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Dear colleagues:

MMET*98 is, no doubt, a development of all the previous meetings of this series.
By now it has established itself as a truly unique professional forum on the whole space
between the Baltic Sea and Pacific, and between the North Pole and the Caucasus. How-
ever, this time it is also a very different meeting. For the first time it has reached, in the
number of papers in the program (272), and in the scale of international organizations
involvement and support, the level of major world conferences in electromagnetics. In the
technical quality of the program, we believe that it is even higher, due to a reasonable
mixture of applied mathematics and microwave engineering. As all of you perfectly know,
the more mathematics we manage to put in the electromagnetic problem solution, the
better algorithms we obtain.

There is a tremendous variety of problems, both canonical and new ones, that meet
a researcher in the hilly terrain of computational electromagnetics; there is a reciprocally
great variety of solution methods. Rope-way of MoM and industrial rock-climbing with
FDTD electric hammers is a necessary technology here; but a winter solo climb at the
Everest of analytical regularization is still a fascinating achievement. We are grateful to all
the authors who submitted their papers to MMET*98 and have come to participate and
share their devotion to the exciting world of solutions of Maxwell’s equations. It was a
pleasure to work with the members of Organizing Committee and Technical Committee;
all of us should be especially thankful to the small team of the editors of these Proceedings.

We wish you to enjoy the conference and hope to be able to gather you again at the
future MMET’s in the next millenium.

Eldar I. Veliev and Alexander I. Nosich

The MMET*98 conference program looks truly wonderful. I really, really wish I could be there.
It is an honor that my name has been associated with it. [ am sure that it will be a great experience. Best

wishes for the meeting.
W. Ross Stone, IEEE Antennas and Propagation Society

It is an impressive program that MMET*98 organizers have managed to put together. I wish
everybody all possible success with the conference. I will have to look into the future for a new possibil-

ity to go to Ukraine.

Staffan Strom, URSI Commission “B”

IAGA is honored to co-sponsor the international conference MMET*98. Besides fostering ad-
vances in electromagnetic theory, IAGA notes that benefits of this meeting will include in-depth scien-
tific discussions, opportunities for student and young scientist participation, and leadership develop-
ment. We wish every success for the meeting.

Jo Ann Joselyn, International Association of Geomagnetism and Aeronomy

Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory
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Ill-posed Inverse Problems Based on Volterra-Type Equations’
(invited)

K P.Gaikovich

Radiophysical Research Institute, B.Pecherskaya st., 25,
Nizhny Novgorod, Russia, 603600,
Phone: 8312 367294, Fax: 8312 369902, E-mail: gai@nirfi.nnov.su

Abstract - As it is well known, inverse problems based on Volterra equations are,
as a rule, well-posed. But in the case when a function should be retrieved in the
range which is wider than the range where the right side of the equation is given,
the solution appears an ill-posed inverse problem. A number of physical examples
is given, and it is shown that such inverse problems could be successfully solved on
the basis of Tikhonov's method of general discrepancy.

Introduction
Let us consider the Volterra-type equations of the 1-st and 2-nd kind:

[K(t.9)00)ds = £ (1), (1)
o(t)+ A K(t,9)0(s)ds = £ (0). @

These equations are practically well-posed in [a,b], when the right side of (1) or (2) is given in
the same range a < ¢ < b. More exactly, the equation (2) has a continuous and unique solution,

if the kernel and the right side of (1) are continuous in [a,b]. The equation (1) has the

oK

: . : . .4
continuous solution, if there are continuous derivatives ;ij—;- and 'k fa)=0, and K(z,5) # 0

in [a,b].

There is the possibility of the new formulation of the problem for the Volterra-type
equations. It appears, when the right side of equations (1) and (2) is given in the [a,c] , where
¢ < b, i.e., when the retrieval range is wider than the range, in which the right side £7) is given.
In that case (1) and (2) can be rewritten as '

[K(t,9)0()ds = £(0) - [ K(t,5)o(s)ds =F (), 3)
A[K(t,9)0(s)ds = 1) - 0(t) - [ K(t.5)o(s)ds =F (). 4)

! This work was supported by RFBR under grant 96-02-16514 and by grant of Russian Education Ministry.
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One can see that if we suppose that not only #) is known in [a,c] but also the function ¢(s),
we have the effective right sides F(¢) and F7(#), and equations (3) and (4) are Fredholm integral
equations of the 1-st kind relative the solution in [c,5]. Such equations are typical ill-posed
problems. Tt is clear, that the solution of (1) and (2) in the whole range [a,5] by A7) given in
[a,c] is still more complicated problem. In this case these integral equations are the ill-posed,
type of which has yet no special name.

The most effective approach to solution of ill-posed integral equations is the Tikhonov’s
theory based on generalized discrepancy principle and the solution method of the same name
[1].The main preference of Tikhonov’s method consist in the uniform convergence of the
retrieval error to zero at mean square convergence of right side errors. As it is in all ill-posed
problems, its accuracy could be determined only on the basis of numerical simulation.

Physical problems based on ill-posed Volterra-type equations
Physical problems related with integral equations are, as a rule, inverse problems. Some of
them consist in the solution of Volterra equations, and could be considered in the described
above formulation as ill-posed problems. Some examples are presented here.

1. Refraction inverse problem in a spherical symmetry medium [2,3].
a. Limb-viewing geometry [2].
For limb-viewing measurements the refraction inverse problem can be expressed as the
Volterra-type integral equation of the 1-st kind (the dependence of refraction € on radial
distance of ray perigee):

ﬂf““" dN -2p
10 | jd;(l’)"\/;;——;)fdp= @) > P12P0 2 Pmax> (1)
Py Y )

where p = nr, ny = n(rp), po = Roto, 7, ¥o are radial distances, N = 106(n-1) is refraction index,

n is refractive index.

b. Immersion geometry [3].
The dependence of refraction on radial position (distance) of the source or receiver in the

medium can be expressed as Volterra integral equation of the 2-nd kind:

N - | Mgy PP 100 €(p), 1 <D0 <Paaxs @
0o Pt -IpcosB(p )P

where 0 is the elevation angle of the ray at the source position.
If one considers the equations (1) or (2) in the case, when their right side is given in the

region p; < Po < P2, P2 < Pmax. the solution for the region p; < p < Py becomes an ill-

posed problem. Similar equations describe the radiometry inverse problems of limb-viewing
and immersion remote sensing of planet atmospheres [4].

2. Diagnostics of the superconductive films in a strong electromagnetic field [5-6].

The measured dependence of averaged over the conductor surface resistance on magnetic
field amplitude in the case of one-dimensional distribution of magnetic field / in a rectangular
cavity resonator is related with the true resistance dependence R(#) as
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4 (H/H,Y

IJl (H/H)

<R(H)> = R(H)dH,  0<Hp<Hp, ()

The inverse problem of R(H) retrieval in the range 0 < Hy, < Hpax becomes ill-posed in real
conditions, when the measurements region is limited at low magnetic field values, and there are
measurements only in the range H, < Hp < Himax

3. Thermal history inverse problems.
a. Thermal conductivity equation for half-space.

Let us consider the homogeneous half-space z < 0 with the constant parameters: thermal
diffusivity coefficient a?. If we have boundary condition for temperature 7(0,7) = To(#), then

the dynamics of the temperature distribution inside the half-space can be determined from
thermal conductivity equation as a function of depth and time as follows:

2

- 4
T(z,0) = jT(lr)\ﬁ1 = OP T e

The inverse problem consist of retrieval of the boundary condition To(f) by measurements
T(z,f). There are two possibilities: the first of them (Tikhonov’s [1]) is based on measurements
of depth profile 7(z) at time f, and the second (considered here as ill-posed Volterra-type
equation) is based on measurements 7(¢) at some arbitrary depth z; in the range a < #< b. The
retrieval in this, second, case should be found in the region [¢,b], where ¢ < a. For the solution
the necessary condition is To(t) = 0 at # < ¢ (otherwise, it will be unaccounted source of error).

b. Thermal conductivity equation for space with the spherically symmetric source.
If we have the homogeneous space » > 0 with the boundary condition 7(R,f) = To(¢) on the
sphere 7 = R, the temperature evolution in the region r > R is determined by

-R
= | T el P ©)

The ill-posed Volterra-type equation for (5) is the same as for (4) - to retrieve the To(R.?) in
the rangea <t <b by T(ro,?) at some arbitrary radial distance ro in the region [¢,5], c <a.

¢. Retrieval of temperature evolution of media by thermal emission dynamics.

More sophisticated inverse problems are based on simultaneous solution of thermal
conductivity and thermal emission transfer equatlons [7]. The brightness temperature of
upward thermal radio emission of half-space z < 0 at wavelength A is determined from
emission transfer equation, assuming that the reflection on half-space interface is absent

L) = [Ty Wexp(r)dz o ®
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where y(1) is the absorption coefficient.

The substitution of (4) into (6) gives [7]:
L= | 7:,(:)[—7”/%—1) -y erfe(radi—0)e" g ()

If the function 7y(?) is known in the whole region (-0,6], the equation (7) has the exact
solution [7}:

| 1 ¢ dr
L= 50+, GO-TO = ®

Otherwise, if 73,(f) is known in some limited region [a,b], the problem of retrieval of 7o(f) in
the region [c,b], where ¢ < g, is also the Volterra-type ill-posed problem.

For the sphere case (see item b), there are different possibilities to choose the beam
geometry, which determines the form of emission transfer integral. The most simple equation
corresponds to the case of radial directed (from sphere) measurements:

(r-R)?
ey (P~ R
‘ T Y Rr-R) e 4a*(1-7) VR d

0= | 10 == P ©

More common case, when a ray perigee radial distance 7o = 0 (¥, > R), the radiobrightness can
be expressed as

(=R’
t Ry }/(\/R0 ~¥ ~\/r -7
_ Y _Re-B, 4d*(t-v) 0 0)
ORI RAC rj gy dr +

., (10)

(r-R)*
Ty Ro—R) ,"ad (1- z)—Y(‘/R" - P "r) dt

4na® Jr’ - ro2 ]\/(1 -7’

where R, is the radial distance of the receiver. The ill-posed Volterra-type equations for (9)
and (10) are the same as for (7). For the equation (10) there is also the possibility to formulate
the limb-viewing inverse problems, similar with refraction inverse problems (see equations (1)
and (2) ), using the dependence Ti(ro). ’

Let us consider the solution of equation (7) in detail as a typical example of ill-posed
Volterra-type equations. If to introduce the time parameter I'=1/(ya)’, which is a typical time
of the heating of the medium at the skin-depth z=1/y, it is possible to rewrite (7) in simpler,
dimensionless form, using dimensionless parameters r=#/ I, p=1/I":
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T = J A0 — \/——erfc‘(\/ el p)]dp S

To solve such a problem it is necessary to use additional (a priori) information about the
exact solution. This information determines a regularization method. There are various
approaches, but in the present paper Tikhonov’s method of generalized discrepancy is applied,
which uses the common information about the exact solution as a function []. It is supposed in
this method that the exact solution belongs to the set of square-integrable functions with
square-integrable derivatives. The results of numerical simulation give us the retrieval accuracy
at various levels of the radiobrightness error. It appears possible to retrieve the function 7o(p)
in the range [c/T',b/T'] by measurements 7y(r) in the range [a/T,b/T’], c <a, up to valuesa - ¢ =
2 +5 T at measurement accuracy about 1%. The main preference of Tikhonov’s method consist
of the uniform convergence of the retrieval error to zero at mean square convergence of
measurement errors. As in all ill-posed problems, this convergence is slower than it is in well-
posed problems.

The numerical algorithm of the Tickonov’s method (the same as in [6]) was applied to the
retrieval of diurnal temperature dynamics of soil by its thermal radio emission evolution
measurements [8]. The measurements have been carried out using radiometers at wavelengths
0.8; 3; 9, and 13 cm under metallic screen (to eliminate the influence of reflection on interface
air-soil). In the Fig.1 is shown an example of retrieval of the surface temperature in time
interval from 15" (+ = 0) to 12"20™ (» = 8.25) next day by measurements of radiobrightness at
wavelength 3 cm in time interval from 3“10‘“ (after midnight) to 12"20™ . The parameters
values were: @ =0.001 cm¥s,y=0.33 cm™, I'=2.55" So,a= 15h b= 12"20" c=3"10™,

18 -
To, Tu K A=3cm

16 +

141

12 +

10 4

5T, =0.3K

Fig.1.

It is possible to see that the retrieval in the time interval t > a, where there are
measurements 7,(f), is very close to contact measured dynamics 7o(f). At ¢ <t < q the
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accuracy of the surface temperature history retrieval reduces, but it appeared possible to
retrieve the process of night surface cooling. It is clear that the problem is more difficult for
retrieval of the thermal history than for retrieval of simultaneous surface temperature dynamics.

The retrieval of the surface temperature dynamics permit then to retrieve the temperature
profile dynamics in the medium from the equation (4), and to calculate the thermal flux

evolution [7].

Conclusions

The results of the solution of various physical problems based on Volterra-type integral
equation in considered here ill-posed formulation show that the domain of definition of the
solution consist of two very different sub-ranges. The first sub-region (which could be called
«inner» ) coincides with the domain of definition of equations right side. The second (outer)
sub-range is located outside the domain of definition of equations right side. The approximate
solution in the outer region (as, for example, for the considered here in detail thermal history
inverse problem) diverges to the exact one much more slowly than in the inner sub-region. In
the inner sub-region the requirements to data accuracy could be very different in different
physical problems, but always they are less than for outer sub-region. Moreover, in the outer
sub-region the retrieval accuracy reduces with the distance to the boundary of inner sub-
region. Considered here new formulation solves the problem of influence of unknown non-zero
initial conditions on the solution of Volterra equations. No doubt, there are many possible
applications of this approach, which remain unmentioned in this communication.
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REMOTE SENSING BY VLF USING "ABSOLUTE OMNIPAL':
1. INVESTIGATION OF SHORT PATH PROPAGATION FOR POSSIBLE EARTHQUAKE
PRECURSOR DETECTION

R. L. Dowden, J. B, Brundell, University of Otégo, Dunedin, New Zealand
M. Hayakawa, University of Electro-Communications, Chofu, Tokyo, Japan

Abstract. The latest version of the OmniPAL receiver uses GPS to allow drift free logging
of the phase and amplitude of phase stable transmissions. Any drift in phase or amplitude
can then be attributed to temporal variation of the lower ionosphere. In this paper, the first
six weeks of data logged of JG2AS phase and amplitude at three sites in Japan is examined
for perturbations. Two sources are identified: solar flares during daytime and hiss-induced
electron precipitation during nighttime. Both of these sources have durations of the order
of an hour and, in principle, could be detected by other means and the LF effects allowed
for. However, if earthquake precursors have much longer periods (days), the effects of
solar flares and electron precipitation can be ignored.

VLF/LF Receivers

OmniPAL. The OmniPAL VLF/LF receiver consists of a special DSP card, software which is the
heart of the receiver, and various ancillaries which may be user supplied. “Omni” means that “all”
modulations can be decoded. Currently these are MSK (Minimum Shift Keyed), CW (Carrier Wave
only) and ICW (Interrupted Carrier Wave or On/Off modulation including 10 dB modulation). Others
(e.g. FSK) are not used by any phase stable VLF (< 50 kHz) transmitters and so are not supported.
The OmniPAL VLF receiver can log up to six transmitters at a time, logging phase and amplitude
(PAL) with time resolutions ranging from 50 ms to 60 s. Special techniques (see Section 2. “Validation
Procedures” in Dowden, et al., 1994) make OmniPAL almost insensitive to sferics. Measurement of
the phase and amplitude perturbations (Trimpis) enables calculation of the phase and amplitude of the
diffracted wave [Dowden and Adams, 1988]. If this is done at two sites simultaneously, the direction of
arrival of the scattered wave can be found [Dowden and Adams, 1990]. Measurement of the phase and
amplitude perturbations at all time points from onset to ultimate decay, and the transformation of these
to scatter phase and amplitude, can be used to identify the plasma formed by a “Red Sprite” which
exhibits scatter amplitude decay with the logarithm of time [Dowden et al, 1997, Dowden and Rodger,
1997]. The scatter phase variation (Doppler shift) during decay may be due to high altitude (60 - 80
km) winds [Dowden, 1996].

For MSK transmissions, phase and amplitude at both MSK frequencies, 50 or 100 Hz apart, are logged
separately. Measurements of all four perturbations enable calculation of the arrival delay of the
scattered wave relative to the direct wave from the transmitter [Adams and Dowden, 1990]. ‘In
principal this allows location of the source of the VLF perturbation {Dowden and Adams, 1993].

In its basic form, OmniPAL requires a stable frequency standard (5 MHz). For Trimpi studies this
would need to be stable to at least 1 part in 10"8. This would keep the phase drift of a 20 kHz signal to
within 5 degrees per minute — more drift than this would seriously degrade phase measurement of
Trimpis. Such stability can be provided by a well-aged, temperature controlled quartz standard. To
measure departures in phase of a few degrees over days, months, or even years, requires a frequency
stability of a million times better than this (1 part in 10*14) which is beyond the ability of even Cesium
standards and certainly beyond the financial reach of researchers requiring a network of receivers.
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AbsPAL. The AbsPAL VLF receiver, an extension of the OmniPAL receiver, gets around this
difficulty with an all-up cost of about US$5000. The AbsPAL still has all of the good features of
OmniPAL for Trimpi studies as described above, as well as logging the phase of VLF and LF signals as
a time independent absolute. This means that if the received phase of a perfectly stable transmission is
(say) 121 degrees now, the received phase will still be 121 degrees in a year’s time, even if the AbsPAL
receiver is tumed off many times for extended periods, intentionally or by accident.

Clearly this requires that both the VLF/LF transmitters and the AbsPAL receivers be locked to the same
world time standard as is now disseminated by GPS.

AbsPAL achieves this in the following way. A “Service Unit” contains a quartz oscillator inside a small
box having a thermal time constant of about 30 minutes. The 10 MHz output synthesises 30 kHz and
30.1 kHz. The GPS 1pps pulse, which arrives within 1 us of true time, resets (zeros) all the dividers
and so the phase of the 30 kHz and 30.1 kHz signals every second. These frequencies need to be

accurate to only 1 in 10°,

The AbsPAL software can synthesise several frequencies at once which are multiples of 1 Hz. On
startup it reads the batch file to find which frequencies are required by the user (which must include 30
kHz), then waits for the GPS 1pps to set the phase of all these frequencies to zero at the GPS pulse.
Although the latter can be up to lpus early or late with respect to true Universal Time (UT), implying a
phase error of up to 15 degrees at 40 kHz (JG2AS), any such error is removed as follows. A software
phase locked loop (PLL) locks AbsPAL to the phase of the 30 kHz from the Service Unit. This PLL
has a bandwidth of initially 1 Hz or reciprocal bandwidth (RBW) of 1 s. At every later second the
RBW is increased by 1 s so that after 1000 s, the PLL bandwidth is only 1 mHz. Eventually, the RBW
reaches the value set by the user in the batch file (such as 30 minutes or 1800 s) and remains at that
value. Averaged over this period the GPS time error, and so the 30 kHz phase error is very small, and
in any case is absolutely drift free. All the frequencies synthesised by AbsPAL are “gear wheeled” (like
clockwork) to this 30 kHz.

Generation and logging of the 30.1 kHz might seem to have no purpose since both its phase and that of
30 kHz “must” be near to zero. However, if the GPS signal is removed from the Service Unit, the phase
locking stops. If returned many minutes or hours later, and if AbsPAL is not then restarted, the 30.1
kHz will probably not have the same phase as 30 kHz. Should this happen, a correction calculated from
the phase difference can be applied to the data at analysis time.

