initializes a new level of the solution

tree (Step 6) the status of all forks at this level is initialized to 0. When a fork is explored, its

status is then changed to 1 if it was possible to schedule the activity/mode combination, or -1 if

the activity/mode combination could not be scheduled.

In the new Step 5 of the extended algorithm, whenever it is not possible to schedule an

activity/mode combination, the algorithm considers the status of all of the forks associated with the

same activity at that level. If the status of all of these forks is -1, it indicates that the activity

cannot be scheduled in any mode at the current level. This meets the conditions of Bounding Rule

1 and allows the algorithm to backtrack up one level in the solution tree.

The conditions of Bounding Rule 2 are met in Step 5 if the earliest resource and precedence

feasible start time for activity gi in mode in9 i is the same as the start time for activity gi-1 in the

current partial schedule. When these conditions are met, the algorithm considers the status of the

fork associated with activity gi, in mode m9 i, at level i - 1. According to Bounding Rule 2, that

fork contains the same set of feasible solutions as the current fork. If the status of that fork is 0, it

has yet to be explored and the current fork can be pruned.

4.1.5 Testing. In this section, the extended Sprecher algorithm is applied to a number of

test problems to observe the computation time necessary to solve different problems instances and

to determine how changes in problem parameters affect solution time. The algorithm is coded in

C and the results are reported as solution time in seconds. The test runs are made on a 486DX66

processor with the C function gettimeof day used to mark the time the algorithm begins and ends

execution. The solution time for each run is measured to the nearest one hundredth of a second.

The parameters used to describe specific problem instances are grouped into two distinct

categories, size parameters and complexity parameters. The number of activities in a project directly

affects the number of variables necessary to model the project. The density of the underlying

precedence network in a project directly affects the number of constraints necessary to model a

project. Since it is obvious that these parameters influence the size of the formulation necessary to

model a project, they are good examples of size parameters.

71

It is relatively easy to postulate on the affect a change in a size parameter has on problem

solution time. Later sections focus on how large a problem instance may be before solution time

becomes prohibitive. The testing in this section, however, is more concerned with applying the

algorithm to problem instances of a standard size and determining which instances take the most

time to solve. With this in mind, the sets of test problems are constructed to allow for the study of

the three significant complexity parameters identified by Sprecher: resource factor (RF), periodic

resource strength (PRS), and total resource strength (TRS) [80, 81]. These three parameters

together quantify the demand for and availability of project resources.

The problem generator ProGen allows these parameters to be set to any value in the range

[0, 1] and generates a number of sample problems with resource complexity within a given tolerance

of the values specified [51, 50]. For simplicity of illustration, assume that every activity in a given

project has the same total number of execution modes. Let J be the number of activities in a

project, let K be the number of resources, and let M be the number of modes for each activity. The

resource factor parameter is defined as follows.

11 1 1 if rimk 0

"i=1 k=1m=1 0 otherwise

The equation for the complexity parameter RF clearly shows that this parameter is a measure

of the number of different resources required by the average activity/mode combination. A resource

factor of 1 indicates that every mode for every activity requires a nonzero quantity of every project

resource while a resource factor of 0 indicates that every mode for every activity requires absolutely

no project resources. ProGen accepts any value in the range [0, 1] for this parameter and randomly

sets, then iteratively adjusts, the resource demand values, rimk, until the observed resource factor

is within some acceptable tolerance of the value specified.

The other two complexity parameters of interest, PRS and TRS, are both measures of re-

source availability for a given set of resource demand values, rimk. The difference between the two

is that PRS quantifies the periodic resource availability while TRS quantifies the total resource

availability. Based on the resource demand values it has already generated, ProGen derives values

for the minimum and maximum resource availability, both periodic and total, for every project

72

resource. Let R"', R"', and Rk, be the minimum, maximum, and actual periodic resource

availability for project resource k and let Nk'n, Nka, and Nk, be the minimum, maximum, and

actual total resource availability for project resource k. Given these definitions, the equations for

the complexity parameters PRS and TRS are given as follows [51, 50].

Rk - Rmin
PRS = Rm ax _mi

Nk - kin_
TRS Nm~ax - Npnin

The problem instances generated by ProGen may be either resource rich or resource poor

depending on the values specified for these complexity measures (periodic resource availability and

total resource availability). As the actual availability gets close to the maximum, resource strength

gets close to 1, and as availability approaches the minimum, resource strength goes to 0. ProGen

accepts values in the range [0, 1] for each of these parameters, setting the resource availability in

the problem instances it generates accordingly. Renewable resource availability is only affected by

the parameter PRS, and nonrenewable resource availability only uses TRS, but doubly constrained

resource availability is affected by both.

To illustrate a MMGRCPSP instance and its k-best solutions, the first set of results report

on the application of the extended Sprecher algorithm to one small sample problem. The data given

in Tables 10 amd 11 completely describe the sample problem that is used.

The sample problem was generated to have properties similar to a problem instance from

Sprecher's test set, although activity durations were reduced in order to make the IP formulation

small enough for CPLEX to solve in a reasonable amount of time. Each activity in the sample

problem has three execution modes, with a duration of either 2, 3, or 4. Every activity execution

mode requires either 2, 3, or 4 units of one of the projects three doubly constrained resources.

Activity 2 is the only activity with no predecessors and activity 11 is the only activity with no

successors. The original problem, as generated by ProGen, had a super-source activity 1 and

a super-sink activity 12. These activities are unnecessary in single project problems and were

removed from the sample problem.

73

Table 10 Precedence Information for the Sample Problem
Pred Succ Aijll Aij12 Aij 13 Aij21 Aij 2 2 Aij 2 3 Aij 3 1 Aij32 Aij33

2 3 2 1 1 2 3 1 3 1 2
5 1 1 1 1 2 3 3 4 3
6 2 2 2 1 2 1 2 4 3

3 4 1 2 2 3 3 3 3 4 3
8 1 1 1 3 2 2 4 1 1
9 2 2 1 3 3 3 1 2 4

4 7 1 2 1 3 1 1 2 4 3
5 8 1 2 1 2 1 2 2 4 2

9 1 1 1 1 2 3 1 2 4
6 7 1 1 1 1 1 3 1 3 2

8 2 2 2 1 3 3 4 2 3
9 2 1 1 1 3 3 1 1 2

7 11 2 1 2 3 1 3 2 2 4
8 10 2 2 2 2 2 1 2 1 4
9 10 2 2 1 2 3 1 2 1 1
10 11 2 2 2 2 3 3 2 2 3

Table 11 Execution Mode Information for the Sample Problem
Job 2 3 4 5 6

Mode 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Dur 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
D1 0 2 0 3 0 0 0 0 3 0 2 0 0 2 0
D2 0 0 4 0 2 0 4 0 0 0 0 3 0 0 2
D3 2 0 0 0 0 4 0 4 0 3 0 0 4 0 0
Job 7 8 9 10 11

Mode 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Dur 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
D1 4 0 0 0 0 3 0 2 0 0 3 0 4 0 0
D2 0 0 3 0 3 0 3 0 0 3 0 0 0 0 3
D3 0 2 0 4 0 0 0 0 3 0 0 2 0 4 0

74

The first doubly constrained resource, D1, has 4 units available per period and 14 total units

available. For D2, these numbers are 5 and 15, and for D3, 6 and 16. Since ProGen generates

problem instances with standard precedence relations, the original problem was modified to include

the lag values shown in Table 10. These values are randomly generated integers restricted to be in

the range from 1 to the duration of the predecessor activity. The objective function for the problem

is simple makespan.

Table 12 K-Best Solution Set for the Sample Problem
Rank Obj s/m 2 s/m3 s/m 4 s/m 5 s/m 6 s/m 7 s/ms s/m 9 s/m10 s/m 1l

1 10 0/1 1/2 4/1 1/1 2/2 6/3 4/1 5/2 6/3 8/1
2 10 0/1 1/2 4/1 1/2 2/1 6/3 4/1 4/2 6/3 8/1
3 10 0/1 1/2 4/2 1/2 2/1 5/2 4/3 4/1 6/1 8/1
4 10 0/1 1/2 4/1 1/2 2/2 6/3 4/1 5/2 6/3 8/1
5 10 0/2 1/3 5/2 2/2 1/3 6/3 3/2 4/2 5/3 8/1
6 11 0/1 2/1 3/1 4/1 2/1 4/1 6/2 6/2 7/3 9/1
7 11 0/1 2/1 3/1 4/1 2/1 4/1 6/2 5/3 7/3 9/1
8 11 0/1 2/1 3/1 4/1 2/1 5/2 5/3 5/1 7/1 9/1
9 11 0/1 2/1 3/1 4/1 2/1 5/2 6/2 5/2 7/3 9/1
10 11 0/1 2/1 3/1 4/1 2/1 6/2 5/3 5/3 7/1 9/1
t 10 0/2 1/3 5/2 2/2 1/3 6/3 3/2 4/2 6/3 8/1

The extended Sprecher algorithm took 1.19 seconds on a 486DX66 to find the ten best active

permutation schedules for the sample problem. The schedules and their resulting makespans are

given in Table 12. In Table 12, the headings s/mi are shorthand for STi/mi, so each column entry

gives the start time and execution mode for activity i in one of the k-best solutions. The problem

was also formulated as an integer program and passed to CPLEX along with information about

the problem's special ordered sets and the best solution found by the extended Sprecher algorithm.

The problem formulation consists of 1200 binary variables and 312 constraints. The mixed integer

program solver in CPLEX required 32462.13 seconds on a Sun SPARCstation-10 to find the optimal

solution for this problem. The schedule corresponding to this solution is shown on the bottom row

of Table 12 with a t symbol in its rank column.

The solution identified by CPLEX is very similar to solution 5 found by the extended Sprecher

algorithm. The only difference between the two solutions is a one time unit difference in the start

time of activity 10. This difference illustrates the fact that the extended Sprecher algorithm searches

out the top k active permutation schedules, but for every active schedule, there can be any number

75

1 3(3) 1 4(2)

F 5(2_) (3

1 2(2) 1 8(2) 1(1[3(2) 14() 1 7(3)

9(�2)5() 8(-) 10(3)

6(3) 103 12(1)1 6(2)1 9(2)I111)

CPLEX Solution 10 Sprecher Solution 1

0 0 0 10

10 total units of DI 8 total units of DI
0 10 0 10

5 . . .o 5 - - - - - - - - - - - - -

8 toal uits f D29 total units of D2
0 0 0 10

-----------i;:•

10 toa unt ofD10 1 total units of D3
0 10 010

Figure 11 A Comparison of Two Alternate Optimal Solutions

of nonactive schedules with the same mode assignment and objective function value, but different

activity start times. The CPLEX solution and solution 1 of the ten solutions found by the extended

Sprecher algorithm are illustrated graphically in Figure 11.

The graphical illustration of these two alternate optimal schedules relates considerable infor-

mation at a glance. The Gantt charts show the mode and start time for every project activity in each

schedule. They also show that, for this example, although the project makespans are identical, there

is more concurrent execution of activities in the solution from the extended Sprecher algorithm. The

other charts in the figure provide an in depth analysis of the resource utilization for each solution.

This sort of analysis could prove useful in selecting between alternate optimal solutions.

The next set of test results reports the performance of the algorithm in terms of average

solution times on a set of sample problems generated to be roughly comparable to the main set of

test problems used by Sprecher and Drexl [80, 81]. Tables 13 and 14 list the ProGen parameters that

Sprecher and Drexl use to generate the problem instances for their test set. Recall, however, these

problems used standard end to start precedence relations and only singly constrained resources.

76

Table 13 Constant Parameters Used By Sprecher and Drexi
J IMl rim IRI UR QR INI UN QN IS1 1 ISjI JPJI iPl

min 10 3 1 2 1 1 2 1 1 3 1 3 1
max 10 3 10 2 10 2 2 10 2 3 3 3 3

Table 14 Variable Parameters Used By Sprecher and Drexl
Parameter Levels

RFR 0.5 1.0
RSR 0.2 0.5 0.7 1.0
RFN 0.5 1.0
RSN 0.2 0.5 0.7 1.0

Table 13 uses some parameters that are now defined. The parameter R represents the set

of renewable project resources while the parameter N is the set of nonrenewable resources. The

minimum and maximum values for the parameters UR and UN provide bounds on the amount of a

renewable or nonrenewable resource that may be requested for a single mode of any project activity.

The parameters QR and QN restrict the number of different renewable or nonrenewable resources

that may be required by a given activity mode. Table 14 shows the various levels of renewable and

nonrenewable resource factor and resource strength that Sprecher and Drexl use to generate their

test problems. The resource strength for the renewable resources, RSR, is periodic resource strength,

while the resource strength for the nonrenewable resources, RSN, is total resource strength.

Sprecher and Drexl use only singly constrained resources, either renewable or nonrenewable, in

their test problems. The combat modeling application presented in this dissertation is modeled using

doubly constrained resources. Because of the requirements of the combat planning application, it is

important that the problems used to test the extended Sprecher algorithm use doubly constrained

resources.

All of the problem instances in the test set used by Sprecher and Drexl have four project

resources: two renewable resources and two nonrenewable resources. For a given problem instance,

it would take the same number of constraints to model one doubly constrained resource as it would

to model one renewable and one nonrenewable resource. If the four singly constrained resources in

a problem instance from Sprecher and Drexl's test set were replaced with two doubly constrained

resources, to model the resulting problem instance would require the exact same number of variables

and constraints, although the resource usage would vary and this could effect results.

77

In an effort to construct a set of test problems comparable to those used by Sprecher and Drexl,

a decision had to be made regarding how many doubly constrained resources should be used. Using

two doubly constrained resources would provide test problems with the same number of variables

and constraints, but an argument could be made for using four, to ensure the same total number

of resources. The set of test problems generated here to test the extended Sprecher algorithm

used a compromise value of three doubly constrained resources for every problem instance. This

is reasonable since the goal here is not to compare the performance of the original and extended

algorithms, but to show that the effects of varying resource parameters are similar for each algorithm.

Table 15 Constant Parameters For the First Test Set
J IM jI rim gK ! U K Q K IS 11 IS j1 [P jI jP

min 10 3 1 3 1 1 3 1 3 1
max 10 3 10 3 10 3 3 3 3 3

Table 16 Variable Parameters For the First Test Set
Parameter Levels

RF 0.5 1.0
PRS 0.5 0.7 1.0
TRS 0.5 0.7 1.0

Tables 15 and 16 show the ProGen parameters that are used to generate the first set of test

problems for the extended Sprecher algorithm. Using doubly constrained resources in the test

problems affects the variable parameters as well as the constant parameters. Sprecher and Drexl

vary the resource factor and resource strength of both renewable and nonrenewable resources. For

problems with doubly constrained resources, both the periodic and total resource strength are

varied, but only one resource factor is necessary.

Sprecher and Drexl note that when a resource strength parameter is set to 0.2, some problem

instances have no feasible solution. This behavior is a result of the manner in which ProGen

implements resource strength [51]. In the set of test problems for the extended algorithm, almost

all of the problem instances with a resource strength set to 0.2 have no feasible solution. It would

appear that the doubly constrained nature of the resources makes the problems more sensitive

to limited resources. For this reason, the 0.2 level of variable parameters PRS and TRS were

eliminated from consideration in the generation of test problems.

78

The set of test problems was created using ProGen to generate 10 problem instances for

every combination of levels of the variable parameters given in Table 16. There are 18 (2 * 3 * 3)

combinations of variable parameter levels, making the total number of problem instances in the test

set 180. Generalized precedence lag values were randomly generated for each problem instance

in the same manner as described previously for the sample problem. The extended algorithm was

applied to every problem instance in the set and the resulting solution times are reported in Table

17.

Table 17 Solution Times For the First Test Set
Parameter Level Instances Avg Var Max

RF 0.5 90 0.80 0.39 3.13
1.0 90 3.37 12.90 25.56
0.5 60 2.98 9.03 11.62

TRS 0.7 60 1.94 12.17 25.56
1.0 60 1.32 2.45 9.17
0.5 60 2.89 8.52 11.60

PRS 0.7 60 2.22 13.21 25.56
1.0 60 1.14 1.76 6.55

The results reported in Table 17 show how average solution time is affected by changing each

of the complexity parameters previously identified. Resource factor, RF, is a measure of resource

demand. Higher levels of RF indicate that individual activities require more project resources.

The average solution time results show that problems are harder to solve when resource demand

is high. Resource strength, RS, is a measure of resource availability, or supply. Higher levels of

RS indicate that there are greater quantities of resources available to the project. The results show

that problems are harder to solve when supply is low. The general observation from the average

solution time results is that high demand and low supply are both factors that lead to MMGRCPSP

instances that are more difficult to solve.

Another interesting observation about problem instance complexity is that, while the lowest

average solution times are found when resource strengths are at 1.0, there is more variance in

solution times when availability is moderate or low (RS = 0.7 or RS = 0.5). To illustrate, observe

that the problem instance with the largest solution time occurred not at the lowest levels of resource

strength, but at the moderate levels (TRS = PRS = 0.7). It would appear that problem instances

with high resource availability are consistently the the easiest to solve. Instances with low availability

79

are generally the hardest, but due to increased variance, solution time is harder to predict when

resource availability is low or moderate.

The activity modes in the problem instances that make up the first set of test problems do

not accurately reflect the modes that are used in the type of combat planning problems presented

in this dissertation. To keep the test set comparable to the one used by Sprecher and Drexl, activity

modes were allowed to request more than one type of resource. In the combat planning problem,

each resource represents a type of aircraft located at a base and the activities are targets that need

to be attacked. Each mode of an activity represents a different aircraft type/location that could

be used to attack the target (4 F-16 from base A or 2 F-111 from base B for example). For this

reason, every mode in combat planning problem instances requires some quantity of exactly one

project resource.

A second set of test problems was generated in the same manner as the first, but with the

additional requirement that every activity mode use some nonzero quantity of exactly one project

resource. The set was generated with ProGen using the same levels of the complexity parameters and

the same number of instances for each combination of parameter levels. The additional requirement,

however, forces the parameter RF = 0.33 for every problem instance regardless of the parameter

level set in ProGen. For this reason, the set contains the same total number of observations as

before, but only two of the complexity parameters actually change level in the second set of test

problems.

Table 18 Second Test Set Solution Times
PRS

0.50 0.70 1.00 Average
0.50 0.42 0.37 0.33 0.38

TRS 0.70 0.48 0.26 0.26 0.33
1.00 0.40 0.35 0.19 0.31

Average 0.43 0.33 0.26 0.34

The extended algorithm was used to solve every problem instance in this second set and the

resulting average solution times are reported in Table 18. The reason for running the algorithm

on the second set of test problems was to gauge how difficult combat planning problem instances

are compared to the types of problem instances observed in the first test set. The conclusion is

that the restriction on the number of resources that an activity mode may request leads to problem

80

instances with smaller solution times. This observation follows the trend observed in the first set of

test problems, where results showed that lower resource demand meant smaller solution times.

4.1.6 Complexity. In the initial testing of the extended Sprecher subproblem solution

algorithm, the algorithm was applied to a small sample problem. This same problem was then

solved with the only possible alternative solution method, a standard integer program solver. To

improve the solution time of the IP solver, the special ordered sets were identified before execution,

and the extended Sprecher optimal solution was used for an initial bound. The extended Sprecher

algorithm was able to obtain an optimal schedule in about a second, while the standard IP solver

in CPLEX took over nine hours to converge, even starting from a known optimal solution.

In this section, complexity analysis is presented to offer a theoretical explanation for the

overwhelming difference between the solution times of the extended Sprecher algorithm and those of

the standard IP solver. Both methods perform an implicit enumeration of solutions by traversing a

tree structure, but the number of solutions on the tree and the quantity of work performed at each

node differ. The complexity analysis presented here investigates each of these issues separately and

offers evidence to show that the extended Sprecher algorithm is superior to the standard solver in

both areas. The parameters in Table 19 are used throughout the complexity discussion.

Table 19 Complexity Parameters
A the number of activities in the project
M the number of modes for each activity
T the number of periods in the planning horizon
m the number of problem constraints
n the number of problem variables (n = AMT)

The first issue to consider is the total number of solutions that each algorithm may be forced

to enumerate in order to achieve optimality. Normally, for a problem with n binary variables, the

number of possible combinations is given by 2n, but the presence of special ordered sets significantly

reduces this number. In the MMGRCPSP formulation, there is one special ordered set for each

activity and only one variable in each set can take on a value of 1 in a feasible solution. Taking

advantage of this property, the number of possible solutions the IP solver may have to enumerate is

reduced to (TM)A which is significantly smaller than 2 AMT.

81

The extended Sprecher algorithm further reduces the number of possible solutions by only enu-

merating those solutions that represent active schedules. The extended Sprecher algorithm implicitly

enumerates every active permutation schedule. Since there could be a different active permutation

schedule for every permutation of activities and combination of modes, the number of possible so-

lutions is given by A!MA. The quantity MA can be factored out of the total number of possible

solutions for both the standard solver and the extended Sprecher algorithm. The difference in the

number of solutions these algorithms may have to enumerate is explained by the difference between

the remaining terms; A! for extended Sprecher and TA for the standard IP solver.

Since the parameter T does not appear in the term for the number of possible solutions for

extended Sprecher, it is removed by focusing on the case that leads to the smallest number of possible

solutions for the standard IP solver. The planning horizon, T, is a function of the durations of the

project activities. The most favorable case, in terms of the smallest number of possible solutions,

occurs when every mode for every activity has a duration of one period (T = A). In this case,

the number of possible solutions for the standard IP solver reduces to (AM)A. Now, the quantity

MA may still be factored from each term and the difference is seen in the remaining terms; A! for

extended Sprecher and AA for the standard IP solver.

Figure 12 provides a graphical comparison of the complexity of the extended Sprecher algo-

rithm and the standard IP solver. There are three problem parameters that affect the number of

possible solutions for a given problem instance; the number of activities (A), the number of modes

(M), and the number of periods in the planning horizon (T). In Figure 12, the planning horizon

is held constant at T = A while the number of activities and the number of modes per activity are

varied from 1 to 10. It is obvious that, even using the planning horizon that is most favorable for

the complexity of the standard IP solver, the extended Sprecher algorithm has a consistently smaller

set of solutions to implicitly enumerate. The size difference between the solution spaces becomes

more pronounced when more realistic planning horizons are considered.

It has been shown that, for a given problem instance, the extended Sprecher algorithm consis-

tently has a smaller solution tree to traverse. This is important, but it is also important to consider

the quantity of work it takes each algorithm to traverse that tree. To investigate this aspect of

complexity, consider the tasks performed by each algorithm at every node within the solution tree.

82

At every node, the standard IP solver must solve an LP-relaxation of the original IP problem. This

is typically accomplished with some variant of the traditional Simplex algorithm.

CPLEX using SOS

50-

40-

g 30-

.5
20

0

1-Extended Sprecher 10

88

10 0 Modes

Activities

Figure 12 Theoretical Complexity Comparison

The Simplex algorithm solves linear programming problems by moving from one extreme

point of the polyhedral feasible region of an LP problem to the next until an optimal point is

found. Although the Simplex algorithm typically executes in polynomial time, it has been shown

to require exponential effort for certain classes of difficult problems [6]. This is due to the fact

that the algorithm could be forced to visit a total of (m) extreme points before it finds the optimal

solution. This indicates that the order of the algorithm is O((m)). For this reason, the worst case

effort required by the standard IP solver at each node in the solution tree is (n).

The extended Sprecher algorithm, even at its worst, requires far less computational effort at

each node within the solution tree. At each node, extended Sprecher must attempt to add one

83

activity to the current partial schedule. The algorithm selects an activity and attempts to schedule

it at the earliest possible time. The possible start times for any activity are limited by the number

of periods in the planning horizon so at most T possible start times are considered. To evaluate

the feasibility of a start time for an activity, the algorithm must check for constraint violations.

Since there are m constraints, the maximum computational effort required at any given node in the

solution tree is O(Tm).

The order of the Simplex algorithm is O((m)) and the order of the work required by the

extended Sprecher algorithm at each node visited is O(Tm). It may be confusing to compare these

values since one of them is a linear function and the other involves permutations. It is possible to

obtain a lower bound for (n) as follows.

Using this lower bound, it is apparent that for most values of n and m the worst case node effort for

the standard IP solver dominates the worst case node effort for the extended Sprecher algorithm.

(fl)m >T

The IP solver applies the simplex algorithm at every node, which typically means polynomial

effort but can require exponential effort, while the extended Sprecher algorithm only requires linear

computational effort at every node. For any realistic problem, the worst case computational effort

required by the extended Sprecher algorithm at each node is much less than that required by the

standard IP solver. The smaller solution space and faster node evaluation combine to make the

extended Sprecher algorithm far superior to a standard IP solver for solving the subproblems of

the decomposition proposed in this dissertation. This observation is supported by the test results

previously reported.

4.2 Summary

This chapter presented the subproblem solution algorithm for the decomposition approach

developed in this dissertation. The algorithm was developed by extending a solution approach for

84

a similar problem found in the literature. Convergence of the resulting algorithm was proven and

empirical results were obtained for a range of representative problem instances. Chapter V uses

the subproblem solution algorithm from this chapter to develop a Sweeney-Murphy integer program

decomposition approach for large problem instances with block-angular structure.

85

V. A Decomposition Algorithm

Hierarchical program and project management problems, or problems that may be modeled with a

project management framework, exhibit classic block-angular problem structure. The block-angular

structure present in the formulation of such problems indicates the presence of semi-independent

subproblems within a given problem instance. These subproblems might be actual subsets of a single

project, projects in a larger program, different phases of an acquisition program, or waves of combat

missions in an ATO. In any case, the block-angular structure may be exploited by a decomposition

algorithm to reduce the computational effort required to solve large problem instances.

In Chapter IV, the latest available techniques are extended to develop a specialized algorithm

for the MMGRCPSP. While the testing showed the specialized algorithm developed in Chapter

IV can solve MMGRCPSP instances faster than any approach currently reported, the order of

the algorithm is still exponential and, like all other approaches, solving large problem instances

quickly becomes computationally prohibitive. In this chapter, Sweeney-Murphy decomposition is

implemented for the MMGRCPSP [84]. The goal is to use decomposition to further increase the

size of MMGRCPSP instances that can be realistically solved.

5.1 Sweeney-Murphy Decomposition

Sweeney-Murphy decomposition extends the Dantzig-Wolfe method of linear program decom-

position to integer programming. The Sweeney-Murphy algorithm is designed for integer program

problem instances with the block-angular structure of problem P, illustrated in Table 20.

Table 20 A Block-Angular Integer Program

Minimize clxl + c2 x 2 + + CpXp

Subject to Alxl + A 2 x 2 + "" + APxv > bo
B1 x1 Ž b1

(P) B 2 x 2 _ b2

Bp xp > bp
X8,X2,. . .,Xp E Z+

86

Note that in Table 20, the notation Z+ is used to represent the set of all nonnegative integers.

The semi-independent subproblems in problem P are bound together by the coupling constraints

•P 1 Aixi >_ bo. Sweeney and Murphy apply standard Lagrangian relaxation to the coupling con-

straints to allow problem P to be decomposed into p independent subproblems, SPI((p). The

formulation of the Sweeney-Murphy subproblems is given in Table 21.

Table 21 The Sweeney-Murphy Subproblems

Minimize (ci - pAi)xi
SPi(p) Subject to Bixi > bi

xi E Z+

Dantzig-Wolfe decomposition for linear programs operates by iteratively solving reformulated

subproblems and a master problem to find the optimal convex combination of subproblem solutions.

