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Abstract 

Future integrated services networks will support multiple classes of service to meet the diverse 
quality-of-service (QoS) requirements of applications. To meet these end-to-end QoS require- 
ments, strict resource constraints may have to be imposed on the paths being used. QoS routing 
refers to a set of protocols and algorithms that can select paths that satisfy such constraints while 
achieving high network throughput. QoS routing is challenging because (1) different service 
classes employ different resource sharing models, (2) service classes dynamically share link 
resources, and (3) selecting paths that meet multiple QoS constraints is a complex algorithmic 
problem. 

This dissertation shows QoS routing in integrated services networks is both desirable 
and feasible. To support this claim, this dissertation develops an integrated QoS routing 
framework that has two components. The first component consists of routing algorithms for 
individual service classes that support either bandwidth guarantees, delay guarantees, or high 
throughput. By exploiting the relationship between QoS constraints, we develop polynomial 
routing algorithms for traffic classes that require stringent end-to-end performance guarantees. 
By coupling routing with finer-time scale resource management mechanisms such as congestion 
control and scheduling, we develop routing algorithms that achieve high throughput for best- 
effort traffic and low blocking rate for guaranteed traffic. By striking an appropriate balance 
between per-flow resource consumption and the distribution of network load, these algorithms 
improve resource utilization efficiency and network throughput under dynamic load conditions. 

In a network that supports multiple classes of service, best-effort flows can experience 
congestion or even starvation if guaranteed flows are not routed appropriately. The second 
component of the proposed QoS routing framework is an effective inter-class resource sharing 
mechanism that also takes into consideration the link load of best-effort traffic while routing 
guaranteed flows. This mechanism is simple in the sense that it influences routing decisions 
by changing the link costs used for guaranteed traffic without requiring any change to the 
routing algorithms employed for individual service classes. In various scenarios, we observed 
significant performance improvements for best-effort traffic without sacrificing any performance 
for guaranteed traffic. 
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Chapter 1 

Introduction 

This dissertation is concerned with provisioning a set of service requirements, or Quality-of- 
Service (QoS), in integrated services networks. QoS routing is a set of routing mechanisms 
under which flow path selection is based on knowledge of network resource availability as well 
as flow QoS requirements. This dissertation argues that QoS routing is desirable if we want 
to meet user requirements and achieve high network resource utilization efficiency. The novel 
algorithmic solution to QoS routing and resource management in integrated services networks 
presented in this thesis also shows that QoS routing is feasible. 

The remainder of this chapter is organized as follows. Sections 1.1, 1.2, and 1.3 describe 
QoS provision, services models, and resource management in integrated services networks. 
Section 1.4 motivates the study of QoS routing. Section 1.5 outlines the approach, the main 
contributions, and the structure of the remainder of the dissertation. 

1.1    Quality-of-Service Provision 

The advent of broadband networking technology has dramatically increased the capacity of 
packet-switched computer networks from a few megabits per second to hundreds or even 
thousands of megabits per second. This increased data communication capacity makes it 
feasible to support new applications such as video conferencing, scientific visualization, internet 
telephony, multimedia email, medical imaging, video on demand, and distance learning. In 
the mean time, the volume of traditional best-effort data traffic continues to grow with Web 
applications, digital libraries, and I/O intensive scientific applications. In this environment, the 
data payload can vary from a few megabytes to several gigabytes. 

This transformation of the Internet into an important and ubiquitous commercial infras- 
tructure has significantly changed consumer expectation in terms of performance, security, and 
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services. Unfortunately, best-effort service is still the only class of service offered in today's 
Internet. With best-effort service, all packets are typically treated equally in the network. Any 
congested link can induce increased packet delivery times, which, in turn, can result in generally 
poor performance, data jitter, or even packet loss. 

Different applications require different QoS: some require stringent end-to-end delay, some 
require a minimal transmission rate, while others with no strict delay and/or bandwidth re- 
quirements may simply require high throughput1. Although numerous service models have 
been proposed to deal with QoS requirements most of them can be described as a function of 
delay, bandwidth, and throughput. The rest of this section describes these QoS requirements in 
detail. 

1.1.1    Delay Guarantees 

A broad class of applications, e.g., interactive multimedia, internet telephony, and video con- 
ferencing, may require stringent delay, delay jitter (or delay variation), and loss guarantees. 
For example, in real-time playback applications, packets arriving after the playback point will 
be useless, and the loss of a certain number of packets will serious degrade the quality of voice 
and pictures. When the application is not merely passive, as it is in playback, but interactive, 
these effects can be even more insidious and, if severe, can render the application useless. 

End-to-end delay and delay jitter are cumulative (or additive) attributes of all links in the 
path. The end-to-end delay includes propagation delay, transmission delay, and queueing delay. 
While propagation delay is determined by the physical distance between the source and the 
destination, transmission delay is determined by the capacity of the bottleneck link on the 
path. Queueing delay, on the other hand, is determined by the network load, the burstiness 
of the traffic source, and the service disciplines employed in the network. Typically, the 
transmission delay is only seen for the first packet transmitted because of the pipelining of 
all other packets transmitted after it, while propagation delay is only a very small fraction of 
the end-to-end delay because of the increased link capacity. Queueing delay is potentially the 
dominant component in the end-to-end delay in a packet-switched network and can be limited 
through the use of different scheduling algorithms, conforming traffic sources, and bandwidth 
reservations ([105]). 

'in this dissertation, the term QoS is used both for stringent QoS (e.g., delay, delay jitter, and packet loss) and 
for requirements to achieve high throughput. When we say that a session requires QoS guarantees, if the session 
is a best-effort session, it means that the session requires high throughput. 
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1.1.2 Bandwidth Guarantees 

Transmission of multimedia streams requires a minimum bandwidth to ensure end-to-end QoS 
guarantees. Bandwidth guarantees can be requested for different time intervals depending 
on applications. For example, if an application is adaptive and has sufficiently large buffer 
space at its source and destination, the bandwidth provided by the network can vary over time, 
as long as the average bandwidth provided is higher than the minimum bandwidth required 
by the application. If an application is less adaptive, the network may have to reserve more 
bandwidth than the amount that matches the average packet sending rate. Recent studies [41] 
suggest that the network should deploy a mechanism to support bandwidth renegotiation, which 
allows bandwidth reservation to be provided at a finer time scale than per-session bandwidth 
guarantees. 

1.1.3 High Throughput 

Traditional best-effort applications, e.g., Remote Procedure Call (RPC), electronic mail, ftp, 
and telnet, usually send messages as small as a few kilobytes. The main performance index 
for these applications is the end-to-end per packet delay. As the sophistication of networked 
applications has grown, so too has the amount of data transmitted. It is now not uncommon 
to observe applications whose data payload reaches from several hundred megabytes to several 
terabytes [25,37,36]. In contrast to the transmission of small messages, these new applications 
can consume as much network bandwidth as is available. It is the end-to-end throughput rather 
than the per packet end-to-end delay that is the main performance concern. The throughput is 
determined by the total number of bytes transmitted over the elapsed time, where the elapsed 
time includes the end-to-end delay experienced by the first packet and the time interval from 
the arrival of the first packet to the arrival of the last packet. Because of their payload variances 
and their ability to consume arbitrary amounts of network bandwidth, these flows should be 
treated differently inside the network. 

1.2   Integrated Services Networks 

Historically, transmission of voice, video, and data has been carried over different types of 
networks: telephony networks for voice, cable networks for video, and computer networks for 
data. Each network provides its own dedicated resource management that is optimized for its 
particular usage. 

With the increased capacity of data networks and the emergence of multimedia applications, 
it is desirable and feasible to have a single network over which voice, image, and data streams 
can all be sent at the same time with appropriate end-to-end user QoS. Since these streams with 
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different QoS requirements share network resources, it is extremely challenging to achieve high 
multiplexing efficiency while ensuring end-to-end QoS guarantees for individual streams. 

To balance the complexity for QoS management within the network against the diversity 
of applications, the network should provide multiple classes of service with different QoS 
guarantees. Such a network is called an integrated services network because it provides 
services (e.g., real-time voice, video, and best effort) that previously required separate dedicated 
networks. 

The major networking standards bodies including the Internet Engineering Task Force 
(IETF) and the Asynchronous Transfer Mode (ATM) Forum as well as the networking re- 
search community at large have devoted a large body of effort to creating diversified services 
for integrated services networks. The current approach is to classify traffic according to its 
performance requirements and traffic characteristics. Two such multiple-classes-of-service 
models—the Internet service model [11, 93, 103, 16] and the ATM service model—are being 
defined by the IETF and ATM Forum [4], respectively. In this section, we introduce these 
service models. 

1.2.1    Internet Service Model 

New service classes being defined in the IETF include guaranteed service [93], controlled 
load service [103], and more recently differentiated service [16, 76]. While the differentiated 
service model is still in an embryonic stage, the definition of the guaranteed and controlled load 
service classes is well developed. Both service models involve the establishment of connections 
through the network with the help of a resource reservation protocol, such as the ReSerVation 
Protocol (RSVP) [107, 12], and admission control mechanisms [17, 54] based on measured 
network state information. The network ensures that sufficient resources are available once a 
flow (or a session2) is admitted. 

The guaranteed service model is based on recent studies [77, 26, 17,105, 98, 39] of a class 
of rate-proportional packet scheduling algorithms. Under these service disciplines, packets of 
different connections sharing the same output link are sent in an order that ensures a weighted 
fair sharing of link capacity among these connections. As a result, a guaranteed rate is ensured 
for flows that use the guaranteed service. Packets transmitted on such flows are thus protected 
from either ill behaved applications or intentional link sabotage. Moreover, mathematically 
provable worst-case delay, jitter, and buffer space bounds exist if the traffic source conforms to 
its traffic specification given by a leaky bucket (see Chapter 6 for the detail definition of leaky 
bucket). 

2In this dissertation, we use the terms "flow", "session", and "connection" interchangeably.   The precise 
definition of flow appears in Chapter 2. 
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To invoke the guaranteed service, an application specifies its traffic characteristics and 
desired performance guarantees. The network, on the other hand, reserves a certain amount 
of resources at each node (switch or router) on its path. Thus, the traffic specification and the 
QoS guarantees constitute a "contract" between the network and the application: once a flow is 
admitted into the network and the traffic source conforms to its traffic specification, the network 
will provide guaranteed QoS. 

The controlled load service is an enhanced best-effort service intended to support applica- 
tions requiring performance better than what is provided by traditional best-effort service. It 
limits the amount of traffic entering the network to ensure that once a flow is admitted, it enjoys 
service equivalent to best-effort service in a lightly loaded network. Even under congestion, 
network nodes offering controlled load service are expected to provide flows with low delay 
and low packet loss. To limit the number of flows receiving the service, it requires applications 
to make explicit requests for service. Such requests for service can be made using a reservation 
setup protocol, such as RSVP, or some other means. Each network node that receives a request 
for service can either accept or reject the request. Therefore, a flow can receive a guaranteed 
average rate with no per packet delay guarantees. 

1.2.2   ATM Service Model 

ATM applies cell switching technology. It employs connection-oriented virtual circuits to 
maintain the connection state inside the network so as to make it easier to provide QoS 
guarantees. The ATM forum defined five service classes [4]: Constant Bit Rate (CBR), real- 
time Variable Bit Rate (rt-VBR), non-real-time Variable Bit Rate (nrt-VBR), Available Bit Rate 
(ABR), and Unspecified Bit Rate (UBR). 

The CBR service class makes available a fixed quantity of bandwidth for each connection. 
It provides bounds on delay and delay jitter to traffic that can be characterized by its peak rate. 
The rt-VBR service class provides tight constraints on delay and delay variation. It is designed 
for soft real-time applications, such as compressed video, that have a variable transmission 
rate. The nrt-VBR service class provides guarantees on the average delay and maximum loss 
rate of a connection. It is designed for extremely bursty, time-critical applications such as 
banking transactions and airline reservations. The ABR service class enforces a bound on the 
minimum throughput of connections and additionally divides unused bandwidth fairly among 
connections sharing a fink. It is designed for applications that can adapt their traffic rate in 
accordance with the changing availability of network resources. The UBR service class does 
not provide any performance guarantees. 
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1.3   Resource Management 

To successfully provide new services to meet applications' QoS requirements, the network 
must employ effective resource management mechanisms. There are two key objectives for the 
resource management mechanisms employed in integrated services networks: 

• 

• 

Ensure per-flow end-to-end QoS as long as applications abide by the traffic contract 
agreed to when connections are set up. 

Achieve high network resource utilizations efficiency through efficient multiplexing, 
resource sharing, and load balancing. 

At the core of resource management are scheduling algorithms, congestion control algo- 
rithms, resource reservation, and routing. These mechanisms manage the network resources on 
different time scales and with different granularities. In this section, we explain these resource 
management components. 

1.3.1   Scheduling Disciplines 

Packet scheduling is the resource management mechanisms operating on the finest time scale. 
Its main function is to schedule packets from different flows sharing the same output link in 
such a way that every flow gets its appropriate share of the fink bandwidth. 

The most popular packet scheduling algorithm used in today's data network is the First- 
In-First-Out (FIFO) algorithm. With FIFO scheduling, packets are scheduled according to 
the order in which they are received. It is clear that a burst of packets from one flow can 
lead to large delay for packets from other flows. Other popular packet scheduling algorithms 
include priority-based scheduling and Round-Robin scheduling (see [105] and its references). 
More recently, a class of rate-proportional service disciplines have been identified and carefully 
analyzed [77, 26,17,105, 98, 39]. One example of a rate-proportional scheduling algorithm is 
Weighted Fair Queueing (WFQ). With WFQ [77], packets are sent in an order that ensures that 
each flow using the fink gets a fraction of the link capacity that is proportional to its weight. 

1.3.2   Congestion Control 

The main function of congestion control is to ensure that the total amount of traffic from all 
sources sharing the same link does not exceed the link capacity. Congestion control is becoming 
more important and more challenging because of increasing bandwidth-delay products in high 
speed networks. 
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The most popular congestion control schemes use window-based congestion control [80, 
48, 19, 23] such as the congestion control deployed in today's Internet. The sender maintains 
a congestion window to limit how fast data is sent and a time out to detect lost packets. Inside 
the network, packets are dropped when buffers are full. The sender interprets lost packets as 
a sign of congestion and reduces the congestion window. Recently, new congestion control 
mechanisms, e.g. Random Early Detection (RED) [30] and Explicit Congestion Notification 
(ECN) [84], queue management schemes, buffer sharing policies, e.g., Fair Random Early Drop 
(FRED) [65], have been the focus of much research. 

With the availability of per-connection state in ATM networks, explicit rate-based con- 
gestion control has been proposed for the ATM Available-Bit-Rate service [4]. With rate 
control [82, 86, 85, 14, 52, 55], sources periodically send a resource management (RM) cell. 
As the RM cell travels from the source to the destination, an explicit rate is calculated and 
inserted in the RM cell by the switches. Upon receiving an RM cell, the destination node 
sends it back to the source, and the source adjusts its sending rate according to the explicit 
rate information contained in the RM cell. A queue management algorithm is developed 
in [66]. Parallel to the development of rate-based congestion control, credit-based congestion 
control [60,57,58,59, 83] has been developed. In such a scheme, an upstream node can send a 
packet only if it has received sufficient credits from the downstream node, indicating that there 
is enough buffer space. 

1.3.3   Resource Reservation and Admission Control 

For the network to deliver quantitatively specified QoS (e.g., a bound on delay) to a particular 
flow, it is usually necessary to set aside certain resources, such as a share of the bandwidth. 
The function of resource reservation is to ensure that a flow will get its requested resources 
once the flow is admitted into the network. Several resource reservation protocols have been 
developed [107, 12, 100]. These reservation protocols provide a general facility for creating 
and maintaining distributed reservation states across a mesh of multicast or unicast delivery 
paths. 

Because the network's resources are finite, it cannot grant all resource reservation requests. 
In order to maintain the network load at a level where all QoS commitments can be met, the 
network must employ an admission control algorithm that determines which requests to grant 
and which to deny, thereby maintaining the network load at an appropriate level [17, 53]. 

Upon the arrival of a new flow request, the reservation protocol employed by the network 
sets up a connection along the path that is selected by the routing mechanism. At each hop, the 
admission control scheme determines if the link has sufficient resources to accommodate this 
new flow. If so, the resources needed for the flow are set aside and the connection setup packet 
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is sent to the next hop. If insufficient resources are available, either the flow is rejected or other 
alternative paths are tried again through the use of a crankback mechanism [27]. 

1.3.4   Routing 

Routing is the coarsest grain resource management mechanism. The goal of routing is to direct 
traffic from source to destination in accordance with the traffic's service requirements and the 
network resource constraints, while maximizing network performance and minimizing the cost 
of the path based on a link cost function. The main routing functions are as follows. 

• State information advertising: assembling and distributing user traffic state information 
which is used in generating and selecting paths. This state information includes service 
requirements, and services provided by and resources available within the network. It 
may comprise both measured and predicted values. 

• Path selection: selecting feasible or even optimal paths based on user and network state 
information. A path is feasible if it satisfies all user-imposed and network-imposed 
service constraints. Optimal paths are feasible paths that are "best" with respect to a 
specific performance objective. 

• Traffic forwarding: forwarding the user traffic along the selected paths. 

Path selection algorithms are classified as either "static" or "dynamic" based on their use 
of real time network state information. As its name implies, static path selection algorithms 
(or static routing algorithms) do not require or use real time state information. While simple 
to implement and use, these schemes are subject to obvious Mmitation, which make them 
largely impractical for QoS routing. Dynamic path selection algorithms (or dynamic routing 
algorithms), on the other hand, make use of real time network state information to generate and 
maintain an accurate real time picture of network topology. With dynamic routing, it is possible 
to select paths that are both feasible and optimal. Different routing algorithms may require 
different state information to be advertised (e.g., hop count, bandwidth, or buffer space) and 
different advertising mechanisms (e.g., flooding the whole network or exchanging information 
with local neighbors) may be used. 

It is worth mentioning that no matter how well a network is designed, routing is always an 
important network function that should respond to changes in the topology and the network 
state. Network design often relies on long-term measurements of user traffic and load. Its 
objective is to produce a network topology at minimal equipment cost that can, in conjunction 
with routing, accommodate the expected user traffic under specified network conditions. Thus, 
static routing cannot be expected to work as well as dynamic routing since the dynamic traffic 
load will not always precisely match the long-term average load the network was designed for. 
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1.4   Quality-of-Service Routing 

For traffic requiring stringent performance guarantees (e.g., delay, delay jitter, and bandwidth), 
Quality-of-Service routing selects paths that meet the resource constraints imposed by the user's 
QoS requirements. If there are several feasible paths available, the one that leads to higher 
network throughput should be selected. 

While many studies on QoS provisioning have looked at on scheduling, congestion control, 
and resource reservation, QoS routing has received much less attention. In this section, we 
discuss why QoS routing is important for an integrated services network, how QoS routing 
is different from routing in a circuit-switched network or in today's packet-switched data 
networks, and what challenges are associated with QoS routing. 

1.4.1 Routing in Circuit-switched Networks 

The most familiar circuit-switched network is the global telephone system, which carries 
primarily voice traffic. Circuit-switched networks establish physical circuits from sources to 
destinations in response to call requests. Transmission resources are dedicated to the user for 
the duration of the call. 

Historically, the telephone networks have relied on static, preconfigured paths that are 
computed off-fine at a central facility and subsequently loaded into the switches. To maximize 
the likelihood of providing the service under dynamic condition, the central facility may provide 
each switch with multiple paths to each destination. These paths are of two types: (1) alternative 
routes for use when calls are blocked on the primary path and (2) time-dependent routes for use 
at different hours of the day. 

With the introduction of stored-program-control switches with high speed processing ca- 
pabilities, dynamic routing has become a feasible alternative for telephone network routing. 
An important class of dynamic routing strategies are state-dependent routing algorithms, that 
attempt to route each call so as to minimize the blocking probability of future calls. Trunk 
Reservation and Dynamic Alternate Routing [35], and Least Load Routing [45] are some of 
the algorithms that have been deployed in major telephone networks. One of the main reasons 
why these algorithms work well is that the telephony network is often fully connected. This is 
typically not the case for data networks. 

1.4.2 Routing in Packet-switched Networks 

Most packet-switched networks employ some form of shortest-path routing. The objective of 
shortest-path routing is to determine a least-cost path between a source and a destination. The 
cost can be hop count, delay, bandwidth, queue size, or combinations thereof. 
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Shortest-path routing algorithms are divided into two classes: distance vector and link state 
algorithms [95]. Distance-vector algorithms are derived from the Bellman-Ford shortest-path 
algorithm [20], and base path selection on local estimates of path costs. They are usually 
implemented in a distributed asynchronous fashion. Link-state algorithms, on the other hand, 
are derived from Dijkstra's shortest-path algorithm [28]. They are usually implemented in a 
replicated fashion (each node performs an independent route computation) and construct paths 
based on global estimates of individual link costs. The original ARPAnet routing scheme was 
a distance vector protocol with a delay-based cost metric [73]. Such a scheme was shown to 
be prone to route oscillations [8]. For this and other reasons, a link state delay-based routing 
scheme was later developed for the ARPAnet [73]. 

As packet-switched networks grow to accommodate an increasing user population, the 
amount of routing information that must be distributed, stored, and manipulated in these 
networks also grows. Research on routing in large packet-switched networks has focused 
on ways to reduce the quantity of routing information, without sacrificing the quality of a 
selected path. The majority of proposed and deployed solutions use algorithms for hierarchical 
clustering of topology information, abstraction of routing information relating to these clusters, 
and packet forwarding within the hierarchy [56, 32, 27, 96]. 

Routing algorithms deployed in today's Internet focus on basic connectivity and typically 
support only one type of datagram service—best effort service. Current Internet routing 
protocols, e.g., BGP [88], OSPF [74], RIP [47], use "shortest path routing", i.e., routing that is 
optimized for a single metric, e.g., administrative weight or hop count. These routing protocols 
are also "opportunistic," i.e., they use the current shortest path or route to a destination. In order 
to avoid loops, alternative paths with adequate but less than optimal cost can not be used to 
route traffic (shortest path routing protocols do allow a router to alternate among several equal 
cost paths to a destination). 

1.4.3   QoS Routing: Challenges 

None of the routing schemes developed for circuit-switched telephony networks and for packet- 
switched networks can be directly applied to QoS routing in integrated services networks. For 
example, the trunk reservation and the Dynamic Alternate Routing algorithms developed for 
circuit-switched telephone networks are not applicable to data networks because data networks 
are rarely fully connected, the bandwidth requirements are disparate, and the delay in a packet- 
switched network includes not only propagation delay but also queueing delay. Similarly, 
routing in today's Internet is still based on connectivity. 

Most recently, QoS routing has begun to receive attention in both the ATM community 
and the Internet community [63]. Activities include the development of the PNNI routing 
protocol [27] for ATM networks and a QoS routing framework for the future Internet [21,104] 
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in the IETF. There is also a proposed extension to the current OSPF routing protocol to support 
QoS routing [44]. These protocols, along with some appropriate routing algorithms, once 
deployed, will support QoS based routing. However, QoS routing algorithms are not yet well 
understood. The main challenge comes from the complexity of selecting a path with multiple 
constraints, the diverse intra-class resource sharing behavior in individual service classes and 
the complexity of dynamic inter-class resource sharing among multiple service classes. These 
factors make it difficult to achieve high resource utilization efficiency. 

• Route Computation Complexity. Selecting a feasible path with a single QoS constraint can 
be realized by any shortest-path algorithm. However, selecting a path with multiple QoS 
constraints, which is required for some service classes, is in general NP-complete [33, 
102]. For example, both delay and delay jitter are additive QoS constraints, and finding a 
feasible path with given delay and jitter bounds is NP-complete. Several studies [49, 90] 
have proposed heuristics to approximate the NP-complete problem, while others [81] 
suggest solutions for a subset of the NP-complete problem. In practice, even a polynomial 
algorithm may not be computationally efficient for a large topology. 

• Achieving High Resource Utilization Efficiency. With increased network connectivity, 
more than one feasible path is often available. This raises the question of which path 
should be selected to achieve high network throughput. The question shows up in a 
number of cases: 

- With multiple QoS constraints, it is unclear which QoS parameter should be the 
main objective of optimization. 

- For different traffic classes, the resource sharing models are different. Different 
routing algorithms may need to be used to achieve high intra-class sharing efficiency. 

- When multiple classes of traffic are simultaneously present in the network, it is 
difficult to partition the link capacity over multiple traffic classes while achieving 
high inter-class resource sharing efficiency. 

There are typically two methods to achieve high network throughput: conserving re- 
sources and balancing traffic load. To conserve resources, we would like to select paths 
with as few hops as possible or requiring as little bandwidth as possible. To balance the 
network load, we would like to select the least loaded paths. In practice, these two meth- 
ods often conflict with each other. This raises the question of when routing algorithms 
should put more weight on load balancing and when they should they put more weight 
on conserving resources. Can routing algorithms automatically make the right tradeoff 
between conserving resources and balancing the traffic load? 

• Impact of Inaccurate Routing Information. Since the state information used by routing 
algorithms is advertised over the network periodically, the node making routing decisions 
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is usually using stale state information. This raises the question: how frequently should 
the routing information be advertised to ensure low operational cost, while at the same 
time achieving accurate path selection and high resource utilization efficiency? Should 
different routing information update intervals be used for different traffic classes? 

These issues have to be well understood before QoS routing can be a reality, and they are 
the focus of this dissertation. Other important issues, such as the scalability and the role of 
state and flow aggregation in QoS routing, are outside of the scope of this thesis, but they are 
briefly covered in our discussion on future work in Chapter 8. 

1.5   The Thesis 

This thesis presents a novel solution to QoS routing in integrated services packet-switched 
networks. It addresses issues related to not only path selection complexity but also resource 
utilization efficiency and it evaluates the impact of inaccurate routing information. 

1.5.1    Approach 

A central theme throughout the thesis is the coupling of routing with finer grain resource man- 
agement mechanisms. While resource management can be split into a number of components 
operating on different time scales and with different functionality, focusing on one component 
while ignoring others can result in poor performance or overly expensive solutions. In this dis- 
sertation, we tightly couple the routing algorithms with the scheduling and congestion control 
algorithms used in the network. By taking scheduling and congestion control algorithms into 
consideration, we can find more efficient and simpler solutions to QoS routing. 

Our approach is pragmatic: we use realistic service models and focus on practical rout- 
ing algorithms. Theoretically optimal routing algorithms can be attractive because they can 
potentially achieve high resource utilization efficiency. However, this efficiency may not be 
achievable without introducing high operating costs, such as complex route computations. More 
sophisticated protocols may also have to be deployed to support these algorithms. Simplicity 
has been one of the main reasons for the success of today's Internet. Incremental changes to 
the existing protocols are crucial in keeping the Internet functioning well, while starting with 
simple and practical algorithms is an important first step in understanding the full complexity 
of QoS routing. 

The evaluation is carried out using an extensive simulation study. Theoretical analytic 
models can obtain provable results. However, with the complexity of today's network topology, 
traffic distributions, and the use of inaccurate routing information, it is an extremely difficult 
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task to do analytic modeling without sacrificing realism. In our simulation study, we choose 
realistic network topologies and diverse traffic load distribution. We incorporate realistic 
routing information distributions into our performance evaluation. 

The study is carried out in two steps. We first develop routing algorithms for individual 
traffic classes. We investigate the performance impact when different intra-class sharing models 
are employed and when different routing information update intervals are used. We then study 
how to integrate the routing algorithms obtained for individual traffic classes into a global 
multi-class routing architecture. 

