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Abstract 

Modern imaging sensors produce vast amounts of data, overwhelming human analysts. 

One such sensor is the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) hyper- 

spectral sensor. The AVIRIS sensor simultaneously collects data in 224 spectral bands that 

range from 0.4//m to 2.5/mi in approximately lOnm increments, producing 224 images, each 

representing a single spectral band. Autonomous systems are required that can fuse "impor- 

tant" spectral bands and then classify regions of interest if all of this data is to be exploited. 

This dissertation presents a comprehensive solution that consists of a new physiologically mo- 

tivated fusion algorithm and a novel Bayes optimal self-architecting classifier that processes 

the outputs of the fusion algorithm. The fusion algorithm which uses a contrast sensitivity 

weighted wavelet-based multiresolution analysis is shown to outperform other fusion algo- 

rithms in both visual aesthetics and signal-to-noise ratios. The self-architecting classifier is 

a Radial Basis Function (RBF) Iterative Construction Algorithm (RICA) that is designed to 

autonomously determine the size of its network architecture for optimal classification perfor- 

mance. RICA is shown to outperform several neural network algorithms, including a fixed 

architecture multi-layer Perceptron (MLP), a fixed architecture RBF, and an adaptive archi- 

tecture MLP. A proof is also presented demonstrating that RICA produces a network which 

is a minimum mean squared-error approximate to Bayes optimal discriminant functions. Fi- 

nally, it is shown that this combination of image fusion and self-architecting classifier provide 

an excellent means to detect targets in hyperspectral sensor data. 
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Automatic Target Cueing 

of Hyperspectral Image Data 

/.   Introduction 

1.1    Motivational Background 

Over the last decade the Air Force has made drastic reductions in manpower. The 

focus now is on a smaller force that can be rapidly mobilized and deployed to any part of the 

world. The motto has become "more with less". In order to achieve "more with less" and 

to satisfy a national desire that American men and woman be removed from harm's way as 

much as possible, the Air Force is relying more and more on modern technology. One area of 

particular interest is Automatic Target Cueing (ATC) (i.e., using computers to process and 

analyze sensor image data and highlight regions of interest for possible targets). ATC can be 

used to reduce the burden of image analysts, pilots, or weapons officers who need to detect 

targets in image data. It can also be used as a front-end or preprocessor to an automated 

target recognition system. Two problems associated with ATC, which are addressed in this 

research, are sensor fusion and target detection. 

Sensor fusion involves processing sensor data to provide an image analyst or target 

detection algorithm with an enhanced subset of the original data. Because the data can come 

from a single sensor or multiple sensors there is a need for image processing techniques that 

can fuse images from disparate sensors or multiple images produced by the same sensor [1, 

2,12,93,94]. For example, the Air Force needs to fuse information from multiple sensors to 

obtain a multi-spectral analysis of a given target area. The advantage of using multi-spectral 

data is that it provides better target detection and identification than a single wide-band 

sensor [12, 72] and it allows flexibility in choosing a particular narrow-spectral-band for 

individual types of targets. The disadvantage of using multiple sensors to obtain a multi- 
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spectral signature is that it is difficult and sometimes impossible to fully register (align in 

scale, rotation, and shift) the different input sources. 

In an attempt to overcome the registration problem, while maintaining the multi- 

spectral information, research is being conducted using hyperspectral sensors that simulta- 

neously collect data from hundreds of narrow spectral bands. However, there is a price to 

pay for the fully registered hyperspectral data. 

The first is the cost of analyzing the image data generated by a hyperspectral sensor. 

Because hyperspectral sensors record information in hundreds of spectral bands and each 

band generates a full resolution single image, an image analyst has to read and analyze 

hundreds of images from a single pass of a hyperspectral sensor. Because human operators 

cannot physically or mentally integrate information from multiple source images [2,93,94], 

a method to fuse the relevant information into a single image, or at least a smaller subset of 

images, is needed. 

A second cost results when an automated system is used to find targets in hyperspectral 

sensor data. These automated systems are inundated with the vast amounts of information 

hyperspectral sensors produce about a target area, including many irrelevant details. This 

increases the chances for false alarms and missed detections. Therefore, a fusion method 

that represents or preserves the details in the input images that are most relevant to the 

task at hand (i.e., target detection) and at the same time, provides better target detail [12], 

is needed. 

While there are image fusion techniques which can be used to address some of the costs 

associated with using hyperspectral data, they are shown to favor noise in the input images 

or add additional noise based upon their decomposition and reconstruction methods [2,12, 

77,93,94,96]. A sensor fusion technique is developed in this research that uses a combination 

of human visual perception and wavelet-based multiresolution analysis to fuse images from 

a hyperspectral sensor while overcoming the noise problems of the previous techniques. 

After hyperspectral sensor fusion has occurred, the next step in ATC is to perform 

target detection using the enhanced imagery. One set of algorithms which may be useful in 

this role are Artificial Neural Networks (ANNs).  ANNs have been successfully applied to 
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many types of classification problems, from breast cancer detection in digitized mammograms 

to target detection in infrared imagery [43,47,73,74,82]. One reason they are so successful 

is that they can be trained to correctly classify previously unseen test samples based upon 

the information in a set of training exemplars. The drawback is that most ANNs require 

human input to determine the size of the architecture needed to perform classification. 

There are ANNs that automatically determine their architectures, however they may not 

optimize the output for classification generalization or may only use ad hoc methods to 

select their architecture size [3, 8,13,15,22-24,27,36, 37,44,45, 52,54-56,69, 70]. Steppe 

overcomes the "ad hoc" methods by introducing a statistically rigorous approach to MLP 

architecture selection [91], but her work requires multiple training sessions using various 

network architectures. While her method is statistically rigorous, it is computationally 

expensive. A unique self-architecting Radial Basis Function (RBF) ANN is developed that 

does not rely on ad hoc methods, optimizes its architecture for classification accuracy, and 

does not have the computational overhead associated with Steppe's [91] and others' adaptive 

approaches [22,68]. 

1.2 Problem Statement 

The goal of this research is to develop both an image fusion algorithm and a self- 

architecting ANN to perform Automatic Target Cueing (ATC) of the resulting fused hyper- 

spectral sensor data. 

1.3 Scope 

The scope of the image fusion portion of this research is to develop an image fusion 

method to address the problems facing hyperspectral sensors and to improve upon previous 

methods [2,12,77,93,94,96]. The best of those multiresolution methods had approximately 

2-3 percent reconstruction error [12,96] based solely on decomposition and reconstruction. 

A wavelet-based approach, which has effectively zero reconstruction error, is designed and 

implemented in this research. 
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The design of the image fusion algorithm is based on the assumption that the images 

to be fused come from a single sensor that produces fully registered images, or from multiple 

sensors that have been pre-registered. It was also assumed that the data produced from 

the sensors may be treated as image data and that contrast sensitivity, as related to human 

visual perception, is the key for determining the salient features of an image [34,61,62,79]. 

Furthermore, it was assumed that the key to multi-image fusion is to fuse based upon the 

salient features, (i.e., pattern primitives), and not at the pixel level alone [1,2,10-12,93,94]. 

Evaluation of the image fusion algorithms will be accomplished in two different ways. 

First, the algorithms' performances will be evaluated by fusing a set of test images with 

known image characteristics. The set of images will contain various levels of both uncorre- 

lated and correlated random noise. Second, the algorithms' ability to fuse different spectral 

bands from the Airborne Visual and Infrared Imaging Spectrometer (AVIRIS) hyperspectral 

sensor will be demonstrated and visually evaluated. 

After image fusion has been accomplished, an adaptive classifier is needed to perform 

classification of the fused data. The scope of the classification portion of this research is to 

design and implement an adaptive Radial Basis Function Iterative Construction Algorithm 

(RICA) that will adapt the size of its architecture to "fit" the underlying distribution of the 

training data and modify its parameters to optimize classification accuracy. 

The performance of RICA will be compared with many other ANNs, both fixed and 

adaptive, using real world sample data sets. A proof is also presented which shows that 

RICA performs a minimum mean squared-error approximation to a Bayes optimal classifier. 

This proof also extends the proofs presented by Richard [71] and Ruck [81] by showing that 

no assumption about the underlying distribution of the data needs to be made. 

Finally, an example of ATC using hyperspectral image data will be presented. The 

example is intended to show how the physiologically motivated fusion algorithm and RICA 

can work in concert to perform ATC of hyperspectral data. The ATC example will also 

demonstrate the information enhancement capability of the physiologically motivated fusion 

algorithm. 
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1.4    Dissertation Organization 

This chapter presented the motivational background, the problem statement, and the 

scope of the work to be accomplished in this research. Chapter II provides background 

material on current fusion algorithms, ANNs, and their limitations. It also provides a brief 

discussion on wavelets. Chapter III presents the new physiologically motivated fusion al- 

gorithm and compares it with current techniques in the literature. Chapter IV describes 

the novel self-architecting classifier RICA, compares it to several ANNs, and presents an 

example of ATC using hyperspectral image data. It also details the proof showing that 

RICA performs a minimum mean squared-error approximation to a Bayes optimal classifier. 

Chapter V discusses conclusions, contributions, and recommendations. 
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77.   Background 

The goal of this research is to develop both an image fusion algorithm and an adaptive ANN 

to perform Automatic Target Cueing (ATC) of hyperspectral sensor data. The purpose of 

this chapter is to present background material on current hierarchical image fusion techniques 

and to discuss both fixed and adaptive (self-architecting) Artificial Neural Networks (ANNs) 

that may be used to process the outputs of the fused imagery. 

2.1    Hierarchical Image Fusion Techniques 

One of the goals of this research is to develop a fusion algorithm to fuse (combine) 

multiple bands of images from a hyperspectral sensor. The question is what type of fusion 

algorithm should be used. The most direct approach to image fusion is to simply sum and 

average the pixel values of the input images [12]. However, this can produce problems. 

Averaging images can cause features that were in one image but not in another to appear 

in the composite image at a much reduced contrast. Additionally, it can appear to be 

superimposed in the composite image, much like a double exposure in photography [12]. 

The desire is for the features in the composite image to maintain contrast and to appear 

"normal" (not a superimposed combination), especially if the fused image is to be viewed by a 

human analyst. Another method of fusion is to cut and paste features from the input images 

into a composite and then use some form of edge blurring to remove the false edges [93]. 

However, this can lead to edge artifacts that distort the fused image. 

The problem with these techniques is that they all operate at the pixel level and not 

the feature level for image fusion. Burt introduced a pyramidal approach that was designed 

to perform fusion at the feature level and not the pixel level [12]. While his method overcame 

the problems of the more direct approaches discussed, his method introduced a new set of 

problems to overcome. Before Burt's and others' particular methods are discussed, a more 

general discussion of hierarchical image fusion techniques is presented. 

Hierarchical image fusion techniques use a pyramidal approach to image fusion. Typ- 

ically, they have three stages: 1) Decomposition, 2) Fusion, and 3) Reconstruction. During 

2-1 



the Decomposition stage, an image pyramid is formed for each of the images to be fused. 

The image pyramid, see Figure 2.1, is created by placing the original image at the base 

and then each successive layer is formed by filtering and down-sampling the previous layer's 

image. The successive filtering and down-sampling provide a multiresolution representation 

of the images. The next stage is Fusion. Fusion, in this sense, is the process of combining 

the information in the image pyramids to form a composite pyramid. Depending on the type 

of technique used, fusion can either be based upon the information in the image pyramids 

directly or it may require further decomposition of the image pyramids using various filters, 

see the right half of Figure 2.1. Reconstruction is the final stage. After the image pyramids 

have been fused into a composite pyramid, the process used to form the image pyramid is 

reversed to obtain the fused composite image. How well fusion is accomplished (in terms 

of Signal-to-Noise Ratio (SNRs) and image aesthetics) depends on: 1) the decomposition 

method, 2) the information used to determine how the image pyramids will be combined, 

and 3) the reconstruction method. How these affect fusion will be discussed below and 

experimentally demonstrated in Chapter III. 

Three hierarchical image fusion techniques currently proposed in the literature [2,11,96] 

are described next. All three methods were implemented and tested during this research. A 

new image fusion algorithm, which was designed and implemented during this research, is 

presented in the next chapter. The new algorithm solves the problems associated with each 

of the three algorithms discussed below. 

The first hierarchical image fusion technique presented is a method proposed by Toet [2, 

93,94]. Toet's method is a multiresolution pyramidal technique that uses the maximum 

contrast information in what he calls the Ratio of Low Pass pyramids to determine what 

features are salient (important) in the images to be fused [2,93,94]. His method involves 

converting the input images into multiresolution ratio pyramids. The values in each pyramid 

represent what Toet calls the contrast details, where contrast is a measure of the difference 

in brightness across an image or scene. Next the ratio pyramids of contrast images are 

compared point-by-point and the maximum value is retained for the composite pyramid. 
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(a) (b) 

Figure 2.1 Figure (a) shows the first stage of a multiresolution pyramid algorithm, where 
each layer is a filtered and down-sampled version of the previous layer's im- 
age [96]. Figure (b) represents further processing of the image pyramid in (a). 
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Once the composite ratio pyramid is formed, the process of creating the ratio pyramid is 

reversed to recover the reconstructed composite. 

Toet defends the decision to select the details for the composite image based upon 

maximum contrast by arguing that human vision is based upon contrast and that, by se- 

lecting details with maximum contrast, the resulting fused image will provide better details 

for the human analyst. Although this is sound reasoning based upon the desire to present 

the human analyst with the best visual image, it does not account for the fact that a noisy 

image is typically of higher contrast than an image that is not. Therefore, Toet's method 

would select the noisier parts of the images to be retained in the composite. Selecting the 

noisier parts for the composite presents a potential loss of information about desired targets. 

Thus, a method for selection that is based upon the perceptual sensitivity of the human 

visual system and not just pure contrast is needed. 

The second method presented is a technique developed by Burt and Kolczynski [11,12]. 

Burt and Kolczynski's method is also a multiresolution pyramidal technique, but unlike 

Toet's method, Burt and Kolczynski have a more complex criteria to determine the salient 

features in the input images to be fused. First, they form the multiresolution image pyramid 

for each image to be fused. Next, they further decompose the image pyramid using four 

filters, called d\, ...,d± in Figure 2.1. The filters are used to extract orientation details from 

the multiresolution image pyramid. Once the details have been extracted, a match and 

saliency metric is used to determine which details are most important or salient. The match 

value compares two regions in the input images and provides a number that describes if 

they are similar, or match, and the saliency value represents the energy in the oriented 

gradients of the input images. If the input image details are similar (within some threshold) 

then the details are averaged [11,12]. If the input images are not similar enough (beyond 

the threshold) then the details from the image that are more salient are retained for the 

composite gradient pyramid. Once the fused gradient pyramid is formed, reconstruction is 

performed to recover the composite image. 

The fusion algorithm proposed by Burt and Kolczynski has several advantages over 

the method proposed by Toet. Since it averages similar input sources, instead of just picking 
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some maximum value, it offers a potential for better noise reduction. It is important to 

note that the averaging is performed at the detail level, which eliminates the drawbacks 

associated with averaging at the pixel level. Burt and Kolczynski's method also allows the 

low contrast details to be preserved, if they are the salient features. The main disadvantage 

is that a template (weight matrix) is needed to decide which features are salient. Since there 

are always problems with size, orientation, translation, etc., finding a template that will 

work well as a salient measure, will be very difficult if not impossible. One possible weight 

matrix, proposed by Burt and Kolczynski, is a 3 x 3 matrix of ones; this allows the saliency 

to be based upon the local energy in the details. Although this provides a measure that has 

some useful applications, local energy in the details of some images may reflect a high value 

strictly due to noise in the image. Also, energy in the images that may not fall within human 

perception may play a large part in the decision of how the images will be fused. Therefore, 

a method that uses the strengths of Burt and Kolczynski's fusion scheme, and still addresses 

the human visual system, is needed. 

The third method presented, which relies on the frequency response (contrast sensitiv- 

ity) of the human visual system and uses the decomposition/reconstruction scheme developed 

by Burt and Kolczynski, was developed by Wilson [96]. Mathematically, contrast sensitivity 

(which is a measure of how a person responds to contrast at threshold) is defined as the re- 

ciprocal of contrast [61,84], where contrast, as defined above, is a measure of the difference in 

brightness across an image or scene. The measure of how the human visual system responds 

to contrast, i.e., contrast sensitivity, is a function of spatial frequency [61,84]. For example, it 

has been shown that the human visual system responds better, or is more contrast sensitive, 

to low spatial frequency components than it is to high spatial frequency components [84]. 

This is exhibited by the fact that contrast sensitivity peaks for frequency ranges between 2 

and 10 cycles per degree (cpd) and then falls off sharply [61,84]. 