In integer program decomposition, convex combinations of subproblem solutions could result in

non-integer values being assigned to variables that are supposed to be integer. With this in mind,

the Sweeney-Murphy master problem formulation is constrained to select exactly one solution from

the k-best solution set of each subproblem. The optimal solution to the master problem is the best

combination of subproblem solutions that is feasible with respect to the previously relaxed coupling

constraints.

For every subproblem i, it is necessary to search the subproblem solution space for the ki

solutions with the best objective function values. The resulting sets of ki-best subproblem solutions

are required to formulate the Sweeney-Murphy master problem. Let xq represent the jth best

solution to subproblem i and let)Aj be a binary variable in the master problem associated with the

selection of the jth best solution for subproblem i. If 7ij = 1, then the master problem selects the

jth best solution for subproblem i. Since the master problem can only select one solution for each

subproblem, only one Aij can take on a value of one for each subproblem i. This is controlled by

a special ordered set of binary variables for each subproblem. These special ordered sets can be

exploited to reduce solution time for the master problem.

The parameters for the objective function and the coupling constraints in the master problem

are obtained by combining the parameters from the original problem P with the vectors of the ki best

87

subproblem solutions. The objective function parameters are given by fij = cixi and the coupling

constraint parameters are given by qij = Aix. The complete formulation of the Sweeney-Murphy

master problem, MP, is shown in Table 22.

Table 22 The Sweeney-Murphy Master Problem

Minimize Ek' fl 3A 1l + 3= f 2 jA2j + ... + j fpjpj

Subject to E'L 1 q13 AIJ + 1 q2jA2j + "" + E i qpjApi > bo

4k 1

(MP) E A21 -2

EkpA

Aij E 10,1} Vi =1,2,...,p j =1,2,..., ki

Master Problem Optimality

Master Problem MP.Itraio
Compute the following: of enery

Initialization LB - lower bound on P d p iproach YesSD = UB LB LI(u

Select initial values for dds i Z,p)- Z t) Su The criteria for optimality
ka - the number of k-best have been met.
solutions for subproblem i. an te optimal solution to
Select multiplier values for the Master Problem MP
u , - the marginal benefit is also optimal for the

l SPi (u) for its best k• Increase the value
Ssolutions. of k, for every TerminationI • subproblem SPi(u)

l(If k~has not changed since such that d, < D.
lthe last iteration no further
computation is necessary.)

Subproblems Iteration

Figure 13 A Flow Diagram of the Sweeney-Murphy Algorithm

5.1.1 The Sweeney-Murphy Algorithm. Figure 13 provides a flow diagram to illustrate

the basic mechanics of the Sweeney-Murphy integer program decomposition approach while Table

23 offers a detailed description of the Sweeney-Murphy algorithm itself [84]. The Sweeney-Murphy

algorithm starts out by assigning initial values for ki, the number of k-best solutions that must be

obtained for each subproblem i, and pt, the vector of Lagrangian multipliers required to formulate

88

the subproblems. Each of the subproblems is then solved for its k-best solution set, these k-best

solution sets are used to formulate a master problem, and the master problem is solved. Since the

master problem, MP, is a restriction of the original problem, P, any feasible solution to MP is

also feasible for P, although the optimal solution to MP is not necessarily optimal for P.

Table 23 Sweeney-Murphy Algorithm

Step 1: (Initialize)
Choose an initial ki value for each subproblem i = 1,...,p.
Find a vector of nonnegative Lagrangian multipliers, p, associated with the

Lagrangian relaxation of the coupling constraints in P.
Use the vector p to formulate the subproblems SPi(p).
Find the top ki solutions to each subproblem i.

Step 2: (Solve the Master Problem, MP)
Use the k-best subproblem solution sets to formulate and then solve MP.
If no feasible solution exists, repeat the following until one is found:

increase ki for every subproblem i,
resolve all of the subproblems for the larger ki,
then formulate and solve a new master problem.

When a feasible solution is found,
let A* denote the the optimal solution to MP,
let xi(A*) be the corresponding solution to SPi(p),
and let UB E= 1 cixi(A*) be the upper bound on the optimal solution to P.

Step 3: (Test For Optimality)
Let LB(p) = Abe1(ci - ji)x! + pbo be a lower bound on the optimal solution to P.
Set A = UB - LB(p).

Set bi = (ci - pdi)xki - (ci - iAi)xI for all i = 1,...,p.
If 6bi > A for all i = 1,...,p, go to Step 5.

Step 4: (Iterate)
Increase ki for every subproblem i where bi < A.
If 6i < A, resolve subproblem i for the larger ki.
Go to Step 2.

Step 5: (Terminate)
STOP. The current optimal solution to MP is optimal for P.

Sweeney and Murphy present optimality criteria based on the tightness of the current bounds

on the optimal solution to P and the range of the objective function values in the k-best solution sets

for the subproblems [84]. Using this information, optimality criteria are established to determine if

the current optimal solution to MP is also optimal for P. If the test fails for any subproblem i,

the corresponding value ki must be increased and the subproblem must be re-solved to expand the

89

k-best solution set accordingly. That is, more options are offered for those subproblems which fail

the optimality test. The algorithm continues to iterate between finding larger k-best solution sets

for select subproblems and solving the master problem until the optimality conditions have been

met for every subproblem. At this point, the optimal solution to MP is also optimal for P and the

algorithm terminates.

Table 24 Sweeney-Murphy Optimality Theorem

Theorem If ,i >- A V i = 1,... ,p, {Xl(A*), x 2(,*),... , Xp(A*)} is an optimal solution to P.
Proof:

Define * to be the optimal solution to MP,
xi(A*) to be the corresponding solution to SPi(p), and
{x1(A*), x2(*),..., Xp(A*)} to be the solution to P implied by A*.

The value of {xi(A*),x 2(A*),...,xp(A*)} in P is an upper bound for P.
== UB- •-•'l cixi(A*)

Suppose that 5i > A for all i = 1,...,p, but {xi(A*),x 2(A*),...,xp(X'*)} is not
optimal for P.

33 > k, for subproblem i such that x' is part of a feasible solution to P
with objective function value -5 < UB.

We need to show that this leads to a contradiction.

The minimum value of the Lagrangian relaxation of P with x, held constant at xý

is given by -i# 7 (ci - pAi)xl + (c- - pAT-)x_ + pbo.

5 > Z~io(ci - u~iA)xl' + (c-, - pA-:)x4 + jibo.
Recall that LB(p) = EP 1(ci - pAi)xl + ybo which leads to the relationship

i - ji)xl + (c- pA-,)x4 + pbo = LB(p) + (c:- pA-)xZ - (cr- pA-)xl.

T > LB(p) + (c,- pA-)xý - (c-- pA-)xA.
= 7 -_LB(p) + ±;.

_> LB(p) + mini{6i}.
=v -:> LB(p) + A.

> -> UB.
Contradiction! We already assumed that -5 < UB.
Therefore, {xi(A*),x 2 (A*),...,xp(A*)} is an optimal solution to P.

5.1.2 Sweeney-Murphy Convergence. Table 24 contains an expanded version of the theo-

rem and proof provided by Sweeney and Murphy to support the convergence criteria used in their

integer program decomposition algorithm [84].

90

The Sweeney-Murphy algorithm is a general approach that is shown to converge for any block-

angular integer program. However, there are some aspects of the algorithm for which Sweeney

and Murphy offer no specific guidelines: finding k-best solution sets, choosing initial values for

ki, choosing new values for ki, and finding values for the Lagrangian multipliers. Although the

algorithm is theoretically sound, Sweeney-Murphy decomposition has not been widely applied in

the literature [20, 84, 85]. In an implementation of the Sweeney-Murphy algorithm, the decisions

made regarding these issues can greatly affect the performance of the algorithm. For this reason,

there are no guarantees concerning the ease of implementation or the algorithm's efficiency for a

given problem type.

In the literature, the few applications of the Sweeney-Murphy algorithm obtained the k-best

subproblem solutions by unsophisticated approaches (repetitively solving, cutting the optimal so-

lution out of the feasible region, and re-solving) and selected initial and subsequent values for ki

arbitrarily [20, 84, 85]. While Sweeney and Murphy do not clarify these issues, they do, however,

offer some advise on how to handle the problem of finding values for the Lagrangian multipliers.

They show that the optimal values for the Lagrangian multipliers is given by the optimal solution

to D, the Lagrangian dual of P [84:page 1132].

(D) maxj>_o LB(p) = maxp>0 min { (ci - pAi)xi + pbo : Bixi > bi and xi C Z+ V i

In some cases, the Lagrangian dual of P might be an easy problem to solve. This would

be the case if the subproblem constraint matrices were totally unimodular. For cases where such

ideal conditions do not exist, Sweeney and Murphy suggest that the dual variables associated with

the linking constraints in an LP relaxation of either P or MP often provide good values for the

Lagrangian multipliers [84:page 1133]. It should be noted, however, that for a given problem type,

there are no guarantees of either a well behaved Lagrangian dual or an LP relaxation which yields

meaningful dual variables for use as Lagrangian multipliers in the subproblem formulations.

91

5.2 Implementing Sweeney-Murphy Decomposition

Building on the details of the basic Sweeney-Murphy integer program decomposition algorithm,

this section focuses on the implementation of such a decomposition approach for the combat planning

problem presented in Chapter III. The discussion describes the implementation specific algorithm

details that are added to the basic algorithm in order to address the unresolved issues concerning

finding k-best solution sets, choosing initial values for ki, choosing new values for ki, and finding

values for the Lagrangian multipliers. After the details of the implementation are discussed, a

simple implicit enumeration approach is presented as a more effective alternative for solving the

Sweeney-Murphy master problem.

5.2.1 Finding the k-Best Subproblem Solutions. The problem of enumerating the top k

solutions for every subproblem is a significant hurdle to overcome for any implementation of the

Sweeney-Murphy integer program decomposition algorithm. There are several specialized algo-

rithms available in the literature that offer more effective alternatives to brute force for finding the

k-best solutions to certain unique classes of problems [9, 34, 57, 63]. Unfortunately, there is no such

alternative for general integer program problems that do not belong to one of these unique problem

classes. The few implementations of the Sweeney-Murphy approach found in the literature obtain

the k-best subproblem solutions by repeatedly solving a subproblem and then reformulating the

subproblem to exclude the optimal solution found [20, 84, 85]. This approach can be implemented,

but it may be so computationally time consuming that it makes the Sweeney-Murphy approach

undesirable.

In Chapter IV, a subproblem solution approach was presented that offers both a general

approach to finding the k-best solutions for any integer program and a specific approach that exploits

the specific features of the combat planning problem to find the k-best solutions more effectively.

The general approach is to apply a standard branch and bound algorithm for integer programs,

but the general approach is modified to maintain a list of the top k solutions as the solution tree

is traversed. This modification affects both the manner in which newly discovered solutions are

evaluated and the way the solution tree is pruned.

Until the branch and bound algorithm has encountered its first k feasible solutions, every new

feasible solution discovered is added to a rank ordered solution list. Once this list contains k entries,

92

the objective function value of every new feasible solution discovered by the algorithm is evaluated

against the objective function value of the current kth best solution in the rank ordered solution list.

If the objective function value of the newly discovered solution is better than that of the current kth

best solution, the current kth best solution is discarded and the newly discovered solution is added

to the rank ordered solution list. Otherwise, the newly discovered solution is discarded.

In a standard integer program branch and bound approach, a branch of the solution tree is

pruned when it can be shown that the best possible solution that might be found by exploring

that branch is bounded by the current best feasible solution. When the goal is to find the k-best

solutions for an integer program, the standard branch and bound approach may be modified so

that branches are pruned based on the bound provided by the current kth best solution in the rank

ordered solution list. This modified pruning strategy ensures that none of the k-best solutions are

overlooked. The theorem and proof in Table 25 show that a standard branch and bound approach

modified in this way finds the k-best solutions for any integer program.

In Chapter IV, a specialized branch and bound procedure was developed for the MMGRCPSP

using the modifications described by the theorem in Table 25 to obtain the k-best active schedules.

The combat planning problem formulation proposed in this dissertation is a special case of the

MMGRCPSP with a block-angular structure. Since each block in the formulation is a wave of

attack missions, the subproblems of a decomposition are temporally discrete. This condition allows

for a clean partitioning of the constraints between the subproblems and the master problem. The

nonrenewable resource constraints are the linking constraints in the formulation of the Sweeney-

Murphy master problem while each renewable resource or precedence constraint becomes a part of

the formulation of one of the Sweeney-Murphy subproblems.

It is possible that every schedule in the set of the k-best active schedules for a given prob-

lem instance might have several inactive schedules with the same objective function value. These

schedules would represent alternate optimal solutions and are obtained by shifting activity start

times within their slack times. Since all of the alternate optimal solutions for a given active schedule

have the same nonrenewable resource utilization and contribution to the master problem objec-

tive function, there is no need to enumerate the inactive schedules. For this reason, the results

93

Table 25 K-Best Solutions Theorem

Theorem If a standard integer program branch and bound algorithm is modified to retain
a rank ordered list of the top k feasible solutions encountered and branches
are pruned only when dominated by the current kth best solution, then the
resulting algorithm is guaranteed to find the k-best solutions to any integer
program so long as there exist k feasible solutions to the problem.

Proof:
Let P be any integer program that has at least k feasible solutions.
Let K be the set of the k-best solutions to the integer program P.
Let X = {xi : i = 1,. . ., k}, be the rank ordered list of solutions to P obtained by

an integer program branch and bound algorithm modified as described above.
Solutions are ranked by objective function value with x, being the best.

Suppose 3 x* E K but x* X. X z* < zk

This implies that either
(1) x* was encountered, but not added to the rank ordered solution list,
(2) x* was added to the rank ordered solution list and later discarded, or
(3) x* was part of a branch of the solution tree that was pruned.

Case 1: Suppose that x* was encountered, but not added to X.
Let X be the rank ordered solution list when x* was encountered.
If x* was not added to X, then z* > Zk, but we have already assumed that

z* < Zk < "fk =# Contradiction!
Case 2: Suppose that x* was discarded from the rank ordered solution list.

Let X be the rank ordered solution list after x* was discarded.
If x* was discarded, then z* > Zk, but we have already assumed that

z* < Zk < -k #- Contradiction!
Case 3: Suppose that x* was part of a branch pruned from the solution tree.

Let X be the rank ordered solution list at the time the branch of
the solution tree containing x* is pruned.

Without loss of generality, let x* be the best solution on the branch pruned.
If the branch was pruned, then z* > Tk, but we have already assumed that

z* < Zk < -k : Contradiction!
Since all three cases lead to contradiction, x* cannot exist. Therefore, X = K.

94

from the extended Sprecher subproblem solution algorithm may be directly used for solving the

Sweeney-Murphy subproblems, SPi(!L).

If the combat planning problem were to be decomposed based on some criteria other than

waves of attack missions, the condition of temporally discrete subproblems might not exist, and

the alternate optimal solutions would have to be enumerated. It would still be useful to enumerate

the k-best active schedules with the extended Sprecher algorithm, but it would be necessary to

enumerate the inactive schedules associated with those active schedules. Every active schedule has

an associated set of activity mode assignments. For a given set of mode assignments, standard CPM

techniques may be applied to obtain the earliest and latest possible start times for every activity.

The active schedule is the schedule with every activity beginning execution at its earliest pos-

sible start time, while every other feasible combination of activity start times represents an inactive

schedule and an alternate optimal solution. It is a relatively simple, but potentially time consuming,

procedure to enumerate every feasible combination of start times for a given set of mode assign-

ments to develop the set of inactive schedules associated with an active schedule. However, there

is a possibility of large numbers of alternate optimal solutions which may lead to correspondingly

large values for ki before the Sweeney-Murphy optimality criteria are satisfied. The consequences

of these large values for ki are addressed in the following section.

5.2.2 Setting and Resetting the Value of ki. The best way to set ki, the number of k-

best solutions obtained for subproblem i, at each iteration of the Sweeney-Murphy algorithm is an

issue for which Sweeney and Murphy offer no guidance. In the few applications of the Sweeney-

Murphy algorithm found in the literature, the values for ki are chosen arbitrarily, with no apparent

theoretical justification [20, 84, 85]. This section presents a discussion of the complexity of the

Sweeney-Murphy algorithm in order to evaluate the merits of potential ki selection strategies. The

affects of the ki values on the complexity of the Sweeney-Murphy algorithm are examined in terms

of the size of the solution trees, the effort required at each node within the solution trees, and the

number of nodes that are visited.

In the extended Sprecher subproblem solution algorithm, the value of ki affects neither the size

of the complete solution tree to be implicitly enumerated nor the amount of work to be accomplished

at each node. Instead, the value of ki affects the number of nodes that are visited before the algorithm

95

converges. To understand why this is the case, consider the total execution time of the extended

Sprecher algorithm as two distinct phases, a ramp-up phase and a pruning phase.

The ramp-up phase is the portion of the algorithm's total execution time from the time when

the algorithm begins execution until the time when the kith feasible solution is encountered. Since

the ramp-up phase lasts until k feasible solutions have been encountered, it is obvious that larger

values for ki lead to a correspondingly longer ramp-up phase.

The pruning phase is the portion of the algorithm's total execution time after the kith feasible

solution has been found. In the pruning phase, the algorithm prunes bounded branches. Branches

are pruned based on an upper bound provided by the objective function value of the current kith

best solution. A higher value for ki leads to a correspondingly higher value for the objective function

of the kith best solution and a looser upper bound. This would indicate that higher ki values mean

weaker upper bounds, less opportunity for pruning, and a longer pruning phase.

Clearly, while the value of ki does not affect the size of the solution tree or the amount of work

accomplished at each node, larger ki values do require visiting more nodes in order to implicitly

enumerate all potential solutions (the size of the tree that is implicitly enumerated does not change,

but more of its nodes are explicitly enumerated). When the algorithm is required to visit more

nodes, solution time naturally increases, but to acquire a better understanding of the magnitude

of the solution time increase some experiments were performed using the two sets of test problems

from Chapter IV. Recall that each test set contains 180 test problems spanning a wide range of

possible values for the complexity parameters. The first set was constructed to be comparable to

Sprecher's test problems while the second set was constructed to be more representative of actual

combat planning problem instances [79].

All 180 problems from each test set were solved for various values of k using the extended

Sprecher subproblem solution algorithm on a 167MHz UltraSPARC with 128 Mb of memory. The

test problems were first solved for k = 1 and then solved again with the value of k ranging from 10

to 100 (k = 10, 20, ... , 100). An average solution time value was computed for each test set at each

level of k. The average solution time data is reported on the graph in Figure 14.

The empirical results in Figure 14 suggest that the relationship between the value of ki and

the solution time for subproblem i is at worst linear, at least for the range of problems represented

96

1.2 , , , , , ,

1

0.8
test set I

8 0.6

0.4

0.2 --

- test set 2

0 10 20 30 40 50 60 70 80 90 100
k value

Figure 14 Empirical Results for k-Best Complexity

in these two test sets. In Chapter IV, it was shown that subproblem solution time is exponentially

related to the number of activities in the subproblem. The linear affect of ki on subproblem solution

time is relatively minor when compared to the exponential affect of the number of activities.

Another Sweeney-Murphy complexity issue that must be investigated is the affect of ki on

the master problem solution time. For ease of illustration, it is assumed that ki = k for every

subproblem i. It is also assumed that the master problem is solved with a standard branch and

bound integer program solver that can make use of special ordered sets to reduce the size of the

solution tree. Unlike the subproblems, the ki value affects both the size of the solution tree and the

amount of work that must be accomplished at each node for the master problem.

Suppose that for a given problem, there are p distinct subproblems. If each subproblem is

solved for the top k solutions, then the formulation of the Sweeney-Murphy master problem has p

special ordered sets of k binary variables each. Without the special ordered sets, the solution tree

for the master problem would contain 2kp possible solutions indicating an exponential relationship

between the value of k and the size of the solution tree. Exploiting the special ordered sets reduces

the total number of possible solutions to kP and makes the relationship between k and the solution

tree size polynomial.

97

In Chapter IV, it was shown that a lower bound on the worst case computational effort required

at each node for a standard integer program branch and bound solver can be expressed by (n/m)m,

where n is the number of variables and m is the number of constraints. Since n = kp in the master

problem, this upper bound may be reformulated as kin(p/m)m indicating that there is a polynomial

relationship between k and the worst case effort required at each node for the master problem.

While k affects the size of the master problem solution tree and the amount of effort required

at each node within that tree, k has no affect on what portion of the total number of nodes are

visited before a standard integer program branch and bound solver converges. Table 26 summarizes

the affects of k on the complexity of the complete Sweeney-Murphy decomposition algorithm.

Table 26 How k Affects Sweeney-Murphy Complexity
Tree Size Node Effort Nodes Visited

Subproblems N/A N/A linear
Master Problems polynomial polynomial N/A

When implementing a strategy for setting and resetting the values of ki in an implementation

of the Sweeney-Murphy decomposition algorithm, the primary concern is how this strategy effects

solution time. Based on the complexity information summarized in Table 26, the values for ki have

a greater affect on the master problem solution time than they do on the subproblem solution times.

The overall solution time for the decomposition algorithm may be divided into three parts; the time

spent obtaining Lagrangian multipliers, the time spent solving the subproblems, and the time spent

solving the master problem.

If the subproblems are small, the master problem solution algorithm accounts for the largest

portion of the overall solution time and the ki selection strategy should be chosen accordingly. If

the subproblems are large, the subproblem solution algorithm requires the largest portion of the

overall solution time and this should be taken into account when the ki selection strategy is chosen.

Empirical testing is conducted in Appendix A in order to determine the breakpoint, in terms of

number of activities, between small and large subproblems. Based on the results in Appendix A,

the strategy chosen for the Sweeney-Murphy implementation in this dissertation is to start with a

small initial ki value (ki = 10), double ki for early iterations until ki exceeds 100, and then add 50

to ki for every additional iteration.

98

It is possible, in problem instances with abundant nonrenewable resources, that the master

problem can achieve optimality with very small ki values. The justification for starting with small

ki values is that the initial iteration is computationally inexpensive and problems with abundant

resources can be solved in a single iteration. When resources are not abundant, large ki values are

often required before the master problem is optimal. This observation is supported by experience

with the test problems used in this dissertation. This experience indicates that there are typically

many alternate optimal solutions in problems of this type (MMGRCPSP). The rationale behind

doubling ki for early iterations is to raise ki quickly while iterations are still computationally in-

expensive. Once ki passes 100, the increase in iteration times becomes significant and doubling ki

is too costly. For this reason, ki is increased by a constant amount rather than doubling in later

iterations.

Different ki selection strategies were proposed and evaluated based on the criteria suggested

by a complexity analysis of the Sweeney-Murphy algorithm. The eventual choice of a strategy to

implement was based on trial-and-error and empirical experiments (see Appendix A). It should be

noted that the best ki selection strategy depends on the type of problems that are to be solved.

There is no ki selection strategy that is best for all problem types, but a good general rule is

to choose a strategy based on the size and complexity of the subproblems. If the subproblems

are computationally tasking, the ki values should be increased at a quicker rate to limit the total

number of Sweeney-Murphy iterations. If the subproblem solution times are small, large numbers

of iterations are less of a problem and the ki values may be increased at a slower rate to limit the

size of the master problems since their size is polynomially related to ki.

5.2.3 Finding Lagrangian Multipliers. The Sweeney-Murphy integer program decompo-

sition algorithm converges regardless of what values are used for the Lagrangian multipliers in

the subproblem objective functions. The problem is that if bad values are chosen, the ki values

might become excessively large before the algorithm achieves optimality. It has already been shown

that large ki values lead to long subproblem and master problem solution times so it is important

to choose good values for the Lagrangian multipliers. In fact, choosing the best possible values

for Lagrangian multipliers is a critical factor in minimizing solution time for a Sweeney-Murphy

implementation. Unfortunately, it is not always easy to obtain good Lagrangian multipliers.

99

Sweeney and Murphy point out that the optimal value for Lagrangian multipliers is given

by the solution to the Lagrangian dual of P. The subproblem constraint matrices for the combat

planning problem are not totally unimodular so it is not practical to solve the Lagrangian dual for

the application in this dissertation. Sweeney and Murphy suggest that an acceptable alternative is to

use the dual variables associated with the linking constraints in an LP relaxation of either P or MP.

Because of the generalized precedence constraints in the combat planning problem formulation, dual

variables from an LP relaxation would not provide meaningful dual variables.

Recall that every pair of activities (i, j) with a generalized precedence requirement has a

different precedence constraint for every possible combination of modes (mi, mj). Depending on

the execution modes selected, only one of these constraints is enforced; the rest are relaxed. This

selective constraint enforcement is accomplished using the binary decision variables already present

in the model formulation. In an LP relaxation, those decision variables are no longer capable of

enforcing any of the precedence constraints. Since the relaxed model has no precedence enforced,

its dual variables are not meaningful to the original problem.

For the combat planning model in this dissertation, it is not possible to use either the optimal

or the alternate methods suggested by Sweeney and Murphy for selecting Lagrangian multipliers.

It is necessary to find another method for obtaining Lagrangian multipliers that are meaningful in

order to avoid the large ki values associated with using poor Lagrangian multipliers. The alternate

method proposed in this section parametrically varies resource availability in the subproblems to

obtain Lagrange multipliers that have an interpretation similar to that of dual variables for a linear

program.

Consider the purpose the Lagrangian multipliers serve in the objective functions of the Sweeney-

Murphy subproblems. Setting these multipliers to zero allows the subproblems to be optimized

without any consideration for the utilization of the limited nonrenewable resources. Each subprob-

lem uses these nonrenewable resources without direct consideration of availability or the resource

needs of the other subproblems. The purpose of positive-valued Lagrangian multipliers in the sub-

problem objective functions is to convey how critical each resource is to the overall problem. With

meaningful positive-valued multipliers, the subproblem solutions are steered away from unnecessary

consumption of the more critical resources.

100

In an LP relaxation of P, the dual variable associated with a nonrenewable resource constraint

provides an estimate of how critical that resource is to the problem in question. If a resource is

scarce, and highly demanded by the subproblems, the dual variable for that resource would be higher

than dual variables for less critical resources. The strict interpretation of the value of a dual variable

is the marginal benefit of an additional unit of resource at optimality. For this Sweeney-Murphy

implementation, the goal is to compute values that, like LP dual variables, represent the marginal

benefit of an additional unit of each nonrenewable resource.

Nauss proposes that by varying the right-hand-side levels one at a time, re-solving the integer

program problem, and observing the change in the objective function, it is possible to estimate

the marginal benefit of an additional unit of resource [64]. Values for marginal benefit obtained

in this manner would provide appropriate Lagrangian multipliers, but there is a problem with this

approach. Nauss' approach requires that the Sweeney-Murphy master problem be solved iteratively,

varying the right-hand-side level for each nonrenewable resource in order to compute values for

marginal benefit to use as Lagrangian multipliers. Unfortunately, the k-best subproblem solutions

are necessary to formulate the master problem and the Lagrangian multipliers are necessary to

formulate the subproblems, so until Lagrangian multipliers are found, there is no master problem

to solve. The procedure described in Table 27 is a variation on the parametric analysis approach

proposed by Nauss.