Investigation of Short Path Propagation of the JG2AS Transmission

The first AbsPAL VLF receivers were designed and built under contract to NASDA (the Japanese
NAtional Space Development Agency) for research into possible VLF precursors to earthquakes. Three
of the five provided were installed in September, 1997, at the sites shown on the map in Figure 2. The
first six weeks of data from these three are discussed here. These data used the Japanese time and
frequency transmitter, JG2AS (40 kHz, 1kW radiated power) whose location is also shown on that map.
The distances to each of the AbsPAL receivers from JG2AS are 800 km (Sapporo), 170 km (Shimizu)
and 600 km (Kochi). The JG2AS signal/noise ratio was best at Sapporo and worst at Shimizu. This
was due to the high noise environment at the Shimizu site which was only some 200 m from a large 4 x
3-phase EHT power transmission line.
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Figure 1 shows the diurnal variation of the phase (lower set) and amplitude (upper set) of JG2AS
observed at Sapporo. This consists of 38 superimposed traces. The strange appearance of the
amplitude trace is due to many random transmission gaps by JG2AS usually lasting a few minutes and
occurring a few times per day. This is not the regular On-Off Keying (OOK) for time code
transmission which AbsPAL is designed to cope with. The data have

500

"daytime" ' ' "nighttime"
400d 150dB
40dB
300
phase
degrees
100
0
-100g 5 16 15 26 35

hours, UT

Figure 1. Superposition of 38 days of phase (lower set) and amplitude (upper) variation of
the JG2AS signal received at Sapporo. The arrow at 02:47 marks the largest of many solar
flare effects during the 38-day period. Local noon in Japan is at about 0300 UT. The
inverted U-shaped windows mark the periods used to calculate the daytime and nighttime
means shown in Figure 2.

been filtered by MATLAB to remove all rows (20 s apart) for which the amplitude dropped below 35
dB (rendering the phase meaningless), hence the cutoff in Figure 1.

Similar traces, but noisier, were obtained at Kochi. At Shimizu the noise was generally (it varied from
day to day) too great for meaningful measurements.

A large solar flare occurred on the UT day 267 (24 September, 1997). This began at 02:47 UT, only
about 10 minutes before local noon in Japan, increased to maximum within four minutes and then
decayed to zero in about one hour. Further details on this flare can be obtained on the WWW at
fip://uleth.ca/pub/solar/1997/. The perturbation in phase and amplitude of the JG2AS signal is clearly
seen at Sapporo (see double headed arrow in Figure 1) where the phase perturbation was 65 degrees and
the amplitude perturbation was 4.2 dB. At Kochi, the perturbations are less obvious but measurable as
33 degrees in phase and 6.4 dB in amplitude (the ordinate scale in Figure 1 is in degrees for phase and
in dB/8 for amplitude). At Shimizu, the perturbations are lost in the noise.
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One would expect the effect of the flare on the lower ionosphere to be uniform over Japan. If we
express all perturbations in terms of ratios (phase in radians, amplitude normalised to the unperturbed
amplitude) the magnitude of the total perturbation is approximately given by the square root of the sum
of the squares. Thus the magnitude of the flare-induced perturbation measured at Sapporo is within
about 10% of that at Kochi and so essentially the same within the approximations and errors involved,
though the Kochi amplitude perturbation is nearly four times the Kochi phase perturbation in these ratio
units, while the amplitude and phase amplitudes are about equal at Sapporo. This is due to modal
interference — the phase difference between the dominant modes may be decreased by the solar flare
modification of the ionosphere (lowering the effective LF reflection altitude) thus increasing the received
amplitude. In any case, whatever the reason for this, an earthquake precursor may effect the ionosphere
the same way so both phase and amplitude perturbations should be measured to calculate the total

perturbation.

Careful inspection of the traces in Figure 1 during the times around local noon (23 UT to 07 UT) show
many smaller perturbations having the characteristic shape of solar flare-induced perturbations (“flare
trimpis”™?) — fast up, slow down. The periods indicated in Figure 1 by the inverted U shapes are those
used for finding the “daytime” and “nighttime” average for each day to be discussed later. Note that the
relatively frequent solar flares will have a significant effect on the day to day variation of the daytime
averages. If we assume that solar flares affect the daylit ionosphere uniformly, it might be possible to
remove the flare effects from the phase and amplitude data later.

On the other hand, the nighttime means cannot be directly affected by solar flares, though maybe
indirectly via electron precipitation with a delay of a few days. The Sun’s steady XUV is by far the
dominant source of ionisation of the lower ionosphere, and so of the LF reflection altitude, during the
day. Thus one would expect that the nighttime JG2AS phase and amplitude means would be a sensitive
measure of the much weaker causes of ionospheric modification such as cosmic rays, electron
precipitation and earthquake precursors. Of these, the slowly varying (months) cosmic ray flux would
offect the lower ionosphere uniformly over vast areas. Electron precipitation and (presumably)
earthquake precursors effect the lower ionosphere over small areas having lateral dimensions of 100 km
orso. As seen in Figure 1, the day to day nighttime means are likely dominated by large perturbations
having a duration of a few hours. Earthquake precursors are supposed to develop over a few days. Mid
latitude hiss bursts, which are thought to result in electron precipitation, have similar durations to those
observed in Figure 1 [Dowden, 1962]. With continuous recording of hiss at two or three sites (for
location), it might be possible to remove electron precipitation effects from the nighttime phase and

amplitude data later.

Figure 2 shows the phase and amplitude means during daytime and (except for Shimizu) nighttime. No
attempt has been made to “correct” the data for solar flare or electron precipitation effects. In fact, the
effect of the solar flare on Day 267 is clearly seen in the Sapporo data and, less clearly, in the Kochi
data. Trends such as the slow increase in the JG2AS phase means at Shimizu and (less clearly due to
gap) at Kochi may be an earthquake precursor (no earthquake data was available at the time of writing).
If this slow change over many days is typical of earthquake precursors, we can probably ignore the
effects of solar flares and electron precipitation which vary randomly from day to day.
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Figure 2. Phase and amplitude means during daytime and (except for Shimizu) nighttime.
The panels show the means for Sapporo (top), Shimizu (middle) and Kochi (bottom) in
the same order, north to south, as the site positions shown on the map. The phase means
(in degrees on left hand scales) are shown as asterisks (*) and the amplitudes (right hand
scales) as circles (0). Gaps in the panels for Kochi show data lost when the GPS signal

was accidentally removed.
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Regularization of Maxwell Equations, Corner Singularities and
Approximation

Marc Lenoir
LSM ENSTA-CNRS, Palaiscau, France, e-mail: lenoir@enstay.ensta.fr

The aim of this paper is to describe different formulations for the time-harmonic scattering
of electrcmagnetic waves, with special emphasis about the consequences of the choice of
the formulation on the finite elements discretization. Despite the fact that any solution of
the problem is divergence-free, one must take account explicitely of this condition, for the
associated operator is not strongly elliptic. Roughly speaking, one may handle this constraint
either by duality or by penalty. Actually, the special form of Maxwell’s equations makes
the Lagrange multiplier a priori known, and the solution independant of the penalization
coefficient. An other particular feature of the problem comes from the low regularity of the
electromagnetic field in the vicinity of edges and conical points, from which follows that
special care must be taken of the choice of the function space for the penalty method.

1 The classical problem

We address the problem of the scattering by a perfect conductor, possibly surrounded by
a bounded inhomogeneous region. For the sake of definiteness, we only consider the non dis-
sipative case. By U we denote the electric or the magnetic field, and by ¢ and & the dielectric
permittivity and the magnetic permeability (assumed real positive), the choice depending on
the signification of U. In the vicinity of infinity, the medium is assumed homogeneous and the
values of the coefficients is denoted by (o and &y. In this region, Maxwell’s equations write as

curl curl U — k2U = 0 with k2 = w?¢eéo (1)

where w is the pulsation of the incoming wave Uy, and U — Uy is subject to the Silver-Miiller
radiation condition:

lim leurl(U — Up) An — iks(U — Up)||2dy = 0. (2)
R—o0 8Bg

In the whole exterior domain €2, and especially in the vicinity of the conductor we have
curl (¢t ewrlU) — w¢U =0, (3)
with one of the following boundary conditions,

U An =0 (electric field), or curlU An = 0 (magnetic field). (4)

1.1 Weak formulation
At least locally, the more natural variational formulation would be
Find U € FE/H , such that VV € FE/H  compactly supported,
/Q ¢ (el U feurl V)~ w? /Q £(U|V) =0, with (5)

Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theo

35

ry




36 MMET’98 Proceedings

FP ={V € Hige(cur; Q) | V A nr =0} and F¥ = Hy . (curl; Q) (6)

It turns out that the natural injection FE/H Lz(ﬂ) is not locally compact, which leads to
the choice of smaller spaces, namely

FE={V e FP| divev =0} a,ndfgz{VefH’ (H [n)p = 0, diva:O}, (7)

the constraints beeing actually easy. consequences of the equations itself. If we denote by ¥ a
boundary surrounding the inhomogeneous region and by (¥’ the bounded domain limited by
I' and ¥, a new formulation can be written as '

Find U € FZ/ H, verifying (2), such that YV € £/ H,

/ ¢ (curl U Jcurl V) —-wz/ EWU V) +CO‘1/(curlU/\nln/\(V/\n))d'y =0 ®)
o 4 z

Due to the constraints, recovering the strong equatiohs from the weak ones is more difficult
and makes use of the de Rham field decomposition, in a similar way as for Stokes equations.

1.2  Uniqueness

It is a consequence of the conservation of the incoming energy flux:
1
F@D(U)z—-ffm/ C“l(curlUlU/\n) dy 9)
2w 8D

and of the radiation condition. Assume Uj = 0, as U satisfies (3) in the vicinity of infinity,
then AU + k2U = 0. Moreover from F50(U) = 0, and the radiation condition it follows that
limp_e faBR IU|> dy =0, and from Rellich’s [5] theorem, that U = 0 in the vicinity of
infinity. Now, U vanishes in the whole domain § as a consequence of the unique continuation
theorem of [6].

1.3 Reduction to a bounded domain

A complete formulation must take properly into account the radiation condition, which
can be imposed as a condition on the fictitious boundary ¥ via the integral representation
formula

U=U;+R¥[U] (10)
with

RE[U](z) = /F (Coolz ~9) ewrlUly) Ay ~ curly Goolz ) UW) Amy) dy (1)

where the boundary F surrounds the inhomogeneous region and lies inside Y, and Gy, is the
outgoing Green matrix given by

_9 . e—zk”m”
Goo = gr, I+ k; Hess gy, with g = wm
Indeed, let
T,\U=cur1U/\n+)\n/\(U/\n)‘2 (12)
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then, one can prove that for Jm(\k;?) < 0, the following problem, set in the bounded domain
Y limited by I and X: :

Find U’ € HE/® | such that VW' € HY?, ago(U, V') = £oo(V'), (13)
with
HE = {V € H(curl, @) | diveV € LA(Q), VAnp =0, V Any € LA(Z) }

HE = {V € H(curl;Q’)l divéV e L3(Q), (Vir)p=0, VAnge LZ(E)} 14
and
(U, V) = e U eurl V) — w? U\
oo ) /Q’C (curlU’ |curl V') w/ﬂlf( V)
+ @ anlv an) by -G [ @REDIV) v, 09
) =G [ (@) e,
5

has one and only one solution: U’ = Ujgy, if and only if (8) has.

1.4 Existence

From the equivalence between (8) and (13), uniqueness for the reduced problem follows
from uniqueness for (8). As problem (13) is set in a bounded domain, via Fredholm alterna-
tive, the existence of U’ is an easy consequence of the regularity of the Green function outside
zero and the local compactness result of Weber [7}; the existence of U follows.

This result is only interesting from a theoretical point of wiew, as divergence-free finite
elements are rather untractable; it is the reason why other formulations must be sought.

2 The regularized problem

An easy way for makihg A = curlcurl U a strongly elliptic operator is to replace it by
“A; = A —t1grad divU; actually if we denote by §; the variables in the Fourier space, we

N 3
obtain det A; = ¢! (Zle Sf) . A generalization of this idea to inhomogeneous media leads
to replace Maxwell’s equations by

curl (¢ curlU) — Egrad (771 divEU) — WU =0, (16)

where the function 7 is an arbitrary positive real datum. In the vicinity of infinity equation
(16) takes the simplified form

curl curl U — t~* grad div U — k2U = 0 with t 71 = 75°1¢o 1€0l?, (17)
similar to linear elasticity, which can be written as
peurleurl U — (A + 2p) graddivU — w?plU =0.

As a consequence, two sorts of waves, namely s — and p — waves, are carried by (17), and
the associated radiation condition takes the following form:

lim lcurlU An —iksn A (U An)|| dy =0

R—o0 8Br (18)
lim |divU — ik, (U |n)|| dy =0 with kf, = tk?

R—00 8BR

37
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The boundary conditions must be also completed; choosing condition div Upr = 0, which is
natural for the electric field, and is a consequence of curl U A np = 0 and (U |n) r =0 for
the magnetic field, will actually make p — waves disappear and (16) be equlvalent to (3), as
we shall see later.

2.1 Weak formulation

For irregular coefficients, the meaning of (16) is dubious, consequently, we only consider
the weak form in the non-homogeneous region:

Find U € .7-}/ , verifying (18), such that VV € E/ H,
/ ¢ YHeurlU Jeurl V) +/ 7 diveU divEV —w / EWUIV) (19)
QI

-}—401/ (curlU An|nA(V An)) dy —t_lc(;l/divU(n[V) dy =0
= b

where
={VeFE|dvevelLl ()} %
J—"H {Ve]-‘ | (HIn)p =0, div Vel @} (20)
2.2 Uniqueness
The energy flux is now
Eyp(U) = %Jm/ (¢ ewl U U An) -7 diveU (n [EU)) dy. (21)
8D

We remark that a solution of the homogeneous problem (19) satisfies (17) in the vicinity
of infinity, and consequently that Ay + k2p = 0 for ¢ = divU. As Fspp(U) = 0, then
imp oo [, oBp ldivU|* dy =0, and divU = 0 from Rellich’s theorem. The previous proof
shows now that U = 0 in the vicinity of infinity, and in the whole domain € by unique

continuation.

2.3 Reduction to a bounded domain

The integral representation formula reads now as
U =Ur+ R5[U] (22)
with
RLU(z) = /F(Gt(x —y) (curl U(y) A ny + 1t~ ny div U(y)) d,

- / curl, Gy(z — y) Uly) Ay dyy — -1 / (divy Ce( — )T (U(w) In) dy
P P 3)

where

Gt =g, I+ k;zHess (gks - gkp) , (24)
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whose singularity at the origin is only r~!, whereas it was r~3 for the classical problem. Let
NU =divU +v (U ]n)lz ) (25)
similarly we can prove fhat for Tm(Mk;2) and Jm(vk,?) <0, the reduced problem
Find U’ € HEMM | such that VW' € HE/H | o, (U, V') = £,(V") (26)
with |
HE = {V € H(cw; OV | divéV € LA(QY), V Anp =0, V Ans € LA(E), (Vin)y € LA(Z)}

HE = {V € H(curh; ' | diveV € L), (V|n)r =0, V Anyg € LX), (V|n)y € IX(E) }
(27)

and
a; (U, V") = /Q , ¢ (curl U fewrl V') + 771 div D divEVT —w? / (V)
e /E (AU AR [V An) + 7 (U [n) (V! |n)) dy
—¢t A (MREUT|V') +t7H (N RE[UT V")) dy
(V") =t /2 (U V') +t7H (UL | V') dy

is well-posed and equivalent to (19).

2.4 An alternative choice of spaces

When the coefficients ¢, &, and 7 are regular enough, Costabel [3] has shown that
U, V') = / ¢ (cunl U |eurl V) + 7L div €U divEV7
QI

is coercive on {V € HY(')| V Anpus =0} and on {V € H(Y) Vn)rus = 0} , from

which we deduce that (28) is well-posed on E8/H | with
EP={Ve H{(Q)|VAnr =0}
ExR={VveH Q)| (VIn)p=0}.

(29)

Such a result is meaningful when € is not regular nor convex, as in this case H*(Q) ¢
H(curl; Q') n H(div; Q); it proves that the solution of (28) can be approximated by H 1_
conforming elements only when ' is regular or convex.

2.5 Classical versus regularized

Consider first the solution U of (19), following [2] choose any f € L%(') and put V =
grad , where ¢ is the solution of div(¢égradp) = f in @ with @ryy (electric field) or
dp/dnyr = 0 and @5; = 0 (magnetic field). Let ¢ a truncation function identical to 1 in the
vicinity of T, and to 0 in the vicinity of X, let U’ = U and U" = (1 - )U =U - U". As
V € HE/H  we deduce from (19) that Vf € L2(€),

/ o f =w2/ £ (U |gradp) +t‘140'1/ (grad div U” |grad ¢) (30)
Q Qf Qf

Kharkov, Ukraine, ViIth International Conference on Mathematical Methods in Electromagnetic Theory




40 MMET 98 Proceedings

where ¢’ = 71 div£U’. Consider now the H 1 _ solution @ of

/ € (grad ¢ |grad ") r—wz/ (€U |grad ") —-t‘lco_l/ (graddivU” |grad ¢” ) ,
Q Q Qf
(31)

where @rus = (Pilruz = 0 (electric field) or @j5; = cpf’z = 0 (magnetic field) and take ¢ = ¢,
we obtain thus

/ GAP = w? / £(U|gradp) +t71¢t / (graddivU” [grad ). (32)
92 Qf 91

From (30) and (32) we deduce that ¢’ = ¢ € H({'), and then from (31) that 71 divé grad o+
w?¢' = 0in ¥ and (pll‘ = 0; as a consequence ¢ € HL (), ¢rr = 0and div€ grad p+w?rp =
0 in the whole domain €. By the integral representation formula (22), we show that ¢ satis-
fies the outgoing radiation condition, and thus vanishes by Rellich’s theorem; the solution of
the regularized problem is thus identical to that of the classical one.

Such a proof is not valid for the alternative choice of spaces for the singular case, for
gradp ¢ EE/H Vf € L2(V); consequently divEU ¢ HE () and does not necessarily vanish.

2.6 A singular field method

For the sake of simplicity, let us consider the case where the coeeficents and the artificial
boundary ¥ are regular. By SF we denote the space of singular functions of the Laplacien,
which is of finite dimension, i.e.

= {p € H)()| 3f € N, (gradp|grady) + (f[¥) =0, Yy € H3(?)},  (33)

NE beeing any closed supplementary of the range of A, considered as an unbounded operator
with domain H(Q') N H%(Q'). Similarly, let

={pc HY(Y)| 3f e N, (gradp|grad ) + (f|9) =0, Vp € H(Q)},  (34)

where H(Q) = {¢ € H*()| ¢z =0} and N7 is any closed supplementary of the range of
A with domaln HOQ)N H 2(Q'). Bonnet et al. (see also [1] and [4]) have shown that

HE/H — gB/H @ grad SP/H (35)
Problem (26) can thus be written as

Find U’ = P’ + gradp € E8/H @ grad SE/H |
such that YV’ = @' + gradv € EF/H @ grad sE/H (36)
a- (U, V') = £ (V")

where P’ and Q' € EE/H can be approximated by standard H' — conforming elements even
for non-regular .
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UKRAINIAN RADIO PHYSICAL SYSTEM OF SEISMO-IONOSPHERIC MONITORING
Leonid N. Litvinenko, Yory M. Yampolskii
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Ulitsa Krasnoznamennaya 4, Kharkov 310002, Ukraine

The paper reviews basic ideas, goals and structure of the System of Under-Satellite
Ionospheric Sensing (SUIS), which is currently under development within the framework of research
project “Warning”. The team of principal developers of this system is with the IRA NAS in Kharkov.

It is supposed that SUIS will be based on two sub-systems (SS), namely, Monitoring and
Calibration. The output data of both SS will be first transferred to and processed at the Central
Terminal of Ground Data Processing (CTGDP), and further transmitted to the Center of Scientific
Data Processing.

In the framework of the Monitoring SS, four observatories: West, South, East, and Antarctic,
are planned to be butlt. They will be equipped with identical radio physical instruments in 4 radio
frequency bands and with preliminary processing terminals (PPT). Such a concept of the ground-based
system is recognized to be the most economic, reasonably corresponding to the existing research
background and experience, and will provide a sensing of the whole ionosphere in the interval of
heights from 50 km to 1000 km. After a preliminary processing at the observatories, the data streams
will be transferred to CTGDP.