Wilson [96] uses contrast sensitivity to overcome the problem that Burt and Kolczynski 

had of determining a template to weight the details of the image pyramid. The idea is that 

by analyzing the frequencies in the multiresolution image pyramid and by weighting them 

according to the contrast sensitivity function of the human visual system, details that humans 
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would perceive as important would be preserved. While Wilson's method has been shown 

to provide better image fusion in terms of Signal-to-Noise ratios than either Toet's or Burt 

and Kolczynski's methods, it still suffers from a 2-3 percent reconstruction error based solely 

upon the decomposition and reconstruction method developed by Burt and Kolczynski. The 

fusion method designed and implemented for this research uses the experimentally derived 

contrast sensitivity function (CSF) of the human visual system developed by Mannos and 

Sakrison [50] and a wavelet-based decomposition/reconstruction method to overcome the 

limitations of the previously mentioned fusion techniques. A brief discussion on the wavelet 

decomposition and reconstruction method used during this research is presented next. 

2.2    Wavelet Multiresolution Decomposition and Reconstruction 

When discussing wavelets, it is helpful to relate them to other image analysis tools. 

One of the most well known is Fourier analysis. In Fourier analysis, a signal is represented 

as a weighted sum of sinusoids of different frequencies. For this research, the signal is a 

2-dimensional image. The weights, which are called Fourier coefficients, provide information 

about the frequency content of an image. Thus, Fourier analysis is a mathematical method 

to transform the view of an image from a spatial representation to a frequency-based repre- 

sentation. The drawback to this method is that the Fourier transform provides information 

about frequency content present in a given image, but it does not tell where they occurred. 

To perform image fusion, it is important to compare images at the feature or local level [12]. 

Because the Fourier transform provides information at the global and not the local level it 

is not the method to use. One possible solution is to use a windowed Fourier analysis. In 

a windowed approach, the Fourier analysis is performed over a small region or window of 

the image. This provides both location and frequency content. The problem is choosing the 

window size. Once a window size is chosen, that window size is the same for all frequencies. 

The problem is that many signals (images) require a more flexible window size. For example, 

if the size is too small, information about low frequency content is lost. If it is too large, 

information about where the frequencies occur is lost. 
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Wavelet analysis provides the next step. Wavelet analysis is a windowed approach that 

allows the window size to vary as needed. It allows the window size to grow to obtain more 

precise information about the low frequency content of the image and it allows it to shrink 

for more precise position information about high frequency content. 

This is accomplished by using a different form of basis function. In the Fourier or 

windowed Fourier approach, the basis functions are a set of periodic sinusoids. A wavelet- 

based approach uses a waveform of finite duration which has an average value of zero. In 

Fourier analysis the signal is represented as a sum of sine waves of varying frequencies. 

Wavelet analysis represents the signal as a sum of scaled and shifted versions of the original 

(mother) wavelet. Scaling has the effect of varying the window size. Shifting has the effect 

of moving the center of the wavelet across the image. 

As with the Fourier analysis method, wavelet analysis uses an integral to calculate the 

coefficients of the transformation. For example, the one-dimensional Fourier transform is: 

/oo 
f(t)e-Jutdt. (2.1) 

-oo 

which is the sum over all time of the signal f(t) multiplied by the complex exponential, e~i<Jit. 

The complete set of continuous Fourier coefficients is derived by allowing u> to vary over all 

frequencies. A similar approach is used for the continuous wavelet transform (CWT). The 

CWT is defined as the sum over all time of the signal f(t) multiplied by scaled and shifted 

versions of the wavelet function \P: 

/oo 
f(t)^ (scale, position,t)dt (2.2) 

-oo 

In the CWT case, the complete Wavelet coefficients are derived by allowing the scale 

and the shift of the mother wavelet to vary continuously over all scales and shifts. 

As with Fourier analysis, Wavelet analysis has both a continuous and discrete form. 

In the continuous case, the wavelet was allowed to vary over every possible scale and shift. 

In the Discrete Wavelet Transform (DWT), the scale and shift are varied based on powers 
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of two or a dyadic. Thus, each successive scale is twice the previous scale. The number 

of levels or scales chosen depends on the number of levels of analysis desired. In an image 

pyramid representation, the base level represents coefficients from the first or lowest scale 

and each higher level represents coefficients from a scale that is twice as coarse as the level 

below. The DWT discussed is the process of decomposing the image into its discrete wavelet 

transform coefficients. If the proper wavelet set is chosen, the image can be decomposed and 

resynthesized without reconstruction error. 

The wavelet set or "mother" wavelet used in this research was the Daubechies 20-tap 

wavelet set [19]. It was chosen because it has perfect reconstruction (i.e., the decomposed 

image can be reconstructed from the wavelet coefficients without a loss of information). 

The Daubechies wavelet is generated from the scaling function h(n) using Equation 2.3. 

The filter representing the scaling function is usually denoted as h(n) and has a frequency 

response displaying low-pass characteristics. The filter representing the wavelet function is 

usually denoted as g(n) and has a frequency response displaying high-pass characteristics. 

Equation 2.3 describes how h(n] is used to generate g(n). The scaling and wavelet functions 

corresponding to these filters are shown in Fig. 2.2. These waveforms are also used for 

reconstruction. 

g(n) = -I1-" x h{\ - n); (2.3) 

The functions used for decomposition are actually the above mentioned functions re- 

flected about zero and are shown in Figure 2.3. Notice that the scaling (h) and the wavelet 

(g) functions used for decomposition are not symmetric about zero. Figure 2.4 shows the 

frequency characteristics of the scaling and wavelet functions associated with h and g. Fig- 

ure 2.5 shows the decomposition process for an image. The approximation and detail images 

are the result of different convolutional combinations of the scaling and wavelet functions. 

Figures 2.6 and 2.7 provide an example of a two level wavelet decomposition of a picture of 

Lenna [63]. Figure 2.6 represents the first level of decomposition and Figure 2.7 represents 

the second level. As can be seen in the figures, the decomposition process generates three 

sets of detail coefficients and one set of approximation coefficients.  The only information 
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(a) Reconstruction scale function (h(n)) (b) Reconstruction wavelet function (g(n)) 

Figure 2.2     Reconstruction Scale and Wavelet Functions. 

needed for reconstruction is one set of approximation coefficients from the highest decompo- 

sition level and all of the detail coefficients from every level. The approximations from the 

lower levels of the image pyramids are not needed. 

Reconstruction of the original image is the mirror operation of decomposition. Fig- 

ure 2.8 shows the process of reconstructing an image after wavelet decomposition. 

How the Daubechies DWT applies to hyperspectral image fusion will be discussed in 

the next chapter, when the novel physiologically motivated fusion algorithm developed for 

this research is described. Now that several hierarchical image fusion algorithms have been 

discussed and the limitations of each have been detailed, the next step is to discuss possible 

algorithms that can be used to classify the outputs of the fusion process. 

2.3   Artificial Neural Network Architectures 

As mentioned in the introduction, Artificial Neural Networks (ANNs) have been suc- 

cessfully applied to many types of classification problems, from breast cancer detection in 

digitized mammograms to target detection in infrared imagery [43,47,65,73,74,82]. Again, 

the reason they are so successful is that they can be trained to correctly classify previously 

unseen test samples based upon the information in a set of training exemplars.  How well 
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(a) Decomposition scaling function (h(n)) (b) Decomposition wavelet function (g(n)) 

Figure 2.3     Decomposition Scale and Wavelet Functions. 
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(a) Wavelet high-pass filter (b) Scale low-pass filter 

Figure 2.4     Wavelet frequency responses. 
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: Keep every other sample 
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Figure 2.5     Decomposition flow chart to obtain first level of decomposition [49]. 

they perform classification on the test data is a function of the training data, the training 

algorithm, and the network architecture. While it is shown in the literature that the amount 

of training data and whether or not the distribution of the training data represents the dis- 

tribution of the test data are critical to the test performance of a trained ANN [4-6,25,95], 

the focus of this discussion will be on the ANN architecture. 

2.3.1 Fixed Architecture Feed-Forward ANNs. In a feed-forward ANN, the flow of 

the network is from the inputs to the outputs without any feedback loops [85], as shown in 

Figure 2.9. Thus, the outputs of a trained network are strictly a function of the present inputs 

and not any previous outputs from any layer. Figure 2.9 depicts a feed-forward network with 

one hidden layer. Cybenko [17] showed that a Multilayer Perceptron (MLP) using only a 

single hidden layer of sigmoidal hidden units could approximate any Lebesgue integrable 

function to an arbitrary closeness. Park and Sandberg [59] and Hartman [30] showed that 

an RBF network using a single hidden layer of Gaussian hidden units could approximate any 

Lebesgue p-integrable {Iß, for 1 < p < oo) function to an arbitrary closeness. Therefore, the 

class of functions that can be approximated by RBF networks are a superset of those that can 

be approximated by MLPs. This is why RBF networks, using Gaussian hidden layer nodes, 

are called "Universal Function Approximators" [9,30,59] and why an RBF architecture was 

chosen for this research. 
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(a) Approximation coefficients (b) Horizontal Detail Coefficients 

(c) Diagonal Detail Coefficients (d) Vertical Detail Coefficients 

Figure 2.6     This figure represents an example of the first level of a DWT decomposition of 
a picture of Lenna. 
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(a) Approximation coefficients (b) Horizontal Detail Coefficients 

(c) Diagonal Detail Coefficients (d) Vertical Detail Coefficients 

Figure 2.7     This figure represents an example of the second level of a DWT decomposition 
of a picture of Lenna. 
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Figure 2.8     Reconstruction of an image after a single level of decomposition [49]. 
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Figure 2.9     Typical Feed-forward ANN Architecture [83]. 
This Figure depicts the typical architecture for feed-forward ANNs [83]. 
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RICA is an RBF neural network that uses Gaussian hidden layer nodes. Therefore, 

it has the property of Universal Function Approximation. As a result of this inheritance, 

RICA has the ability to approximate virtually any family of functions, including anything 

representable by an MLP. Stating that a class of ANN architectures have the ability to 

approximate a family of functions to an arbitrary closeness only provides part of the story. 

Determining the size of the network and the parameters providing the closest approximation 

is the rest of the story. 

In most of the earlier work in feed-forward neural networks, the focus was on algorithms 

that optimized the parameters of the ANN and not on algorithms that optimized the network 

size. The size of the network (number of hidden layer nodes) was typically selected through 

trial-and-error or experience with a particular data set [23,24,45]. In either case, the number 

of nodes was preselected and fixed by a human. Once the size of the architecture was 

selected, the network parameters were optimized to find the best set of parameters for the 

given architecture, where best is defined in terms of function approximation or classification 

accuracy. This type of network optimization is associated with fixed architecture learning 

(i.e., the size of the architecture is fixed before training begins). 

In fixed architecture learning, the goal is to find a set of parameters that minimize 

the difference between the function represented by the ANN and the desired function to be 

learned. The desired function may be a discriminant function that allows the ANN to perform 

classification on a given set of data. For MLPs, the parameters are the weights on both the 

hidden and output layer nodes, the biases used in the activations of the sigmoids [28,75], and 

a parameter that changes the slope of the sigmoid (this parameter is typically fixed at 1). 

For RBFs, the parameters are the centers and variances of the Gaussian hidden nodes and 

the weights on the output layer nodes [9,53]. Methods for finding MLP and RBF parameters 

are discussed next. 

2.3.1.1 Optimization Using Back-propagation and Gradient Descent. One of 

the most popular methods for training MLPs and one that has been shown to be equally 

effective in training RBFs is back-propagation [9,75,83,85,88]. Back-propagation derives 

its name from its method of parameter optimization.   In an over-simplified view, back- 
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propagation seeks to minimize the error between the desired output of the ANN and the 

actual output of the ANN by back-propagating the error from the output nodes to the input 

nodes and modifying the network parameters to minimize the error produced by the previous 

layer's outputs. 

Minimization through back-propagation is performed by taking the derivatives at each 

layer with respect to the weights and then setting those derivatives equal to zero to get the 

necessary conditions for the optimal weights [9,75,85,88]. The network parameters (weights) 

are then modified to solve the system of equations. 

There are iterative minimization techniques called Gradient Descent algorithms [9,23, 

31,66,75,85,88] that are used to minimize the back-propagated errors. Gradient descent 

algorithms work on the principle that minimization can take place if the parameters are 

modified in the direction of the negative gradient. The negative gradient is the direction 

that will minimize the above-mentioned derivatives with respect to the weights of the neural 

network for MLPs and the centers, variances, and weights for RBFs. The weight updates or 

modifications can occur after each training sample is presented to the network. This is termed 

an instantaneous training method. Once all of the training samples have been presented to 

the network once and the updates have occurred, it is said that an epoch of training has 

been accomplished. The batch training method only modifies the weights after the entire 

set of training samples have been presented to the network and the cumulative error has 

been calculated. While back-propagation using gradient descent has been shown to be very 

effective in training ANNs, it has some serious drawbacks. First, many thousands of epochs 

may be needed to train the ANN to a desired accuracy level. If the training set is large, 

then the number of Floating Point Operations used to calculate each weight/parameter can 

be overwhelming in terms of computing time. The second drawback to back-propagation 

with gradient descent is that a global minimum is not guaranteed to be found. That is, 

the set of network parameters that may achieve a minimal error (mean squared-error, sum 

squared-error) is not guaranteed to be found. 

2.3.1.2    Optimization Using Supervised/Unsupervised Clustering.       RBF net- 

works attempt to overcome the problems associated with back-propagation and gradient 
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descent by training the hidden layer nodes separately and then training the output layer 

weights [53]. Many RBF networks train the hidden layer nodes using some variant of the 

unsupervised Kohonen Self Organizing Feature Map (SOFM) [35,38,41] to cluster the input 

training data [9,16,92]. The clustering is then used to find the centers of the Gaussian 

hidden layer nodes (each center is represented by the weight vector associated with each of 

the nodes in the Kohonen SOFM). 

It has been widely reported that the distribution of the SOFM nodes represent the 

probability density of the input data [26,35,38,41] and that the centers of the Gaussian 

units, which are derived from the SOFM nodes, will also represent the probability density 

of the input data [9,16,92]. The accurate modeling of the probability density by the hidden 

layer nodes would then provide for optimal training of the output layer weights separately 

to approximate the a posteriori outputs of the RBF. While this is the desired outcome, it 

has recently been shown that the distribution of the nodes in a Kohonen SOFM do not 

necessarily represent the true probability density of the data [100]. For example, in the ideal 

case, the nodes of a Kohonen SOFM would be distributed such that each node has an equal 

probability of winning. A node "wins" if the Euclidean distance between its center and a 

random sample x is less than any other node. Thus, in the "ideal" more nodes are placed 

where the data are dense than where the data are sparse. Experiments conducted in this 

research indicate that the frequency of winning for Kohonen SOFMs is not uniform across 

the nodes and therefore it does not represent the true probability density of the data, see 

Figures 2.10, 2.11, and 2.12. The left side of these figures show the results of forming the 

Kohonen SOFM and the right side uses circles to indicate the frequency of winning. Each 

circle represents the frequency of winning for a given node. The larger the radius the more 

frequently the node wins. It is easy to see that some nodes win much more frequently than 

others and that there are nodes in regions where no training data were present. Therefore, 

RBF networks which use this popular form of network training may not be truly optimizing 

the network. 

Other methods, both unsupervised and supervised (HEC [51], K-Means [20], LBG [46], 

Fuzzy C-Means [57], and LVQ [40]) may also be used to define the centers of the Gaussian 
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Figure 2.10 The figure on the left represents clustering using the Kohonen SOFM. The 
figure on the right uses the radius of a circle to represent the frequency of 
winning for each node. 
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Figure 2.11 The figure on the left represents clustering using the Kohonen SOFM. The 
figure on the right uses the radius of a circle to represent the frequency of 
winning for each node. 
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Figure 2.12 The figure on the left represents clustering using the Kohonen SOFM. The 
figure on the right uses the radius of a circle to represent the frequency of 
winning for each node. 

hidden units. These methods suffer from numerous problems, such as determining the num- 

ber of clusters needed, their shapes, their volume, etc [98,99]. 

The clustering techniques described above are used to find/define the Gaussian hidden 

node centers. The variances of the hidden nodes are calculated using various other methods. 

Some methods use a common variance for all nodes and rely on the training of the output 

layer weights to overcome any limitations imposed by such an assumption [14]. This works 

if the clusters at the hidden layer are similar in shape. If not, there will be errors associated 

with the mismatch in the approximation of the data by the improperly scaled Gaussian. If 

the variances are chosen to be too small, there will be regions that are not covered by the 

Gaussian hidden units. If the variances are chosen to be too large then the Gaussian hidden 

units will overlap too much and the loss of fidelity will result in network errors. 

Some people attempt to overcome the one-size-fits-all variance problem by allowing 

the variance to change from node to node. They choose a variance that is based upon the 

Euclidean distance between a node and its neighbors [27,36,53]. The variance is then adjusted 

until the outputs of the Gaussian hidden nodes are equal at the halfway points between the 

node centers. This works if the distribution of the data points around the adjacent nodes are 
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similar in variance, but if they are very different, one or both of the Gaussians may cover a 

region of the feature space that contain no data points, or a disproportionately large number 

of them. This problem is similar to one associated with using Kohonen SOFMs. Sometimes 

nodes are moved into a region that contain no data points and therefore do not represent 

the probability density of the data. RICA was designed to overcome the problems stated 

above by allowing the centers and variances of the Gaussian hidden nodes to vary according 

to the distribution of the data. 