1.5.2   Contributions 

In this dissertation, we present a QoS routing framework for an integrated services network 
that provides services with delay guarantees, bandwidth guarantees, and high throughput. The 
framework has of two levels. At one level, we develop, for each individual service class, 
practical routing algorithms that not only find feasible paths but also achieve high resource 
utilization efficiency. At the other level, we introduce an integrated routing framework that 
avoids starvation and congestion of low priority traffic without sacrificing the performance of 
high priority guaranteed traffic. 

To the best of our knowledge, our simulation study is the first that considers not only the 
throughput for the traffic class being routed but also its impact on the performance of best-effort 
traffic. This thesis makes the following original contributions: 

• For best-effort traffic that requires high throughput, we developed routing algorithms that 
use congestion information as link state. By using a distance function that balances the 
path length and width, significant improvements in average per-session throughput can 
be achieved. To achieve even higher throughput without reducing the performance of 
single-path sessions, we proposed a novel prioritized multi-path routing algorithm, in 
which lower priority paths share the bandwidth left unused by higher priority paths. This 
leads to a new multi-level prioritized max-min fairness model. Simulation results show 
an increase of up to 35% in throughput by using a second path, while other single-path 
sessions also enjoy an increase up to 5%. 

• For traffic requiring bandwidth guarantees, we systematically evaluate several promising 
routing algorithms. The evaluation considers not only the call blocking rate but also the 
fairness to requests for different bandwidths, robustness to inaccurate routing information, 
and sensitivity to the change of the routing information update interval. We show that 
routing algorithms that favor fewer hops perform best. The bandwidth efficiency of using 
pre-computed paths for several bandwidth intervals is comparable to that of computing 
paths on demand, which implies the feasibility of class-based routing. 
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• For traffic requiring delay guarantees, the general QoS routing problem of finding a path 
with delay, delay-jitter, and buffer space constraints is NP-complete. However, we show 
that the complexity of QoS routing is polynomial if the network service disciplines are 
rate-proportional and the relationship between QoS constraints introduced by these ser- 
vice disciplines are exploited. The resulting algorithms simply iterate the Bellman-Ford 
algorithm over all different residual bandwidth values in the network. To achieve high 
resource utilization efficiency, we identified four candidate optimality criteria and show 
that an efficient path must consider both load balancing and resource consumption in 
order to perform consistently well. Furthermore, we propose and evaluate an approx- 
imation algorithm that iterates the Bellman-Ford algorithm only a constant number of 
times. 

• For an integrated services network, a routing architecture that simply combines routing 
algorithms obtained for individual classes may cause serious congestion for low priority 
traffic. We introduce a simple inter-class resource sharing architecture that takes into 
consideration the load of lower priority traffic while routing a higher priority session. 
The resulting multi-class routing algorithm performs consistently well regardless of the 
traffic load, network topology, and mixture of different traffic classes. In cases where 
the network load is unevenly distributed, it can improve the performance for low priority 
traffic significantly without sacrificing the performance of high priority traffic. 

1.5.3 Thesis Statement 

Our results can be summarized in the following thesis statement: 

Quality-of-Service routing for integrated services networks is both desirable and 
feasible. By striking an appropriate balance between per-flow resource consump- 
tion and network load distribution, it can achieve low call blocking rates for guar- 
anteed traffic and high throughput for best-effort traffic. By coupling routing 
with finer-grain resource management mechanisms such as congestion control and 
scheduling, practical QoS routing algorithms can be developed that can be intro- 
duced with few changes to the existing routing protocols. 

1.5.4 Thesis Outline 

The remainder of this dissertation is structured as follows. In the next chapter, we define the 
network and routing models that are used in the remainder of the thesis. Chapter 3 describes the 
simulation design, including topologies, traffic loads, and performance metrics. Chapter 4, 5, 
and 6 study routing for traffic requiring high throughput, bandwidth guarantees, and delay 
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guarantees, respectively. Chapter 7 describes an inter-class resource sharing mechanism that 
integrates the routing algorithms for individual traffic classes. Finally, in Chapter 8, we 
summarize our contributions and discuss some future work. 
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Chapter 2 

Network Model 

In this chapter, we present a network model to be used in the rest of the dissertation. Instead 
of using a particular network as a model, such as the Internet or an ATM network, we employ 
a model that can encompass a variety of networks. 

This chapter is organized as follows: Section 2.1 describe the flow-based network model 
to be used in the rest of the dissertation. Section 2.2 defines four classes of traffic we study. 
Section 2.3 discusses the resource sharing model employed by each of these traffic classes. 
Section 2.4 presents a brief discussion on a number of routing algorithms deployed in today's 
data networks. We summarize in Section 2.5. 

2.1   Flow-based Model 

We consider networks with arbitrary topologies and heterogeneous link capacity. Each link 
in the network has a fixed propagation delay, which is determined by the physical distance 
between the two nodes. 

2.1.1   Flows in Packet-switched Networks 

There are two types of packet-switched networks: virtual circuit networks and datagram 
networks. In a virtual-circuit network, e.g., an ATM network, a connection is setup before data 
transmission starts and is torn down after data transmission is completed. All packets for a 
connection are transmitted in sequence from the source to the destination. In such a network, 
state information is maintained at every node along the path of the virtual circuit. This state 
information can be made available to admission control, resource reservation, and QoS routing 
components of the network. 
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In a connectionless datagram network, e.g., the Internet, all information needed to deliver a 
packet is carried in the packet header and individual forwarding decisions are made as packets 
arrive in a switch or a router. No connection state information is maintained inside the network. 
The concept of a connection still exists on the end-systems, but there is no explicit connection 
setup and tear down inside the network. Different packets of the same connection may be sent 
over (possibly) different paths from the source to the destination. 

Without state information inside the network, it is hard for the network to provide end-to-end 
QoS guarantees. In order to provide these guarantees, the current trend is to maintain per-session 
state information or the aggregation of this state information in the network. State information 
can be maintained in two ways. Soft state refers to state that is periodically refreshed by the 
reservation protocol deployed in the network, so, when lost, the state will be automatically 
reinstated. For example, in RSVP, two kinds of soft state information are maintained: path 
state and reservation state. Each data source periodically sends a Path message that establishes 
or updates the path state, while each receiver periodically sends a reservation message that 
establishes or updates the reservation state. In contrast, hard state, such as the state maintained 
in an ATM network, is established at connection setup time and is maintained for the connection 
life time. A recent suggestion [16] is to maintain per-flow state only at the edge of the network, 
while the network core maintains only aggregated state information. 

The next generation of the Internet Protocol (IPv6) [24] provides enhancements over the 
capabilities of the existing Internet Protocol version 4 (IPv4) service. IPv6 adds capabilities to 
label packets belonging to particular traffic "flows". A flow in IPv6 is a sequence of packets 
sent from a particular source to a particular destination. The 24-bit Flow Label field in the IPv6 
header may for example be used by a source to label those packets for which it requests special 
handüng by the IPv6 routers, such as non-default quality of service or "real-time" service. The 
nature of that special handling might be conveyed to the routers by a control protocol, such as 
RSVP, or by information within the flow's packets, e.g., in a hop-by-hop option. 

2.1.2   Flow Definition 

We use the term "flow" to capture the concept of a virtual circuit in ATM networks and a flow in 
IP networks. In other words, a flow can be a hard-state virtual circuit as in an ATM network, a 
soft-state flow as defined in IPv6 [24], or a stateless connection as a TCP connection in today's 
IP network. 

A flow (or a session) can use a single path or multiple paths. For traffic requiring resource 
guarantees, we assume that the traffic source specifies its traffic characteristics and desired 
performance guarantees. The network does admission control to decide if the traffic should be 
admitted. Once a flow is admitted, resources along its path are reserved through a reservation 
protocol, e.g., RSVP [107]. 
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In this dissertation, we focus on point-to-point per-session flows. Understanding QoS 
routing for such flows is a fundamental step towards realizing QoS routing in future integrated 
services networks and is also an essential step towards understanding routing support for more 
complex services such as multicast and multipoint-to-multipoint flows. 

2.2   Traffic Classes 

We study two different types of flows: guaranteed flows and best-effort flows. Guaranteed flows 
require QoS guarantees in terms of delay, delay jitter, and bandwidth. Best-effort flows require 
no firm QoS guarantees but would like the network to deliver packets to their destinations as 
quickly as possible. For guaranteed flows, we consider two different types of QoS requirements: 
bandwidth guarantees and delay guarantees. For best-effort flows, we distinguish between two 
subclasses: high-bandwidth traffic and low latency traffic. 

traffic classes < 

best—effort sessions < 

guaranteed sessions   < 

low latency 

high bandwidth 

bandwidth guarantee 

delay guarantee 

2.2.1   Best-Effort Sessions 

Best-effort traffic has been and will continue to be the main traffic class in data networks for 
the foreseeable future. However, with the increasing data sizes used by applications and the 
increased network capacity, large data sets from a few megabytes to several gigabytes are often 
transmitted over the network. In contrast to traditional best-effort traffic, such as electronic 
mail, telnet, RPC, and small file transfers, this new class of applications can send data at a 
high burst rate and can make use of the high bandwidth available in the network. We call this 
new class of traffic high-bandwidth traffic while referring to traditional best-effort traffic as 
low-latency traffic. 

Both high-bandwidth and low-latency traffic want data to be sent with minimum elapsed 
time, but the factors that affects the elapsed time is different. A low-latency message may consist 
of only a few packets, and the packets should be sent to their destination with the minimum 
per-packet end-to-end delay to achieve the minimum elapsed time. For high-bandwidth traffic, 
however, a message can consist of hundreds or thousands of packets. When sending these 
packets to their destinations, the available bandwidth on the path will dominate the elapsed 
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time. Given the different traffic characteristics and the different dominating factors determining 
the performance of low-latency traffic and high-bandwidth traffic, the network should provide 
explicit support to optimize user satisfaction as well as network resource utilization efficiency 
for these two types of traffic. 

2.2.2   Guaranteed Sessions 

Among guaranteed flows, we make a distinction between those that require only bandwidth 
guarantees and those that require also delay guarantees. For a flow requiring bandwidth 
guarantees, the requested bandwidth can either be the minimal bandwidth or the average 
bandwidth. For a flow requiring delay guarantees, the QoS requirements also include delay, 
delay jitter, and loss. To provide such QoS guarantees, the network needs to reserve a certain 
amount of bandwidth at each node on the path from the source to the destination. In many cases, 
much more bandwidth than the average traffic rate may have to be reserved if the requested 
delay bound is tight and the traffic source is bursty. The reserved but unused bandwidth may 
be used opportunistically by other flows in the network. The responsibility of the scheduling 
algorithms is to ensure that the link share for each flow corresponds to its requested QoS. We 
will discuss scheduling algorithms in more details in Chapter 6. 

2.3    Sharing Polices 

One of the main characteristics of packet switched networks is the statistical multiplexing of fink 
resources among flows using the same link. In such a network, link resources are dynamically 
shared among the flows that use the same link. In a network that provides multiple classes of 
service, different styles of sharing can be enforced among sessions of different service classes. 
Our model uses two styles of resource sharing: reservation and fair sharing. 

2.3.1   Resource Reservation 

Resource reservation extends the provisioning of guaranteed services from circuit switched net- 
works into today's packet switched networks. This enables resource management mechanisms 
to be deployed that isolate sessions from one another. Our model assumes that all guaranteed 
sessions use resource reservation. For traffic requiring bandwidth guarantees, the requested 
bandwidth can be a minimum bandwidth or an average bandwidth. The requested bandwidth 
is reserved by the network. For traffic requiring delay guarantees, the traffic source specifies an 
average rate and the maximal burst size. More bandwidth than the average source sending rate 
may have to be reserved in order to achieve a tight delay bound when the burst size is large. 
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Since the actual bandwidth consumed by a session is lower than the requested bandwidth, the 
overbooked bandwidth can be either used by best-effort traffic. 

The network employs an admission control algorithm to determine if there are adequate 
resources available to admit a new flow without affecting the flows that already admitted. The 
decision can be based either on a measurement-based mechanism [54] or on an analytic model 
such as equivalent capacity [42]. 

2.3.2   Max-min Fair Sharing 

Our goal of routing best-effort traffic is to improve the performance of high-bandwidth sessions. 
There are several alternatives that can achieve this goal. One alternative is to differentiate high- 
bandwidth traffic from low-latency traffic and give high-bandwidth traffic preferential treatment 
at the expense of lower performance for low-latency sessions [18]. Another alternative is 
to devise reservation-based schemes that reserve a certain amount of bandwidth for high- 
bandwidth best-effort sessions. The difficulty in reservation-based schemes lies in determining 
the amount of bandwidth to reserve. A session may be blocked by the network if the requested 
bandwidth is not available. 

We focus on a sharing policy that treats all best effort sessions equally, and does not 
discriminate against any best-effort sessions in the network. This sharing policy is closer to the 
dynamic resource sharing in today's Internet and in ATM networks [46, 14]. 

Max-min fair sharing is defined so that flows sharing the same link will each get an equal 
share of the link bandwidth. If a flow cannot use its share, the excess bandwidth is split "fairly" 
among all other flows who can use more bandwidth. A flow may not be able to use its share 
either because it has a lower source rate or it is bottlenecked at another link. This process is 
repeated until all flows in the network become bottleneck. 

There are several definitions of "fair share". In the basic definition, if N flows share one 
output link, each of the N flows competing for the link or excess bandwidth gets one Nth of 
the bandwidth. Other definitions, such as weighted fair sharing and multi-class fair sharing, 
require pricing or administrative policies to assign a weight or class to each connection. Since 
these policies are still an active area of research, we expect the basic max-min fair share model 
to be the first one to be supported by commercial networks, and we will use it in the rest of the 
discussion. 

There are several ways to realize max-min fair sharing in a network. One option is to 
have all switches use a Fair Queueing [26] scheduler, which requires per-flow queueing and 
congestion control to avoid high packet drop rate. Another option is to have switches/routers 
explicitly compute the max-min fair rate for each connection and inform each source of this 
rate; sources are required to send no more than their max-min fair rate [14, 15]. This option 
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is particularly attractive because explicit rates are calculated by switches/routers, and can be 
directly distributed as link-states and used in load sensitive routing. The ATM ABR service 
model uses this option. A third option is to employ Round Robin scheduling in the network 
with end-to-end window based congestion control algorithms [46]. The Internet will support 
max-min fair sharing if it employs the Round Robin scheduling algorithm in all network nodes. 
Hence, max-min fair share networks cover a wide range of network types. 

The concept of max-min fair share was first proposed by Jaffe to address the issue of fair 
allocation of resources in networks based on virtual circuits (VC) or connections [50]. It has 
been identified by the ATM Forum [14, 10] as one of the main design goals for ABR traffic 
management algorithms. 

2.3.3   Inter-class Sharing 

When both guaranteed sessions and best-effort sessions are present in the network, the network 
resources are shared among sessions of different traffic classes. All (conformed) guaranteed 
sessions have higher priority than best-effort sessions. In other words, the best-effort sessions 
use the bandwidth left over from guaranteed sessions. However, when the load of guaranteed 
sessions is heavy and unevenly distributed, all resources available on a link may be reserved, 
resulting in starvation of best-effort sessions. To avoid this problem, we assume that a certain 
fraction of the capacity of each link is reserved for best-effort traffic. We also look at more 
dynamic resource sharing mechanisms in Chapter 7. 

2.4   Routing Model 

Many different routing mechanisms have been deployed in data networks. These protocols 
are characterized as being: static or dynamic routing, distance-vector or link-state routing, and 
hop-by-hop or source routing. In Chapter 1, we discussed and compared static routing with 
dynamic routing, and distance-vector routing with link-state routing. In source routing either 
the traffic source or the edge router selects the entire path. As discussed in [13], link-state 
source routing is particularly suitable for load-sensitive routing and makes it feasible to select 
paths on a per-flow basis for datagram networks where no per-flow state is maintained in the 
network. In ATM networks, a hierarchical link-state source routing protocol [27] is adopted. 

In this work, we study both static and dynamic routing. For static routing, either link-state 
or distance-vector routing can be used in a straightforward way. For dynamic routing, the 
nature of the link state may make it difficult or impossible to use distance-vector protocols. 
As a result, while many of the path finding algorithms discussed in this dissertation can be 
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implemented in either distance-vector routing or link-state routing protocols, others can only 
be used in link-state routing protocols. 

While source routing requires paths to be selected on demand upon flow arrival, hop-by-hop 
routing typically selects paths periodically and maintains the path information in the routing 
table, so routing requests result in simple table look up. For QoS routing, since different 
flows with the same destination may request different QoS, more than one path may have to 
be selected and stored. Class-based routing can be deployed as an approach to reduce the 
number of entries in the routing table. How many classes should be used in routing table 
construction depends on the distribution of requested QoS parameters and the memory size of 
each routing/switch node. We will discuss class-based routing in Chapter 5 for routing with 
bandwidth guarantees. 

2.5    Summary 

We described the flow-based network model that will be used in our routing study. This model 
captures the concept of flows in both connection-oriented and connectionless data networks. 
A flow can be a virtual circuit as in ATM networks, a IPv6 flow, or a TCP connection. We 
defined four different traffic classes and their related resource sharing models. We study routing 
algorithms for these different traffic classes after we describe our simulation design in the next 
chapter. 
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Chapter 3 

Simulation Design 

While formal analytic models can be used to develop and evaluate routing algorithms at an 
abstract level, simulation-based evaluation allows us to consider not only diverse network 
topologies, service models, and traffic load distributions but also the delays in connection setup 
and routing information propagation. The evaluation of our QoS routing framework is based 
on an extensive set of simulations, through which we are able to address different performance 
issues for routing algorithms: call blocking rate, average throughput, distribution of achieved 
bandwidth, and routing information inaccuracy. 

In this chapter, we discuss our simulator design in Section 3.1, the topologies used in the 
simulations in Section 3.2, the traffic load generation in Section 3.3, and the performance 
metrics used in our evaluation in Section 3.4. We summarize in Section 3.5. 

3.1    Simulator 

For our simulation, we developed an event-driven simulator written in C. The simulator consists 
of the following modules: routing algorithms, congestion control, scheduling algorithms, traffic 
load generation, and event processing. 

Since our focus is the evaluation of the resource utilization efficiency of different routing 
algorithms at the session level, the simulation models the data streams at the session level. In 
order to accurately account for the delay associated with connection management and routing 
information distribution, the simulator models control signals at the packet level. These control 
packets are processed with high priority, so the associated delay is thus mainly processing 
delay and propagation delay. We assume that a small fraction of link capacity is used for the 
transmission of control packets. This results in a two level simulation. At the session level, 
it selects routes, generates new sessions, and calculates max-min fair rates.   At the packet 
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level, it manages connection setup and teardown, applies admission control, makes resource 
reservation, and distributes routing information. 

The simulator manages connections as follows. For best-effort traffic, an incoming flow 
specifies the number of bytes to be sent and possibly a maximum rate that the source can 
sustain. For guaranteed traffic, an incoming flow specifies its traffic characterists and QoS 
requirements (e.g., delay and bandwidth). Paths are selected by executing the routing algorithm 
and connections are set up; both operations can have a cost associated with them. To reflect 
signaling delay, we use connection set up and tear down costs of 3 ms/hop and 1 ms/hop, 
respectively, while the routing cost for all sessions other than low-latency sessions is 10 
ms. There is no routing cost for low-latency sessions, since they use minimum-hop routes. 
Connections are torn down when the specified amount of data has been sent. 

In a data network, accurate network state information used in selecting routes is often 
not available. Instead, this state information is advertised periodically and distributed among 
all nodes in the network. For example, the routing protocol OSPF uses a reliable flooding 
mechanism to periodically exchange routing information among all nodes. The network state 
used in our routing algorithms includes the residual bandwidth and the max-min fair share 
rate of each link in addition to static topology information. To understand the impact of the 
inaccurate routing information, we implemented a simple version of flooding in our simulator: 
each node updates its link state (bandwidth) at regular time intervals (default value of 30 
seconds) and sends it to all its neighbors. Upon receiving a routing information update, a node 
updates its database and forwards the information to all its neighbors, except the one from 
which the update was received. Duplicate routing updates are discarded. 

3.2   Topologies 

A routing algorithm can behave quite differently for different network topologies. It is crucial 
to select appropriate network topologies in a simulation based evaluation of routing algorithms. 
Size, heterogeneity of link capacity, symmetry, and connectivity are four important factors to 
consider when selecting topologies to ensure that simulation results are as general as possible. 
Our focus is to understand the essence of a routing algorithm: how can a routing algorithm 
achieve high network throughput for various topologies and traffic load distributions? 

We selected the following topologies (see Figure 3.1). One is the MCI Internet backbone 
topology, which is the most frequently used topology in our study. The second topology is 
a switch cluster, which can be viewed as an interconnected set of switch clusters in different 
building. Both topologies have links with heterogeneous capacity. Relatively speaking, the 
MCI topology is less symmetric than the switched cluster topology. We also use three other 
much smaller topologies with different degrees of network connectivity, which allowing us to 
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■ 100 Mb/s 

■ 155 Mb/s 

(a) MCI topology (b) Switched cluster topology 
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G3 

(e) G3 topology 

Figure 3.1: Topologies used in our simulation evaluation 

carry out some experiments more efficiently in terms of simulation running time. In each of 
the topologies, host nodes are attached to each network node with link capacities of 155 Mb/s 
or 622 Mb/s. 

3.3   Traffic Loads 

We use two classes of traffic: guaranteed sessions and best-effort sessions. The total traffic 
entering the network is split between these two traffic classes according to a predetermined 
ratio. Given a traffic load and the ratio between guaranteed sessions and best-effort sessions, 
the traffic load for each class can be determined. 

Traffic load can be either evenly or unevenly distributed.  By considering different load 
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distributions, we are able to evaluate the performance of a routing algorithm for both scenarios 
when the traffic load distribution matches the network topology and when the traffic load 
distribution mismatches the network topology. For evenly distributed load, a new session 
selects any pair of nodes as its source and destination with equal probability. In the case of 
unevenly distributed load, a percentage of the sessions selects from a preselected set of source 
and destination pairs and the rest of the sessions randomly pick any pair of nodes as the source 
and the destination. For example, in the MCI topology, two paths with 622 Mb/s exist between 
the West and East Coasts. An unevenly distributed load can be generated by letting more 
sessions use the nodes on these two paths as their sources and the destinations. When the 
network topology is asymmetric, a unevenly distributed traffic pattern may match the network 
topology better, therefore, yielding higher network throughput. 

3.3.1   Best-effort Sessions 

For best-effort traffic, we follow the model used in [70]. There are two types of best-effort 
traffic: high-bandwidth sessions and low-latency sessions. The low latency traffic represents 
both the low-latency and rate-limited traffic. The balance between the two traffic types is 
controlled by a parameter HBFraction, which represents the fraction of bytes of data sent that 
belong to high-bandwidth connections. 

Since the key performance index for low-latency traffic is per-packet end-to-end delay, 
we assume that all low-latency sessions are routed along the minimum-hop paths (the widest- 
shortest path, see Chapter 4 for details). Since low-latency sessions have a low peak rate, their 
impact on the performance of high-bandwidth sessions is small, as we will show. We thus 
sometimes consider scenarios in which all best-effort sessions are high-bandwidth sessions. 

For each best-effort session, we assume that the number of bytes to be transmitted is 
known at the time when the request arrives. The number of bytes in each request is uniformly 
distributed over [1KByte, LLvsHB] for low latency traffic and [LLvsHB, 1GByte] for high 
bandwidth traffic; most of the simulations use a threshold LLvsHB of 1 MByte. We believe 
this a good approximation of longtail distribution [9,78] of message sizes. For high-bandwidth 
requests, the source can make full use of the bandwidth assigned by the network. For a low- 
latency connection, the source specifies the maximum rate at which it can send data over the 
connection; this peak rate is in the range of 3 to 5 Mb/second. A session sends its data at 
its max-min fair share rate, and stays alive until its last byte has been sent. Given the much 
larger message sizes of high-bandwidth traffic, the ratio of the number of low-latency sessions 
to the number of high-bandwidth sessions can be very high, even if the ratio of the volume of 
low-latency traffic to the volume of high-bandwidth traffic is set low. 

Knowing the load for best-effort sessions, the percentage of bytes to be sent in high- 
bandwidth traffic versus low-latency traffic, and the average message size, we can determine 
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the mean arrival rate of best-effort sessions. Session arrival follows a Poisson distribution. The 
change of traffic load for best-effort sessions results in a change of the mean arrival rate. In 
addition to both evenly and unevenly distributed load, we also consider a client-server traffic 
load, which represents the case of a distributed application (clients) making heavy use of a 
high-performance file system (servers). In such a client-server scenario, the low-latency load 
is still evenly distributed, but most of the high-bandwidth load is between clients and servers. 
Servers are randomly selected from the pool of hosts at the start of the simulation. 

3.3.2   Guaranteed Sessions 

The traffic load for guaranteed traffic is determined by the distributions of the call holding time, 
the average data rate of traffic sources, and session arrival process. The average rate of a traffic 
source is the requested bandwidth for traffic requiring bandwidth guarantees and the token rate 
specified in the leaky bucket for traffic requiring delay guarantees. 

Exponential call holding time distribution has been used in most simulation studies of 
real-time traffic, while others assume that all incoming calls last forever [87, 34]. Recent 
studies [9] show that the call holding time distribution for conversations, facsimile, and voice 
mail connections has a large portion of very short calls and lognormal longtail distributions. 
We follow the model suggested in [9]: most of our experiments use a holding time distribution 
that is a mixture of two normal distributions (Fi and F2) on a logarithmic time scale with a 
mixing probability a 

F{x) = a-F1(x) + (l-a)-F2(x) 

We also occasionly use an exponential call holding time distribution with the same mean call 
holding time as the lognormal long-tail distribution to evaluate the impact of call holding time 
distribution. 

Sessions requiring bandwidth guarantees can be either voice or video sessions. The re- 
quested bandwidth is uniformly distributed over [16Kb/s, 64Kb/s] for a voice session and over 
[IMb/s, 5Mb/s] for a video session. The former allows us to simulate Internet voice and video 
phone with different quality, and the latter allows us to simulate video streams encoded by 
different algorithms. The ratio of voice sessions to video sessions is a simulation parameter. 

For sessions requiring delay guarantees, the traffic source specifies a leaky bucket (a, b), 
where a is the token rate and b is the bucket size. The token rate determines the minimum 
amount of bandwidth that has to reserved and the bucket size restricts the burst size of the 
traffic allowed to enter the network. The token rate a is uniformly distributed between 1~5 
Mb/second. The maximal bucket size b is uniformly distributed over one of the two intervals: 
[4KB, 8KB] and [16KB, 20KB], each may correspond to video streams compressed by different 
video encoders and with a different frame rate. Clearly, the larger the value of b, the burstier 
the guaranteed session. 
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Sessions arrive according to a Poisson distribution. Given a traffic load for guaranteed 
sessions, the mean call holding time, and the average rate of traffic sources (token rate or 
requested bandwidth), we can determine the mean session arrival rate. 

The traffic source of a session requiring delay guarantees also needs to specify its delay 
bound. We assume that the end-to-end delay of a session is uniformly distributed either in the 
interval [80ms, 120ms] or in [200ms, 240ms]. The former is acceptable for most interactive 
user applications, while the latter may represent playback applications. Tighter end-to-end 
delay bounds require that more bandwidth is reserved. 

In our simulation, we assume that a guaranteed session consumes the bandwidth it re- 
quests, although more bandwidth than the token rate may be reserved for a session with delay 
guarantees. 