About the research goals of SUIS, the following should be mentioned. The Moniforing SS is
planned to work in a continuous routine regime. It will be put into operation half a year before placing
the satellite into orbit.

The other SS of SUIS, Calibration one, will involve all existing active radio systems in
Ukraine that are purposed at the ionospheric sensing. It will work only according to a special timetable
based on the satellite passing and on the international geophysical calendar. As all the equipment of
this SS operates with powerful transmitters, its work requires s1gmﬁcant expenses and resources. The
data from this SS also are gathered at CTGDP. SS Calibration is purposed at the calibration of the
satellite sensors and the sensors of the Monitoring SS. The diagrams showing the connections of its
equipment with the ionospheric and other sensors of satellite will be presented. Integration of the data
of this SS with the other data of the whole SUIS will make it possible to model ionospheric
phenomena, extract the seismic precursors and carry out the data interpretation. Here, it is supposed to
arrange an exchange of data with all major centers of ionospheric sensing. Using the foreign
observatories for the under-satellite sensing is possible; the needed agreements have been obtained
from many of them. This will naturally require a direct link to Internet from CTGDP.

Now consider a planned strategy of the SUIS output data processing (SIDP). Here, two
blocks can be separated: processing the Monitoring data, and the Calibration one. The system of the
data processing should be integrated with all the data streams from the observatories through PPT,
calibration equipment, world ionospheric observatories, and global data center. The SUIS data
processing is planned to be three-level one: sensor — PPT — CTGDP. A sensor transforms the streams
of radio data into radio physical parameters, PPT determines, at every location, the background levels,
makes archiving and storage of data, extracts the anomalies, and sends the latter to CTGDP. The
Center compares the data of all the PPT and Calibration SS, and sends them to CPSD in terms of real-
time and modeling representations.

Making up a decision about a seismic waming then is done as follows. At PPT, the “Zero”
(Calm) level corresponds to the absence of anomalies detected by sensors; level “One” (Suspicion)
implies an anomaly detected by a single sensor; level “Two” (Trouble) means a correlated in
frequencies and routes anomalies in several parameters. This information is sent from PPT’s to
CTGDP. There, the level “Three” (Alarm) is initiated: correlated in time, space and frequency
anomalous variations of physical parameters detected by different observatories and SUIS.

Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory




MMET’98 Proceedings 43
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Introduction

In recent years, we have been interested in bringing the concept of fractional calculus and
the theory of electromagnetism together [1-7], and to develop an area in electromagnetics which
we are naming Fractional Paradigm in Electromagnetism. The field of fractional calculus

addresses mathematical operations involving differentiation and integration to arbitrary non-
v

integer real or complex orders -- operators such as where v can be a non-integer real or

v

complex number [see e.g., 8]. In other words, in this field the operators that are so-called
“intermediate” cases between the integer-order differentiation and integration are addressed and
studied. The electromagnetic theory, on the other hand, is a classical field in which the usual
differential and integral operators are commonly used. So it is interesting to explore what
possible applications and physical implications one would find if one brought the
fractionalization of operators and electromagnetism together. In our earlier work, we have
applied the concept of fractional calculus in certain electromagnetic problems, and have obtained
some interesting results demonstrating some salient features and potential applications of these
operators [1-7]. Inspired and motivated by our earlier work in application of fractional calculus
in electromagnetism, we have also been interested to explore fractionalization of some other
operators commonly used in electromagnetic problems and to search for potential applications
and physical meanings of such fractionalization of linear operators in electromagnetism. We
recently introduced the concept of fractionalization of the cross-product and the curl operators
[1,2] and showed that such operators can provide us with fractionalization of duality principle in
electromagnetism [1].

In this paper, we provide a brief overview of some of our ideas and recent work in this
area and discuss some of the salient features of the results obtained in our analysis. The
interested reader is referred to our work reported in [1-7] for more details. Before we give this
overview, for the sake of easy reference we first give a brief summary of some of the definitions
of fractional integrals and derivatives that have been utilized by mathematicians over years.

What is Fractional Derivative/Integral?

Fractional calculus is a branch of mathematics that deals with generalization of well-
known operations of differentiation and integration to arbitrary non-integer orders -- orders that
can be non-integer real or complex numbers [see e.g., 8-11]. The mathematical idea of fractional
derivatives/integrals, which dates back to the seventeenth century, has been the subject of interest
for many mathematicians and has seen much development over the years [see e.g., references
given in 8, pp. 3-15]. Fractional derivatives and integrals are shown symbolically by some of the
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d'f(x)
, d(x—a)’
is the general order of the operator (not necessarily positive or negative integer), and a is the
lower limit of the integrals used to define these operators (as shown below).

One of the definitions of fractional integrals is that known as the Riemann-Liouville
integral [8, p. 49; 9, p. 33]. It is the generalization of Cauchy's repeated integration formula.
Cauchy's formula states that the nth-order (or n-fold) mtegratlon of a given function f(x) can be
written as

D f(x)= jd 1jdx jf(xo)dxo

notations such as , D f (x) [see Davis, 10] or —————=- [see Oldham and Spanier, 8] where v

n-1
1),j(x —u) f(u)du (1)
where 4Dy denotes the n-fold integration with the lower limit of the integrals being a. It is

clear that (n—1)! =I'(n) where I'( ) is the Gamma function. Replacing —n with v which is a non-
integer negative number, the Riemann-Liouville integral for definition of fractional integration is
obtained [8, p. 49] as follows

D f(x)= j(x W' f(u)du. forv<O andx>a @)

(— )
For fractional derivatives with v >0, this definition can still be used if combined with the

m

e DI f(x), for v > 0, where m is chosen such that

(v—m) becomes negative and thus Eq. (2) can be applied for ,D)™"f(x). Then

following additional step ,D)f(x)=

m

dx"™

is the

ordinary mth-order differential operator [8, p. 50].
Another definition of fractional differentiation/integration was given by Liouville for

functions that can be expanded in a series of exponentials. For a function g(x) which can be

written as g(x) = Zc,.e“”, according to Liouville [12], [8, page 53] the vth-order fractional
i=0

differentiation/integration (with lower limit a = — o) can be given as
y d "g(x)
Dlg(x) = = 2 cule” . 3)

There are several other deflmtlons for fractional derivatives and integrals which can be found in
some of the references on fractional calculus [see e.g., 8, ch. 3]. Fractional calculus has had
applications in various topics such as differential equations, complex analysis, Mellin transforms,
and generalized functions to name a few. For a historical review of the field of fractional
calculus, the reader is referred to the excellent bibliography prepared by B. Ross that is reprinted
in pp. 3-15 of the monograph by Oldham and Spanier [8], and also the historical outline given in

9.

Our interest in fractional calculus has been particularly focused on finding out what
possible mathematical applications and/or physical roles these mathematical operators can have
in electromagnetic theory. Needless to say, electromagnetics is a field in which the use of
conventional (integer-order) calculus plays a major role, and it is of interest to see how fractional
calculus may offer useful mathematical tools in this field and how these tools help us to develop
the area of fractional paradigm in electromagnetism. We have applied the concept of fractional
derivatives/integrals to certain electromagnetic problems, and have obtained interesting results
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and ideas showing that these mathematical operators can be interesting and useful mathematical
tools in electromagnetic theory ([1]-[7]). Some of these ideas, which are the steps in developing
fractional paradigm in electromagnetism, include the novel concept of "fractional" multipoles in
electromagnetism [3], electrostatic "fractional” image methods for perfectly conducting wedges
and cones [4], "fractional" solutions for the standard scalar Helmholtz equation [6], mathematical
link between the electrostatic image methods for the conducting sphere and the dielectric sphere
[5], fractionalization of curl operator and its role in fractionalization of duality principle in
electromagnetism [1,2]. Below a brief review of some of these problems is given. Due to the
space limitation here, only some of these problems are reviewed. The interested reader may refer
to our work reported in [1-7] for further details and for our other findings.

What is our Fractional Paradigm in Electromagnetic Theory?

In the mathematical treatment of electromagnetic theory, for any given general problem
we often solve canonical cases. For example, if the goal is to solve the standard problem of
propagation of electromagnetic wave in a source-free region we usually consider well-known
canonical cases of one-dimensional plane wave, two-dimensional cylindrical wave, and three-
dimensional spherical wave propagation. Here if we just consider two of these canonical cases,
e.g., plane wave and cylindrical wave, we can symbolically show the chart of Fig. 1 where the
box entitled “problem” is what describes the general problem of interest (in this example, the
wave propagation in free space), and the two boxes “Case 1” and “Case 2” indicate the two
canonical situations (in this case plane and cylindrical waves). Now, one can ask the following
questions:

Are there any “intermediate” situations between the two well-known cases represented
as canonical situations for the “problem”? In other words, as symbolically depicted in

Fig. 2 can we have fractional “intermediate” domains between the two cases shown in
Fig. 1?

Fractional (Intermediate) Paradigm

Case 1 @ Case 1 Case 2

Problem Problem

Fig. 1 Fig. 2
These questions can be rephrased and interpreted in the following way:

If we consider certain "entity" whose properties (or identifiers) depend on a parameter
with integer values, can we still consider (or think of) that entity when that specific
parameter takes a non-integer "fractional” value? In other words, can we conceive an
"intermediate" case for that entity?

In order to illustrate this idea, let us consider the following example: The concept of multipoles

and multipole expansion in electromagnetic theory has been well known and studied extensively.
Let us take our “problem” as, for instance, the electrostatic potential distribution, and consider
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the canonical “cases” as the-“entities” of electric point-monopoles, electric point-dipoles, electric
point-quadrupoles, etc. These entities have specific properties. For instance, for the static
electric point-monopole, the scalar electric potential has the radial dependence of R-1. The
scalar potential of electrostatic point-dipole, however, varies as R-2 (and of course it has an
angular variation). Comparing the scalar potentials of these two entities, we obviously notice
that the R-dependences of these electrostatic multipoles have exponents that are negative
integers. Now the above questions that we posed can be rephrased as follows: Can we have an
"intermediate” electrostatic multipoles whose R-dependence varies as R-® where o takes a non-
integer value between 1 and 2? If yes, how would such a "fractional"-order multipole look like?
Of course, such an "intermediate” multipole should not, and cannot, simply be made by a linear
combination of one point-multipole and one point-dipole with appropriate coefficients. Because
if that were the case, the scalar potential in the distant region of such a combination would be
dominated by the potential of the monopole only, since the static dipole's scalar potential drops
faster than that of the monopole. Therefore, a specific charge distribution should be sought in
order to have a potential with R-dependence of R-®. We have studied this issue and have
introduced the idea of fractional-order multipoles using the tool of fractional calculus [3] and
have shown that such fractional multipoles can be used in describing potential distribution in
front of a perfectly conducting cones (for the 3-D case) and perfectly conducting wedges (for the
2-D case) [4]. We have found the volume charge density of a fractional multipole in 3-D case as
9’ 1
Py (M) =ql°__D}6(r)=ql* 5'2—2‘[5(16)5(}’)11(2) mzl a}

@
where o is in general a non-integer number between zero and unity, U(z) is the unit step function,
and the multiplicative constant /%, where [ is an arbitrary constant with dimension of length, is
used here to keep the physical dimension of this charge density as Coulomb/m3. The subscript
2% 1in p,. (r) describes the multipole fractional order of this new charge distribution. This

subscript is chosen such that it provides the right order of multipoles in the limiting cases of o =
0 and a = 1. For a =0, we get the point-monopole p;(r), and for o = 1 we obtain the first z-
derivative of &(r), thus showing a charge distribution of dipole p,(r) along the z-axis. The
subscript z in p,. (r) indicates the fact that we have this charge distribution along the z axis

(resulted from the ath-order z-derivative of the point-monopole). We have analyzed the scalar
electrostatic potential function of this fractional 2%-pole multipole [3]. It can be written
explicitly as
I°T(a+1)
®.. (x.y.2)=1" Dar q9 -|=Q_ ki
e e ey e

P,(-cos®) forO<a<1

0<6<m &)
where Py(—cos6) is the Legendre function of the first kind and the (non-integer) degree o. A
series of contour plots in the x-z plane for this potential for several values of o, 0<a <1 is
shown in Fig. 3. (See the caption for more details). It is interesting to note from Eq. (5) that, as
predicted, the scalar potential function of the intermediate "fractional" 2%-pole drops as R-1-¢
(with 0 < a < 1), as R increases. - Thus, it is a potential distribution that can be regarded as the
“intermediate” case between potentials of the point-monopole and point-dipole.  The angular
dependence of this potential is P,(-cos0) with the degree o which is, in general, non-integer.
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Fig. 3. Contour plots for
the  electrostatic  scalar

potential of 2%-pole charge
distribution of Eq. (4) for
O<a <1. The expression
for the potential is given in
Eq. (5). Since this scalar
potential is  azimuthally
symmetric, the intersection
of equipotential surfaces
with the x-z plane is only
shown here. The contours
are shown for the region
-2<zL2 and
0<x<2, and for six
different values of . For o
= 0 (top left Panel), the
source is a single electric
point-monopole (shown as
+) located at x = y = z =0,
and the contours are
independent of 8. For o = 1
(bottom right Panel), the
source is an electric point-
dipole (shown at + -)
located at the origin, and the
angular dependence of the
potential is —cos(0). For fractional values of a between zero and unity, we can see from the above contour plots that

the scalar potential of fractional 2%-pole are "intermediate" cases between those of the point-monopole and point-
dipole, and in a way it "evolves" from one case into the other. The dashed lines, which are added later on top of the

contour plots show the approximate location of zero potential (root of Py (~cos6) = 0.) In the region of x-z plane

shown above, to the left of these dashed line, potential is positive and to the right it is negative. Along the positive
z-axis, the charge distribution is also sketched. The plus and minus signs below the z axis indicate the sign of the
charge distribution along the z axis. (Originally published in N. Engheta, “On Fractional Calculus and Fractional
Multipoles in Electromagnetism,” IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, pp. 554-566,

April 1996, Copyright© 1996 IEEE.)

We have also addressed the case of fractional “intermediate” situations between the plane
wave and the cylindrical wave propagation in free space, have obtained “fractional” solutions to
the standard Helmholtz equation, and have found specific sources that generate such intermediate
fractional solutions [6]. Our results show that for the time-harmonic two-dimensional electric
current distribution described in the Cartesian coordinate system as

L™ _q e O(x)lyT® |
J(xyit) =4 [.-D;"8(x)8(y) + _.DZ;8(x)8(y) |= &le ot ©

where 0 < a < 1, the z-component of the radiated electric field in the far zone can be expressed,
for 6 not being too small, as
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4k*T(at) (Kiyl )=

where p=+yx*+y*, 0 = sin"1(y/x), and k = @\[pe . For 8= 0 when the observer is along the x
axis, another expression is obtained for E, [see Ref. 6], which shows that the magnitude of this

- iklx!
E(x, yrk) = O "cos((z Oc)")(k nil) / gro-me_ O, e o
o Zhp>>1 47'C 2 kp

field along the x axis drops as IxI-%/2, It can be shown that the source expressed in Eq. (6) and its
far-zone radiation field given in Eq. (7) are the intermediate case between the two cases of the
line current and the sheet current. (Note that the source given in Eq. (6) is not a simple linear
combination of a single line current and a single sheet current.) More specifically, we notice that
when a = 0 in Egs. (6) and (7), the current source becomes an infinitely long thin line current
(’)M E_eikp—mm
kp
which is the far-zone cylindrical wave of an infinitely long two-dimensional wire antenna. When
a = 1, Eq. (6) represents a one-dimensional sheet current with intensity [ /2, and its

along the z axis and its far-zone radiation field approaches | Z{ 2 k)=—"*

C_OL Z

4k
Therefore, Eq. (7) represents an example of a wave which is an "intermediate" case between a
plane and a cylindrical wave.

In some cases, however, the fractional cases may not be directly or obviously related to
the known parameters for the so-called “integer” cases. As an illustrative example, let us
consider the very well-known concept of duality principle in electromagnetic theory, that is for
any given electromagnetic problem there is another problem named dual problem that can be
obtained by appropriate transformation of fields, sources, and material parameters, namely,
E—-H’, H—> -E’, p—=>¢’, e, J-7n, I =T, p—=>p’y, and p,, >—p’. Following the same
line of inquiry, we should ask: Can we have “fractional duality” in electromagnetism where the
fractional dual problems would be intermediate problems between the original and its dual
counterpart? To answer this question, first we needed to seek an “operator” which “connects”
the two cases together, i.e., a mapping which takes the original case and brings it into the “dual”
case. Symbolically, we can show such an operator (which can be linear) as a mapping between
the “Case 1” and “Case 2”. We should then “fractionalize” this operator L, and the new

fractional operator, which we symbolically denote by L%, can be used to obtain the intermediate
cases from the original case 1. This fractional operator should have the following properties: (1)
For a = 1, one gets the original operator L and this provides us with Case 2 from Case 1; (II) For
a = 0, one obtains the identity operator  and Case 1 can be attained; and (III) For two numbers

o and B, we should have L* LB= 1B 1%= 19*B We have used this technique to fractionalize
some of the well known operators such as cross-product operator and the curl operator [1-2].
The fractional curl operator, as we defined, is a new operator shown symbolically as curl* with
parameter o that is in general non-integer. When a=1, we get the conventional cur! operator.
When a =0, we should obtain the identity operator. For values of o other than zero and unity,
one then gets operator curl® with appropriate mathematical operation [see Ref. 2]. Under certain
appropriate mathematical conditions, this operator, when applied repeatedly, is additive and also
commutes, i.e., curl® curl = curl® curl® = curl®*®. This operator is an interesting mathematical
operation that may offer some possible utility in certain electromagnetic problems. In particular,
we have found that using “fractional curl” operator we can fractionalize the duality principle in
electromagnetism [1,2].

corresponding far-zone field is lEzix, )lz;k) = which is, as expected, a plane wave.
P>
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Our hopes in introducing the fractional paradigm in electromagnetic theory are to explore

various fractional intermediate cases in electromagnetic problems which may lead to some
interesting possibilities. Many real-world problems in electromagnetism may not always be
identified or modeled as one of the standard ideal canonical problems. For example, in some
situations it may not be possible to model waves as ideal canonical plane, cylindrical, or
spherical waves. Similarly we may not be able to model antennas as having simple canonical
shapes. So it is hoped that “intermediate” cases we study will shed light on mathematical
treatment of some of the real-world problems in electromagnetic theory.
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Dept. of ‘Dzﬁ?acﬁon' Theory and Diffraction Electronics
Institute of Radiophysics and Electronics, NAS of the Ukraine
12 Proskura St., Kharkov 310085, Ukraine

Introduction ' |
New algorithmic schemes for modehng the problems of linear theory of waveguide disconti-
nuities are presented. Numerical experiment is still the main tool for investigation of the reso-
nant wave scattering phenomena, which are characteristic for such structures. The mathemati-
cal approaches employed for such purposes have to satisfy relevant demands as for accuracy,
efficiency and versatility, and for ability to be focused on particular details of various practi-
cally interesting regimes.