After the hidden layer node parameters have been calculated, the next step in training 

RBF networks is to train the output layer weights. There are several minimization tech- 

niques used to train the output layer weights which include some form of statistical risk or 

cost minimization [9,42], but the most popular techniques use a pseudoinverse to perform 

a squared-error minimization [9]. One of the disadvantages of using the pseudoinverse to 

perform a squared-error minimization is that while it produces a set of weights that produce 

a minimum squared error at the output, it is not necessarily the best solution for classifi- 

cation. The next section discusses the standard pseudoinverse method and the Ho-Kashyap 

algorithm [20, pp 159-166]. Ho-Kashyap is the iterative minimum squared-error method that 

RICA uses the to overcome the limitations of the pseudoinverse method. 

2.3.1.3 Optimization Using MSE and Ho-Kashyap Methods. In many RBF 

algorithms the output layer weights for each output node are determined using the following 

minimum squared error (MSE) procedure [9]. Let ym,n be the desired output of node m for 

input sample xn, hn be the output of the hidden layer nodes for input xn, and wm be the 

weight vector associated with output node m. If n = 1,2, • • •, N, where N is the number of 

training samples, then 

ym,n — ^m ' "n 

defines a system of linear equations that can be used to find the weight vector wm for each 

output node 1,2,- • • M. The MSE procedure involves finding a minimum squared error 

estimate to the above system of linear equations. Rewriting the above system of linear 

equations in matrix form yields: 
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Ya = b, 

where Y is the N x (H + 1) augmented matrix that is formed by creating a matrix with 

rows corresponding to the hidden layer output vector hn associated with each input vector 

xn for all samples, and then augmenting with a column of ones. H is the number of HLNs, 

b is the AT x 1 column vector whose component values are the desired outputs for each 

input, respectively, and a is the weight vector we wish to calculate. Augmentation permits 

a solution vector wm that does not have to pass through the origin. As mentioned above, 

the desired output is 1 for the sample of the class corresponding to the output node under 

training and —1 for all other classes. 

If Y were invertible then the direct solution would be a = Y~xb. Typically there are 

more samples than there are hidden layer nodes (i.e., N > H), therefore the Y matrix is 

not square and is not invertible. Using the pseudoinverse the solution is a = Y^b, where Y* 

is the pseudoinverse and is defined as (Y'Y)-1Y', where (Y'Y) is invertible and t denotes 

the transpose operator. While this method is guaranteed to find a minimum mean squared- 

error (MSE) solution, if the data are linearly separable, it is not guaranteed to find the 

separating vector w [20]. The reason it may not find the separating vector is that the wrong 

margin vector b may have been chosen. The Ho-Kashyap method, which is the method 

RICA uses to train the output layer weights, is designed to overcome the shortfalls of a 

simple pseudoinverse for finding the solution vector a. 

Back-propagation is a method by which all of the network parameters can be optimized 

simultaneously. It was also shown that RBF networks and MLP networks could optimize 

the hidden and output layer parameters separately. The Ho-Kashyap method is an iterative 

algorithm used to optimize the output layer weights of an ANN. The reason the Ho-Kashyap 

method is used to calculate the weights for RICA is that it is specifically designed to find 

the separating vector between linearly separable data in a finite number of iterations. It is 

also guaranteed to converge to a solution even if the input data are not linearly separable. If 

the data are linearly separable, the algorithm will terminate with an error vector e^, which 

is presented in detail in Section 4.2.1, equal to zero. If the data are not linearly separable, 

it will still converge to the MSE solution as with the pseudoinverse method, but the error 
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vector ejt will be less than zero. This is important because the proof presented in Section 4.3 

uses the fact that RICA is a MSE algorithm to show that it performs a minimum mean 

squared-error approximation to a Bayes optimal classifier. 

The reason the Ho-Kashyap method is guaranteed to find the separating vector is 

because of the unique way that it modifies both the weight vector a and the solution vector 

b during its training [20, pp 159-166]. To perform the Ho-Kashyap method the Y matrix 

defined above is modified slightly. The Ho-Kashyap method solves the system of equations 

defined by Ya = b as above, but now the components of b are constrained to be greater than 

zero and b also changes during training. In order to make all of the components of b greater 

than zero the same Y matrix defined above is used with the following modifications. The 

rows corresponding to the input vectors which would have had a —1 in the b vector above, 

are multiplied by —1. Now b can start with the same value for all components. In effect, 

we did not change the system of equations, we simply multiplied through on both sides by 

— 1 for the input samples that were from a class other than the one corresponding to the 

particular output node. For example, given the following Y matrix: 

5 .2 .3 .7    1 

5 .8 -.1 .3     1 

1 .3 .2 -.2   1 

-.1 .8 .7 .9     1 

3 .6 .9 .1     1 

-.1 -.2 .4 .5     1 

(2.4) 

where the first four columns represent the training data, the fifth column is the ones vector 

used to augment the data and the first through third rows are inputs from the class corre- 

sponding to the output node under training. After modifying Y to use it in the Ho-Kashyap 

method it becomes: 
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y* _ 

5 .2 .3 .7 1 

5 .8 -.1 .3 1 

1 .3 .2 -.2 1 

1 -.8 -.7 -.9 -1 

-.3 -.6 -.9 -.1 -1 

1 .2 -.4 -.5 -1 

(2.5) 

The fourth through sixth rows (which represent a class other than the one for the node 

being trained) have been multiplied by —1. As discussed above, for the MSE procedure, if 

we pick an arbitrary margin vector b, then all we can say about the MSE procedure is that 

it minimizes \\Ya — b\\2. If the input samples are linearly separable then there exits some 

values a and b such that 

Ya = b > 0, 

where b > 0 means that every component of b is greater than zero. The solution a is the 

separating vector. The problem is selecting the proper margin vector b. We do not necessarily 

know b a priori. The Ho-Kashyap method modifies the MSE procedure to find both the a 

and b. 

The basic idea is that if we minimize the following criterion function subject to the 

constraint that b > 0 and we allow both b and o to vary, then the minimum of the criterion 

function will be zero and the solution a will be the separating vector. 

Defining the criterion function J(a, b) as: 

J(a, b) = \\Ya -b\\2, 

the gradient of J(a, b) with respect to a is 

VaJ(a,b) = 2Yt(Ya-b) 

and the gradient of J(a, b) with respect to b is 

VbJ(a,b) = -2(Ya-b). 
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For any given vector b we can choose a vector a such that a = Y^b. This yields 

VaJ(a, b) = 0, which minimizes J(a,b). While a depends on b and is free to take on any 

set of values, we must constrain the vector b to be greater than zero. This is accomplished 

in the Ho-Kashyap method by starting with b > 0 and by not allowing the value of b to be 

reduced. 

Since the Ho-Kashyap method uses a gradient descent procedure to minimize the cri- 

terion function J(a,b) with respect to both a and b it needs to consider the constraints 

on b when performing its updates. To perform a search along the negative gradient for a 

solution vector b and to maintain the constraints on fc, the Ho-Kashyap method must only 

allow positive changes to the components of b that are in the negative gradient direction. 

For example, typical gradient descent algorithms would define the update to b as follows: 

&t+i = bi-p[VbJ(ai,bi)], 

where i is the iteration number and p is a scaling factor (typically 0</)<l). This update 

method allows the components of b to be reduced as well as increased. We want to ensure 

that b > 0 therefore, we can only allow b to be increased. The way we will ensure this is to 

not allow any negative changes in components of b. This yields a gradient descent update 

to the vector b defined by: 

bi+i = bi- p\ [V6J(oi, bi) - | V6J(ah bi)\]. 

This update zeros out any changes that would be negative. Using the above discussion 

and equations, we define the Ho-Kashyap algorithm in Section 4.2.1. 

In all of the methods discussed so far, the goal has been to optimize a set of parame- 

ters for a given network architecture. While the individual drawbacks of each of the training 

methods has been discussed, the one common weakness shared by all is that their architec- 

tures had to be chosen a priori by a human. To be truly useful and to mimic a biological 

neural network, the ANN must be able to autonomously adapt its architecture to provide the 

best possible test accuracy for a given data set [78]. Network algorithms that modify both 

the network parameters and the network architecture are called "Adaptive ANNs". RICA 

belongs to this class of ANNs. 
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2.3.2 Adaptive Architecture Feed-Forward ANNs. When designing algorithms that 

autonomously adapt the network architecture it is important to keep in mind that the size of 

the architecture is critical to the ability of the network to perform function approximation. 

If the architecture has too few hidden nodes, the network may not have enough function 

representational power to reasonably approximate the necessary discriminant function. In 

other words, there may not be a combination of the chosen number of hidden nodes that 

can adequately approximate the underlying distribution of the data. If there are too many 

hidden nodes, there may be too many free parameters in the network and not enough data 

to adequately define them [5,6,25,95]. Too many free parameters will most likely prevent 

the neural network from generalizing [7,9,25,27,95] because it memorizes the training data 

and is so over-specified it does not perform well on the test data. 

Networks that are designed to adapt their architectures to fit a given data set com- 

monly use two approaches: pruning and construction. Pruning techniques start with a 

fixed architecture size and then remove nodes or weights until a desired fitness or output 

is achieved [3,44,69,70,91]. Construction algorithms start with one or a small number of 

nodes and selectively add nodes until some desired criteria is met: ART,ARTMAP [13,45,54], 

MLP [15,22-24,52,56,68,90,91], and RBF [8,27,36,37,55,78]. 

2.3.2.1 Pruning Techniques. Le Cun [44] presented a method of MLP pruning 

entitled "Optimal Brain Damage" in which the weights of a neural network were analyzed 

at given points in the training process. Any weights that were found to be unimportant, 

based upon some saliency metric, were forced to zero and were not updated in subsequent 

training. Steppe [91] also introduced a pruning method to determine an MLP's architecture. 

Her method involved a two stage statistically rigorous approach to architecture selection. 

First several MLPs are trained using a fixed number of preselected hidden layer nodes. The 

networks that achieve a desirable error rate, based on a statistical analysis of the entire set 

of trained networks, are then used in the second stage. The second stage involves removing 

a node and then retraining the networks. After node reduction and retraining, a statistical 

analysis is performed to determine if the performance of the reduced networks is statistically 

equivalent or better than the non-reduced networks. If it is equal or better, another node 
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is removed and the retraining and analysis is repeated. If it is not, pruning stops and the 

network architecture has been selected. Two main differences between Le Cun's, Steppe's, 

and other's pruning techniques is the method used to determine the number of initial hidden 

layer nodes and the method used to determine which weights or nodes should be eliminated. 

There are several problems associated with designing an ANN architecture based upon 

pruning techniques [69]. The first is in determining the number of nodes with which to 

start. If too few are chosen, the network will not have enough nodes and will suffer from the 

problems discussed above. If too many are chosen and the network over-learns, subsequent 

training, even after pruning, may not compensate for the over-learning. A second problem 

is that pruning techniques do not allow for weights that may be correlated. The effect one 

weight has on the network may be highly correlated with another weight in the network [69]. 

A third problem is determining the saliency metric to use. Ruck [80] and Priddy [67] have 

provided ways to analyze the saliency of the weights, but both require a trained ANN. The 

training, saliency analysis, weight removal, and subsequent retraining is computationally 

expensive. A final problem is determining the rate at which to analyze and remove the 

weights. Choose a rate that is too fast and the network may not adequately explore the 

weight space [70]. Choose a rate that is too slow and convergence to a solution may take a 

very long time [70]. Steppe's method [91] overcomes many of the problems associated with 

pruning, but her method is computationally expensive. The bottom line is that there are a 

considerable number of problems to overcome when using pruning techniques. This is why 

the method used to train RICA is a constructive algorithm and not a pruning algorithm. 

2.3.2.2 Constructive Techniques. In general, constructive algorithms infer 

their architectures from some form of partitioning of the training data. The type of parti- 

tioning is often based upon the type of hidden layer function used. ANNs that use sigmoidal 

hidden layer functions will often partition the training data based upon the separating bound- 

ary between adjoining class pairs [15,23,52,68]. This is because sigmoidal functions act as 

separating hyperplanes. ANNs that use Gaussian or Ellipsoidal hidden layer functions, will 

often use an unsupervised/supervised clustering technique to partition the input training 

data [8,27,36,37,55,78]. Again, this is because clustering algorithms partition the data into 
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groups that can be represented by the Gaussian or Ellipsoidal functions. Adaptive Reso- 

nance Theory networks (ART and ARTMAP) [13,54] use templates to partition the input 

feature space into hyperrectanguloids. 

The idea is that by partitioning the data along the separating boundaries, constructive 

algorithms can modify their architectures as well as their parameters to estimate the under- 

lying probability density of the data. Fixed architecture algorithms also sought to estimate 

the underlying probability density of the data, except only the network parameters were 

modified and not the network architecture. Thus, for constructive algorithms, the prob- 

lem becomes one of finding the separating boundaries, adding enough hidden layer nodes, 

and parameterizing the hidden layer nodes to truly represent the probability density of the 

training data. 

There are many techniques used to determine if enough nodes have been added. Some 

involve starting with a small number of nodes and training the network until some criterion 

function is minimized. Then a node is added and the network is retrained. The process is 

repeated until some (often arbitrary) stopping criterion is met. A useful stopping criteria 

is to keep a validation set separate from the training set and to train and test until the 

test accuracy on the validation set decreases. This is a valid method to optimize an ANN, 

however it has some problems. One, the retraining takes a lot of CPU time. Two, research 

has shown that in some cases, further node reduction or increase may have resulted in 

further improvement in the test accuracy, even after a drop was experienced [90,91]. Steppe's 

underlying theme was that analysis of a neural network architecture was a stochastic process 

and many networks using the same size architecture needed to be trained and analyzed before 

the capability of a particular realization could be quantified. 

Another method used by constructive algorithms is to continue to add nodes until all 

of the training samples have been separated [22-24,68]. This may guarantee 100 percent 

accuracy on training data, but it does not guarantee that the network will generalize well. 

The network may be over-specified. Additionally, adding more nodes does not guarantee 

that a network will perform better. Adding more nodes in a network may cause the network 

to suffer from the same "Curse of Dimensionality" that adding more and more features to 
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a data vector can cause [7,29]. As these nodes are added, the network needs exponentially 

more data to adequately represent the feature space. 

While adaptive algorithms have been designed to overcome the need to preselect the 

number of nodes, their methods of partitioning the input feature space are largely ad hoc 

and they still suffer from the same problems of optimizing the network parameters as fixed 

architecture algorithms. RICA is an adaptive algorithm that overcomes the partitioning 

problem by using a Gaussian goodness-of-fit technique to determine the number of hidden 

layer nodes. It uses a Mahalanobis distance clustering algorithm to overcome the problems of 

cluster size, shape, and location. Additionally, RICA's uses the Ho-Kashyap algorithm [20, 

pp 159-166], which is discussed in Section 2.3.1.3, to train the output layer weights. The 

Ho-Kashyap algorithm overcomes the problems associated with using a standard minimum 

squared-error method to determine the output layer weights. 

2.4    Summary 

This chapter described current hierarchical image fusion and ANN techniques and 

pointed out why they are not appropriate to address the problems defined for this research. 

The next chapter describes the novel hierarchical image fusion algorithm which was designed 

and implemented to fuse hyperspectral image data and to overcome the problems associated 

with current techniques. 
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III.   Wavelet-Based Hierarchical Image Fusion with Contrast Sensitivity 

Saliency 

The purpose of this chapter is to describe the physiologically motivated image fusion al- 

gorithm that was designed and implemented during this research. Condensed versions of 

the contributions of this discussion have been published in Optical Engineering [97] and in 

IEEE's Transactions on Geoscience and Remote Sensing [96]. The chapter is organized to 

provide background on the algorithm's design, details of its implementation, and experimen- 

tal results. The results support the conclusion that this new method is superior to previous 

fusion methods in both signal-to-noise ratios and visual aesthetics. 

3.1    Background 

Before the details of the algorithm are presented, it is important to discuss the reasons 

for using a combination of contrast sensitivity and wavelet-based decomposition/reconstruction. 

The question raised is actually two-fold: 

1. Why use contrast sensitivity? 

2. Why use wavelets? 

Why use contrast sensitivity? One reason is that because humans are very good at 

detecting targets in image data and the goal of this research is to automate target detection, 

a logical approach is to model the human system. In addition, it has been shown by Stager 

and Hameluck that contrast sensitivity was better in determining a person's ability to per- 

form air-to-ground search than standard visual acuity tests [89]. Thus, contrast sensitivity 

is an important part of how people perform target detection. Another reason to use contrast 

sensitivity is that the CSF is mathematically tractable, has a direct relationship to the fre- 

quencies in an image, and can easily be implemented in computer software. Finally, contrast 

sensitivity has already been shown to be effective in image fusion and noise suppression [96]. 