3.4   Performance Metrics 

A routing algorithm performs better than others if it results in higher network throughput. For 
best-effort sessions, higher throughput means a higher average throughput for all the flows that 
have entered the network. For guaranteed sessions, higher throughput means that more flows 
are admitted into the network. In other words, fewer flows are blocked either by the routing 
algorithm or by admission control during the connection setup. We thus use two performance 
metrics in our evaluation: average throughput for best-effort sessions and call blocking rate 
for guaranteed sessions. In addition to these two metrics, we also examine the distribution of 
achieved bandwidth and the impact of inaccurate routing information. 

3.4.1   Average Throughput 

There are several alternative performance metrics that can be used to measure network through- 
put for best effort sessions. One of such alternatives is the network throughput, i.e., the total 
number of bytes sent in a unit time interval. However, in routing studies we often assume that 
the network load is fixed, and the number of bytes entering the network during a given time 
interval is therefor also fixed. The network throughput averaged over a long time interval will 
be similar for different routing algorithms, although the average time for completing individual 
sessions can be significantly different. 

An alternative is the average per-session throughput, i.e., the sum of the throughputs 
achieved by all completed sessions divided by the number of completed sessions. The potential 
problem with this metric is that different numbers of bytes can be sent by different sessions and 
it encourages a routing algorithm to optimize the throughput for the sessions that send small 
messages. 
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In our study, we use the average throughput that takes the weighted harmonic mean of the 
average per-session throughput [51], using the message length as the weight: 

average throughput = —^—- (3.1) 
zZieN U 

where N is the total number of sessions in the network, 6Z represents the number of bytes 
sent over connection i, and U its duration. Since the total number of bytes J2ieN h sent over 
the network is fixed for a long time interval, the average throughput can also be viewed as a 
measure of the elapsed time experienced by all high-bandwidth connections. 

However, the average throughput is only part of the performance picture. Another important 
parameter is how achieved throughput is distributed. In general, having all session throughputs 
fall in a small range is preferable over having a wide variance. This is especially true in a max- 
min fair share network that tries to balance the throughput of connections sharing links. For 
this reason, we will also discuss the actual throughput distribution for a few typical scenarios 
in more detail. 

One frequently used performance index in the evaluation of scheduling, admission control, 
and congestion control algorithms is the link utilization. However, for the study of routing 
algorithms, higher link utilization does not imply that a routing algorithm is superior. Instead, 
it can encourage routing algorithms to select paths with more hops. 

3.4.2   Blocking Rate 

A guaranteed session can be rejected either because no path with sufficient resources can be 
found by the routing algorithm or because the resource availability on the selected path has 
changed since the time when the routing decision was made. The latter is caused either by 
the delay of hop-by-hop connection setup or by inaccurate routing information. Given a traffic 
load for guaranteed sessions, the network throughput is determined by the number of sessions 
admitted. Hence, the call blocking rate is a good performance metric for guaranteed sessions. 

„ ,,   ,. total number of rejected guaranteed sessions 
call blocking rate = 

total number of arrivals of guaranteed sessions 

The call blocking rate has been widely used in routing studies for circuit-switched telephone 
networks [35, 45]. 

It is clear that, if all sessions are equal, a lower call blocking rate implies more guaranteed 
sessions admitted into the network. However, when sessions can request different amounts of 
bandwidth, a low call blocking rate does not necessarily reflect high efficiency. Thus, when 

31 



32 Simulation Design 

evaluating algorithms for sessions requiring bandwidth guarantees, we introduce the bandwidth 
blocking rate, which takes into account the bandwidth of rejected sessions: 

bandwidth blocking rate = 
EieBGbandwidth(i) 

where BG_blk is the set of blocked sessions and BG is the set of requests for guaranteed 
sessions. We also evaluate the fairness of the routing algorithm: how are sessions requesting 
different amounts of bandwidth treated? 

Using the bandwidth blocking rate alone in evaluating a routing algorithm for guaranteed 
sessions can be biased or even misleading. Applying different routing algorithms for guaranteed 
sessions may have a different impact on the performance of best-effort sessions even when the 
call blocking rate for guaranteed sessions are the same. For example, when the call blocking 
rate for all routing algorithms is close to 0, the resource efficiency of the routing algorithm for 
guaranteed sessions is mainly determined by the performance of best-effort sessions. 

3.4.3   Routing Inaccuracy 

As a result of routing information distribution delay and connection setup delays, routing algo- 
rithms can generate an incorrect result. For best-effort sessions, inaccurate routing information 
may lead a routing algorithm to select paths that have low average throughput. We will evaluate 
this possible performance degradation by increasing the routing update interval. For guaranteed 
sessions, with inaccurate routing information, either a path with insufficient bandwidth may be 
selected or no feasible path may be found although one exists. To capture this aspect of routing 
algorithm performance, we define the routing inaccuracy metric: 

number of incorrect route selections 
routing inaccuracy = ————:—■  

total number of session requests 

Misrouted sessions include both those routed but rejected by the admission control, and those 
not routed while feasible paths actually exist. We will also evaluate whether inaccurate routing 
information can cause a performance degradation for guaranteed sessions. 

3.5    Summary 

In this section, we discussed the design of our simulation experiments. The simulator supports 
multiple classes of traffic, connection management, congestion control, routing information 
distribution, and many different routing algorithms. It works with different topologies, and 
supports various traffic load distributions. We defined performance metrics for the traffic classes 
that will be used in the rest of this dissertation. 
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Chapter 4 

Routing Best-Effort Traffic 

Best-effort traffic has been and will continue to be the most dominant traffic class in the Internet, 
although other traffic classes with QoS guarantees are being introduced. Traditional best-effort 
traffic, such as electronic mail, telnet, and RPC, has been mostly small messages with a payload 
typically less than a few tens of kilobytes of data. Users would like to have their messages 
arrive at their destination as quickly as possible. For this kind of low-latency traffic, it has 
been shown [101] that the minimum-hop routing, i.e., packets are sent along the path with the 
minimum number of hops, may work well when the path is not congested. Alternative paths 
should be selected dynamically during periods of congestion. 

Applications, such as I/O intensive scientific computation and the retrieval of large images, 
are moving increasingly larger data sets from a few megabytes to several gigabytes in a bursty 
fashion. In Chapter 2, we distinguished between this type of high-bandwidth traffic and 
traditional low-latency traffic and suggested that the network should provide explicit support 
for high-bandwidth traffic. 

In this chapter, we study how to route high-bandwidth traffic in a max-min fair share 
network. We show how routing can be used to improve the performance of high bandwidth 
applications. While it is possible to devise priority or reservation-based schemes that give high- 
bandwidth traffic preferential treatment at the expense of lower performance for other sessions, 
we focus on designing routing algorithms that optimize the average application throughput, 
while treating all applications equally. 

Our routing algorithms are closely coupled to the congestion control algorithm by taking 
advantage of the congestion state information, i. e., the max-min fair share rate, to perform load- 
sensitive routing on a per-connection basis. Linking the two resource allocation mechanisms 
makes it possible to do effective load-sensitive routing. We propose an abstraction for the 
congestion state information to be used by the routing algorithm. Using an extensive set of 
simulation results, we identify a link cost for "shortest-path" routing that performs uniformly 
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better than the traditional minimal-hop routing and shortest-widest path routing. To achieve 
even higher throughput without reducing the fair shares of single-path connections, we propose 
a novel prioritized multi-path routing scheme, in which each path is assigned a unique priority. 
This leads to a conservative extension of max-min fairness to multi-level prioritized max-min 
fairness, in which lower priority paths share the bandwidth left unused by higher priority paths. 
Simulation results confirm the validity of our multi-path routing scheme. 

The remainder of this chapter is organized as follows. In Section 4.1 we discuss the 
characteristics of high-bandwidth traffic. Section 4.2 we describe our approach. We develop 
the single path and multi-path routing algorithms in Sections 4.3 and 4.4, respectively. Sections 
4.5 through 4.7 present our simulation results. In Section 4.8 we discuss related work and we 
summarize in Section 4.9. 

4.1   High-Bandwidth Traffic 

Two traffic characteristics are associated with high-bandwidth traffic. One is its large message 
size compared with low-latency traffic. The other is a high source rate compared with con- 
strained flows, such as voice and video streams, that have an inherent bound on their throughput. 
In other words, a source can send data as fast as the network can consume it. The key per- 
formance index for data traffic is the elapsed time, i.e. the period from the time when the 
application issues the transfer command to the time when the transfer completes. The elapsed 
time Ei for a flow F8 consists of the following terms: 

Ei = Pi + Di + - (4.1) 

where Pi is the connection establishment time, D; is the end-to-end packet delay, 64 is the size 
of the data transfer, and r; is the average rate. 

For high-bandwidth applications, the message size &,■ is very large, so the elapsed time 
Ei is dominated by the last term. Since b{ is a constant, we minimize Ei by maximizing the 
average rate r,-. One way of increasing r4 is to give session i a higher priority, larger service 
share, or reserved bandwidth. All these mechanisms give session i preferential treatment at 
the expense of other sessions, and they require external administrative or pricing policies to 
function properly. In contrast, we focus on max-min fair networks, where all traffic streams 
are treated equally by the traffic management algorithm. It is still possible to enhance the 
performance of high-bandwidth traffic streams by routing them along paths that will yield, on 
average, higher rates. This requires that the routing algorithm can estimate the rate that new 
flows will get if they are routed along a specific path. 
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4.2   Approach 

To estimate the expected rate for a new flow along any path, the max-min fair rate information 
of the network should be made available to the routing algorithm. The goal of our routing 
algorithms is to select paths that achieve high average throughput. In this section, we first 
discuss how to obtain and represent the rate information inside the network. We then discuss 
our approach to path selection. 

4.2.1   Max-min Fair Rates as Link State 

In a max-min fair share network, the rate r2- for a flow F,- in Equation (4.1) is the average max- 
min fair share rate that F; can obtain. The max-min fair rate is an indicator of link congestion 
conditions and has been used as an explicit rate in rate-based congestion control. By using the 
max-min rate information in our routing algorithms, it possible to do effective load-sensitive 
routing. 

The highest rate that a flow can achieve in a max-min fair network is called its max-min 
fair rate, and it can be calculated step by step by increasing all flows rate equally and removing 
saturated flows and bottleneck links. A critical step to making max-min fair sharing practical 
in real networks is to develop efficient distributed asynchronous algorithms. We refer readers 
to [14] for more discussions on rate calculation algorithms and their implementations. 

We now describe a simple centralized algorithm to calculate the max-min fair rates or the 
saturation rates of all connections [7]. A connection is called saturated if it has reached its 
desired source rate or a link on the path traversed by the connection is saturated. A link is 
called saturated if all of its bandwidth has been allocated to connections sharing the link. Let 
CN be the set of all connections in the network, CN, the set of connections using link /, and 
SAT and UNSAT the set of saturated and unsaturated connections, respectively. Let SAT; be 
the set CN, n SAT, and UNSAT; the set CN; n UNSAT. Given a set S of connections, let L(S) 
be the set of all finks in the network with at least one connection in S using them. Let C\ be the 
capacity of link /. The algorithm can be described as follows: 

1. Initialization: SAT = 0, and UNSAT = CN. 

2. Iteration: Repeat the following steps until UNSAT becomes 0 

• For every link / G L = L(UNSAT), calculate 

mC/ -      jUNSATH (4'2) 
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• Get the minimum: minJnc = min{inc; | / G L}. 

• Update rate r,-: r,- = r4 + minJnc. 

• Move new saturated connections from U NSAT to SAT. 

Note that the max-min fair rate of a connection is a function of time, it can change when 
connections arrive or terminate. 

Using the max-min fair rate as a cost function is unique. The routing algorithm used in most 
networks tries to minimize the number of hops (link cost is 1), or, for load sensitive routing, 
the end-to-end delay (link cost is packet delay). Neither cost function is necessarily a good 
predictor of available bandwidth. A common link cost function in reservation-based networks 
is the residual link bandwidth — unreserved bandwidth. We cannot use residual bandwidth 
since the nature of bandwidth sharing in reservation-based and max-min fair share networks 
is very different. In contrast, an estimate of max-min fair rate that accounts for the nature of 
bandwidth sharing is an accurate load-sensitive predictor of the bandwidth available to a new 
connection. 

4.2.2   Link-state Representation 

In order to consider congestion conditions, the routing algorithm needs to know the expected 
max-min rate rt for a new connection at each link. The calculation of r, requires access to rate 
information for all connections associated with this link. Since the number of connections can 
be very large, the volume of rate information can be large as well. To address this problem, 
we introduce a concise data structure to approximate this rate information, and propose an 
approximate algorithm to calculate r8. 

For each link, instead of having a separate rate entry for each connection, we use a fixed 
number of discrete rate intervals. The rate information is simply represented by the number 
of connections with a max-min fair rate in each interval. The size of this representation scales 
with the number of rate intervals, but it is independent of, and therefore scales well with, the 
number of connections sharing the link. 

Let us look at an example. For each interval i, let rate.scal [ i ] be the middle value of 
the interval, and num_conn [ i ] the number of connections in the interval. For a link of 155 
Mb/s, rate information of a link can be represented, for example, by a vector of 64 entries with 
a scale function defined by 

rate_scal(i) = 

0.5 *i if 0 < z < 16 
1.0*2-8 ifl6<i<32 
1.5*i-24 if32<i<48 (    } 

2.0* i- 48 if48<i<64 
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We used multiple scales in this example to ensure reasonable accuracy for connections with 
low rates while restricting the size of the vector. The max-min fair rate for a new connection 
can now be estimated by the following procedure 

New_Rate(float rate_scale[], int num_conn[], int num_conn) 
{ 

int i, N, tmp_num_below_ave, num_below_ave = 0; 
float rate, rate_below_ave = 0.0; 

N = num_conn + 1; 
do { 

rate = (C - rate_below_ave) / (N - num_below_ave); 
tmp_num_below_ave = 0 ; 
while (rate_scale[i] < rate) { 

rate_below_ave += num_conn[i] * rate_scale[i]; 
tmp_num_below_ave += num_conn[i]; 
i++; 

} 
num_below_ave += tmp_num_below_ave; 

} while (tmp_num_below_ave > 0) 
return rate; 

} 

It is important to realize that both the rate representation and the algorithm that calculates the 
max-min fair rate of a link are approximations. Even if we know the precise max-min fair rate 
for all flows that use the link, the max-min fair rate calculated by the procedure NewJRat e () 
is still an estimate. For the purpose of routing, this estimate should be sufficient, because the 
routing information available is usually not accurate and the max-min fair rate will change over 
time. 

The procedure New_Rate () is invoked by network nodes to calculate the link state for 
all their output links. To avoid abrupt changes in the link state, which may potentially cause 
oscillation, the technique of exponential averaging has been suggested in the literature. That 
is, for some chosen value of a, 

rate = a * rate0id + (1 — a) * ratenew 

where rate0id is the link state advertised in the previous round and ratenew is the newly calculated 
rate by the procedure New_Rate (). However, we observed in our experiments that selecting 
a value for a other than 0 can slow down the routing algorithm's response to changes in the 
network state and can lower average throughput. In the rest of the discussion, we use a = 0. 
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4.2.3   Achieve Efficiency: Balance Path Length and Width 

There are two main approaches to achieving high resource utilization. One is to conserve 
network resources, the other is to balance the network load. To conserve the network resources, 
a path with the minimum hop count should be preferred over other paths. To balance the 
network load, a path with the least load should be preferred. 

The max-min fair rate of a path is a good indication of the path congestion condition as 
well as the throughput achievable by a flow that uses the path. When trying to maximize 
bandwidth, it seems natural to pick the "widest path" algorithm, i.e. to select the path with 
the highest current max-min fair rate. This is however not necessarily the best link cost. The 
key observation is that the max-min fair rate changes over time, and the high rate available at 
connection establishment time may not be sustained throughout the lifetime of the connection. 
Since the fair rate of a connection is the minimum of the rates available on each link, the chance 
that the fair rate will go down increases with the number of hops. Moreover, longer paths 
consume more resources, which may reduce the rate available for future connections. When 
the network load is heavy, more traffic arrives in a fixed interval, and the "widest path" path 
may have to share resources with more future connections. 

Simply using a minimal-hop path in order to conserve network resources is not always a good 
choice either. For example, when the traffic load is concentrated or when the network topology 
is less symmetric, minimal-hop paths can be very congested, and the network resources may 
not be efficiently used because other less congested paths may be available but unused. Thus, 
restricting the hop count of paths being selected does not balance the network load adequately. 

Hence, there is a need to balance path length and width when selecting a path. If the 
network load is heavy, a path with fewer hops should be selected and if the network is fight, a 
least loaded path should be selected. To achieve the goal, we must define the link cost function 
in such a way that a congested link has a high cost and at the same time there is a penalty for a 
using a long path. 

4.3    Single Path Routing 

For single path routing, the key is to select a link cost function that conserves network resources 
when the network load is heavy and balances network load when the network load is light. 
We want the path selection algorithm to do this automatically without requiring a manually 
specified threshold that distinguishes between heavy and light loads. 

Towards this goal, we define a family of polynomial link costs, (£)n, where r is the current 
max-min rate for a new connection (see [61] for the use of polynomial costs in solving optimal 
graph cut problem). By changing n, we can cover the spectrum between shortest (n = 0, or 
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minimum-hop) and widest (n -> oo) path algorithms. In the remainder of this paper we will 
consider the following five algorithms: 

• Widest-shortest path: a path with the minimum number of hops. If there are several 
such paths, the one with the maximum max-min fair rate is selected. 

• Shortest-widest path: a path with the maximum max-min rate. If there are several such 
paths, the one with the fewest hops is selected. 

• Shortest-dist(P, n): a path with the shortest distance 

k   j 

dist(P,n) = £- 
j=l  'i 

where n, • • •, nt are the max-min fair rates of links on the path P with k hops. We will 
consider three cases corresponding to n = 0.5,1, and 2. 

An interesting point is that dist(P, 1) can be interpreted as the bit transmission delay from 
the traffic source to the destination should the connection get the rate r; at hop i. This delay is 
different from the measured delay used in traditional shortest delay paths in two ways. First, 
the focus is on bit transmission delay (i.e. bandwidth) instead of total packet delay. Second, 
the measure is for data belonging to a specific connection instead of a link average. 

4.4   Multi-path Routing 

It is often the case that resource on some links may remain unused. One technique to increase 
the average throughput of a high-bandwidth traffic session is to use multiple parallel paths 
to transfer the data. Each path is realized using a single network-level connection. However, 
simply having high bandwidth applications use multiple paths is not acceptable since "max-min 
fairness" is implemented on the basis of network-level connections and a session with multiple 
paths (i.e. network-level connections) will achieve a higher performance at the expense of 
sessions using only one path. Actually, applications could increase their bandwidth almost 
arbitrarily by using more paths. 

4.4.1   Prioritized Multi-level Max-min Fairness 

To take advantage of the higher throughput offered by multiple paths, without violating the 
fairness property, we propose a prioritized multi-level max-min fair share model. In this 
model, connections are assigned different priorities. If a session has N paths, the nth path, 
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Figure 4.1: Prioritized multi-level max-min fair share 

n = 1, • • •, N, is assigned to the nth priority level. The number of priority levels in the network 
determines the maximum number of parallel paths one session can have. For a network with TV 
priority levels (Figure 4.1), N rounds of max-min fair share rate computations are performed. 
In the nth round, the algorithm computes the max-min fair share rate for all the connections at 
level n using the residual link bandwidth left unused by the higher priority connections, that is, 

mc; = 
junsatpl 

(4.4) 

where Rk is the sum of the rates of all connections with priority k. 

This model has two interesting features. First, the multi-level fair share model is consistent 
with the single-level fair share model in the sense that the max-min fair rate for sessions using 
one path will not be reduced by the presence of multi-path sessions. Second, the priority 
levels are used in the max-min rate computation, but they do not necessarily have to be directly 
supported or even be visible by schedulers on switches and sources. For example, the rate-based 
congestion control adopted by ATM forum can easily be extended to prioritized multi-level 
fair sharing. The changes needed are the assignment of a priority to each connection and the 
use of a different algorithm for the fair rate calculation. The schedulers on the sources do not 
have to be changed: they continue to enforce the explicit rate assigned to them by the network. 
Similarly, switches can continue to use FIFO scheduling. 

4.4.2   Prioritized Multi-path Routing 

The multi-path routing algorithm based on prioritized multi-level fair sharing simply repeats a 
single-path routing algorithm at each level of max-min fair sharing, starting with the highest 
priority. At each level, the algorithm only uses bandwidth left unused by paths at the higher 
priority level. Note that this means that links that are saturated at a certain level will not be 
present in the network topology used at lower levels. The algorithm terminates when either 
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paths with sufficient bandwidth have been found or no more new paths with nonzero bandwidth 
can be found. 

Finally, striping data over parallel paths is likely to introduce some overhead on the sending 
and receiving host, for example to deal with out of order packet arrival. Multi-path routing 
should therefore only be used if the expect increase in bandwidth is above a certain threshold. 

4.5   Simulation Results for Single-path Routing 

We examine the performance of the five routing algorithms discussed in Section 4.3. Through a 
simulation-based evaluation, we answer the following questions: How do the different routing 
algorithms perform with different network load, different traffic distribution, different network 
topologies, and different ratios between high-bandwidth traffic and low-latency traffic? What is 
the distribution of achieved throughput? How sensitive is the performance of these algorithms 
to inaccurate routing information? 

Initially our evaluation assumes that the accurate routing information is available. We then 
examine the impact of routing information distribution delay in Section 4.5.4. 

4.5.1   Average Throughput as a Function of Traffic Load 

We examine the average throughput achieved by high-bandwidth connections as a function 
of the aggregate traffic arrival rate from all hosts connected to a switch. The traffic load is 
uniformly distributed with 90% of the bytes traveling over high-bandwidth connections. We 
assume that accurate routing information is available. 

Figure 4.2 shows the average throughput for topologies Gl and G2. We can distinguish 
three phases corresponding to low, medium, and high traffic loads. We first focus on topology 
Gl. When the load is low, all algorithms give fairly similar performance, although "greedy" 
users who use the Shortest-widest, Shortest-dist(P, 2), or Shortest-dist(P, 1) path algorithm 
achieve slightly higher throughput. This result matches our intuition: when the network is 
tightly loaded, we expect all algorithms to perform well, but greedy algorithms are likely to 
have an edge. 

As the network load increases, the average per-connection throughput decreases. The 
greedy shortest-widest path algorithm has the biggest drop in performance, while the Shortest- 
dist(P, 0.5) and widest-shortest path algorithms, which place more emphasis on finding a short 
path rather than a wide path, exhibit the slowest decrease in average throughput. The intuition 
is that with a higher network load, resources become more scarce, and algorithms that tend to 
pick longer paths (i.e.  attach less value to a small hop count) perform more poorly. While 
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Figure 4.2: 90% bytes in high-bandwidth traffic 

a greedy algorithm might be able to increase the throughput of an individual connection by 
picking a long path with higher bandwidth, this might reduce the throughput of many other 
connections, and thus the average throughput. Moreover, paths with more hops have a higher 
chance of having their throughput reduced as a result of fair sharing with connections that are 
added later. The Shortest-dist(P, 1) outperforms all the other algorithms. 

Further increases in network load reduce the difference in performance achieved by different 
algorithms. The reason is that under high load, all links are likely to be congested, so path 
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selection becomes less sensitive to the obtainable rate and most algorithms tend to pick widest- 
shortest paths. 

While the curves for the other topologies have a similar shape, there are some interesting 
differences. Topology G2 is less symmetric and has a lower degree of connectivity than 
topology Gl. Figure 4.2(b) shows that as a result, greedy algorithms perform consistently 
better than algorithms that attach more weight to minimizing the number of hops. For example, 
the widest-shortest path, which performed well on topology Gl, has very poor performance, 
and the shortest-widest and Shortest-dist(P, 2) path algorithms, which performed poorly on 
topology Gl, give the best performance. This difference is a result of the unbalanced nature 
of topology G2: to make good use of the links connected to switch node 5 it is important to 
attach a lot of weight to the width of the path so that the bottleneck link can be avoided (link 
3-5). The Shortest-dist(P, 1) path algorithm continues to perform well, e.g., it outperforms the 
widest-shortest path algorithm by as much as a factor of 4, while its throughput is only 9% or 
less lower than with the shortest-widest paths. 

Both Gl and G2 are small topologies with 8 network nodes. We now examine the perfor- 
mance of the routing algorithms for larger topologies. Figure 4.3 shows the average throughput 
for the MCI and cluster topologies when the traffic load is uniformly distributed and we assume 
that all connections in the network are high-bandwidth sessions. 

For the MCI topology, we see that all algorithms except the widest-shortest path perform 
very similarly. The poor performance of the widest-shortest path is caused by the asymmetric 
topology and the heterogeneous link capacity. Since the traffic load is evenly distributed, the 
widest-shortest paths for some source-destination pairs have very limited capacity, and these 
paths become congested easily. Note that a widest-shortest path is always a minimal hop path, 
so there is only limited flexibility to balance the network load and to avoid congested links. 

Compared with the MCI topology, the cluster topology is more symmetric. We observe that 
the shortest-widest path results in very poor performance. We see again that selecting a path 
with more hops but higher max-min fair rate at routing time can lead to consuming more network 
resources without necessarily offering much benefit. We also see that the widest-shortest path 
does not perform well because of its limited flexibility in balancing the network load. All 
three polynomial based distance functions exhibit similarly good performance, although the 
Shortest-dist(P, 1) slightly outperforms the other two. 

When the network load is unevenly distributed, load balancing becomes more important. 
Figure 4.4 shows that, for the MCI topology and unevenly distributed traffic load, the widest- 
shortest path performs poorly compared with the other routing algorithms. We also see that the 
Shortest-dist(P, 0.5) path no longer performs as well as the Shortest-dist(P, 1) path compared 
with the case when the load is evenly distributed, because it tends to select a path with fewer 
hops and does not avoid bottlenecks as well. 

In summary, conserving network resources and balancing network load are the two important 
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Figure 4.3: 100% bytes in high-bandwidth traffic and evenly distributed load 

mechanisms to achieve high resource utilization. For a max-min fair share network, an algorithm 
performs well if it pays attention to both conserving resources and balancing load. An algorithm 
that only pays attention to conserving resources by optimizing hop count can not avoid congested 
links. Using the widest path to ensure full load balancing consumes more network resources 
and can therefore reduce the throughput of the network. The shortest-widest path may work 
well when the network load is light, but performs poorly when the network load is heavy. The 
widest-shortest path, on the other hand can not avoid congested links and does not perform 
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Figure 4.4: 100% bytes in high-bandwidth traffic and unevenly distributed load 

well, especially when the network load is unevenly distributed. By using the polynomial link 
metrics, the path length and width can be balanced automatically according to the current load 
distribution: It tends to select a minimum-hop path when the load is heavy and a widest path 
when the load is light. This results in high performance regardless of the network topology 
and traffic load distribution. Among the three polynomial link metrics, the Shortest-dist(P, 1) 
path algorithm performs consistently well across the different topologies when accurate routing 
information is available. 

4.5.2   Impact of high-bandwidth traffic volume 

We examine the effect of changing the distribution of traffic between high-bandwidth and 
low-latency connections. In Figure 4.5, the ratio of high-bandwidth traffic is reduced to 
50%, compared to 90% in Figure 4.2(a). We observe that the results are similar, although 
the performance of the shortest-widest path is somewhat better. The Shortest-dist(P, 1) path 
algorithm still outperforms the other algorithms. 