The approaches for analyses of transient processes in the waveguide-type open resonators con-
sidered herein satisfy all these requirements. They rely on the description of the scattering
properties of discontinuities in regular waveguides in terms of transform operators related to
“evolutionary basis” of non-stationary signals that are qualitatively the same for all guiding
structures [1]. They suppose an application of the analytical regularization technique at key
stages of the solving procedure [2]. The approaches developed can be applied to the solution
of wide range of electromagnetic and acoustic boundary value and initial value problems. The
class of considered model problems comprises resonant type discontinuities in circular and co-
axial waveguides excited by an axisymmetric TE,, electromagnetic wave. The choice of mod-
eling objects is motivated by scientific interests of the author. '

'Evolutionary basis of non-stationary wave and transform operators

Investigation of a TE-type axisymmetric wave scattering in circular waveguiding structures,
such as coaxial bifurcation or annular iris, is reduced to solving the following initial boundary-
value problem:

. {_ g(z)gt—i—U - o-(z)—g-;U + :zz U+ ﬁp( (pU)H F(z,p,t),t> 0,{z,p}e 0,

=y(z, p); 1

17
_.4U(Z:p:0)=¢(z’vp)> ZEU(Z,p’t)!

t=0

U(z, p,

.

where £(z) is the relative dielectric permittivity of the material filling the discontinuity,

olz)= (,u/ ) c,(z)} &.4 are the free-space penmttmty and permeability, o, (z)is the
specific conductivity; U(z, p,f) = E, . For the axisymmetric wave, E,=E, =H,=0, while
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the non-zero components of the magnetic field vector are given by the relationships:

7 (80)% 74 é (6‘0 % 174
—H =|—| —E, —H =-—| — :
ot " \u) 0z 7 ot ¢ ,uo] &’p(pE"’)

It is supposed that the functions F' (g,t) , q)(g), y/(g), g(g) -1, ando(g) are finite in 0 and
satisfy the conditions of the theorem about a unique solution of the problem (1) in the energy
class (Sobolev’s space) w ("), 0" =0x(0,7), T(=» [3].

The separation of variables in (1) enables us to represent the solution of the problem (1), at any
section of regular waveguide (i.e., where its cross-section is constant along the axis Z, and

e(g)-1= o(g)=0), as follows:
U (z, ps t) = Zvn(z, t)‘P,,(p) {z, pleQ, >0, ¥

where the sequence of functions v (z,H)= {v,, (z, t)} solve the equation

-Z 2 - ei=ale- 5 0B 0-2005

—é’? oz
2 5 (3)
+[(£—1)-§?+a—é;—}vn(z,t),—oo<t<oo, |4 <o,
with initial conditions
0
v,(2,0)= b,(2) ; Ev,, ) =¢ (2); _ : . 4
=0

{ﬂn}is the set of eigenvalues relevant to eigenfunctions ‘Yn(p) , 5™ is the generalized de-
fivative of the Dirac delta-function, a,(z, 1),b,(2).¢, () are the Fourier coefficients of the

functions F(g,?), o(g). w(g)expanded in terms of the series of basis functions.
Suppose now that a wave of the type (2) excites the open waveguide resonator. We consider
the field of excitation U'(g,7)= Y v,(z,1) ¥, (p) to be nonzero only in the waveguide A,

which is regular for all z, >0 (left bound is placed in the plane z, =0). The scattered field

that is exited in the regular semi-infinite waveguides A and B and propagates in each
waveguide towards the increasing values of z, and z, canbe expressed in the form

Uj(z,p,t)=anj(zj,t)‘l’nj(p); 2,20, j=12 4)

Boundary transformation operators R and T™ (at the boundaries z, = 0) of the evolution-
ary basis of nonstationary wave coming from the waveguide A are introduced via expressions

wnj'(O’t) =

E-a—é’;wnj(zj,t)‘zj

J

t b)
- [T[re- 05 -0 =12 ¥
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w, (z},t)——fJ[ M((t 7)’ ~z) } [(t——z')-—z}.]wnj'(o,r)dr, (6)

The transporting diagonal operators &*(z,) and &£”(z,) that characterize the field variation
while propagating along a finite distance in a regular waveguide, are defined as follows:

w, (0,0)= {w,, J, z)} =[RH45! + T8 w0, 9); j=12

=0} <[ )80+ )0 o, 0] )

Tt is clear, that all together these operators characterize the scattering features of discontinuity
(in the case of A-side excitation) in complete manner. Here J, (...) is the Bessel function, ¥

is the Heaviside step function.

Elementary discontinuities in circular and coaxial waveguides
In this section we shall outline the principal ideas of the approach, which can be used for the
solution of rather wide range of problems of transient scattering theory.

Hereinafter the wave of excitation, U; (z, P, t), is supposed as coming to the discontinuity

from the left-hand side and chosen to have the form (2) with v,(0,7) =576 (t—— 77). Integer
number p >0 and the time when the observation started, 7> 0, are fixed.

1.Coaxial bifurcation of a circular waveguide will serve us as the first example. This configu-
ration is characteristic for all the structures of so the called Wiener-Hopf geometry. According

to (4)-(6), the scattered field U(z,p, ) formed in the regions z >0 and transformed by the bi-

furcation (regions A is coaxial waveguide, B is the circular waveguide of radius b ; the region
of the regular circular waveguide of radius a is denoted by E) can be represented as

:~ZIJ { ( (t-t —22)1/2:];([(1— 7) - z|Riy (v - m)dz - ¥, (p) + U
- _ZJ‘JQ[an((t - 1)’ —zz)qz[ (=) + 2L (v~ mjdz - T, (o) J=12
The eigenﬁm:tic‘;ns w.(p), v,,(p)and the igenvalues 4,4 ,; are defined as follows
(o) :Jl(v,, ﬂn%a Jo(v,,)]_l;
v,.(p)= Gl(un,g)[ﬂ[azGi (1,,)-8°G; (ﬂ,,ﬁ)]]_%;
G, (uf] =J, (u,, '9 Ni(1,6)-N, (u,, {3 Ji(1,6);
v.n(p) = Jl(v,, f)[:r%bJo(v")]—l; |

@®)
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A= In=to I P
a, }',,=(K2—V,2,)%; 1 a 1 ( )

’ | N

— Vn - Vn - b - 2 _ Vn .

ﬂ‘nz‘ 4 Aa, 0 A: Vm (K ( A) ) >
where J,(..), N,(..)) are the Bessel and Neumann functions; v, , M, ,n=12... are non-
zero positive roots of equations J’,(v ): 0 and Gl(y,l) =0. The eigenfunctions

t//,,( p) , w,,,( p) , !//,,2( p) form the orthonormal @-independent bases in the relevant plane do-
mains: two circular and one annular waveguides, respectively. '

Satisfying the boundary conditions for the functions # and ﬁ% g atz= 0 (ie., the condi-

tions of continuity of the total field tangential components) providing the uniqueness of the
solution of (2)-(4), we arrive at functional equations. In terms of the Fourier coefficients of
matching functions, one of them has the following form:

SR - ) =on

) =12... 9
tan(":"V;/W) ‘= 2 > " ”
where R, = 2RZ(1 - 1) J,(v,6)/Jo(v.);

a)ml = _fml[Gg(lum’l) _eng(ﬂm’O)llﬂ /GIUMGO(‘U’”,H),

wmz = fmZ e/vm 5

511a+6_,2b
anj=27r Wn(p)y,mj(p)pdp’ ]=172
5/'b

fos ()= %{ZF,,, ; OI {thl{z,,(r- O+ Ay —»r)]} 2 (t=7)RE(z —n)dr +
+F %{6 (t-1n) -—{Jo[ﬂ,,,j(t - r)] y (- r)vp'(O,r)dr:‘I}

Expression (9) is a dual series operator equation with respect to the set of unknown functions
{Rfﬁ (¢- n)} 1t is well known from the theory of matrix operators of convolution type [4],

that (9) provides the solution in explicit form via application of the residue calculus of mero-
morphic functions over a contour in the complex plane. It is noteworthy that the elements of

the vector function {Rfﬁ (t - 17)} in the right-hand side of (9) make invest only by their values

at the moments of time ¢ that are strictly earlier than 7. Thus, the initial boundary value
problem is reduced to the Volterra integral equation of the second kind. The properties of the
matrix kernel enable us to solve this Volterra equation numerically, without inverting the ma-
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trix kernel at each step of integration, that considerably increases efficiency of numerical algo-
rithm. It has been thoroughly tested and cross-checked.

2.Thin axially symmetric irises have been chosen as the second example, to demonstrate that
the mode matching technique in time domain can artive at a considerably simpler example then
described above. The total field in domains A (z >0) and B (z <0) can be presented as:

(sl o)

After satisfying the boundary and continuity conditions at the plane z=0 and caring out sev-
eral obvious transformations we obtain that

RS-0 L 11 Senderssen)

n=12...; j=12.

1 2
5lats?b

Here F,, =27 .h”" (p)z/,,, (p)pdp. If j=1, formula (10) characterizes the scattering

nm,
1
5)b

properties of an annular-type iris, and if j=2, it corresponds to the one of circular shape.
Similar to the bifurcation problem, the elements of unknown vector function {R,fj - 7)} that

are in the right hand side of (10) influence its value at the moment ¢ only by means of their
values at the time moments 7 that are earlier than ¢. Thus, for a fixed # (regular step in time)
we can consider (10) as explicit solution of the problem of non-stationary excitation of sym-
metrical irises in circular waveguides.

Conclusions
The discussed above algorithms have been implemented in numerical codes for computer-aided

 simulation of several key problems. Characteristic cases studied showed these algorithms to be
a powerful and reliable software tool for fundamental and application-oriented investigation of
the physical features and peculiarities of time-space field transformations in the resonant
structures that are of practical interest in many areas of today microwave engineering and sci-
_ entific devices design.
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ASYMPTOTIC RADIATION FIELD OF
ASYMMETRIC PLANAR DIELECTRIC WAVEGUIDE
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Department of Electrical Engineering, Michigan State University
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Abstract: In the spectral analysis of practical open integrated waveguiding structures, multiple non-removable branch points occur in the axial
Fourier-transform plane. When the inversion integral for the distant radiation field is approximated asymptotically by deforming the real-axis
integration contour (C) into a steepest-descents contour (SDC) all of the associated branch cuts are crossed twice. Passage from the top
Riemann sheet to lower sheets and back to the top sheet occurs so both ends of the contour lie on the top sheet and C can be directly
connected into SDC. If the observation aspect angle is sufficiently large, however, all but one of the cuts are crossed a third time and the
two ends of the SDC lie on different sheets. Deformation of C into SDC then requires a fourth crossing of those cuts and integration around
them to remain on the top sheet. A continuous spectrum contribution consequently augments the saddle-point term contributed by the SDC
approximation. These wave phenomena are studied in detail for the asymmetric planar dielectric waveguide, which is the simplest canonical
structure for which multiple non-removable branch points occur.

INTRODUCTION:

Integrated waveguide structures consist of conducting or dielectric guiding regions immersed in a
planar-layered background environment. The analysis of such configurations proceeds typically from
a spectral formulation for the currents/fields in the axial Fourier-transform domain. Integral
representations for the complete electromagnetic field maintained by excitatory electric currents are
obtained by subsequent inverse transformation of the spectral-domain fields. Evaluation of the integral
representations requires that singularities of the spectral-domain currents/fields be identified. Those
singularities consist of simple poles associated with the integrated guiding structure and branch points
contributed by the layered background environment. The author has demonstrated previously [1,2] that
the latter branch points arise from both the wavenumber parameters and the discrete surface/leaky-wave
poles of the layered background. Asymptotic evaluation of the distant fields proceeds through a
steepest-descents approximation of the axial inverse-transform integral representations. The latter
procedure is complicated by the presence of multiple non-removable branch-point singularities in the
spectral-domain fields. For simple canonical waveguides (such as the symmetric planar dielectric slab),
the steepest-descents integration contour (SDC) crosses the single branch cut twice so both of its ends
lie on the top Riemann sheet; the original real-axis integration contour (C) is consequently directly
deformed into the SDC. When applied to spectral fields of integrated guiding structures, a SDC crosses
all of the branch cuts twice, but can cross all but one a third time for adequately large observation
aspect angles. As a result, those latter cuts must be crossed a fourth time and the integration path
deformed around them to return to the top sheet prior to connecting C into the SDC. Additional
continuous-spectrum wave contributions consequently arise in distant approximations to the complete
field. Since no prior efforts on asymptotic evaluation of integrated waveguide fields is apparent, a
simple canonical waveguiding structure which shares the presence of multiple non-removable branch
points is investigated to obtain insight into the more practical integrated structures.

CONFIGURATION AND ANALYSIS:

The asymmetric, planar dielectric-slab waveguide is perhaps the simplest canonical waveguiding
structure for which multiple non-removable branch points are present in its spectral-domain field. The
configuration of such a structure excited by a line source is indicated in Fig. 1. It consists of a

dielectric guiding layer with refractive index n, and thickness ¢ located between semi-infinite cover
and substrate layers having refractive indices »; and n,, respectively, where n,<n,<n,. Wavenumbers
in the various layers are k=nky, 1=1,2,3, where k,=27/4, is the free-space wavenumber. An axial

Fourier-transform solution for the TE field is constructed by well-known methods [3-5] leading to an
integral representation for the region 1 field as :
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. e ey
E (x2) = —jmp'of e’ +R(Qe ™ PRSP 4 )

- 4np,

where reflection coefficient R({) depends upon the wavenumber parameters p, = \/CZ —klz.

The spectral-domain field has two types of singularities in the complex axial transform ({) plane. Thep,
lead to branch points at +k;, although those at +k, are removable, while R({) leads to simple pole

singularities. Those complex ¢ -plane singularities are indicated, along with the relevant wavenumber
locations, in Fig. 2. Sommerfeld-type branch cuts, also shown in Fig. 2, are selected leading to a 4-
sheeted Riemann surface for which the spectral field decays or remains bounded transversely for all
points on the top sheet, while it grows transversely on the lower sheets. The pole singularities consist
of two distinct types; proper surface-wave poles occur on the top Riemann sheet while improper leaky-
wave poles appear on the remaining three. Various representations of the total field are considered
below, including asymptotic steepest-descents approximations to the distant (from the line source) field.

ALTERNATIVE FIELD REPRESENTATIONS:

The real-axis integration path C in Fig. 2 can be deformed in various ways to obtain alternative field
representations. Of particular interest is the distant radiation field, for which asymptotic techniques,
such as the method of steepest descents, are applicable to approximate the inversion integral in Eq. (1).
A polar coordinate representation of the field point is defined by (x+x y = rcos®, (z-z') = rsin® where®
is the polar angle measured from the x-axis. For asymptotic evaluation of the cover field, the steepest-
descents contour SDC is found to depend upon the observation aspect angle as indicated in Fig. 3.

If © is sufficiently small then the SDC crosses both branch cuts twice and its ends both lie on the top
Riemann sheet. There exists a critical angle ©_, however, beyond which the SDC crosses the k,
branch cut a third time and the two ends of the SDC lie on different sheets. That angle is found to be

given by

k

0, = X -cosH-2] = T o) (2)
2 ky 2 n,

- Asymptotic evaluation of the integral in Eq. (1) consequently depends upon whether that critical angle
is exceeded. The two possibilities are considered below.

case no. 1: 0<0, (two k, branch-cut crossings)

In this case, the two ends of C and SDC lie on the top sheet so they can be connected along C, to
form a closed contour as indicated in Fig. 4. Note that a segment of the SDC, between the two pairs
of branch cut crossings, lies on the bottom Riemann sheet. The SDC may consequently capture
surface-wave poles on the top sheet and leaky-wave poles on the bottom sheet, although this is unlikely
at small aspect angles. The SDC must be deformed about such captured poles, and the contour which

excludes all such poles is designated as C,. Cauchy’s integral theorem then provides

(3 =0 = [ )de = [ ()t [ (e ©)

f-C+SDC+Cp+C,

but it is well known that
[ (adg e | “@

4

along radial lines as k,r~e. The pole residues cbnsequently do not contribute to the distant radiation
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field. The SDC can also be deformed into the lower half plane and about branch cuts C,, and C,,,
as indicated in Figs. 2 and 4, leading to

(-Yd{ =0 = (-)d¢ = fc (~)dg 5)

f -SDC+Cp+Co+Cyy+Cy §bC 1*Cas

where the pole contribution is neglected. It is concluded that in this case the SDC contr{bution
includes the entire proper radiation spectrum. Finally the saddle point approximation to the SDC
integral provides the well-known result

, © ~fleyr - [8)
E[(r8) = ~jou, [ ()L - Bk %R(ey e . ©

sDC 4 \/Fl—r

case no. 2: 0>0_ (three k, branch cut crossings)

In this case, the left side of the SDC lies on the top sheet (of the &, -related Riemann surface) while
its right side lies on the bottom sheet as indicated in Fig. 5. The right end of the SDC must
consequently be deformed along C,, to cross the C,,; branch cut a fourth time and pass back to the top
sheet; it is subsequently deformed about the C,; cut to remain on the top sheet and connected into the
left end of the SDC. By Cauchy’s theorem

()dg =0 = [ ()l = [ () ¥

f—SDC+C,+C +Cyy b1

where pole contributions have been neglected. The SDC integral now represents the incomplete
radiation field. It includes the C,; component but excludes the C,, component. This implies that the

SDC contribution is discontinuous at 0=6, unless the Cp; contribution vanishes there.

The two ends of C lie on the top sheet, while the left end of the SDC lies on the top sheet and its right
end lies on the bottom sheet. C is deformed into the SDC as indicated in Fig. 6. The left ends of C

and the SDC are connected directly on the top sheet along C,,. The rightend of Cis deformed alongC,,
and around C,; on the top sheet. Finally C,;, is crossed to pass to the bottom sheet and connection
with the SDC is made along C,. Cauchy’s theorem then requires

o = = aes = eee o 8
e spec, e, 0 [rde = [ et [ ()de ®
and the complete radiation field is recovered by augmenting the incomplete SDC component with the
missing C,; component. The additive continuous-spectrum component is 2 lateral wave discussed
briefly in [6-8] in a different context. Replacing the SDC component by the asymptotic saddle-point
approximation leads to

~jlkyr - mf4)

B0 ~ -2 2 RO ~jouq [, () ®

o
JE T b3
which includes the additive continuous-spectrum component.

The significance of the additive continuous-spectrum component to the reflected field is studied in Figs.
7 and 8, where the saddle-point contribution (E,), branch-cut contribution (Eyr)bc and the total
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reflected field E, = (Eyr)sp +(E,);, are displayed. These numerical results are for a dielectric
waveguide having #/A,=.5 and n, =1., n,=3.2, n,=3.0 which supports only the principal surface-wave
mode and leads to a critical angle of ,=19.5°. Fig. 7 displays the radial dependence of the field for

0 =88°; clearly the branch-cut contribution is negligible except for relatively small #/4,. The angular
dependence is shown in Fig. 8 for fixed r/, and again the branch-cut contribution is negligible except

for 6-90°.

CONCLUSIONS:

The spectral analysis of open-boundary waveguides leads to multiple non-removable branch points in
the axial Fourier-transform plane. The presence of multiple branch points complicates the asymptotic
evaluation of the distant radiation field. The SDC crosses all of the associated branch cuts twice but,
for sufficiently large observation aspect angles, can cross all but the cut associated with the field region
a third time. This results in one end of the SDC residing on the top Riemann sheet while the other
end lies on a lower sheet. Connection of the SDC into the original integration path C consequently
requires deformation of the SDC to cross the cuts a fourth time to return to the top sheet and then pass
around them to remain on the top sheet before connecting with C. The result is a continuous spectrum
branch-cut contribution which augments the asymptotic approximation arising from the SDC integra-
tion. These lateral waves are found to decrease more rapidly than the asymptotic contribution with
distance from the line source. The portion of the SDC which lies on the bottom sheet can capture
leaky-wave poles while surface-wave poles can be captured on the top sheet. The pole residue terms
decay exponentially with radial distance from the line source and consequently do not contribute to the
distant radiation field. Modifications necessary to extend this technique to practical integrated
waveguiding structures are will be identified.
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Fig. 5 Appropriate closure of SDC into C,
branch cut when 6>6,.
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Abstract

A universal and efficient iterative scheme for solving eigenproblems is presented. It is based on a func-
tional analysis approach. Several variants of numerical implementation of the method are proposed.
The application to the problem of electromagnetic waves propagation in anisotropic waveguides with
arbitrary transversal inhomogeneity of the permittivity is briefly specified. Several examples of the
computed mode vector fields in various complex dielectric guiding structures are shown.