The next question is why use wavelets? As discussed in the previous chapter, one of 

the limitations with current image fusion techniques is the type of image decomposition and 
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reconstruction performed. In all of the previously mentioned fusion methods there was at 

least a 2-3 percent error in the reconstructed image based solely upon the decomposition and 

reconstruction method. A wavelet-based approach is shown to reduce the error to effectively 

zero. In particular, the Daubechies orthogonal wavelet set, which was used in this research, 

had a reconstruction error of 10-9. This means the largest difference between the pixel values 

in the original image and the pixel values of the decomposed and reconstructed image was 

on the order of 10-9. 

A final question is how does the method presented in this chapter combine contrast 

sensitivity and wavelets to form a multiresolution fusion algorithm? The answer is that it 

uses a wavelet-based approach to form the multiresolution pyramid and then it uses the 

CSF of the human visual system to analyze the details of the multiresolution pyramids. 

That analysis determines what combination of details should be preserved in the composite 

image. The premise is that the detail coefficients in a Daubechies decomposition can be 

treated as an image and that the CSF of the human visual system can be used to weight 

those details. The weighting provides a saliency value that can be used to determine the 

appropriate combination of the details to form the composite image. The following section 

provides a more detailed explanation of the algorithm. 

3.2    Fusion Algorithm 

This section describes the physiologically motivated image fusion algorithm developed 

for this research. It is a hierarchical image fusion algorithm that is performed in three stages: 

1) Decomposition, 2) Fusion, and 3) Reconstruction, each of which is discussed below. 

3.2.1 Stage I: Wavelet Decomposition. During the decomposition stage, each input 

image is decomposed into a set of detail coefficients and an approximation. The wavelet de- 

composition and reconstruction method is described in the background section on Wavelets. 

A Daubechies 20-tap orthogonal wavelet set is used to perform the Wavelet decomposition 

of each image to be fused. This decomposition forms a multiresolution detail pyramid where 

each level represents a set of wavelet coefficients at a given resolution, see Figure 3.1. Looking 

at Figure 3.1, the four layers at each level represent the three sets of oriented detail coeffi- 

3-2 



m w 

Figure 3.1     Wavelet based fusion pyramid algorithm using two input images. 

cients and a set of approximation coefficients that result from a Daubechies decomposition. 

The number of levels of decomposition depends on the level of resolution that is desired to 

compare the images to be fused. In this research, the levels were limited to 6 or less. After 

the images are decomposed into the detail and approximation pyramids, they are ready for 

the Fusion Stage. 

3.2.2 Stage II: Fusion. This stage of the algorithm is where the main difference 

lies between the method presented here and other fusion methods. All of the algorithms 

reviewed [1,2,12,93,94], except for Wilson's [96], based their decision to fuse on some sort 

of energy calculation that did not take the frequency response of the human visual system 

into account. The method presented here uses a weighted energy in the human perceptual 

domain; where the perceptual domain is based upon the frequency response (i.e., contrast 

sensitivity) of the human visual system. 

The idea is that the human visual system responds differently to certain spatial fre- 

quencies than it does to others. Therefore, when evaluating whether two images would be 

perceived as different and deciding which details are more important, the evaluation needs 
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to be based on the perceptual abilities of the human observer. Thus, the contrast sensitivity 

response of the human analyst is used as the criteria to decide which parts of the input 

images will be averaged to form the composite image and which ones will not. 

The fusion stage is performed in the following manner: 

1. A saliency value Si is computed for each of the detail and approximation coefficients 

from every image pyramid, see Algorithm 1. 

2. The weights that determine how the detail and approximation coefficients will be com- 

bined in the composite image pyramid is calculated by using a ratio of the saliency 

values for each image pyramid to the sum of the saliency values over all of the input 

images, see Equation( 3.1). This type of weighting ensures that images which have 

high saliency values (i.e., what an analyst would consider important) receive a large 

influence in the fused result and that the sum of the weights is 1. 

3. The image pyramid representing the fused detail and approximation pyramid is gen- 

erated by using the weights calculated in the previous step to perform a weighted sum 

of the input detail and approximation pyramids. 

Saliency is computed as the amount of perceptual energy in a given set of detail and 

approximation coefficients, as related to the contrast sensitivity frequency response C of the 

human analyst, see Figure 3.2 and Algorithm 1. 

Algorithm 1 defines S^k,i as the saliency computed for a neighborhood from level I 

and layer k of the detail and approximation pyramid i. The level I indicates a different 

scale in the detail and approximation pyramid. The layer k indicates a different detail 

orientation or an approximation. In the Daubechies decomposition, there are 3 sets of detail 

orientations (vertical, horizontal, and diagonal) and an approximation. Therefore, there are 

4 layers and k can be 1 - 4. The weight matrix C is the contrast sensitivity weight matrix 

representing the experimentally derived contrast sensitivity function (CSF) of the human 

visual system developed by Mannos and Sakrison [50] (Figure 3.2). The symbol Fe represents 

the magnitude of the energy normalized low frequency 2-dimensional Fourier components 

from some neighborhood at level / and layer k of the detail and approximation pyramid. The 
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Algorithm 1 Saliency Calculations Sj for Each Image Pyramid  

Matrix Definitions 
DAPi = Detail and Approximation Pyramid for Input Image i 

DAPij^ = Detail or Approximation Coefficient Matrix at Level I and Layer k of DAPi 

F= 40 x 40 matrix 
Te = Energy normalized T matrix 
C = 40 x 40 Contrast sensitivity weight matrix 

Si,i,k = Saliency Matrix at Level I and Layer A; for input image i 

Operator Definitions 
mffi%(') = magnitude of the coefficients of the 2-D Discrete Fourier Transform 

0 = Hadamard Product (component-wise multiplication) 

Constant Definitions 
cw = constant 
/ <— Number of Input Images 
L <— Number of Decomposition Levels 
K <— Number of Layers {L = 4; for Daubechies Wavelet} 
Aw <— 40 {Size of sliding window. The same as the size of C.} 
As <—  40 {Step size to shift sliding window.} 

for i <—   1 : / do 
for I <—  1 : L do 

for k <—  1 : K do 
X <— numrows(DAPijtk) 
Y <— numcols(DAPi^k) 
Si,i,k <— ®X,Y {0x,y zero matrix with X rows and Y columns} 
for x *-  1 : As : X - Aw do 

for y <—  1 : As : Y - Aw do 
T <- mfft2(DAPij,k(x :x + Aw,y:y + Aw)) 
T <- -£- Se <- m 

cw <— sum(sum(C 0 T^) 
Si,i,k{x ■ x + A«, y : y + Aw) «- cw 

end for 
end for 

end for 
end for 

end for   
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Figure 3.2 Contrast sensitivity weight matrix C representing the experimentally derived 
contrast sensitivity function (CSF) of the human visual system developed by 
Mannos and Sakrison [50]. 

window, which is used in the analysis of the detail and approximation pyramids, represents 

two degrees of visual acuity and is explained below. 

The method for computing the Saliency Si for each image detail and approximation 

pyramid as shown in Algorithm 1 is discussed next. The first step in computing the saliency 

is to energy normalize the image detail and approximation pyramids. Energy normalization 

is accomplished a layer at a time for all levels of the detail and approximation pyramids by 

dividing each coefficient (of a given layer) by the square root of the sum of the squares of all 

the coefficients of that layer. 

Once the detail and approximation pyramids have been energy normalized, the magni- 

tude of the low frequency 2-dimensional Fourier components for a given neighborhood (which 

is defined by the 40 x 40 window at level I and layer k of the detail and approximation pyra- 

mid are calculated. To extract the Fourier coefficients, a 40 x 40 window is passed over each 

image pyramid layer k, using a step size of 40, and the Discrete 2-D Fourier transform is 

computed for each resulting 40 x 40 set of values. 

The size of the window and the step size may vary. A 40 x 40 window and a step size of 

40 was used in this research. A window size of 40 x 40 was chosen because the image fusion 

algorithm was designed to optimally fuse images for analysis on a CRT with a resolution of 

1024 x 768 and an average viewing distance of 24 inches from the screen. Therefore, assuming 
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0.2095" 

Figure 3.3     Diagram of how distance from CRT relates to Spatial Frequencies. 

that a person is viewing an image on a computer screen 24 inches away, one degree of visual 

angle would relate to a physical viewing radius of: 

R = D x tan(ö) = 24 x tan(l) 0.2095 inches, 

where R is the viewing radius, 0 is the desired visual angle, and 24 is the distance in inches 

from the CRT. Figure 3.3 provides an example of how the viewing angle relates to distance. 

Because contrast sensitivity is a function of spatial frequency, which is defined as the number 

of cycles per one degree of visual angle, a viewing radius of 0.2095 inches which equates to 

40 pixels at a resolution of 1024 x 768 is desired. Therefore, a 40 x 40 window is chosen. 

A smaller step size of 20 was tried, but the extra processing time did not produce 

significant improvements in noise reduction or image fusion quality. 

Once the Fourier coefficients have been extracted, the non-zero frequency components 

are energy normalized by dividing each coefficient by the square root of the sum of the 

squares of the non-zero frequency coefficients. The zero frequency component values are not 

used. This type of normalization allows images to be compared in the same manner as a 

photo analyst would. That is, the photo analyst's visual system automatically discounts the 

illuminant in images that have large differences in average intensity, but are of the same 

scene. They are perceived as equivalent. Figure 3.4 is an example of two images that are 

identical except for some average intensity offset. 

3-7 



Figure 3.4     Images with different DC bias. 

After the saliency values S^i are computed, the weights Witk,i for each image pyramid 

are computed using the following formula: 

Wi,fc,l = Sitkj 0 X) Si*,h (3.1) 
i = i 

where / is the number of images to be fused, and 0 represents a component-wise division of 

the matrices. 

The fused detail pyramid (Fk,i) is created by summing the weighted details from all the 

input images, Figure 3.1 provides a pictorial example of fusing two images. The weighted 

sum is defined as follows: 

Fk,i =EWi,M © A,w (3.2) 
i=l 

Here Fk,i is the resultant fused detail for layer k and level I, I is the number of input images, 

and 0 represents the Hadamard product (component-wise multiplication of the matrices). 

The weighting is performed by a point-by-point multiplication of the weight matrix and the 

detail matrix. 
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Once the approximation and detail pyramids have been fused into a single pyramid, 

the reconstruction stage is performed. 

3.2.3 Stage III: Wavelet Reconstruction. This stage is simply recovering the fused 

image by performing a wavelet reconstruction on the composite multiresolution image pyra- 

mid formed in the fusion stage. The procedure is described in the background section on 

Wavelets. 

3.3   Experiments 

In order to evaluate the capabilities of the different fusion algorithms [2,12,93,94,96], 

multiple test images are generated with varying signal-to-noise ratios (SNRs) and types of 

backgrounds. The SNRs in decibels (db) were computed as follows: 

SNR = 10log10 (
E^er9V^nai\ (3 3) 

V Energynoise) 

where Energysignal is the sum of the squared pixel grey-scale values in the pure unmodified 

images, Energynoise is the sum of the squares of the random noise. To create the test images, 

noise with a Uniform distribution on the interval [0.0,1.0], is scaled by a constant and is 

then added to various locations in the images. Two different base images are used to obtain 

multiple types of backgrounds. The first image is the original version of Lenna [63] which 

contains areas of high frequencies, vertical/horizontal edges, low frequencies, and circular 

oriented details, left image in Figure 3.4. The second image is the image representation 

of band 30 from an AVIRIS data set acquired at Moffett Field, CA (see Figure 3.5). The 

Moffett field image was chosen because it contains natural scenes (water, trees, fields) and 

urban structure (streets, runway, buildings). Band 30 was chosen arbitrarily. 

Correlated or uncorrelated noise was added to the test images in three different regions 

(target types), thus creating sets of three images to be fused. The correlated noise was 

generated by convolving the uncorrelated noise with a low-pass filter. The level of correlation 

was computed as the full-width-half-max of the maximum amplitude of the autocorrelation 

of the low-pass filter [21]. The full-width-half-max value used here was 4 pixels. Figure 3.6 
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Figure 3.5     Hyperspectral Image Cube Representation taken from an AVIRIS Sensor, over 
Moffett Field, CA. 

provides an example of three images containing uncorrelated noise with a SNR of 5db, within 

the area the noise was added. Figure 3.7 provides an example of three images containing 

correlated noise with a SNR of 5db, within the area the noise was added. Table 3.1 provides 

a listing of the SNRs for all of the test images using Lenna. Table 3.2 provides a listing of the 

SNRs for the test images using Band30. The tables include a column for the overall image 

SNR to provide for a comparison to the fused image results, since there will be reconstruction 

error to consider. 

3.4    Results 

In this section, the results of fusing the test images using various fusion methods are 

presented. The test images were fused using the algorithms by Burt and Kolczynski [12], 

Toet [2,93,94], Wilson [96], and the method proposed in this research. 

Although, many test images were fused and analyzed, to save space, only three sets 

of results are presented here for comparison. One shows the results of fusion using uncorre- 

lated noise and the other two using correlated noise and different backgrounds. Figure 3.8 
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Figure 3.6     Three Test Images of Lenna with 5db energy SNR of uncorrelated noise added 
at three different locations. 
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Figure 3.7     Three Test Images of Lenna with 5db energy SNR of correlated noise added at 
three different locations. 
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Image Name Type Noise SNR of Affected Areas 
(db) 

SNR of Overall Image 
(db) 

Lenna_lOdbl Uncorrelated 10 21.9 
Lenna_10db2 Uncorrelated 10 23.9 
Lenna_10db3 Uncorrelated 10 20.0 
Lenna_ 5dbl Uncorrelated 5 16.9 
Lenna_ 5db2 Uncorrelated 5 18.9 
Lenna_ 5db3 Uncorrelated 5 15.0 

Lenna_ 2.5dbl Uncorrelated 2.5 14.4 
Lenna_ 2.5db2 Uncorrelated 2.5 16.3 
Lenna_ 2.5db3 Uncorrelated 2.5 12.5 

Lenna_ ödbcorrl correlated 5 17.1 
Lenna_ 5dbcorr2 correlated 5 18.9 
Lenna_ 5dbcorr3 correlated 5 15.1 

Table 3.1     Signal-to-Noise Ratios for the Lenna Modified Test Images. 

Image Name Type Noise SNR of Affected Areas 
(db) 

SNR of Overall Image 
(db) 

band30_ ödbcorrl correlated 5 21.1 
band30_ 5dbcorr2 correlated 5 19.8 
band30_ 5dbcorr3 correlated 5 15.9 

Table 3.2     Signal-to-Noise Ratios for the Band 30 Modified Test Images. 
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Image Method Image Group SNR of Overall Image (db) 
Toet Lenna_lOdb 14.6 

Burt and Kolczynski Lenna_lOdb 20.0 
Non-Wavelet Contrast Sensitivity Lenna_lOdb 24.2 

Wavelet Contrast Sensitivity Lenna_lOdb 26.4 

Toet Lenna_ 5db 9.5 
Burt and Kolczynski Lenna_ 5db 14.5 

Non-Wavelet Contrast Sensitivity Lenna_ 5db 19.6 
Wavelet Contrast Sensitivity Lenna.5db 21.3 

Toet Lenna. 2.5db 6.9 
Burt and Kolczynski Lenna_ 2.5db 11.7 

Non-Wavelet Contrast Sensitivity Lenna_ 2.5db 17.1 
Wavelet Contrast Sensitivity Lenna_ 2.5db 18.7 

Table 3.3     Signal-to-Noise Ratios for the Fused Test Images Containing Uncorrelated Noise. 

Image Method Image Group SNR of Overall Image (db) 
Toet Lenna_ lOdbcorr 9.9 

Burt and Kolczynski Lenna. lOdbcorr 15.5 
Non-Wavelet Contrast Sensitivity Lenna_ lOdbcorr 19.6 

Wavelet Contrast Sensitivity Lenna_ lOdbcorr 21.5 

Toet band30_ 5dbcorr 11.2 
Burt and Kolczynski band30_ 5dbcorr 16.0 

Non-Wavelet Contrast Sensitivity band30_ ödbcorr 20.0 
Wavelet Contrast Sensitivity band30+correlated noise 22.8 

Table 3.4     Signal-to-Noise Ratios for the Fused Test Images Containing Correlated Noise. 

represents the results of fusing the first three images defined in Table 3.1. Figure 3.9 rep- 

resents the results of fusing the three images defined in Table 3.1 that use correlated noise. 

Figure 3.10 represents the results of fusing the three images defined in Table 3.2 that use 

correlated noise. 

All of the image fusion reported in this research was implemented in the following 

manner: 

Burt and Kolczynski's fusion algorithm [12] was implemented using the following parameters: 

1. Six layers of decomposition using Burt and Kolczynski's recommended w matrix and 

d\ thru dA niters. 