The procedure described in Table 27 uses parametric analysis to find the marginal benefit of

each nonrenewable resource in the Sweeney-Murphy master problem. These marginal benefit values

have the same interpretation as dual variables in a linear program-the amount of objective function

improvement per unit increase in resource availability. Marginal benefit is a good estimate of the

value of each resource to the master problem. These values provide a reasonable set of Lagrangian

multipliers for formulating the Sweeney-Murphy subproblems.

One aspect of the procedure for calculating marginal benefit is not included in the description

in Table 27. That aspect is the method for finding a feasible partitioning of the nonrenewable re-

sources between the subproblems. This initial allocation of resources could be obtained by applying

any heuristic method to find a feasible solution to P. The resource utilization in this feasible solution

provides a feasible allocation of resources. For the Sweeney-Murphy implementation, the extended

101

Table 27 Finding Lagrangian Multipliers

Step 1: (Initialize)
Set R to the total number of nonrenewable resources in the problem.
Find a feasible partitioning of these resources between the subproblems.
Solve the subproblems using this feasible resource allocation.
The optimal subproblem solutions provide a feasible solution to the master problem.
Set Z* to the master problem objective function value for this feasible solution.
Set Ur to the resulting utilization of each resource r =1 R.

Step 2: (Relax the Subproblem Resource Constraints)
For r = 1,..., R do the following.

Solve the subproblems with the same feasible allocation of resources,
but relax the constraint associated with nonrenewable resource r.

Set Z, to the resulting master problem objective function value.
Set Ur to the resulting utilization of each resource r = 1,..., R.

Step 3: (Set Lagrangian Multipliers to the Marginal Benefit)
For r = 1,. .. , R do the following.

If (U, - U,) > 0, then set y, = (Z* - Zr)I(Ur - Vr).
Else, set y, = 0.

Sprecher algorithm was modified to terminate after one feasible solution is found. This feasible solu-

tion is then used to obtain the feasible partitioning of resources between the subproblems necessary

for calculating the marginal benefit of each nonrenewable resource.

A limitation of the marginal benefit approach described in Table 27 is that the quality of the

initial feasible solution used to obtain an initial partitioning of resources may have a direct affect

on the quality of the Lagrangian multipliers derived from the resulting marginal benefit values.

Dual variables are a measure of the marginal benefit of a resource at the optimal solution of an

LP. The proxy dual variables of Table 27 are a measure of the marginal benefit of a resource at

some feasible solution of an IP. The proxy dual variables are less reliable when the initial feasible

solution is farther from the optimal solution. Poor Lagrangian multiplier values may lead to large

ki values and large solution times.

To account for the possibility of poor initial Lagrangian multiplier values, the Sweeney-Murphy

implementation in this dissertation adjusts the multiplier values as soon as a feasible solution is found

for the master problem. Once a feasible master problem has been constructed and solved, the same

parametric analysis shown in Table 27 is applied to the master problem to obtain revised estimates

102

of the marginal benefit of each nonrenewable resource. This is accomplished by iteratively re-solving

the master problem with one resource constraint relaxed. Each time a relaxed master problem is

solved, the differences between the original and relaxed objective function values and the original

and relaxed resource utilization are used to compute marginal benefit for the relaxed resource.

These new marginal benefit values replace the initial marginal benefit values as the Lagrangian

multipliers used in the formulation of the subproblems.

5.2.4 Solving the Sweeney-Murphy Master Problem. The Sweeney-Murphy master prob-

lem is an integer program consisting of all of the linking constraints, an additional constraint to

deal with solution selection for each subproblem, and k1 + k2 + ... + kp binary variables. This

problem may be solved with any standard integer program solver, and if the solver takes advantage

of special ordered sets, solution time may be improved. However, as the ki values become larger

in later Sweeney-Murphy iterations, solution of the master problem may become computationally

daunting. For this reason, a specialized master problem solution algorithm is proposed to solve

master problem instances faster than would be possible with a standard integer program solver.

The proposed algorithm also includes the capability to obtain k-best solution sets for the master

problem. When the optimality criteria have been met, the k-best solutions to the master problem

correspond to the k-best solutions to the original problem and present the decision maker with a

set of alternate optimal or near-optimal solution alternatives to consider.

The specialized master problem solution algorithm is a simple branch and bound approach

that implicitly enumerates the same solution tree searched by a standard integer program solver.

The solution tree includes every possible combination of subproblem solutions. A standard integer

program solver would search this tree by solving an LP relaxation at each node and pruning branches

based on the objective function value of the best integer solution found. The specialized algorithm

searches the same tree, pruning branches based on simple bounding or resource limitations, but

it only requires feasibility checks at each node. The feasibility checks in the specialized algorithm

require substantially less computational effort than the solution of the LP relaxations in a standard

solver. The reduced computational effort required at each node in the solution tree allows the

specialized algorithm to solve master problem instances faster than a standard integer program

103

solver and provides the additional benefit of k-best solution sets. The specialized master problem

solution algorithm is given in Table 28.

The solution tree traversed by the specialized master problem solution algorithm described

in Table 28 has p levels, one for each subproblem i = 1,...,p. As the solution tree is traversed,

a partial solution is maintained by assigning subproblem solutions as the algorithm moves deeper

into the tree and unassigning subproblem solutions when the algorithm backtracks. At level i of the

solution tree, the algorithm assigns one of the ki solutions for the subproblem i and then attempts

to prune the current branch. The current branch may be pruned if the best possible completion to

the current partial solution is dominated by the current kth best master problem solution. Pruning

is also possible if, for any resource r, there is not enough available resource remaining to feasibly

complete the current partial solution.

When either of the pruning criteria are met, all completions of the current partial schedule

are eliminated from consideration and the algorithm backtracks up one level in the solution tree. If

neither pruning criteria is met, the algorithm moves a level deeper into the solution tree and assigns

"a solution for the next subproblem. When the algorithm reaches the bottom of the solution tree and

"a solution has been assigned for subproblem p, a feasible master problem solution has been found.

At this point, the solution is added to the k-best solution list and the algorithm backtracks one

level. When the entire solution tree has been implicitly enumerated, the algorithm terminates.

5.3 Testing the Sweeney-Murphy Implementation

This section reports the results of testing conducted on the implementation of the Sweeney-

Murphy integer program decomposition algorithm described in this chapter. While the subproblem

solution algorithm testing focused on the affects of complexity parameters on solution time, the de-

composition algorithm testing holds the complexity parameters constant and studies the relationship

between size parameters and solution time. The two size parameters that are investigated are A,

the number of activities per subproblem, and P, the number of subproblems per problem instance.

These two parameters determine the total number of activities in each problem instance and are a

good indicator of the size of the overall problem.

104

Table 28 Master Problem Solution Algorithm
Step 1: (Initialize)

Set P to the total number of projects.
Set R to the total number of resources.
Set Ar to the total available quantity of resource r.
Set K to the number of k-best master problem solutions to find.
Let p be the current subproblem and set p = 1.
Let sp be the solution selected for subproblem p and set s, = 0.
Set zp to the contribution to the master problem objective function for the Sh

solution to subproblem p Vp= 1,...,P ands= 1,..., kp.
Let Zp be the sum of the contributions to the master problem objective function for

subproblems 1,...,p and set Zo = 0.

Set Z-p = EP=p+l min<_s<_ki(zsi) Vp= 1,...,(P- 1).

Set Ursp to the quantity of resource r used by the sth solution to subproblem p
V r = 1, ... ,IR, p = 17,...,9P, and s = 1.,kp.

Let Urp be the combined utilization of resource r for subproblems 1,... , p and
set Ur0 = 0 Vr=I,...,R.

Set U~p = EP=p+l minl<s<ki(ursi) Vr = 1,...,R and p = 1,...,(P- 1).
Let ub be the upper bound on the optimal solution to MP and set ub to some

arbitrarily large number, M (ub = M).
Step 2: (Select the Next Subproblem Solution)

Set sp = sP + 1.
If sp < kp,

Set Zp = Zp- 1 + zPP.
Set UP = Ur(p-1) + Urspp V r = 1,...,R.
Go to Step 4.

Step 3: (Backtrack)
Set p = p- 1.
If p < 1, STOP!!! The k-best solutions for MP have been found.
Else, Go to Step 2.

Step 4: (Try to Prune)
If ((Zp + 7p) > ub) or ((Urp + -U•p) > Ar for any r), Go to Step 2.

Step 5: (Move to the Next Project)
Set p=p+ 1.
If p _ P, then set Sp = 0 and Go to Step 2.
Else, set p = p - 1 and Go to Step 6.

Step 6: (Store the Current Solution)
Add solution (s, s 2 ,.... , sp) to the list of master problem solutions.
If the list contains more than K solutions, discard the (K + 1)th best solution

and set ub to the objective function value of the Kth best solution.
Go to Step 2.

105

The relationship between the size parameters A and P and problem solution time is examined

by applying the Sweeney-Murphy implementation to a number of test problems that cover a range

of size parameter values. To standardize the test results reported in this dissertation, the Sweeney-

Murphy implementation is tested under the same conditions as the subproblem solution algorithm.

The Sweeney-Murphy implementation is coded in C and uses the standard C function gettimeofday

to calculate and report solution times in seconds. The test runs are performed on a 486DX66

processor and solution times are reported to the nearest tenth of a second.

When the subproblem solution algorithm was tested, two different sets of test problems were

used. The first set was designed to be similar to the test problems used by Sprecher while the

second set was designed to have properties that would be expected in combat planning problem

instances. This section makes no direct comparisons with Sprecher's work so there is no reason

for the test problems to look like Sprecher's problems. Instead, the test problems are generated to

be more like combat planning problems using the ProGen parameter values given in Chapter IV.

Additionally, the parameters for resource strength are set to the values that presented the most

complex problem instances as indicated by the testing results in Chapter IV. Table 29 provides

a summary of the fixed ProGen parameters that are used to generate the test problems for the

Sweeney-Murphy implementation.

Table 29 Fixed Parameters for the Sweeney-Murphy Test Problems
IMi Irim IKg UK QK IS1I jSjj IPJt 1Pj3 PRS TRS

min 1 1 3 2 1 3 1 3 1 0.5 0.5
max 3 10 3 4 1 3 3 3 3 0.5 0.5

In Table 29, the values for the parameters IMil and Tim indicate that each activity may

have between one and three possible execution modes and the duration associated with any mode

is restricted to be between one and ten time units. While the duration restriction is arbitrary,

the restriction on the number of execution modes is intended to simulate the limited number of

weaponeering options available for each target on the target nomination list. The values for IKI,
UK, and QK specify that every problem instance has exactly three doubly constrained resources and

every activity execution mode requires between two and four units of exactly one resource. Again,

the number of resources is arbitrary, but the other information is intended to simulate a weaponeering

106

option that calls for two to four aircraft of the same configuration to be tasked against a specific

target.

The parameters IS11, ISjj, jPjj, and [Pjj govern the construction of the precedence network

for each problem instance. The values of these parameters cause the origin activity to have exactly

three successors, cause the terminal activity to have exactly three predecessors, and restrict all other

activities to between one and three predecessors and between one and three successors. The last two

fixed parameters, PRS and TRS, are measures of resource strength and specify the level of resource

availability in the test problems. These parameters may be assigned any value between zero and

one where higher values indicate more abundant resources. The tests in Chapter IV indicate that

problems with scarce resources require longer solution times. To make the test problems for the

Sweeney-Murphy implementation as challenging as possible, the values for the resource strength

parameters were set at the lowest level tested in Chapter IV.

The two ProGen parameters that are varied are A, the number of activities in each subproblem,

and P, the number of subproblems in each problem instance. Each of these parameters is investigated

at three different levels: the levels of A are 10, 15, and 20 and the levels of P are 2, 3, and 4. ProGen

is used to generate ten problem instances for every combination of the levels of these parameters

resulting in a total of 90 test problems. The Sweeney-Murphy implementation is applied to all 90

problems and the results, reported in seconds on a 486DX66 processor, are shown in Table 30.

Table 30 Sweeney-Murphy Test Results
P=2 P=3 P=4 Total

min avg max min avg max min avg max avg
k 5 31.70 180 5 6.67 40 5 7.50 40 15.29

A=10 i 0 4.2 10 0 2.2 6 0 2.2 7 2.9
t 0.1 1.3 2.6 0.1 1.0 1.5 0.2 1.3 3.5 1.2
k 5 121.00 2080 5 140.00 1480 5 14.12 80 91.71

A=15 i 0 7.7 47 0 7.9 34 0 2.8 7 6.1
t 0.3 84.3 638.5 0.2 83.6 471.7 1.2 17.0 41.1 61.6
k 5 44.00 480 5 41.33 1030 5 8.00 20 31.11

A=20 i 0 3.9 15 0 4.9 25 0 1.5 3 3.4
t 2.0 73.8 284.1 15.0 147.1 680.1 8.9 79.7 264.1 100.2
k 65.57 62.67 9.87 46.04

Total i 5.3 5.0 2.2 4.2
t 53.1 77.2 32.7 54.3

107

The goal of this test is to explore the relationship between the size parameters and the problem

solution times. However, the solution time results are difficult to interpret alone. For this reason,

Table 30 reports information about the size of the k-best subproblem solution sets (k) and the number

of Sweeney-Murphy iterations (i) as well as solution time (t). Note that in the process of finding

initial values for the Lagrangian multipliers, the subproblems are solved separately with the linking

constraints relaxed. If the combination of optimal relaxed subproblem solutions is feasible with

respect to the linking constraints, that combination of partial solutions is optimal to the original

problem. In such cases, the number of iterations is recorded as 0 because the Sweeney-Murphy

master problem was never solved. In all other cases, the value recorded for i corresponds to the

number of times the Sweeney-Murphy master problem is solved.

The aggregate average solution times given in the last column of Table 30 behave as expected.

Solution times grow as the number of activities per subproblem grows, but beyond this one ob-

servation, the solution times appear somewhat erratic. This erratic behavior has two causes. The

first cause is the influence of the size of the k-best subproblem solution sets and the number of

Sweeney-Murphy iterations. The second cause is the affect of outlier observations. Consider the

information in Table 30 pertaining to the case where A = 15 and P = 2. If the observation with

the largest solution time is excluded, the average solution time drops from 84.3 to 22.7. Obviously,

the algorithm is susceptible to certain problem instances that require considerably more time and

iterations to achieve optimality. These outlier problem instances have excessive alternate optimal

subproblem solutions that lead to high numbers of Sweeney-Murphy iterations and the result is the

wide range of observations in the test results.

Even with the wide range of observations caused by the outlier observations, the test results

can be reorganized to make the affect of the size parameters on solution time clearer. In Table 31, the

rows represent different levels of the total number of problem activities (TA) instead of the number

of activities per subproblem. In this way, it is possible to investigate the relationship between

problems that have the same total number of activities, but different numbers of subproblems. It is

expected that if two problem instances have the same total number of activities, the one that can

be partitioned into more, smaller subproblems should be easier to solve.

108

Table 31 Sweeney-Murphy Test Results Reorganized
P=2 P=3 P=4 Total

min avg max min avg max min avg max avg
k 5 121.00 2080 5 6.67 40 63.84

TA=30 i 0 7.7 47 0 2.2 6 N/A 5.0
t 0.3 84.3 638.5 0.1 1.0 1.5 42.7
k 5 41.33 1030 5 14.12 80 27.73

TA=60 i N/A 0 4.9 25 0 2.8 7 3.9
t 15.0 147.1 680.1 1.2 17.0 41.1 82.1
k 121.00 24.00 14.12 45.78

Total i 7.7 3.6 2.8 4.4
t 84.3 74.1 17.0 62.4

The information in Table 31 is still influenced by the extreme outlier observations, but it is

possible to make a few meaningful observations. The first two observations are exactly as would

be expected. First, if one problem instance has significantly more total activities than another, it

takes longer to solve. Second, if two problem instances have the same total number of activities, the

one with fewer subproblems takes longer to solve. The final observation is less obvious, but helps

to explain an apparent paradox observed in the test results.

Consider the row in Table 30 where A = 15. The first entry in this row corresponds to

problems with 30 total activities, the second to problems with 45 total activities, and the third to

problems with 60 total activities. Normally, the expected solution time results would be increasing

with the increasing number of total activities, but the observed results are the exact opposite, hence

the apparent paradox. Aside from outlier behavior, the paradox is explained by a general tendency

for problem instances with more subproblems to require less Sweeney-Murphy iterations and smaller

values for ki.

This observation is not as obvious as the first two, but makes sense when the task of the

Sweeney-Murphy master problem is considered. The task of the master problem is to select the

best combination of subproblem solutions. Consider two problem instances, each with an unknown

number of total activities. Suppose problem A has four subproblems while problem B has only two.

Now, let ki = 10 for every subproblem of both problem instances. The formulation of the master

problem for each problem instance is independent of the number of total activities in the problem

instance. The master problem for A has 104 = 10000 possible combinations of subproblem solutions

109

to choose from while the master problem for B has only 102 = 100. Regardless of the number

of total activities, the master problem for A has more possible solutions and potentially a greater

chance to achieve optimality at lower values of ki.

With this in mind, it becomes clearer why problem instances with more subproblems may

be solved with smaller values for ki and hence fewer Sweeney-Murphy iterations. Fewer iterations

generally mean smaller solution times and this helps to explain the confusing results where, in

some cases, smaller problems take longer to solve than larger ones. In addition to explaining the

solution time paradox, this algorithm behavior offers the hope of small numbers of iterations for large

problems as long as the problems can be partitioned into a sufficient number of subproblems. Small

numbers of iterations could perhaps offset the large subproblem solution times that are required for

larger problem instances.

To reinforce the observations made thus far, a new set of test problems is constructed according

to the reorganization applied in Table 31. The performance of the Sweeney-Murphy algorithm on

this new set of test problems, reported in seconds on a 486DX66 processor, is summarized in Table

32.

Table 32 More Sweeney-Murphy Test Results
P=2 P=3 P=4 Total

min avg max min avg max min avg max avg
k 5 8.50 20 5 5.17 10 5 3.45 10 5.71

TA=24 i 0 2.9 6 0 2.2 4 0 1.8 3 2.3
t 0.1 2.0 4.6 0.0 0.6 1.3 0.0 0.5 2.0 1.0
k 5 44.00 330 5 12.41 80 5 7.13 40 21.18

TA=36 i 0 4.0 11 0 2.7 6 0 2.4 5 3.0
t 2.4 63.6 173.6 0.1 2.0 3.6 0.1 0.9 1.8 22.2
k 5 76.30 730 5 45.17 230 5 6.88 40 42.78

TA=48 i 0 9.2 40 0 6.8 49 0 2.0 6 6.0
t 12.4 1074.9 5444.4 0.5 153.5 1382.8 0.1 2.2 5.7 410.2
k 42.93 20.92 5.82 23.22

Total i 5.4 3.9 2.1 3.8
t 380.2 52.0 1.2 144.5

The results in Table 32, while still influenced by outliers, clearly exhibit the trends observed

previously. In the table, each row reports the results for problems with the same total number of

activities while each column reports the results for problems with the same number of subproblems.

110

Table 32 reports three measures of performance, the average size of the k-best subproblem solution

sets when the algorithm achieves optimality (k), the average number of Sweeney-Murphy iterations

required to achieve optimality (i), and the average computation time required to achieve optimality

(t). For these measures of performance, smaller values are more desirable, and the results in Table

32 show that each of these measures of performance increases as the total number of activities

increases or as the number of subproblems decreases. The general observation is not surprising.

Problem instances with more total activities and fewer subproblems are the most difficult problems

to solve.

5.4 Summary

This chapter implemented a Sweeney-Murphy integer program decomposition approach for

large MMGRCPSP instances with block-angular structure. In doing so, it was necessary to overcome

the three troublesome aspects of Sweeney-Murphy decomposition. The k-best solutions feature of

the subproblem solution algorithm from Chapter IV accounted for the first aspect. Parametric

analysis was applied to satisfy the requirement for Lagrangian multipliers and complexity analysis

was used to determine an effective strategy for setting and resetting the ki values. In Chapter VI,

an evolutionary algorithm approach to the MMGRCPSP is developed to provide a heuristic solution

alternative. The evolutionary algorithm in Chapter VI is combined with the decomposition method

from this chapter to form a hybrid decomposition approach that offers a reduction in solution times

for larger problem instances.

111

VI. An Evolutionary Algorithm Approach

The combination of the implicit enumeration algorithm developed in Chapter IV with the decom-

position approach developed in Chapter V provides a means for optimizing large MMGRCPSP

instances more effectively than any other method currently available. Although the methods pre-

sented in Chapters IV and V significantly increase the size of MMGRCPSP instances that may be

optimized subject to realistic time limitations, the MMGRCPSP is NP-Complete and the order of

the complete decomposition approach remains exponential. The limitations of computer hardware

and available computation time always imply an upper bound on the problem size that may be

optimized with this method.

This chapter presents a heuristic approach to the MMGRCPSP as an alternative for when

hardware and/or operational time limitations make exact methods computationally unacceptable.

The heuristic approach proposed here is an adaptation of an evolutionary algorithm (EA) developed

by S6nke Hartmann for the MMRCPSP [35]. First, Hartmann's EA is presented and extended

to MMRCPSP problems with generalized precedence constraints. Testing is then performed to

compare the performance of the EA and the decomposition approach proposed in this dissertation.

Finally, a hybrid method, combining the decomposition approach with the EA, is examined in order

to decrease solution times and increase the size of problems that can be optimized subject to realistic

time and hardware limitations.

6.1 The Evolutionary Algorithm

A review of the literature yields several evolutionary algorithm implementations for the multi-

modal variant of the general resource constrained project scheduling problem [2, 35, 67]. However,

evolutionary algorithms have yet to be applied in the literature to problems with both multiple

activity execution modes and generalized precedence constraints. Any of the evolutionary algorithm

approaches that have been developed for the multi-modal problem could be extended, in part or in

whole, to provide an EA solution approach for the MMGRCPSP.

The EA approach developed in this dissertation extends the efforts of S6nke Hartmann [35]

since his approach is the most compatible with the solution methodology used in this dissertation.

In this section, Hartmann's EA approach is extended to allow for generalized precedence constraints

112

and to provide k-best solution sets. It is shown that the mechanics of Hartmann's approach, including

the representation of individuals and the operators used on those individuals, can be used directly

and only the method for computing the fitness of individuals requires modification.

6.1.1 Basic Approach. Hartmann's EA begins by randomly generating an initial popula-

tion of POP individuals and then measuring their fitness values. It is assumed that the parameter

POP is an even integer. At this point, the population is randomly partitioned into pairs of in-

dividuals and a crossover operator is applied to each pair resulting in two new individuals. Each

new individual is subjected to a mutation operator, measured for its fitness value, and added to the

population. This increases the population size to 2 x POP. To obtain the next generation, the se-

lection operator is applied to reduce the population to its original size of POP individuals, at which

point the crossover, mutation, and selection operators are applied again. The population continues

to evolve in this manner until the EA reaches either a prespecified CPU time limit or prespecified

number of generations, GEN. Upon termination of the EA, the individual in the final generation

with the best fitness value corresponds to the best solution found and the k individuals with the

k-best fitness values represent the k-best solutions found. The basic mechanics of Hartmann's EA

are illustrated by the flow diagram in Figure 15 [35].

Create Children Next Generation
0rAll of the newly created

Apply crossover operator 'children' are added to the

to each pair of 'parents'. population leading to a new

Apply mutation operator population size, (2 x POP).
Initialization to each 'child' created. The selection operator is Termination

Measure the fitness of applied to reduce the size ELet PP bean een inegereach'chil' crated of the population to EvltiniPtrintd

defining the population size. 1_ e...... The individual with the

Randomly generate POP best fitness value offers
lindividuals for the initial |[€the best solution found

]population. / by the EA. The k-best

individuals provide the

Measure individual fitness. 15 Randomly partition the Hat ans the k-best solution set. A
entire population into pairs enera es
of 'parent' individuals.. jtime limits been/

Each pair will lead to two achieved
new 'children' individuals.)yet

Select Parents Stopping Criteria

Figure 15 A Flow Diagram of Hartmann's Evolutionary Algorithm

113

6.1.2 Individuals. In Hartmann's EA, individuals are represented by a pair of J-tuples:

one provides a precedence feasible permutation of the set of activities and the other provides a mode

assignment for each activity in the set. Recall that these are the same J-tuples referred to in the

definition of an active permutation schedule in Chapter IV. Every pair of J-tuples can be mapped

to an active permutation schedule. It was proven in Chapter IV that every feasible MMGRCPSP

instance must have an optimal active permutation schedule. With Hartmann's choice of genetic

representation for individuals, his EA stochastically searches the space of all active permutation

schedules. This is the same space that is deterministically searched by the extended Sprecher

algorithm developed in Chapter IV.

To expand on Hartmann's genetic representation of individuals, consider each of the J-tuples

separately. First, consider the activity permutation J-tuple for some individual I.

91 =

For every individual I, the activity permutation J-tuple must be precedence feasible, so if activity g[

is a predecessor of activity gf then i < j. Now, consider the mode assignment J-tuple for individual
I.

Ml1 = (m I,m I,... mg)91 9q 2 " 9"" 1

The value of m.1 is the mode assignment for activity g[and mgi E Mg. in order for the mode

assignment to be valid. An individual I is defined by the combination of any precedence feasible

activity permutation 91 and any valid mode assignment MI. The notation for an individual is given

as I = (9, MI).

The pair of J-tuples for any individual I may be mapped to an active permutation schedule

S1 = (S1,MI) where SI is a set of activity start times S1 = (STgi,ST2i,...,STqi). To derive

the set of activity start times, activity g/ is scheduled to begin execution in mode m i at time

STgi = 0 and the remaining activities are scheduled in the order given by Q'. For i = 2, ... , J,

activity g[is scheduled to begin execution in mode mgj at the earliest possible time subject to

precedence and renewable resource constraints. Note that the mode assignment AM' is already

decided and is not guaranteed to be feasible with respect to the nonrenewable resource constraints

so the resulting active permutation schedule SI is not necessarily a feasible schedule. Define p

114

to be an operator that maps an individual I to an active permutation schedule SI in the manner

described (p(I) = p(9I,MI) = S').

The fitness value for an individual in Hartmann's EA is a measure of the quality of the

schedule provided by Vp(I). The objective for the MMRCPSP instances that Hartmann worked with

was to minimize makespan so in his EA, smaller fitness values correspond to better solutions. For

individuals where the schedule provided by p(I) is feasible, the fitness value for the individual is

simply set equal to the makespan of the schedule MS(SI). The fitness values for individuals where

V(I) produces an infeasible schedule are computed based on the quantity of additional nonrenewable

resource that would be required to make the schedule feasible.

Let X/ be the number of additional units of nonrenewable resource k required for schedule

SI to be feasible and let T be the upper bound on the optimal makespan as defined in Chapter IV.

Hartmann's complete fitness function is given as follows.

f { MS(SI) if SI is feasible;

T + ZkEK XI if S, is infeasible.

Note that since T > MS(SI) V I, the fitness value for an individual with a feasible schedule is

always smaller than the fitness value for an individual with an infeasible schedule.

It was proven in Chapter IV that, for any regular measure of performance, every feasible

MMGRCPSP instance must have an active permutation schedule that is optimal. This is the

justification for extending Hartmann's EA in the same manner that Sprecher's implicit enumeration

algorithm was extended to fit the MMGRCPSP formulation of this dissertation. Aside from the

impact of general precedence on the mechanics of the V operator, the major extension of Hartmann's

approach is a modification of the fitness function.