Figure 4.6 shows the average throughput as a function of the percentage of high-bandwidth 
traffic, for a fixed traffic load of 24 MB/s per switch. We see that as the contribution of high 
bandwidth traffic increases, the choice of routing algorithm used for high-bandwidth traffic has 
more impact, although even with only 10% high-bandwidth traffic, the best algorithm (widest 
shortest) still gives a 20% higher throughput than the worst algorithm (shortest widest). 
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4.5.3   Variability of per-connection throughput 

So far we have focused on the average throughput obtained by high-bandwidth connections. In 
this section we look at how the routing algorithm influences the throughput variability. Note that 
since the shape of the throughput distribution is often uneven and influenced by the topology, 
measures such as variance are not meaningful, so we exam the actual distribution. 
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In Figure 4.7, we present the throughput distribution of high-bandwidth connections for the 
shortest-widest path, widest-shortest path, and Shortest-dist(P, 1) path algorithms. The results 
are for topology Gl with 90% high-bandwidth traffic and for two traffic loads: 28 MB/s and 
20 MB/s per switch (compare with Figure 4.2(a)). 

For higher loads, the throughput distribution for shortest-widest paths has a peak around 
3 MB/s and a long tail corresponding to connections that achieve high throughput. With the 
the widest-shortest path and Shortest-dist(P, 1) path algorithms, the throughput is more evenly 
distributed between 3 to 9 MB/s, with a tail of higher throughput. With the shortest-widest 
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path algorithm, few connections are able to get a high throughput because paths with more 
hops have a higher chance of having to share bandwidth with many other connections. This 
can be seen from Table 4.1, where we break down all connections according to the number of 
hops in their paths and show the average throughput, average initial rate, and distribution of 
connections with different hop counts. We see that the ratio of the average throughput over the 
average initial rate decreases as the path length increases. 

hops 3 4 5 6 algorithms 
throughput 4.4 3.3 2.9 2.7 
AvelnitRate 4.2 3.3 3.1 3.6 shortest-widest 

throughput/AvelnitRate 1.05 1.00 0.94 0.75 
connections 30% 36% 23% 9% 
throughput 7.4 6.1 5.8 5.4 
AvelnitRate 6.7 6.1 6.5 7 Shortest-dist(Rl) 

throughput/AvelnitRate 1.10 1.00 0.89 0.77 
connections 46% 41% 12% 1% 

Table 4.1: Average throughput, average initial rate, and % of connections with different hops 

When the network load is lower (20 MB/s per-switch in Figure 4.7(b)), the throughput 
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distributions for the different algorithms are more similar. All three loads have approximately a 
bimodal distribution, which is a result of the network topology. Using the Widest-shortest and 
Shortest-dist(P, 1) path algorithms increases the chance of achieving very high throughput. 

Figure 4.8 shows the throughput distribution for topology G2, with a traffic load of 
(16MB/s)/switch and 90% high-bandwidth traffic (compare with Figure 4.2(middle)). It shows 
why the widest-shortest path algorithm performs poorly: many widest-shortest paths use the link 
between switches three and five, resulting in a bottleneck and low throughput (0.5MB/s). The 
other two algorithms can avoid the bottleneck and have more evenly distributed throughputs. 

4.5.4   Impact of Inaccurate Routing Information 

In the previous evaluation, we assumed that the routing algorithms have access to accurate 
network state information. However, because of delays in routing information distribution, 
the available routing information is often not accurate. We evaluate the impact of routing 
information update intervals on performance in this section. 

In Figure 4.9, we show a scenario with the same traffic condition and topology as Figure 4.2 
(a), but with a 100ms routing information update interval, i.e., routing information is usually 
somewhat dated. The two figures are very similar, although we observe slightly lower perfor- 
mance with a 100ms routing update interval, especially for the shortest-widest path algorithm. 
This suggests that greedy algorithms might be more sensitive to outdated information. 

I 
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100 ms: shortest-widest -o- 

accurate: shortest-dist(P, 1) -x-- 
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Figure 4.9: Gl: 90% bytes in HB traffic and different routing update interval 
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Figure 4.10: Average throughput as a function of the routing information update interval: 100% 
bytes in high-bandwidth traffic and even load 

The routing information update interval used in Figure 4.9 is 100ms, which is small. In 
Figure 4.10 and 4.11, we use larger update intervals and show the impact on the average 
throughput as the routing information update interval changes. All curves have been plotted 
with the same scale for y-axis as in Figures 4.3 and 4.4 for the purpose of comparison. We 
focus on algorithms that proved to be at least somewhat competitive in Section 4.5.1. 

Figures 4.10 and 4.11 show that the performance of algorithms that lead to paths with 
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Figure 4.11: Average throughput as a function of routing information update interval: 100% 
bytes in high-bandwidth traffic and uneven load 

more hops is more sensitive to the increased routing update interval, and that the performance 
gap among different routing algorithms also increases with the update interval. The reason 
is that, with inaccurate routing information, a path with more hops has a higher risk of being 
based on bad information. When the routing update interval increases, this risk grows faster 
for longer paths. From the two figures, we observe that, the Shortest-dist(P, 1) path gives 
up its performance advantage to the Shortest-dist(P, 0.5) path as the routing update interval 
passes over 20 seconds, because the Shortest-dist(P, 1) path will on average select paths with 
higher max-min rate and more hops than the Shortest-dist(P, 0.5) path. The results show 
the importance of taking routing update interval into consideration when evaluating routing 
algorithms. 

4.6   Simulation results for multi-path routing 

In this section, we examine the performance of our multi-path routing algorithms. Since our 
evaluation of single path routing algorithms shows that the Shortest-dist(P, 1) path algorithm 
has the best overall performance at least if routing information is frequently updated, we will 
only consider this algorithm at every priority level of multi-path routing. We will also limit 
our study to 2-path routing since our simulations show that the benefit of using a third and 
fourth path is limited (at most an additional 5% increase in throughput). Through simulation, 
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Figure 4.12: G\: average throughput as a function of traffic load for multipath routing 

we answer the following questions: How much performance improvement can be achieved by 
using two paths and what is the performance impact on sessions that use a single path only? 

Our main performance measure is the average throughput of high-bandwidth connections 
with multi-path routing, compared to that with single-path routing. Note that multi-path routing 
can improve throughput not only by adding a second path, but also by improving the throughput 
of the first path. The reason is that 2-path connections will often finish faster compared with 
single-path routing, thus freeing up bandwidth that is available for all paths. To show this effect, 

52 



4.6 Simulation results for multi-path routing 53 

we will also present the average throughput for 1-path and 2-paths connections separately. 
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4.6.1   Average throughput as a function of traffic load 

Figure 4.12 shows the average throughput as a function of the traffic load for two different 
percentages of high-bandwidth traffic, 50% and 90%. The results are for topology Gl, but 
similar results were observed for the other topologies. We observe that 2-path routing increases 
the average throughput compared with single-path routing, not only for connections that use 
two paths but also for connections that use a single path. We also observe that, as the traffic load 
increases, the increase in throughput gets smaller, although the relative increase in throughput 
with multi-path routing compared with single-path routing remains relatively constant. 

Figure 4.13 shows that the percentage of connections that use two paths increases with 
the traffic load. This is a result for the fact that, when the traffic load increases, the Shortest- 
dist(P, 1) path algorithm tends to pick the shortest path more often, which leads to a relatively 
higher number of finks with unused bandwidth, and these links can accommodate more sec- 
ondary paths. 
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Figure 4.14: G\: average bandwidth as a function of the percentage of high-bandwidth traffic 

4.6.2   Impact of high-bandwidth traffic volume 

Figure 4.14 shows the average throughput using single-path and 2-path routing as a function of 
the percentage of high-bandwidth traffic for a traffic load of 20 MB/s and 24 MB/s per switch. 
Connections that use two paths achieve an average increase in throughput of 20% to 35%, 
while connections that use a single path have a increase of 2% to 8%. The overall improvement 
ranges from 13% to 26%. We also observe that the benefit of multi-path routing decreases as 
the contribution of high-bandwidth traffic increases. The reason is that more high-bandwidth 
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traffic results in more competition among secondary paths. 

Figure 4.15 shows the percentage of sessions that actually use two paths for the two scenarios 
in Figure 4.14. The percentage of sessions that use two paths decreases as the high-bandwidth 
traffic volume increases (although the number of 2-path connections goes up). The reason is 
that high-bandwidth connections can use any available network bandwidth, i.e. they can by 
themselves saturate links, making them unavailable for secondary paths. As a result, more 
high-bandwidth traffic means fewer links available for secondary paths and a lower percentage 
of 2-path connections. 
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Figure 4.15: Gl: arrival rate 24 MB/s per switch 

Our results suggest that multi-path routing is an effective technique to make use of unused 
network resources in a max-min fair share network. While the performance improvement 
for multi-path routing is relatively constant across different traffic loads (previous section), it 
is sensitive to the volume of high-bandwidth traffic. When the percentage of high-bandwidth 
traffic increases the performance improvement from multi-path routing goes down, both because 
it is harder to find secondary paths and because less bandwidth is available once they are 
established. 

4.6.3   Variance of Increased Throughput 

Figure 4.16 shows the distribution of the throughput increase over single-path routing for 
sessions that use two paths; the graph includes results for 30% and 70% high-bandwidth 

55 



56 Routing Best-Effort Traffic 

traffic (compare to Figure 4.14). The two distributions are fairly symmetric, with an average 
throughput increase around 3 MB/s. A few sessions increased their throughput by as much 
as 6 to 10 MB/s. A few sessions suffer a throughput reduction. The reason is that the early 
completion of some sessions changes the routes of later sessions, and in some cases that results 
in routes with a slightly lower average rate. 

*   1.5 

30% bytes in HB and 2-path 
70% bytes in HB and 2-path 

2 4 6 
Increased bandwidth: MB/s 

Figure 4.16: G\: throughput increase for two-path connections with an arrival rate 20 MB/s 
per switch 

Figure 4.17 shows the distribution of the throughput increase over single-path routing for 
sessions that could not find a second path; the peak (off scale) corresponds to 54% of the 
connections observing an increase of about 0.1 MB/s. On average, single-path connections 
benefit slightly from multipath routing. We also observed that the distribution is more spread out 
when the ratio of high-bandwidth traffic is higher. This indicates that there is more interference 
among high-bandwidth connections. 

4.7   Sensitivity analysis 

In the previous discussions, we used a fixed Peak Cell Rate (PCR) (3-5 MB/s depending on 
message size) for low-latency traffic, and a fixed routing cost of 10 ms for routing algorithms 
other than the widest-shortest path. In this section, we show the performance impact of changing 
these parameters. 
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Figure 4.17: G\: throughput increase for single-path connections with an arrival rate 20 MB/s 
per switch 

4.7.1   Impact of PCR of low-latency traffic 

In Figure 4.18, we show the performance impact on single path and multi-path routing of (a) 
increasing and (b) decreasing the PCR rate for low-latency traffic by 1 MB/s. The topology is 
Gl and the traffic load is 24 MB/s per switch. We observe that the performance of single-path 
routing is fairly insensitive to the PCR. For multi-path routing, while the overall performance is 
very close to what we showed earlier (Figure 4.14(a)), the performance improvement is slightly 
higher when the PCR is lower. The reason is that a lower PCR leaves more unused bandwidth 
for lower priority paths. 

4.7.2 Impact of routing cost 

In Table 4.2 we list average throughputs for two different routing costs (1ms instead of 10ms); 
the results are for topology Gl, a ratio of high-bandwidth traffic of 90%, and a traffic load of 
24 MB/s per switch. We see that the change in routing cost has little impact on the results. This 
is no surprise since high-bandwidth flows have a long life time. 

4.7.3 Impact of LLvsBB 

In Table 4.3, we list average throughputs for two different cutoff LLvsBB's between high- 
bandwidth and low-latency traffic. The results are for topology Gl, a HBFraction of 90%, 
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Figure 4.18: G\: arrival rate 24 MB/s per switch 

and a traffic load of 28 MB/s per switch. The performance becomes slightly worse when 
LLvsBB increases from 1 to 10 MByte, due to the decreased number of connections and 
consequently increased traffic concentration. The impact on the results is small, although it 
affects shortest-widest paths more than Shortest-dist(P, 1) paths. 
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1 ms 10 ms 
shortest-widest 5.86 6.08 
widest-shortest 7.45 7.44 

Shortest-dist(P, 1) 8.29 8.25 
Shortest-dist(P, 2) 7.45 7.50 

Shortest-dist(P,0.5) 7.91 7.91 

Table 4.2: Average throughput in MB/s for two routing costs 

1MB 10 MB 
shortest-widest 3.52 3.18 
widest-shortest 5.86 5.59 

Shortest-dist(P, 1) 6.49 6.42 
Shortest-dist(P,2) 5.54 5.50 

Shortest-dist(P,0.5) 6.35 6.12 

Table 4.3: Average throughput in MB/s for two LLvsHB's 

4.8   Related Work 

To the best of our knowledge, this is the first study on routing algorithms in networks with 
max-min fair sharing. In this section, we review related work in the areas of service definition 
and routing. 

It has long been recognized that data communication applications can be divided into 
several classes, including bulk data transfer and interactive applications. However, traditionally 
networks do not distinguish between these classes. With the advent of integrated service 
networks, several proposals [18, 92, 64] have been made to divide the traditional best-effort 
service into multiple service classes. An alternative to defining service classes is to implement 
queueing policies that optimize the performance of interactive application without sacrificing 
bulk data transfer applications; this is for example done in the DataKit network [31]. These 
approaches rely on traffic management support to optimize the performance of different classes 
of applications. In contrast, we assume that the traffic management algorithms treats all data 
transfers in the same way, and we pursue the use of routing to optimize performance. 

Packet-switched networks have traditionally used shortest-path routing. While different 
measured "link-cost" measures can be used (see [91, 73]), earlier networks typically selected 
minimal-hop paths. The problem with using measured link costs is that it does not always 
accurately account for how resources are shared among connections, so they can be inaccurate 
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and even misleading. The rate information we use is an accurate measure of available bandwidth 
since we model the sharing algorithm that is used in the max-min fair share network. 

Routing in circuit-switched networks has focused on finding paths with certain QoS guar- 
antees while minimizing the blocking rate of future requests. Trunk-reservation [2], adaptive 
routing [35], shortest-widest path [102], and min-max routing have been well-studied and are 
very relevant to today's QoS routing in data networks. However, these algorithms are based on 
a residual bandwidth model, which is representative for reservation-based networks but not for 
max-min fair share networks. 

Multipath routing algorithms have been used to optimize network performance [75,101,5, 
13, 94, 99]. Multiple paths are selected in advance. When data traffic arrives, a path with the 
lowest traffic load is used. None of these studies addresses the issue of fairness. In contrast, 
we studied the use of multiple paths simultaneously to maximize throughput in a max-min fan- 
share network. 

4.9    Summary 

In this chapter, we have studied routing support for high-bandwidth traffic in max-min fair 
share networks. A fundamental feature of our routing algorithms is that they make use of 
rate information provided by the fair share congestion control mechanism. By giving the 
routing algorithm access to rate information, we couple the coarse grain (routing) and fine grain 
(congestion control) resource allocation mechanisms, allowing us to achieve efficient and fair 
allocation of resources. 

To achieve high network utilization, a routing algorithm should not only conserve network 
resources but also balance network load. Neither selecting a path with minimum hop count nor 
selecting a path with widest available rate achieves this goal. 

Our evaluation of single-path routing algorithms for high-bandwidth traffic shows that, 
when routing information is accurate, the Shortest-dist(P, 1) path algorithm performs best 
in most of the situations we simulated. When the routing information becomes less accurate 
because of an increase in the routing update interval, the Shortest-dist( P, 0.5) path algorithm can 
outperform the Shortest-dist(P, 1) path algorithm. While the Shortest-widest path algorithm 
can give slightly better performance when the network load is very fight, it can have very 
poor performance for medium and high traffic loads, because it tends to pick paths that are 
resource-intensive. The Shortest-dist(P, 1) path and the Shortest-dist(P, 0.5) path algorithms 
are able to route around bottlenecks, thus avoiding the clusters of connections with very low 
throughput that are sometimes the result of using the Widest-shortest path algorithm. Overall, 
the Shortest-dist(P, 1) path algorithm balances the weight given to the "shortest" and "widest" 
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metrics in an appropriate way, and the Shortest-dist(P, 0.5) path algorithm is more robust with 
respect to delayed routing information. 

Finally, we introduces a prioritized multi-level max-min fairness model, in which multiple 
paths are assigned different priority. This approach prevents a multi-path connection from 
grabbing an unlimited amount of bandwidth by using a large number of paths, i.e. additional 
paths only use unused bandwidth and do not affect the bandwidth available to primary paths. 
Our simulations show that 2-path routing increases the average bandwidth compared with 
single-path routing by 25% overall and 35% for those connections using two paths. 
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Chapter 5 

Routing Traffic with Bandwidth 
Guarantees 

Transmission of multimedia streams imposes a minimum-bandwidth requirement on the path 
being used to ensure end-to-end QoS guarantees. In this chapter, we study how to route traffic 
requiring bandwidth guarantees. The only QoS parameter is bandwidth. The goal of routing 
traffic with bandwidth guarantees is to find a feasible path if one exists, and to select one that 
achieves efficient resource utilization if more than one such path is available. 

While finding a path with bandwidth guarantees has been studied extensively for telecom- 
munication circuit-switched networks, but QoS routing with bandwidth guarantees in packet- 
switched data network is very different because of the distributed control and lack of fully 
connected network topology in data networks. 

Although any shortest-path algorithm can be used to select a feasible path with a requested 
bandwidth, the resource efficiency of different "shortest path" criteria is not well understood. 
Several path selection algorithms have been proposed in the literature, including widest-shortest 
path [44], shortest-widest path [102], and utilization-based path selection algorithms [70]. 
However, a systematic evaluation of these algorithms is missing. 

In this chapter, we present a systematic evaluation of four routing algorithms using the 
following "optimality" criteria: minimum hop count, maximum residual bandwidth, minimum 
path cost based on link utilization, and a variant of the dynamic-alternate path algorithm used in 
telecommunication networks. These algorithms make different tradeoffs between minimizing 
resource consumption and balancing network load. Our evaluation considers not only the call 
blocking rate but also the fairness to requests for different bandwidths, robustness to inaccurate 
routing information, and sensitivity to the routing information update frequency. Finally, the 
choice of routing algorithm for traffic with bandwidth guarantees can have a significant impact 
on the performance of best-effort sessions, so we also evaluate that performance metric. 
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The rest of the chapter is organized as follows. After a brief discussion on finding feasible 
paths in Section 5.1, we present the four routing algorithms in Section 5.2. The next three 
sections examine the performance of different routing approaches: dynamic on-demand routing 
in Section 5.3, static routing in Section 5.4, and class-based routing in Section 5.5. The 
performance impact on best-effort traffic is examined in Section 5.6. We discuss related work 
in Section 5.7 and conclude in Section 5.8 

5.1    Selecting Feasible Paths 

A path is feasible if the unserved bandwidth of all links on the path is higher than the requested 
bandwidth. Given a path p = {ii:..., 4}, the maximal reservable bandwidth (mrb) on the 
path p is the minimum of the reservable bandwidth of all links on the path: 

mrbp = mm{Ri}\ij 6 p}. 

The path p is feasible if the mrbp is no less than the requested bandwidth b: mrbp > b. 

To select a feasible path, either Dijkstra's shortest-path algorithm or the Bellman-Ford 
shortest-path algorithm (see [20]) can be used. For example, we can define the cost of a link 
ij as R{ —the link residual bandwidth—and the cost of a path p the mrbp. Using either 
shortest-path algorithm, a path with the maximum mrb can be selected. If the mrb is no less 
than the request bandwidth b, a feasible path is found. An alternative is to prune all links whose 
residual bandwidth is less than the request bandwidth and then to select a shortest-path in the 
remaining graph using any cost function. 

5.2   Selecting Efficient Paths 

While a feasible path can be selected using any shortest-path algorithm, additional optimality 
constraints need to be imposed to achieve efficient resource utilization. The most common way 
for a routing algorithm to achieve resource efficiency is to limit resource consumption and to 
keep the network load balanced. 

For traffic with bandwidth guarantees, resource consumption can be reduced by restricting 
the hop count of the path being selected, while the network load can be balanced by selecting the 
least loaded path. However, these two "optimality" constraints can conflict, since a path with 
the fewest hops may contain heavily loaded links. Routing algorithms with different optimality 
criteria can be obtained by attaching different weights to the two constraints. Understand- 
ing the performance tradeoffs between these routing algorithms is essential to the successful 
deployment of QoS in future networks. 
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5.2.1   Selection Criteria 

Several path selection algorithms that put different weight on limiting hop count and on bal- 
ancing the network load have been proposed in the literature. They include the widest-shortest 
path [44], the shortest-widest path [102], and a utilization-based shortest path algorithm [70]. In 
the literature on telecommunication routing, where the network is often fully connected, it has 
been shown [35] that dynamic alternate path routing combined with trunk reservation performs 
well. In such a scheme, a one-hop path is always used if it is available; a two-hop alternate path 
is chosen randomly when a call is blocked on the one-hop path. Trunk reservation reduces the 
number of calls using alternate paths by only permitting a certain number of trunks on a link 
to be used by alternate paths. Since data networks are rarely fully connected, we introduce a 
simple variant of dynamic alternate path routing that does not use trunk reservation. Overall, 
we selected the following four candidate paths for evaluation: 

• Widest-shortest path: a path with the minimum hop count among all feasible paths. If 
there are several such paths, the one with the maximum reservable bandwidth is selected. 
If there are several such paths with the same bandwidth, one is randomly selected. 

• Shortest-widest path: a path with the maximum bandwidth among all feasible paths. If 
there are several such paths, the one with the minimum hop count is selected. If there are 
several such paths with the same hop count, one is randomly selected. 

• Shortest-distance path: a feasible path with the shortest distance. The distance function 
is defined by 

k    x 

dist(p) = £ "5- 

where Rij is the bandwidth available on link ij. It has been shown that this algorithm 
performs consistently well when routing best-effort sessions 4. 

• Dynamic-alternate path: Let n be the hop count of a minimum-hop path when the 
network is idle. A dynamic-alternate path is a widest-shortest path with no more than 
n+1 hops. 

The widest-shortest path gives high priority to limiting the hop count, while the shortest- 
widest path gives high priority to balancing the network load. The shortest-distance path uses 
the distance function to dynamically balance the impact of the hop count and the path load. 
For the dynamic-alternate path, we do not consider trunk-reservation, since the minimal-hop 
path may not be unique and the performance may be sensitive to the trunk-reservation rate. 
Compared with the shortest-widest path, the dynamic-alternate path puts an upper bound (n+1) 
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on the widest-shortest path. The four algorithms are points in a spectrum that corresponds to 
different tradeoffs between conserving resources and balancing network load: 

dynamic-alternate widest-shortest shortest-distance shortest-widest 
i— resource conserving load balancing —> 

5.2.2   Algorithms 

In this section, we describe algorithms for each of the four path selection criteria. 

A widest-shortest path algorithm based on the Bellman-Ford algorithm is described in [44]. 
It selects a path with maximal residual bandwidth for different hop count. The one with 
minimum hop count is a widest-shortest path. We can also modify Dijkstra's algorithm to 
find the widest-shortest paths by defining two distance functions: the hop count is the primary 
function and the mbr is the secondary function. When selecting the next node to mark, one 
selects the node with the minimal hop count. If several nodes have the same minimal hop count, 
one selects the node with the largest mbr. The algorithm terminates when the destination is 
reached. 

4 

Figure 5.1: Finding a path from S to D with bandwidth 2 

A simple shortest-widest path algorithm applies Dijkstra's algorithm twice. First we find 
a widest path; assume its bandwidth is B. Then we find a shortest path with bandwidth B by 
using Dijkstra's algorithm on a network that only includes links of bandwidth B or higher. Note 
that the single-pass link- state shortest path algorithm given in [102] does not always find the 
shortest-widest path. For example for the topology in Figure 5.1, the algorithm will select the 
lower path in the graph using links with bandwidth 4. The reason is that, when a link (e.g., 
the link connected to the node D) with low bandwidth has to be added to the path, the earlier 
shortest-widest segment may no longer be the shortest-widest one. 

The shortest-distance path can be selected by any shortest-path algorithm using the distance 
function as the cost function. The dynamic-alternate path can be selected by using the widest- 
shortest path algorithm while imposing a hop count restriction on the nodes being selected. 
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Figure 5.2: Bandwidth blocking rate as a function of network load: MCI topology, evenly 
distributed load, and path selection on demand 

Each of these algorithms may select a path that is not feasible, either because of stale 
routing information or because of changes in the network state while the connection is being 
established. If that happens, the request is rejected. Similarly, it is possible that the algorithms 
do not find a feasible path, although one exists. 
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Figure 5.3: Blocking rate as a function of network load: MCI Topology, 60% voice sessions, 
evenly distributed load, and path selection on demand 

5.3   Dynamic On-demand Routing 

In this section, we examine the performance of the four routing algorithms described in Sec- 
tion 5.2.2. We assume that guaranteed sessions are the only traffic class in the network. Paths 
are selected on-demand using dynamic load information, which is updated asynchronously 
every 30 seconds. 
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Figure 5.4: Bandwidth blocking rate as a function of network load: cluster topology, 100% 
video sessions, Evenly distributed load, and path selection on demand 

5.3.1   Blocking Rate 

We examine the blocking rate of the four routing algorithms for different loads, topologies, 
and call holding time distributions. We first consider evenly distributed traffic loads and then 
unevenly distributed loads. The details of the traffic loads are described in Section 3.3.2. 

5.3.1.1    Evenly Distributed Load 

Figure 5.2 shows the bandwidth blocking rate as a function of the traffic load. Traffic is evenly 
distributed and results are shown for 60% audio and 40% video sessions (a), and for 100% video 
sessions (b). Overall, we see that the bandwidth blocking rate is linearly proportional to the 
network load. When the load is heavy, the shortest-widest path performs poorly because it tends 
to allocate long expensive paths, which penalizes later arrivals. As the network load decreases, 
the performance difference between the four algorithms becomes smaller; the shortest-distance 
path performs slightly better and the shortest-widest path slightly worse than the others. When 
the network load is very light, all four algorithms have similar performance, although the 
shortest-widest path now performs best and the shortest-distance path algorithms is a close 
second. The following table lists the bandwidth blocking rate (in %) for the same simulation 
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Figure 5.5: Call blocking rate as a function of requested bandwidth: evenly distributed load 
and path selection on demand 

configuration as in Figure 5.2 (a) when the the network load is 114 MB/s. 

WS SW SD DA 
40% video sessions 0.2388 0.1665 0.1836 0.6860 
100% video sessions 0.1505 0.0604 0.0678 0.4806 

This result is different from the result obtained for best effort traffic in Chapter 4, where 
we found that the impact of the routing algorithm on performance was often significant. This 
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difference is caused by the different resource sharing rules in the two traffic classes. For best 
effort traffic, link capacity is shared among all sessions, and all paths are feasible, even those 
that use links that are heavily congested compared with other parts of the network. Compared 
with the widest-shortest path, which is strictly a minimum-hop path, the shortest distance path 
algorithm is able to route around congested links. For traffic with bandwidth guarantees, the 
heavily congested finks are no longer feasible and all algorithms will route around them. For 
example, a widest-shortest path is not necessarily a minimum-hop path, but the shortest one 
among all feasible paths. 

In Figure 5.3 we show the call blocking rate for audio and video traffic separately. We see 
that audio traffic has a much lower blocking rate (under 0.4%) than video traffic, as one would 
expect given its lower bandwidth requirements. 

Figure 5.4 shows the bandwidth blocking rate as a function of traffic load for the cluster 
topology. We observe that the shortest-widest path performs much worse than the other three, 
and the dynamic alternate path performs much better when the load is heavy. This suggests that 
with a more symmetric topology, restricting resource consumption becomes more important 
when the network load is heavy. The dynamic-alternate path does not consider "expensive" 
paths that are two or more hops longer than the minimal hop path, i.e. it rejects requests that 
would require a relatively expensive path, favoring later "cheaper" requests. The shortest- 
distance path performs slightly better than the dynamic-alternate path when the load is light. 
The reason is that the restriction on the hop count of a path limits the degree to which the 
algorithms can route around congested links. 