2. A3x3p matrix of all ones. 
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(a) Toet (b) Burt and Kolczynski 

(c) Non-Wavelet Contrast Sensitivity (d) Wavelet-Based Contrast Sensitivity 

Figure 3.8     Fusion results of test images using uncorrelated noise added to Lenna. The test 
images were the first three images defined in Table 3.1 
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(a) Toet (b) Burt and Kolczynski 

(c) Non-Wavelet Contrast Sensitivity (d) Wavelet-Based Contrast Sensitivity 

Figure 3.9     Fusion results of test images using uncorrelated noise added to Lenna. The test 
images are the images defined in Table 3.1 that contain correlated noise. 
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(a) Toet (b) Burt and Kolczynski 

(c) Non-Wavelet Contrast Sensitivity (d) Wavelet-Based Contrast Sensitivity 

Figure 3.10 Fusion results of test images using correlated noise added to Band30. The 
input images are the three images denned in Table 3.2 that contain correlated 
noise. 
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3. An alpha of 0.9. 

Toet's fusion algorithm [2,93,94] was implemented using six layers of decomposition 

and Toet's recommended weight matrix w. 

The Non-wavelet based contrast sensitivity fusion algorithm [96] was implemented 

using: 

1. Six layers of decomposition using Burt and Kolczynski's recommended w matrix [12]. 

2. A window size of 40 x 40. 

3. A shift of 8. 

4. A threshold of 0.20. 

Again, referring to Figure 3.1, the number of layers relate to the levels in the multiresolution 

analysis pyramid and the window size and shift have similar relationships to the window size 

and shift used in the method presented here. 

The Wavelet based contrast sensitivity fusion was implemented using: 

1. A Daubechies 20-tap orthogonal wavelet set with one to four layers of decomposition. 

2. A window size of 40 x 40. 

3. A shift of 40. 

Three composite images were created for visual reference to aid in analysis of the fusion 

results, Figures 3.11, 3.12, 3.13. The composite images were created by inserting the noise 

from each input image into their respective locations in the original image of Lenna or Band 

30, respectively. 

It can be seen by comparing the fused images in Figure 3.8 with the reference images 

of Figure 3.11, and by looking at the fusion results in Table 3.3 that the method developed in 

this research does a better job of de-emphasizing uncorrelated noise in the input images than 

either Burt's or Toet's methods or the non-wavelet based approach. It can also be seen by 

comparing the fused images in Figures 3.9 and 3.10 with the reference images of Figures 3.12 
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Figure 3.11     Original image of Lenna and a composite image where each area of noise 
contains a 10 db SNR of uncorrelated noise added. 

and 3.13 and by looking at the fusion results in Table 3.4 that the method developed here 

also does a better job of de-emphasizing correlated noise in the input images. 

In every case, the method presented here produced a fused image that had a better 

SNR than any of the individual input images. It is important to note however, that SNR 

alone is not always significant when the image will be viewed by a human analyst. How 

the human perceives the image is ultimately the true test. For example, two images that 

have different SNRs, may not be "perceived" as different [34,61,84]. Thus, in every result 

reported in this dissertation, the images were also compared (informally) by human analysis 

to determine if better SNRs also meant better "perceived" images. In every case, the answer 

was yes. 

3.5   Fusion of AVIRIS Hyper spectral Image Data 

3.5.1 Fusion of IR and Visible Bands of AVIRIS Image Data. In this section, 

the results of fusing three bands of image data from the AVIRIS hyperspectral sensor are 

presented as a representative example of the algorithm. The three bands include one image 

from the visible frequency range and two from the infrared. Specifically, they are band 

numbers 30, 60, and 90, which are in the 0.67/mi - .68/im, the 0.94/^m - .95/mi, and the 
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Figure 3.12     Original image of Lenna and a composite image where each area of noise 
contains a 10 db SNR of correlated noise added. 

Figure 3.13     Original image of Band 30 and a composite image where each area of noise 
contains a 10 db SNR of correlated noise added. 
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1.22/im - 1.23//m band-pass ranges, respectively. Again, fusion was performed using the 

four fusion methods previously described with the same parameters as before. Figure 3.14 

represents the three AVIRIS input images. 

It can be seen by comparing the fused images in Figure 3.15 with the input images in 

Figure 3.14 that all four methods do a good job of preserving visual information from each 

input image. However, comparing the four fused results to each other, Toet's fusion method 

does not have the same amount of detail that is present in the other three. For example, 

looking at the upper right hand corner of the fused images, it is easy to see that Toet's 

method causes details to become washed out. In order to make the details in the upper 

corner more distinguishable, the overall intensity level of the image has to be reduced. The 

reduction in intensity then causes the other areas of the image to become less distinct. Also 

the runway and surrounding area is more clear in Burt and Kolczynski's method and the 

contrast sensitivity methods than it is in Toet's fusion method. 

Comparing the fusion results of the contrast sensitivity methods with Burt and Kol- 

czynski's shows that they all have similar characteristics. Each method appears to preserve 

features in the input images that are dominant. An example of this preservation is observed 

by looking at the road that is a dominant feature in bands 60 and 90 but not in band 30. 

The road is located in the lower third of the image and extends from the left edge of the 

image all the way to the right. It is clearly seen as a continuous road in bands 60 and 

90, but is hard to distinguish in band 30. Looking at the fused results in figure 3.15 the 

road is preserved in the composite. Overall, the contrast sensitivity methods provide better 

results, both aesthetically and numerically (SNR), to either Burt and Kolczynski's or Toet's 

methods. 

Finally, comparing the fusion results of the non-wavelet versus the wavelet based con- 

trast sensitivity methods, they are practically identical, Figure 3.15. This was expected 

since the method of determining the salient features to retain in the composite image is the 

same (i.e., contrast sensitivity). The advantage would appear in a possible overall image 

improvement due to a reduction in reconstruction error. This was evident in the previous 

section when SNRs were compared. Here, the differences are hard to detect. A final example 
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Figure 3.14     This figure represents three bands from the AVIRIS hyperspectral sensor. 
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(a) Toet (b) Burt and Kolczynski 

(c) Non-Wavelet Contrast Sensitivity (d) Wavelet-Based Contrast Sensitivity 

Figure 3.15     This figure represents the fusion of AVIRIS bands 30, 60, and 90. 

3-23 



Figure 3.16     Wavelet-Based Contrast Sensitivity Fusion Results of AVIRIS Bands 30 to 40 

is presented in the next section that demonstrates how well this new fusion method can fuse 

many bands from a hyperspectral sensor. 

3.5.2 Fusion of Sets of Hyperspectral AVIRIS Image Data. The examples in this 

section are provided as a demonstration that the fusion method developed in this article can 

also fuse many spectral bands from the AVIRIS hyperspectral sensor without causing loss 

of information or dynamic range. The example in the next chapter which combines fusion 

and RICA to perform ATC will demonstrate numerically how information is maintained and 

even enhanced through fusion. The following figure is intended as a visual example of how 

the dynamic range is preserved. Figure 3.16 represents the results of fusing bands bands 30 

through 40 from the AVIRIS hyperspectral sensor. The combined band-pass range of the 

images is from 0.67/mi - .75//m. 

3.6    Conclusions 

Image fusion using contrast sensitivity as a salience measure produced fused images 

that were visually better than either Burt and Kolczynski's [12] or Toet's [2,93,94] methods. 
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It is also shown in Table 3.3 and Table 3.4 that contrast sensitivity based fusion, in conjunc- 

tion with a wavelet-based decomposition and reconstruction, results in better SNRs over a 

wide range of noise types, levels, and backgrounds. Using a paired t-test and the results 

of Tables 3.3 and 3.4, this new fusion method statistically outperforms the other fusion 

algorithms by an average of 6.8db in SNRs. Also, as the noise in the images was increased, 

the performance of the contrast sensitivity based fusion actually improved over the other 

methods. In other words, the differences in the SNRs between the physiologically motivated 

fusion method and the others was greater as the noise in the input images was increased. 

For example, as the noise was increased and the SNR of the input images went from lOdb 

to 2.5db, the relative difference between Burt and Kolczynski's method and the new fusion 

method went from 13.8 percent to 23.0 percent. 

The non-wavelet based contrast sensitivity had excellent results and improved the SNRs 

in most cases. However, there were instances where the fused image did not have a better 

SNR than some of the input images. This occurred with at least one example of the band 

30 data from the AVIRIS sensor. This is one of the reasons the wavelet based approach was 

developed. The SNR was affected by the reconstruction error. It has been shown that the 

wavelet based approach removes this problem and in all cases the fused image had a better 

SNR than any of the input images. Thus, contrast sensitivity based multiresolution image 

fusion using a wavelet basis set is an excellent method of image fusion for hyperspectral 

image data. 

Contrast sensitivity based fusion can also fuse image data from the AVIRIS hyperspec- 

tral sensor and still maintain the relevant visual information in the input scenes. Figures 3.15 

and 3.16 clearly demonstrate that images from multiple spectral bands can be fused to reduce 

image storage and increase the amount of information in a given scene. Additionally, the 

results in Section 4.6 show that fusion of hyperspectral data not only preserves information 

it enhances it. 

At this point, it is important to reiterate why the image fusion algorithm was developed. 

It was developed to reduce the vast amounts of hyperspectral image data to a smaller subset 

of images that could then be fed to a recognizer. When the recognizer is a human analyst, 
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reducing the number of images they have to analyze, while increasing image detail, reduces 

the amount of time spent analyzing images. If the recognizer is an automated system, 

such as an ANN, reducing the dimension (i.e., Cardinality) of the data set is important 

in preventing the "Curse of Dimensionality" [7], which was discussed in the background 

chapter. In either case, image fusion is a critical first step in the process of target detection 

in hyperspectral image data and the physiologically motivated fusion algorithm presented is 

superior to others at that task. The next chapter describes the self-architecting Radial Basis 

Function Iterative Construction Algorithm (RICA) that was designed to detect targets in 

the fused hyperspectral image data. 
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IV.   Radial Basis Function Iterative Construction Algorithm (RICA) 

The purpose of this chapter is to describe the methods that RICA uses to select and train the 

hidden layer nodes and to optimize the output layer weights. Also, experimental cases are 

presented which show that RICA outperforms several popular fixed and constructive types 

of ANN architectures. In addition to empirical evidence, there is a mathematical proof 

presented which shows that RICA performs a minimum mean squared-error approximation 

to a Bayes optimal discriminant function. Finally, an example is presented showing how 

RICA works in conjunction with the physiologically motivated fusion algorithm discussed in 

Chapter III to perform ATC of hyperspectral image data. 

4-1    Selecting and Training The Hidden Layer Nodes 

RICA uses a two stage process to select and train the hidden layer nodes. The first stage 

autonomously determines the number of hidden nodes needed to represent the probability 

density function (pdf) for each class, based upon the input data. The second stage calculates 

the values needed to parameterize each hidden node (i.e., the mean and covariance of each 

Gaussian basis function). 

During first stage training, RICA uses a combination of Mahalanobis distance clus- 

tering and a Gaussian Goodness-of-Fit measure [9,48,86,87] to determine how many nodes 

are needed to represent the pdf of each class. Obviously not all pdfs are Gaussian, but 

as mentioned in Section 2.3.1, RBFs using Gaussian basis functions are Universal Function 

Approximators and that all Lebesgue p-integrable {L9) functions can be approximated by a 

linear combination of Gaussian basis functions [9,30,59,64]. Therefore, the problem becomes 

one of finding a sufficient number of basis functions (hidden nodes), their parameters, and 

the proper linear combination of those basis functions. 

The first step RICA uses to determine the number of hidden layer nodes is to separate 

the data using the class labels. Separation by class allows RICA to use the information in 

the labels to better approximate the pdf of each class separately. This is a different approach 

than most other methods which use all of the data, regardless of class, to perform probability 

4-1 



density estimation. Section 2.3.1.2 describes several of those techniques and their limitations. 

The argument for separating the data is that we are trying to estimate the pdf of each class 

separately and the distribution of each class is independent of the other classes, there is no 

need to mix the classes. Combining the classes only serves to add confusion and complexity 

to the problem, especially since the class membership of each of the training exemplars is 

known a priori. 

Once the classes have been separated, the next step is to determine how many nodes 

are needed to represent each of their respective pdfs. One method is to use a Parzen approach 

to represent the class pdfs, in which case, a Gaussian function with a fixed width would be 

placed at each sample point for each class [9,60,76]. This is the extreme case or upper 

bound for generating the number of functions necessary for density estimation. Another 

method is to use a single Gaussian function with a common covariance matrix to represent 

the pdf of each class, this would represent a lower bound for representing the class pdfs. 

Neither extreme is likely to result in good network performance over a wide field of data 

sets. If too many basis functions are used, the network does not tend to generalize well. If 

too few basis functions are used, the network will not have the representational power to 

adequately approximate the discriminant function and classification accuracy will be poor. 

One resolution to this problem is to use a human operator to preselect some number of nodes 

and then use clustering (K-means, Euclidean, LVQ, etc.) or Expectation Maximization to 

determine the parameters of the Gaussian functions [9]. The goal of this work was to find 

an appropriate number of Gaussian functions without using one at every sample point and 

without using human input. 

Because Gaussian functions are being used as the hidden node basis functions and 

there was a desire to not place a basis function at every sample point, a method was needed 

to find groups of data points that could be reasonably modeled by a single Gaussian. The 

problem is two-fold. The first is given a subset of points from a set of data, is there a 

method to determine if the points can be reasonably approximated by a Gaussian function. 

The second is deciding which subset of points should be chosen. Some density estimation 

methods use either a Chi-Squared test or a Kolmogorov-Smirnov test to decide if the subset 
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of points can be reasonably approximated by a Gaussian function [18]. However, D'Agostino 

states in his book on Goodness-of-fit techniques that the Chi-Squared test, in general, is not 

a powerful test of normality. He goes on to say that the Kolmogorov-Smirnov test is only 

an historical curiosity and should never be used. RICA uses the Shapiro-Wilk goodness- 

of-fit test [18,86,87], which is presented in more detail in Section 4.1.2, to determine if a 

subset of points can be reasonable modeled by a single Gaussian function. Not only has the 

Shapiro-Wilk test been shown to be an excellent test for this type of problem [18,86,87], 

D'Agostino says that it is a more powerful test of normality than either the Chi-Squared or 

Kolmogorov-Smirnov tests [18]. 

The Shapiro-Wilk test analyzes a set of points and outputs a number between 0 and 

1 that represents a confidence value that the set of data came from a Gaussian distribution. 

The larger the value the more confidence there is that a particular subset of points came 

from (and thus can be represented by) a Gaussian function. Representing a subset of points 

by a single Gaussian function instead of representing each point with a Gaussian function 

greatly reduces the number of nodes needed. For example, given a set of a 100 points that 

came from a mixture of two univariate Gaussians with means 0 and 1 and variances 0.1 and 

0.1 respectively, the Parzen approach would use 100 Gaussian functions to represent the pdf. 

In reality, two functions with means 0 and 1 and variances 0.1 and 0.1 would be sufficient 

to represent the pdfs. An added benefit is that reducing the number of basis functions and 

subsequently the number of free parameters in the network should improve the generalization 

capability of the network. 

While it has been shown that the Shapiro-Wilk test is an appropriate test to decide if a 

group of points can be reasonably represented by a single Gaussian function, it does not solve 

the problem of choosing which subsets of points in each class need to be grouped together. 

RICA uses a combination of the Shapiro-Wilk test, Mahalanobis Distance clustering, and 

if-means to determine which subsets of points of each class can be represented by separate 

Gaussian functions. An overall description of the algorithm is discussed and then the step-by- 

step details are presented below. Section 4.1.3 discusses the Mahalanobis distance clustering 

algorithm. 
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Figure 4.1 This Figure illustrates the process involved in splitting the data set into two 
parts and measuring the Shapiro-Wilk test on the original cluster and then the 
two new clusters. 

RICA determines how many hidden nodes are needed to represent each class condi- 

tional pdf by first separating the data by class using the class labels. Next, RICA partitions 

each set of class data into smaller and smaller partitions until no further improvement in the 

Shapiro-Wilk confidence value is obtained (see Figure 4.1). This is accomplished by examin- 

ing each partition to determine if a higher Shapiro-Wilk value could be obtained by splitting 

the partition into two new partitions. If a split occurs, the new partitions will be examined 

to determine if they should be split. The evaluation and possible splitting continues until no 

further improvement in the Shapiro-Wilk value is obtained. Once the partitioning is finished 

for each class, the unbiased estimators of the sample mean and covariance of each partition 

are calculated [32] and those values are used to define the center vector and covariance of 

the Gaussian functions used in the hidden layer nodes. Once the hidden layer node basis 

functions have been calculated, the best linear combination of those basis functions is deter- 

mined during the output layer weight training phase which is discussed in the next section. 

Now that a general description of RICA has been presented the actual mechanics follow: 

4.1.1    Algorithm for Selecting and Training The HLNs.      Separate the data by class 

label and then perform the following steps on each of the classes separately. It is important 
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to note that the following steps are iterative and that the process starts with all of the 

training data in each individual class and is iteratively performed on each new cluster as it 

is formed. The goal is to analyze each cluster to determine if it can be well represented by a 

single Gaussian or if it should be broken into smaller clusters, each of them represented by 

a single Gaussian. 

Algorithm to determine Hidden Layer Nodes 

1. Repeat until all clusters have been analyzed, (i.e., The process is then repeated for 

each "new" cluster until no more improvement is found (i.e., additional splitting of the 

data does not result in a larger Shapiro-Wilk value), see Figure 4.1. 