The objective function of the Sweeney-Murphy subproblems, described in Chapter V, is

makespan plus weighted resource utilization. According to the definition provided in Chapter

IV, this objective function qualifies as a regular measure of performance. For this reason, the

Sweeney-Murphy subproblems may be solved with Hartmann's EA after a suitable reformulation of

the fitness function. Let Y/ be the total quantity of nonrenewable resource k used in the schedule

SI, let Y/be the maximum possible value of Y/, and let I'k be the Lagrangian multiplier associated

115

with the kth nonrenewable resource (see Chapter V for a discussion of the Lagrangian multipliers

in the Sweeney-Murphy subproblems). The reformulation of Hartmann's fitness function is given as

follows. { MS(SI) + ZkEK IPkYk' if SI is feasible;

+I) T kEK !~kYk + IkKg kXk if S, is infeasible.

-I
Since T + "kEK PkYk Ž- MS(SI) + ZkEK IkykI V I, the fitness value for an individual

with a feasible schedule is always smaller than the fitness value for an individual with an infeasible

schedule. The relative fitness of individuals that have feasible schedules is determined by the value of

the Sweeney-Murphy subproblem objective function. Among individuals with infeasible schedules,

relative fitness is determined by a weighted sum of the additional resources that would be required

to make the schedule feasible.

6.1.3 Operators. This section presents the three genetic operators used in Hartmann's

EA: crossover, mutation, and selection. In the discussion of these operators, an equivalent array

representation of individuals is used interchangably with the I = (I, ,M') notation introduced in

the previous section. Recall the prior notation.

I = (M) = , (mgi,mI, ... , i

The new notation displays the same values, but in the form of an array.

I=~ ~ 24 = 9im• m
MIMI M M

g 92g ...

The first operator to be discussed is the crossover operator. The details of Hartmann's

crossover operator are described in Table 33. The task of this operator is to generate two new

individuals by combining the characteristics of two individuals taken from the current population.

The individuals selected for crossover are referred to as father F and mother M, while the individ-

uals resulting from the crossover are called son S and daughter D. The first step of the crossover

operator is to generate two random integers, p, and P2, from the range [1, J]. The integer P, is used

116

Table 33 Hartmann's Crossover Operator

Step 1: (Randomize)
Generate two random integers, P, and P2, both in the range [1, J].

Step 2: (Derive Child Permutations)
For i- =1,...,pl, set gi = gF and gP = gM.
Fori=pj+1,...,J, set gýS.=gM and gp=gF

where j is the lowest index such that gM ý 1gS,. "gz1}

and k is the lowest index such that g D
Step 3: (Derive Child Mode Assignments)

For i = 1,.. ,P2, set mgs = mgp and mgD = mdM.
For i = P2 + 1,..., J, set m s = m and mgD = mgr.

in the procedure for generating activity permutations for the children and the integer P2 is used in

the procedure for generating mode assignments for the children.

The second step of the crossover operator is to combine the activity permutations of the parent

individuals to form activity permutations for the children. The first P, members of the son's activity

permutation are taken from the father and the rest are taken from the mother. Likewise, the first P,

members of the daughter's activity permutation are taken from the mother and the rest are taken

from the father. The procedure, described in Step 2 of Table 33, is designed to impart a mix

of the characteristics of the father and mother activity permutations while maintaining precedence

feasibility [35].

The final step of the crossover operator is to generate mode assignments for each child taken

from the mode assignments of the parent individuals. In this step, the random integer P2 is used

in the same way that pi was used in generating the activity permutations. The first P2 mode

assignments for the son are taken from the father and the rest are taken from the mother. Likewise,

the first P2 mode assignments for the daughter are taken from the mother and the rest are taken

from the father. In this way, each child individual inherits characteristics of both parents.

The following example is taken from Hartmann [35:page 8] to illustrate the application of

his crossover operator. The example problem in question includes six activities, each having two

possible execution modes. To summarize the precedence conditions, activity 1 is the predecessor of

activity 3 which is the predecessor of activity 5 and activity 2 is the predecessor of activity 4 which

117

is the predecessor of activity 6. Let F and M be two individuals from the population of Hartmann's

EA when applied to this problem.

3F2 11) M =(j=2 1 1 1 1)

Now, if P, = 3 and P2 = 4, applying the crossover operator to these two parent individuals

results in the generation of the following children, S and D.

g ~ : 246 5)=(g)=(4 1 3516)S Ms 1 2 12 1 1 .mD 2 21 1 1 2

Consider individual D. Since pi = 3, the first three activities in gD are set the same as the first

three activities in 9M and the remaining three activities are added to 9D in the order that they

appear in QF. Now, since P2 = 4, MD is constructed by assigning the first four activities in 9D

the modes that they were assigned in MM and assigning the last two activities in 9D the modes

that they were assigned in ME. Note that for both children, the mode assignments are valid and

the activity permutations are precedence feasible.

The next operator to be discussed is the mutation operator. The task of this operator is to

guide the stochastic search of the EA into regions of the search space that may not be accessible

through the crossover of individuals from the current population. Additionally, this operator may

help the EA escape a local optimal solution. For every individual I, Hartmann's mutation operator

first generates two random integers, q, and q2, with 1 < ql < J and 1 < q2 < J. The random

integer q, is used to alter 9, and q2 is used to alter MI.

If the resulting activity permutation is precedence feasible, 91 is altered by interchanging

activities gqand gq +1" If the interchange of these activities would result in an activity permutation

that is not precedence feasible, the mutation operator does not alter 9I. The mutation operator

alters the mode assignments in MI by changing the value of mg, to assign a new execution mode

for activity g, . This new mode is selected at random from the set of all possible execution modes

for activity gq2.

118

The final operator discussed is Hartmann's selection operator. Each generation, Hartmann's

EA partitions the entire population into pairs, applies the crossover operator to create two new

individuals from each pair, applies the mutation operator to each new individual, and then adds all

of the new individuals to the current population. This increases the population size from POP to

2 x POP. The next generation is achieved by applying a selection operator to reduce the population

back to its original size of POP individuals.

Hartmann experimented with two different selection operators. The first selection operator

was based on simple survival-of-the-fittest. This operator selected the POP individuals with the best

fitness function values as the population of the next generation and discarded the rest. The other

selection operator was a stochastic variant of the survival-of-the-fittest approach that gives every

individual a chance of making the next generation based on its fitness value. In Hartmann's test

results, the deterministic variant significantly outperformed the stochastic variant so the extended

Hartmann EA implementation for this dissertation research uses the deterministic selection operator.

6.2 Testing the Evolutionary Algorithm

This section presents testing results for the extended Hartmann evolutionary algorithm. This

testing is divided into two distinct phases, one phase performs tests to determine the most effective

settings for the EA parameters and the other applies the EA approach and the decomposition

approach from Chapter V to a common set of test problems in order to compare the resulting

solution times. The testing environment is the same as in other parts of this dissertation. The

algorithms are coded in C, the standard C function gettimeofday is used to obtain solution times,

and the test runs are performed on a 486DX66 processor.

6.2.1 Configuring the Evolutionary Algorithm. The testing presented in this section is

intended to provide empirical results that offer insight into the problem of selecting the most effective

settings for the adjustable parameters of the extended Hartman EA. Note that the optimal parameter

settings obtained through this testing are optimal only for the range of the test problems used. The

three adjustable parameters that are considered are population size, generation limit, and stopping

criteria. The most effective settings for these parameters depends on the type of problem instances

to which the algorithm is applied. Since this EA is intended as an alternative for the decomposition

119

approach discussed in Chapter V, an appropriate fine-tuning test set would be the one used for the

testing of the decomposition approach.

The test set used in this section is the one used to obtain the final set of testing results for

the decomposition approach in Chapter V. The set includes problem instances with three different

levels of total activities and three different levels of granularity. In this case, granularity refers to

the number of subproblems in each problem instance. To examine the effect of population size and

generation limit on the performance of the EA, each of the 90 problem instances in the test set

is solved first with the decomposition approach from Chapter V, and then again with 25 different

combinations of population size and generation limit. Table 34 reports the performance of the EA

for each combination of population size and generation limit in terms of average deviation from

optimal, maximum deviation from optimal, and the percent of problem instances for which the EA

obtained the optimal solution.

Table 34 Configuring Population Size and Generation Limit
Total Individuals 2400 4800 7200 9600 12000

Total Generations 60 120 180 240 300
Average Deviation 2.53% 2.44% 2.37% 2.37% 2.33%

POP = 40 Maximum Deviation 14.29% 14.00% 12.12% 12.12% 12.12%
Percent Optimal 51.11% 51.11% 51.11% 51.11% 52.22%

Total Generations 30 60 90 120 150
Average Deviation 2.16% 1.87% 1.84% 1.84% 1.82%

POP = 80 Maximum Deviation 12.12% 12.12% 12.12% 12.12% 12.12%
Percent Optimal 48.89% 52.22% 53.33% 53.33% 53.33%

Total Generations 20 40 60 80 100
Average Deviation 3.01% 1.72% 1.64% 1.62% 1.62%

POP = 120 Maximum Deviation 14.00% 9.09% 9.09% 9.09% 9.09%
Percent Optimal 36.67% 54.44% 57.78% 57.78% 57.78%

Total Generations 15 30 45 60 75
Average Deviation 4.25% 1.55% 1.49% 1.49% 1.49%

POP = 160 Maximum Deviation 16.67% 8.57% 8.57% 8.57% 8.57%
Percent Optimal 26.67% 58.89% 63.33% 63.33% 63.33%

Total Generations 12 24 36 48 60
Average Deviation 5.85% 2.03% 1.60% 1.46% 1.43%

POP = 200 Maximum Deviation 22.22% 12.12% 12.12% 9.09% 8.57%
Percent Optimal 20.00% 53.33% 62.22% 63.33% 63.33%

The combinations of population size and generation limit tested and reported in Table 34 were

selected in the following manner. First, a range of potential population sizes were selected. The

120

range of population sizes selected covers the range used by Hartmann, but it includes some larger

values since Hartmann's test problems have only 10 to 20 activities while the problems for testing

the extended Hartmann EA have between 24 and 48 activities [35:page 13]. Next, a range of values

for the total number of individuals to generate was selected. These values are not required by the

EA, but are used to obtain the generation limits for each test case. Hartmann used 3000, but did

not provide any justification for this value [35:page 13]. Assuming 3000 was a valid choice for the

size of the test problems Hartmann used, this testing used a range of values, 2400 to 12000, that

covers the value used by Hartmann, but extends to higher values to account for the larger size of

the test problems used here. Finally, a generation limit for each combination of population size and

total number of individuals was computed such that GEN = INDIVIPOP.

In Table 34, each entry in a given column reports the results for the EA with different settings

for population size and generation limit, but the same total number of individuals is generated in

each case (GEN x POP = INDIV). The idea is that since each of the configurations reported

in a given column generates the same total number of individuals, the solution times should be

approximately the same, but from column to column there is a definite difference in solution times.

To select the most effective parameter settings, the best configuration from each column is identified

according to the lowest average deviation from optimal. The graph in Figure 16 plots the average

deviation from optimal versus the total number of individuals for the best configuration from each

column.

The testing results in Table 34 and Figure 16 make a strong argument to use a population size

of 160 and a generation limit of 45 when applying the EA to problem instances with characteristics

similar to the test problems. First, consider the graph in Figure 16. The slope of the line in this

graph is a measure of the improvement in the performance of the EA attained through increases

in the total number of individuals generated. The greater the slope, the greater the improvement

in performance. As the line levels off, further increases in the total number of individuals, and the

corresponding increases in solution times, achieve only minor increases in performance. The goal is

to choose the value for the total number of individuals at the point where the slope levels off. The

two points where there is reduction in slope on the graph are at 4800 and 7200 total individuals.

121

2.2 I

2.1

2

g• 1.9

01.8

0)

1.7

1.6

1.5

"1.42000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Total Individuals

Figure 16 Average Deviation versus Total Individuals

Now, consider the columns in Table 34 that correspond to these points where there is a

reduction in slope. For the columns associated with 4800 and 7200 total individuals, in both cases

the best configuration has a population size of 160. The configuration for 4800 total individuals has

a generation limit of 30 and the configuration for 7200 total individuals has a generation limit of 45.

Based on the performance data for these two configurations, the standard EA configuration is set to

a population size of 160 and a generation limit of 45. Not only is this configuration non-dominated

among the set of all configurations with a population size of 160, but its maximum deviation and

percent optimal performance values are non-dominated in the entire set of configurations included

in the test.

The last adjustable parameter to be set is the stopping criteria for the EA. So far, the only

stopping criteria used was a generation limit. The population continues to evolve until a prede-

termined number of generations has been reached, at which point, the EA terminates. Now that

the population size and generation limit have been set to a standard configuration, a secondary

stopping criteria is introduced. The quality of a population is measured by the fitness value of

its best individual. The new stopping criteria terminates evolution if the quality of the population

remains unchanged for a certain number of generations. The next set of tests is used to determine

122

what threshold value is most effective for the new stopping criteria. That is, how many generations

without improvement are allowed before the EA is terminated.

The next set of tests examines the performance of the EA with stopping criteria threshold

values of 3, 6, 9, 12, and 15 generations without improvement. The EA is applied to all 90 of the

test problems used previously, once for each of the possible threshold values. To evaluate the effect

of the threshold value on the performance of the EA, an average deviation from optimal value is

computed for each threshold value from the test results. The test results are displayed in Figure

17 as a graph with the threshold values plotted against the corresponding average deviation from

optimal values.

11

10l

9-

8-

"06

5-

4-

3-

2-
I I 1I

2 4 6 8 10 12 14 16
Threshold Value

Figure 17 Stopping Criteria Threshold Test Results

There is an implicit tradeoff in the graph in Figure 17. Higher threshold values allow more

unimproved generations before termination. The extra generations offer the potential for further

improvement at the cost of longer solution times. Again, the goal is to select the point where the

slope of the line in the graph levels off and the probability of further improvement is low. Based

on the test results shown in the graph, the standard stopping criteria threshold value is set to

nine. That is, the EA terminates after nine generations with no improvement in the quality of the

population.

123

Unless otherwise noted, all further applications of the extended Hartmann EA use a configu-

ration with a population size of 160, a generation limit of 45, and a stopping criteria threshold value

of nine. It is important to note that the testing approach used in this section selected these EA

parameters in order to optimize performance on a set of test problems. There are no performance

guarantees for problems not included in the test set. Before applying the EA to problems with

characteristics significantly different from the problems in the test set, it would be beneficial to

re-tune the EA parameters.

6.2.2 Comparing the Evolutionary Algorithm to Sweeney-Murphy. The testing presented

in this section compares the solution times of the EA with the solution times of the decomposition

method from Chapter V on problems of varying sizes. The purpose of this testing is twofold. First,

the tests show the value of a good heuristic approach for larger problems since worst case solution

time is exponentially related to problem size for the exact algorithms. Second, the tests provide

empirical data to illustrate the exponential nature of the decomposition approach and to explore

how big is too big given the limitations of time and hardware.

The set of problems for this testing is similar to the problems used in the previous section

with one exception; there are exactly three subproblems in every problem instance. Only the total

number of activities is varied. The levels of total number of activities included in the test set are

30, 45, 60, 75, and 90, and 10 problem instances are generated for each level. This generates a test

set of 50 problem instances ranging from 30 to 90 total activities. Both the EA and decomposition

approaches are applied to all 50 problem instances and a time limit of two hours is imposed for

the decomposition approach to solve any one problem instance. The results are given as average

solution time in seconds and are summarized in Table 35.

Table 35 Comparing the Performance of Decomposition and EA
Total Activities 30 45 60 75 90

Evolutionary Algorithm 5.50 6.20 8.68 11.18 14.24
Decomposition Approach 0.98 23.89 200.08 3206.22 N/A

Average Deviation from Optimal 1.25% 2.04% 1.46% 1.59% N/A

For each level of total activities, the data in the last row of Table 35 shows the average deviation

of the EA solutions from the optimal solutions obtained by the Sweeney-Murphy algorithm. The

124

average deviation data suggests that, at least for the range of problem sizes that can be solved

by the decomposition algorithm, the EA can provide solutions that are, on the average, within

approximately two percent of optimal. This observation applies to problem instances that conform

to the characteristics of the problems in the test set that was used for fine tuning the EA.

The exponential relationship between problem size and solution time for the decomposition

approach is evident in the results summarized in Table 35. For the smaller problem instances,

the decomposition approach actually outperforms the EA, but the average solution time for the

decomposition approach increases by an order of magnitude each time the problem size is increased

by 15 total activities. One of the problem instances with 75 total activities could not be solved

within the imposed two hour time limit, and none of the 90 activity problems could be solved in

the time allowed.

These results indicate a limitation on the size of a problem that may be solved by the de-

composition approach given hardware and time limitations. Note, however, that the apparent 75

activity upper bound on problem size is for problem instances with three subproblems. The actual

limitation is in the subproblem solution algorithm for which solution time explodes shortly after 25

activities and hence, the 75 total activity limit for problems with three subproblems. Problems with

more subproblems have a correspondingly larger limit on the total number of activities.

6.3 A Hybrid Approach

This section presents a hybrid solution approach for the MMGRCPSP that combines the ex-

tended Hartmann EA approach with the decomposition approach from Chapter V. There are several

possibilities for such a combination, but the approach presented here is one that generates optimal

solutions. The computational effort of the decomposition approach of Chapter V can be partitioned

into three distinct categories: subproblem solution, master problem solution, and the computation

of Lagrangian multipliers. Of these three categories, the third, computing the Lagrangian multipli-

ers, is the only task that may be accomplished by an EA without resulting in a heuristic solution

approach, sacrificing the guarantee of optimality.

Once the Sweeney-Murphy decomposition optimality criteria have been met, the optimal so-

lution to the master problem is also optimal for the original problem. If an EA approach was used

125

to solve the master problem, there would be no guarantee that the optimal master problem solution

has been found and the resulting approach could only be used as a heuristic. The optimality criteria

for the Sweeney-Murphy algorithm are only valid if the k-best solutions for every subproblem are

generated. An EA could be used to generate k good solutions, but there is no guarantee that those k

solutions are the best. If an EA was used for the subproblems in a Sweeney-Murphy decomposition

approach, the lack of k-best solution sets would invalidate the optimality criteria and the resulting

solution approach could only be used as a heuristic. The Sweeney-Murphy approach is guaranteed

to converge for any value of the Lagrangian multipliers. The quality of the multiplier values used

affects only the solution time of the algorithm. For this reason, an EA could be used to obtain

Lagrangian multipliers without sacrificing the guarantee of optimality.

The hybrid approach proposed in this section implements a method that uses the extended

Hartmann EA to obtain values for the Lagrangian multipliers required by the Sweeney-Murphy

subproblems. Recall the three problem formulations introduced in Chapter V: the main block-

angular integer program P, the Sweeney-Murphy subproblems SPi(p), and the Sweeney-Murphy

master problem MP. These formulations are referred to in the discussion of the hybrid solution

approach. In addition to these formulations, the parameters K, the number of problem resources, P,

the number of subproblems, and A, the number of activities in each subproblem, are also important

to the discussion.

The decomposition approach developed in Chapter V built upon a parametric analysis ap-

proach originally proposed by Nauss [64] to compute proxy dual variables to be used as Lagrangian

multipliers. Nauss' approach calls for an integer program to be solved K + 1 times in order to es-

timate the marginal benefit of K problem resources. Chapter V presents the reasons why this

approach could not be used and offers an alternate method of parametric analysis that can be used

to calculate the necessary proxy dual variables. The disadvantage of the alternate approach is that

the computational effort involved grows exponentially with problem size and serves to further limit

the size of problems that may be solved under realistic time constraints.

The first step of the alternate approach for finding proxy dual variables calls for a feasible

allocation of problem resources between the P subproblems to be found. Once such an allocation is

made, the linking constraints may be dropped and the resulting subproblems are truly independent.

126

The solutions to these subproblems may be combined and the result is a feasible solution to the

original problem P.

To obtain the marginal benefit of a resource, the parametric analysis described in Chapter V

requires that each of the P subproblems be solved once with the original allocation of resources, and

then again with the constraint for the resource in question relaxed. The constrained subproblem

solutions combine to form a feasible solution to P and the unconstrained subproblem solutions form

a solution to a relaxed formulation of P. A comparison of these two solutions to P yields a value

for the amount of additional resources used and for the amount of objective function improvement

provided by the additional resources. If both of these values are non-zero, the proxy dual variable is

given as the ratio between the objective function improvement and the additional resources required.

This approach requires P x (K + 1) problems of A activities each to be solved in order to

estimate the marginal benefit of the K problem resources. These problems are solved using the

extended Sprecher algorithm from Chapter IV. Since the average solution time for the extended

Sprecher algorithm is exponentially related to the number of activities in the problem, the compu-

tational effort involved in finding the proxy dual variables becomes significant as A gets large.

The computational effort involved in calculating marginal benefit values as proxy dual variables

for large problem instances may be significantly reduced by using Nauss' parametric analysis ap-

proach with the EA developed in this chapter. The new approach consists of solving the original

problem P K + 1 times with the EA, once with all of the constraints in force, and then K times

more, each time relaxing one of the K resource constraints. Once again, the marginal benefit of each

resource is estimated as the ratio of the objective function improvement to the additional resources

required.

The mechanical difference between the original and the new EA approach for calculating

marginal benefit is in the size, number, and type of solutions that are required. The original

approach requires optimal solutions for P x (K + 1) problems of A activities each while the new EA

approach requires heuristic solutions for K + 1 problems of P X A activities each. Aside from the

mechanical difference, there may also be a difference in the quality of the Lagrangian multipliers

obtained by the two approaches. The quality of the multipliers obtained by the original approach

may vary based on how the problem resources are allocated among the subproblems. Similarly, the

127

quality of the multipliers obtained with the new EA approach may vary depending on how close the

heuristic solutions come to optimality for a given problem instance.

The mechanical and quality differences between the two approaches affect how the solution

times of the hybrid decomposition approach compare to the standard decomposition approach for

a given problem size. It is difficult to predict how some of these differences affect the solution time

of the decomposition, but one thing is certain; as problem size increases, the exponential effort

required by the original approach eventually reaches a point where the hybrid approach offers a

significant reduction in solution time.

In the following test, the standard and hybrid variants of the decomposition approach from

Chapter V are applied to a common set of test problems. The test set used is the same set of test

problems used earlier to compare the performance of the EA to the performance of the decomposition

approach. Since both the standard and hybrid decomposition approaches obtain optimal solutions,

the results given in Table 36 report only the average solution time in seconds.

Table 36 Comparing Hybrid and Standard Decomposition Approaches
Total Activities 30 45 60 75

Hybrid Decomposition 9.16 32.66 139.41 1321.28
Standard Decomposition 0.98 23.89 200.08 3206.22

The results in Table 36 show that, as expected, the hybrid approach offers significant reduction

of solution times for larger problem instances. The standard approach does better on smaller

problems due to the small size of the subproblems, but as problem size grows it is computationally

tasking to solve P x (K + 1) larger subproblems before the Sweeney-Murphy decomposition can

even begin. It should be noted that some of the solution time improvement may also be due to

an improved quality of Lagrangian multipliers. Better multipliers lead to fewer Sweeney-Murphy

iterations which means faster solution times.

Figure 18 plots solution time against the total number of activities for both the standard

and hybrid decomposition approaches. Since there is an exponential relationship, the solution

times are plotted in logarithmic scale. The graph in Figure 18 illustrates that the merits of the

hybrid approach increase with problem size. The apparent breakpoint is somewhere between 45

and 60 total activities, but it is important to note that this breakpoint is for problems with the

128

103 standard - -

0102
a,,

E

S? 101

100 "

30 35 40 45 50 55 60 65 70 75
Total Activities

Figure 18 Standard Versus Hybrid Decomposition

same characteristics as those in the test set. Specifically, all of the test problems had exactly

three subproblems (P = 3). The breakpoint varies for problems with other values of P, but the

exponential nature of the original approach guarantees that a break point must exist.

6.4 Summary

This chapter developed an evolutionary algorithm for the MMGRCPSP. This heuristic ap-

proach serves as an alternative for when time or hardware limitations prohibit the use of an exact

solution procedure. The evolutionary algorithm was used in conjunction with the decomposition

algorithm in Chapter V to develop a hybrid decomposition approach that reduces solution time for

some larger problem instances. This hybrid approach is applied in a case study in Chapter VII to

demonstrate the applicability of MMGRCPSP models and solution methodologies to the force level

air campaign planning problem.

129

VII. Case Study

The purpose of this chapter is to apply the specialized large-scale integer program decomposition

algorithm developed in Chapters IV, V, and VI to a sample combat planning problem in order to

demonstrate the applicability of the approach. This demonstration includes examples of how de-

composition may be applied to a combat planning problem, how generalized precedence constraints

may be used to enforce combat mission timing, and how doubly constrained resource constraints

may be used to restrict aircraft and sortie utilization. The combat planning model developed in

this dissertation effort was designed to be flexible to allow for the varied decomposition, mission

timing, and resource accounting requirements of different operational scenarios. This demonstra-

tion is intended as a proof of concept only. The applicability of the approach is not limited to the

examples presented here.

This chapter consists of two sections. The first section describes how the case study sample

problem was generated. The complete set of data required to formulate the sample problem is

reported in Appendix B. The second section reports the results of applying the solution methodology

developed in this dissertation to the case study sample problem. A k-best solution set for the sample

problem is presented and several criteria are offered for choosing between several near optimal

solutions.

7.1 Problem Generation

The three components necessary to formulate the model proposed in this dissertation for

any combat planning scenario are activities, resources, and precedence relations. The activity

and resource information may be taken directly from basic scenario data. The asset and target

information of a scenario dictates the activities and resources in the formulation of that scenario.

However, the precedence relations specified for the formulation of a combat planning scenario are

driven by military strategy and may not be taken directly from scenario data. These relations must

be provided by an operational expert.

7.1.1 Scenario. The first issue to address in the generation of a sample problem is the

operational scenario underlying the combat planning problem being formulated. The generation of

the sample problem begins with the map illustrated in Figure 19. The map in Figure 19 provides the

130

.2

A\•

>>

1 I>

00

I Im

<•<
ooooo0eM or 131o-O

oooooOO

0oOO

Figure 19 A Map for the Case Study Scenario

131

location of all of the assets and targets that are included in the formulation of the sample problem.

The general approach taken in the development of the illustrative sample problem is to stay as

simple and generic as possible, and this general philosophy is apparent in the map.

The map is simple in that it only contains features absolutely necessary to formulate a problem.

One such necessary feature is the dashed line representing the forward line of own troops or FLOT.

This is a line of demarcation between friendly and enemy forces and is used to mark the point at

which a mission enters enemy airspace and is subject to the threat of enemy air defenses. The FLOT

for a scenario could take on any shape depending on the actual positioning of forces. A straight line

has been used in this example to make routing calculations easier.

The map is generic in that there are no specific names given for any of its features. Bases are

referred to as Base X, the only label on the targets is an identification number, and territories have

no titles beyond friendly and enemy. The one further distinction among targets beyond the simple

identification number is the target type. The two target categories used are enemy air defense and

interdiction. The enemy air defense targets represent the possible threats to friendly aircraft, like

surface to air missile sites. The interdiction targets are targets identified to reduced the enemy's

ability to continue the war; items such as headquarters, bases, or supply depots. The generic nature

of the sample problem is intended to keep the focus concentrated on the application of the solution

methodology and the usefulness of the results. Political and military implications of the scenario

are therefore excluded.