In Figure 5.5 we show the call blocking rate as a function of the requested bandwidth; all 
requests for less than 1 MB/s (i.e. audio) are combined in a single data point (MCI topology). We 
see that the call blocking rate is almost a linearly function of requested bandwidth, confirming 
that the algorithms favor sessions that ask for less bandwidth. 

5.3.1.2   Unevenly Distributed Load 

Figure 5.6 shows bandwidth blocking rates for an uneven load distribution. 50% of the traffic 
is between the west coast and east coast in the MCI topology, and between the left bottom 
corner building and other buildings in the cluster topology. For both topologies, our earlier 
observations hold: the shortest-widest path performs worse than the other three algorithms, the 
dynamic-alternate path performs better when the load is heavy, and the shortest distance path 
performs better than dynamic alternate path when the load is light. 
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Figure 5.6: Bandwidth blocking rate as a function of network load:  100% video sessions, 
unevenly distributed load, and path selection on demand 

5.3.1.3    Impact of Call Holding Time Distribution 

Figure 5.7 (a) shows the bandwidth blocking rate for the configuration used in Figure 5.2, 
but using an exponential call holding time distribution with the same mean as the long tail 
distribution used in Figure 5.2. We observe a slightly higher bandwidth blocking rate when using 
an exponential call holding time distribution. The reason is that with a long-tail distribution, 
there are more sessions with a short call holding time. These shorter sessions can more easily 
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Figure 5.7: Bandwidth blocking rate: MCI topology, 60% voice sessions, evenly distributed 
load, exponential call holding time, and path selection on demand 

use the bandwidth left unused by long sessions, minimizing the impact of a poor routing 
decision. 

Figure 5.7(b) shows the call blocking rate as a function of the mean call holding time. We 
see that the bandwidth blocking rate is higher for shorter mean call holding times. The reason 
is that, with the same traffic load but lower mean call holding times, more sessions arrive during 
a routing update interval. This reduces the accuracy of the routing information, which results 
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Figure 5.8: Routing inaccuracy as a function of network load: MCI topology, and 100% video 
sessions 

in more rejected sessions. 

5.3.2   Routing Inaccuracy 

In Figure 5.8 we show the routing inaccuracy as a function of the network load for both evenly 
and unevenly distributed traffic loads. 

74 



5.3 Dynamic On-demand Routing 75 

40 

30 

8" 
2 
O u 
CO c 

40 

:?  30 

o u 
CO c 

Widest-Shortest 
Shortest-Widest 

Shortest-Distance 
Dynamic-Alternative 

30 60 90 
Update Interval (seconds) 

(a) Evenly distributed load 

120 

Widest-Shortest -«- 
Shortest-Widest -+-■ 

Shortest-Distance -B- 
Dynamic-Alternative ■■*■■■ 

30 60 90 120 
Update Interval (seconds) 

(b) Unevenly distributed load 

Figure 5.9:  Inaccuracy as a function of routing update time:  MCI topology, 100% video 
sessions, and 380MB/s 

We observe that the routing inaccuracy increases with the network load for all algorithms, 
and that the shortest-widest path algorithm is the most sensitive to inaccurate routing informa- 
tion. The widest-shortest path and the shortest-distance path have similar performance, with the 
shortest-distance path doing slightly better. The dynamic-alternate path algorithm is the most 
robust one when the load is heavy but it loses ground to the shortest-distance path algorithm 
when the load is uneven and light. We also see a significant difference between evenly and 
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Figure 5.10: Bandwidth blocking rate as a function of routing information update interval: 
MCI topology, 100% Video sessions, and 380MB/s 

unevenly distributed loads in how sensitive performance is to routing inaccuracies. The reason 
is that when the traffic is concentrated (unevenly distributed), more sessions will be routed to 
the area where traffic is concentrated, which results in a faster rate of changes in the network 
state and more incorrectly routed sessions. We can see this more clearly by comparing the 
routing inaccuracy metric (Figure 5.8) with the blocking rate (Figure 5.2 (b) and 5.6 (a)). We 
observed that for evenly distributed traffic most of the blocked sessions are rejected by the 
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routing algorithm. For uneven traffic, except for the dynamic-alternate path, blocked sessions 
have typically been routed, but they are rejected by the admissions control module on one of 
the switches. 

The routing inaccuracy metric covers both sessions that are routed but later rejected and 
sessions that are not routed when a paths does exist. Our simulations show that the sessions that 
are routed but are later rejected dominate routing inaccuracy. Among the sessions for which no 
paths are found, 6-10% percent for even load and 10-40% for uneven load would have found a 
path if accurate routing information had been available. 

Figure 5.9 explores the sensitivity of the routing accuracy to the routing update interval, 
which was 30 seconds in the earlier simulations. We see that the routing inaccuracy increases 
with the update interval. However, the pace of increasing slows down above a threshold of 
about 30 seconds. The shortest-widest path is most sensitive and the dynamic-alternate path is 
least sensitive to increases in the routing update interval. 

Figure 5.10 shows the bandwidth blocking rate as a function of the routing information 
update interval. It is interesting to see that, while the routing inaccuracy increases with the 
routing update interval, the bandwidth blocking rate remains quite stable. In some cases, the 
bandwidth blocking rate is even slightly higher when the routing information is more accurate. 
The reason is that, with more accurate information, the network allocates resource more 
"conservatively" in the sense that it discourages sessions from trying whether there is a path 
available. With less accurate information, it can "over allocate" resources: even though no path 
can be found at routing time with accurate routing information, sessions can successfully set up 
a connection, using resources that are being relinquished by connections that are terminating. 

We conclude that increasing the routing information update interval does not affect the 
overall blocking rate much, even though more sessions are routed and rejected by the admission 
control algorithm, or are not routed while a path exists. 

5.4   Static Routing 

Dynamic routing can be expensive both in terms of operational costs and implementation com- 
plexity. Static routing uses static link capacity as link-state and is much simpler to implement, 
since it, for example, eliminates the need to distribute dynamic traffic information. Our sim- 
ulation results show that in a network with evenly distributed traffic load, the performance 
difference between static and dynamic routing can be very small. However, when the load is 
unevenly distributed, the performance difference between dynamic and static routing can be 
significant (see Figure 5.11). The reason for the significant difference is that loaded links cannot 
be avoided with static routing, and selecting a loaded path leads to a session being rejected. 
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Figure 5.11: Bandwidth blocking rate as a function of network load: MCI topology, 100% 
video sessions, and unevenly distributed load 

An evenly distributed load matches the traffic pattern that the network was designed for. In 
such cases, static routing may work reasonably well. However, as we mentioned in Chapter 1, 
network design often relies on long-term measurements of user traffic and network load, but 
the actual traffic pattern in the network changes over time. Dynamic routing can track these 
changes in the traffic pattern, allowing it to make more efficient use of the network resources. 

5.5    Class-based Routing 

An alternative to on-demand dynamic routing is to use pre-computed paths: each router updates 
its paths regularly when new link-state information is received. The scheme is still dynamic but 
it is cheaper. Since the requested bandwidths can be very diverse, using a path that meets all 
bandwidth requests will result in using the widest path, which does not always perform well, 
as we have shown above. An alternative is to use class-based routing: several paths, each for 
a different bandwidth range, are precomputed. A new session selects the path with the lowest 
bandwidth satisfying the request. 

Figures 5.12 and 5.13 compare the performance of three ways of selecting pre-computed 
paths and compares them with on-demand path selection; we consider the widest-shortest and 
shortest-distance path algorithms, since they have the best overall performance in Section 5.3. 
The "type 3" algorithm uses three classes serving bandwidth requests falling in the ranges 
(0,1], (1,3], and (3,5]. The "type 2" algorithm uses two classes, serving audio and video 
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Figure 5.12: Bandwidth blocking rate as a function of network load: MCI Topology, 60% voice 
sessions, evenly distributed load 

traffic, and the "type 1" algorithm uses only one class. We observe that the efficiency increases 
with the number of classes. However, the difference is not very high, which suggests that class- 
based routing is feasible. We also see that the use of class-based routing has less effect on the 
widest-shortest path algorithm, while the shortest-distance path gives up the small performance 
advantage it had over the widest-shortest path when paths are selected on demand. 

Figure 5.14 shows the call blocking rate of class-based routing and on-demand routing as a 
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Figure 5.13: Bandwidth blocking rate as a function of network load: MCI Topology, 100% 
video sessions, unevenly distributed load 

function of requested bandwidth. Since only video sessions are considered, there is no difference 
between the "type 1" and "type 2" schemes. The data point for a bandwidth x represents the 
call blocking rate for sessions with bandwidth requests in the range (x — 0.5, x\. We see that 
for all algorithms, the call blocking rate increases slowly with the requested bandwidth. We 
also see that class-based routing treats sessions with different bandwidth demands more evenly 
than on-demand routing. The reason is that while pre-computing paths may be less efficient, it 
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Figure 5.14: Call blocking rate as a function of requested bandwidth: MCI Topology, 100% 
video sessions, unevenly distributed load (380MB/s) 

reduces bandwidth fragmentation, which benefits larger requests. We also notice that with the 
"type 3" algorithm, there is a jump in the call blocking rate between the two classes. The reason 
is that while the bandwidth demands are uniformly distributed, the pre-computed path for the 
high-bandwidth class can accommodate fewer sessions, increasing the blocking rate. Moreover, 
the high-bandwidth path is likely to have more hops, increasing the risk of interference from 
other sessions and thus the routing inaccuracy. 
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Figure 5.15: Average throughput as a function of network load: MCI Topology, 60% high- 
bandwidth best-effort traffic, and 40% video traffic 

5.6   Performance Impact on Best-effort Sessions 

In a network with multiple classes of traffic, what paths are used for high priority sessions can 
affect the performance of lower priority traffic. In this section, we consider networks with two 
classes of traffic: guaranteed sessions and best-effort sessions. Best-effort traffic uses resources 
left unused by the guaranteed sessions. The routing algorithm used for best effort sessions is 
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the shortest-distance path algorithm with the distance for a path defined as (Chapter 4) 

dist(p) = J2 - 

where r, is the max-min fair rate of link i for a new best-effort session. 
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Figure 5.16:  Average throughput as a function of network load:  cluster topology, evenly 
distributed load, 60% high-bandwidth best-effort traffic, and 40% video traffic 

Figure 5.15 shows the average throughput of all best-effort sessions as a function of the 
total network load. 60% of traffic is generated by best-effort sessions and we assume that up to 
90% of the capacity of each link can be reserved by guaranteed sessions. Both with evenly and 
unevenly distributed load, very small call blocking rates are observed for the widest-shortest 
path and the dynamic-alternate path, and no sessions are blocked when the shortest-distance 
path and the shortest-widest path are used for the guaranteed bandwidth sessions. 

We observe that the impact of the routing algorithms for guaranteed sessions on the perfor- 
mance of best-effort sessions is small. However, when the traffic load is heavy and unevenly 
distributed, we see much lower average throughput for the shortest-widest path. This is because 
the shortest-widest path consumes more resources for guaranteed sessions, which leaves fewer 
resources for best-effort sessions. 

Figure 5.16 shows the average throughput of best-effort sessions for the Cluster topology. 
We observe much worse performance for best-effort sessions when the shortest-widest path is 
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used for guaranteed sessions, while the other three algorithms result in similar performance for 
the best-effort traffic. 

We conclude that the use of the shortest-distance path, the widest-shortest path, and the 
dynamic alternate path for guaranteed sessions results in better performance for best-effort 
sessions than the shortest-widest path. 

5.7   Related Work 

Many papers in the literature have studied QoS routing and path selection algorithms. We list 
the results that are most relevant to our study. A good introduction to QoS routing and routing 
in general can be found in [63, 95]. QoS routing in telecommunication networks has been an 
active area of research for a long time. Trunk Reservation and Dynamic Alternate Routing [35], 
and Least Load Routing [45] are some of the algorithms that have been studied. 

In [102], Wang and Crowcroft propose the shortest-widest path algorithm as a way of 
minimizing the call blocking rate, but no performance evaluation is given. In [13], an adaptive 
load-based source routing algorithm for traffic requiring bandwidth guarantees is suggested 
by Breslau, Estrin, and Zhang. Its performance is compared with the static minimal-hop path 
and the alternate path algorithms. In their study [34], Gawlick, Kahnanek, and Ramakrish- 
nan present an evaluation study of several routing algorithms, including minimal-hop path, 
exponential path, and max-min path, for traffic with bandwidth guarantees. However, requests 
are assumed to have infinite call holding times. In his thesis [87], S. Rampal evaluates the 
performance of several path selection algorithms, including static minimal-hop path, dynamic 
shortest-distance paths based on link utilization and residual bandwidth, and shortest-delay 
path. The study also assumes that the session holding time is infinite. Matt and Shankar study 
delay and throughput based type-of-service routing [72] and dynamic routing of real-time 
virtual circuits [71]. 

Guerin, Orda, and Williams [44] propose to use the widest-shortest path to extend OSPF for 
QoS routing. In another paper [43], Guerin and Orda study routing with inaccurate information 
and show that, using a shortest-path algorithm, they can find the feasible path that is most likely 
to accommodate the requested bandwidth. Neither of these studies address resource utilization 
efficiency and no performance evaluation is given. 

Compared with these studies, we evaluate a wider range of algorithms under more realistic 
traffic loads: audio and video traffic, long-tail distribution for the call holding times, and 
even and uneven traffic load distributions. We also consider the effect of routing information 
propagation and the use of pre-computed paths on performance. Through an extensive set of 
simulations, we are able to characterize how a routing algorithm can achieve high network 
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throughput: it is important to distribute the load evenly when the network load is light and to 
conserve resources when the network load is heavy. 

5.8    Summary 

This chapter presents a simulation study of QoS routing for traffic requiring bandwidth guar- 
antees. While selecting a feasible path, i.e. a path that meets the bandwidth requirement, can 
be done using any shortest path algorithm, selecting paths that also optimize overall network 
performance by utilizing resources efficiently is not well understood. 

Conserving resources and balancing the network load are two mechanism that can achieve 
network resource utilization efficiency. Our evaluation considers four routing algorithms that 
attach different weight to conserving resources and balancing load: the widest-shortest path, 
shortest-widest path, shortest-distance path, and dynamic-alternate path. Since requests can 
specify different bandwidth requirements, we use the bandwidth blocking rate as our main 
performance metric. 

Our results show that for dynamic on-demand routing, restricting the hop count (e.g., the 
dynamic-alternate path) gives better performance when the network load is heavy, while giving 
preference to balancing load (e.g., the shortest-distance path and shortest-widest path) pays off 
when the load is light. This result is different from what we observed for best-effort traffic 
in Chapter 4, where the shortest-distance path algorithm has a clear performance edge over 
the other algorithms. This difference is caused by the different resource sharing policies of 
the two traffic classes. Heavily loaded links become automatically ineligible for guaranteed 
sessions, causing any dynamic algorithm to route around them, but these links remain eligible 
for best effort traffic so the routing algorithm has to explicitly avoid them. Our results also 
show that algorithms that minimize the hop count result in a more even blocking rate across 
sessions with diverse bandwidth requirements. When comparing static and dynamic routing, 
we observed that using dynamic information can reduce the blocking rate significantly in cases 
of unevenly distributed load, because dynamic information makes it possible to route around 
(infeasible) bottleneck links. We also examined a class-based routing algorithm and found that 
its performance is comparable to that of computing paths on-demand. 

An evaluation of the impact of inaccurate routing information and connection setup delay 
showed that the overall blocking rate is fairly insensitive to the increase in routing information 
update interval although more sessions are misrouted. Algorithms that minimize the hop count 
are more robust with respect to increases in the routing information update interval. 

To best of our knowledge, our study is the first to consider the performance impact on 
best-effort traffic when evaluating routing algorithms for guaranteed sessions. We showed that 
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the shortest-widest path algorithm takes away more bandwidth from best-effort sessions and 
results in reduced performance for best effort sessions. 

Overall, we recommend that the shortest-distance path should be used, since it performs 
consistently well for both evenly and unevely distributed load and for both light and heavy 
load. Moreover, this algorithm can effectively support dynamic inter-class resource sharing as 
we will discuss in Chapter 7. 
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Chapter 6 

Routing Traffic with Delay Guarantees 

Interactive real-time applications, such as Internet telephony and video conferencing, have 
stringent QoS requirements on delay, delay jitter, and packet loss. These QoS requirements 
impose strict resource constraints, e.g., bandwidth and buffer space, on paths being selected to 
ensure guaranteed end-to-end QoS guarantees. In this chapter, we study routing algorithms for 
the class of traffic that requires delay guarantees. The QoS constraints include delay, delay-jitter, 
bandwidth, and buffer space. Similar to routing traffic that requires bandwidth guarantees, the 
goal of routing traffic with delay guarantees is to find a feasible path if one exists, and to select 
one that achieves high network throughput if more than one such path is available. However, 
since satisfying delay guarantees involves meeting multiple QoS constraints, routing traffic 
with delay guarantees is much harder than routing traffic with bandwidth guarantees. 

The general routing problem with multiple QoS constraints is NP-complete. We focus on a 
network whose service disciplines are rate proportional. The results in this chapter have been 
published in [68] for finding feasible path and in [69] for finding efficient paths. 

The rest of the chapter is organized as follows. Section 6.1 motivates our study. Section 6.2 
discusses rate-proportional service disciplines. Polynomial routing algorithms are developed 
in Sections 6.3 and 6.4. We examine the performance of these algorithms for guaranteed 
sessions in Section 6.5, and their performance impact on best-effort sessions in Section 6.6. In 
Section 6.7 we present and evaluate our approximation algorithms. Related work is discussed 
in Section 6.9. We summarize in Section 6.10. 

6.1    Motivation 

It is shown in [33,102] that the general problem of finding a path with multiple QoS constraints, 
including delay and delay jitter, is NP-complete. However, there are two limitations in existing 

87 



88 Routing Traffic with Delay Guarantees 

studies of QoS routing algorithms. First, these studies assume that multiple QoS constraints 
are unrelated and, therefore, need to be constrained independently. Second, the delay and 
delay jitter of a link are assumed to be known a priori. As a result of these two assumptions, 
QoS routing becomes a path-finding problem with multiple constraints and is computationally 
intractable. 

We take a rather different approach in our study. First, we observe that the QoS constraints 
are not independent. For example, the worst case delay jitter of a flow is bounded by the 
maximal queueing delay of all packets of the flow. Also, both delay and delay jitter are closely 
related to the amount of reserved bandwidth. The exact relationship is determined by the packet 
scheduling algorithms deployed in the network. Second, the delay and delay jitter of a link 
is not known a priori. We know that the link delay includes propagation delay, transmission 
delay, and queueing delay. While the propagation delay and the transmission delay are related 
to link distance and capacity, the queueing delay is determined not only by the amount of 
bandwidth reserved for the flow but also the burstiness of the traffic sources. However, the 
burstiness is specified in the user's traffic specification and can be different for different flows. 
Thus, both scheduling algorithms deployed in the network and the traffic source specification 
must be taken into consideration while making a routing decision. 

The question now is what scheduling algorithms should be considered for QoS routing. To 
meet the challenges of achieving delay guarantees in packet-switched network, a substantial 
amount of research has focused on defining new packet scheduling disciplines. An important 
class of new packet service disciplines called rate-proportional service disciplines has been 
developed and extensively studied [77, 17, 105, 98, 39]. Under these service disciplines, 
packets of different flows are sent in an order to ensure a weighted fair sharing of the link 
capacity. As a result, a rate is guaranteed for each flow and mathematically provable bounds 
exist for delay, jitter, and buffer space, if the traffic source conforms to its traffic specification 
given by a leaky bucket. Based on these new service disciplines, an architecture and mechanism 
to support real-time applications has been proposed [17]. New service models providing QoS 
guarantees are being developed both by the IETF [93] and by the ATM Forum [4]. 

With the rate-proportional service disciplines deployed in the network, we show that QoS 
routing is polynomial if one takes into consideration the relationship between the multiple 
QoS constraints, the queueing delay determined by the service disciplines, and the traffic 
specifications. Using an iterative Bellman-Ford (IBF) algorithm with hop-count constraints, a 
feasible path with bandwidth, delay, delay-jitter, and/or buffer space constraints can be found 
if it exists. 

To address resource efficiency, we identify among all feasible paths four "optimal" paths 
based on four different optimality criteria: bandwidth to reserve, hop count, path load, and 
end-to-end delay. All four optimal paths can be found by IBF based routing algorithms. Their 
performance is compared through an extensive set of simulation.   Furthermore, we introduce 
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approximation algorithms that have execution times within a constant factor of the Bellman- 
Ford algorithm, and that achieve resource utilization efficiency similar to that of the original 
algorithms. 

6.2   Rate-proportional Service Disciplines 

One of the most important issues in providing guaranteed performance services is the choice of 
the packet service discipline at the switch. Recently, a number of new service disciplines aimed 
at providing per-connection performance guarantees have been proposed. Examples include 
Virtual Clock (VC) [106], Weighted Fair Queueing (WFQ) [26, 77], Worst-case Weighted 
Fair Queueing (WF2Q) [6], Self Clocked Fair Queueing (SCFQ) [38], and Frame-Based Fair 
Queueing [97]. Under these service disciplines, packets from different connections that share 
the same output link are sent in an order to ensure a weighted fair sharing of the link capacity. 
As a result, a guaranteed flow is isolated from others. The end-to-end queueing delay of the 
flow is determined by the bandwidth being reserved and the burstiness of the traffic source. 

To provide QoS guarantees, a flow specifies its traffic characteristics. The network, on the 
other hand, reserves a certain amount of resources at each switch node on its path. Thus, the 
traffic specification and the QoS guarantees constitute a "contract" between the network and 
the applications: The network guarantees that as long as the traffic source conforms to its traffic 
specification, its QoS requirements will be met. A commonly used traffic specification is a 
leaky-bucket (a, b), where a is the average token rate and b is maximal number of tokens the 
session can have. In other words, the total number of bytes allowed to enter the network during 
any time interval (t0,t] is bounded by 

A(to,t)<b + <j(t-t0). 

Given a path p of n hops with the link capacity C, at hop i. For the broad class of packet 
service disciplines listed above, if the traffic source is constrained by the leaky bucket (a, 6), 
the provable end-to-end delay bound is given by ([105, 98]) 

h        n ■  T n     T n 

D(p,r,b) = - + + L-7^ + LPr°P* (6-J) 

where r (r > a) is the amount of bandwidth to be reserved and Lmax is the maximal packet size 
in the network, and propt is the propagation delay. The end-to-end delay-jitter is bounded by 

J(p,r,&)^ + ^-^. (6.2) 
r r 

The buffer space requirement at the h-th hop is 

89 



90 Routing Traffic with Delay Guarantees 

B(p,b,j) = b + h-Lnmx. (6.3) 

We see that the delay-jitter bound is the maximal queueing delay a packet may encounter. 
The buffer space only depends on the burstiness of the traffic source and the depth of the node 
in the path. 

6.3   Selecting Feasible Paths 

A path is feasible if it meets the delay, delay-jitter, and buffer space requirements given in 
Equations 6.1,6.2, and 6.3, respectively. The challenge in routing traffic with delay guarantees 
is that the delay depends not only on the path being selected but also on the bandwidth being 
reserved, so the traditional routing algorithms (e.g Dijkstra and Bellman-Ford) do not apply. 
Note that these algorithms are sufficient for traffic with bandwidth guarantees [67]. Moreover, 
the amount of bandwidth needed to ensure the end-to-end delay is usually not known a priori, 
but has to be determined based on the final path being selected, the delay bound requested by 
the application, and the burstness of the traffic source. Thus, there are two cases to consider. 
First, the bandwidth r to be reserved is known a priori. Second, r is not known and has to 
be calculated by the routing algorithm. The main results of this section are summarized in the 
following theorem: 

Theorem 1 The QoS routing problem of finding a path with delay, delay-jitter, and/or buffer 
space constraints is solvable in polynomial time. If the bandwidth to be reserved is known a 
priori, a slightly modified version of the Bellman-Ford algorithm can solve it in S = 0(m ■ L), 
where m is the number of nodes and L the number of links in the network. If the bandwidth 
to be reserved is unknown, an algorithm that iterates the modified version of the Bellman-Ford 
algorithm can solve it in E ■ S, where E is the number of different link residual bandwidth 
values in the network. 

Note that the maximal buffer space requirement of a path is determined by the path hop 
count. Thus, selecting a path with the minimum hop count reduces the maximal buffer space 
consumption. The following lemma will be frequently referenced in our discussion of path 
selection algorithms. 

Lemma 1 Given a path-length function l(P) = J2ieP ^(0 w^tn K^) > 0 for all links i, a bound 
d, and a hop bound N. Finding a path P from a source s to a destination d with 1{P) < d and 
no more than N hops can be solved by the Bellman-Ford Algorithm in 0(N ■ E), where E is 
the number links in G. 
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Proof. The Bellman-Ford algorithm [7] finds a shortest path step by step with increasing hop 
count: At the i-th step, a shortest path with at most i hops is found. The total number of steps 
is restricted to min{m, TV}, where m is the number of nodes in the network. The first feasible 
path found is the one with the minimum hop count. □ 

6.3.1   Delay 

The problem of finding a path that meets a given end-to-end delay bound is formulated as 
follows. 

Path Finding Problem (D-r): Given a delay bound d, a leaky bucket (a, b), and a bandwidth 
r (r > a) to reserve, find a path p with r < Rj (Vj G p), such that -D(p, r, b) < d, where Rj is 
the residual bandwidth of link j. 

Path Finding Problem (D): Given a delay bound d and a leaky bucket (a, b), find a path p and 
the amount of bandwidth r > a to reserve, such that a < r < Rj for all j G p, and 

D(p,r,b)<d 

where Rj is the residual bandwidth of link j and -D(p, r, b) is as defined in Equation (6.1). 

Proposition 1 QoS routing problem (D-r) is solvable by both the Dijkstra and Bellman-Ford 
shortest-path algorithms. 

Proof. Since the amount of bandwidth r to reserve is known, we can easily define an additive 
distance function by using the link cosk l(i) and length function l(P) 

l(i) = — + ^ + l«°Pi    &    KP) = - + EKJ) (6-4) r d r     fg, 

Find a shortest path P using either Dijkstra or Bellman-Ford algorithm (considering only those 
links with Ri > a). 