1 Introduction

The main difficulties of solving eigenproblems of electromagnetic waves propagation are due
to the following facts: ’
- electrodynamical coupling between the magnetic and electric field components of a mode
in the region of the permittivity variation,
- energy radiation from an open guiding structure,

"~ complicated geometry and profile of the transversal inhomogeneity of the permittivity.
The mathematical difficulties corresponding to the above physical facts, when one seeks the
solution in the space of square integrable functions, are the following:

— nonselfadjointness of the operators constructed from the vectorial equations describing
propagation and possible nonorthogonality of the eigenfunctions (guided modes),
- existence of unbounded or nonvanishing at infinity solutions (corresponding to the con-
tinuous part of the spectrum of the constructed operators),
— complexity of the boundary conditions and/or of the (variable) coefficients of the equa-
tions.
Because of the above difficulties there exist not many full-wave (vectorial) methods which
can provide satisfactory solution especially for complicated structures. There dominate purely
numerical methods, mainly the variants of finite difference or offinite element methods [1]-[3]
(for more complete reference see [4]). The common feature of all these methods is that the
original differential problem is reduced to numerically solving an algebraic matrix eigenproblem,
after making more or less arbitrary choice of the discrete and finite subbasis in the function
space the solution is sought for. Often, the correspondence between the original differential
problem and the discretized algebraic one is difficult to be maintained or is even violated.
Moreover, these methods require a large amount of memory (mainframes) to be effective in
more complicated cases.
Here we present the method called Iterative Spectral Decomposition Method (ISDM) {5}, [4]. It
was derived with a help of functional analysis techniques and after investigating spectral prop-
erties of the suitably defined propagation operator resulting from Maxwell’s equations [6], [7].
The proposed iterative process is rapidly convergent, has low computer memory requirements
and has proved to be an efficient and universal tool for the analysis and numerical simulation
of various dielectric guiding structures. Some examples are mentioned in this short paper.
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2 Abstract scheme of the ISDM

Let T be an unbounded, densely. defined and closed linear operator in the Hilbert space
(H.(-, ")y), with nonempty discrete spectrum o4 (T) # §. Suppose that T can be de-

composed
T=L-F

in such a way that L is a selfadjoint operator with known spectral properties and the (un-
bounded) operator F is L-compact, meaning that D(F) D D(L) and ¥p ¢ (L) the operator
F(L - p)~! is compact.

Under the above conditions, the eigenproblem

(T-7)u=0, wueD(T)

which can be written equivalently as u = (L — 7)™ Fu if 7 ¢ o(L), is solved by the following

iterative process
&n = (L — Tn—1 )_lFun_}_ (*)

(T ”ﬂn”'}—:(l, Tn = (Tun 3 un)'}-{
This iterative process, called Iterative Spectral Decomposition Method (ISDM), is rapidly
convergent, has low computer memory requirements and has proved to be superior to many
large-scale mainframe numerical methods.
Several variants of numerical implementation of the process are proposed, relatively to the
accessible means of solving inhomogeneous equation (%) in various physical situations.

2.1 Variant I (eigenfunction expansion)

Spectral measure of the operator L is known, e.g. L has compact resolvent and is semibounded;
the solution u, is expanded in the basis of eigenvectors of L (corresponding special functions).
This variant is called the Iterative Eigenfunction Expansion Method (IEEM).

The spectrum o(L) = 0g;5.(L) is discrete and the eigenvectors e,

(L=2An)en =0, l|enly=1 m=12]3,...
form an orthonormal basis in 7{. In the iterative process we utilize known eigenpairs (em, /\m)fno=1

of the operator L:
Uy, = chlem,
Cv?v. = ()‘m - Tn-—l)—l (Fun—l ’ em)'}-{ s (*)

Un =3 Dpem, Dp=Cr(3[ChI>)™2,

7= 3 AnlDilP = (Fun , en)y DE)

2.2 Variant II (using Fourier transform)

T is a differential operator in L*(IR"™); the action of the operator (L — 7)~1F is simplified by
means of the Fourier transform in L?(R™):

W) = (2m) 2 /R ez da
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To this end, for any z € L*°(R™), let us define the operator:
LY (R")5u — (zuM)
2(—iV)u (=(N) w*(A))"
The operator z(—iV) is well defined and bounded in L*(R"). Since F is L-compact, the
operator (L — 7)1 F is compact for 7 ¢ o(L). Hence it is bounded and can be expressed in
the form:

]

(L-7)"YFu = 2z(-iV)u =
(2 (N W) = fla(=iV)u
for a function z, = z()) € L®(R") of the form determined by the choice of the spectral

decomposition of T = L — F. We can now perform the iterative process on the Fourier
transforms of u,:

@ = (27, (=1 )Un-1)" = 27, (M) Up_a(Y) *)

~1/2

3>
|

= apllaplly’ = in (g [22(N)I%dA)
o= (L= Flun)™, up)y =
= g (5T = F)) [ (V) [2dA

2.3 Variant III (using Green’s function)

T is a differential operator in L2(R"); the Green’s function of the operators L or (L —7)7'F

is used to solve (x).
If I, € LX(R™") N L®(R™) or IY € L}(IR™), then the convolution:

(Lu) = (2m) 2 1Y s u
exists for u € L2(R™) and IY(z,y) is the Green’s function of L. Then
(L —7,) ' Fu = I,(=iV)Fu = (I.(Fu)")"

If we choose the spectral decomposition of T = L — F such that [Y(z,y) is known, then the
equation (*) can be effectively solved as follows: ~

in = (2m) ™2 [ 14 (@~ ) Funa(y)dy o
Analogously, if the analytical form of zY can be obtained, then

i = (20) 7 [ 22 (@ = e (v) dy *)

3 Application of the ISDM to dielectric waveguides

3.1 Assumptions about the guiding structure

Let us consider a waveguide that is: homogeneous along the direction of propagation 3, trans-
versely inhomogeneous, magnetically isotropic with g = po = const, electrically anisotropic
with the principal axis o3 along z3:

€1 €2 0
(@)= e1 € 0 |, z=(z,2)€R?,
0 0 €33
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where the dielectric tensor £(z) is hermitian, positively defined and

6 R®32 = (21,29) — C, §,7=1,2,3

€;(z) = €4 = const for |z| > R; .

3.2 Formulation of the eigenproblem

Assuming harmonic time dependence e™**, after expressing all the six vector field components
of the guided mode by:

H, = [h](icl,l‘z),h2(a;17$2)}ei(ﬁx3—wt) -
= hJ_ ei(ﬁa“:g-—wt) ,
Maxwell’s equations for the waveguide can be reduced to the following eigenproblem:
(T - ﬁQ) hy =0,

Thy =(L-F)hy =

L« Vihl +

(€00 —€
2 |22 12] By +

| —€21 €11

1 [e2 —e12
—F « ;T }{Vle33x(lehL)}+
33 [ —€1 €11

1 [ess—eaz €12 .
— J {VLex(Vixhy)}

€33 | €21 €33 — €11

a

2 __,,2
172]’ ke =w Ho€g.

I )
where V| = [57-,3

3.3 Spectral decomposition of T

Since guided modes are square integrable, we define operator T in the Hilbert space H of square
integrable complex valued vector functions defined on the cross-sectional plane R? of an open
waveguide, or on the bounded region © denoting the cross-section of a shielded waveguide:

H=L*(R)eC o  H=IL}Q)e .
We introduce in H the scalar product:
(v, W)y = (v, Wz, )+ (Vay » Way )y s

where for v = [vg,, v,], w = [z, wy,] € H

(Uasj ) wz‘j)2 = /vaj Tu—x:,' dz, 7=1,2

and O = R?, or O = Q, respectively.
Decomposing the operator T
T=L-F,

we pick out as the operator L:

L=V%,  D(L)=D()®C?
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with the domain D(l) such that Laplacian lu = Au is selfadjoint. Hence, we choose
D) = {ue I*(R?): Aue I*(R)} = H(R?)
for open waveguides, and

D) ={ue H}Q): ue C?down to 99, ulpq = 0} or
D(l) = {u e HY®): ueC?down to 89, & flog =0}

for shielded waveguides with Dirichlet’s or Neumann’s boundary conditions, respectively. Now
we define

D(F)={uveH: FueH}, D(T)=D(L).

We proved in [6] that T is a densely defined, closed operator in H, that D(F) > D(L), and
that F' is L-compact for isotropic structures and L-bounded for anisotropic ones.

In the numerical implementation of ISDM for open waveguides we discretize the spectrum
of Laplacian substituting D(I) = H?(IR?) by the domain of Dirichlet Laplacian defined on
bounded, sufficiently large region P such that the guided mode field together with its derivatives
is negligible outside P.

3.4 Features of the numerical implementation of the ISDM

¢ Computes mode propagation constants and vector fields of (multi-core, anisotropic, lossy,
shielded or open) dielectric guiding structures with virtually any cross-section and refractive
index profile.

¢ Compact — requires very little computer storage; runs on IBM/PC with 512K RAM and a
math-coprocessor.

e Versatile — shape of the structure and its refractive index profile can easily be modified by
a user during a computing session.

¢ Efficient — mode solution accurate to five digits is obtained after literally seconds of com-
putation (5-8 iterations) on an IBM/AT platform.

o Simplicity of the numerical code of the iterative scheme and capability of effective calculation
of mode vector fields makes the ISDM a powerful tool for numerical simulation, thorough
analysis and design of complex dielectric guiding structures.

Numerical cost (variant IEEM; measured)
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3.5 Problems already solved by the ISDM

The method (variant IEEM) has been successfully applied to the analysis of the following
dielectric guiding structures: -
o power profile elliptical fibers with large ellipticity (polarization maintaining fibers);
e anisotropic dielectric waveguides (truly single mode fibers)
o asymmetric double-core waveguides (analysis of wavelength selective coupling)
e multi-core fibers with non-identical cores
e open waveguides with a large core-cladding refractive index difference (complex modes
in open lossless dielectric waveguides)
e optical fibers with a lossy core or/and cladding
¢ birefringent structures with lossy intrusions (dichroic polarizers)
¢ optical monomode fiber coﬁplers with lossy separating layer of arbitrary refractive index
(operating as switches or sensors)
¢ polarization selective couplers (polarizers and polarization beamsplitters)
o rectangular shielded waveguides loaded with dielectric slabs

4 Selected examples of computed mode fields

4.1 Complex mode in a lossless waveguide

The possibility of existence of complex modes with decaying at infinity fields in lossless isotropic
and inhomogeneously filled dielectric waveguides follows from nonselfadjointness of the oper-
ator corresponding to the propagation eigenproblem. Nonselfadjointness is a consequence of
inhomogeneity of the permittivity in the waveguide cross-section. In the regions of permit-
tivity variation the coupling of the electric and magnetic field components of hybrid modes
takes place. At low frequencies, in structures with a large core-cladding index difference this
coupling can cause the hybrid mode to become complex [7].

Below, the example of complex £ Hy; mode is shown, namely the transversal field components
Hy, E; and the distribution of the energy flow (Re{(E x H)-43}) in the cross-sectional plane
of the waveguide at the normalized frequency V = 3.0.
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4.2 Fiber coupler with a separating layer

The monomode fiber coupler with a separating layer of arbitrary refractive index and geometry
shown below has been analyzed in terms of global in the cross-sectional plane, vectorial modes.
The coupler is treated as a triple-core structure that is locally homogeneous along the direction
of propagation. The global transversal modes contain full information about coupling and
attenuation of the fields in each cross-section of the coupler.
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The layer can drain some energy from the fibers (a different quantity for each polarization
state), especially when the refractive index of the layer and of the fiber core are more nearly
the same. The h; field component of the mode that is responsible for the energy transfer to

the layer is shown below.
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Here we also present the result of the severe, energetical test — computed (continuous curve) and
measured (triangle-dotted curve) transmission coefficient 7' of the coupler versus the refractive

index n,, of the layer.

4.3 Multicore fiber with non-identical cores

In such guiding structures the wavelength selective coupling may occur. An example of the
mode power density distribution (the real part of the longitudinal component of the Poynting’s
vector) over the cross-section of a multi-core fiber for different normalized frequencies V is

shown below.
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The effectiveness and versatility of the ISDM are the benefits from applying functional analysis
techniques. The method has been successfully applied to a wide class of dielectric guiding
structures. The ISDM turned out to be particularly useful as a tool for numerical simulation,
thorough modal analysis and design of waveguides with complicated geometry and of various
opto-electronic devices including couplers, switches, sensors and resonators.
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1. Introduction

Tt is known that optical characteristics of diffusive system (OCOS) are related to the
particle size distribution function (PSDF) f(a) (a is the particle radius) by a linear integral
equation of the first kind. The equation usually has the following form:

S(0) = | s(x,2)/ (), W
where S(x) is an experimental OCDS,; s(x.a) is the same characteristic related to a single
particle. The essence of the problem of inverting lightscattering data into PSDF is to

determine f{a) from a given kernel s(x,2) of Eq. (1) and from an experimental S(x) obtained
with an error 0S(x) (including computational errors)

8(x) = S(x) + AS(x) (2)

The quantity EAS(X} determines the number of Fourier harmonics that can be retrieved by
inverting Eq. (1). The harmonics of frequencies & > @, where @, is some limiting frequency,
just disappear in measurement noises of the furction S(x). The frequency @, is determined
from the following formula (see [1):

AS = fS(x,a)eim“’da. 3)
|Ag])

The requirement for measurement and calculation error to be small \7 «<1, 5= 5 ) is,

however, not enough to construct a stable solution to Eq. (1). This is obvious from the
following.
The simplest method of solving (1) is to transform it into a system of linear algebraic
equations of the following form:
CyXy = Vi )

This method is, however, unsuccessful as a rule, because the systems obtained in such a
manner turn out to be ill-conditioned.

The reason has to do with peculiarities of some integral equations of the first kind; these
equations are ill-defined, that is to say, they are very sensitive to the choice of linearization
points, and to measurement and computation errors. In order to solve the problem, one has to
"regularize” it. The regularization amounts to invoking additional information about properties
of the sought-for solution to Eq. (1). This additional information makes the problem stable.
Strictly speaking, by invoking additional information, one changes one problem for another. It
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is important for the substitution not to lead us too far away from our original goal. In other
words, solutions to the regularized system should be close to the solutions of the imitial
phiysical problem. The regularization hes to help us to get rid of computational instability of
the problem without changing its physical essence.

The simplest regularization method is to assume that the sought-for PSDF belongs to a
certain family of functions. The parameters of the distribution are chosen so that the system
(4) is satisfied. Let us denote the frequencies (or scattering angles) at which the function S is
measured as 7,. We denote the sought-for parameters of our family of functions as v,. In this
case, the determination of the parametersv, . of the family reduces to solving the following set

of equations:

S, v)=C, i=12,.10. (5)

The number n of equations must be no fewer than the number k of the parameters in the
sought-for family. In spite of seeming simplicity, the system (5) is, as a rule, also poorly
conditioned, so the method does not help much in constructing solutions to Eq. (1).

~ The principal idea of the method suggested here is to accept n>>k. This means that we
will deal with significantly overdefined systems. This will make it possible to improve
essentially the determination accuracy of the parametersy,. This idea is similar to the method
of least squares. Recall that the error A¢ of the mean over n measurements is equal to

¢
Ag= —=====,

Vn(n-1))
and so it is smaller than the error of a single measurement Ag, approximately by a factor of n.

©)

2. An exaniple of appreciation of the methed suggested.

One of the examples of method applications is discussed in {2]. According to recent
experimental data, the function f{a) can be represented as a sum of two components: fine and
large ones. Each component has a lognormal distribution that can be described by three
parameters: the particle concentration density 1y (em?pm™), the distribution mode
r{um), and the distribution variance s; (i1, 2 for the fine and large components respectively).
It is more common to use two other parameters instead of ny and ny: N=n;+n, and ¢ = —n-L,

n,
where N is the total particle concentration density, and ¢ is the ratio of concentrations of the
fine and large components. In [2], the authors fix N and ¢ and examine the sensitivity of
aerosol two-component models to variations of the remaining four parameters r; and s;. Using
different values of r; and s; and Eq. (1), it is possible to obtain an unlimited number of two-
component models. In order to limit this number, certain intervals for r; and s; and for the
quantization step are set. The limits of mode radius variations are set basing on data in [3].
For r; this interval is Ar, = 0.02 - 0.06um ; for r, it is Or,=0.15-0.75pum.

It is commonly assumed in aerosol models that the value of standard deviation s; is
approximately equal to 0.3. This value is taken for setting intervals for s;. It is presumed that
s; varies from approximately 50% to 200% of the magnitude. As a result, the interval for s; can
be specified as 0s=0.15-0.55; for s, [15,=0.1-0.7.

The possibility of retrieving f(a) from the spectral attenuation o(A) is considered in [2].
The spectral attenuation o/particle was calculated by the Mie formulas for 77 wavelengths that
were spaced evenly throughout the extended visible range from 0.3 to 1.06pm. It was
assumed when doing this that the complex refractive index m(A) of the fine component
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coincided with that of the rural component in [3], whereas m() of the large component was
identical to that of the oceanic component in the same work. The data for m were taken for a
relative humidity of 70%,

For each component, 25 values of 1; and 27 values of s; were used in such a manner that
they were spaced evenly throughout their intervals. Matrices of 25 x 27 elements were
constructed in this way for the spectral attenuation o(A) for each of 77 wavelengths A
[distributed evenly throughout the 0.3-1.06pm range]. As a result, 675 models for each
component were obtained for 77 wavelengths. These data arrays of o constituted the basis for
a further analysis.

In order to identify aerosol models satisfying optical data, two optical characteristics were
chosen: the Angstrom parameter ¢ and the attenuation c,/particle at A=0.55um. These two
parameters can fully describe the curve of spectral attenuation in the visible range.

The aerosol models were compared with experimental data for o, and a.. It was assumed,
in accordance with numerous publications, that the aerosol optical thickness T, of the marine
atmosphere in clean oceanic regions varies between 0.07 and 0.09; the value of the Angstrém
parameter o for the same conditions can change from 0.4 to 0.8.

As a result, it was taken for 6 (0.550) and o to satisfy the following inequalities (see [2] for
more details):

0.9 x 10*km?em’® < 6 <1.1 x 10”km e’ Q)
0.35a <05

Using these inequalities, the authors of [2] calculated the basic optical characteristics of the
above-described 675 x 675 two-component models. From this set, the models were selected
whose o, (0.55) and o satisfy the inequalities (7). At a chosen step of quantization, the
number of such models amounted to 5292.

Next, particle size distributions for each model were calculated, and the maximum and
minimal values of each distribution were determined for every particle size. It turned out that
individual distributions differ between themselves quite significantly, which corresponds to the
range of natural variability of the basic optical characteristics. For some intervals of particle
radii, distributions differ by orders of magnitude. However, all the selected models were found
to be close to each other within the 0.02-1.0pm particle radius interval. This interval (optically
active interval) is responsible for 93% of attenuation in the visible range.

The mean particle size distribution for the active interval was constructed. The relative
mean-square error of this distribution grows with the particle radius; for particles of radii of
0.02-0.2um, the error does not exceed 20%:; for the 0.2-1um radius range, it is no higher than
40%; it gradually grows from 40% to 95% as the particle radius changes from 1 to 3um.
These results make it possible to estimate the retrieval accuracy of the aerosol particle size
distribution from an optical data set at different particle size intervals.

It follows that by specifying the interval of basic optical characteristics, one can determine
with the above-stated accuracy, an optically active and quite stable are of PSDF. It should be
noted that data on the spectral attenuation alone measured in a limited spectral range is not
enough to determine PSDF over the entire particle size interval, because differently-sized
particles affect the radiative transmittance differently. So, small particles, numerous as they
are, possess weak extinction properties, whereas large particles are strong attenuators,
although they are few.
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3. Conclusions

The information content of data for the spectral attenuation ¢ at A=0.55um and for the
Angstrom parameter o in the visible range for the marine atmosphere was examined for the use
in the reconstruction of the aercsol particle size spectrum. The particle size distribution curve
was parameterized by a sum of two log-normal distributions, which means that it contained six
unknown parameters to be determined from the two measured characteristics. Some
parameters were fixed at their typical values in order to diminish the uncertainty of the
problem. In the example illustrating the procedure, the total particle concentration and the
fraction of the fine and large component were fixed. The number of members of the ensemble
was great, because the answer was ambiguous. It is remarkable, however, that in the active
particle interval, different members of the ensemble have close distribution curves, so it is
natural to accept an average curve as a solution to the problem. In spite of the small body of
initial information, the accuracy of the procedure was quite reasonable. It can also be seen
how the error grows with the particle radius.