In addition to the location of targets and assets, the map in Figure 19 illustrates one method of

how the problem may be decomposed into semi-independent subproblems. To decompose this or any

other problem, the underlying problem structure must be examined for evidence of block-angular

structure. The idea is to partition the activities into discrete sets such that the number of linking

constraints is kept relatively small. In the case of combat planning, the discriminating activity

feature could be the type/location of resources required, the type/location of the target associated

with the activity, or the timing of the resulting missions. For the sample problem generated here,

the activities are partitioned based on two different criteria.

First, the activities are partitioned according to physical location. The dotted lines on the

map in Figure 19 partition the target locations into four discrete groups. These groups of targets

132

are attacked in temporally discrete waves, so they are partitioned by time as well as location. On the

map, the waves are labeled according to their timing which was decided according to the proximity

of the targets that make up the wave to the FLOT. The objective of the problem is to minimize

the exposure to enemy air defenses for each wave. For a given wave, this value is calculated as

the difference between the time that the first mission in the wave crosses the FLOT to enter enemy

territory and the time that the last mission in the wave crosses the FLOT leaving enemy territory.

The problem's objective function is the sum of the exposure values for the individual waves.

The second form of activity partitioning that is used in the generation of this sample problem

is based on target type. Half of the target locations in each wave are enemy air defenses and the

other half are interdiction type targets. When generating the precedence constraints that control

the relative timing of the missions in each wave, an assumption is made that all enemy air defense

targets must be taken out before the deeper, interdiction type missions cross into enemy air space.

This creates a bottleneck in the underlying precedence network for each wave with the enemy air

defense targets on one side and the interdiction targets on the other. This bottleneck offers a good

breakpoint to decompose the problem further by separating the air defense and interdiction targets

in each wave into separate subproblems. With four waves and two subproblems for each wave, the

formulation of the sample problem has a total of eight subproblems.

7.1.2 Activities and Resources. The map in Figure 19 shows a total of 40 target locations,

half of them enemy air defense targets and the other half interdiction targets. In the sample problem,

it is assumed that each target location includes two or three separate targets that must be attacked

by separate missions. For instance, if the target is an enemy air base it may be necessary to designate

one mission to crater the runway, one to take out the control tower, and another to destroy aircraft

on the ground. It is assumed that each enemy air defense target location has two separate targets

to hit and each interdiction target location has three. With 20 enemy air defense targets locations

having two separate targets and 20 interdiction targets having three separate targets, the sample

problem has a total of 100 targets and the problem formulation has a corresponding total of 100

activities. An attack mission of either two or four aircraft must be planned against each of the 100

targets, resulting in an ATO of 200-400 sorties.

133

To formulate the problem, it is necessary to determine modes, durations, and resource re-

quirements for each of the 100 activities in the problem. In an actual combat planning scenario, the

information necessary to determine the modes and resource requirements would be found in the tar-

get nomination list (TNL). To specify modes and resources for the sample problem, a table of data

similar to a TNL is generated. This table includes only that subset of the actual TNL information

that is essential to determining modes and resource requirements for the sample problem activities.

For this sample problem it is assumed that there are two types of aircraft available to fly attack

missions, AC-1 and AC-2. Additionally, it is assumed that there are two units of each aircraft type

available for the scenario. One AC-1 unit is located at Base A, the other at Base B. One AC-2 unit

is located at Base B and one is located at Base C. Modes and resource requirements for the sample

problem activities are assigned randomly. Some targets can be attacked with either aircraft type

while other targets require one or the other. This means that every activity has either two or four

possible execution modes.

The TNL for the sample problem specifies the number, type, and location of resources required

for every mode of every target at every target location. The number of sorties called for by a given

mode is randomly determined to be either two or four. An example of the resources required for

a given mode of some target might be two sorties of AC-1 from Base B. The entire TNL for the

sample problem is provided in Appendix B and some sample entries are shown in Table 37.

Table 37 Sample TNL Entries
LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

5 31 59 Air Defense 2 9 2 1 4 AC-1 from Base A
2 4 AC-1 from Base B

10 4 1 4 AC-1 from Base A
2 4 AC-1 from Base B
3 4 AC-2 from Base B
4 4 AC-2 from Base C

6 8 72 Interdiction 3 11 2 1 2 AC-2 from Base B
2 2 AC-2 from Base C

12 4 1 2 AC-1 from Base A
2 2 AC-1 from Base B
3 2 AC-2 from Base B
4 2 AC-2 from Base C

13 2 1 2 AC-1 from Base A
2 2 AC-1 from Base B

134

The first five columns in Table 37 provide information about a target's location, specifically

the identification number from the map, the (x,y) coordinates of the location, and the type and

number of targets located at those coordinates. The next two columns offer information about each

of the targets at a given location including a target identification number and the number of possible

execution modes for that target. The last two columns give the details for every execution mode

which consist of a mode identification number and the number, type, and location of the necessary

resources. For example, target 11 is an interdiction target at location 6 and must be attacked with

two AC-2 from either Base B or Base C.

The complete TNL provides all the information necessary to determine the modes and resource

requirements of all activities in the sample problem. The final information necessary to completely

specify all of the activities are the durations associated with each execution mode. Before this

information can be computed, more resource information must be specified. Table 38 provides the

additional details necessary for computing mode durations.

Table 38 Problem Resource Information
Unit Type/Base X Y NAC TR NSOR TT NAS

1 AC-1 from Base A 24 32 36 3.0 108 50 1.0
2 AC-1 from Base B 64 24 24 3.0 72 50 1.0
3 AC-2 from Base B 64 24 24 2.5 60 70 1.1
4 AC-2 from Base C 96 28 36 2.5 90 70 1.1

Table 38 provides the (x,y) coordinates of the base at which each unit is located. In addition,

the table provides some information about the aircraft that make up the units. The NAC column

gives the number of aircraft in the unit, the TR column gives the turn rate, or number of sorties

per day per aircraft, and the NSOR column gives the total number of sorties each unit can perform

in a given ATO day (NAC x TR = NSOR). The TT column gives the aircraft turn time which

specifies the amount of time it takes to service aircraft after they have completed a mission. This

value is given in minutes.

The final column in Table 38 contains a nominal airspeed value for each aircraft type and is

given in distance units per minute. This value is set to make the average in flight time for missions

in the sample problem equal to approximately two hours. The (x,y) coordinates of the bases and

targets are based on a grid where each distance unit is an eighth of an inch on the map. The

135

average round trip distance between the bases and targets specified in the TNL is approximately

120 distance units. A nominal airspeed of 1.0 distance units per minute makes the average in flight

time of a mission two hours, and with an average turn time of one hour, the average mission ties

up assets for approximately three hours or 180 minutes. To make the two aircraft types different,

AC-2 is given a faster nominal airspeed in exchange for a smaller turn rate and a longer turn time.

With the additional resource information in Table 38, it is now possible to compute mode

durations for the activities in the sample problem. Activity execution mode durations represent the

duration of a combat mission, including aircraft turn time, for a given asset/target combination.

In order to formulate generalized precedence constraints to enforce mission timing, it is necessary

to know the duration of each leg of a mission as well as the entire mission duration (the sum of all

mission leg durations).

Every mission in the sample problem has six component mission legs. The leg from the base

to the FLOT is referred to here as the approach leg (APPR) and the leg from the FLOT to the

target area is called the ingress leg (INGR). The third leg is called the attack leg (ATT) and is a

short period of time that the target area belongs to one mission. The duration of this leg is fixed

to one minute for all missions. The purpose of this leg is to avoid interference between separate

missions to the same target location. Note that the duration of the attack leg is not intended as

loiter time. The leg from the target area back to the FLOT is called the egress leg (EGR) and the

leg from the FLOT back to the base is called the return leg (RET).

The final mission leg is the turn time (TURN) for the aircraft to be serviced after the mission

is complete. Although all of the missions in the sample problem have six legs, missions in other

scenarios could include more than just the basic components described here. For instance, if a

mission requires in flight refueling to reach the target, the approach leg would be replaced by a leg

from the base to a tanker airspace, a loiter time to refuel, and a leg from the tanker airspace to the

FLOT. Additional mission legs require more mode duration computations, but do not increase the

solution time of the algorithm.

Two of the six mission leg durations are already known. The turn times are provided in Table

38 and the attack leg is fixed at one minute for all missions. To determine the durations of the

remaining four mission legs for each activity execution mode, simple geometry is used to compute

136

the distance of each leg and the distance is divided by the nominal airspeed of the aircraft called

for by the execution mode. Straight line routing is used to determine the necessary distances. Note

that this is an acceptable method for calculating durations, but the actual missions flown use neither

straight line routes nor nominal airspeeds. Actual routing is accomplished according to terrain and

threats, and airspeed is regulated in order to reach mission waypoints at the appropriate times.

Once durations are computed for all of the components of every activity execution mode,

the complete mission duration is given as the sum of all component durations. All of the duration

information for every activity in the sample problem is given in Appendix B and some samples are

shown in Table 39.

Table 39 Sample Duration Information
LOC TAR MOD APP ING ATT EGR RET TUR SUM

5 9 1 17 11 1 11 17 50 107
2 33 15 1 15 33 50 147

10 1 17 11 1 11 17 50 107
2 33 15 1 15 33 50 147
3 30 14 1 14 30 70 159
4 42 23 1 23 42 70 201

6 11 1 33 33 1 33 33 70 203
2 40 48 1 48 40 70 247

12 1 17 26 1 26 17 50 137
2 37 37 1 37 37 50 199
3 33 33 1 33 33 70 203
4 40 48 1 48 40 70 247

13 1 17 26 1 26 17 50 137
2 37 37 1 37 37 50 199

The duration information in Table 39 is for the same set of targets whose TNL entries were

displayed in Table 37. All duration values are reported in minutes. Note that the last column

in Table 39 is the complete mission duration for a given activity execution mode. By design, the

average of the values reported in this column should be approximately 180 minutes or three hours.

All of the activity information necessary to formulate the sample problem is found in either the TNL

or in the activity duration table and all of the required resource information is reported in Table 38.

7.1.3 Precedence. The final component necessary to formulate the sample problem is a

set of activity precedence constraints. Unlike the activity and resource information, the precedence

137

information cannot be simply extracted from standard scenario information. How to sequence

missions in order to gain the best results is a matter of operational art and a task best left to combat

planning experts. For the sample problem, several mission sequencing alternatives are presented

and applied. These alternatives may not be the same mission sequencing that an operational expert

would use, but they are intended to demonstrate how generalized precedence is used. Once the

mechanics are understood, the constraints can be used to implement any type of mission sequencing

that is required.

Figure 20 illustrates the six types of activity precedence relations that are used in the sample

problem formulation. The basic formulation of the generalized precedence constraints used in this

dissertation may be summarized as STj - STi _ Aijmn where STi is the start time of the predecessor,

STj is the start time of the successor, and Aijmn is a minimum lag value that is dependent on the

modes of both i and j. All six of the precedence relations depicted in Figure 20 are formulated in

the same manner with the lone difference being the method for calculating the minimum lag value.

In the illustrations in Figure 20, i indicates a predecessor activity, j indicates a successor

activity, s indicates a dummy source activity, t indicates a dummy sink activity, and ST(x) indicates

the start time of activity x. The diagram for each type of precedence includes a predecessor activity,

either i or s, and a successor activity, either j or t. An arrow emanates from each successor activity

at a critical point in the duration of the activity and points to the right to indicate that that point in

the activity must occur at that time (relative to the predecessor) or later. In addition, the minimum

lag value necessary to enforce a precedence condition is illustrated in each precedence diagram.

Each enemy air defense subproblem in the sample problem includes a zero duration dummy

source activity. This activity becomes the predecessor of every activity in the subproblem that

does not already have a predecessor. Type A precedence is used to define the precedence relation

between this dummy activity and each of its successors. The minimum lag time used for this type

of precedence is zero. This allows the successors of the dummy activity to begin execution at the

same time as the dummy.

Type B precedence is used to sequence missions against targets at the same location. If there

are two targets at a location, they must be taken out sequentially in order to avoid interference

between the missions. The second mission cannot begin its attack leg until the attack leg of the

138

Type A Type B
ST(s)

lag4t

ST(i) ST(j)

ST(j)

Type C Type D

E lag- - lag

ST(i) ST(j) ST(i) ST(t)

Type E Type F

lagAl

ST(s) STOj) lag '

ST(i) ST(t)

Figure 20 Types of Precedence

139

first mission is complete. The minimum lag value for this type of precedence condition is given as

APPRi + INGR, + ATTj - APPRj - INGRj. Note that since the leg durations vary based on the

locations of the targets and bases, the minimum lag value may turn out to be a negative number.

If the minimum lag between the start times of predecessor i and successor j is -5, the precedence

constraint ensures that the start time of j is no more than 5 minutes earlier than the start time of i.

Type C precedence is used for situations where mission j must travel over the target area of

mission i in order to reach its own target. It is assumed that it would be better for mission j not to

pass over the target area of mission i until mission i has completed its attack leg. The minimum lag

value for this type of precedence is computed in the same manner as the lag for type B precedence,

except that additional time (d) is added to ensure that mission i has completed its attack leg before

mission j passes overhead. For the sample problem, the value of d was fixed to five minutes for all

missions using this type of precedence, but any appropriate value could be used for other scenarios.

The formula for the computation of the minimum lag value is APPRi + INGR2 + ATT2 ± d -

APPRj - INGRj.

Each enemy air defense subproblem in the sample problem includes a zero duration dummy

sink activity. This activity becomes the successor of every activity in the subproblem that does

not already have a successor. Type D precedence is used to define the precedence relation between

this dummy activity and each of its predecessors. The minimum lag time used for this precedence

condition is APPRi + INGRi + ATTi to ensure that the dummy sink activity does not occur until

all of its predecessors have completed their attack legs. This dummy sink activity is the link between

the subproblem for the air defense targets of a wave and the subproblem for the interdiction targets

of the same wave. The missions of an interdiction subproblem may not begin their ingress legs until

the dummy sink activity of the air defense subproblem has occurred indicating that all of the air

defense targets for that wave have been attacked and it is safe for the interdiction missions to enter

enemy airspace.

Type E and F precedence relations are used to enforce precedence conditions with the dummy

source and sink activities of the interdiction target subproblems. Type E precedence is used to make

sure that the earliest precedence feasible start time for the ingress leg of all successors of the dummy

source activity is the same. The minimum lag value for this precedence condition is D - APPRj

140

where D = MAXj(APPRj). The combination of type D precedence in the air defense subproblems

and type E precedence in the interdiction subproblems enforces the requirement that all air defense

targets are attacked before interdiction missions enter enemy airspace. Type F precedence is used

to define the end of each wave of attack missions by constraining the dummy sink activity of each

interdiction target subproblem to occur only after all interdiction missions are complete. Note that

this precedence condition is the same as standard end-to-start activity precedence. The minimum

lag value used is simply the duration of the predecessor activity.

Dummy source and sink activities are added to each subproblem bringing the total number of

activities in the sample problem to 116. The six types of activity precedence described in Figure 20

are used to formulate all precedence constraints among the 116 activities. The resulting precedence

networks are provided in Appendix B. To illustrate the construction of these precedence networks,

Figure 21 contains the networks for all of the activities of the third wave of attack missions.

b d

a b

Enemy Air Defense Targets

Interdiction Targets
f'•b f-,b w-,c -, b /•b f-

c 668 661 663 f

s5 73 7f5ct

Figure 21 Precedence Networks

The nodes of the precedence networks in Figure 21 correspond to the identification numbers

of the targets in the third wave. The dummy source and sink nodes are labeled with s,, and t,,

respectively, where n denotes the number of the subproblem. An arc directed from node i to node j

in these networks indicates that activity j is a generalized successor of activity i. Each arc is labeled

with a letter corresponding to the type of precedence relation between the activities connected by

that arc. For example, activities 54 and 53 are connected by an arc indicating type A precedence

141

since activity S4 is the dummy source node of the subproblem. The arc between nodes 53 and 54

indicates type B precedence since targets 53 and 54 are at the same target location and must be

attacked sequentially. The arc between nodes 54 and 51 indicates type C precedence because it is

possible that mission 51 may travel over the target area of mission 54.

Consider a predecessor/successor pair of activities, (ij). If activity i has m modes and

activity j has n modes, there are m x n different lag values that may be required to enforce the

precedence relation of these two activities. Every potential lag value for every predecessor/successor

activity pair has been computed based on the type of precedence relation indicated by the precedence

networks and these values are compiled in a series of tables in Appendix B. Table 40 provides an

example of how the data is reported in Appendix B.

Table 40 Sample Lag Values
Predecessor Successor Successor

target 51 target 57
n=1 n=2 n=3 n=4 n=1 n=2 n=3 n=4

target 54 m = 1 0 -14 -8 -25 -6 -6 0 -11
m = 2 9 -5 1 -16 3 3 9 -2
m = 3 5 -9 -3 -20 -1 -1 5 -6
m = 4 22 8 14 -3 16 16 22 11

Table 40 contains all of the possible lag values between activity 54 and its successors, activities

51 and 57. The lag value enforced depends on both the execution mode of the predecessor activity, m,

and the execution mode of the successor activity, n. The combination of the precedence networks

and the tables of lag values provides all the information necessary to formulate the precedence

constraints for every predecessor/successor activity pair in the sample problem.

7.2 Sample Problem Results

The sample problem was formulated and solved on a 167MHz UltraSPARC using the hybrid

variant of the integer program decomposition algorithm developed in this dissertation. The algo-

rithm obtained the 10 best active permutation schedules for the sample problem in approximately 45

minutes. Solving a problem of this size in less than an hour is a significant achievement considering

the other options available for obtaining an optimal solution to this type of problem. The only other

142

exact solution alternatives for this type of problem are to apply a standard IP solver or transform

the problem so that Sprecher's algorithm could be applied.

Recall that in Chapter IV a small sample problem was formulated and solved using CPLEX.

That problem had approximately 1200 binary variables and 300 constraints and required close to

nine hours to solve with CPLEX on a Sun SPARCstation-10. The IP formulation of the case study

sample problem would include more than six million binary variables and 80 thousand constraints.

This variable count is pessimistic since it does not take into account preprocessing techniques for

variable reduction; even so, the the IP formulation of this problem is of daunting proportions. Given

the exponential relationship between solution time and the number of variables for standard IP

solvers, it may be concluded that this is not a feasible alternative for solving the case study sample

problem.

The other alternative is to transform the problem such that generalized precedence constraints

are no longer required and use Sprecher's implicit enumeration algorithm to solve the transformed

problem. This transformation calls for each of the non-dummy activities to be broken up into its

component legs and would require six activities in the transformed problem to take the place of

every non-dummy activity in the original problem. The resulting transformed problem would have

over 600 total activities. Since the solution times for Sprecher's algorithm become excessive (several

hours) when the number of activities gets much over 20 [79], this method is just as impractical for

the case study sample problem as a standard IP solver.

The output of the decomposition algorithm used on the sample problem is a list of start times

and execution modes for all of the activities. This output for the optimal solution is provided in

two forms. The solution information is first displayed in Appendix B as a table of ATO-like mission

data. The solution information is then illustrated graphically by a sortie flow chart. Table 41 shows

the optimal solution for the third wave of the sample problem as ATO-like mission data.

For the 25 targets that make up the third wave of the sample problem, Table 41 provides the

assignment of resources to targets and the important mission scheduling information that would be

provided in the mission lines of the ATO in an actual force level planning exercise. Note that the

earliest missions in this wave start at or about 1200. It was assumed that the attack waves are

temporally discrete and arbitrary start times of 0000, 0600, 1200, and 1800 were assigned to the

143

waves of the sample problem. To provide a better understanding of how the flow of missions within

a wave conform to the generalized precedence constraints specified, the solution information from

Table 41 is illustrated graphically as a sortie flow chart in Figure 22.

Table 41 Sample ATO Solution Data
Target Resources Takeoff Attack

51 2 AC-i from Base A 1224 1306-1307
52 4 AC-2 from Base C 1200 1307-1308
53 2 AC-i from Base A 1223 1259-1300
54 4 AC-i from Base A 1224 1300-1301
55 2 AC-2 from Base C 1212 1313-1314
56 4 AC-2 from Base C 1213 1314-1315
57 2 AC-i from Base B 1218 1306-1307
58 4 AC-i from Base A 1219 1307-1308
59 2 AC-i from Base A 1216 1313-1314
60 4 AC-2 from Base C 1219 1314-1315
61 4 AC-i from Base B 1303 1406-1407
62 4 AC-2 from Base B 1309 1407-1408
63 2 AC-2 from Base B 1310 1408-1409
64 4 AC-i from Base A 1308 1406-1407
65 4 AC-i from Base B 1259 1407- 1408
66 4 AC-i from Base A 1310 1408-1409
67 4 AC-2 from Base C 1253 1358-1359
68 2 AC-i from Base A 1307 1359-1400
69 2 AC-i from Base B 1301 1400-1401
70 4 AC-i from Base B 1256 1358-1359
71 4 AC-i from Base A 1301 1359-1400
72 4 AC-i from Base B 1258 1400-1401
73 4 AC-2 from Base B 1300 1350-1351
74 2 AC-i from Base B 1255 1351-1352
75 2 AC-i from Base A 1256 1352-1353

Each horizontal line on the graph in Figure 22 represents the entire duration, including turn

time, of a mission in the third wave of the sample problem. The x's on the horizontal lines mark

the beginning, end, and transition points in the duration of each mission. For example, the first

x on each line marks the time that the mission takes off from its base, the second x marks the

mission's entry into enemy airspace, the the third and fourth x's, grouped closely together on each

144

line, mark the attack window for the mission. The relative mission timing displayed in Figure 22

can be verified against the precedence networks illustrated previously in Figure 21.

80

75 X "" " X X X

X X X X (IC. I. . C
Vt V V tVt

70x ix.- x X X
x , X X X.

70X x X X X

.,65x > x x X XX
E X, x X X X

x: Pv I v x X X X
r"X I .v x X X X

a) I :('

.05 x X X . . XE x X X <

X~ X X ,

Xiv -, X X X X
55x x x X XX

"X -"" X X X
X X vT X X X

X X AN, IV,, X v-

XI
5 X x I x X -- I55 X. X.)f X X

FigureS 22 Soti Vto

X X x1 xt Vt

50-

45 I I

-50 0 50 100 150 200 250 300
ATO minutes

Figure 22 Sortie Flow

The dashed vertical line in Figure 22 represents the precedence requirement between the two

subproblems that make up this wave. Missions 51-60 are the enemy air defense targets and form

one subproblem while missions 61-75 are the interdiction targets that form the other subproblem.

Aside from the precedence conditions among missions in the same subproblem, illustrated by the

precedence networks of Figure 21, there is one precedence constraint that binds the two subproblems

together into a wave. That precedence condition specifies that all air defense targets are attacked

145

before any interdiction mission crosses the FLOT. The dashed vertical line on the sortie flow chart

illustrates that this precedence condition is met in the optimal solution.

The solution methodology developed in this dissertation includes a technique for obtaining

k-best solution sets. This technique was used to obtain the 10 best active permutation schedules

for the case study sample problem. These 10 solutions are summarized in Table 42.

Table 42 Solution Options
Solution Total Sorties Peak Usage
OBJ RES1 RES2 RES3 RES4 RES1 RES2 RES3 RES4
1 631 100 58 52 80 36 22 16 26
2 632 88 60 60 78 36 24 24 26
3 632 104 54 50 82 36 22 14 26
4 634 90 60 60 80 32 18 18 28
5 634 90 58 48 90 32 18 14 28
6 636 96 56 60 78 36 18 22 24
7 638 94 68 44 80 32 24 14 26
8 638 102 54 58 78 36 22 18 24
9 646 92 58 60 76 34 20 22 26
10 647 98 56 60 76 36 18 22 22

Limits 108 72 60 90 36 24 24 36

The solutions reported in Table 42 are listed in order of increasing objective function value.

Recall that the objective of the problem is to minimize the span of time that the missions of each

wave are in enemy airspace and subject to the threat of enemy air defenses. The objective function

values are reported in minutes so the difference between the optimal solution and the 1 0 th best

solution is 16 minutes of exposure to enemy air defenses. Since the difference among the objective

function values of these solutions is relatively small, it is useful to discuss what criteria might be

used to choose from a set of near optimal solutions.

One approach to developing selection criteria could be based on the utilization of resources

by the various near optimal solutions. Table 42 provides information for each solution that reports

both the total number of sorties flown by each unit and the peak aircraft usage for each unit. The

total sortie information corresponds to the nonrenewable sortie constraints while the peak usage

information is related to the renewable resource constraints that limit the number physical airframes

that can be in the air at any given time. The last line of the table provides the limits that represent

the right-hand-side values of the resource constraints.

146

While all of the solutions in Table 42 have good objective function values, the resource utiliza-

tion information might make one solution more attractive than another. If the optimal solution has

one unit providing the maximum possible number of sorties while the other units are underutilized,

it may be worth a few extra minutes of exposure to enemy air defenses in order to select a solution

with a more equal distribution of sorties among the units. Another reason to choose a solution

other than the optimal solution might be peak usage values at or near the maximum for one or

more units. If a schedule calls for every aircraft in a unit to be in use simultaneously, there is no

room for equipment failure. The risk of missions getting canceled increases. It is apparent that

while k-best solution sets are relatively inexpensive in terms of computation time, they can provide

useful solution alternatives for a combat planning problem. Of course, a final plan would be drawn

up utilizing the non-quantifiable expertise of the planner. Having a set of baseline alternatives,

however, would aid the process.

7.3 Summary

This chapter presented a case study to demonstrate the applicability of the techniques devel-

oped in this dissertation research to the force level air campaign planning problem. The sample

problem for the case study was generated to provide examples of how decomposition, multiple exe-

cution modes, doubly constrained resources, and generalized precedence may be applied to combat

mission planning. In addition, the case study presents criteria for discriminating between the set of

near optimal solutions provided by the hybrid decomposition algorithm. Chapter VIII summarizes

the research conducted in this dissertation, the significant contributions of the research, and the

recommendations for future research.

147

VIII. Conclusions and Recommendations

This chapter presents a summary of the research in this dissertation. The significant contributions

of the research are outlined and recommendations for future research are provided.

8.1 Research

The research accomplished two primary goals. The first goal was to develop an effective

solution methodology for a class of resource constrained project scheduling problems with activities

having both multiple execution modes and generalized precedence constraints, a problem referred

to in this dissertation as the MMGRCPSP. The second goal was to demonstrate the applicability of

the MMGRCPSP model to joint campaign planning in general, and specifically, to the problem of

the force level planning of combat missions in an air campaign.

The literature offers no specialized solution methods for the MMGRCPSP and general solution

methods are computationally impractical for all but the smallest instances of this class of problems.

There is, however, research in the literature that proposes an effective specialized algorithm for the

class of resource constrained project scheduling problems with activities that have multiple execution

modes, but deals with only standard, end-to-start precedence relations, a problem referred to in

this dissertation as the MMRCPSP. This research effort developed an exact algorithm for the

MMGRCPSP.