Ifl(P) > d, there is no path that meets the delay bound d. Otherwise, P is a path with the 
minimum delay. If the Bellman-Ford algorithm is used, the first feasible path found is the one 
with the minimum hop count. □ 

Proposition 2 QoS routing problem (D) of finding a path with delay constraint is solvable by 
iterating any single-pair shortest-path algorithm over all values of link residual bandwidth in 
e • S time, where e is the number of different values of link residual bandwidth and S the time 
for the shortest-path algorithm. At the iteration of bandwidth value Vk, links whose residual 
bandwidth less than Vk are pruned from consideration. 
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Proof. The difference with Proposition 1 is that the bandwidth r to be reserved is unknown. For 
a given path P, the delay can be reduced by increasing r. The maximal reservable bandwidth 
on path P is min{.R, \ j G P}. It is clear that a path with the shortest delay must be a feasible 
path if there is one. Such a path requires reserving the maximum reservable bandwidth 

mrbp = min{i?j | j G p}, 

to achieve the minimum delay, where p is the path and Rj the residual bandwidth, i.e., the 
amount of reservable bandwidth, of the link j. Note that the mrbp must be equal to Rj for 
some j G p, 

One would expect to use a shortest path algorithm using a length function as in Equation 6.4, 
setting r to the maximal reservable bandwidth on the partial path. The problem is that the 
maximal reservable bandwidth changes during the search. An earlier short path may turn into 
a long path when a link with small residual bandwidth is added to the path. To overcome this, 
we iterate the shortest-path algorithm over possible choices of link residual bandwidth. At 
each iteration, a fixed r is used in the length Equation 6.4, and only those links whose residual 
bandwidth are equal to or higher than r are considered. That is, for every r = Rk of some link 
k in the network, we define a length function lr as follows: 

Zr(t-) = ^!« + ^E + prop.    &    lr(P) = - + Z lr(j) (6-5) 

Using any shortest-path algorithm, we find a shortest path Pr from the source s to the destination 
d, such that there is no link j in Pr whose residual bandwidth Rj is less than r. We store r, 
Pr and lr(Pr) in a vector with E entries. After iterating r over all possible Rk, we search the 
whole vector to find a path Pmin whose length lr(Pmm) is minimal. We claim that the path Pmm 
is the shortest delay path if r = mm{Rj | j G Pmin} is reserved. If it is not, there must be a 
path P' with a shorter delay than Pain- Let r' be mm{R'j \ j G P}, the maximal reservable 
bandwidth of path P'. This r' must be the residual bandwidth of some links along path P', and 
the residual bandwidth of all other links on P' must be no less than r'. This is impossible since 
Pri stored in the vector is a shorest delay path with r' < Rj. n 

The proof of the propositions is based on finding a path with the shortest delay D(p, mrb, b), 
assuming that mrb is reserved. If this delay is larger than the given delay bound d, there is no 
feasible path available. The need to iterate the shortest path algorithm over all different values 
of link residual bandwidth is caused by the decreasing of the mrb during the search. That is, 
the r in equation 6.1 decreases while the hop count i increases. Hence the delay for the initial 
segment of the path may no longer be the shortest one. 

The algorithm can stop at any time when a feasible path has been found. Having picked a 
path p, the minimum amount of bandwidth to be reserved to achieve the given delay bound is 

n     j n 

r = max{a, (b + n ■ Imax)/(d - ]T -~ - ]T prop,)}. 
•   *    Of 
2=1 * 
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When the Bellman-Ford shortest path algorithm is used in each iteration, the resulting 
algorithm is called the Iterative Bellman-Ford algorithm, or IBF. The pseudocode for the IBF 
algorithm is shown in Figure 6.1, where the procedure Relax() updates existing paths if a shorter 
one is found (see [20] for details). 

a. for k <- 1 to e do /* over different values of link residual bandwidth */ 
b.         for h <- 1 to m — 1 do /* over hop count, m is the number of nodes */ 
c.                 for (x,y) £ Ldo /* over all links (x, y) £ G */ 
d.                          Relax(x, y, v/,, ••) 

/* the rest of the program */ 

t. return 

Figure 6.1: A sketch of the pseudo-code for the IBF algorithm 

6.3.2   Delay and Delay Jitter 

The problem of finding a path satisfying both end-to-end delay and delay-jitter bounds can be 
formulated as: 

Path Finding Problem (D-J-r): Given a delay bound d, a delay-jitter bound j, a leaky bucket 
(er, b), and a bandwidth r (r > a) to reserve, find a path p with r < Rj(Vj G p),D(p, r, b) < d, 
and J(p, r, b) < j, where Rj is the residual bandwidth of fink j. 

Path Finding Problem (D-J): Given a delay bound d, a delay-jitter bound j, and a leaky 
bucket (<T,6), find a path p, such that D(p,r,b) < d and J(p,r,b) < j for some r with 
a < r < Rj (Vj € p), where Rj is the residual bandwidth of fink j. 

Proposition 3 QoS routing problem (D-J-r) is solvable by the Bellman-Ford algorithm in time 
m ■ L, where m is the number of nodes and L the number of links in the network. 

Proof We learn from Equation 6.2 that the hop count (n) is the only parameter that determines 
whether a delay-jitter bound j can be met: 

b     n-Lnu      .    . r-j-6 _ +  < j    iff    n < |_ J 
r r j^max 

Thus, for any path, as long as its hop count is no more than N = [(r ■ j — 6)/£maxJ, it will meet 
the delay-jitter bound j. We apply Lemma 1 using the distance function defined in Equation 6.4 
with delay bound d, and hop count restriction N, to get our result. □ 
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Proposition 4 QoS routing problem (D-J) is solvable in E ■ S, where E is the number of possible 
link residual bandwidths in the network and S is the time for the Bellman-Ford algorithm. 

Proof. Similar to the proof of Proposition 2, we iterate the Bellman-Ford shortest-path algorithm 
over all possible values of the link residual bandwidth Rk. At each iteration of r = Rk, the 
length function lr of Equation 6.5 is used. The only difference is that, as in the proof of 
Proposition 3, we use the hop count Nr = [(r ■ j - 6)/£maxJ to control the number of steps. 
Also, only those links with Ri > r are considered in each step. □ 

6.3.3   Delay and Buffer Space Constraints 

The problem of finding a path satisfying both an end-to-end delay bound and buffer space 
constraints can be formulated as follows. 

Path Finding Problem (D-B-r): Given a delay bound d, a buffer space constraint b„ for each 
node u, a leaky bucket (<J, b), and a bandwidth r (r > a) to reserve. Find a path p, such that 
D(p, r, b) < d, _B(p, b, h) < bh, and r < Rj(Vj G p), where Rj is the residual bandwidth of 
link j and bh is the buffer space constraint for the node h hops from the source. 

Path Finding Problem (D-B): Given a delay bound d, a buffer space constraint b„ for each 
node u, and a leaky bucket (a, b). Find a path p such that D(p, r, b) < d, and £?(p, 6, h) < bh, 
for some r with a < r < Rj (Vj € p), where Ri is the residual bandwidth of link j and bh is 
the buffer space constraint for the node h hops away from the source. 

Proposition 5 QoS routing problem (D-B-r) is solvable by a modified version of the Bellman- 
Ford algorithm in 0(m ■ L), where m is the number of nodes and L the number of links in the 
network. 

Proof. For each node u in the network, the buffer space constraint du defines a bound on the 
hop count Nu = L(d„ — ö)/LmaxJ, such that node u cannot appear in a path more than iVu 

hops away from the source. We define the same length function / as in Equation 6.4 and apply 
the Bellman-Ford shortest-path algorithm. During step h, we consider only those nodes with 
Nu> h. Finally, we select a path from the result paths of all steps. To conclude the proof, we 
need to show that if there exists a path P' from s to d that satisfies the delay d and hop count 
constraints A^ for all nodes j on the path, the modified Bellman-Ford algorithm must find a 
path P that has no more hops than P', l(P) < l(P'), and P satisfies the hop count constraints 
for all nodes on the path. We use induction on h, the hop count of P'. The results clearly 
applies for h = 1. Assuming the result applies for h, we have to show that it applies for h + 1. 
Let w be the last node on the path P' prior to the destination of P', and Q' the path obtained by 
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removing the last hop from P'. Using the induction hypothesis, there exists a path Q such that 
Q has no more hops than Q', l(Q) < l(Q'), Q satisfies the hop count constraints, and Q is the 
shortest path with no more than the h hops found by the Bellman-Ford algorithm. Since the 
path concatenating Q and the link from w to d is a possible choice, the Bellman-Ford algorithm 
will find a path P with at most (h + 1) hops at the (h + l)-th iteration, such that P satisfies hop 
count constraints and 

l(P) < KQ) + l(w, d) < 1{Q') + l(w, d) = l(P'). a 

Proposition 6 QoS routing problem (D-B) is solvable in 0(m ■ E2), where m is the number of 
nodes and E the number of links in the network. 

Proof. Similar to the proof of Proposition 2, we iterate the modified version of the Bellman-Ford 
shortest-path algorithm in the proof of Proposition 5 over all possible values of the link residual 
bandwidth Rk- At each iteration ofr = Rk for some link k, the same length function lr as in 
the proof of Proposition 2 is used. As in the proof of Proposition 5, for every node u, we use 
the hop count constraint Nu to achieve the buffer space constraint b„, and let the Bellman-Ford 
shortest-path algorithm search only those nodes whose hop count bound are larger than the 
length of the path currently being considered and only those links with Ri > r. □ 

6.3.4   Delay, Delay Jitter, and Buffer-Space Constraints 

The problem of finding a path satisfying delay, delay-jitter, and buffer space constraints can be 
formulated as follows. 

Path Finding Problem (D-J-B-r): Given a delay bound d, a delay-jitter bound j, and buffer 
space constraints bu for all the node u, a leaky bucket (a,b), and a bandwidth r (r > a) to 
reserve, find a path P, such that D(p, r, b) < d, J(p, r, b) < j, B(p, b, h) < b^ for all nodes on 
the path, and r < Rj (Vj £ p), where Rj is the link residual bandwidth and b^ is the buffer 
space constraint for the node with h hops from the source. 

Path Finding Problem (D-J-B): Given a delay bound d, a delay-jitter bound j, and buffer 
space constraints b; for all the node i, and a leaky bucket (a, b). Find a path p with the amount 
of bandwidth r to reserve, such that a < r < Rj for all j £ p, and 

D(p,r,b)   <   d, 

J(p,r,b)   <   j, 

B(p,b,h)   <   hh, 

where the third inequality holds for all nodes on the path. 
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Proposition 7 QoS routing problem (D-J-B-r) is solvable by a modified version of the Bellman- 
Ford algorithm in 0(m ■ L), where m is the number of nodes and L the number of links in the 
network. 

Proof. To meet the delay-jitter bound, we only need to control the number of steps in the 
algorithm in the proof of Proposition 5. □ 

Proposition 8 QoS routing problem (D-J-B) is solvable in E ■ S, where E is the number of 
all possible residual bandwidth of links in the network and S the time for the Bellman-Ford 
algorithm. 

Proof The proof is similar to the proof of Proposition 6, except that the delay-jitter bound is 
used to limit the number of iterations. □ 

6.4    Selecting Efficient Paths 

The IBF algorithm discussed above can find a feasible path. In practice, more than one feasible 
path is often available. This raises the question of what path to use to achieve higher network 
throughput (or lower blocking rate). We propose four different optimality criteria that can be 
used in path selection and present polynomial routing algorithms that select paths with these 
different optimality properties. 

6.4.1   Alternatives Optimal candidates 

To select an "optimal" path, one must first decide what optimality criterion should be used. The 
goal is to reduce the probability that a future arrival is blocked because no feasible path can 
be found and, therefore, to achieve high network throughput. There are two common ways to 
achieve low call blocking rate, one is to conserve per-flow resource utilization and the other is 
to distribute the load evenly through the network. Based on this observation, we identify four 
candidate criteria of optimality: 

Minimum bandwidth consumption. The traffic specification gives only the minimal 
bandwidth requirement (the token rate a). More bandwidth may have to be reserved in 
order to achieve the requested end-to-end delay. How much more to reserve depends 
on the path being selected. An optimal path is the one requiring the reservation of the 
minimum amount of bandwidth. 
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• Minimum hop count. The network is a resource pool shared by many users. New 
traffic can enter the network from any switch node at any time. A path with fewer hops 
consumes less network resources than a path with more hops. An optimal path is the one 
with the minimum hop count. 

• Minimum path load. Selecting a path with high mrb can avoid using congested links. 
An optimal path is the one with the maximum mrb. 

• Minimum end-to-end delay. Selecting a path with the minimum end-to-end delay if 
the mrb of the path is reserved is not an obvious optimality criterion. This choice is 
motivated by the form of Equation (6.1). It suggests that a path with the minimum delay 
is likely to have few hops and a relatively high mrb. In other words, the minimum delay 
path is unlikely to be long (high hop count) or congested (low mrb). Note that selecting 
a path with the shortest delay does not require that the mrb is reserved. 

For each of these optimality criteria, or some combination with different priority, we can 
select a path in the hope of achieving high resource utilization efficiency. We select the 
following candidates: 

• Minimum-bandwidth path—a feasible path that requiresvthe reservation of the mini- 
mum amount of bandwidth. If there is more than one choice, the one with the minimum 
hop count is selected. 

• Widest-shortest path—a feasible path with the minimum hop count. If there is more 
than one choice, the one with the maximum reservable bandwidth is selected. 

• Shortest-widest path—a feasible path with the maximum reservable bandwidth. If there 
are several such paths, the one with the minimum hop count is selected. 

• Shortest-delay path—a feasible path giving the minimal end-to-end delay if the maximal 
reservable bandwidth is reserved. If there are several such paths, the one with the 
minimum hop count is selected. 

Note that other optimality criteria are possible. For example, selecting a path with minimum 
delay-jitter or buffer space. However, a widest-shortest path is likely to give the minimum 
delay-jitter and buffer space. We selected these four algorithms because they represent a broad 
spectrum of tradeoffs between resource conservation and network load distribution, as is shown 
below: 

minimum-bandwidth widest-shortest shortest-delay shortest-widest 
<— resource conserving load balancing —> 
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6.4.2   Algorithms 

We present algorithms that select "optimal" paths based on each of the above optimality criteria. 
Recall that the IBF algorithm has two levels of iterations: the outer loop (line (a) in Figure 6.1) 
over different values of link residual bandwidth and the inner loop (line (b) in Figure 6.1) over 
the hop count. For every value of link residual bandwidth and every hop count, a feasible path 
may be found. We store all these paths in an array as follows: 

bandwidth value hop 1 hop m — 1 
Vl Pi.fi PTO — 1,1>1 

Ve Pi,*e Pm — l,ve 

We show that, all four paths with the different optimality criteria can be found from the 
feasible paths recorded in the table. In other words, we can have polynomial algorithms to 
select any of the four optimal paths. 

Clearly, the IBF algorithm can find the shortest-delay path by remembering the delay of 
every path found in every iteration for different bandwidth values and hop counts. After all 
iterations have been completed, the one with the shortest delay can be selected by comparing 
all paths in the table. 

To find a minimum-bandwidth path, we compare all feasible paths in the table, and select 
the one requiring the reservation of the minimum bandwidth. We claim that there is no other 
path requiring less bandwidth that meets the delay bound. If there is one, let u,- be the mrb 
of that path and let h be the hop count. Remember that the path in the entry with hop count 
h and the bandwidth value vt is the one with the minimum end-to-end delay if the mrb V{ is 
reserved. Since both paths have the same mrb and the same hop count, the one requiring the 
reservation of the least bandwidth introduces the shortest end-to-end delay when the mrb is 
reserved according to Equation (6.1). This contradicts the fact that the path in the entry is the 
one with the shortest delay if the mrb is reserved. 

To find a widest-shortest path, we can search the table column by column. In each column 
we search the entries according to the decreasing order of bandwidth values. The first feasible 
path found is a widest-shortest path. It is clear that there is no other feasible path not listed 
in the table but with fewer hops or with the same hop count but higher mrb. Similarly, a 
shortest-widest path can be found by searching the table row by row. 

The shortest-delay path and minimum-bandwidth path algorithms require that the entire 
table is constructed, i.e., all iterations have to be executed. In contrast, the shortest-widest 
path and the widest-shortest path algorithms can be implement more efficiently by ordering the 
different bandwidth values in decreasing order. To select a shortest-widest path, the algorithm 
can terminate when the first feasible path is found. To select a widest-shortest path, in addition 
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Widest-Shortest_Path(G : GRAPH, s : NODE, d : NODE, d : real, j : real, b : NODE -j- int) 
l.     r.vec ■*- Sorting(L) /* sort R, (i G L) in decreasing order, delete duplicates */ 

2.     E <- lenghtof r.vec /* the number of different link residual bandwidth */ 

3.     for v 6 V do /* for all nodes in G */ 

4.                  JV„ <- L(b(v) - 6)/LmaxJ 1* hop count bound for node v by buffer space */ 

5.               max.hop = max(max.hop,Nv) 
6.      m $—Taia(\V\,ma.xJiop) /* | V | is the number of nodes in G */ 
7.     Initialize-Single-Source(G, s, i?, r_i>ec) 1* initialization*/ 

8.     for h <- 1 to m — 1 do /* iteration over hop count */ 
9.              for fc <- 1 to E do /* iteration over different values of link residual bandwidth */ 
10.                       if (nk > h) then /* if h meets the hop count bound set by j */ 

li.                               for (u,v) 6 !< do /* for all links in G*/ 

12.                                          Relax(«, v, k,lk,h, Nv) 

13.                      if'k(d) < dthen 
14.                               return 7rfc /* path found */ 
16.    return FALSE /* no feasible path */ 

Initialize-Single-Source(G, s, E, r.vec) 
l.     for k <- 1 to E do /* iteration over different values of link residual bandwidth */ 

2.                 nfe <- [(r.i;ec[fe] -j- fe)/LmajJ /* bound on hop count determined by j */ 
3.              for v £ V do /* for all nodes in G */ 
4.                                        ^[l>]  <- OO /* for r = r_i;ec[A:] */ 
5.                         -Kk [v] <- NIL /* initialize path */ 
6.     return 

Relax(«, w, k,lk,h,Nv) 
l.     UNV < h and ß(Ujt,) > r_i;ec[A;] then /* check hop count bound and link residual bandwidth */ 
2.              if ffc[-f] > ifc[u] + lk(u,v)then 
3.                         /fcH <- lk[u] + lk{u,v) 
4.                                        7T^ [v]  4— U /* update the path */ 
5.     return 

Figure 6.2: Pseudo-code for the widest-shortest path algorithm 

to ordering the residual bandwidth values, we can swap the loop order in lines (a) and (b) in 
Figure 6.1. With this slight modification, the first feasible path found is a widest-shortest path. 
Figure 6.2 gives the pseudocode for the widest-shortest path algorithm. 

6.5   Performance of Guaranteed Sessions 

In this section, we examine the performance of the four candidate "optimal" paths. The focus 
is on understanding the performance of different routing algorithms under a heavy load of 
guaranteed sessions. Under a light load, all four algorithms achieve a zero call blocking rate. 

99 



100 Routing Traffic with Delay Guarantees 

76 114 152 190 228 
Traffic Load (MB/s) 

(a) b = [4KB, 8KB] and d = [80ms, 120ms] 

I  1" ■-      I"'                          I                            I 

Minimum-bandwidth -♦— 
Shortest-widest -+-- 

4n _ Shortest-delay -B— _ 
^~. Widest-shortest   x ft« 
<D 
CO 30 
n) 
c jr-^^        -E 
V <> 
o 
m 

20 
s>^          -Q 

To 
o /-^ .--''                          ,,rf* 

10 

""^      ..--ET        __--■  

*- Ü-- *"                       l                            l                            P 

114 152 190 228 266 
Traffic Load (MB/s) 

(b) b = [4KB, 8KB] and d = [200ms, 240ms] 

Figure 6.3: Call blocking rate as a function of network load: MCI topology, 100% guaranteed 
sessions, and evenly distributed load 

Only guaranteed sessions are considered in this section. Our evaluation in this chapter uses a 
default routing update interval of 30 seconds. 
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Figure 6.4: Call blocking rate as a function of network load: MCI topology, 100% guaranteed 
sessions, and evenly distributed load 

6.5.1   Evenly Distributed Load 

Figures 6.3 and 6.4 show the call blocking rate as a function of the network load for the MCI 
topology for four different combinations of traffic burstiness and delay bounds. 

Overall, we see that the performance difference between the routing algorithms can be large: 
up to a factor of two. This implies that selecting a good routing algorithms is very important. 
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We also see (comparing the top two figures and the bottom two figures) that the call blocking 
rate is higher when the delay bound is tighter and when the traffic is more bursty. This is to 
be expected: more bandwidth has to be reserved to limit the queueing delay. When the load is 
fight, all algorithms except the minimum-bandwidth path converge quickly and result in a zero 
call blocking rate. 

In comparison, the widest-shortest path performs better than the other three algorithms and 
the minimum-bandwidth path performs the worst. The reason is that the widest-shortest path 
algorithm selects paths with as few hops as possible to conserve resources. In the mean time, 
it does load balancing by selecting the widest one among all paths with the same hop count. 
On the other hand, the minimum-bandwidth path, while it also tries to conserve resources, 
does not take the current load of the path being selected into account, and may pick a loaded 
path, therefore, blocking future arrivals. It is interesting to see that the shortest-widest path 
performs reasonably well and has a performance similar to the widest-shortest path when the 
delay bounds are between 200ms and 240ms. This suggests that the load is an important factor 
when selecting a path. The performance for the shortest-delay path is interesting. When the 
load is light, its performance converges to that of the widest-shortest path. When the load 
is heavy, its performance moves closer to that of the minimum-bandwidth path. This can be 
explained using Equation (6.1). If the load is fight, r is high, and the second two terms will 
dominate, so minimizing hop count is important. When the load is heavy, r is small and n 
carries less weight than r in determining the final end-to-end delay. This results in selecting a 
path with higher r but with potentially more hops. 

Figure 6.5 shows the call blocking rate for the switched cluster topology. We observe similar 
behavior for the four routing algorithms as for the MCI topology. The main difference is that 
the shortest-widest path does not perform as well as for the MCI topology. In some scenarios, 
it is worse than the minimum-bandwidth path. Thus, the shortest-widest path is sensitive to the 
topology change as we already observed for best-effort traffic [70]. The reason is that, for the 
MCI topology, a shortest-widest path is often a shortest path that consists of only OC3 links. 
For the switched cluster topology, the shortest-widest path can use a diverse combination of of 
links, depending on the current load of the finks, and as a result, it will often have more hops 
than a shortest path. 

6.5.2   Unevenly Distributed Load 

In Figure 6.6, the traffic load is unevenly distributed: 50% of the traffic is between the West coast 
and East coast and the other 50% is evenly distributed. We continue to see a large performance 
difference between the four routing algorithms. The widest-shortest path continues to perform 
well, although in some scenarios, when the load is very fight, the shortest-delay path can 
outperform the widest-shortest path. This suggests that using a path with the minimum hop- 
count may make it hard to avoid some congested links. It also indicates the importance of 
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Figure 6.5: Call blocking rate as a function of network load: Switched cluster, 100% guaranteed 
sessions, and evenly distributed load 

selecting an unloaded path rather than a minimum hop path when the load is relative light. The 
minimum-bandwidth path still performs badly, as was the case with evenly distributed traffic. 
The shortest-widest path keeps performing inconsistently. 

In summary, for evenly distributed loads, the widest-shortest path algorithm outperforms the 
other three algorithms because it places more emphasis on conserving resources. For unevenly 
distributed loads, balancing the traffic load becomes more important. The shortest-delay path 
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Figure 6.6: Call blocking rate as a function of network load: MCI topology, 100% guaranteed 
sessions, and unevenly distributed load 

algorithm outperforms other algorithms when the load is light. However, when the load is 
heavy, conserving resources becomes more important, the widest-shortest path outperforms 
others. The minimum-bandwidth path algorithm performs poorly because it may select heavily 
loaded paths, while the performance of the shortest-widest path algorithm is very sensitive to 
the topology and load distribution. 

This result for the widest-shortest path is different from what we observed for best-effort 
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Figure 6.7: Average throughput as a function of network load: MCI topology, 40% guaranteed 
sessions, evenly distributed load, and 90% reservation rate 

traffic in Chapter 4, where the shortest-distance path algorithm has a clear performance edge 
over the other algorithms. This difference is caused by the different resource sharing policies 
of the two traffic classes. Heavily loaded links become automatically ineligible for guaranteed 
sessions, causing any dynamic algorithm to route around them. But these links remain eligible 
for best effort traffic so the algorithm has to explicitly avoid them. 
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6.6   Performance Impact on Best-effort Traffic 

In a network with both guaranteed traffic and best-effort traffic, what path is used for guaranteed 
traffic can have a significant impact on the performance of best-effort traffic. Thus, it is 
important to understand this performance impact on best effort traffic before adopting a routing 
algorithm for guaranteed traffic. For example, when the guaranteed traffic load is relatively low 
compared to the network capacity, the call blocking rate for guaranteed traffic is likely to be 
zero, regardless of what routing algorithm is used. In such cases, the throughput for best-effort 
traffic is the main performance metric distinguishing the routing algorithms for guaranteed 
traffic. 

In this section, we examine the throughput of best-effort sessions in networks support- 
ing both guaranteed traffic and best-effort traffic, for different path selection algorithms for 
guaranteed traffic. We assume that the best-effort sessions share the unreserved link capacity 
according to the max-min fair sharing policy defined in [50]. The algorithm used for best-effort 
sessions is the shortest distance path with the distance for a path defined as 

k     i 

dist(P) = X) jr 
i=l '« 

where r, is the max-min fair share rate a new best-effort session will obtain (see Chapter 4 for 
details). 

6.6.1   Evenly Distributed Load 

We first consider the case that the traffic load is evenly distributed. The total traffic load is split 
between guaranteed sessions and best-effort sessions, with 40% of the traffic for guaranteed 
sessions. Figure 6.7 shows the average throughput of the best-effort sessions as a function of 
the total network load. We assume that up to 90% of the link capacity can be reserved for the 
guaranteed sessions. Overall, all four routing algorithms have a similar performance impact 
on best-effort sessions, although the minimum-bandwidth path performs slightly better than 
others. However, this slight performance advantage is achieved at the cost of more guaranteed 
sessions being blocked. Table 6.1 shows the call blocking rate for guaranteed sessions. A much 
higher call blocking rate is observed when the minimum-bandwidth path is used, which is not 
surprising given the results presented in the previous section. 

Figure 6.8 shows the performance impact for the switched cluster topology. For all traffic 
loads in the figure, no guaranteed sessions are blocked. What is surprising is that the shortest- 
widest path performs much worse than the three other algorithms. This suggests that, for a 
more symmetric network topology, applying the shortest-widest path algorithms for guaranteed 
sessions can cause much higher resource consumption, therefore leaving fewer resources for 

106 



6.6 Performance Impact on Best-effort Traffic 107 

Traffic load (MB/s) 133 152 171 190 209 
Minimum-bandwidth 0.06 0.13 0.08 1.44 3.68 

Shortest-widest 0.00 0.00 0.00 0.01 0.07 
Shortest-delay 0.00 0.00 0.00 0.01 0.22 

Widest-shortest 0.02 0.03 0.03 0.04 0.13 

(a) b = [4KB, 8KB] and d =[80ms, 120ms] 

Traffic load (MB/s) 133 152 171 190 209 
Minimum-bandwidth 0.00 0.00 0.01 0.08 0.78 

Shortest-widest 0.00 0.00 0.00 0.00 0.01 
Shortest-delay 0.00 0.00 0.00 0.00 0.01 

Widest-shortest 0.00 0.00 0.00 0.00 0.04 

(b) b = [16KB, 20KB] and d =[200ms, 240ms] 

Table 6.1: Call blocking rate in percentage: MCI topology, 40% guaranteed sessions, evenly 
distributed load, and 90% reservation rate 
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Figure 6.8: Average throughput as a function of network load: Switched cluster, 60% best- 
effort, 90% link-capacity reservation, evenly distributed load, b = [16KB, 20KB], and d 
=[200ms, 240ms] 

best-effort sessions. This again demonstrates that the performance of the shortest-widest path 
is inconsistent. 
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Figure 6.9: Average throughput as a function of network load: MCI topology, 40% guaranteed 
sessions, 90% link-capacity reservation, unevenly distributed load, b = [16KB, 20KB], and d 
=[200ms, 240ms] 

Traffic load (MB/s) 209 228 247 266 285 
Minimum-bandwidth 0.00 0.00 0.07 0.23 1.17 

Shortest-widest 0.00 0.00 0.00 0.00 0.00 
Shortest-delay 0.00 0.00 0.00 0.00 0.00 

Widest-shortest 0.00 0.00 0.06 0.10 0.19 

b = [16KB, 20KB] and d =[200ms, 240ms] 

Table 6.2: Call blocking rate: MCI topology, 40% guaranteed sessions, unevenly distributed 
load, and 90% reservation rate 

6.6.2   Unevenly Distributed Load 

We next look at unevenly distributed loads. Figure 6.9 shows the impact of different routing 
algorithms on the performance of the best-effort sessions for the MCI topology, and Table 6.2 
shows the corresponding call blocking rates for the guaranteed sessions. We see again that the 
shortest-widest path algorithm takes away more resources from best effort sessions, especially 
when the load is heavy. The minimum-bandwidth path blocks more guaranteed sessions 
although its performance impact on best-effort sessions is close to the shortest-delay path and 
the widest-shortest path algorithms. Nonzero call blocking rates are observed for the widest- 
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shortest path because of its limited ability to balance the network load. The shortest-delay path 
has overall the best performance: no guaranteed sessions are blocked and best-effort sessions 
achieve a high average throughput. 