2. Let D\ denote the data in the cluster under test. In the beginning of each class under 

analysis, the data D\ will be the whole data set for a given class. After the first step, 

the data D\ will represent each new cluster that has been generated in the following 

steps. 

3. Let SW1 be the Shapiro-Wilk confidence value for data D\ using the algorithm pre- 

sented in Section 4.1.2, see Figure 4.1. 

4. Separate the data D\ into two clusters using the Mahalanobis distance clustering algo- 

rithm presented in Section 4.1.3. Let Di and D3 represent the two new clusters formed 

from D\. 

5. Let SW2 and SWS be the Shapiro-Wilk confidence values for data D<i and D3 using 

the algorithm presented in Section 4.1.2, see Figure 4.1. 

6. If SW2 or SWS is greater than SW1, retain the new clusters D2 and D3 and remove the 

super-cluster D\. If SW1 is greater than SW2 and SWS, then retain the super-cluster 

Dv 

7. Goto Step 1 

4-1.2   Shapiro-Wilk Goodness-of-Fit Algorithm.      The Shapiro-Wilk test is a test of 

Normality based upon the ratio of estimates of scale [9,18,48,86,87].  It is the ratio of a 
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squared sum of weighted order statistics to the squared sample variance times the number 

of samples, given by 

W = V   ^     , (4.1) 

where W is the Shapiro-Wilk value, X^) are the ordered samples, a2 are the weighting 

coefficients, S2 is N times the squared sample variance, N is the number of samples, and 

i = 1, • • •, N. The weighting coefficients were calculated by Shapiro-Wilk such that the W 

ratio is between 0 and 1 and it approaches 1 as the distribution of the sample data becomes 

more Gaussian. A table containing the a* coefficients can be found in the book by D'Agostino 

entitled "Goodness-of-fit Techniques" [18]. 

4.1.3 Mahalanobis Distance Clustering Algorithm. Mahalanobis distance cluster- 

ing (MDC) which has been successfully used in other ANN architectures [9,33] separates 

data into clusters based upon the Mahalanobis distance between a sample vector and the 

current cluster centers. Given the input sample x, a cluster center m, and C the sample 

covariance matrix of the data points contained in a given cluster, the Mahalanobis distance 

(DM(%, m, C)) is defined as: 

DM(X, m, C) = (x - m)tC'1(x - m), 

Clustering is performed by placing each data vector into the cluster that has the small- 

est Mahalanobis distance between the data vector and the vector representing the cluster 

center. Once the clusters are formed, a new sample mean and covariance is computed for 

each cluster. The data is then reclustered using the new cluster centers and covariances. This 

is performed iteratively until the clusters stop changing. This can be measured either by 

checking the membership of each sample point and testing to see if its membership changed 

from one iteration to the next or by checking the cluster centers to see if they have changed. 

One important problem that occurs when calculating the covariance is that the inverse 

covariance may not exist. This occurs if the number of data points is less than the dimension 

of the data. For Radial Basis Function (RBF) networks, the rule of thumb is to have at least 

d + 1 samples per basis function (d is the feature dimension) to estimate the covariance 
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matrix of each Gaussian basis function [20]. Several times that amount may be needed to 

smooth out statistical fluctuations and to get good estimates [20]. 

Having d + 1 samples does not guarantee that the inverse covariance matrix will exist. 

Sometimes the samples are linearly dependent along some hyperplane or line and can be 

projected into a subspace that has a smaller dimension than the feature space. When this 

occurs, the rank of the covariance matrix is less than the dimension of the data and the inverse 

covariance will not exist. RICA overcomes this problem by calculating the eigenvalues of 

the covariance matrix and if there is an eigenvalue close to zero, (the rank of the matrix 

is less than the dimension of the feature space), the covariance matrix is close to being 

non-invertible and needs to be modified. The modification is accomplished by replacing the 

eigenvalue or values that are close to zero with some minimum threshold value and using 

the eigenvectors and the new eigenvalue to create a new approximate covariance matrix. 

Another problem is starting the MDC algorithm given a set of data and no centers 

or covariances. Since RICA uses the MDC algorithm to split a partition of data into two 

new partitions, the number of centers is known and is always two. The next step is to find 

suitable centers. The K-means algorithm, with a K value of 2, was chosen because it yields 

two cluster centers that are from the two most dense areas of the input partition data. This 

is desirable because the center of a Gaussian function is the most dense area of the function. 

Once the if-means algorithm is used to find two center vectors, the Euclidean distance 

metric is used to initially partition the data into two clusters. Now that the data has been 

partitioned into two clusters, the sample mean and covariance are calculated for each. Next, 

the data are repartitioned using the current centers and covariances, but now the Maha- 

lanobis distance is used. Now the algorithm performs the center calculation and partitioning 

iteratively, by calculating the new cluster centers and covariances until the centers no longer 

change. 

The reason a Mahalanobis distance metric is used instead of the Euclidean metric is 

because clustering using the Euclidean metric tends to create clusters that are of equal size 

and are spherical in shape [33]. Euclidean distance clustering will also incorrectly cluster data 

that comes from two clusters when the between-cluster variance is larger than the within- 
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cluster variance [33,99]. This can cause large clusters and clusters that have elongated shapes 

(a cigar shape) to be broken up. Another reason the Mahalanobis distance is chosen over the 

Euclidean is because Gaussian functions model localized receptive fields (Gaussian functions 

will produce similar outputs for vectors that are close in Mahalanobis distance). This is 

easily seen by comparing the exponent of a Gaussian function with the previous definition 

of the Mahalanobis distance metric. 

Gauss(Xlm,C) = ^— e-^
c

2
1(—\ 

where x, m, and C have the same definition as for the Mahalanobis distance metric defined 

above. 

The method presented here finds the smallest number of nodes required to maximize 

the confidence (Shapiro-Wilk measure) that each partition is well represented by a Gaussian 

function. Reducing the number of nodes in the hidden layer reduces the number of free 

parameters in the network which improves the generalization capability of the network. 

Once the hidden layer nodes have been selected and trained, the output layer nodes are 

trained. 

4-2    Training The Output Layer 

The previous section described how RICA's hidden layer nodes (HLNs) were selected 

and trained. This section describes how RICA's output nodes are trained. RICA uses a 

1-of-M coding scheme for the output, where M is the number of classes. In a 1-of-M coding 

scheme, there is only 1 output node whose desired output is positive for a given input. The 

remaining nodes have desired outputs which are less than or equal to zero. In a 1-of-M 

coding scheme there is exactly 1 node per class. Therefore, in a 1-of-M coding scheme the 

node that produces a positive output is the one corresponding to the node that is assigned 

to the class of the particular input. For example, given an input training sample that is 

from class three, the desired output for node three would be greater than zero while all other 

nodes would be trained to be less than or equal to zero. RICA trains the output nodes so 

that the outputs are positive for the correct class and negative for the incorrect class. Unlike 

MLPs whose output node activation functions can be non-linear (Sigmoidal or Hyperbolic 
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Tangent functions, etc), RICA's output activation functions are linear. With linear outputs, 

the output of each node is the weighted sum of the outputs of the HLNs. The problem is to 

find the proper weight vector to achieve the desired outputs. 

Because Gaussian units are used for the HLNs, they have localized receptive fields 

whose outputs are a function of the Mahalanobis distance between an input pattern and the 

centroid of the HLN. The outputs of the HLNs fall off rapidly to zero after the Mahalanobis 

distance becomes greater than three (three standard deviations from the center). Since the 

HLNs have been selected and trained to fit the distribution of each class separately, they 

will project the input data onto a linearly separable space, except where the data overlap 

(in a Mahalanobis distance clustering sense), in the input space. Given that the HLNs are 

likely to project the input data onto a linear separable space the Ho-Kashyap method [20, pp 

159-166], which is discussed in in detail in Section 2.3.1.3, was chosen to optimize the output 

layer weight vectors. Details of the Ho-Kashyap algorithm are condensed and presented 

below for reference. 

4-2.1 Ho-Kashyap Algorithm. This section presents the Ho-Kashyap algorithm in 

pseudo code form. It is important to note that the Ho-Kashyap algorithm is used to train 

the output layer weights after the hidden layer nodes have been selected and trained. 

In the Ho-Kashyap algorithm presented in Algorithm 2, iterating while ef > 0 will 

either yield an e; = 0 or an e^ < 0. If e^ = 0 the data are linearly separable and we have 

a solution to our problem of finding a separating vector. If e* < 0 we still have a MSE 

approximate to the separating vector, but the data are not linearly separable. A final note 

on Ho-Kashyap algorithm is that because the Ho-Kashyap method is used to find the weight 

vector for each output node separately, training the output layer weights can be implemented 

on a parallel architecture. This would offer a considerable speed-up in training time. 

The previous sections described how RICA autonomously selects the number of hidden 

layer nodes needed and optimizes the parameters needed to fully describe the architecture. 

This was very important in showing that RICA is an autonomously adaptive ANN architec- 

ture. The next section proves that RICA is not only adaptive, but that it has the desirable 
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Algorithm 2 Ho-Kashyap Algorithm 

T = N x D training data matrix 
Tm = elements of T corresponding to a class other than m are multiplied by — 1 

Y£= Tm; 1 {Tm is augmented by a column of ones} 

Y^t = Pseudoinverse of Y£ 
M <— Number of Output Nodes (one per class) 
N <— Number of training samples in T 
D <— Number of features 
i = Iteration number 
for m <—  1 : M do 

i = 1 
ei = 1000 {An arbitrary value greater than zero} 
Create Y£ 
Choose and arbitrary b > 0 {b is an N x 1 vector with values typically greater than 1 
for this work} 
while ei > 0 All elements greater than zero do 

a; <- Y*\ 
ei <- Y^di - bi 
et <~ §(e' + le«'l) {leil *s tne vector °f absolute values of the components of ej 
bi+1 <-bi + 2pef {0 < p < 1} 
» «- i + 1 

end while 
end for   
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property of being a minimum MSE approximation to a Bayes optimal discriminant function. 

This makes it a very powerful classification ANN. 

4-3   RICA: a minimum MSE approximation to a Bayes optimal discriminant function 

It will be shown that RICA performs a minimum mean squared-error approximation to 

a Bayes optimal discriminant function (BODF) and that RICA's outputs can be interpreted 

as a posteriori probabilities. Ruck, et al, [81] and Richard [71], and Duda and Hart [20] 

showed that a MLP using back-propagation and special assumptions is a mean squared- 

error approximator to the BODF. The proof for RICA will use a similar technique to that 

of Ruck et al and Richard, however, it will be shown for a RBF network and it will present 

a more general result than that of either Ruck, et al, or Richard. Ruck, et al, presented the 

proof for a MLP with a fixed architecture and assumed the existence of continuous pdfs. 

Richard also presented a more general multi-class proof for neural networks performing a 

minimum squared-error optimization. However, Richard also assumed a continuous pdf. The 

Theorem presented here is a generalized proof for any type of architecture that performs a 

minimum mean squared-error optimization and it makes no assumptions about the existence 

of the pdfs. That is, the cumulative distribution function may not be differentiable. 

Theorem. // a neural network architecture performs a mean squared-error minimiza- 

tion between the desired and the actual output using a 1-of-M coding scheme, then the neural 

network performs a mean squared-error approximate to the Bayes optimal discriminant func- 

tion (classifier) and the outputs can be interpreted as Bayesian a posteriori probabilities. 

Before the proof is presented, a brief description of what it means to be a Bayes optimal 

discriminant function is needed. In most pattern recognition classification problems, the goal 

is to correctly classify an input pattern x into 1-of-M classes. A Bayes optimal classifier is 

one that calculates the Bayesian probability P(Cm\x) for each class Cm and then selects the 

class that has the highest probability [9,20,32,71,81,85]. The Bayesian probability P(Cm\x) 

represents the conditional probability of class Cm given the input vector x. If P(x\Cm) is the 

conditional probability of producing x given the class is Cm, P(Cm) is the a priori probability 

of the class CTO, P(x) is the unconditional probability of the input vector x, and M is the 
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number of classes, then P(Cm\x) is denned by the Bayesian formula in conjunction with the 

law of probability: 

P{x)P(Cm\x) = P(x\Cm)P(Cm) 
M (4.2) 

P(x) = Y, P(x\Cm)P(Cm), 
m=l 

Simply put, how likely is it that a given input sample vector x came from class Cm. 

Choosing the class that has the greatest Bayesian probability (i.e., the most likely), provides 

the best possible choice. Bayes optimal discriminant functions are functions that minimize 

the probability of error for a given classification by using the Bayes probability as a crite- 

rion [9,20,32,71,81,85]. 

Let X denote a sample space. Assume there are M nonempty classes C\, C2, • • •, CM C 

X such that 
M 

X =   U  Cm (4.3) 

and Ci n Cj is not necessarily the empty set for each i, j = 1,2, • • •, M. Then an example of 

a Bayes optimal discriminant function and the decision rule that accompanies it is 

gm(x) = P(Cm\x),   m = 1,2,..., M,xeX. (4.4) 

The decision rule is: x is from class Cm if gm(x) > gj(x) for all j ^ m. 

Let Fm(x,6) represent the output of the mth output node and 0 represent the weights 

of the output layer and the means and covariances of the Gaussian basis functions used 

in the hidden layer nodes. To show that RICA performs a minimum mean squared-error 

approximation of the Bayes optimal discriminant function gm(x), it will be shown that the 

following error criterion is minimized during RICA's training: 

<?{X,0) = E /   [Fm(x,0) - gm{x)fP{dx) (4.5) 
m=lJx 

To begin the proof, a sample error function Es will be defined as the cumulative squared 

difference between the desired output of the network and the actual output of the network. 
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However, before the sample error function can be defined a sample set X C X and the 

desired output dm(x) must be defined. 

For each m € {1,2, • • •, M}, let Nm be the number of samples representing each class 

m, and let N = JVi + N2 H + NM, be the total number of samples in the set X, then for 

each m = 1,2, • • •, M define 

■**-m   =   \xm,Ni j %m,N2 i ' ' ' i •cm,Nm j 

M 

and note that X =   (J Xm.  Because the desired output is based upon a 1-of-M coding 
m=l 

scheme, the desired output function dm(x) is: 

.        1 if     X    G    X,; 
dm(x) 

0   otherwise 

Choosing 0 and 1 as the outputs allows the final outputs of the network to be interpreted 

as probabilities. The outputs could be some positive or negative constant, which is useful in 

solving a system of linear equations when the outputs are linear, but would require further 

processing to interpret the outputs as probabilities. When the outputs are allowed to be 

positive or negative, a softmax procedure [9, pp 215] can be used to allow the outputs to be 

interpreted as probabilities. 

Using the above desired output function dm(x) and sample set X, the sample error 

function is defined as: 

N       M 

E.(X,0) = Y,   E   {Fm{xn6)-dm{xn)f (4.6) 
n=1m=1 

It will be shown that RICA minimizes Es with respect to 8 and that minimizing Es 

with respect to 6 also minimizes e2(X, 8) which completes the proof that RICA performs a 

minimum mean squared-error approximation to the Bayes optimal discriminant function. 

Let the number of hidden layer nodes be fixed at H and the values of the means and 

covariances of the hidden layer nodes be fixed as well. The number H is arbitrary and the 

4-13 



means and covariances can vary for each hidden layer node. If wmth is defined as the weight 

applied to $fe, which is the output of the hth Gaussian hidden layer node, then the output 

function Fm(xn,8) can be rewritten as: 

H 

Fm(xn,0) = Y,w™,h-$h(xn,0), (4.7) 
h=i 

The sample error becomes: 

N       M 

Es(x,e) = E E 
»i = l m = 1 

f E Wm,h • $h{Xn, 0) J  - dm(xn) (4.8) 

It is shown in Section 4.2 the method used to train the output layer weights wm 

minimizes the squared-error function seen in the sample error function 4.8 above. Therefore, 

RICA minimizes the sample error function ES(X,8). Now it is necessary to show that 

minimizing ES(X, 0) provides the minimum mean squared-error approximation to the Bayes 

optimal discriminant function, which will complete the proof. 

Using ES(X,8) defined in Equation( 4.8) above, the average error is 

Ea(X,8)   =    lim ±EM(Xt9) 
N—>oo iv 

1      N       M 

=   iim7FE   E   (Fm(xn,0)-dmM)2. (4.9) 

Using the Strong Law of Large Numbers [58], the average error Ea(X,6) is the expected 

value of the sample error function E3(X,6). Applying the Strong Law of Large Numbers 

and letting dx be defined as the infinitesimal centered at x, dP(x) = P(dx), and using the 

following Bayesian identities: 

M 

P(dx)   =    E P{dx\Cm)P(Cm) 
m—1 

P(dx\Cm)P{Cm)   =   P{Cm\dx)P{dx) 

=   9m{x)P{dx) 
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Equation( 4.9) can be rewritten as: 

M 

Ea(x,e) = f f:(Fm(x,e)-dm(x)fP(dx) 

M      . 