The most important for the method is a correct choice of the initial function in Eq. (1) and
of the interval of parameter values. One can expect, for example, that by applying the
described procedure directly to some nonaverage atmospheric conditions (such as storms and
fogs), one would obtain much worse results. For these conditions, one could possibly vary
both the initial formula in Eq. (1) and, more importanily, the intervals of the parameter
variability.
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Time-domain solvers versus analytical regularisation in the integral-equation
analysis of canonical scatterers.

P.D. Smith Department of Mathematics, University of Dundee, Dundee DD1 JHN, Scotland, UK

Introduction.

In the analysis and measurement of electromagnetic systems, much emphasis has been placed on their
characterisation in the frequency domain. Although this is entirely appropriate for those systems
which are narrow band, an increasing number of practical systems are wideband or ultrawideband
(UWB), spanning several octaves of frequency in operation. The advances in UWB pulsed source
performance over the last decade have given rise to several novel applications, including UWB radar
[1], ground penetrating radar [2], and ultrawideband synthetic aperture radar [3]. Current source
technology, providing pulsed waveform risetimes of the order of 100 picoseconds, is reviewed in [4],
whilst other faster rise time applications, albeit of lower power, are reviewed in [5]. The book [6]
reviews present approaches to UWB studies.

Ultrawideband radar requires the faithful radiation, and reception, of a temporally compact, ultrawide-
band pulse of some pre-determined waveform, coupled with analysis of the target scattered signature,
both in the early time and the late time. In the early time, scattering by features such as edges is
important, whereas the later time response is predominantly of a damped, oscillatory nature which
can be described in terms of the so called “complex resonances” or “poles” of the Singularity Expan-
sion Method [7]. These later time features may be strongly pronounced for structures with cavities,
especially if the Q factor of the cavity is high, so that one or more oscillation has relatively long dura-
tion. Determination of the corresponding poles has been explored as the basis of target identification
algorithms [6].

In other areas as diverse as personal communications and satellite communications, attempts to cir-
cumvent various physical constraints, such as antenna size, have lead to the increasing deployment
of wideband antennas in the form of multiband antennas. A novel antenna is the fractal antenna re-
cently examined in [8]. Electromagnetic intereference (EMI) and electromagnetic compatability(EMC)
continue to grow in importance as the operating frequency of devices increases and the spectrum be-
comes increasingly crowded. Wideband antennas are central in the effective location and assessment
of sources of EMIL, and in the determination of both in-band and out-of-band responses of radiating
devices.

Time domain techniques are especially attractive to the wideband community. The impulse response
of a radiator or scatterer theoretically contains the complete frequency spectral response; in practice,
the finite risetime of sources and measurement systems restricts attention to the smoothed impulse
response stimulated by a transient pulse of short duration (such as the “Gaussian” pulse), which
then provides (via a Fourier transform) a wideband system response, up to a maximal frequency
inversely proportional to the pulse duration. Tor these reasons, numerical simulations often calculate
a smoothed impulse response to assess the corresponding finite bandwidth response.

Whether it is obtained directly (by measurement or simulation), or by transformation of frequency
domain data, the time domain response of a scatterer, to transient incident illumination, has a direct
physical interpretation, which is invaluable in discerning such features such as the specular return,
creeping wave phenomena, and cavity resonances.

Let us consider the available analytical and numerical techniques for obtaining the time domain
response, and, by implication, the wideband frequency response, of a scatterer.
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Analytical and Numerical Time Domain Techniques.

Analytical techniques find their greatest success on narrowly restricted classes of problems. Examples
include the Mie series solution of scattering by a sphere (and other such “separation of variables”
solutions for canonicai scatterers), low frequency (Rayleigh) scattering, and canonical problems soluble
by the Wiener-Hopf technique [9]. Techniques applicable to wide classes of scatterers are invariably
numerical. At high frequency, ray techniques, such as the geometrical theory of diffraction (GTD) and
its extensions [10], can provide good approximations for relatively large scatterers. For the smaller
and intermediate wavelength regime, integral equation approaches have been successfully used for the
numerical calculation of electromagnetic wave interaction with scatterers, both in the time domain
[11] and the frequency domain [12]. We will briefly describe how integral equation methods can be
efficiently exploited to obtain scattering signatures across a broad band of frequencies, particularly
focussing on the time domain form. The scope and advantages of frequency domain techniques are
well explored in [12]. In this regime, other possible approaches include finite difference time domain
(FDTD) schemes [13] and finite element methods(FEM), resulting from the direct discretisation of
Maxwell’s equations. Of course, none of these techniques exists in isolation, and various hybrid
schemes, combining analytical approximations and numerical attacks, have been devised. A discussion

of these issues is in [14, 15].

Between the extremes of purely analytical and purely numerical techniques lies the Method of Reg-
ularisation (MoR). This (frequency domain) method is based upon exact inversion of a singular part
of the original equation, which is often identifiable as a “static” part. In the process a system of first
kind equations is converted to a set of second kind equations, enjoying various beneficial properties
such as guaranteed rates of convergence; the resultant system of equations can be solved vastly more
efficiently than with the general purpose numerical schemes mentioned above. It is perhaps the only
available method, of some limited generality, that is capable of providing a truly wideband response
for a restricted class of scatterers, spanning the frequency range from quasi-static to guasi-optical.
This method works well when scattering problems are posed as mized boundary value problems in
coordinate systems in which the scattering surfaces form portions of leve!l surfaces (in which one coor-
dinate is held constant). Usually the scattering problem is formulated in terms of the eigenfunctions
associated with separation of variables for the Helmholtz equation giving rise to dual or triple series
equations, although the basic idea can be applied to the first kind integral equations arising for these
problems [16]. The class of scatterers to which the method applies includes objects of some com-
plexity, with edges and cavities, and is therefore extremely valuable in providing rigorous solutions to
“henchmark” scattering problems for testing more general purpose numerical codes. Indeed complex
scatterers remain the ultimate challenge for electromagnetic signature characterisation [17].

In the next section we consider time domain integral equation. If the incident field is taken to be a
Gaussian pulse (i.e. a smoothed impulse), the smoothed impulse response can be calculated. After a
Fourier transform the bistatic response as a function of frequency is obtained; the highest frequency
in this broadband response is dictated solely by the effective frequency content of the pulse. Although
a frequency domain integral equation approach might be considered for such broadband calculations,
the time domain approach is often more efficient. The computational complexity grows substantially
as the surface area (in square wavelengths) of the scatterer increases, so that whilst the integral
equation approach is formally correct for all frequencies, it is of practical use only for scatterers up
to several wavelengths in linear dimensions. (The computational complexity of differential equation
methods is determined by the volume (in cubic wavelengths) of the truncated free space grid in
which the scatterer resides.) The time domain integral equation approach and other “resonance”
regime methods therefore complement high frequency methods. As well as accurately determining the
response at longer wavelengths, it enables one to determine the scattered response in the transition
regime where the accuracy of results obtained by GTD and other methods is less certain.
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Time Domain Integral Equation Methods.
Tn free space, an incident electromagnetic field ', H induces currents J and charges p on the surface
S of a perfectly conducting object. In turn these set up a Maxwellian scattered field E°, H' satisfying

—s o’ — O0E -
VxE-—-——,u%t—,VxH = ey +J 1)

A standard approach expresses the fields in terms of a scalar potential ¢ and a vector potential A via

ﬁ8=u—1sz,E3=_%—f_v¢ @)
where, in the Lorentz gauge, the potentials may be constrained so that
— 0¢
V.A+ gy = 0 (3

This choice is convenient because individual components of A and ¢ satisfy the scalar wave equation.
A continuity equation connects the surface currents and charges

op,_ /=
L) + VsI(70) = 0, (4)
where Vs is the surface divergence on §. The potentials are then given by:
— . 1 p(—f,’ T) U Al= — :u’ _j("i‘_,7 T) 1/
o0 = o [ s Ay = £ [ T (5)

where T = t — [F = 7| /c is retarded time, and c is the speed of light. The electric field integral equation
(EFIE) arises by setting the electric field component tangential to $, (E + E°)", to zero:

E ()" = [ng(ﬁt) + %?(F,f)} (6)

This holds at every point of the surface § and is valid for surfaces, open or closed. It is worth noting
that the Sommerfeld radiation condition is automatically satisfied. The equations (4), (5), (6) are
central to our numerical scattering calculations. As explained in [11], a choice of basis functions can
be defined on a triangular mesh which approximates a dissection of the arbitrary scattering surface
S, and utilises the equations so that present current and charge values are calculable in terms of
previous values. This principle can be easily explained by considering the related magnetic field
integral equation (MFIE), which is valid only for closed surfaces (without apertures or edges); it is
derived (see [18]) by examining the components of the magnetic field tangential to the surface (that
is, n X H = J), obtained from the curl of the vector potential, and has the form

1

=71

%7(7, £)—nx 21; /S(—j(?',’r) L j— | 6%-7(#,7)) « (V' x )is' = ax @ (7)

It is now transparent that the value of the surface current, at a particular point 7 on the surface and
at present time ¢, is formed from a (weighted) sum of surface currents at every other point on the
surface, but taken at times earlier than ¢ : specifically the contribution from point 7 is retarded by
an amount equal to the travel time of light, namely |7 —7|/c.

This forms the basis for a numerical discretisation scheme, in which the surface S is divided into N
flat patches S1,..., 9Ny with centroids 7,..., 7N and unit outward normals ny,...,ny. The current

is assumed constant on each patch. A discrete time step At is chosen, and we set Jik = J(Ti, kAL). I
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the time step is chosen to be less than the minimum travel time of signals between any two centroids,
and linear interpolation is used to approximate J(7;,?') when ¢’ is not an integral time step value,
then the discrete solution value J; ;41 is a linear combination of the solution values at earlier time

steps kAL {(k — 1)AL, ..., and the exciting field. The sell paich contribution
1 — |7 — 7| 0 = 1
—nix — | (T#@, )+ EL T 1) x (VX ———)dS”
" 47r/s¢( (Fm)+ = g7 M) < |F¢—7"’|) ®)

is normally approximated by zero.

The system is supposed quiescent before the transient pulsed illumination arrives, at, say, time zero:
Jir =0, k <0. Subsequently, the discrete surface current values are updated at each time step in
terms of the values previously calculated by this scheme. Both this scheme, and the more sophisticated
scheme described in [11] for the EFIE, work well once a stabilising device is employed. Typical results
based upon the MFIE appear in [19]; a variety of problems arising in the study of wideband antennas
and their impedance, radar polarimetry and calibration, and scattering problems, including obstacles
with a surface impedance coating, are described in [11, 20, 21, 22].

Time Domain Response of Canonical Scatterers via MoR.

Canonical problems involving thin perfectly conducting shells are amenable to the frequency domain
solution technique known as the method of regularisation (MoR) or semi-inversion method. Although
the shells should coincide with part of one or more coordinate surfaces of spherical or spheroidal or
other special geometries, within this constraint a wide variety of diffraction problems has been solved,
including the spherical reflector antenna [23], a sphere with one or two holes [24], a spheroid with one
or two holes [25], spherical or spheroidal shells enclosing interior shells, and such structures enclosing

multilayer dielectric shells [26].

Consider the wave diffracted by a thin, perfectly conducting, spheroidal shell, which possesses two
symmetrically placed circular holes to form a hollow spheroidal cylinder, in which the axially aligned
source is a vertically polarised electric dipole. A rigorous formulation of Maxwell’s equations with
boundary and edge conditions, produces a triple series set of equations of the first kind [25]. The MoR
technique analytically transforms the set, via a form of Abel’s integral equation, to an infinite matrix
equation of the second kind. The Fredholm nature of the equation so obtained ensures the existence
of a unique solution. The numerical solution algorithm is always stable, and converges to the exact
solution with increasing truncation numbers. For practical accuracy, a matrix of the order slightly
greater than the electrical size of spheroid should be solved. Two noteworthy advantages gained by this
approach are great reductions in computational complexity (compared to the more general methods
described above) as well as reliable quantification of edge scattering and cavity effects.

The frequency dependence of radiation patterns was computed in the resonance range 0 < kb < 20 (b
denoting the semi-major axis of the spheroid and k the wave number) for spheroidal shells with axial
ratios in the range 0.1 < ¢ < 0.999 that corresponds to changing the form from practically cylindrical
to spherical. It is instructive to examine, via an inverse Fourier transform, the time domain response
of such cavities to a finite duration pulse: it is convenient to employ the Gaussian time dependence
exp(—b3(ct/2mb)?), whose duration depends the dimensionless parameter b;. The radiated response
for a closed sphere at 10° off axis is shown in figure la, in which the incident pulse is initially visible,
followed quickly by the specular return, then the creeping wave response followed by very small
amplitude late time oscillations. New electromagnetic features appear when the closed sphere is
opened up as a cavity, most notably the occurrence of lightly damped (high Q) oscillations which
are identifiable as internal cavity oscillations whose frequency is slightly shifted from the frequencies
at which the closed spherical cavity would oscillate. In the frequency domain response these appear
precisely as near resonant features. Two such oscillations are visible in figure 1b (note the incident

pulse is broader).
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These results were compared with those obtained by the time domain EFIE code discussed above.
For the closed structure, the results are in good agreement ; for the unclosed structure the cavity
oscillation frequencies (obtained by Fourier analysis) are correctly predicted but are more strongly
damped. The accurate prediction of the cavity Q factor is thus perhaps the most demanding test of
a general purpose time domain numerical code. On the other hand, care must be taken in {requency
domain calculations to resolve such features adequately as a function of frequency, otherwise acausal
features will appear in the transformed time domain response.

i an®
Sphera radius 2, dipofe location 1.5a Sphere radius a, with two holes of angle &, =30
T T

008 ; ; ; i i ; : i i o1

i s
0 05 1 15 3 35 4 45 5 48 50 52

25 54
ct/{2na) ct/{2na}

Figure 1: Radiated field at 10° off-axis for the closed sphere (a) and the spherical cavity (b).

Conclusion.

Our understanding of diffraction phenomena is enhanced by examining both time and f{requency
domain aspects, particularly when complex scatterers, incorporating edges and cavities, are involved.
Some features such as high Q resonances are better perceived in the frequency domain, whilst other
broadband features such as specular returns and creeping waves appear more clearly in the time
domair. This article discussed the relative merits of several low and high frequency general purpose
techniques, concentrating upon time domain integral equation techniques. The validity of codes based
upon these techniques can be established by comparison with rigorous solution techniques for classes
of canonical problems, such as spheroidal shells, which include the required features of interest (such
as cavities). In this context the method of regularisation herein discussed is particularly useful. More
results will be presented at the Symposium. '
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Calerkin methods in solving integral equations with
applications to scattering problems
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Abstract
The Galerkin methods of obtaining approximate solutions of integral equations and their applications to
problems of scattering of electromagnetic and surface water waves are examined . Two typical problems, one
occurring in electromagnetic wave propagation and the other in the propagation of two dimensional surface

water waves, are taken up as illustrative examples of the methods.

1. Introduction

Varieties of mixed boundary value problems (see Sneddon [6]), of Mathematical Physics
are solved by first reducing them to those of solving integral equations of various types and
forms. It is only in some specially simple situations that exact closed form solutions of the
integral equations can be determined completely, and, in the cases of integral equations with
complicated looking kernels or otherwise, only approximate solutions of certain types can
be worked out successfully. Of all such approximate methods for solving integral equations,
the Galerkin methods (see Jones [4], Evans and Morris [2],[3], Banerjea and Mandal (1],
Mandal and Das [5], and others) appear to be extremely powerful, in the sense that certain
practical results of high accuracy can be recovered with appropriate choice of certain sets of
independent functions, to be described in section 2 of the present paper.

After explaining the major mathematical ideas behind the Galerkin methods in section 2,
we have taken up in section 3, two different mathematical problems of scattering, occurring
in Electromagnetic theory and in the theory of water waves respectively, and have reduced
each of these problems to those of solving two integral equations of first kind, with two
different kernels. In section 4, we have presented the approximate solutions of the integral
equations formulated in section 3, by employing just one term Galerkin approximations and
in section 5, we have derived approximate results for certain special quantities of practical
interest for both the problems considered in section 3.

2. The major Mathematical ideas

In many practical situations, like the ones considered in the present work, the principal
mathematical problems turn out to be those of solving some linear operator equations (linear
integral equations, for the problems considered here) of the type

(Lf)(z) =(x), = € A, (2.1)

where L is a linear operator from a certain inner product space S to itself and A C R (can
be IR", in general), where f and [ are real valued functions. It may also be required (as in
the problems considered here) to determine the nner product :

LAz = [ f@ie)ds, (22)
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Whenever the mathematical problems at hand are expressible in the forms of the two relations
(2.1) and (2.2) we can resolve them, approximately, by utilizing the following senses and

A P
Definition: A real valued function F/(z) € S is said to solve the equation (2.1), approximately,
if and only if
[LF, ) = [\, LF] = [\ 1], ~ (2.3)
where the symbol ~ means ”approximately equal to” and we shall write: f = F, in the
sense that
[Lf, A ~ [LF, A], (2.4)

for all A(z) € S.

Then, using the approximate solution F' of the equation (2.1), we can derive an approx-
imate value of the inner product [f,!], as given by the relation (2.2), in the form:

[f, 0 ~ [F,1]. (2.5)

In the Galerkin methods which can be successfully utilized for many problems (especially
for the problems considered here), we express the approximate solution F'(z) , in the form:

F(z) = ﬁ:lchsj(x), (2.6)

where {¢;(x)}7_, denotes a set of n linearly independent functions (not necessarily orthog-
onal) in S and ¢;’s are n constants to be determined, as desired below.

Using the relation (2.6) in the relation (2.3), after choosing A(z) = ¢x(), for a fixed
k (1 <k < n), we obtain the following set of approximate linear relations

=1

Treating the above approximate relations (2.7) as a set of n linear equations, we can de-
termine the constants ¢;’s (j = 1,2,---,n) and then the determination of the approximate

solution F(x), can be completed by using the relation (2.6).

Also, the approximate evaluation of the inner product [f,1] can be completed and we

obtain
n

[fa l] ~ zcj[¢j7l]' (28)

j=1
As an example, by taking n = 1 only, we obtain

)~ @) = 122 6(0), 1,0 = 2 29)

It is obvious from the above discussion that varieties of Galerkin methods can be developed

by varying ¢,’s and n.
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The methods for which m = 1 are called (see Evans and Morris 2.3]) ”single-term”
?
methods, whereas for values of n > 1 the corresponding methods are referred to as ” multi-
tern” methods {see Banerjea and Mandal 1] and others). In the present work we shall
concentrate only on ”single-term” Galerkin approximations.
We shall now make the following observations:

We have

) (RIF~FL, () 10=0=LA+ES=F]
(i) 1L, f — F) ~[Lf, f| - 2ALF,F) + [F,LF], (by using (9)
(i) 1f = F.L( — )|~ [Lf, §) —2LLE,F) + [F, LF)

By using the results (iii) and (iv) we find that
Lf-Fl=[f-FLJf-F) (2.10)

and then one of the following two cases hold good.

Case (a): If L is a positive semi-definite linear operator, i.e. if [k, Lh] > 0, for all h € S,
then
L, F < fl, (2.11)

and
Case (b): If L is a negative semi-definite linear operator, ie. if [h,Lh] <0, for all h € S,
then
The above results (2.11) and (2.12) imply that the » approximate” value [I, F], computed
with the aid of the ”approximate” solution F' of the equation (2.1), provides a lower bound
for the actual quantity [I, f] in Case (a) whereas [, '] will provide an upper bound for i, fl
in Case (b).

The above observations clearly help in obtaining estimates of the quantity [/, f] in many

practical problems, and in sections 4 and 5 we have demonstrated the applications of these
ideas to the two problems of scattering, considered in section 3.