In summary, the shortest-widest path algorithm tends to select resource-intensive paths for 
guaranteed sessions, which reduces the throughput of best-effort traffic. The other three routing 
algorithms result in better and similar performance for best-effort traffic. 

6.7   Approximation Algorithms 

In this section, we present approximation algorithms for the four candidate "optimal" routing 
algorithms and evaluate their performance both in terms of running time and in terms of network 
throughput. 

6.7.1   Approximation Scheme 

In the previous sections, we evaluated the performance of four different routing algorithms 
both in terms of the call blocking rate and in terms of the average throughput of the best-effort 
sessions. These algorithms have a running time 0(m ■ e ■ E), where m is the number of nodes, 
e the number of different values of link residual bandwidth, and E the number links in the 
network. In the worst case, e is equal to E, and the running time is 0(ra ■ £2). The worst case 
happens in fact frequently. The reserved bandwidths for different sessions are very diverse, 
so the residual bandwidth of two links will often be different, although the difference may be 
small. The algorithms have to iterate over all these very close but different bandwidth values. 
We recall that the original motivation for iterating the Bellman-Ford algorithm over all possible 
values of the link residual bandwidth was to ensure that no path with the shortest delay is 
missed, regardless of the amount of bandwidth that has to be reserved. 

A first optimization is to use a small set of residual bandwidths, and to approximate the 
residual bandwidth of each link by rounding down to one of these values. We can then iterate the 
Bellman-Ford algorithm over this smaller set of values, which enables us to eliminate iterations 
over those close but different residual bandwidth values. 

A second optimization is to have an upperbound on the amount of bandwidth that a flow 
can reserve. In practice, there must a limit to how much bandwidth can be allocated for a single 
session without having a negative impact on overall network utilization. For example, if the 
token rate of a flow is 5 Mb/s, the network should not reserve more than 25 Mb/s of the link 
bandwidth in order to achieve a delay bound. 

Our approximation algorithms select a set of bandwidth values V — {vi,... ,vn} such that 
v\ > ... > vn. The value ui is the maximal bandwidth that can be reserved. For every link, we 
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round its residual capacity v to the largest Vi such that v, < v. The Bellman-Ford algorithm is 
iterated only over those V{. At each iteration, it assumes that the value of w, is the reservable 
bandwidth. 

The selection of the set V depends on the link capacity and the distribution of bandwidth 
requests. In order to select as few values as possible without eHminating many potential feasible 
paths from consideration, we reduce the distance between two consecutive values as the value 
decrease. In our simulation, we use the following 14 values: 

V = {24,20,16,14,12,10,8,7,6,5,4,3,2,1} 

Once the values of V have been selected, the worst case running time of the iterative 
Bellman-Ford algorithm is 0(\V\ ■ m ■ E), where \V\ is a constant. In other words, the 
approximation algorithm has running times that are within a constant factor of the Bellman- 
Ford algorithm. 

6.7.2   Evaluation of Network Throughput 

The simulation results in Sections 6.5 and 6.6 show that the shortest-widest path and the 
minimum-bandwidth path perform inconsistently for different topologies because they put 
either too much weight on balancing the network load or on bandwidth consumption. Our 
evaluation of the approximation algorithms focuses on the shortest-delay path and the widest- 
shortest path algorithms. 

Figures 6.10 and 6.11 show for the MCI topology the performance difference between the 
widest-shortest path and the shortest-delay path algorithms, and their approximation. Fig- 
ure 6.10 is for evenly distributed loads, and Figure 6.10 is for unevenly distributed loads. We 
see that the call blocking rates for the widest-shortest path and its approximation are very 
similar, while the approximation algorithm for the shortest-delay path performs better than 
the original "correct" algorithm. This result is somewhat unexpected. Further analysis shows 
that the improvement is not caused by the limit on the reserved bandwidth, since the exact 
algorithms rarely allocate high bandwidth anyway. Instead the performance improvement is a 
result of the use of bandwidth intervals. Recall that the end-to-end delay (see Equation 6.1) is a 
function of the hop count and reservable bandwidth. By using bandwidth intervals, we reduce 
the reservable bandwidth to its closest discrete interval value and equalize the link bandwidths 
with small differences, which leads the shortest-delay path algorithm to select paths with fewer 
hops, and therefore, to place more emphasis on conserving network resources. When the load 
is heavy, the reservable bandwidth is small, and reducing the bandwidth is likely to have a big- 
ger impact. However, the approximation scheme has little impact on the widest-shortest path 
algorithm. The reason is that it is already very biased towards rmriimizing resource utilization. 
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Figure 6.10: Call blocking rate as a function of network load: MCI topology, 100% guaranteed 
sessions, and evenly distributed load 

Figure 6.12 shows similar results for the switched cluster topology. Again, the heuristic for 
the shortest-delay path algorithm performs better than the original algorithm, although it does 
not perform as well as the widest-shortest path algorithm for this scenario. The reason is that 
in this fairly symmetric topology conserving resources is more important than balancing the 
load, since the load is already fairly evenly distributed. 
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Figure 6.11: Call blocking rate as a function of network load: MCI topology, 100% guaranteed 
sessions, and unevenly distributed load 

6.7.3   Running Time 

An important performance issue for routing is the running time of the path selection algorithm. 
Our performance metric is the average algorithm running time in our simulation: 

Average running time 
time used by routing algorithm 

number of flows 

112 



6.7 Approximation Algorithms 113 

'I      "             l 1                                1                                1 

Widest-shortest -e— 
Approx. Widest-shortest -+-- 

40 _ Shortest-delay -B-   . 
5" Approx. Shortest-delay   x 

.-ET 
O 
'S 
er 30 -H""" --d? o> 
c .X"        *s^ 
-V 
(} Q'                                                    J£?^ 
o 20 ^*? 

m ■■'     .x'" ^z*^ 
« '           j^**5^^ 
ü 

10 
.-''•'X'' yf 

l                      1                      1 

128 160 192 224 
Traffic Load (MB/s) 

256 

Figure 6.12: Call blocking rate as a function of network load: Switched cluster, 100% video 
traffic, evenly distributed load, b = [16KB, 20KB], and d = [200ms, 240ms] 
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Figure 6.13: Average running time as a function of network load: MCI topology, 100% 
guaranteed sessions, 90% link-capacity reservation, unevenly distributed load, b = [16KB, 
20KB], and d =[200ms, 240ms] 

We compare the average running time of the approximation algorithms and the original iterative 
Bellman-Ford algorithms. The time is measured on a DEC Alpha Station 255. Figure 6.13 
shows the time (in milliseconds) needed for the widest-shortest and shortest-delay path algo- 
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rithms, and their approximations. We see that the approximation algorithms run significantly 
faster than the original algorithms by up to a factor of 8. Moreover, we see that the widest- 
shortest path algorithm and its approximation run 18% faster than the shortest-delay path and 
its approximation, respectively. The significant improvement on the running time of our ap- 
proximation algorithms comes from ehminating iterations over similar but different values of 
the link residual bandwidth. 

6.8   An NP-Complete Result 

In Section 6.2, we assume that the same amount of bandwidth r is reserved on all the the links 
of a path. A more general result defines delay and delay-jitter bounds when different amounts 
of bandwidth can be reserved on different links (see, e.g., [22, 39]): 

7 n     T n     T n 

D(p, <r, b) = 6 +£^ + £^ + i: prop, (6.6) 
min{r;|l < % < n}     fr[   r,-       fr{   Ci       ^ 

where r; (r, > a) is the bandwidth to be reserved on fink i and Lmax and prop2 are the same as 
in Section 6.2. The end-to-end delay-jitter is bounded by 

mm{r,|l < i < n}     ~{   ri 

We show that requiring the same amount of bandwidth to be reserved over all links is essen- 
tial to the proof of Proposition 8: the path finding problem (D-J-B) becomes computationally 
intractable otherwise, even if rate-proportional scheduling algorithms are used. We first prove 
two lemmas. A distance function / is said to be additive, if l(P) = J2{i,j)eP K^J)- 

Lemma 2 Given a graph G and two non-negative additive distance functions d\ and di with 
d\ < d2 and two bounds di and &2 with di < d2, finding a path P from a source s to a 
destination d, such that d\{P) < d\ anddi(P) < di isNP-complete. 

Proof. This problem is a special case of the NP-complete two Additive Metrics Problem [102]. 
To show the problem is NP-complete, we only need to show that the AdditiveJVletrics Problem 
can be reduced to this problem. Given two non-negative distance functions d\ and d2 and two 
bounds di and d2, let C be 1 + d2 + max{d2(ij)\{ij) G G} and 

c/i = di/C,    d2 = d2,     di = di/C,     and    d2 = d2. 

Clearly, we have d\ < d2 and di < d2. A path P satisfies dl(P) < di and dx (P) < d2 if and 
only if Ji(P) < di and Jj(P) < d2. □ 
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Lemma 3 Given a graph G and two non-negative additive distance functions d\ and d2, and 
two bounds di and d2 with di > d2. Finding a path P from a source s to a destination d, such 
thatdi(P) + d2(P) < di andd2(P) < d2 isNP-complete. 

Proof. To show this problem belongs to NP, we reduce it to the problem in Lemma 2 using the 
following reduction 

Ji = d\ + d2,    d2 = d2,     di = di,    and    d2 = d2. 

To show that the problem is NP-complete, we reduce the problem in Lemma 2 to this problem 
by using the reduction 

d\ = di - d2,    d2 = d2,    di = di,    and   d2 = d2. 

It is clear that, for any path P, 

di(P) + d2 < di and d2(P) < d2 if and only if dx(P) < di and d2{P) < d2 

D 

Theorem 2 The QoS routing problem of finding a path with delay and delay-jitter bounds d 
and j is NP-complete if the bandwidth to be reserved on different links can be different. 

Proof. To show that the problem is NP-hard, we can reduce the problem in Lemma 3 to this 
problem by using the following reduction 

6 = 0,    r,-=-j^,    d = "^       ,    propt = 0   d = di,    and   j = d2. d2(i) d\(i) + d2(i) 

To show that the problem is NP-complete, we iterate any algorithm for the problem in Lemma 3 
over all link residual bandwidth values, with the first term in Equations 6.6 and 6.7 replaced by 
b/r, where r is the current residual bandwidth. □ 

6.9   Related Work 

Many studies in the literature have addressed different aspects of QoS routing. A good 
introduction to QoS routing and existing routing techniques can be found in [63, 95]. In [21], 
a QoS based routing framework is defined and many challenging questions are raised. 

Several studies have investigated algorithmic problems associated with QoS routing. In [33, 
102], it is shown that the QoS routing problem of finding a path satisfying both delay and delay- 
jitter constraints is NP-complete. Jaffe and Salama studied [49, 90] heuristics to tackle the 
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NP-problem of routing with two additive constraints. Przygienda suggested the use of cost 
vectors to solve the NP-complete problem by associating a priority with each constraint [81]. 
Rampal [87] evaluated the performance of several path selection algorithms, assuming three 
different scheduling algorithms. The IBF algorithm that is used in this paper was first described 
in [68]. Zhao and Tripathi in [108] proposed a similar algorithm, but issues related to selecting 
efficient paths and resource utilization efficiency are not addressed. Several people have 
presented algorithms that address a subset of the problems associated with routing guaranteed 
traffic. In [89], routing algorithms for achieving the shortest delay when moving a burst of 
bytes are proposed. In [79], QoS routing algorithms are studied for finding the shortest-delay 
path when the network employs the weighted fair queueing service discipline. In [43], QoS 
routing algorithms for a network with inaccurate link-state information are explored. Guerin, 
Orda, and Williams outlined in [44] how OSPF can be extended to QoS routing, using the 
widest-shortest feasible paths, but no performance evaluation is provided. 

In contrast to the previous studies, we present not only a complete set of QoS routing 
algorithms for traffic with delay, delay jitter, and buffer space constraints with a variety of 
optimality criteria, but also approximation algorithms that run significantly faster than the 
original algorithms without sacrificing resource utilization efficiency. We also present a detailed 
performance evaluation of four different algorithms, considering both call blocking rate and 
impact on best-effort traffic as performance metrics. 

6.10    Summary 

In this chapter, we present a study of routing for traffic requiring delay, delay jitter, and packet 
loss guarantees. Our simulation study evaluates the proposed routing algorithms for guaranteed 
sessions while also considering their impact on best-effort sessions. 

While the general routing problem of finding a path with multiple constraints is NP- 
complete, we show that, for a broad class of rate-proportional packet service disciplines em- 
ployed by the network, QoS routing can be turned into a simple polynomial iterative Bellman- 
Ford algorithm if the relationship among QoS constraints defined by the service disciplines 
is incorporate into the algorithm design. Our algorithms makes no assumption about the link 
queueing delay and do not need to know the bandwidth to reserve in advance, but derive it 
during routing. 

Conserving per-flow resources and balancing the network load are two important ways 
achieving resource utilization efficiency. To achieve low blocking rates, we identified four 
optimization criteria that place a different emphasis on minimizing resource utilization and 
balancing the load in the network. Based on the IBF algorithm, we developed path selection 
algorithms that select paths with these different criteria.  The performance of these routing 
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algorithms is evaluated through an extensive simulation study, using realistic topologies, traffic 
models, and periodic routing information distribution. Unlike telecommunication networks, 
multiple classes of service will be supported in data networks. Our performance evaluation 
considers not only the blocking rate for guaranteed traffic but also the influence on the throughput 
of best-effort traffic. Our results show that the performance gap for these different algorithms 
is large and both conserving resources and balancing the network load are necessary to achieve 
high network throughput. The widest-shortest path algorithm performs well for heavy load 
because it conserves resources, but the shortest-delay path has a performance edge for light 
load because it balances the load better. Surprisingly, the minimum-bandwidth path algorithm 
has the worst performance because it is not very sensitive to load, and can easily saturate some 
links while other parts of the network are underutilized. 

Even though the IBF algorithms are polynomial, their computational complexity is signifi- 
cantly higher than that of the Bellman-Ford algorithm. We develop approximation algorithms 
that runs almost ten times faster than the exact iterative Bellman-Ford algorithm for an MCI 
backbone topology. The simulation results show that there is no loss in routing accuracy and 
network throughput. Overall, the approximation algorithm for the shortest-delay path performs 
consistently well. 
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Chapter 7 

An Integrated Routing Framework 

In the previous chapters, we defined and evaluated routing algorithms for individual traffic 
classes, and while we did evaluate how routing decisions for reserved sessions can impact the 
performance of best effort traffic, routing decisions for traffic in one class did not consider 
the traffic conditions in, or even the presence of, other traffic classes. The assumption of a 
homogeneous traffic model simplified both the analysis as well as the interpretation of the 
results. However, in an intergrated services network that provides multiple classes of service, 
flows of different classes coexist in the network, and ignoring the other traffic classes when 
routing a session in a particular class could result in poor performance. In this chapter, we 
present a routing framework that integrates the routing algorithms for individual traffic classes 
into ä multi-class routing algorithm. The goal is to improve inter-class resource sharing and 
to achieve high resource utilization efficiency. To simplify our discussion, we assume that all 
guaranteed sessions require only bandwidth guarantees. The proposed framework can also be 
applied to networks that support sessions with delay guarantees. 

The rest of the chapter is organized as follows. We begin with a brief discussion in 
Section 7.1 on why routing for an integrated services network is more complicated than just 
putting together the routing algorithms for the different traffic classes. We then present our 
integrated routing framework in Section 7.2 and evaluate its performance in Section 7.3. 
Section 7.4 discusses the applicability and possible extension of the proposed framework. 
Related work is discussed in Section 7.5 and we conclude in Section 7.6. 

7.1   The problem 

This section motivates the study of inter-class resource sharing in routing multiple classes of 
traffic. 
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Figure 7.1: Link resources are shared across guaranteed traffic and best effort traffic 

7.1.1   Multi-Class Routing: Challenges 

When both guaranteed and best-effort flows are present in the network, the network resources 
are shared by the two service classes. As a result of the different resource sharing models (reser- 
vation for guaranteed sessions and fair sharing for best-effort sessions), guaranteed sessions 
have priority over best-effort sessions: once resources are reserved, they are no longer available 
to best-effort sessions, unless they are unused by guaranteed sessions. The packet scheduler in 
a router or switch ensures that the guaranteed traffic will get at least the amount of bandwidth 
that it reserved. The portion of the link capacity available to best-effort traffic is allocated 
according to max-min fair sharing policy. Given a fixed traffic load of guaranteed sessions, the 
resources available to best effort traffic will be influenced by the routing of guaranteed sessions. 

If the routing algorithm for guaranteed sessions ignores the load of low priority traffic, as 
we did in earlier chapters, it in fact optimizes its throughput while ignoring the performance of 
best-effort sessions. Considering that best-effort traffic is likely to continue to be the dominant 
traffic class in the network for quite a while, optimizing the throughput for guaranteed sessions 
while ignoring the performance of best effort traffic is the wrong tradeoff. 

Generally speaking, since the network is typically designed to match a long-term average 
of the network load, the short-term traffic load of the network can often be quite different. 
As a result, how much bandwidth is left over for best effort sessions can be highly variable 
(Figure 7.1). Let us look at an example scenario. Links close to a powerful data server or Web 
server can get heavily loaded with best-effort traffic, even when the unreserved link bandwidth 
on these links is high. Simply giving high priority to guaranteed sessions while ignoring low 
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Figure 7.2: Four possible scenarios of load distribution 

priority traffic will direct guaranteed sessions to these congested links, which will worsen the 
congestion conditions on these links. 

Because both guaranteed traffic and best-effort traffic can be either evenly or unevenly 
distributed, there are four combinations of load distribution, as shown in Figure 7.2. The 
interesting scenarios are when the best-effort traffic is unevenly distributed. In such scenarios, 
if guaranteed sessions can avoid the best-effort hot spots, the throughput for best effort traffic 
can potentially be improved significantly. 

7.1.2   Alternative Approaches 

There are several possible ways to integrate routing algorithms employed for individual service 
classes. 

The most naive approach is just simply put algorithms for different traffic classes together. 
As we discussed above, this approach can cause significant congestion or even starvation of 
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best-effort traffic. In Section 7.2.4 we will compare this approach with the integrated approach 
we are proposing. 

A second approach to enforce a static link sharing policy as has been studied in [29] for 
class based queueing. With this approach, the capacity of a link is statically divided between 
guaranteed sessions and best-effort sessions. This approach also raises a number of problems. 
First, it is difficult to determine how much of the link capacity should be used for each traffic 
class without sacrificing resource utilization efficiency, because the ratio of guaranteed sessions 
over best-effort sessions changes over time. Allocating too much bandwidth for best effort 
sessions can introduce high blocking rate for guaranteed sessions, while allocating too little 
bandwidth for best effort sessions can cause serious congestion. Second, the traffic loads of 
the different traffic classes are not always evenly distributed over the network. For example, 
guaranteed sessions can be concentrated in one part of the network, while best-effort sessions 
can be concentrated in another part of the network. Static sharing policies cannot adapt to such 
an imbalance, so they can result in both poor resource utilization and congestion. 

A semi-dynamic fink sharing policy may be employed to overcome the problems of static 
fink sharing. Under this sharing policy, a histogram of the measured link utilization of different 
traffic classes is used to determine what fraction of the link capacity should be assigned to the 
different traffic classes. However, this semi-dynamic strategy may not work well if there are 
sudden changes in the utilization. Often these changes are caused by external phenomena which 
are difficult or impossible to predict and whose effects are acute. Because the semi-dynamic 
algorithms are reactive rather than pro-active, latencies associated with their adaptive operation 
may make their reaction times too long. 

Another approach is to use the actual measured fink utilization, including that are used by 
guaranteed traffic as well as best-effort traffic, as the link state for the both traffic classes. This 
will route guaranteed sessions along the links with low utilization. However, link utilization is 
not always a good indicator of how much bandwidth available to reserve. For example, very 
bursty best-effort sessions can consume all link bandwidth, which leads to high utilization of 
the link, eventhough the link in question may appear to have available reservable bandwidth. 
The routing algorithm for guaranteed traffic may reject a request eventhough bandwidth are 
available to reserve. 

Another extream is to simply ignore the load of guaranteed traffic and use the load of 
best-effort traffic alone to select paths for guaranteed sessions. This can lead to a high blocking 
rate in some scenarios, since it does not take the load of guaranteed traffic into consideration. 

In our multi-class routing algorithm, link resources are dynamically partitioned between 
guaranteed traffic and best-effort traffic. By adjusting link costs, we discourage the routing 
algorithm for guaranteed traffic from selecting links congested with best effort traffic. 
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7.2   An Inter-class Sharing Architecture 

We develop a multi-class routing algorithm that supports dynamic sharing of the link capacity 
among traffic classes. Since best-effort traffic will continue to be the dominate traffic class in 
integrated services networks, we focus on improving the resource utilization efficiency when 
the guaranteed sessions do not represent the dominating traffic class. Our design has two goals. 
First, it seeks to admit the same number of guaranteed sessions as would be admitted by a 
dedicated network. Second, it seeks to improve the performance of the best-effort traffic by 
optimizing the placement of the guaranteed sessions. 

7.2.1   Relative Link Congestion 

To achieve the goal of efficient inter-class resource sharing, the first step is to identify link 
congestion. Our algorithm uses a measure of max-min fair share rate as a barometer of network 
congestion. In general, it observes a threshold to determine whether a given link is congested. 
This threshold is dynamically calculated using network state information and permits a finer 
measure of link congestion than would be possible with a static threshold. With link-state 
routing, the max-min fair share rate information for all finks of the network are known. From 
this rate information, it is easy to calculate the minimum and the mean max-min rates, which 
are represented by min and mean. The threshold that is used to determine whether a link is 
congested is a function of min and mean as described below. 

Knowing the minimum and mean max-min fair share rates, we need to determine in what 
rate interval a link is congested and in what interval it is not. Contrary to our intuition, 
the mean max-min fair rate mean does not serve as a threshold to distinguish if a link is 
congested. Congested session should have traffic loads well above average, so we want to 
select a threshold that is lower than, but tracks, the mean. We thus divide link rates into the 
following three intervals: [min, low_mark), [low_mark, high_mark], and (highjnark, oo), 
where 

mean - min 
low_mark   =   min H  (7.1) 

u- u        L. mean - min 
high_mark   =    mean  (7.2) 

This divides the interval [min, mean] into three equal subintervals (see Figure 7.3). When 
the max-min fair share rate of a given link is in the lower subinterval [min, low_mark], the link 
is considered congested and, therefore, its future use should be discouraged. If the max-min 
fair rate of a link is greater than highjnark, the link is not congested and its use should be 
encouraged. 
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Figure 7.3: An inter-class load balance algorithm 

7.2.2    Virtual Residual Bandwidth 

In order to encourage or to discourage the use of a link, we assign a certain amount of "credits" 
to the link. We define the concept of "virtual residual bandwidth", which is the residual 
bandwidth adjusted according to the "credit bandwidth" defined below. 

virtual residual bandwidth = residual bandwidth + credit bandwidth (7.3) 

The amount of credit to be assigned to a link depends on its link congestion condition. We use 
the following formula: 

credit ratio 
low_mar E 1 
0 

if r < low_mark 
if lowjmark <r< high_mark 

K^S     ifr>high_mark low_mark        low_mark 

credit bandwidth   =   credit ratio * M AX _C R E DIT * residual bandwidth 

where MAX_CREDIT is the maximal ratio of adjustment to be made when the max-min fair 
share rate of the link is approaching 0. From the definition, the credit ratio is positive when the 
max-min fair rate r of the link is in the interval (high_mark, oo) and is negative when r is in 
the interval [min, low_mark). 

Other definitions for the credit ratio are of course possible. Our experiments suggest the 
credit ratio has to meet the following guidelines to be effective: 
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• For a link heavily loaded with best-effort traffic, the difference between real residual 
bandwidth and virtual residual bandwidth should be large enough so that this congested 
link can be avoided. 

• The change of the value of virtual link residual bandwidth should be smooth. For this 
reason, we create an interval of max-min fair share value that yields credit 0. 

7.2.3   Dynamic Link Sharing 

Our inter-class load sharing policy works as follows. A negative credit is added to the residual 
bandwidth of a link if the link is heavily loaded with best-effort traffic. Similarly, a positive 
credit is added to lightly loaded links. In a multi-class routing environment the use of "virtual" 
residual bandwidth instead of "real" residual bandwidth provides a more realistic measure 
of the congestion on a given link. Moreover, this measure of congestion tracks changes in 
the network load and is therefore no need to statically split link capacity between guaranteed 
sessions and best-effort sessions. Guaranteed sessions avoid using links that are heavily loaded 
with best-effort traffic. 

While dynamic link sharing works well for most scenarios, as we show below, it can 
potentially create a number of problems. First, even though we focus on the case that best 
effort sessions dominate the traffic load, it is still important to consider what happens when the 
guaranteed traffic load is both high and uneven. Under these conditions, it is possible that the 
guaranteed sessions reserve all the capacity of certain links, which may result in starvation of 
the best effort traffic. To avoid this problem, we assume that a certain fraction of the capacity 
of each link (e.g., 5% or 10%) is reserved for best-effort traffic, and we evaluate the impact of 
this restriction later in the chapter. 

Another potential problem is that the dynamic link sharing algorithm may force guaranteed 
sessions to use longer physical paths, which increases resource consumption and can potentially 
result in higher blocking rates. However, as was shown in Chapter 5, for light loads of guaranteed 
traffic, the blocking rates for different routing algorithms are all zero or close to zero, so this 
should not be an issue for light loads. Moreover, our simulation results in Section 7.2.4 show 
little increase in the blocking rate, even when the guaranteed traffic load is quiet heavy. 

7.2.4   A Multi-Class Routing Algorithm 

When routing traffic with bandwidth guarantees, it is shown in Chapter 5 that the shortest- 
distance path based on the link residual bandwidth performs consistently well for both evenly 
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unevenly distributed loads. The distance of a given path P is determined by the equation 

dist(P) = E 4- (7-4) 
ieP n* 

where Ri is the residual bandwidth of link i. For best effort traffic, it is shown in [70] that a 
polynomial based distance function 

Shortest-dist(P, n) = J2 — (7-5) 
ieP ri 

where r2 is the max-min fair share rate for a new connection on link i, performs consistently 
better than either the minimum-hop path or the widest path. 