=  E   (Fm(x,e)-dm(x))2p(dx) 
„, i J PC m=l 

=    E [/ Fl{x,6)P{dx) - ! 2dm(x)Fm(x,e)P(dx) + / d2
m(x)P(dx) 

^Ux Jx Jx 

Again, no assumption is made as to the differentiability of the cumulative distribution func- 

tion P. Since the desired output function has values of only 1 and 0, d^x) = dm(x) thus, 

Ea(x,e) = E \f F^(x,e)P{dx) - f 2dm(x)Fm{x,6)P(dx) + I dm(x)P(dx) 
, Ux Jx Jx 71=1 

=    E f / Fl(x,6)P(dx) - f dm(x)(2Fm(x,e) - l)P(dx)] 

Mr. . M 

=   E    / Fl(x,6)P(dx) - I dm(x)(2Fm(x,6) - 1) £ P{dx\Cn,)P(Cm.) 
m=l lJX Jx mi=i 

MT. .     M 

= E     Fl(x,e)p(dx)-    y£dm(^Fm(x,e)-i)p(dx\cm,)p(cml) 
 1 VPC v PC   „,/ 1 
TO=1 L m —1 

Using the fact that when m = m', dm{x) = 1, otherwise dm(x) = 0, the last part of previous 

equation can be written as: 

M  r r r -\ 
Ea(X,6)   =   E       F^(x,e)P(dx)-     (2Fm(x,6)-l)P(dx\Cm)P(Cm)     (4.10) 

m=l lJX JX i 

Using the previously defined Bayesian identities Equation( 4.10) becomes: 
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M       T 

Ea{x,e) = £) f / Fl(x,0)P{dx) - f (2Fm(x,6) - l)gm(x)P(dx) 
~i Ux Jx 171=1 

M r r l 
=    E   /  [*£(*>ö) " W*)^ 0) + gm(x)\ P{dx) 

m=l 
Mr. 

=     E     /     ^(*.«)-2U^m(»,ö)+Ä(a)-Ä(*) + Ä»(*)   ^W 
m=l L,/* 

=    Ef/ [fKM) - 23raWFm(x,Ö) + Ä(x)] ?(dx) + ^ [fira(i)(l - öm(x))] ?(&) 
m=l 
Mr. -, M . 

=    E    /    K^^-U^fP^)   +j: /  [gm(x)(l - gm(x))] P(dx) 
m=l L"7^ J        m=lJX 

M 

=   e2(X,e)+Y: I  [gm(x)(l-gm(x))}P(dx) (4.11) 
m=lJX 

The summation is independent of 0, therefore minimizing Ea(X,6) also minimizes e2(X,6). 

In conclusion, it has been shown that RICA minimizes Es with respect to 6 which also 

minimizes Ea with respect to 0. It has also been shown that minimizing Ea with respect to 

6 also minimizes e2 with respect to 8. Therefore, RICA yields a network that is a minimum 

mean squared-error approximation to the Bayes optimal discriminant function. 

A final note of this section is that because of the previous proof 

Fm{x,0) ra gm(x) (4.12) 

thus, the outputs of RICA may be interpreted as a posteriori probabilities and a level of 

confidence may be associated with the classification of each sample. This could prove very 

useful in accepting/rejecting a classification or in using RICA in a hierarchical network. 

4-4    Experiments 

This section describes the tests that were conducted to compare the performance of 

RICA against other popular ANNs. The test were performed using four different algorithms 

on two "real world" data sets and two sample data sets. The results for two of the data sets 
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are presented in the next section and Appendix A presents the other two. The algorithms 

included two fixed ANN architectures, an adaptive MLP, and RICA. The two fixed ANN 

algorithms were an RBF network and an MLP network. The hidden layer nodes of the RBF 

network were trained using a combination of a if-means algorithm and Mahalanobis distance 

clustering. The value for K was the same as the number of nodes that RICA determined 

was needed for each training set respectively. The Zf-means algorithm was used to find 

the centers of the hidden layer nodes and the Mahalanobis distance clustering was used 

to find the covariances. The output layer weights were calculated using the MSE pseudo- 

inverse approach described in Section 4.2. The fixed architecture MLP used a single layer 

of sigmoidal functions in the hidden layer nodes and sigmoids for the output layer nodes. 

The number of hidden layer nodes was the same as those found using MICA [68] for each 

training session and the MLP was trained using back-propagation with momentum. The 

adaptive MLP is called MICA [68]. Very simply, MICA is an adaptive MLP algorithm that 

is designed to grow the network architecture to optimize training set classification accuracy. 

Four data sets were used to analyze the accuracy and computational costs of the four 

algorithms. The first set contained 3471 samples of 27 dimensional feature data extracted 

from multiple authors' hand-written characters 0 — 9. The second set contained samples of 

2-dimensional three class data that was created using various distributions and centers, see 

Figure 4.3. The third set contained 5457 samples of 6 dimensional feature data extracted 

from infrared target imagery data. The fourth set was used to analyze the capabilities of the 

algorithms to separate two Gaussian sources. This data set and problem was first described 

by Kohonen [39] and was used by Lim [45] in his analysis of his Probabilistic Fuzzy ARTMAP 

Algorithm (PFAM) which was an extension to the Fuzzy ARTMAP algorithms(FAM). Ac- 

cording to Lim this task is regarded as a benchmark study for statistical pattern recognition 

with neural networks. The task of separating two Gaussian sources which use this data set 

has three areas of difficulty: 

1. Large overlapping of class distributions 

2. A high degree of non-linearity in the decision boundaries 

3. A high dimensionality of the input space. 
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Figure 4.2 Plot of two dimensions of the benchmark data set. The benchmark data 
set is comprised of two multivariate Gaussians with centers \x\ = ji2 = 
(0,0,0,0,0,0,0,0) and variances of 1 and 4 along all dimensions, respectively 

See Figure 4.2 for a plot of the 2-dimensional version of the benchmark data set. 

The data were generated using a multivariate Gaussian distribution. There were two 

classes, C\ and C2, with mean vectors ß\ = ^2 = (0,0,0,0,0,0, 0,0) and variances set equal 

to 1 and 4, respectively, for all dimensions. The training set consisted of 300 vectors and 

the test set consisted of 10,000 vectors with the above mentioned distributions. All of the 

algorithms previously described were tested using this data set and the results are tabulated 

in Table 4.2. In addition to the algorithms which were implemented and tested during this 

research, the results from Lim's work are also shown for comparison. 

There were a total of 24 trials conducted using the Optical Character Recognition 

(OCR) data. Each consisted of randomly separating the data into a training set and a 

separate test set. The split was approximately 70 percent of the data for training and 30 

percent for testing. There were a total of 30 trials using the second sample data set with 

a 70/30 split for training and testing. There were a total of 24 trials using the infrared 

imagery data using the same percentages of splitting the data. After each trial the accuracy 

and number of Floating Point Operations (FLOPs) were calculated. The average results are 

presented in the next section. 
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4-5   Results 

Table 4.1 presents the average results of testing using the OCR data. Table 4.2 presents 

the average results of testing using the benchmark sample data. Included in Table 4.2 are 

also the results reported by Lim. 

The test results were analyzed using a t-test [32] to determine if there was a statisti- 

cally significant difference between the results of each algorithm and RICA. The i-test was 

accomplished in the following manner: 

1. Create a vector for each algorithm whose elements contain the classification accuracies 

from each of the trial runs. 

2. Subtract the results for RICA from the results for each of the other algorithms. 

3. Generate the null hypothesis that the mean of the difference vector is zero (the results 

are identical between RICA and each of the other algorithms). 

4. Perform the t-test using the null hypothesis. Decide, based upon a statistical signifi- 

cance of 95 percent, whether to reject the null hypothesis. 

For example, if there were 10 trials and RICA had the following accuracies: [.98 .96 

.97 .93 .95 .98 .96 .97 .93 .95] and MICA had [.97 .93 .98 .90 .91, .97 .93 .98 .90 .91] the 

difference vector is [.01 .03 -.01 .03 .04 .01 .03 -.01 .03 .04]. The results of the t-test on this 

example would be to reject the null hypothesis (i.e., the results of using the algorithms are 

not identical) at the significance level of .05 ( a confidence of 95 percent). 

In all cases, RICA was shown to outperform MICA, the other adaptive ANN, by a 

statistically significant amount and in most cases, RICA outperformed the fixed architecture 

RBF and MLP. As can be seen in Table 4.2, RICA also outperformed many other types of 

adaptive ANNs, which included: 

1. The Probabilistic Neural Network (PNN) 

2. The Minimum Error Neural Network (MNN) 

3. The Fuzzy ARTMAP (FAM) Neural Network 
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Table 4.1 lesults of 24 trials using an Optical Character Recognition feature data set. 

Algorithm 

MLP 
RBF 

MICA 
RICA 

Avg. Number of 
Nodes 
69.5 
47.4 
69.5 
47.4 

Test Accuracy 

0.9615 
0.7103 
0.9553 
0.9655 

Training 
FLOPs (le8) 
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Figure 4.3     Plot of 3 class sample data. 

4. The Probabilistic Fuzzy ARTMAP (PFAM) Neural Network 

These algorithms are described by Lim in his paper about PFAM [45] and will not be dis- 

cussed here. They are listed as a comparison to RICA. They were not actually implemented 

during this research. The results for these algorithms in Table 4.2 are reported from Lim's 

results. 

In addition to outperforming the algorithms in classification accuracy, RICA also used 

less FLOPS than both MLP algorithms. The fixed architecture RBF algorithm used much 

fewer FLOPS than any of the other algorithms, but it needed to have the number of centers 

preselected. 

4-6   Application to Automatic Target Cueing of Hyperspectral Image Data 

The purpose of this section is to demonstrate the capabilities of combining the hyper- 

spectral fusion algorithm, presented in Chapter III, with the Radial Basis Function Iterative 
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Table 4.2     Results of Using Bench Data with a known Bayes Optimal of a 91.0 percent 
accuracy rate. 

Algorithm Test Accuracy 
Bayes Rate 91.0 
MLP 79.5 
RBF 73.0 
PNN 74.3 
FAM 75.0 
MICA 82.0 
PFAM 84.0 
LVQ 86.6 
MNN 87.0 
RICA 90.0 
BM2(Binary) 90.6 

Constructive Algorithm (RICA), presented above, to perform Automatic Target Cueing of 

hyperspectral image data. 

4.6.1 Motivation. As discussed in the Introduction, today's Air Force motto is 

"more with less." "More with less" means that the Air Force has to rely on modern tech- 

nology to cover the losses of manpower experienced over the last decade. One area that 

technology can provide assistance is in the area of image analysis and target detection. The 

first part of the technology boost is in creating sensors that can provide vast amounts of 

both spatial and spectral information about a given target area. Hyperspectral sensors have 

been developed for both spatial and spectral information. The second part is in creating 

algorithms that can autonomously process and analyze the image data to provide either a 

human analyst or an Automated Target Recognition (ATR) algorithm with cues about pos- 

sible targets in the image data. Automatic Target Cueing (ATC) allows the analyst or ATR 

algorithm to focus on the possible targets or regions-of-interest (ROIs) previously detected 

by the ATC algorithm. By focusing on ROIs detected by the ATC algorithm, instead of 

the whole image, the cost of using the much more labor intensive human analysis and the 

much more CPU intensive ATR algorithm can be reduced significantly. The results in this 

section demonstrate how fusion and ANNs can be used to perform ATC of hyperspectral 

image data. 
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4-6.2 Experiments and Results. Tests were conducted using 24 images from a 

hyperspectral image sensor. The test data was generated by using a human analyst to select 

coordinates in the imagery that represented both target and non-target areas. Targets could 

be any type of made-made object, while non-targets could be any non man-made object (i.e., 

grass, rocks, shrubs, trees, etc). The labeled coordinates were used to extract information 

from the images to create both a fused data set and a non-fused data set. 

The non-fused data set was created by selecting sample values for several x,y coordi- 

nates from a given image using bands [20, 27, 30, and 58]. Each sample value represents the 

pixel values for that x,y coordinate and those four bands. Sampling along the four bands 

creates a labeled four dimensional sample vector for each x,y coordinate. These bands were 

chosen because they represent the center frequencies that have been shown to work well in 

detecting targets in multi-spectral data. The analysis showing their effectiveness was based 

on a signal-to-clutter ratio between targets and backgrounds. There were a total of 13,682 

4-dimensional samples generated: 2862 target samples, and 10,820 non-target samples for 

the non-fused data set. 

The fused data set was created using the same x,y coordinates as above, but this time 

the images were fused before the pixel values were selected. Instead of selecting samples 

from images representing bands [20, 27, 30, and 58], a set of bands around the neighborhood 

of bands [20, 27, 30, and 58] were first fused to form four new "bands". These new bands 

represent the information in: 

• Bands [17, 18, 19, 20, 21, 22, 23] 

• Bands [24, 25, 28, 27, 28] 

• Bands [29, 30, 31, 32, 33] 

• Bands [55, 56, 57, 58, 59, 60, 61]. 

The four images fused images represent the information contained in the 24 images 

that were fused. This is very useful to image analysts. Instead of analyzing 24 images they 

only have to analyze four. Target recognition algorithms also benefit from the fusion. If 

the original 24 images were used, the data vectors would be 24 dimensional. Fusion reduces 
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Table 4.3     Results of 30 trials using the Non-fused and Fused data sets 
Type 

Non-fused 
Fused 

Class 1 (Targets) 
Avg. Accuracy 

46.3 
65.1 

Class 2 (Non-targets) 
Avg. Accuracy 

66.8 
73.7 

the number to 4 dimensions while maintaining the information in the 24 images. This re- 

duces both the number of CPU cycles required (less calculations are needed) and reduces the 

chance of the "curse of dimensionality" [7,29] affecting the ability of the algorithm to gener- 

alize. Less calculations are required because the clustering algorithm and the transformation 

at the hidden layer nodes will be operating on 4-dimensional data instead of 24-dimensional 

data. The "curse of dimensionality" can occur in two ways. The first is that as the number 

of dimensions increases the complexity or number of calculations increases, this can possible 

exceed the computer's computing or memory capabilities [7]. The second is that density 

estimation becomes more difficult and requires many more samples as the dimension in- 

creases [29]. Using fusion to reduce the dimension of the data from 24 to 4 reduces the risk 

of the "curse of dimensionality". 

After the data sets were created, 30 separate trials were performed using a 50/50 split of 

the data. Table 4.3 presents the average results of the 30 trials using both the non-fused and 

fused data. As with the other tests conducted in this research, the paired t-test was used to 

determine if the improvement was statistically significant [32]. The results show that target 

detection using RICA and fusion together provide a statistically significant improvement 

over target detection with RICA alone. Fusion provided a gain of almost 20 percentage 

points on average in target recognition accuracy. 

The main reason for the previous tests was to analyze RICA's ability to perform 

target/non-target recognition of fused and non-fused sample hyperspectral data. The tests 

clearly demonstrated that recognition accuracy is significantly improved using image fusion. 

The next set of tests will demonstrate how physiologically motivated image fusion can be 

used in conjunction with RICA to perform ATC of hyperspectral data. 
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Because ATC is performed, the results of these tests will be analyzed in terms of 

detection accuracy versus false alarm rate, instead of classification accuracy. The difference 

between detection and classification accuracy is that classification accuracy is measured at 

the pixel level and detection accuracy is measured at the object level. Classification accuracy 

is a ratio of the number of correctly classified samples to the number of samples for that class. 

Detection accuracy is a ratio of the number of times that an object has been detected to the 

number of objects available to detect. For example, given an image that contained one target 

with 45 pixels on the target, if 32 of those pixels are correctly classified the classification 

accuracy is 71.1 percent. The detection accuracy is 100 percent. In other words, there was 

one target and it was recognized. It does not matter how many of the pixels are recognized. 

What matters is that at least one of the pixels on the target were correctly identified. If 

there were 5 targets and 3 of them were identified, then the detection accuracy would be 

60 percent. As mentioned, when ATC algorithms are analyzed, the results are typically 

reported in terms of a detection accuracy versus false alarm rate. 

The false alarm rate is the average number of ROIs that are falsely declared as targets 

per image. For example, a 98 percent detection accuracy with a false alarm rate of 3 ROIs 

per image, means that 98 percent of the time the target is correctly detected in an image, but 

on average there are 3 ROIs per image that are falsely declared as targets. In this analysis, 

a ROI is defined as a 30 x 30 box centered at a pixel that has been declared as a target by 

RICA. If the box contains other pixels that were declared as a target by RICA, then it is 

still only one ROI. The reason a 30 X 30 box was chosen is because the images were collected 

at a range such that the average number of pixels on target is roughly 30 x 30. 