3. T'wo mathematical problems of scattering theory

Problem 1:

A problem occurring in Scattering of Electromagnetic Waves (See Jones [4])

To solve
62¢+82¢+62¢+k2¢—0 (k>0), for —co<z<00, 0<z<a, 0<y<b (3.1)
6432 ay2 822 ] 3 ’ 3 Yy * :

with £ <k, such that

o
(i) ¢=0,onz=0andz=a, (73) —6—§=0,ony=0andy=b

(e + Re™) sin (E) , as z —» —00, A > 0 (a known constant)
(i) ¢ — ¢

. T
Te ™ sin (7) . as z — 00, A > 0 (a known constant)
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(Note that R and T' are unknown complex constants to be determined).

{
(A) %é:O, onz=0% ford<y<b0<z<a,
z

(iv) \ (B) ¢l,_o+ = Gl,_-, for 0 <y < d,0< z<a,
9| _ 9%
{ 0z Y

along with the edge condition that 7¢ possesses a square-root singularity at the edge y = d.
Note: The forms of ¢ as given by (i), suggest that

,for0<y<d,0<z<a,
z=0"

(©)

z=01

2 2
—)\2——%+k2=0 ==>,\2=(k2—-%>>0,

along with the equation (2.1).

Reduction to two integral equations.

Setting
. (7T
¢('/I:7 Y, Z) = ¢(y7 Z) s (—;)7 (32)
with
Yy, 2) = e =Y ane " Sgn(z) cos (?—?), (Sgn(z) = £1, (3.3)
n=0 '
according as z > 0 or z < 0),
with
2, .
Kn = —ifin; o= |75~ A2 ] >0, (assumed), and Ko = A, (3.4)

where ag = R = (1 — T) and a,’s (n > 1) are unknown constants, we find that all the
conditions of the problem1 are met with, except the two conditions (A) and (B) of (iv), which
lead to the following DUAL SERIES RELATIONS, for the determination of the constants

Qn:

> ancos (@) =0, for 0 <y <d, (3.5)
n=0 b
and
—Ko + Z Ky Gy COS (ZL?) =0, ford<y<b. (3.6)
n=0

These dual relations can be easily reduced to two integral equations, in the following manner:

Firstly, setting the left side of the relation (3.6) as equal to %aokcobg(y), and noting that

g(y) = 0, for d < y < b, we can easily determine the Fourier coefficients, in terms of g(y)
and then the relation (3.5) easily gives rise to the integral equation:

fo " Ky, t)g(t)dt = ;1; 0<y<d), | (3.7)
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with - .
_ nry nw
K(y,t) == pu" cos (»—h——) cos (T) (3.8)
n=1 N v/ AR A
We also find that a quantity H can be defined as :
1 71— aop 1 pd
H == == t)dt. 3.9
% ( a ) 1)o 90 (39)
As a second approach, setting the left side of the relation (3.5), as equal to —z—;—o (1-

ao)bgi(y), and noting that gi(y) = 0, for 0 < y < d, we can again determine the Fourier
coefficients easily in terms of gi(y) and then the relation (3.6) gives rise to the following
integral equation:

i+ Ky gr(8)dt =0, (d <y <b), (3.10)

with
nw nwt

Ki(y,t) :== lim Z e " cos (——2> cos (-———) (3.11)
e—0 —_ b b
We also find that

b
=T =h /d gi(t)dt. (3.12)

We have thus reduced the problem 1 to that of solving either of the integral equations
(3.7) and (3.10), along with either of the two relations (3.9) and (3.12), respectively, which
determines an ”important” quantity M. It should be emphasized that knowing either q(y)
or g;(y), the problem 1 can be solved completely. However, the kernels K and K, are
complicated and hence, we will adopt approximate methods (Galerkin methods) as explained
in section 4. We also make the observations that the functions g, g1 and the constant H are
real, since the functions K and K are so.

Problem 2:
A Problem occurring in Scattering of Surface Water Waves,
(see Evans and Morris [2])

To solve o Po O
8m2+8y2+6z2:0,f0r——oo<a:<oo,y>0, —00 < 2 < 00, (3.13)
such that
, 0p
(7) K¢+5—=0,ony:0and—oo<a:<oo,
Y

—00 < z < 00, (K >0, aknown constant)

00 _ 00| _ o
(id) { (A) i 0,onand 0 <y<a, (B) 3|, = %o, for y > a,
(C) @l,agr = Plyp--fory>a
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e—Ky+ipz(e—imz + Rez'mz)’ as £ — 00,
! Te~Kytipzg=imz a5 1 — 00,
(@) ¢— where p = K sin(a),m = K cos(), (0 < a < §)
l (R and T are unknown complex constants to be determined).

(iv) ¢, V¢ —0, asy—00

along with the edge conditions that /¢ possesses a square root singularity at the edge y = a,
ensuring uniqueness of the solution of the problem.

Reduction to integral equations

Setting _

é(z,y, z) = P(z,y)e*, (3.14)

with

Ky Ky oo b(k)Sgn(z)(k cos(ky) — K sin(ky))e el
_ —Ky—imaz Ky+im|z| / dk

w(m7 y) € +ngn($)6 + 0 kl(kz __}_ K2) ’
(3.15)

where k; = (k? + p?)7 and R = (1 — T) and b(k) are unknowns, we find that all the

conditions of the problem are satisfied, except the conditions (A4) and (C) of (it), giving rise

to the following ”DUAL INTEGRAL EQUATIONS” for the determination of the function

b(k):

_/Ooo b(k)(k cos’glzy—l)_ ;{21( sin(k‘y))dk +im(R — 1)e‘Ky =0,(0<y<a), | (3.16)
and .
/Ooo b(k) (k czj((:g)+—Kl§)s1n(ky)) dk + Re~%v =0, (y >0 (3.17)

in which R is also an unknown constant.

The above dual integral equations can be reduced to two separate integral equations, by
employing a trick, similar to the one used for the problem 1, along with the use of the
Havelock’s expansion theorem (see Ursell [7]). In fact, this has already been done by Evans

and Morris [2].

Firstly, setting the left side of the relation (3.16), as equal to 7r_2R f(y), and noting that

f(y) = 0, for 0 < y < a, we can determine b(k) in terms of f(y), by using Havelock’s
expansion theorem, and then the relation (3.17) gives rise to the integral equation:

/ * {6 L(y, t)dt = e~KY, for y > a, (3.18)
here (kcos(ky) — K sinky)(k cos(kt) — K sin(k?)
_ [ (kcos(ky) — Lsin Y COoS — K sin
Liy,t) = /0 o K dk, (3.19)
along with the defining relation:
A= ?lnglé;@ = /a ~ f(t)e Ktde. (3.20)
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Secondly, setting the left side of the relation (3.17), as equal to —-7;(1 — R) fi(y), and noting

B : . . ,
het fi(y) = 0, for ¢ > o, we can determine h(k) in terms of fi(y), by using Havelock’s

varvy “y

expansion theorem, and then the relation (3.16) gives rise to the integral equation:

/a [ My, t)dt = e KY for0<y<a, (3.21)
0
where
o [P hk(k cos(ky) — K sin(ky))(k cos(kt) — Ksin(kt)) _is
M(y,t) == 61—1—I£10 A 5 + K7 e "dk, (3.22)
along with the relation
1 a _

We note that f, fi and A are all real quantities, since I and M are real.

From the above discussion it follows that the problem under consideration can be solved
completely, either by solving the integral equation (3.18) along with the use of the relation
(3.20), or by solving the integral equation (3.21), along with the relation (3.23).

4. Approximate solutions of the integral equations.

In this section, we shall employ ” single-term”-Galerkin methods to obtain approximate
solutions of the integral equations (3.7) and (3.10), derived for the Problem 1, as well as of
the integral equations (3.18) and (3.21), derived for the Problem 2. In fact these solutions
have also been presented earlier by Jones [4] and Evans and Morris [2], respectively.

For the equation (3.7) we assume a” single-term” Galerkin approximation as given by
g(y) = by (a constant), (4.1)
in the light of the relation (2.6), with

d d
= d rd ] = ) a\’
ko Jo Jo K(y,t)dtdy nﬂ%z(nzun)—l sin? (E;f_)

bo (4.2)

in the light of the first of the relations (2.9).

Similarly,we assume a ”single-term” galerkin approximation to the solution of the integral

equation (3.10), as given by
gu\y) = Co cos 9\t Tk ( . )

with
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Again, for the solution of the integral equations (3.18) and (3.21), we assume the following
"single-term” Galerkin approximations ( see Evans and Morris [2] )

“ d ' ueKu 1
~~ =(C,— -Ky e d £ < 1 < 00, A5
fly) = Cif(y) 'y [6 /a (= a,?)% u}, ora<y<oo (4.5)
and B
' P ! —K @ uetY
fily) = lel(y) = (Cle y/ —————du, for 0 <y <a, (4.6)
y (a® —u?)?

where C; and C are to be calculated by using the first of the relations (2.9), giving

R e f(y)dy )
I I Ly, t) f(t) f (y)dydt
and . Ky
o Jo e fi(y)dy (48)

VT e e My ) 12 (0) Fuly)dydt

5. Some approximate results

In this section we shall explain about the derivation of some approximate results for the
quantities H and A associated with the two problems 1 and 2, considered in section 3, which
represent important quantities of practical interest in the theory of electromagnetism (see
Jones[4]) and in surface water wave theory (see Evans and Morris [2]), respectively.

By using the relations (3.9) and the approximate solution for g(y) as given by the relations
(4.1) and (4.2), we can easily determine H approximately. We find that in the particular

nmw
situation, when d = 3 and p, ~ e (i.e when Kob << ), we obtain

3

S — ~ —0.59—. (5.1)
16kghY " s rob
~(2n+1)3

Similarly, by using the relation (3.12), along with the approximate solution for g1 (y) as given

by the relations (4.3) and (4.4), we can determine an approximate value for the quantity H.
nmw

We find that when d = 3 and p, = - e have
7 [ & 2n T
Hre-" (2 )~ 0.87— 2
Kob (16 +nz::1 (4n? — 1)2> S Kob (5:2)

From the theory that has been explained in section 2, we find that the two results in the

relations (5.1) and (5.2) provide some upper and lower bounds respectively, for the quantity
T

H, and, we find that the average of these two bounds gives the value ——0.73-;05, which,

according to Jones [4], is very near the actual value —0.71———6.
ko
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Also, by using the approximate solutions as given by the relations (4.5), (4.6), (4.7) and
(4.8), into the relations (3.20) and (3.23), we can determine two values of A, approximately,
which provide some upper and lower bounds, A; and A, respectively, for this quantity. Then,
with the aid of the defining relation (3.20), we find that

1™

IR| = (1 + A% sec’(e))” (5.3)

The numerical values of |R| have been worked out by Evans and Morris [2], by using
the two bounds for A; and Ay of A as described above, and we give below a representative
table for o = 30°, for the purpose of completion of this article. The table clearly shows the
closeness of the bounds of |R], i.e. |R;| and |Rg|, which must be attributed to the particular
choice of the ”single-term” Galerkin approximations as suggested in the relations (4.5) and

(4.6).

Table

B /u] 02 | 04 [ 06 | 08 | 10 | 14 | 18
B, | 0.0569 | 0.2432 | 0.5389 | 0.7971 | 0.9252 | 0.9900 | 0.9984
|R,| | 0.0569 | 0.2430 | 0.5382 | 0.7961 | 0.9246 | 0.9898 | 0.9984

Table of values of |R;| = (1 + n2A? sec2(a))7z, j=1,2,
for a = 30°, p = Ka.
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Abstract

Maxwell's equations form the basis in electromagnetic field theory. The electromagnetic field,
if it exists, satisfies Maxwell's equations and the boundary conditions associated. These equations are
simple in the form but contain the variations of the field quantities throughout three-dimensional
space (rectangular, cylindrical, and spherical coordinate systems are used) and time. The general
solution to Maxwell's equations is usually difficult to find. However, analysis of electromagnetic
fields requires to find the general solution without simplifications and assumptions, and our goal is to
obtain explicit analytic solutions to Maxwell's equations with the corresponding boundary conditions.
This paper researches methods and reports a straightforward mathematical foundation for solving
Maxwell's equations in analysis of transverse magnetic (TM) and transverse electric (TE) fields.

1. Infroduction

The electromagnetic field model is governed by four Maxwell's equations, which are given in
the point form for time-varying fields as
dH(x,y,z,t)

P
VX H(x, y,z,r)=oE(x,y,z,t>+e-‘-’§i’—g—’z—’f—)+J<x, w20,

VXE(x,y,z,t)=~H

V-E(x,y,z,t) —pxy.zD , V-H(x,y,2,t)=0,
€
where E is the electric field intensity; H is the magnetic field intensity; J is the current density; p is
the charge density.

The development of analytic methods to solve Maxwell's equations in the coordinate systems
used is our particular interest. The common coordinate systems applied (rectangular, circularly
cylindrical, and spherical) are studied, and complete analytic solutions to Maxwell's equations are
given. The rectangular and cylindrical coordinate systems are commonly used. This paper
demonstrates that an analytic solution to Maxwell's equations, if it exists, can be find in the chosen
coordinate system by the superposition of TM and TE fields, and the reciprocity theorem can be used.
In the circularly cylindrical system, the TM and TE potentials satisfy the Helmholtz equation, and the
first-, second-, and third-kind Bessel functions are applied. Only the spherical coordinate system has
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complete coordinate surfaces of finite size, and therefore, in this system the boundary value problem
can be solved. Hence, the spheroidal configuration, which has ¢ -symmetry, is of a great importance.

The wave or Helmholtz equation for the field quantities (E or H) in terms of the time-varying sources
can be expressed and solved in the spherical coordinate system.

2. General Methods of Solution

For time-varying fields, the sinusoidal steady-state behavior of the field vectors is our interest.
We assume that the E and H components are varying sinusoidally; in particular,
E(x,y,z,t)=E (x,y,2,)a, + E (x,y,z,0)a, + E (x,y,2.0)a, ,

where E (x,y,z,t) =E, cos(wt +y, ), E,(x,y,2,) = E,, cos(a)t +, ), E (x,y,2,t)=E,, cos(wr +y,);
H(x,y,z,t)y=H (x,y,z,b)a, + H), (x,y,z,0)a, + H_(x,y,z,t)a,.

where H,(x,y,2,t) = H, cos(wr +v, ), H,(x,y,2.t)=H,, cos(a)t +1, ) JH_(x,y,2,t)=H,, cos{wt +y,).
The magnitudes E,,, E,,, E,,, H,., H,,, H, and phase angles are independent of time,

however they depend on the spatial coordinates.

By using complex phasor quantities of E and H, and canceling the e’ term which is
common to the right and left sides of equations, one obtains the time-domain form of Maxwell’s
equations. In particular, the electromagnetic field satisfies the following equations in the point phasor
form

VxH=jwsE+J, VXE=—jouH

v.E=P v.H=0, (1)
£
which should be solved.

It has to be emphasized that the permittivity, permeability and conductivity are nonlinear
functions of frequency.
By defining H, =H -H,, E,=E-E, and J =J, +J,, we have
Vx(H, +H,)= joe(E, + E,)+(J, +7,),
Vx(E, +E,)=—jou(H, +H,).
A set of equations is found to be
VxH, = jweE +J,, VXE =~ jopH,,
VxH, = joeE, +J,, VXE, = - jopH, . 2)
Compare to equations (1), equations (2) can be easily solved because the divergence is zero.
That is, H can be represented by a vector potential P, which is given in terms of its components along
and perpendicular to the coordinates used. Hence,
H=VxP,P=Pya +P,.
Here, P, =V x Py;,a; is transverse (perpendicular) to the unit vectors a;; Py, and Py are the scalar
potentials.
We obtain
H=VxPya+VxVxPya,.
Using H, =V X Pp,a; in Vx H = jweE +J , one finds
VXV xPya; = jweE, +J .
Furthermore, Vx (E, + jopPp,a;)=0,
and hence
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E, =—jouP,a; +Vp.
By making use of E |, the following equations result

H, =VXPya,, El=VXVX.PTMQI;—-J1 )
Joe

VxH,=jweE,, VXE, =—jouH, - M, .

Frorm equation

E,=VXPpya,,

one finds P, by solving equation
V2Pya, =y Pya, + M,.
The thorough analysis performed indicates, that for TM and TE fields the equations
H =VXPya
and E,=VXPya
should be solved by using the following procedure. In the Cartesian coordinate systems, as one
obtains P, and P, H, and E, results. Furthermore, E, can be found by solving

8_1’@}

V(

ox;

VX H, = jweE, +J,, E, =— jopPy,a; + ————=,
JE

while E, is obtained using P, ,and H, is found from

v Py
. . oX;

VXE, =-jouH, , H, = joePya; ————+.
Jou

In the cylindrical coordinate system, which is given in terms p, ¢, z, the TM and TE field
equations are
H=VXPya,
and E=VXPya;,
and the scalar potential satisfies Helmholtz equations are given by
VP =7 Py, v’ =-0"pe .
The following partial differential equation for Py, results
-l_i( __a_PT_MJ.;_l_QiPT_M.Fé_Z_PT_M —'}’ZPTM =J. s
pap\" dp ) p* W & '
and the solution of this equation is found using hyperbolic functions. In particular,
Py =@, (p)0, ()P (2),
where ® o(0), @y(9) and @ (z) are the Bessel functions.
If the spherical coordinate system is used, the field components are found for TM fields as

u _ 1 OPry _ 1 Py,
[ s 4g . ’
r 0o rsin@ Jdg
_ 1 o'py g o L Py, +BP | E, = 1 9P,
7 jwer 3or T jwe\ or* ™M jwersing ogor
and for TE fields we have
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1 6Py, 1 P
E¢=——— , 9= - —_—,
r 00 rsinf d¢
S Y S PR .. 5
° jow o6or T jop\ o’ TE) T joursing dgor

The corresponding Helmholtz equation is

_1_:9— .2 a(‘i'PTM) N 1 i sinGa(%PTM) 4 1 iaz(%PTM)
r or or r*sinf 06 90 r’sin@ 00 9’

+ B (L P )= 11

Transient space-time problem should be solved in many applications. Consider the following

equations

VX E(x,y,2,t) = —uai(-%[yﬁg, VX H(x,y,2:t) =GE(x,y,z,t)+€§F%EQ+J(x,y,z,t),

V-E(x,y,z,t)=M, V-H(x,y,2,)=0,
&

assuming that the excitation is a known function of time. To solve the problem, the Fourier or
Laplace transforms can be used. The solution is not trivial, and the particular scenario should be
considered to solve the problem.

3. Duality of Solution

If the field varies sinusouidally with time, the time can be eliminated from the fundamental
equations; that is, the solution is obtained in terms of complex vectors. Assume that the
electromagnetic field satisfies the following two equations

VxH, = jwgE +J,VXE =—jouH, 3
with the corresponding boundary conditions.

If the solution of these equations is known, one can solve

VxH, = jog,E,, VXE, =—jop,H, — M, 4
by using the transformations

E =-H,, H =E,, J,=-M,, & =, | =&,
or E =H,, H =-E;, J,=M,, & =, I, =&,
or E =H, H =E,, J=-M,, £ =-l), } =—&,.

In particular, by applying these transformations, solution of (4) is identical to (3).

4. Conclusions

This paper addresses the problem of solution of Maxwell’s equations in the rectangular,
cylindrical and spherical coordinate systems. Sinusoidal steady-state and transient space-time
problems have been researched. By using the results, it is shown that Maxwell’s equations can be
solved, and important problems have been focused and solved. In particular, the complexity of the
solution depends on the coordinate system used, and spherical coordinate system has advantages to
find analytic solutions to Maxwell’s equations.