Given the two algorithms for the individual service classes, our multi-class routing algorithm 
is simple. For a best-effort session, it uses the shortest-path routing algorithm with the distance 
function of Equation (7.5) as the cost. For a guaranteed session, it uses the that shortest-path 
algorithm with the distance function of Equation (7.4) as the cost, but using the virtual residual 
bandwidth Ri as defined in Equation (7.3) as the rate: 

Multi_Class_Routing(alg_best_effort, alg_bw_guarantee, F, G) 
void *(alg_best_effort)(), *(alg_bw_guarantee)(); 
flow F; 
topology G; 
{ 

topology G_virtual; 

if (F is a best-effort traffic flow) 
alg_best_effort(F, G); 

else (F is a flow of guaranteed traffic) { 
G_virtual = credit_adjustment(G); 
alg_bw_guarantee(F, G_virtual); 

} 
return; 

} 

Hence, the proposed multi-class requires no changes to and is independent of, routing 
algorithms employed for individual service classes. The only change needed is the use of 
the virtual residual bandwidth instead of the real residual bandwidth when routing guaranteed 
sessions. Note that the impact on throughput of the multi-class routing algorithm can of course 
be different when different algorithms are used for individual service classes. 
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Figure 7.4: Average throughput as a function of network load: MCI topology and 50% high 
bandwidth traffic, 90% of maximal reservation ratio. The Shortest-dist(P,l) path is used for 
best-effort traffic. 

7.3   Performance Evaluation 

Our evaluation of the proposed multi-class routing algorithm characterizes the effects of topol- 
ogy, traffic load, degree of unevenly distributed load, maximum reservation ratio over a link, 
routing algorithms used for best-effort sessions, and the ratio of guaranteed to best-effort traffic. 
We compare several algorithms. Most of the evaluation focuses on comparing the performance 
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of the dynamic inter-class resource sharing algorithm algorithm described in Section 7.2.4 with 
an approach in which the traffic of each class is routed independently. We will sometimes refer 
to the latter approach as isolated routing. We also compare our multi-class routing algorithm 
with an algorithm that uses static link partitioning. 

Most of our simulation results are for the small cluster topology, since it is easier to 
understand inter-class sharing behavior with a small topology than with a large one. It also has 
more manageable simulation times. As we described above, we expect that large topologies, 
such as the MCI topology, will have regions with uneven traffic loads; the cluster topology 
should be viewed as an example of such a region. Obviously, in a large topology, the average 
performance results will mix the performance of regions with even and uneven load, so the 
performance effects of inter-class routing may be less pronounced, depending on the mix of 
traffic. Given the many parameters, it is impractical to try to get a single number characterizing 
performance. Instead, the goal is to show when and under what circumstances dynamic inter- 
class resource sharing is desirable and to evaluate its ability to achieve its goal without reducing 
performance in network regions that have an even load. 

To simplify our evaluation, we assume that all guaranteed sessions require bandwidth 
guarantees, and the routing algorithm for guaranteed bandwidth sessions is the shortest distance 
path algorithm that uses the link cost of Equation (7.4). For best-effort traffic, we consider 
both the Shortest-dist(P, 1) path and the shortest-dist(P, 0.5) path, as studied in Chapter 4, to 
characterize the performance improvement of the proposed routing framework. Our evaluation 
uses the MCI topology and the G3 topology (see Chapter 3) and a default routing information 
update interval of 30 seconds. We note that the discussion on the performance of inter-class 
sharing can also be applied to the case when the guaranteed sessions require delay guarantees. 

7.3.1   Impact of Traffic Load 

Figure 7.4 shows the average throughput (MB/s) as a function of the network load for the MCI 
topology. The traffic is split evenly between traffic requiring bandwidth guarantees and best 
effort traffic, with each accounting for 50% of the data transferred. The routing algorithm 
used for high-bandwidth best-effort traffic is the Shortest-dist(P, 1) path. For all traffic loads 
considered, no guaranteed sessions are blocked. 

When the traffic load is evenly distributed, we see virtually identical performance for the 
best-effort sessions, regardless of whether the actual residual bandwidth or virtual residual 
bandwidth is used. This is not unexpected. The function of the integrated routing framework 
is to balance the load of the guaranteed traffic so as to avoid using links that are congested 
with best-effort traffic. For an even load, the ratio of the traffic from different classes on each 
link should be approximately evenly distributed. In that case, the dynamic inter-class sharing 
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Figure 7.5: Average throughput as a function of network load: cluster topology, 50% guaranteed 
traffic and 50% best-effort traffic, and 90% of maximal reservation ratio. The Shortest-dist( P, 1) 
path is used for best-effort traffic. 

should, by design, have little or no impact on the overall performance, which is what we 
observe. 

For an unevenly distributed load, where 80% of the best-effort traffic is distributed on the 
upper half of the network and 70% of the guaranteed traffic concentrated on the lower half of 
the network, we see an increase of up to 13% in the average throughput for best-effort sessions. 
Without dynamic link sharing, guaranteed sessions can be directed to links that are already 
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Figure 7.6: Variation of achieved throughput: cluster topology, 50% guaranteed traffic and 50% 
best-effort traffic (144 MB/s), and 90% of maximal reservation ratio. The Shortest-dist(P, 1) 
path is used for best-effort traffic. 

congested with best-effort traffic. With dynamic link sharing, links that are congested with 
best-effort sessions are avoided by the routing algorithm for guaranteed sessions. For an uneven 
load, this improvement is significant since the performance index is average throughput. We 
will discuss the distribution of the per-flow bandwidth later. 

Figure 7.5 shows the average throughput for the six-node cluster topology, where 50% 
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of traffic is best-effort traffic and 50% is guaranteed traffic. The routing algorithm used for 
best-effort traffic is the Shortest-dist(P, 1) path. For the case of unevenly distributed best-effort 
traffic, 72% of best effort sessions are concentrated on the links between node pairs (1,4) and 
(3, 5). For the case of unevenly distributed guaranteed traffic, 72% of traffic are distributed 
between the node pairs other than (1,4) and (3,4), (4, 5), and (3, 5). 

The four graphs in Figure 7.5 correspond to different combinations of evenly and unevenly 
distributed loads. In all four cases, no flows are blocked. For evenly distributed load (Figure 7.5 
(a)), we see similar performance regardless of whether real or virtual residual bandwidth is used. 
Thus, our inter-class sharing mechanism does not hurt the performance of either traffic class 
when the load is evenly distributed, which was one of our design goals. When the load for 
guaranteed traffic is unevenly distributed, we see a very small performance degradation for 
best-effort traffic. The reason for this degradation is that, as a result of the inter-class sharing 
mechanism, guaranteed sessions sometimes use a slightly longer and more resource-intensive 
path, which takes resource away from best effort sessions. 

When the best-effort traffic is unevely distributed (Figure 7.5 (c) and (d)), we observe 
performance gains for best effort traffic. In some scenarios, e.g., when the load is as heavy 
as 144 MB/s, the performance improvement for best effort traffic is as high as a factor of 
3, because guaranteed sessions are routed around links (1, 4), (3, 4), and (4, 5) that are 
heavily loaded with best-effort traffic. Note that we are not suggesting that this is a typical 
performance improvement. Rather, our results indicate that the dynamic inter-class resource 
sharing algorithm produces performance improvements in the most congested regions of the 
network, when the traffic load is unevenly distributed. 

Figure 7.6 shows the throughput distribution of best-effort sessions for the load of 144 
MB/s in Figure 7.5(c) and (d), i.e. for uneven best effort traffic. We see that the sessions that 
benefit the most from inter-class routing are the sessions with the worst performance, so inter- 
class routing results in a more even load distribution. Dynamic inter-class routing shifts many 
connections that achieve an average throughput between 0 and 1 Mb/s to a higher bandwidth 
region. This is done by directing guaranteed sessions to less congested links. 

7.3.2   Impact of Best-effort Traffic Volume 

In the previous experiments, the traffic is equally distributed between best-effort and guaranteed 
sessions. For the results in Figure 7.7,75% of the traffic is best-effort traffic. With the increased 
volume of best-effort traffic, links where best-effort traffic is concentrated become even more 
congested. As a result, it becomes even more important to route guaranteed sessions to 
other links whenever possible. Thus, inter-class dynamic resource sharing results in a higher 
performance improvement when compared with the case of a 50/50 workload. 
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Figure 7.7: Average throughput as a function of network load: G topology, 25% guaran- 
teed sessions and 75% high-bandwidth sessions, and 90% of maximal reservation ratio. The 
Shortest-dist(P, 1) path is used for best-effort traffic. 

We emphasize that the proposed scheme is intended for use in an environment where 
the guaranteed traffic load is low compared to the overall network capacity. In such case, 
the bandwidth blocking rate is not a concern. When the volume of guaranteed traffic is 
higher, using virtual residual bandwidth can potentially increase the bandwidth blocking rate. 
Figure 7.8 shows the performance when 75% of the traffic is guaranteed traffic. We see that the 
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Figure 7.8: Average throughput as a function of network load: G topology, 75% guaranteed 
sessions and 35% high-bandwidth sessions, and 90% maximal reservation ratio. The Shortest- 
dist(P, 1) path is used for best-effort traffic. 

performance experienced by best effort traffic using inter-class routing and isolated routing is 
very similar. Depending on the traffic load, either algorithm may have a small performance edge 
over the other, but on average the performance for best effort traffic is about even. Table 7.1 lists 
the bandwidth blocking rates for guaranteed sessions. We observe a slightly higher blocking 
rate for guaranteed sessions when the dynamic inter-class resource sharing algorithm is used. 
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Traffic load (MB/s) 126 132 138 144 
Virtual residual bandwidth 0.408% 0.789% 1.306% 2.196% 
Real residual bandwidth 0.381% 0.725% 1.160% 1.85% 

(a) even guaranteed and uneven best effort 

Traffic load (MB/s) 126 132 138 144 
Virtual residual bandwidth 0.031% 0.179% 1.151% 2.174% 
Real residual bandwidth 0.008% 0.071% 0.432% 1.088% 

(b) uneven guaranteed and uneven best effort 

Table 7.1: Bandwidth blocking rate: cluster topology, 75% guaranteed sessions, 25% best- 
effort sessions, and 90% maximal reservation rate. The Shortest-dist(P, 1) path is used for 
best-effort traffic. 

The reason is that, when the network load is heavy, the inter-class resource sharing algorithm 
can cause flows to use longer, resource-intensive paths, which can increase the blocking rate 
for guaranteed sessions. 

7.3.3 Impact of the degree of Imbalance 

In Figure 7.9, we show the average bandwidth of best-effort traffic as a function of the fraction 
of best effort sessions that are concentrated between nodes 1-4 and 3-5 of the cluster topology, 
i.e. higher values mean that the traffic is more uneven. The results are for a distribution of 
50% traffic in the guaranteed class and 50% in the best effort class. The total traffic load in 
both figures is fixed: 132 MB/s for the top figure and 138 MB/s for the bottom figure. We see 
that the performance gain from using dynamic inter-class resource sharing increases with the 
volume of unevenly distributed traffic. 

7.3.4 Impact of the Maximum Reservation Ratio 

As explained in Section 7.2.3, to avoid starvation of best effort sessions, guaranteed sessions 
can only reserve a certain fraction of the capacity of each link, which we define as the maximum 
reservation ratio. In the previous experiments, we used a maximum reservation ratio of 90%. 
In Figure 7.10, we show the average throughput as a function of the maximum reservation ratio 
for a given traffic load. For different maximum reservation ratios, the average bandwidth stays 
relatively constant when isolated routing is used for each traffic class. When using the multi- 
class routing algorithm, we see an increase in performance of as much of 50% to 60% as the 
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Figure 7.9: Average throughput: cluster topology, 50% guaranteed sessions and 50% high- 
bandwidth sessions, and 90% maximal reservation rate. The Shortest-dist(P, 1) is used for 
best-effort traffic. 

maximum reservable ratio is increased from 60% to 100%. Increasing the maximum reservable 
bandwidth ratio basically gives the routing algorithms more freedom. The multi-class routing 
algorithm can use this additional flexibility to move guaranteed traffic session away from links 
that have high loads of best effort traffic. In fact, the use a multi-class routing algorithm seems 
to eliminate the need for a static maximum reservable ratio. The isolated routing algorithm 
cannot take advantage of this additional freedom. 
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Table 7.2 shows the corresponding bandwidth blocking rate for guaranteed traffic. High 
blocking rates can be observed when only a small fraction of the link capacity is reservable 
by guaranteed traffic. This is not surprise: low maximum reservable ratios limit the freedom 
of routing algorithms and result in poor performance for both traffic classes. The results in 
Table 7.2 clearly show that higher reservation ratios translate into higher network throughput. 
Since these results are for a 50/50 distribution of the traffic between the guaranteed and best 
effort classes, the low maximum reservable ratios can be viewed as a simple static partioning 
of network resources between the two traffic classes. In such a case, we observe the poor 
performance for both best effort and guaranteed sessions. Figure 7.10 combined with Table 7.2 
show that dynamic inter-class resource sharing combined with a high maximum reservable ratio 
results in the best performance. 

Maximal reservation ratio (%) 60 70 80 90 100 
Virtual residual bandwidth 3.402% 0.400% 0.000% 0.000% 0.000% 
Real residual bandwidth 2.459% 0.278% 0.000% 0.000% 0.000% 

(a) even guaranteed and uneven best effort 

Maximal reservation ratio (%) 60 70 80 90 100 
Virtual residual bandwidth 5.055% 0.424% 0.000% 0.000% 0.000% 
Real residual bandwidth 3.379% 0.309% 0.000% 0.000% 0.000% 

(b) uneven guaranteed and uneven best effort 

Table 7.2: Bandwidth blocking rate: cluster topology, 144 MB/s, 50% guaranteed sessions and 
50% high-bandwidth sessions. 

7.3.5   Impact of Routing Algorithms for Best Effort Traffic 

In all the previous evaluations, we used the Shortest-dist(P, 1) path routing algorithm for best 
effort traffic. Figure 7.11 shows the performance for the same scenarios as Figure 7.5, but 
the routing algorithm used for best-effort traffic is the Shortest-dist(P, 0.5) path algorithm. 
Note that the Shortest-dist(P, 0.5) path algorithm is less sensitive to bandwidth availability, 
and more sensitive to hop count than the Shortest-dist(P, 1) path algorithm. A first observation 
is that the Shortest-dist(P, 0.5) path results in lower performance than the Shortest-dist(P, 1) 
path for link costs based on both virtual and real residual bandwidth. The reason is that 
the Shortest-dist(P, 0.5) path algorithm is more likely to use the minimum-hop path than the 
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Figure7.10: Average throughput as a function of the maximal reservation rate: cluster topology, 
144 MB/s, 50% guaranteed sessions and 50% high-bandwidth sessions. The Shortest-dist(P, 1) 
is used for best-effort traffic. 

Shortest-dist(P, 1) path algorithm and is therefore less "agile", i.e. it cannot avoid links with 
low residual bandwidth. 

Furthermore, when comparing Figures 7.5 and 7.11, we see that the use of multi-class routing 
results in a higher average throughput improvement for the Shortest-dist(P, 0.5) path algorithm 
than for the Shortest-dist(P, 1) path algorithm. The reason is that inter-class routing is less 
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Figure 7.11: Average throughput as a function of network load: cluster topology, 50% guar- 
anteed sessions and 50% high-bandwidth sessions, 90% of maximal reservation ratio. The 
Shortest-dist(P, 0.5) is used for best-effort traffic 

likely to create links that are bottlenecks for best effort traffic, i.e. with high best effort traffic 
loads relative to the residual bandwidth, which is the scenario that the Shortest-dist(P, 0.5) path 
algorithm does not handle well. 
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7.4   Discussion 

In the previous sections, we focused on the case where the high priority traffic class requires 
bandwidth guarantees. However, we believe that the algorithm and insight should be useful for 
a broader set of service classes. The reason is simple: when multiple service classes coexist in 
the network, the notion of differentiating between these service classes by giving one class the 
first chance to claim bandwidth seems both typical and intuitive. For example, when allocating 
connections with delay guarantees according to the IETF guaranteed service class, delay is 
controlled through bandwidth. In [68], an iterative Bellman-Ford (IBF) routing algorithm for 
traffic with delay guarantees is described, and the link residual bandwidth used there could be 
replaced by virtual residual bandwidth. 

Recently, it has been suggested [16, 76] that per-flow state information can be kept in the 
edge nodes of the network while the nodes inside the network maintain only the aggregated state 
information of these flows. A flow of differentiated service has higher priority than a best effort 
flow. To admit a differentiated flow, the network must know the resource availability inside the 
network. Hence, source routing based on link residual bandwidth is likely to be adopted in the 
network. Using the inter-class sharing model, we can route the flows of differentiated service 
around links that are congested with best effort sessions. 

We have focused on multi-class routing for a network with two classes of services. For a 
network that supports more than two classes of services, if all but the best effort service require 
resource reservation, our approach should be directly applicable. If the network supports more 
than two services with strict priority, our approach does not directly apply. However, we can 
extend the credit calculation scheme of Equation (7.4) in Section 7.2.2 to consider the traffic 
load of service classes with lower priority. For example, we can assign credit for each of these 
service classes, but use different weights (i.e. the slopes in Figure 7.3) for different service 
classes. More research is needed to define and evaluate such extensions. 

7.5   Related Work 

While several studies have addressed routing support for multiple classes of service, inter-class 
resource sharing for data networks has not been addressed. 

Matt and Shankar have studied delay and throughput based type-of-service routing in [72]. 
IBM's System Network Architecture (SNA) introduces the concept of Class of Service (COS)- 
based routing [1,40] where several classes of service: interactive, batch, and network control, 
were used. In addition, users can define additional classes. When starting a data session, an 
application or device would request a COS. Routing would then map the COS into a statically 
configured route which marks a path across the physical network. These studies did not address 
routing support for inter-class resource sharing. 
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More recently, a routing scheme called Real-Time Network Routing (RTNR) [3] is proposed 
for a fully-connected circuit-switched network. RTNR handles multiple classes of service, 
including voice and data at fixed rates. It utilizes a sophisticated per-class trunk reservation 
mechanism with dynamic bandwidth sharing between classes. When alternate routing is 
required, RTNR utilizes the loading on all trunks in the network to select a path. 

In contrast to these studies, we address routing support for resource sharing among service 
classes with different priorities. Our inter-class sharing scheme is simple and general. It does 
not require data traffic to be sent at a fixed rate, nor does our scheme require a trunk reservation 
mechanism with dynamic bandwidth sharing between classes. 

7.6   Summary 

In this chapter, we showed that multi-class routing is more than simply putting together optimal 
routing algorithms of individual traffic classes. An inter-class level of resource balancing is 
essential to achieving high network throughput when the network load is unevenly distributed. 
Instead of statically partitioning link resources across various service classes, we used a dynamic 
link resource sharing scheme and let the routing algorithm determine how link resources should 
be split among flows of different service classes. 

At the core of our multi-class routing algorithm is a concept of "virtual residual bandwidth", 
which is the real residual bandwidth adjusted to account for the link congestion conditions for 
the best effort traffic. The key idea is to direct guaranteed sessions to the paths that are less 
congested with best-effort traffic. The algorithm does not require any change in the routing 
algorithms used for individual traffic classes and it is applicable to routing algorithms that use 
residual bandwidth as link state. 

The simulation results show the effectiveness of the proposed dynamic inter-class resources 
sharing models. Compared with the multi-class routing algorithm that does not address inter- 
class resource sharing, we observe significant performance improvement for best-effort traffic 
when the load is heavy and unevenly distributed. This improvement is more significant if 
the volume of best-effort traffic is larger, that is, there are more best-effort sessions that are 
unevenly distributed, a higher portion of link capacity is reservable, and the routing algorithm 
for best-effort traffic is more likely to select the minimum-hop paths. For many scenarios, the 
local performance improvement in regions with uneven load distribution is significant. We 
did not observe any performance penalty in regions of the network where the load is evenly 
distributed. 
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Chapter 8 

Conclusions 

Future integrated services networks will support multiple classes of service to meet the diverse 
QoS requirements of applications. Some of these QoS requirements impose strict resource 
constraints on the paths being used to ensure end-to-end performance guarantees, while other 
applications desire best-effort high throughput. The goal of QoS routing is to select paths that 
satisfy these constraints while achieving high resource efficiency. 

QoS routing is challenging because of the complexity of selecting a path with multiple QoS 
constraints as is needed for traffic with delay guarantees and because of the diversity of QoS 
requirements for different traffic classes. The different intra-class sharing behavior in different 
service classes and the dynamics of inter-class sharing of network resources among the traffic 
classes make it difficult to achieve efficient resource utilization under a wide range of traffic 
conditions. Routing algorithms are at the core of the QoS routing protocols that address these 
issues. 

This thesis presented a study of QoS routing algorithms for a network that provides multiple 
classes of service with delay guarantees, bandwidth guarantees, and best effort high throughput 
requirements. This chapter summarizes our results and presents some direction for future 
research. 

8.1    Contributions 

In this dissertation, we demonstrated that QoS routing is both desirable and feasible. Toward 
this goal, we developed a two-level integrated QoS routing framework. At the intra-class level, 
routing algorithms for individual service classes are developed. These algorithms achieve 
high intra-class resource sharing efficiency and have computational costs within a constant 
factor of traditional shortest path algorithms.   At the inter-class level, a dynamic resource 
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sharing algorithm is proposed. This algorithm provides a simple way to balance the competing 
demands of different traffic classes to achieve high inter-class sharing efficiency. 

The approach taken is pragmatic. We considered practical service models, realistic network 
topologies, and diverse traffic loads, and focused on practical routing algorithms. The proposed 
routing framework is evaluated through an extensive set of simulations. This dissertation 
makes the following original contributions. 

For best-effort traffic, we focused on traffic that requires high throughput (e.g., bulk data 
transfer). We developed polynomial distance based routing algorithms that make use of conges- 
tion state information—the max-min fair share rate—as link state. Compared with minimal-hop 
routing and shortest-widest path routing, the Shortest-dist(P, 1) path algorithm and Shortest- 
dist(P, 0.5) path algorithm perform consistently well for a variety of traffic load and network 
topologies. To achieve even higher bandwidth without reducing the fair share of single-path 
sessions, we proposed a novel prioritized multi-path routing algorithm, in which lower priority 
paths share the bandwidth left unused by higher priority paths. This leads to a new multi-level 
prioritized max-min fairness model. Simulation results show an increase of up to 35% in 
throughput by using a second path, while single-path sessions also enjoy an increase of up to 
5%. 

For traffic requiring bandwidth guarantees, we evaluated several promising routing algo- 
rithms. The evaluation considers not only the call blocking rate but also the fairness for requests 
with different bandwidths, robustness to inaccurate routing information, and sensitivity to the 
change of the routing information update interval. We showed that routing algorithms that favor 
fewer hops and at the same time also balance load, e.g., the shortest-distance path algorithm, 
perform well. The bandwidth efficiency of using pre-computed paths for bandwidth intervals is 
comparable to that of computing paths on demand, which implies the feasibility of class-based 
routing. As long as the routing information update interval is significantly smaller than the 
mean session holding time, the blocking rate stays stable although an increased number of 
sessions are misrouted. 

For traffic requiring delay guarantees, the general QoS routing problem of finding a path 
that meets delay, delay jitter, and buffer space constraints is NP-complete. However, we 
showed that QoS routing is polynomial if the network service discipline is rate-proportional 
(e.g., weighted fair queueing) and the relationship between QoS constraints is exploited in the 
algorithm design. The resulting algorithms simply iterate the Bellman-Ford algorithm over all 
residual bandwidth values. To achieve high network throughput, we identified four candidate 
optimality criteria: bandwidth to reserve, hop count, path load, and delay. The simulation 
results show that an efficient path must consider both load balancing and resource consumption 
in terms of hop count and the amount of bandwidth to reserve in order to perform consistently 
well. While the widest-shortest path algorithm outperforms other algorithms, the shortest- 
delay path algorithm has an edge when the load is fight and unevenly distributed. Furthermore, 
we proposed an approximation algorithm for the iterative Bellman-Ford algorithm that only 
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requires a constant number of iterations of the Bellman-Ford algorithm. These approximation 
algorithms run almost eight times faster than the original algorithms for our MCI topology. 
Notably, the approximation algorithm for the shortest-delay path performs consistently well for 
different topologies and load distributions. 

For an integrated service network, an architecture that simply combines per-class routing 
algorithms may cause serious congestion for low priority traffic, because the algorithms for 
guaranteed traffic can take bandwidth away from best-effort traffic to optimize performance for 
guaranteed sessions only. On the other hand, a fixed partition of the link capacity to different 
traffic classes can be inefficient. We introduced a simple dynamic inter-class resource sharing 
architecture that takes the load of lower priority traffic into consideration while routing a higher 
priority session. The resulting multi-class routing algorithm performs consistently well as long 
as the guaranteed sessions are not the dominant traffic classes when the network load is heavy. 
In cases when the network load is unevenly distributed, it can improve the performance for low 
priority traffic significantly without sacrificing any performance for high priority traffic. 

In summary, QoS routing is desirable because using carefully selected routes can signifi- 
cantly reduce the blocking rate for guaranteed traffic and improve the throughput for best-effort 
traffic. QoS routing is also feasible because routes that meet QoS constraints can be selected by 
either directly using shortest path algorithms, e.g. when routing best-effort traffic and routing 
traffic with bandwidth guarantees, or by iterating the shortest path algorithm a constant number 
of times, e.g. when routing traffic with delay guarantees. Even in the region of fight guaranteed 
traffic load where the call blocking rate is not an issue, QoS routing for guaranteed traffic can 
be an effective mechanism to direct traffic load, and therefore, to avoid congestion or starvation 
of best-effort traffic. Our study suggests that there is no need for substantial changes to existing 
routing protocols as long as the link state information requested by these routing algorithms is 
advertised in the network. 

8.2   Future Work 

This dissertation has mainly focused on developing practical QoS routing algorithms that can 
make efficient use of network resources and are computationally inexpensive. Although it is 
a very important first step towards making QoS routing a reality, some issues remain to be 
addressed while others need to be explored further. 

One important issue to address is scalability. Hierarchical aggregation is a common tech- 
nique for scaling. For example, the Internet relies on separate intra-domain (e.g., OSPF) and 
inter-domain (e.g., BGP) routing algorithms, while ATM uses the PNNI routing protocol [27], 
which supports a multi-level hierarchy. The QoS routing algorithms we proposed can es- 
sentially be applied to routing at different hierarchical levels (e.g., both the intra-domain and 
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inter-domain level). The challenge is how to aggregate the network state information without 
significant loss of accuracy. In [62], the complexity of routing algorithms that consider the 
inaccuracy of the routing information is studied, but the authors assume that the accuracy of 
the link state is known. In practice, the degree of inaccuracy depends on how network state 
information is aggregated, the frequency of the routing information updates, and network load, 
and it is therefore unknown. More research is needed to be better understand these issues and 
to develop new techniques for aggregating link state with multiple attributes. 

Another scalability concern is the increase in routing table size, since flows with different 
QoS requirements may require the selection of different paths. The problem of routing table 
size can be addressed through employing source routing or class-based routing as discussed in 
Chapter 5. However, it is not clear how some of the techniques extend to other traffic classes 
(e.g. traffic with delay guarantees), and the general scalability issue for per-flow reservations, 
as supported through RSVP, still remains. 

QoS-based multicast routing is another important issue that needs investigation. It is 
challenging because different receivers may require different QoS and the receiver set can 
change over time. Other factors that make QoS-based multicast routing challenging include 
scalability issues when the groups can be very large and shared reservations are supported. 
Even if multicast sessions are established using the simple shortest path tree routing algorithm, 
it is not clear which of the unicast routing algorithms discussed in Chapters 4, 6, and 5 will 
achieve better resource efficiency, when they are used to construct the shortest-path tree. 

Other areas where more research is needed include expanding the set of service models 
used in our study (e.g., routing for the recently proposed differentiated services [16, 76]), 
investigating the impact of call holding time, and comparing the performance of different 
routing information distribution mechanisms (e.g., updates triggered by load change versus by 
fixed time interval). 
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