This type of measurement is very important to an analyst when analyzing an ATC 

algorithm. It does not help the analyst if the detection accuracy is high when there are also 

a lot of false alarms. The goal of ATC is to reduce the burden of the analyst. Therefore, 

the goal is to reduce false alarms, while maintaining or increasing accuracy. The following 

tests will demonstrate how RICA and image fusion work together to provide excellent target 

detection while significantly reducing false alarms. 
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The tests are conducted using the same 23 hyperspectral images used in the previous 

tests, the same fused and non-fused images that were extracted from them, and the same 

fused and non-fused data sets. The difference between these tests and the previous tests 

is that once RICA has been trained using the fused and non-fused data sets, it will be 

tested on the whole image instead of only a small subsample of the image. The tests above 

were conducted using only a fraction of the samples available in these images. On average 

only three percent of the available pixels of each image were sampled, labeled, and used for 

training/testing. This was sufficient to measure classification accuracy. To analyze detection 

accuracy versus false alarm rate, the whole image will need to be tested. 

In previous tests, classification (i.e., target/non-target) was determined by whatever 

node had the greatest output. If node one was greater, the input sample was classified as a 

target. If node two was greater, the input sample was classified as non-target. In an effort 

to reduce false alarms, the outputs of RICA are thresholded and both output nodes have to 

strongly agree that a sample is a target before it will be classified as a target. What this 

means and how the tests were conducted is described next. 

After training two RICAs (one on the non-fused and one on the fused data set), the 

following steps are performed for each hyperspectral image, also see Algorithms 3 and 4 for 

a pseudo code description of the process. 

1. Extract the 4-dimensional sample vectors from every x,y coordinate from the non-fused 

bands [20, 27, 30, and 58] of a given image. 

2. Record the outputs of RICA for each of the sample vectors for that image, using the 

RICA that was trained on the non-fused data. 

3. Calculate the mean and standard deviation of the total outputs of each node. 

4. Classify any vector as a target that has an output from node one that is two standard 

deviations above the mean of node one and at the same time has an output from node 

two that is two standard deviations below the mean of node two. This thresholding 

allows only those samples that RICA strongly declares as a target and as not a non- 

target to be identified as a target. 
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Algor it hm 3 Target Detection of Non-Fused Hyperspectral Images  

In= X xY x B Hyperspectral Image Cube for image n 

7^20,27,30,58 = Hyperspectral Image Cube for image n {contains only bands [20,27,30,58]} 

An = X x Y Image representing the ATC of In 

R = Matrix containing outputs of RICA for every test sample (one result per row) 

Rout(t) = output vector representing the output of RICA for test sample t 

In,20,27ßo,58(x, V-, '•) =  vector represents the pixel values at location x, y, [20,27,30,58] {of 
a hyperspectral image} 
X <— Number of Rows of the Hyperspectral Image for each band 
V <— Number of Columns of the Hyperspectral Image for each band 
B <— Number of Bands in the Hyperspectral Image cube 
N <— Number of Hyperspectral Image Cubes 
for n <—  1 : N do 

i«-0 
for x <—  1 : X do 

for y <—  1:7 do 

R(i, :) *- Rout(Inj20,27,30,58(Xi !/> 0) 
end for 

end for 
MR <— mean(R) {This is the mean calculated for each column (i.e., each class)} 
SR <— std(R) {This is the standard deviation calculated for each column (i.e., each 
class)} 
An <— §x,y {Initialized to all zeros} 
*<-0 
for x <—  1 : X do 

for y <—  1:7 do 
i <- i + 1 
if [R(i, 1) > MR(1) + 2 * SR(1)] & [R(z, 2) < MR(2) + 2 * ^(2)] then 

AN(x,y) *- 1 {Is Target} 
else 

AN{x,y) «- 0 {Is Not Target} 
end if 

end for 
end for 

end for   
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Algorithm 4 Target Detection of Fused Hyperspectral Images 

In = X xY x B Hyperspectral Image Cube for image n 

^1,20,27,30,58 =   Hyperspectral Image Cube for image n {contains the four images repre- 
senting the fused bands centered at bands [20,27,30,58]} 

An= X xY Image representing the ATC of In 

R = Matrix containing outputs of RICA for every test sample (one result per row) 

Rout(t) = output vector representing the output of RICA for test sample t 

4,20,27,30,58(z, V, '■) =  vector represents the pixel values at location ar, y, [20,27,30,58] {of 
the fused hyperspectral image} 
X <— Number of Rows of the Hyperspectral Image for each band 
Y <— Number of Columns of the Hyperspectral Image for each band 
B <— Number of Bands in the Hyperspectral Image cube 
N <— Number of Hyperspectral Image Cubes 
for n <—  1 : TV do 

for x <—  1 : X do 
for y *—   1:7 do 

i <- % + 1 
R(i, :) <- i?O«t(4,20,27,30,58(z, y,:)) 

end for 
end for 
MR «- mean(R) {This is the mean calculated for each column (i.e., each class)} 
SR <— std(R) {This is the standard deviation calculated for each column (i.e., each 
class)} 
An 

<— 0x,y {Initialized to all zeros} 
t*-0 
for x <—  1 : X do 

for y <—  1:7 do 
i«- i + 1 
if [R(i, 1) > MR(1) + 2 * SR{1)] & [R(z, 2) < MR(2) + 2 * SR{2)] then 

Aff(x,y) <— 1 {Is Target} 
else 

AN(x,y) «- 0 {Is Not Target} 
end if 

end for 
end for 

end for 
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5. Create an image representing the classification results. 

6. Extract the 4-Dimensional sample vectors from every x,y coordinate from the fused 

bands of a given image. 

7. Record the outputs of RICA for each of the sample vectors for that image, using the 

RICA that was trained on the fused data. 

8. Calculate the mean and standard deviation of the total outputs of each node. 

9. Classify any vector as a target that has an output from node one that is two standard 

deviations above the mean of node one and at the same time has an output from node 

two that is two standard deviations below the mean of node two. This thresholding 

allows only those samples that RICA strongly declares as a target and as not a non- 

target to be identified as a target. 

10. Create an image representing the classification results. 

The analysis was conducted image by image and detection rates are presented in Ta- 

ble 4.4. The most significant results of performing ATC using RICA and physiologically 

motivated image fusion is in the reduction of false alarms. When comparing the ATC results 

of the non-fused images with that of the fused images, it is easy to see that the number of 

false ROIs in the fused images are much less than the Non-Fused image results (white spots 

indicate regions that have been declared as targets). It is also important to point out that 

the reduction in false alarms was accomplished without sacrificing detection capability. 

The results of Table 4.4 show that on average target detection is improved with fu- 

sion. It shows that the average detection rate with fusion is 68.2 percent which is almost 

5 percentage points better than the non-fused result of 63.6 percent. In addition to an av- 

erage improvement in detection rates, a statistically significant reduction in false alarms is 

achieved. The false alarm rate is reduced from 5.84 ROIs per image to 3.42. The reduction 

in false alarms means that an image analyst has to spend less time looking in areas that do 

not contain targets. 

Again, these tests were intended as an example of the ATC capabilities of the combina- 

tion of RICA and the physiologically motivated fusion algorithm developed for this research. 
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Table 4.4     ATC Results Using 21 Hyperspectral Images. 
Type Detection Rate 

Avg. 
False Alarms 

Avg. Per Image 
Non-fused 

Fused 
63.6 
68.2 

5.84 
3.42 

Analyzing the results show that ATC significantly reduces the number of areas of an image 

that have to been analyzed. The overall results clearly demonstrate that the combination of 

RICA and physiologically motivated image fusion provides an excellent means of performing 

ATC of hyperspectral image data. 

4-7   Conclusions 

The Radial Basis Function Iterative Construction Algorithm (RICA) which was de- 

signed and implemented in this research has been demonstrated to outperform many types 

of ANNs including RBF, MLP, LVQ, MNN, PNN, FAM, PFAM, and MICA. These algo- 

rithms included both fixed and adaptive types of architectures. It outperformed many of 

these algorithms in both classification accuracy and in FLOPs. In the limited number of 

cases where the fixed architecture algorithms outperformed RICA, it is important to note 

that the number of nodes needed had to be provided by a human. 

This chapter also provided a mathematical proof showing that RICA performs a min- 

imum MSE approximation to a Bayes Optimal Classifier. The results of Table 4.2 support 

this proof with experimental evidenced. The Bayes Optimal Classification accuracy is 91.0 

percent and RICA had a 90.0 percent accuracy. The only algorithm to outperform RICA 

on the benchmark data set was the Boltzmann machine with binary-coded input vectors 

(BM2). It had an accuracy of 90.6 percent. The BM2 process required user input to deter- 

mine the number of subranges to binarize the input data and the number of nodes were also 

preselected by a human. 

As mentioned previously, RICA also outperformed most of the algorithms in FLOPS. 

The only algorithm RICA did not outperform in FLOPS was the fixed architecture RBF. 

Again, note that the fixed architecture algorithm had to have the number of nodes prese- 

4-29 



lected, RICA does not. The reduction in FLOPS is due to the local nature of the radial 

basis functions. For a standard MLP, back-propagation has to perform an iterative update 

based upon the error associated with the hidden layer and then with the output layer. The 

two layers can not be optimized independently because of the global nature of Sigmoid basis 

functions. RICA does not suffer from this limitation. The local nature of Radial Basis Func- 

tions allows RICA to optimize the hidden layer nodes and then the output layer nodes [9]. 

Another reason RICA outperforms the standard MLP using back-propagation is that the 

sigmoid unit has a very slow learning rate once the sigmoid is into the saturation region (i.e., 

the slope of the curve is effectively zero at the saturation regions). The other problem with 

the global nature of sigmoids is that minimization using back-propagation does not guaran- 

tee a global minimization. There are often problems with falling into a local minima. RICA 

does not suffer from this effect. Minimizing RICA on a local scale (i.e., at each basis function 

and then at the output layer) provides a global minimization. Again, this is evidenced by 

both the Bayes proof and the results of Table 4.2. 

The reason RICA outperforms MICA in flops is that RICA's method of optimizing the 

hidden layer basis functions uses a much more efficient algorithm than MICA does. MICA 

requires a search through all data points to continually find the next data pair that has the 

smallest Euclidean distance. RICA evaluates each class separately and once a set of points 

has been partitioned and associated with a basis function, they are eliminated from the 

search. Therefore, RICA breaks the problem into smaller and smaller chunks, while MICA 

and back-propagation continually iterate through the whole data set. 

It is important to note that the current version of RICA uses the univariate test for 

each dimension and averages across the results to determine the goodness-of-fit. This works 

well when the features are independent. If they are not, there may be some loss of power [18] 

with this method. Future work should implement a method by Malkovich and Afifi [48] that 

is a true multivariate Gaussian goodness-of-fit measure. 

The results of Section 4.6 provided evidence that the physiologically motivated fusion 

algorithm and RICA can be used in combination to perform ATC of hyperspectral image 

data. The results presented in Table 4.3 show that automatic target cueing using RICA and 
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Fusion together provide a significant improvement over target detection with RICA alone. 

In this example, image Fusion provided a gain of almost 20 percentage points in target 

detection accuracy. Additionally, the results in Table 4.4 show that the combination of 

RICA and physiologically motivated image fusion provides an excellent means of performing 

ATC of hyperspectral image data. 

In summary, RICA has been shown, both mathematically and empirically, to be a 

very powerful self-architecting ANN, capable of statistically outperforming some of the most 

popular ANNs on several types of data sets. It has also been demonstrated that RICA can 

be used in combination with the physiologically motivated fusion algorithm to perform ATC 

of hyperspectral image data. 

4-31 



V.   Conclusions and Contributions 

5.1    Conclusions 

Modern imaging sensors produce vast amounts of information about a given scene, 

overwhelming both human analysts and automatic target recognition systems. Autonomous 

systems are required that can fuse and then classify if we are going to exploit all of this 

data. The results presented in Section 4.6 provide a clear example that the combination 

of physiologically motivated fusion and the self-architecting capabilities of RICA provide a 

very effective means of autonomously processing the vast amounts of hyperspectral data. 

In addition to having the ability to fuse and then classify hyperspectral data, the 

physiologically motivated fusion algorithm and RICA have also been proven to outperform 

current algorithms in their respective classes. For example, it was shown in Chapter III 

that the novel fusion algorithm designed and implemented for this research outperformed all 

of the image fusion algorithms in terms of both signal-to-noise ratios and image aesthetics. 

This was a clear demonstration that a combination of wavelet-based multiresolution analysis 

weighted by the human visual system's contrast sensitivity function is an effective means to 

fuse images while suppressing noise and maintaining image detail. The results in Table 4.3, 

which show an increase in target classification accuracy of 19 points and a decrease in 

the false alarm rate by 7 points after fusion, provide another example of how this fusion 

algorithm suppresses noise and increases image detail. What Table 4.3 does not show is the 

unique way in which RICA performs classification. Namely, RICA autonomously adapts its 

architecture to optimize classification accuracy for a given data set. The fact that RICA 

is very good at this is demonstrated in Chapter IV, where RICA is shown to outperform 

many ANN architectures, including both fixed and adaptive. It is also important to note 

that not only did Chapter IV provide empirical evidence that RICA is an excellent self- 

architecting ANN, it also presented a proof showing that RICA performs a minimum mean 

squared-error approximate to a Bayes optimal classifier and that the outputs of RICA can be 

interpreted as a posteriori probabilities. Therefore, a level of confidence may be associated 
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with the classification of each sample which could prove very useful in accepting/rejecting a 

classification or in using RICA in a hierarchical network. 

5.2    Contributions 

A comprehensive method to autonomously fuse and classify hyperspectral sensor data 

was introduced. The capabilities of this method were demonstrated using real world hyper- 

spectral image data. These demonstrations showed that a combination of physiologically 

motivated image fusion and a self-architecting ANN are very effective in processing the vast 

amounts of image data produced by hyperspectral sensors. 

During the process of developing the fusion and classification model, a novel physio- 

logically motivated fusion algorithm was developed and implemented. The physiologically 

motivated fusion algorithm demonstrated the usefulness of combining a wavelet-based mul- 

tiresolution analysis with the contrast sensitivity function of the human visual system. This 

fusion algorithm was shown to outperform other fusion algorithms in both signal-to-noise ra- 

tios and image aesthetics. It was shown that contrast sensitivity based fusion, in conjunction 

with wavelet-based decomposition and reconstruction, results in better SNRs over a wide 

range of noise types, levels, and backgrounds and that the results are independent of the 

type (correlated vs uncorrelated) and strength of the added noise. It was also shown that 

this new fusion method statistically outperformed other fusion algorithms by an average of 

6.8db in SNRs. In addition, the fusion algorithm was proven to be useful in fusing hyper- 

spectral imagery for both human analysis and autonomous target detection algorithms. It 

was shown that an increase of almost 20 percentage points on average in detection accuracy 

was achieved using this fusion algorithm. 

In addition to developing a very effective fusion algorithm, a unique self-architecting 

ANN RICA was designed and implemented. RICA was designed to autonomously determine 

its architecture to optimize classification accuracy. Its capabilities were demonstrated using 

a wide range of both contrived and measured data sets. Using these data sets, RICA was 

shown to statistically outperform many other neural and statistical classifiers. It is impor- 

tant to note that in the cases where another ANN achieved a better classification accuracy 
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than RICA, the ANN's architecture had to be preselected. The goal of this research was an 

autonomous system. RICA was also proven to be useful in classifying fused hyperspectral 

imagery data. As mentioned previously, the combination of fusion and RICA resulted in an 

increase in target detection of nearly 20 points. This increase in detection was also accompa- 

nied by a decrease in the false alarm rate of 7 points. Not only was the superior performance 

of the self-architecting ANN RICA empirically demonstrated, it was mathematically proven 

to be a minimum mean squared-error approximation to a Bayes optimal classifier. Also, it 

was mathematically proven to have outputs that can be interpreted as a posteriori probabil- 

ities. This is very useful in assigning confidences to the classifications and in using RICA's 

outputs in hierarchical classifiers. 

In summary, this dissertation has presented a novel Bayes optimal self-architecting 

ANN that is very capable of classifying the outputs of a superior physiologically motivated 

fusion algorithm. 

5.3   Recommendations for Future Work 

The current version of RICA uses a univariate test for each dimension and averages 

across the results to determine the goodness-of-fit. This works well when the features are 

independent. If they are not, there may be some loss of power [18] with this method. Future 

work should implement a method by Malkovich and Afifi [48] that is a true multivariate 

Gaussian goodness-of-fit measure. Another suggestion for future work is to combine both 

Gaussian and Sigmoidal basis functions in the hidden layer. 
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Appendix A.   Additional Test Results 

This appendix presents the results of testing on two addiotnal data sets using RICA. Ta- 

ble A.l presents the average results of testing using the sample data. Table A.2 presents the 

average results of testing using the infrared imagery data. 

Table A.l Results of 30 tria s using 3 class sample test data. 

Algorithm Avg. Number of Test Accuracy Training 
Nodes FLOPs (xlO7) 

MLP 14.5 0.9561 10 
RBF 56.9 0.9776 4 

MICA 14.5 0.9463 100 
RICA 56.9 0.9663 19 

Table A.2 Results of 24 tria s using Infrared Target imagery. 

Algorithm Avg. Number of 
Nodes 

Test Accuracy Training 
FLOPs (xlO8) 

MLP 
RBF 

MICA 
RICA 

47.6 
185.6 
47.6 
134.5 

0.6645 
0.6563 
0.5861 
0.6198 

62 
39 

211 
118 
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