The extended algorithm developed in Chapter IV provides a means for solving MMGRCPSP

instances more effectively than any currently available approach. While the algorithm performs

well on problems of the magnitude tested in the literature, the problem is NP-complete. The

exponential relationship between problem size and solution time causes the solution times required

for larger problems to be unreasonably high. To increase the size of problems that can be solved

within reasonable time and hardware limitations, the research explores the possibility of exploiting

block-angular structure in larger problem instances through the use of decomposition techniques.

The MMGRCPSP formulation developed is an integer program. The only general decompo-

sition approach available in the literature that exploits block-angular structure in integer programs

is Sweeney-Murphy decomposition. While Sweeney-Murphy decomposition is theoretically sound,

some of the computation involved is cumbersome and time consuming. Sweeney-Murphy decompo-

148

sition has not been widely applied in the literature due to these limitations. Thus, it was necessary

to develop techniques to address several theoretical and operational aspects of the Sweeney-Murphy

algorithm in order to effectively implement a decomposition approach to the MMGRCPSP.

The two major difficulties with implementing Sweeney-Murphy decomposition are finding

proxy dual variables for the linking constraints in the master problem and generating k-best solution

sets for the subproblems. The research developed a method of parametric analysis to estimate the

marginal benefit of increasing the right-hand-side of each linking constraint by one unit. These

marginal benefit values were shown to be effective proxy dual variables for an implementation of

Sweeney-Murphy decomposition.

To address the issue of k-best subproblem solution sets, the research in this dissertation

developed an enhanced implicit enumeration strategy that obtains the k-best solutions to a problem

in only slightly more time than it takes to find a single optimal solution for that problem. The

strategy proposed serves the original purpose of finding k-best subproblem solution sets for Sweeney-

Murphy decomposition, but it is a general approach that can be applied to any implicit enumeration

algorithm. In fact, the k-best strategy was applied to the solution algorithm for the Sweeney-Murphy

master problem to provide a set of near optimal solution alternatives for any problem to which the

decomposition algorithm is applied.

The combination of the specialized MMGRCPSP solution algorithm and the integer program

decomposition technique developed provides an effective method for solving larger problem instances

than previously possible. However, the problem is still NP-complete. To provide an alternative for

problems that are too large for the exact algorithm to solve in a reasonable amount of time, a

heuristic solution alternative, evolutionary algorithms, was explored. As with the exact algorithms,

there are no EA implementations found in the literature for the MMGRCPSP, but there are EA

implementations for the MMRCPSP.

The research extended EA procedures proposed in the literature for the MMRCPSP to develop

an EA implementation for the MMGRCPSP. The MMGRCPSP EA implementation was then tested

against the decomposition method in order to show that the solution times of the EA increase at a

significantly slower rate with respect to problem size than the solution times of the decomposition

method. When solution time is a more pressing concern than solution accuracy, the EA offers a less

149

computationally intensive alternative to the exact algorithm. In addition to providing a heuristic

solution alternative, the EA was used to develop a more efficient method of estimating marginal

benefit for Sweeney-Murphy decomposition. The hybrid decomposition approach that used the EA

to estimate marginal benefit was shown to significantly improve solution time for larger problem

instances.

The hybrid decomposition approach is the culmination of the goal to develop an effective

solution methodology for the MMGRCPSP. In pursuit of the second dissertation goal, the hybrid

approach was applied in a case study in order to demonstrate the applicability of the MMGRCPSP

model to campaign planning. The case study discussed how a MMGRCPSP model would be

formulated from the planning data available for an operational scenario. The sample problem used,

however, was a contrived example. The purpose of the example was to demonstrate a modeling

technique, not to advocate any particular combat planning strategy.

The first part of the case study involved the generation of the sample problem. This part of

the study explained the various bits of information that are necessary to completely describe the

activities, resources, and precedence relations that make up the MMGRCPSP model formulation for

a combat planning problem instance. While it is relatively straight forward to define activities and

resources, there are countless alternatives for restricting the timing of the activities with generalized

precedence constraints and for decomposing the problem into subproblems.

Several options were presented for decomposing a combat planning problem and two of these

options were illustrated in the sample problem. The sample problem was decomposed into waves

of attack missions and each attack wave was further decomposed by target type. Six different

variations of generalized precedence were applied to enforce various mission timing requirements.

These mission timing requirements were used either to efficiently sequence missions around the

target areas or to keep certain deeper missions out of enemy airspace until enemy air defense could

be suppressed. It was stressed that the precedence relations demonstrated in the sample problems

were merely examples and that generalized precedence constraints are flexible enough to enforce

virtually any mission timing requirement.

The final effort in the case study was to discuss methods for exploiting the k-best solutions

provided by the hybrid decomposition algorithm. The hybrid algorithm was used to obtain the 10

150

best solutions to the sample combat planning problem. It was observed that while the objective

function values of these 10 solutions were nearly identical, the utilization of resources varied greatly.

Several criteria were proposed to aid in the process of selecting from a set of near optimal solutions.

8.2 Contributions

The contributions of this research begin with the formulation of the MMGRCPSP model for

combat planning. This problem formulation not only represents a new approach to combat planning,

but it is also an original contribution to the field of resource constrained project scheduling. This

field of research has seen formulations for multiple activity execution modes, and formulations for

generalized precedence constraints, but the model is the first to incorporate both.

Aside from being the first of its kind, the formulation of generalized precedence for multi-modal

activities developed is attractive for its efficient use of variables and constraints. This formulation

has the ability to enforce a large set of possible precedence conditions with a relatively small number

of constraints and without any additional variables to enforce the logic that selectively enforces the

appropriate precedence condition. In a model that quickly becomes unwieldy as problem size grows,

the efficient precedence constraints are very much appreciated.

The new problem formulation is a significant contribution, but it is of limited use without

specialized algorithms that can solve large problem instances effectively. The implicit enumeration

algorithm and the EA approach developed are what make the MMGRCPSP model formulation

useful. The former offers an exact solution approach for small to medium sized problems that

require an optimal solution while the latter provides a heuristic alternative for problems too large

to solve with the exact approach in a realistic amount of time. These solution methodologies are

original approaches to a new class of problems and as such represent significant contributions to

the field of resource constrained project scheduling.

The efforts at integer program decomposition presented in this dissertation enhance an existing

decomposition approach and apply it to a new problem, the MMGRCPSP. These efforts develop

several useful new techniques that make the decomposition approach more effective. The general

k-best solutions strategy for implicit enumeration is an original contribution that not only increases

151

the effectiveness of the decomposition effort, but can be used to enhance any implicit enumeration

algorithm by providing multiple near optimal solution alternatives for every problem solved.

In addition to the k-best solutions strategy, the decomposition efforts also resulted in the de-

velopment of efficient methods for estimating proxy dual variables in large integer programs. In

Chapter V it was shown that it is not possible to estimate proxy dual variables for the MMGR-

CPSP by standard LP relaxation techniques. Without the marginal benefit estimation procedures

developed in this dissertation research, there would be no way to derive meaningful Lagrangian

multipliers to use in the Sweeney-Murphy subproblem formulations and it would be unlikely that

an efficient decomposition approach could be implemented for the MMGRCPSP. In addition to

the increased efficiency these marginal benefit values bring to the decomposition efforts, they have

applications in the sensitivity analysis of any integer program problem.

The final contribution of this dissertation research is the case study. The MMGRCPSP

formulation represents a new class of project scheduling problems. This research offers several

effective solution approaches to this new problem area, but it is the case study that demonstrates

that the model and solution approaches have applications to real world problems. In generating and

solving a combat planning scenario of approximately 300 combat sorties, the case study illustrates

the applicability of the methodology. The case study also applies multiple variations of the general

modeling approach in order to demonstrate the flexibility of the model.

8.3 Recommendations

The following recommendations are made for extending the research:

1. The implicit enumeration algorithm was based on an algorithm for the MMRCPSP. Not all

of the bounding strategies in the original algorithm were applicable to the MMGRCPSP.

Those bounding strategies that were applicable were used directly and an effort was made

to find suitable alternatives for non-applicable strategies wherever possible. The resulting

algorithm proved to be roughly as effective as the MMRCPSP algorithm, but there is room

for improvement in the bounding strategies. Additional effective bounds might be found to

speed up the solution times of the algorithm and increase the size of problems that can be

solved in realistic amounts of time.

152

2. In Chapter VI, Hartmann's EA for the MMRCPSP [35] is extended to address the gener-

alized precedence constraints of the MMGRCPSP. To accommodate generalized precedence

constraints, it was necessary to develop a modified fitness function. However, Hartmann's

genetic representation of individuals and genetic operators were used directly in the extended

EA. The extended approach represents one possible EA for the MMGRCPSP, but it is not

necessarily the most effective evolutionary approach. A survey of the genetic representations

of individuals and the genetic operators available in the literature may lead to a more effective

EA.

3. Experiments were conducted to determine the optimal EA parameter settings for the size and

type of problems that were used for testing. These settings optimized the results of the EA

based on a comparison to optimal solutions found by the implicit enumeration algorithm.

The EA literature has shown that the use of island populations can improve the performance

of some EA implementations. The EA implementation could be extended to include island

populations in order to determine the extent to which the performance of the EA could be

improved.

4. In this dissertation, it is demonstrated that the choice of multiplier values in Sweeney-Murphy

decomposition can have a large effect on computation time. Sweeney and Murphy explain

how initial optimal multipliers are found, but in most cases it is not realistic to compute

the multiplier values they describe. The decomposition implementation obtained good results

using marginal benefit values as Lagrangian multipliers, but it may be possible to find alternate

values whose derivation requires less computational effort. The problem generator ProGen

requires settings for resource factor and resource strength in order to generate the test problems

and so these parameters are readily available for every test problem used in this research.

These parameters measure the demand for, and availability of, every resource in the test

problems. It may be possible to estimate a value similar to marginal benefit using these

parameters. If so, it would be possible to derive meaningful Lagrangian multipliers for the

decomposition with virtually no computation time. This approach has potential beyond the

possibility of reducing the time required to compute multiplier values. It is possible that the

new multiplier values may be better measures of the value of project resources and may lead

153

to smaller k-best solution sets, fewer Sweeney-Murphy iterations, and a reduction in overall

solution times.

5. In the decomposition effort, a specialized algorithm was developed to solve the Sweeney-

Murphy master problem. This specialized algorithm exploited structure to solve the master

problem much faster than a standard IP solver could. However, during the execution of the

decomposition algorithm, each sequential solution of the master problem implicitly enumer-

ates every solution in the solution space of the previous master problem. This is a waste of

computation time and it should be possible to modify the master problem implicit enumer-

ation algorithm such that solutions pruned from the search tree of one master problem are

automatically pruned from the solution tree of every additional master problem. This would

increase the efficiency of the master problem solution algorithm and improve the solution time

of the overall decomposition algorithm.

6. The Sweeney-Murphy decomposition algorithm is the only general decomposition algorithm

available in the literature for block-angular integer programs. This dissertation research over-

comes some of the cumbersome aspects of this algorithm and implements an effective decompo-

sition approach. Another option is to develop a new decomposition approach for block-angular

integer programs. The technique of decomposition by right-hand-side allocation is a decompo-

sition method in the literature for block-angular linear programs. Initial investigations suggest

that it may be possible to extend this technique to block-angular integer programs. The major

difficulty with such an extension would be the requirement for finding the dual variables of

the subproblems. The discussion of proxy dual variables in this dissertation may provide the

means for extending this technique to integer programs.

7. Every solution approach developed in this dissertation applies some combination of implicit

enumeration, evolutionary algorithms, and decomposition techniques. For all three of these

categories, there are examples in the literature of how solution times may be reduced through

parallelization. The core of the research has been finding ways to solve large instances of dif-

ficult problems as efficiently as possible. Parallelizing some or all of the techniques for solving

MMGRCPSP instances would be a natural extension. A parallel version of these algorithms

would also allow hybrid approaches to be explored more thoroughly. This would include, but

154

not be limited to, exchanging solutions between the implicit enumeration algorithm and the

EA while they are running in parallel.

8. The case study in this dissertation used a contrived example to demonstrate the applicability

of the approach. It would be useful to go one step further and demonstrate the approach on a

real world scenario. There are many force level planning tools in the operational community

from which most of the data required to formulate such a scenario could be automatically

extracted. An interface between the algorithms of this dissertation and a force level planning

tool would facilitate additional case studies involving real data. This interface could bridge

the gap between theoretical dissertation research and useful operational planning tools. In

addition, it would be useful to formulate a MMGRCPSP for an operational scenario and

compare the solution provided by the algorithms in this dissertation with a solution developed

by combat planning experts.

8.4 Summary

This research formulated and solved a new class of project scheduling problems, the MMGR-

CPSP, with applications to both military and civilian planning. It was shown that the solution space

for this class of problems may be reduced in order to improve the effectiveness of both optimal and

heuristic solution methodologies. In addition, a general method for extending implicit enumeration

algorithms to obtain k-best solution sets was developed. The reduced solution space and the general

k-best solutions methodology were exploited to develop several efficient solution approaches for the

MMGRCPSP; an implicit enumeration algorithm, a decomposition approach, an evolutionary algo-

rithm, and a hybrid decomposition approach. The applicability and flexibility of the methodology

was demonstrated with a case study that focused on the force level planning of combat missions for

an air campaign.

155

Appendix A. Setting ki Values

When choosing a ki selection strategy, the primary concern is how the chosen strategy affects the

overall solution time for the decomposition algorithm. Assume that, for subproblem i of some

problem instance, ki* is the minimum value of ki for which the Sweeney-Murphy optimality criteria

will be met. Suppose that ki is the ki value used for one of the Sweeney-Murphy iterations for this

problem. Let A = 1i - ki*. The ideal case is when A = 0. In this case, the optimality criteria are

met with the smallest possible number of solutions to subproblem i included in the master problem.

If A > 0, the optimality criteria are met, but the master problem was larger than necessary.

Regardless of the magnitude of A, the exponential nature of the master problem solution algorithm

could result in a significant difference between the solution time required to solve a master problem

including ki* subproblem solutions and the solution time required to solve one that includes ki

subproblem solutions. If the master problem solution algorithm accounts for the largest portion of

the overall solution time, a good strategy might be to increase ki by small increments from one

iteration to the next. This strategy would insure that when the optimality criteria are met, A will

be small and the amount of unnecessary master problem computation time is minimized.

If A < 0, the master problem did not include enough subproblem solutions for optimality

criteria to be met and further iterations are necessary. To accomplish a new iteration, ki is increased

and subproblem i and any other subproblems that did not meet the optimality criteria are re-solved.

If the subproblem solution algorithm accounts for the largest portion of the overall solution time,

every iteration, regardless of the value of ki, is computationally expensive. In this case, a good ki

selection strategy might be one that increases ki by large increments from one iteration to the next

in order to minimize the total number of iterations before the optimality criteria are met.

When considering the merits of various ki selection strategies, there is a tradeoff between

the goal of minimizing the value of A and the goal of minimizing the number of Sweeney-Murphy

iterations. The choice between these two goals may be decided based on which Sweeney-Murphy

component, the subproblem solution algorithm or the master problem solution algorithm, accounts

for the largest portion of the overall solution time, which in turn depends on the size and complexity

of the subproblems. If the subproblems are small, the Sweeney-Murphy iterations do not become

computationally expensive until the value of ki grows to the point where the exponential nature of

156

the master problem solution algorithm becomes apparent and minimizing the value of A is the most

important goal. If the subproblems are large, every Sweeney-Murphy iteration is computationally

expensive and minimizing the number of iterations is the most important goal.

Empirical tests were conducted in order to show the breakpoint, in terms of the number of

activities, between small and large subproblems. Each problem in the set of test problems has

three subproblems and all of the subproblems for a given problem instance have either 10, 15, 20,

or 25 activities. The test set contains 10 problem instances for each level of subproblem activities.

The test problems are generated with ProGen using the same complexity parameters used for the

test problems in Chapter V.

65

55 master problem -- -- - --

50

C

.545

CO subproblems

o 40

35

30

251
10 15 20 25

Activities per Subproblem

Figure 23 Distribution of Solution Time

For each level of subproblem activities, the graph in Figure 23 shows the average percent

of total solution time spent on solving the master problem versus the average percent of total

solution time spent on solving the subproblems. The point at which the two lines intersect on the

graph provides an indication of the subproblem size at which the subproblem solution algorithm

157

begins to dominate the overall solution time for the decomposition algorithm. The breakpoint is at

approximately 15 activities per subproblem.

For the problems specified in this dissertation, the breakpoint illustrated in Figure 23 allows

tailoring of the ki selection strategy for a given subproblem solution size. If the decomposition

algorithm is fine tuned for problems with subproblems smaller than 15 activities, an appropriate

strategy might be to increase ki by a small constant at every iteration in order to minimize A. If

the decomposition algorithm is fine tuned for subproblems with more than 15 activities, the best

strategy might be to increase ki by a large constant or use a doubling strategy in order to minimize

the total number of Sweeney-Murphy iterations. If the algorithm is fine tuned for problems with

both small and large subproblems, the most appropriate ki selection strategy might be one that

offers a compromise between minimizing A and minimizing the number of iterations. Since the test

sets used in Chapter V include subproblems on either side of the breakpoint, experiments showed

that a compromise strategy was necessary. The compromise strategy used a small initial ki value

(ki = 10), doubled ki for early iterations until ki exceeded 100, and then added 50 to ki for every

additional iteration.

To apply the general ki selection guidelines outlined in this appendix for some other class

of decomposable integer program problems, the first step is to find the breakpoint, in terms of

subproblem solution size, at which the bulk of the overall computation time switches from the

master problem solution algorithm to the subproblem solution algorithm. This breakpoint could

be obtained from the results of empirical tests or through theoretical complexity analysis. Once a

breakpoint has been found, the ki selection strategy may be fine tuned based on the characteristics

of the problems to which the algorithm is likely to be applied. When subproblems are smaller than

the breakpoint size, the ki strategy should take smaller steps between iterations to minimize A. For

subproblems that exceed the breakpoint size, the ki strategy should take larger steps to minimize the

number of iterations. If the subproblems fall on both sides of the breakpoint, the most appropriate

strategy might be a compromise between minimizing A and minimizing iterations.

158

Appendix B. Case Study Problem Data

This appendix contains all of the data necessary to formulate the sample problem used in the case

study. Chapter VII contains a subset of the data presented in each section of this appendix. The case

study scenario contains 100 targets and any solution generated for this scenario includes 200-400

sorties.

B.1 Target Nomination List

This section contains the target nomination list (TNL) for the case study sample problem.

The first five columns of data in the TNL provide information about a target location, specifically

the identification number from the map, the (x,y) coordinates of the location, and the type and

number of targets located at those coordinates. The next two columns offer information about each

of the targets at a given location including a target identification number and the number of possible

execution modes for that target. The last two columns give the details for every execution mode

which consist of a mode identification number and the number, type, and location of the necessary

resources.

159

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

1 4 60 Air Defense 2 1 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

2 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

2 12 52 Air Defense 2 3 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

4 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

3 20 56 Air Defense 2 5 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

6 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

4 28 53 Air Defense 2 7 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

8 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

160

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

5 31 59 Air Defense 2 9 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

10 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

6 8 72 Interdiction 3 11 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

12 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

13 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

7 12 64 Interdiction 3 14 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

15 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

16 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

161

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

8 16 76 Interdiction 3 17 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

18 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

19 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

9 19 70 Interdiction 3 20 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

21 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

22 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

10 26 66 Interdiction 3 23 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

24 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

25 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

162

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

11 68 52 Air Defense 2 26 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

27 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

12 71 57 Air Defense 2 28 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

29 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

13 78 54 Air Defense 2 30 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

31 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

14 86 59 Air Defense 2 32 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

33 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

163

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

15 95 56 Air Defense 2 34 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

35 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

16 72 71 Interdiction 3 36 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

37 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

38 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

17 75 65 Interdiction 3 39 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

40 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

41 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

18 81 76 Interdiction 3 42 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

43 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

44 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

164

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

19 85 67 Interdiction 3 45 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

46 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

47 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

20 92 68 Interdiction 3 48 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

49 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

50 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

21 36 72 Air Defense 2 51 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

52 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

165

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

22 42 64 Air Defense 2 53 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

54 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

23 45 73 Air Defense 2 55 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

56 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

24 54 70 Air Defense 2 57 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

58 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

25 60 76 Air Defense 2 59 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

60 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

166

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

26 38 82 Interdiction 3 61 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

62 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

63 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

27 40 87 Interdiction 3 64 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

65 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

66 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

28 45 80 Interdiction 3 67 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

68 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

69 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

167

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

29 50 84 Interdiction 3 70 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

71 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

72 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

30 54 79 Interdiction 3 73 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

74 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

75 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

168

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

31 100 68 Air Defense 2 76 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

77 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

32 104 71 Air Defense 2 78 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

79 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

33 109 64 Air Defense 2 80 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

81 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

34 114 66 Air Defense 2 82 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

83 2 1 4 AC-1 from Base A

2 4 AC-1 from Base B

169

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

35 122 70 Air Defense 2 84 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

85 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

36 103 78 Interdiction 3 86 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

87 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

88 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

37 108 84 Interdiction 3 89 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

90 2 1 2 AC-2 from Base B

2 2 AC-2 from Base C

91 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

170

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

38 114 74 Interdiction 3 92 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

93 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

94 2 1 2 AC-1 from Base A

2 2 AC-1 from Base B

39 117 80 Interdiction 3 95 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

96 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

97 4 1 2 AC-1 from Base A

2 2 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

171

LOC X Y Target Type NTAR TAR NMOD MOD Num/Type Resources

40 122 84 Interdiction 3 98 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 4 AC-2 from Base B

4 4 AC-2 from Base C

99 4 1 4 AC-1 from Base A

2 4 AC-1 from Base B

3 2 AC-2 from Base B

4 2 AC-2 from Base C

100 2 1 4 AC-2 from Base B

2 4 AC-2 from Base C

172

B.2 Available Assets

This section contains information on the assets available for the case study scenario. The

data includes the (x,y) coordinates of the base at which each unit is located. In addition, the data

provides some information about the aircraft that make up the units. The NAC column gives the

number of aircraft in the unit, the TR column gives the turn rate, or number of sorties per day per

aircraft, and the NSOR column gives the total number of sorties each unit can perform in a given

ATO day (NAC x TR = NSOR). The TT column gives the aircraft turn time which specifies the

amount of time it takes to service aircraft after they have completed a mission. This value is given

in minutes. The final column of data contains a nominal airspeed value for each aircraft type and is

given in distance units per minute. This value is set to make the average in-flight time for missions

in the sample problem equal to approximately 2 hours.

Unit Type/Base X Y NAC TR NSOR TT NAS

1 AC-1 from Base A 24 32 36 3.0 108 50 1.0

2 AC-1 from Base B 64 24 24 3.0 72 50 1.0

3 AC-2 from Base B 64 24 24 2.5 60 70 1.1

4 AC-2 from Base C 96 28 36 2.5 90 70 1.1

173

B.3 Mission Component Durations

This section contains information regarding activity durations for the case study sample prob-

lem. All duration values are reported in minutes. Note that the last column of data is the complete

mission duration for a given activity execution mode. By design, the average of the values reported

in this column are approximately 180 minutes or three hours.

LOC TAR MOD APP ING ATT EGR RET TUR SUM

1 1 1 42 21 1 21 42 70 197

2 55 33 1 33 55 70 247

2 1 42 21 1 21 42 70 197

2 55 33 1 33 55 70 247

2 3 1 19 5 1 5 19 50 99

2 51 8 1 8 51 50 169

3 46 8 1 8 46 70 179

4 66 13 1 13 66 70 229

4 1 46 8 1 8 46 70 179

2 66 13 1 13 66 70 229

3 5 1 16 8 1 8 16 50 99

2 41 14 1 14 41 50 161

3 37 12 1 12 37 70 169

4 52 21 1 21 52 70 217

6 1 16 8 1 8 16 50 99

2 41 14 1 14 41 50 161

4 7 1 16 5 1 5 16 50 93

2 38 8 1 8 38 50 143

3 34 7 1 7 34 70 153

4 52 13 1 13 52 70 201

8 1 16 5 1 5 16 50 93

2 38 8 1 8 38 50 143

3 34 7 1 7 34 70 153

4 52 13 1 13 52 70 201

174

LOC TAR MOD APP ING ATT EGR RET TUR SUM

5 9 1 17 11 1 11 17 50 107

2 33 15 1 15 33 50 147

10 1 17 11 1 11 17 50 107

2 33 15 1 15 33 50 147

3 30 14 1 14 30 70 159

4 42 23 1 23 42 70 201

6 11 1 33 33 1 33 33 70 203

2 40 48 1 48 40 70 247

12 1 17 26 1 26 17 50 137

2 37 37 1 37 37 50 199

3 33 33 1 33 33 70 203

4 40 48 1 48 40 70 247

13 1 17 26 1 26 17 50 137

2 37 37 1 37 37 50 199

7 14 1 17 17 1 17 17 50 119

2 39 26 1 26 39 50 181

15 1 17 17 1 17 17 50 119

2 39 26 1 26 39 50 181

3 35 24 1 24 35 70 189

4 46 37 1 37 46 70 237

16 1 17 17 1 17 17 50 119

2 39 26 1 26 39 50 181

3 35 24 1 24 35 70 189

4 46 37 1 37 46 70 237

175

LOC TAR MOD APP ING ATT EGR RET TUR SUM

8 17 1 29 34 1 34 29 70 197

2 35 49 1 49 35 70 239

18 1 29 34 1 34 29 70 197

2 35 49 1 49 35 70 239

19 1 16 28 1 28 16 50 139

2 33 38 1 38 33 50 193

3 29 34 1 34 29 70 197

4 35 49 1 49 35 70 239

9 20 1 16 22 1 22 16 50 127

2 34 31 1 31 34 50 181

21 1 30 28 1 28 30 70 187

2 38 41 1 41 38 70 229

22 1 16 22 1 22 16 50 127

2 34 31 1 31 34 50 181

10 23 1 16 18 1 18 16 50 119

2 32 24 1 24 32 50 163

3 29 22 1 22 29 70 173

4 38 34 1 34 38 70 215

24 1 16 18 1 18 16 50 119

2 32 24 1 24 32 50 163

25 1 16 18 1 18 16 50 119

2 32 24 1 24 32 50 163

3 29 22 1 22 29 70 173

4 38 34 1 34 38 70 215

176

LOC TAR MOD APP ING ATT EGR RET TUR SUM

11 26 1 39 10 1 10 39 50 149

2 24 4 1 4 24 50 107

3 22 4 1 4 22 70 123

4 28 6 1 6 28 70 139

27 1 22 4 1 4 22 70 123

2 28 6 1 6 28 70 139

12 28 1 34 19 1 19 34 50 157

2 25 9 1 9 25 50 119

3 22 8 1 8 22 70 131

4 24 11 1 11 24 70 141

29 1 22 8 1 8 22 70 131

2 24 11 1 11 24 70 141

13 30 1 24 6 1 6 24 70 131

2 22 7 1 7 22 70 129

31 1 42 16 1 16 42 50 167

2 26 7 1 7 26 50 117

3 24 6 1 6 24 70 131

4 22 7 1 7 22 70 129

14 32 1 40 28 1 28 40 50 187

2 28 13 1 13 28 50 133

3 26 12 1 12 26 70 147

4 19 10 1 10 19 70 129

33 1 26 12 1 12 26 70 147

2 19 10 1 10 19 70 129

177

LOC TAR MOD APP ING ATT EGR RET TUR SUM

15 34 1 30 10 1 10 30 70 151

2 18 7 1 7 18 70 121

35 1 50 25 1 25 50 50 201

2 33 11 1 11 33 50 139

3 30 10 1 10 30 70 151

4 18 7 1 7 18 70 121

16 36 1 25 36 1 36 25 50 173

2 24 23 1 23 24 50 145

3 22 21 1 21 22 70 157

4 21 24 1 24 21 70 161

37 1 22 21 1 21 22 70 157

2 21 24 1 24 21 70 161

38 1 25 36 1 36 25 50 173

2 24 23 1 23 24 50 145

17 39 1 22 16 1 16 22 70 147

2 21 18 1 18 21 70 149

40 1 29 31 1 31 29 50 171

2 25 18 1 18 25 50 137

41 1 29 31 1 31 29 50 171

2 25 18 1 18 25 50 137

18 42 1 23 27 1 27 23 70 171

2 19 26 1 26 19 70 161

43 1 23 27 1 27 23 70 171

2 19 26 1 26 19 70 161

44 1 23 27 1 27 23 70 171

2 19 26 1 26 19 70 161

178

LOC TAR MOD APP ING ATT EGR RET TUR SUM

19 45 1 32 38 1 38 32 50 191

2 27 21 1 21 27 50 147

46 1 24 19 1 19 24 70 157

2 19 18 1 18 19 70 145

47 1 32 38 1 38 32 50 191

2 27 21 1 21 27 50 147

3 24 19 1 19 24 70 157

4 19 18 1 18 19 70 145

20 48 1 26 21 1 21 26 70 165

2 18 18 1 18 18 70 143

49 1 34 43 1 43 34 50 205

2 28 24 1 24 28 50 155

3 26 21 1 21 26 70 165

4 18 18 1 18 18 70 143

50 1 34 43 1 43 34 50 205

2 28 24 1 24 28 50 155

3 26 21 1 21 26 70 165

4 18 18 1 18 18 70 143

21 51 1 17 25 1 25 17 50 135

2 28 28 1 28 28 50 163

3 25 25 1 25 25 70 171

4 30 37 1 37 30 70 205

52 1 17 25 1 25 17 50 135

2 28 28 1 28 28 50 163

3 25 25 1 25 25 70 171

4 30 37 1 37 30 70 205

179

LOC TAR MOD APP ING ATT EGR RET TUR SUM

22 53 1 18 18 1 18 18 50 123

2 27 18 1 18 27 50 141

54 1 18 18 1 18 18 50 123

2 27 18 1 18 27 50 141

3 25 16 1 16 25 70 153

4 32 26 1 26 32 70 187

23 55 1 23 24 1 24 23 70 165

2 27 34 1 34 27 70 193

56 1 18 28 1 28 18 50 143

2 26 27 1 27 26 50 157

3 23 24 1 24 23 70 165

4 27 34 1 34 27 70 193

24 57 1 20 28 1 28 20 50 147

2 25 23 1 23 25 50 147

3 22 20 1 20 22 70 155

4 25 28 1 28 25 70 177

58 1 20 28 1 28 20 50 147

2 25 23 1 23 25 50 147

25 59 1 21 36 1 36 21 50 165

2 24 28 1 28 24 50 155

3 22 25 1 25 22 70 165

4 23 32 1 32 23 70 181

60 1 22 25 1 25 22 70 165

2 23 32 1 32 23 70 181

180

LOC TAR MOD APP ING ATT EGR RET TUR SUM

26 61 1 17 35 1 35 17 50 155

2 26 37 1 37 26 50 177

62 1 17 35 1 35 17 50 155

2 26 37 1 37 26 50 177

3 24 34 1 34 24 70 187

4 26 45 1 45 26 70 213

63 1 24 34 1 34 24 70 187

2 26 45 1 45 26 70 213

27 64 1 17 41 1 41 17 50 167

2 26 42 1 42 26 50 187

65 1 17 41 1 41 17 50 167

2 26 42 1 42 26 50 187

3 23 38 1 38 23 70 193

4 25 48 1 48 25 70 217

66 1 17 41 1 41 17 50 167

2 26 42 1 42 26 50 187

28 67 1 23 30 1 30 23 70 177

2 25 40 1 40 25 70 201

68 1 17 35 1 35 17 50 155

2 25 34 1 34 25 50 169

69 1 17 35 1 35 17 50 155

2 25 34 1 34 25 50 169

3 23 30 1 30 23 70 177

4 25 40 1 40 25 70 201

181

LOC TAR MOD APP ING ATT EGR RET TUR SUM

29 70 1 18 40 1 40 18 50 167

2 25 37 1 37 25 50 175

3 22 33 1 33 22 70 181

4 23 42 1 42 23 70 201

71 1 18 40 1 40 18 50 167

2 25 37 1 37 25 50 175

3 22 33 1 33 22 70 181

4 23 42 1 42 23 70 201

72 1 18 40 1 40 18 50 167

2 25 37 1 37 25 50 175

3 22 33 1 33 22 70 181

4 23 42 1 42 23 70 201

30 73 1 19 37 1 37 19 50 163

2 24 32 1 32 24 50 163

3 22 28 1 28 22 70 171

4 23 36 1 36 23 70 189

74 1 19 37 1 37 19 50 163

2 24 32 1 32 24 50 163

3 22 28 1 28 22 70 171

4 23 36 1 36 23 70 189

75 1 19 37 1 37 19 50 163

2 24 32 1 32 24 50 163

3 22 28 1 28 22 70 171

4 23 36 1 36 23 70 189

182

LOC TAR MOD APP ING ATT EGR RET TUR SUM

31 76 1 28 23 1 23 28 70 173

2 18 18 1 18 18 70 143

77 1 37 47 1 47 37 50 219

2 31 26 1 26 31 50 165

3 28 23 1 23 28 70 173

4 18 18 1 18 18 70 143

32 78 1 37 52 1 52 37 50 229

2 32 30 1 30 32 50 175

3 28 27 1 27 28 70 181

4 18 21 1 21 18 70 149

79 1 37 52 1 52 37 50 229

2 32 30 1 30 32 50 175

3 28 27 1 27 28 70 181

4 18 21 1 21 18 70 149

33 80 1 45 45 1 45 45 50 231

2 36 24 1 24 36 50 171

3 33 22 1 22 33 70 181

4 19 15 1 15 19 70 139

81 1 45 45 1 45 45 50 231

2 36 24 1 24 36 50 171

34 82 1 34 25 1 25 34 70 189

2 20 18 1 18 20 70 147

83 1 45 51 1 51 45 50 243

2 37 28 1 28 37 50 181

183

LOC TAR MOD APP ING ATT EGR RET TUR SUM

35 84 1 44 61 1 61 44 50 261

2 39 35 1 35 39 50 199

3 35 32 1 32 35 70 205

4 21 23 1 23 21 70 159

85 1 35 32 1 32 35 70 205

2 21 23 1 23 21 70 159

36 86 1 27 33 1 33 27 70 191

2 18 27 1 27 18 70 161

87 1 32 60 1 60 32 50 235

2 30 37 1 37 30 50 185

3 27 33 1 33 27 70 191

4 18 27 1 27 18 70 161

88 1 32 60 1 60 32 50 235

2 30 37 1 37 30 50 185

3 27 33 1 33 27 70 191

4 18 27 1 27 18 70 161

37 89 1 27 40 1 40 27 70 205

2 18 33 1 33 18 70 173

90 1 27 40 1 40 27 70 205

2 18 33 1 33 18 70 173

91 1 27 40 1 40 27 70 205

2 18 33 1 33 18 70 173

184

LOC TAR MOD APP ING ATT EGR RET TUR SUM

38 92 1 38 61 1 61 38 50 249

2 34 37 1 37 34 50 193

93 1 38 61 1 61 38 50 249

2 34 37 1 37 34 50 193

3 31 33 1 33 31 70 199

4 19 25 1 25 19 70 159

94 1 38 61 1 61 38 50 249

2 34 37 1 37 34 50 193

39 95 1 35 70 1 70 35 50 261

2 33 44 1 44 33 50 205

3 30 40 1 40 30 70 211

4 19 31 1 31 19 70 171

96 1 35 70 1 70 35 50 261

2 33 44 1 44 33 50 205

3 30 40 1 40 30 70 211

4 19 31 1 31 19 70 171

97 1 35 70 1 70 35 50 261

2 33 44 1 44 33 50 205

3 30 40 1 40 30 70 211

4 19 31 1 31 19 70 171

185

LOC TAR MOD APP ING ATT EGR RET TUR SUM

40 98 1 34 77 1 77 34 50 273

2 33 50 1 50 33 50 217

3 30 45 1 45 30 70 221

4 20 36 1 36 20 70 183

99 1 34 77 1 77 34 50 273

2 33 50 1 50 33 50 217

3 30 45 1 45 30 70 221

4 20 36 1 36 20 70 183

100 1 30 45 1 45 30 70 221

2 20 36 1 36 20 70 183

186

B.4 Precedence Networks

This section contains the precedence networks for every subproblem in the case study sample

problem. The problem is decomposed first by attack wave and then by mission type. Each subprob-

lem i has a dummy source node, si, and a dummy sink node ti. The labels on the other nodes in the

precedence networks correspond to the identification numbers of the targets in the sample problem.

The letters labeling the arcs in the precedence networks indicate the type of generalized precedence

enforced between the targets that the arcs connect. The variations of generalized precedence used

are explained in Chapter VII.

This is the precedence network for the first wave of missions.

C b d ý

Enemy Air Defense Targets

Interdiction Targets

e 1c

187

This is the precedence network for the second wave of missions.

Sb /-xc b /

a b

Enemy Air Defense Targets

Interdiction Targets

This is the precedence network for the third wave of missions.

C -30 b 31' c 34• b 35-dd
c d

Enemy Air Defense Targets

Interdiction Targets
b b c b b

c 3 8 4 3 4 f

e b b88

This is the precedence network for the fourth wave of missions.

C b d

Enemy Air Defense Targets

Interdiction Targets
b b , c b b

e 8 87 8 89 9 91C

189

B.5 Lag Values for Generalized Precedence

This section contains the minimum lag values required to formulate the generalized precedence

constraints for the case study sample problem. Each table in this section contains all of the possible

values for the minimum lag enforced between the start times of an activity and each of its successor

activities. The lag value enforced depends on both the execution mode of the predecessor activity,

m, and the execution mode of the successor activity, n.

Predecessor Successor Successor

target 3 target 7

n=1 n=2 n=3 n=4 n=1 n=2 n=3 n=4

sourceo m=1 0 0 0 0 0 0 0 0

Predecessor Successor

target 2

n=1 n=2

target 1 m=1 1 -24

m=2 26 1

Predecessor Successor

sinko

n=1

target2 m=1 64

m=2 89

Predecessor Successor

target 4

n=1 n=2

target 3 m = 1 -29 -54

m = 2 6 -19

m = 3 1 -24

m=4 26 1

190

Predecessor Successor Successor

target 5 target 9

n=1 n=2 n=3 n=4 n=1 n=2

target 4 m = 1 36 5 11 -13 32 12

m = 2 61 30 36 12 57 37

Predecessor Successor

target 6

n =1 n=2

target5 m=1 1 -30

m=2 32 1

m = 3 26 -5

m = 4 50 19

Predecessor Successor

target 1

n=1 n-=2

target 6 m = 1 -33 -58

m = 2 -2 -27

Predecessor Successor

target 8

n=1 n=2 n=3 n=4

target 7 m = 1 1 -24 -19 -43

m = 2 26 1 6 -18

m = 3 21 -4 1 -23

m = 4 45 20 25 1

191

Predecessor Successor Successor

target 5 target 9

n=1 n=2 n=3 n=4 n=1 n=2

target 8 m = 1 3 -28 -22 -46 -1 -21

m = 2 28 -3 3 -21 24 4

m = 3 23 -8 -2 -26 19 -1

m = 4 47 16 22 -2 43 23

Predecessor Successor

target 10

n=1 n=2 n=3 n=4

target 9 m = 1 1 -19 -15 -36

m = 2 21 1 5 -16

Predecessor Successor

target 1

n =1 n=2

target 10 m = 1 -29 -54

m = 2 -9 -34

m = 3 -13 -38

m = 4 8 -17

Predecessor Successor Successor

target 14 target 23

n=1 n=2 n=1 n=2 n=3 n=4

source1 m = 1 22 0 23 7 10 1

Predecessor Successor

target 12

n=1 n=2 n=3 n=4

target 11 m = 1 24 -7 1 -21

m=2 46 15 23 1

192

Predecessor Successor

target 13

n=1 n=2

target 12 m = 1 1 -30

m=2 32 1

m = 3 24 -7

m=4 46 15

Predecessor Successor

target 17

n=1 n=2

target 13 m = 1 -14 -35

m = 2 17 -4

Predecessor Successor

target 15

n=1 n=2 n=3 n=4

target 14 m = 1 1 -30 -24 -48

m = 2 32 1 7 -17

Predecessor Successor

target 16

n=1 n=2 n=3 n=4

target 15 m = 1 1 -30 -24 -48

m = 2 32 1 7 -17

m = 3 26 -5 1 -23

m = 4 50 19 25 1

193

Predecessor Successor Successor

target 11 target 20

n=1 n=2 n=1 n=2

target 16 m = 1 -26 -48 2 -25

m = 2 5 -17 33 6

m = 3 -1 -23 27 0

m = 4 23 1 51 24

Predecessor Successor

target 18

n=1 n=2

target 17 m = 1 1 -20

m=2 22 1

Predecessor Successor

target 19

n=1 n=2 n=3 n=4

target 18 m = 1 20 -7 1 -20

m = 2 41 14 22 1

Predecessor Successor

sink1

n=1

target 19 m = 1 139

m = 2 193

m = 3 197

m = 4 239

194

Predecessor Successor

target 21

n-=1 n-=2

target 20 m = 1 -19 -40

m = 2 8 -13

Predecessor Successor

target 22

n=1 n=2

target 21 m = 1 21 -6

m = 2 42 15

Predecessor Successor

target 17

n=1 n=2

target 22 m = 1 -19 -40

m = 2 8 -13

Predecessor Successor

target 24

n=1 n=2

target 23 m = 1 1 -21

m=2 23 1

m = 3 18 -4

m = 4 39 17

Predecessor Successor

target 25

n=l n=2 n=3 n=4

target 24 m = 1 1 -21 -16 -37

m = 2 23 1 6 -15

195

Predecessor Successor Successor

target 11 target 20

n=l n=2 n=l n=2

target 25 m = 1 -26 -48 2 -25

m = 2 -4 -26 24 -3

m = 3 -9 -31 19 -8

m = 4 12 -10 40 13

Predecessor Successor

target 26

n=l n=2 n=3 n=4

source2 m = 1 0 0 0 0

Predecessor Successor

target 27

n=1 n=2

target 26 m=1 3 -5

m=2 1 -7

m=3 9 1

m =4 24 16

Predecessor Successor Successor

target 28 target 30

n=1 n=2 n =3 n=4 n=1 n=2

target 27 m = 1 -2 2 -3 -21 3 2

m = 2 6 10 5 -13 11 10

196

Predecessor Successor

target 29

n=1 n=2

target 28 m=1 5 0

m=2 1 -4

m=3 6 1

m =4 24 19

Predecessor Successor Successor

target 32 target 34

n=1 n=2 n=3 n--4 n=1 n=2

target 29 m = 1 7 -5 -2 -32 11 -4

m = 2 12 0 3 -27 16 1

Predecessor Successor

target 31

n=l n=2 n=3 n=4

target 30 m = 1 -3 1 0 -28

m = 2 -2 2 1 -27

Predecessor Successor Successor

target 32 target 34

n=1 n=2 n=3 n=4 n=1 n=2

target 31 m = 1 10 -2 1 -29 14 -1

m = 2 6 -6 -3 -33 10 -5

m = 3 7 -5 -2 -32 11 -4

m = 4 35 23 26 -4 39 24

197

Predecessor Successor

target 33

n=1 n=2

target 32 m=1 1 -8

m=2 13 4

m=3 10 1

m=4 40 31

Predecessor Successor

sink2

n=1

target 33 m = 1 30

m=2 39

Predecessor Successor

target 35

n=1 n=2 n=3 n=4

target 34 m = 1 1 -18 -14 -49

m = 2 16 -3 1 -34

Predecessor Successor

sink 2

n=1

target 35 m = 1 26

m=2 45

m=3 41

m=4 76

Predecessor Successor

target 39

n=1 n=2

source3 m = 1 0 1

198

Predecessor Successor

target 37

n=-1 n=2

target 36 m= 1 5 3

m=2 1 -1

m=3 3 1

m =4 19 17

Predecessor Successor

target 38

n=1 n=2

target 37 m = 1 -3 -17

m = 2 -1 -15

Predecessor Successor Successor

target 42 target 48

n=1 n=2 n-=1 n=2

target 38 m=1 8 3 17 6

m = 2 22 17 31 20

Predecessor Successor

target 40

n=1 n=2

target 39 m = 1 -4 -21

m = 2 -3 -20

Predecessor Successor

target 41

n=1 n=2

target 40 m = 1 1 -16

m=2 18 1

199

Predecessor Successor Successor

target 36 target 45

n=1 n=2 n=3 n=4 n=1 n=2

target 41 m =1 2 6 4 -12 1 -21

m = 2 19 23 21 5 18 -4

Predecessor Successor

target 43

n=1 n=2

target 42 m=1 1 -4

m=2 6 1

Predecessor Successor

target 44

n=1 n=2

target 43 m 1 1 -4

m=2 6 1

Predecessor Successor

sink3

n=l

target 44 m = 1 161

m = 2 171

Predecessor Successor

target 46

n=1 n=2

target 45 m=1 12 6

m = 2 34 28

200

Predecessor Successor

target 47

n=l n=2 n=3 n=4

target 46 m = 1 1 -10 -5 -32

m = 2 7 -4 1 -26

Predecessor Successor Successor

target 42 target 48

n=1 n=2 n=l n=2

target 47 m = 1 -2 -7 7 -4

m=2 9 4 18 7

m = 3 4 -1 13 2

m = 4 31 26 40 29

Predecessor Successor

target 49

n=1 n=2 n=3 n=4

target 48 m = 1 1 -15 -10 -40

m = 2 12 -4 1 -29

Predecessor Successor

target 50

n=l n=2 n=3 n=4

target 49 m = 1 1 -15 -10 -40

m=2 17 1 6 -24

m = 3 12 -4 1 -29

m = 4 42 26 31 1

201

Predecessor Successor

sink3

n-=-1

target 50 m = 1 143

m = 2 155

m = 3 165

m = 4 205

Predecessor Successor

target 53

n=1 n=2

source4 m = 1 0 0

Predecessor Successor

target 52

n=1 n=2 n=3 n=4

target 51 m = 1 1 -13 -7 -24

m = 2 15 1 7 -10

m = 3 9 -5 1 -16

m = 4 26 12 18 1

Predecessor Successor Successor

target 55 target 59

n=1 n=2 n=1 n=2 n=3 n-=4

target 52 m = 1 1 -13 -4 -9 1 -7

m = 2 15 1 10 5 15 7

m =3 9 -5 4 -1 9 1

m 4 26 12 21 16 26 18

202

Predecessor Successor

target 54

n=1 n=2 n=3 n=4

target 53 m = 1 1 -8 -4 -21

m = 2 10 1 5 -12

Predecessor Successor Successor

target 51 target 57

n=1 n=2 n=3 n=4 n =1 n=2 n=3 n=4

target 54 m = 1 0 -14 -8 -25 -6 -6 0 -11

m = 2 9 -5 1 -16 3 3 9 -2

m = 3 5 -9 -3 -20 -1 -1 5 -6

m = 4 22 8 14 -3 16 16 22 11

Predecessor Successor

target 56

n=1 n=2 n=3 n=4

target 55 m = 1 2 -5 1 -13

m = 2 16 9 15 1

Predecessor Successor

sink4

n =1

target 56 m = 1 47

m=2 54

m=3 48

m=4 62

203

Predecessor Successor

target 58

n.=1 n=2

target 57 m=1 1 1

m=2 1 1

m =3 -5 -5

m=4 6 6

Predecessor Successor Successor

target 55 target 59

n=1 n=2 n=l n=2 n=3 n=4

target 58 m =1 7 -7 2 -3 7 -1

m =2 7 -7 2 -3 7 -1

Predecessor Successor

target 60

n-1 -n-=2

target 59 m 1 6 -2

m=2 11 3

m=3 1 -7

m=4 9 1

Predecessor Successor

sink 4

n=1

target 60 m = 1 48

m=2 56

Predecessor Successor

target 73

n= 1 n=2 n=3 n=4

source5 m = 1 5 0 2 1

204

Predecessor Successor

target 62

n=l n=2 n=3 n=4

target 61 m = 1 1 -10 -5 -18

m = 2 12 1 6 -7

Predecessor Successor

target 63

n=I n=2

target 62 m 1 -5 -18

m=2 6 -7

m 3 1 -12

m=4 14 1

Predecessor Successor

sink5

n=l

target 63 m = 1 187

m = 2 213

Predecessor Successor

target 65

n=1 n=2 n=3 n=4

target 64 m =1 1 -9 -2 -14

m =2 11 1 8 -4

205

Predecessor Successor

target 66

n=1 n=2

target 65 m=1 1 -9

m-2 11 1

m=3 4 -6

m=4 16 6

Predecessor Successor

sink 5

n=1

target 66 m = 1 167

m = 2 187

Predecessor Successor

target 68

n =1 n=2

target 67 m=1 2 -5

m=2 14 7

Predecessor Successor

target 69

n=1 n=2 n=3 n=4

target 68 m =1 1 -6 0 -12

m=2 8 1 7 -5

206

Predecessor Successor Successor

target 61 target 64

n=1 n=2 n =1 n=2

target 69 m = 1 6 -5 0 -10

m = 2 13 2 7 -3

m =3 7 -4 1 -9

m =4 19 8 13 3

Predecessor Successor

target 71

n=l n=2 n=3 n=4

target 70 m =1 1 -3 4 -6

m=2 5 1 8 -2

m 3 -2 -6 1 -9

m=4 8 4 11 1

Predecessor Successor

target 72

n=1 n=2 n=3 n=4

target 71 m =1 1 -3 4 -6

m=2 5 1 8 -2

m =3 -2 -6 1 -9

m=4 8 4 11 1

Predecessor Successor Successor

target 61 target 64

n=1 n=2 n=1 n=2

target 72 m = 1 12 1 6 -4

m = 2 16 5 10 0

m = 3 9 -2 3 -7

m=4 19 8 13 3

207

Predecessor Successor

target 74

n=1 n=2 n=3 n=4

target 73 m=1 1 1 7 -2

m=2 1 1 7 -2

m =3 -5 -5 1 -8

m=4 4 4 10 1

Predecessor Successor

target 75

n=1 n=2 n=3 n=4

target 74 m= 1 1 1 7 -2

m=2 1 1 7 -2

m =3 -5 -5 1 -8

m=4 4 4 10 1

Predecessor Successor Successor

target 67 target 70

n=1 n=2 n=1 n=2 n=3 n=4

target 75 m =1 9 -3 4 0 7 -3

m =2 9 -3 4 0 7 -3

m =3 3 -9 -2 -6 1 -9

m =4 12 0 7 3 10 0

Predecessor Successor Successor

target 76 target 80

n=1 n=2 n=1 n=2 n=3 n=4

source6 m = 1 0 0 0 0 0 0

208

Predecessor Successor

target 77

n=1 n=2 n=3 n=4

target 76 m = 1 1 -20 -14 -47

m = 2 16 -5 1 -32

Predecessor Successor Successor

target 78 target 82

n=1 n=2 n=3 n=4 n=1 n==2

target 77 m = 1 3 -20 -13 -47 4 -17

m = 2 24 1 8 -26 25 4

m = 3 18 -5 2 -32 19 -2

m = 4 51 28 35 1 52 31

Predecessor Successor

target 79

n=1 n=2 n=3 n=4

target 78 m = 1 1 -22 -15 -49

m = 2 24 1 8 -26

m = 3 17 -6 1 -33

m = 4 51 28 35 1

Predecessor Successor

target 84

n=1 n=2 n=3 n=4

target 79 m = 1 1 -29 -22 -60

m = 2 24 -6 1 -37

m = 3 17 -13 -6 -44

m = 4 51 21 28 -10

209

Predecessor Successor

target 81

n=1 n=2

target 80 m = 1 -25 -55

m = 2 1 -29

m = 3 -4 -34

m=4 31 1

Predecessor Successor Successor

target 78 target 82

n=1 n=2 n=3 n=4 n=1 n=2

target 81 m = 1 27 4 11 -23 28 7

m = 2 57 34 41 7 58 37

Predecessor Successor

target 83

n=1 n=2

target 82 m = 1 -26 -57

m = 2 -5 -36

Predecessor Successor

target 84

n=l n=2 n=3 n=4

target 83 m = 1 27 -3 4 -34

m = 2 58 28 35 -3

210

Predecessor Successor

target 85

n-=1 n =2

target 84 m = 1 1 -22

m=2 31 8

m=3 24 1

m = 4 62 39

Predecessor Successor

sink6

n=1

target 85 m = 1 45

m=2 68

Predecessor Successor Successor

target 86 target 92

n=1 n=2 n=1 n=2

source 7 m = 1 20 11 4 0

Predecessor Successor

target 87

n=1 n=2 n=3 n=4

target 86 m = 1 1 -21 -14 -46

m = 2 16 -6 1 -31

Predecessor Successor

target 88

n=1 n=2 n=3 n=4

target 87 m = 1 1 -21 -14 -46

m = 2 23 1 8 -24

m = 3 16 -6 1 -31

m=4 48 26 33 1

211

Predecessor Successor Successor

target 89 target 95

n=1 n=2 n=l n=2 n=3 n=4

target 88 m = 1 0 -16 1 -26 -19 -54

m = 2 22 6 23 -4 3 -32

m = 3 15 -1 16 -11 -4 -39

m = 4 47 31 48 21 28 -7

Predecessor Successor

target 90

n=1 n=2

target 89 m = 1 1 -15

m=2 17 1

Predecessor Successor

target 91

n=1 n =2

target 90 m = 1 1 -15

m=2 17 1

Predecessor Successor

target 98

n=l n=2 n=3 n=4

target 91 m = 1 1 -26 -18 -54

m=2 17 -10 -2 -38

Predecessor Successor

target 93

n=l n=2 n=3 n=4

target 92 m- =1 28 1 8 -27

m = 2 56 29 36 1

212

Predecessor Successor

target 94

n=1 n=2

target 93 m = 1 -26 -54

m = 2 1 -27

m = 3 -6 -34

m=4 29 1

Predecessor Successor Successor

target 89 target 95

n=1 n=2 n=1 n=2 n=3 n=4

target 94 m = 1 26 10 27 0 7 -28

m = 2 54 38 55 28 35 0

Predecessor Successor

target 96

n=1 n=2 n=3 n=4

target 95 m = 1 1 -26 -19 -54

m = 2 28 1 8 -27

m = 3 21 -6 1 -34

m=4 56 29 36 1

Predecessor Successor

target 97

n=1 n=2 n=3 n=4

target 96 m = 1 1 -26 -19 -54

m = 2 28 1 8 -27

m = 3 21 -6 1 -34

m = 4 56 29 36 1

213

Predecessor Successor

target 98

n=l n-=2 n=3 n=4

target 97 m = 1 0 -27 -19 -55

m=2 27 0 8 -28

m = 3 20 -7 1 -35

m=4 55 28 36 0

Predecessor Successor

target 99

n=l n=2 n=3 n=4

target 98 m = 1 1 -26 -18 -54

m = 2 28 1 9 -27

m = 3 20 -7 1 -35

m = 4 56 29 37 1

Predecessor Successor

target 100

n =1 n =2

target 99 m = 1 1 -18

m=2 28 9

m=3 20 1

m = 4 56 37

Predecessor Successor

sink7

n=l

target 100 m = 1 183

m = 2 221

214

B. 6 The Optimal Solution

This section contains the optimal solution to the case study sample problem. The table

provides the assignment of resources to targets and the important mission scheduling information

that would be provided in the mission lines of the ATO in an actual force level planning exercise. It

was assumed that the attack waves are temporally discrete and arbitrary start times of 0000, 0600,

1200, and 1800 were assigned to the waves of the sample problem.

215

Target Resources Takeoff Attack

1 4 AC-2 from Base B 0017 0120-0121

2 4 AC-2 from Base B 0018 0121-0122

3 4 AC-1 from Base A 0000 0024-0025

4 4 AC-2 from Base B 0000 0054-0055

5 2 AC-2 from Base C 0000 0113-0114

6 4 AC-1 from Base A 0050 0114-0115

7 2 AC-1 from Base A 0000 0021-0022

8 2 AC-2 from Base C 0000 0105-0106

9 4 AC-1 from Base A 0043 0111-0112

10 4 AC-1 from Base B 0024 0112-0113

11 2 AC-2 from Base B 0100 0206-0207

12 2 AC-1 from Base A 0124 0207-0208

13 2 AC-1 from Base A 0125 0208-0209

14 4 AC-1 from Base A 0123 0157-0158

15 2 AC-1 from Base A 0124 0158-0159

16 2 AC-2 from Base C 0036 0159-0200

17 4 AC-2 from Base C 0050 0214-0215

18 2 AC-2 from Base C 0051 0215-0216

19 2 AC-1 from Base A 0132 0216-0217

20 4 AC-1 from Base A 0128 0206-0207

21 2 AC-2 from Base C 0048 0207-0208

22 2 AC-1 from Base A 0130 0208-0209

23 2 AC-1 from Base A 0124 0158-0159

24 2 AC-1 from Base A 0125 0159-0200

25 2 AC-2 from Base C 0048 0200-0201

216

Target Resources Takeoff Attack

26 4 AC-2 from Base B 0634 0700-0701

27 2 AC-2 from Base B 0635 0701-0702

28 2 AC-1 from Base B 0633 0707-0708

29 2 AC-2 from Base B 0638 0708-0709

30 2 AC-2 from Base C 0638 0707-0708

31 4 AC-1 from Base A 0610 0708-0709

32 2 AC-2 from Base C 0645 0714-0715

33 2 AC-2 from Base C 0646 0715-0716

34 2 AC-2 from Base C 0649 0714-0715

35 4 AC-1 from Base A 0600 0715-0716

36 4 AC-1 from Base B 0707 0754-0755

37 4 AC-2 from Base C 0710 0755-0756

38 2 AC-1 from Base B 0709 0756-0757

39 4 AC-2 from Base C 0707 0746-0747

40 4 AC-1 from Base A 0647 0747-0748

41 2 AC-1 from Base B 0705 0748-0749

42 2 AC-2 from Base C 0717 0802-0803

43 2 AC-2 from Base C 0718 0803-0804

44 2 AC-2 from Base C 0719 0804-0805

45 4 AC-1 from Base A 0644 0754-0755

46 4 AC-2 from Base B 0712 0755-0756

47 2 AC-1 from Base B 0708 0756-0757

48 4 AC-2 from Base C 0726 0802-0803

49 2 AC-1 from Base A 0646 0803-0804

50 2 AC-1 from Base B 0712 0804-0805

217

Target Resources Takeoff Attack

51 2 AC-1 from Base A 1224 1306-1307

52 4 AC-2 from Base C 1200 1307-1308

53 2 AC-1 from Base A 1223 1259-1300

54 4 AC-1 from Base A 1224 1300-1301

55 2 AC-2 from Base C 1212 1313-1314

56 4 AC-2 from Base C 1213 1314-1315

57 2 AC-1 from Base B 1218 1306-1307

58 4 AC-1 from Base A 1219 1307-1308

59 2 AC-1 from Base A 1216 1313-1314

60 4 AC-2 from Base C 1219 1314-1315

61 4 AC-1 from Base B 1303 1406-1407

62 4 AC-2 from Base B 1309 1407-1408

63 2 AC-2 from Base B 1310 1408-1409

64 4 AC-1 from Base A 1308 1406-1407

65 4 AC-1 from Base B 1259 1407-1408

66 4 AC-1 from Base A 1310 1408-1409

67 4 AC-2 from Base C 1253. 1358-1359

68 2 AC-1 from Base A 1307 1359-1400

69 2 AC-1 from Base B 1301 1400-1401

70 4 AC-1 from Base B 1256 1358-1359

71 4 AC-1 from Base A 1301 1359-1400

72 4 AC-1 from Base B 1258 1400-1401

73 4 AC-2 from Base B 1300 1350-1351

74 2 AC-1 from Base B 1255 1351-1352

75 2 AC-1 from Base A 1256 1352-1353

218

Target Resources Takeoff Attack

76 2 AC-2 from Base C 1855 1931-1932

77 2 AC-1 from Base B 1835 1932-1933

78 2 AC-1 from Base B 1836 1938-1939

79 2 AC-2 from Base C 1900 1939-1940

80 2 AC-2 from Base C 1855 1929-1930

81 4 AC-1 from Base B 1830 1930-1931

82 2 AC-2 from Base B 1839 1938-1939

83 4 AC-1 from Base A 1803 1939-1940

84 4 AC-1 from Base A 1800 1945-1946

85 4 AC-2 from Base B 1839 1946-1947

86 4 AC-2 from Base B 1946 2046-2047

87 4 AC-1 from Base A 1915 2047-2048

88 2 AC-1 from Base A 1916 2048-2049

89 4 AC-2 from Base C 2007 2058-2059

90 2 AC-2 from Base C 2008 2059-2100

91 4 AC-2 from Base B 1953 2100-2101

92 2 AC-1 from Base B 1939 2050-2051

93 2 AC-2 from Base B 1947 2051-2052

94 2 AC-1 from Base B 1941 2052-2053

95 2 AC-1 from Base A 1913 2058-2059

96 2 AC-2 from Base C 2009 2059-2100

97 2 AC-1 from Base B 1943 2100-2101

98 4 AC-1 from Base B 1943 2106-2107

99 2 AC-2 from Base C 2011 2107-2108

100 4 AC-2 from Base C 2012 2108-2109

219

Bibliography

1. Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. New Jersey: Prentice-Hall, 1993.

2. Alcaraz, Javier and Concepci6n Maroto. "A Genetic Algorithm for the Resource-Constrained
Project Scheduling Problem." Sixth International Workshop on Project Management and
Scheduling. 7-10. Istanbul, Turkey: Bogaziqi University Printing Office, July 1998.

3. Babiak, Nicholas J. and Carol S. Lydic. "The Defense Mapping Agency and Tomorrow's Ad-
vanced Aerospace Warfare Systems." IEEE 1990 National Aerospace and Electronics Confer-
ence. 260-264. May 1990.

4. Balas, E. Project Scheduling with Resource Constraints, chapter in Applications of Mathematical
Programming Techniques (E. M. L. Beale, editor), 187-200. Americam Elsevier Publishing
Company, 1970.

5. Baumol, William J. and Tibor Fabian. "Decomposition, Pricing for Decentralization and Ex-
ternal Economies," Management Science, 11:1-32 (1964).

6. Bazaraa, Mokhtar S., John J. Jarvis, and Hanif D. Sherali. Linear Programming and Network
Flows. New York: Wiley, 1990.

7. Boctor, Fayez F. "A New and Efficient Heuristic for Scheduling Projects With Resource Restric-
tions and Multiple Execution Modes," European Journal of Operational Research, 90(2):349-
361 (April 1996).

8. Bowman, Edward H. "The Scheduling-Sequencing Problem," Operations Research, 7(5):621-
624 (1959).

9. Brucker, Peter J. and Horst W. Hamacher. "K-Optimal Solution Sets for some Polynomially
Solvable Scheduling Problems," European Journal of Operational Research, 41:194-202 (1989).

10. Carruthers, J. A. and A. Battersby. "Advances in Critical Path Methods," Operations Research
Quarterly, 17:359-380 (1966).

11. Chamberlain, Derek B. and Charles R. Kirklen. "Advanced Mission Planning Systen (AMPS)
Employing Terrain and Intelligence Database Support." IEEE 1988 National Aerospace and
Electronics Conference. 1145-1151. May 1988.

12. Cheeseman, Peter, Bob Kanefsky, and William M. Taylor. "Where the Really Hard Problems
Are," Proceedings of IJCAI-91, 331-337 (1991).

13. Chretienne, Philippe, Edward G. Coffman, Jr, Jan Karel Lenstra, and Zhen Lin, editors.
Scheduling Theory and its Applications. New York: John Wiley and Sons, 1995.

14. Christofides, N., R. Alvares-Valdes, and J. M. Tamarit. "Project Scheduling with Resource
Constraints: A Branch and Bound Approach," European Journal of Operational Research,
29(3):262-273 (June 1987).

15. Clausen, Jens and Jesper Larsson Tr~iff. "Implementation of Parallel Branch-and-Bound Algo-
rithms - Experiences with the Graph Partitioning Problem," Annals of Operations Research,
33:331-349 (1991).

220

16. Collins, Robert J. and David R. Jefferson. "Selection in Massively Parallel Genetic Algorithms."
Proceedings of the Fourth International Conference on Genetic Algorithms, edited by Belew,
R. K. and L. B. Booker. 244-248. Morgan Kaufmann, San Mateo California, 1991.

17. Dantzig, George B. and Philip Wolfe. "Decomposition Principle for Linear Programs," Opera-
tions Research, 8:101-111 (1960).

18. Davis, E. W. and G. E. Heidorn. "Optimal Project Scheduling under Multiple Resource Con-
straints," Management Science, 17(12):B803-B816 (August 1971).

19. Deckro, Richard F. and John E. Hebert. "Resource Constrained Project Crashing," OMEGA
International Journal of Management Science, 17(1):69-79 (1989).

20. Deckro, Richard F., E. P. Winkofsky, John E. Hebert, and Roger Gagnon. "A Decomposition
Approach to Multi-Project Scheduling," European Journal of Operational Research, 51:110-118
(1991).

21. Demeulemeester, E. "Minimizing Resource Availability Costs in Time-Limited Project Net-
works," Management Science, 41(10):1590-1598 (October 1995).

22. Demeulemeester, E., B. Dodin, and W. Herroelen. "A Random Activity Network Generator,"
Operations Research, 41(5):972-980 (September-October 1993).

23. Demeulemeester, E. and W. Herroelen. "A Branch-and-Bound Procedure for the Multiple
Resource-Constrained Project Scheduling Problem," Management Science, 38(12):1803-1818
(December 1992).

24. Demeulemeester, E., W. Herroelen, W. P. Simpson, S. Baroum, J. H. Patterson, and Kum-
Khiong Yang. "On a Paper by Christofides et al. for Solving the Multiple-Resource Constrained,
Single Project Scheduling Problem," European Journal of Operational Research, 76(1):218-228
(July 1994).

25. Demeulemeester, E. L. and W. S. Herroelen. "An Efficient Optimal Solution Procedure for the
Preemptive Resource-Constrained Project Scheduling Problem," European Journal of Opera-
tional Research, 90(2):334-348 (April 1996).

26. Fogarty, T. Implementing the Genetic Algorithm on Transputer Based Parallel Processing
Systems, chapter in Parallel Problem Solving from Nature (H. P. Schwefel and R. Manner,
editors), 145-149. Springer-Verlag, Berlin, 1991.

27. Foldes, Stephan and Franqois Soumis. "Pert and Crashing Revisited: Mathematical General-
izations," European Journal of Operational Research, 64 (2):286-294 (January 1994).

28. Franke, G. "Zur Ablaufplanung in Netzwerken (Scheduling in Networks)," Z. fir Betrieb-
swirtschaftliche Forschung, 23(106) (1971).

29. Gen, Mitsuo and Runwei Cheng. Genetic Algorithms and Engineering Design. New York: John
Wiley and Sons, 1997.

30. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading
MA: Addison-Wesley, 1989.

221

31. Gorges-Schleuter, M. Explicit Parallelism of Genetic Algorithms Through Population Struc-
tures, chapter in Parallel Problem Solving from Nature (H. P. Schwefel and R. Manner, editors),
150-159. Springer-Verlag, Berlin, 1991.

32. Grefenstette, John J. Incorporating Problem Specific Knowledge into Genetic Algorithms, chap-
ter in Genetic Algorithms and Simulated Annealing (L. Davis, editor), 42-60. Pitman, London,
1987.

33. Hall, Hicholas G. and Marc E. Posner. Generating Experimental Data for Scheduling Problems.
Working Paper, Ohio State University, December 1996.

34. Hamacher, Horst W. "A Note on K-Best Network Flows," Annals of Operations Research,
57:65-72 (1995).

35. Hartmann, S6nke. Project Scheduling with Multiple Modes: A Genetic Algorithm. Manuskripte
aus den Instituten fiir Betriebswirtschaftslehre, No. 435, University of Kiel, Germany, March
1997.

36. Herroelen, Willy S. "Resource-Constrained Project Scheduling-The State of the Art," Oper-
ational Research Quarterly, 23(3):261-275 (1972).

37. Ho, James K., Tak C. Lee, and R. P. Sundarraj. "Decomposition of Linear Programs Using
Parallel Computation," Mathematical Programming, 42:391-405 (1988).

38. Hughes, David. "Advanced USAF Mission Planning System will Serve Fighters, Bombers and
Transports," Aviation Week and Space Technology, 134:52-53 (June 1991).

39. Hughes, David. "New Planning Software Aids Bosnian Airdrops," Aviation Week and Space
Technology, 138(17):59-61 (April 1993).

40. Hughes, David. "Navy System to Halve Strike Planning Time," Aviation Week and Space
Technology, 142:48-49 (March 1995).

41. Hurley, Marcus. "JFACC, Taking the Next Step," Joint Force Quarterly, 7:60-65 (Spring
1995).

42. Ibaraki, T. "Enumerative Approaches to Combinatorial Optimization," Annals of Operations
Research, 11(1-4) (January 1988).

43. Jackson, Richard H. F., Paul T. Boggs, Stephen G. Nash, and Susan Powell. "Guidelines for
Reporting Results of Computational Experiments. Report of the ad hoc Committee," Mathe-
matical Programming, 49:413-425 (1991).

44. Jensen, Paul A., "Integer Programming." Integer Programming course handout. School of En-
gineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, July 1994.

45. Kelley, James E. "Critical-Path Planning and Scheduling: Mathematical Basis," Operations
Research, 9(3):296-320 (May-June 1961).

46. Kohlmorgen, Udo, Hartmut Schmeck, and Knut Haase. Experiences with Fine-Grained Parallel
Genetic Algorithms. Working Paper, University of Karlsruhe, D-76128 Karlsruhe, December
1996.

222

47. Kolisch, Rainer and Thomas Frase. "Minimizing Resource Costs When Meeting Tight Deadlines
in a Project Environment." Unpublished Report, 1996.

48. Kolisch, Rainer and Arno Sprecher. "PSPLIB - A Project Scheduling Problem Library,"
European Journal of Operational Research, 96:205-216 (1996).

49. Kolisch, Rainer and Arno Sprecher. PSPLIB - A Project Scheduling Problem Library.
Manuskripte aus den Instituten fiir Betriebswirtschaftslehre, No. 396, University of Kiel, Ger-
many, March 1996.

50. Kolisch, Rainer, Arno Sprecher, and Andreas Drexl. Characterization and Generation of a
General Class of Resource-Constrained Project Scheduling Problems. Manuskripte aus den
Instituten fuir Betriebswirtschaftslehre, No. 301, University of Kiel, Germany, December 1992.

51. Kolisch, Rainer, Arno Sprecher, and Andreas Drexl. "Characterization and Generation of a
General Class of Resource-Constrained Project Scheduling Problems," Management Science,
41(11):1693-1703 (1995).

52. Kronsj5, Lydia and Dean Shumsheruddin, editors. Advances in Parallel Algorithms. New York:
Halsted Press, 1992.

53. Kumar, Vipin, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Par-
allel Computing: Design and Analysis of Algorithms. Redwood City, California: Ben-
jamin/Cummings Publishing, 1994.

54. Lai, Ten-Hwang and Alan Sprague. "Performance of Parallel Branch-and-Bound Algorithms,"
IEEE Transactions on Computers, c-34(10):962-964 (October 1985).

55. Lamont, Gary B., George H. Gates, and Scott M. Brown. Genetic Algorithms Combined with
Deterministic Search. Working Paper, Air Force Institute of Technology, Wright-Patterson
AFB Ohio, January 1997.

56. Lasdon, Leon S. Optimization Theory for Large Systems. New York: MacMillan Publishing,
1970.

57. Lawler, Eugene L. "A Procedure for Computing the K-Best Solutions to Discrete Optimization
Problems and its Application to the Shortest Path Problem," Management Science, 18(7):401-
405 (March 1972).

58. Lee, Jae-Kwan and Yeong-Dae Kim. "Search Heuristics for Resource Constrained Project
Scheduling," Journal of the Operational Research Society, 47:678-689 (1996).

59. Li, Guo-Jie and Benjamin W. Wah. "Coping with Anomalies in Parallel Branch-and-Bound
Algorithms," IEEE Transactions on Computers, c-35(6):568-573 (June 1986).

60. Manderick, Bernard and Piet Spiessens. "Fine-Grained Parallel Genetic Algorithms." Proceed-
ings of the Third International Conference on Genetic Algorithms, edited by Schaffer, J. D.
428-433. Morgan Kaufmann, San Mateo California, 1989.

61. Maybury, Mark T. Distributed, Collaborative, Knowledge Based Air Campaign Planning, chap-
ter in AGARD Lecture Series 200: Knowledge Based Functions in Aerospace Systems. France:
Advisory Group for Aerospace Research and Development, November 1995.

223

62. Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution Programs. Berlin:
Springer-Verlag, 1996.

63. Murty, Katta G. "An Algorithm for Ranking All the Assignments in Increasing Order of Cost,"
Operations Research, 16:682-687 (1968).

64. Nauss, Robert M. Parametric Integer Programming. Missouri: University of Missouri Press,
1979.

65. "Common Hardware and Software for the US Army's ATCCS," International Defense Review,
22(5):86-88 (May 1989).

66. Ozdamar, Linet. A Genetic Algorithm Approach to a General Category Project Scheduling
Problem. Research Report, Marmara University, Istanbul, 1996.

67. Ozdamar, Linet. "A Genetic Algorithm Approach to a General Category Project Scheduling
Problem." (to appear in IEEE Transactions in November 1998), July 1998.

68. Ozdamar, Linet and Giindiiz Ulusoy. "A Local Constraint Based Analysis Approach to Project
Scheduling under General Resource Constraints," European Journal of Operational Research,
79:287-298 (1994).

69. Ozdamar, Linet and Giindiiz Ulusoy. "A Framework for an Interactive Project Scheduling Sys-
tem under Limited Resources," European Journal of Operational Research, 90:362-375(1996).

70. Patterson, James H. "A Comparison of Exact Approaches for Solving the Multiple Constrained
Resource, Project Scheduling Problem," Management Science, 30(7):854-867 (July 1984).

71. Petrovic, R. "Optimization of Resource Allocation in Project Planning," Operations Research,
16:559-586 (1968).

72. Pinedo, Michael. Scheduling: Theory, Algorithms, and Systems. New Jersey: Prentice Hall,
1995.

73. Press, Barry. "The US Air Force TEMPLAR Project Status and Outlook." IEEE Western
Conference on Knowledge Based Engineering and Expert Systems. 42-48. 1986.

74. Pritsker, Alan B., Lawrence J. Watters, and Phillip M. Wolfe. "Multi-Project Scheduling with
Limited Resources: a Zero-One Programming Approach," Management Science, 16(1):93-108
(September 1969).

75. Riester, W. F. and R. Schwinn. "Projekplanungsmodelle (Project Planning Models)," Physica,
Wiirzburg- Wien (1970).

76. Rosen, J. B. and Robert S. Maier. "Parallel Solutions of Large-Scale, Block-Angular Linear
Programs," Annals of Operations Research, 22:23-41 (1990).

77. Simpson, David. "CSC Marches from Cold War to Commercial Wars," Systems Integration
Business, 25(7):22-27 (July 1992).

78. Slowifiski, Roman, Boleslaw Soniewicki, and Jan W4ýglarz. "DSS for Multiobjective Project
Scheduling," European Journal of Operational Research, 79:220-229 (1994).

79. Sprecher, Arno. "Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode
Case," Springer- Verlag (1994).

224

80. Sprecher, Arno and Andreas Drexl. Solving Multi-Mode Resource-Constrained Project Schedul-
ing Problems by a Simple, General and Powerful Sequencing Algorithm. Part I: Theory.
Manuskripte aus den Instituten ffir Betriebswirtschaftslehre, No. 385, University of Kiel, Ger-
many, January 1996.

81. Sprecher, Arno and Andreas Drexl. Solving Multi-Mode Resource-Constrained Project Schedul-
ing Problems by a Simple, General and Powerful Sequencing Algorithm. Part II: Computation.
Manuskripte aus den Instituten ffir Betriebswirtschaftslehre, No. 386, University of Kiel, Ger-
many, January 1996.

82. Sprecher, Arno, Rainer Kolisch, and Andreas Drexl. "Semi-Active, Active, and Non-Delay
Schedules for the Resource-Constrained Project Scheduling Problem," European Journal of
Operational Research, 80:94-102 (1995).

83. Stinson, Joel P., Edward W. Davis, and Basheer M. Khumawala. "Multiple Resource-
Constrained Scheduling Using Branch and Bound," AIIE Transactions, 10(3):252-259 (Septem-
ber 1978).

84. Sweeney, Dennis J. and Richard A. Murphy. "A Method of Decomposition for Integer Pro-
grams," Operations Research, 27(6):1128-1141 (November 1979).

85. Sweeney, Dennis J. and Richard A. Murphy. "Branch and Bound Methods for Multi-Item
Scheduling," Operations Research, 29(5):853-864 (September-October 1981).

86. Talbot, F. Brian. An Integer Programming Algorithm for the Resource-Constrained Project
Scheduling Problem. PhD dissertation, Pennsylvania State University, 1976.

87. Talbot, F. Brian. "Resource-Constrained Project Scheduling with Time-Resource Tradeoffs:
The Nonpreemptive Case," Management Science, 28:1197-1210 (1982).

88. Talbot, F. Brian and James H. Patterson. "An Efficient Integer Programming Algorithm with
Network Cuts for Solving Resource- Constrained Scheduling Problems," Management Science,
24(11):1163-1175 (July 1978).

89. Tanese, Reiko. "Distributed Genetic Algorithms." Proceedings of the Third International Con-
ference on Genetic Algorithms, edited by Schaffer, J. D. 434-439. Morgan Kaufmann, San
Mateo California, 1989.

90. Tomlin, J. A. Branch and Bound Methods for Integer and Nonconvex Programming, chapter
in Integer and Nonlinear Programming. Amsterdam: North-Holland Publishing, 1970.

91. Vercellis, Carlo. "Constrained Multi-Project Planning Problems: A Lagrangean Decomposition
Approach," European Journal of Operational Research, 78:267-275 (1994).

92. Wiest, Jerome D. and Ferdinand K. Levy. A Management Guide to PERT/ICPM: with
GERT/PDM/DCPM and other Networks (Second Edition). New Jersey: Prentice-Hall, 1977.

93. Wiley, Victor D. Optimization Analysis for Design and Planning of Multi-Project Programs.
MS thesis, AFIT/GOR/ENS/96M-18. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB Ohio, March 1996.

225

94. Wiley, Victor D., Richard F. Deckro, and Jack A. Jackson. "Optimization Analysis for De-
sign and Planning of Multi-Project Programs," European Journal of Operational Research,
107(2):492-506 (June 1998).

95. Wu, Youfeng and Ted G. Lewis. "Parallel Algorithms for Decomposable Linear Programs."
1990 International Conference on Parallel Processing. 27-34. 1990.

226

Vita

Captain John C. Van Hove was born on 14 May 1967 in Berlin, New Jersey. In 1985, he

graduated from Buena Regional High School in Buena, New Jersey, and went on to attend the

United States Air Force Academy. He graduated from the Academy in June 1989 with a Bachelor of

Science in Operations Research. Upon graduation, he received a regular commission in the United

States Air Force and served his first tour of duty with Rome Laboratory at Griffiss AFB, New York.

He began as a Neural Systems Analyst, performing research in the field of neural networks with

a team serving as the lab's artificial neural systems focal point. He went on to work as the lab's

Advanced Planning System Lead Engineer where he led the development, testing, and fielding of a

multi-million dollar force level air combat planning tool. In August 1993, he entered the School of

Engineering, Air Force Institute of Technology (AFIT). In 1995, he received a Master of Science in

Operations Research and stayed on at AFIT to work on his Doctorate.

Permanent address: 5521 Honeyleaf Way
Dayton, Ohio 45424

227

REPORT DOCUMENTATION PAGE Form ApprovedR DOMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I September 1998 Doctoral Dissertation
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN INTEGER PROGRAM DECOMPOSITION
APPROACH TO COMBAT PLANNING

6. AUTHOR(S)

John C. Van Hove, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

AFIT/ENS Bldg. 640 REPORT NUMBER

2950 P Street
WPAFB, OH 45433-7765 AFIT/DS/ENS/98-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Dr. Neal Glassman AGENCY REPORT NUMBER

AFOSR/NM
110 Duncan Ave. Ste B115
Bolling, AFB DC 20332-8080
202-767-5026 DSN 297-5026
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Over the last two decades, our military forces have been working to incorporate the latest computer technology into the
combat planning process. The earliest efforts use word processors, spreadsheets, and databases to organize planning data and
to display high level summaries for commanders. Later efforts perform feasibility checks as missions are planned to insure
that the necessary resources are available and that the assets requested are capable of meeting the assigned scheduling
requirements. Some of the most recent computer planning tools have included the capability to automatically plan individual
missions or groups of missions. These automated efforts have been heuristic in nature due to the time limitations inherent to
real-time combat planning. The methodologies in this research offer effective optimal alternatives to the limited heuristics
available in the current planning tools. This research formulates and solves a new class of project scheduling problems with
applications to both military and civilian planning. It is shown that the solution space for this class of problems may be
reduced in order to improve the effectiveness of both optimal and heuristic solution methodologies. In addition, a general
method for extending implicit enumeration algorithms to obtain k-best solution sets is developed. The reduced solution space
and the general k-best solutions methodology are exploited to develop several efficient solution approaches for this new class
of problems; an implicit enumeration algorithm, a decomposition approach, an evolutionary algorithm, and a hybrid
decomposition approach. The applicability and flexibility of the methodology are demonstrated with a case study that focuses
on the force level planning of combat missions for an air campaign.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Integer Program Decomposition; Combat Planning; Resource Constrained Project Scheduling 242
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OFABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18Designed using Perform Pro, WHS/DIOR, Oct 94