Kharkov, Ukraine, VIIth International Conference on Mathematical Methods in Electromagnetic Theory




92 MMET’98 Proceedings
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Abstract: This paper reviews the state of the art in fast integral equation techniques for solving
large scale electromagnetic scattering and radiation problems. The Multilevel Fast Multipole
Algorithm and its frequency and time domain derivatives are discussed. These techniques permit
the rapid evaluation of fields due to known sources and hence accelerate the solution of
boundary value problems arising in the analysis of a wide variety of electromagnetic phenomena.
Specifically, the application of the Steepest Descent Fast Multipole Method to the frequency
‘domain analysis of radiation from quasi planar structures, e.g., rough surfaces and finite
microstrip structures, is described. In addition, the extension of the fast multipole concept to the
Plane Wave Time Domain algorithm that permits the efficient analysis of transient phenomena is

outlined.

INTRODUCTION

Surface integral equations coupled with Method Of Moments (MOM) based solution algorithms
have long been conceived as very accurate, but computationally expensive schemes for
analyzing electromagnetic radiation and scattering phenomena. Unlike finite difference and
finite element techniques which require the discretization of the entire volume of the structure
under study, surface integral equation techniques utilize basis functions only on interfaces
between homogeneous regions, thereby resulting in fewer unknowns. However, in contrast to
these differential equation techniques, the application of the MOM to the solution of surface
integral equations leads to a matrix equation involving a dense matrix. As a consequence, for
large problems, the solution of the MOM equations using direct inversion is impractical due to
the large CPU time and memory requirements associated with this procedure. The iterative
solution of the MOM system is also a time consuming process, with both the number of
operations per iteration and the memory cost associated with storing the matrix scaling
as (N Sz ), where N, is the number of spatial degrees of freedom of the discretized surface
current, i.e., the dimension of the system. Integral equation techniques for analyzing surface
scattering and radiation phenomena have been developed as well. Unfortunately, their
computational complexity scales as O(N, N, SZ), where N, denotes the number of temporal steps
in the analysis, and prohibits their application to the analysis of large-scale scattering

phenomena.

To expedite the iterative solution of electromagnetic boundary value problems, researchers have
exploited the underlying structure of the Green's function kernel and developed techniques that
facilitate the fast computation of MOM matrix-vector products [1-5]. We have recently
developed a host of fast multipole based algorithms for analyzing large-scale radiation and
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scattering phenomena [6-7]. In this paper, we report on the implementation of the Multilevel
Fast Multipole Algorithm (MLFMA), and a derivative of the latter, the Steepest Descent Fast
Multipole Method (SDFMM). These algorithms accelerate the iterative solution of surface
integral equations that are pertinent to the analysis of scattering and radiation from arbitrarily
shaped three-dimensional and quasi-planar structures, respectively. The computational cost per
iteration and memory requirements of the MLFMA and SDFMM scale as O(N,log Ny) and
O(N,), respectively. In addition, the extension of the fast multipole concept to the analysis of
transient scattering phenomena is described. Fast time domain integral equation based schemes,
reminiscent of the frequency domain fast multipole methods, further termed Plane Wave Time
Domain (PWTD) schemes, permit the efficient analysis of transient scattering phenomena in
O(N,N,log N) operations.

THE MULTILEVEL FAST MULTIPOLE ALGORITHM

The MLFMA constitutes an efficient technique for analyzing 3D electromagnetic interaction
phenomena [3,6,7]. The algorithm relies on a multilevel divide and conquer strategy and has
been implemented in FISC (Fast Illinois Solver Code) technology. The MLFMA is designed to
accelerate a matrix-vector multiply that arises in the iterative solution of the MOM equations
resulting from a discretization of the boundary integral equations pertinent electromagnetic
scattering and radiation analysis. In the MLFMA, the object under study is first subdivided into
subscatterers, also termed groups. Fields generated by sources residing in separate source groups
are characterized through each group’s far-field radiation pattern, measured with respect to the
group’s center. Then, the addition theorem is used to translate the plane wave components that
characterize each source group’s far-field pattern to the centers of all other, receiving groups.
Fields received at a group center are then redistributed to the individual receivers residing in the
group.

Whereas a matrix-vector multiply involving a dense matrix and a dense vector requires O(N, ;'5 )
operations, a matrix-vector multiply carried out using a two-level fast multipole algorithm only
requires O(N, 31'5 )operations. An analogy with a telephone network is in order. Assume that N
telephones are connected to one another with direct connections. The number of network wires
is N sz However, if “hubs” are introduced in the network, then the number of connections can
be reduced (Fig. 1(b)). However, the hub structure implies a three-stage connection process.
Similarly, in the two-level fast multipole scheme described above, a multiplication is effected
through three separate translation procedures: from source to source group center, from the
center of the source group to that of the receiving group, and from the receiving group center to
the receiver. All these translations can be carried out efficiently by representing all fields in
terms of a plane wave basis. The plane wave basis is suitable for translating fields as it gives rise
to diagonal translation operators. In other words, when relying on the fast multipole method, the
interaction between two basis functions can be represented as

(5, 00.6, (i) = [} Jir e |71, 5] [ise™ ™ dridy, ()
k| S, S,
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In Eq. (1), the outer integration is over all real k,, vectors that characterize homogeneous plane
waves propagating away from the structure under study. Also, r, and r, denote the center of the
receiver and source group, respectively, and G (r,r') denotes the free space Green’s function.
Finally, T(kj,r,,r,) is the diagonal plane wave translator from the source to the observation

sphere.

Unfortunately, the above described technique for computing receiver fields only applies to non-
overlapping source and observer groups; Hence, all 83 Camaro Model, f = 1 GHz, V-pol.
“near-field” interactions, i.e., interactions between
sources and observers that reside in the same or in
neighboring groups are always accounted for using
classical MOM techniques.

By nesting a smaller problem within a larger one, the
Multilevel Fast Multipole Algorithm (MLFMA) is
obtained. The MLFMA is characterized by
O(N,log Ny) computational complexity per iteration
and memory requirements. The MLFMA uses the two-
level fast multipole method as a primitive and
transitions between distinct levels in the multilevel tree
structure are effected through interpolation and
anterpolation operators. We have implemented this
algorithm in two and three dimensions, and the resulting
codes are capable of analyzing arbitrarily shaped
conductor systems comprised of surfaces and wires. To
date, FISC MLFMA technology has been primarily — Figurel. Surface currentsona car
applied to the analysis of large-scale scattering illuminated by a plzne wave at 1 GHz
phenomena. As an example, Figure 1 shows the surface currents on a car illuminated by a plane
wave at 1 GHz.

THE STEEPEST DESCENT FAST MULTIPOLE METHOD

Although the aforementioned MLFMA permits a very efficient analysis of radiation and
scattering from arbitrarily shaped structures, further savings are possible if the application
domain is restricted to the class of quasi-planar structures. The SDFMM is a multilevel solver
that permits the rapid analysis of radiation and scattering from microstrip traces and patches.
The SDFMM is in spirit identical to the above-described MLFMA [8,9]. However, the SDFMM
exploits the quasi planarity of a microstrip structure to further accelerate the solution process.
This is achieved by casting terms arising in a MOM matrix-vector product in the form of discrete
inhomogeneous plane-wave expansions, as opposed to a homogeneous plane wave expansion for
the MLFMA. This representation arises from a representation of the pertinent Green's function
along a steepest descent path and from the use of the fast multipole method in the transverse
plane. The difference w.r.t. the standard MLFMA lies in the use of complex wave vectors and a
modified translator operator. These modifications result in significant CPU cost and memory
savings over the standard MLFMA. Indeed, the computational cost and memory requirements of
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the SDFMM scale as O(N,), as opposed to O(Nlog Ny) in the standard MLFMA. Other
FMM-like approaches for analyzing microstrip structures are described in [10,11].

We have developed a general purpose SDFMM solver, capable of analyzing a large class of
quasi-planar microstrip structures that reside on a finite substrate and ground plane. This solver
is based upon a multiregion MOM formulation that features both electric and magnetic surface
currents. These currents model fields tangential to perfectly conducting microstrip elements as
well as those tangential to penetrable substrate interfaces. The code can handle not only surface
elements, but also accommodates bond wires and probe feeds [12].
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Figure 2: (a) 7 by 7 array of microstrip patches residing on a finite substrate and ground plane. A probe feed
cennects each patch to the ground plane, (b) Radiation pattern of the 7 by 7 array shown in (a).

The SDFMM permits the analysis of scattering and radiation from extremely large and complex
structures within realistic times. To illustrate the capabilities of our SDFMM solver, consider the
7 by 7 array of microstrip patches shown in Figure 2. Each patch is probe fed (in phase).
Equivalent currents on the patches, probes, and on the ground plane and the penetrable interfaces
are modeled using N=92,280 unknowns. Figure 3 shows the pattern of the array computed using
the SDFMM. To date, the SDFMM has been applied to microstrip structures modeled in terms
of as many as 130,000 unknowns.

TIME DOMAIN FAST MULTIPOLE METHODS: PLANE WAVE TIME DOMAIN
SOLVERS

Recently, we have developed a fast time-domain integral equation solver [14]. This fast solver
permits the rapid analysis of transient scattering and radiation phenomena involving
clectromagnetically large surface structures and can be considered the time-domain analogue of
the frequency domain multilevel fast multipole solver described above. The cost associated with
the electromagnetic analysis of a surface structure that is modeled in terms of N, spatial
unknowns for a total duration of w, time steps scales as O(N, N log N;) using the new solver,
as opposed to O(N,N, Sz ) for classical time domain integral equation algorithms. The solver
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derives its optimal scaling properties from a time domain plane wave representation of the
scattered fields, which is exploited through a multilevel divide and conquer framework. This
representation naturally gives rise to windowed diagonal translation operators. These translation
operators require convolution of polynomial translation functions with the transient plane wave
spectrum of the source distribution, characterized in terms of the source’s slant stack transform.
To date, the technique has been applied to the analysis of acoustic and electromagnetic scattering
from large, three-dimensional surfaces. The application of the solver to the analysis of
broadband wire antenna structures, nonlinear phenomena, and electromagnetic compatibility

problems is being studied.
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Figure 3. (a) Electromagnetic RCS of a NASA almond, comparison between PWTD (frequency domain
parameters extracted from time domain solver) and FISC, (b) temporal fields on top of a rectangular
cylinder, comparison between classical time domain integral equation and PWTD results.

CONCLUSIONS

This paper described three different muitilevel integral equation solvers: The MLFMA, the
SDFMM, and the PWTD. The MLFMA is suited for analyzing scattering and radiation from
electrically large, arbitrarily shaped structures. The SDFMM constitutes an MLFMA variant
designed to accelerate the analysis of electromagnetic phenomena involving quasi-planar
structures, e.g., rough surfaces, optical gratings, and large-scale microstrip structures residing on
finite ground planes. Finally, the PWTD schemes are extensions of the MLFMA to the time
domain. Hence, the PWTD permits the broadband characterization of scatterers and radiators

and is applicable to the analysis of nonlinear phenomena.
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Demonstrated here, are the periodical knife-types gratings always having the waveguiding
properties. Discovered here, are the existence criteria of the waveguiding properties of
periodic plate grating for different waveguiding modes. Dispersion relations are obtained and
investigated, pass and stop bands are determined. The asymptotic form of dispersion relations
at the infinite increase of a grating elements sizes and the wave number decrease was derived.
The anomalous oscillations near the periodic plate gratings are discovered and investigated. It
was proved, that such oscillations always exist. The influence of the geometric characteristics
and khife-type grating mode on the oscillation frequency, number and type of waveguiding and
cycle modes was investigated. Wa veguiding and cycle modes of oscillations are classified by
groups of allowed symmetries of a problem. The comparison with known experimental and
numerical study was carried out.

Waveguiding property is an existence of the generalized eigen function of the corresponding
selfadjoint extention of the Laplace operator, localized in the vicinity of periodic structurs.
Investigation of the waveguiding properties is embarrassed with those fact, that ths
correspording selfadjoint extensions of the Laplace operator have the continuous specirum
filling in all the positive semi-axis.

An existence of the waveguiding properties of the periodic knife-type grating was proved in
paper [1] for large enough sizes of grating elements. The approximated investigations of
waveguiding properties, dispersion conditions, type of waveguiding functions are in [2, 3], in
these papers one can also see the futher bibliography.

Foermulation and symmetry properties of the problem
T 1

If another is not fixed, then it is supposed, that all the profiles of grating elements are consisiad
of straight line segment, all elements are parallel with each other, periodically repeated and
perpendicular to the periodicity direction. Such gratings are of khife-type periodic strip grating.
Grating types and corresponding terminology are on Fig. 1.

=
- Ll - - Ll - -— Ll - ,E

I x II m — V— G,
——t —3G, —— G, T 2—-—4, |
X Gl B —— G 1 - y - L,q - g
< L= “L> 1> ] |
X |
Fig 1. Grating types of khife-type periodic strip: I - simple, II - composed, III - double, ;
IV - corresponding termonology. J
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The steady-state oscillations near the grating are described by the u(x,y) function whose
physical content is determined by the investigated problem

Uy, +uy, +2%u= 0,

ou/di=0 onG.

Here A is considered to be the nondimensional frequency of oscillations, easier to commit to
paper it is supposed, that A>0 If o, L, H - are the natural frequency of oscillations, naiural
length of the grating element and natural period of grating correspondingly, then for the
corresponding nondimensional magnitudes expressions A=oH/c, L=L/H are correct, the
dimensional period of grating in nondimensional variables equals to 1. In any bounded area (3,
which is the subarea of whole domain of oscillations Q, the next condition of local finity of
oscillation energy should be fulfiled
E(u,Qy) = [[u? +(Vu)’ldQ, <,
Qb

E(u,Q) is the nondimensional energy of oscillations in the area O,

Operator A is invariant under any symmetries of space, so the grating symmetry will
determine the symmetry of corresponding boundary problem. _
As the symmetry group of the one-dimensional periodic structure obligatory consists the sub-
group T of translations along the y-axe, so only the next non-trivial sub-groups of the allowed
symmetry group are possible: D; is the dihedron group with one axe of bilateral symmetry. The

next two types of bilateral symmetry are possible: Dy axe of bilateral symmetry is parallel {2

axe x; DY axe of bilateral symmetry is parallel to axe y; D2 is the dihedron group (with two
axes of bilateral symmetry); C; is the rotation group by = angle; To is the group ot gliding
symmetry. Symmetry of plate grating permits an expansion of the allowed solution space i
invariant subspaces by transformation of this group of symmetry.

As group of translations T is commutative and its representation t(T) in the space of allewed
solutions of problem is unitary, so the space of solutions can be expanded in invariant one-
dimensional subspaces by group T. Functions u(x,y) belonging to these subspaces satisfies the
condition u(x,y+1)=¢"“u(x,y) and consequently are as the next:

u(x,y) = e v(x.y), vy +1D)=vy)

Waveguiding properties

Classification and type of waveguiding functions

With the help of discrete isometric transform, the group of grating symmetry space of
admissible solutions has been restricted and the existence of guiding and anomalous waves has
been proved. Pass bands modes have been classified with the help of grating symmetry group.
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- Existence of the waveguiding property.

To investigate the existence of waveguiding eigen frequencies the “D-N fork” method was
used [3]. The following theorem was proved.

........................................................... i

Composed and double gratings G can be considered as the disturbance of simple knife-type
grating Gy, caused by a disposition of the additional elements of grating G,.

Dispersion relations.

Dimensionless waveguiding frequency A are the function of wave number parameter &, taese
dependences are so-called dispersion correlations. For large sizes of grating elements the
approximated dispersion relations are presented in [5]. In the present work these relations are
presented for the commiting to be entire and being defined more precisely.

Exact dispersion relations for waveguiding frequencies and corresponding wave numbers ¢
the problems are impossible to be written down, even as implicit ones. However, it is possible
to indicate some their approximations.

- sin[O(2,5)}=0,

—-2¥(2N +1) -
2 27 j ( )

©(..5) =ML -2 -
n ‘ _111(2.[__*;5’_) lil(zn_é) +2\Ij( é J +Ct, (;—)
K 27 27 27 & 2
)@ (;j (}J 3 s ) 2|
2 ——— } -‘2 1 i e (-
+2arcsm[ g|]+ Z{arcsm T v, Taresin Jom_E g aresun © §J

{ . (2Nn+2n+§) (2N7c+27t—é§
V +¥
AIn(2) %
.[

]

Here N is natural number, w( ) is the logarithmic derivate of Gamma function. Numerical and
theoretic results allow making the next statement:

The above statements refine and correspond with results obtained by other methods and af the
"physical"-strict level of rigorousity [5].

At the infinite lengthening of grating elements the dispersion relation allow determinatios ths

behavior of waveguiding frequencies A®=A®( L) (k=1 .. K) of problem for ptiraar

waveguiding modes. Statements where v is the Euler constant and L>>1 are correct:

)

L Lntg(éj T ZLP(E%) @) —21n(2)tg(§) _Zytg(%j |

For the primar waveguiding mode for £<<1 the next expression follows from dispersion
relations: A () =¢ +(21H(2) ‘Lﬂ)iz/n2 :
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This describes the dependence of waveguiding frequencies of primar mode on the oscillation

phase shear in the neighbouring fundamental areas of the translation group. This expression is

correct for those suppositions in whose framework the dispersion relations are obtained.
Anomalous properties.

The statement about the existance of waveguiding property is proved only for the non-zerc
phase shear of oscillations (£#0) in the neighbouring fundamental areas of the translation
group. In this connection the question arises, if the generalized eigen functions of problem
exist, localized in the vicinity of simple knife-type grating with the periodicity condition
correlating with the zero shear of oscillation phase in the neighbouring fundamental areas of
the translation group? The answer to this question is positive.

next system of inequalities is correct: a(€)<B1(§)<...<au(E)<B(E)<... <<y 1<61<... <Yn<Om<2T.
Here o), B(&), Ym Om. are frequencies of corresponding mode. The numeration is given
according to the frequencies increase.

Existence of the anomalous property of simple grating.

The statements formulated in the | sssesmmesesy  somssss g s
lemma allow pointing Out SIgNAtUTES | jicchmss  demmsbssmss HENE ' IR
of the waveguiding mode o and B and
anomalous modes y and & in inter-
file channel ted on Fig. 2

¥

Fig 2

Existence of the anomalous property of composed grating.

Composed and double plate gratings can be considered as the disturbance of a simple grating.
In the common case they allow more restricted group of symmetries then the simple grating.
That's why the method of restriction the allowed class of solutions, based on symmetry of the
problem can not be applied to prove the existence of anomalous oscillations near the simple
knife-type grating.

If solution u* of the problem, localized in the vicinity of grating exists, then for all values A it
should satisfy the nesessary condition fexp(ixA)u*d(y) =0, which will be fulfiled if and only if

Q
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for all values x the identity [u*(x,y)dy =0 is correct, Q - is the fundamental domain of the
0

Fine structure of the Pass bands Anomalous frequencies Unknown spectrum
spectrum. o o

. .. ) 0 B n Y1 81 Y2 2m X
investigations of

anomalous oscillation

frequencies allow an

elaboration of fine
structure of the spectrum of problem for the simple knife-type grating of plates. By the
existence theorems of waveguiding and anomalous modes of oscillations the spectrum of
problem always consists at least one pass band for the o, mode and the anomalous oscillation
frequency for the y; mode. Presented on Fig. 3, is the
scheme of fine structure of the problem spectrum in
terms of nondimensional frequencies of oscillations. It is
nesessary to point out, that for every pass band the
mode (o or B) of corresponding waveguiding function
and a pass band type is determined. Types of pass bands
and anomalous frequencies alternate. The dependence of
the geometrical properties of gratings on guiding
phenomena has been culculated (Fig. 4).

.

Type of anomalous functions. Oscillation physigcs.

Oscillation physics near
the knife-type grating of
plates, described by waverguiding functions is known [5] and
correlates with mechanic analogues, discrete chains of coupled
oscillators. This can not be said about anomalous oscillations.
To clarify their oscillation physics it is nesessary to investigate
the outlook of anomalous functions. Presented on Fig. 4 for the
case L=2, are the velocity field, level lines and pressure field for
modes y1, 8;, y» of anomalous oscillations in interprofile
channel 0<y<1. It is nesessary to point out, that velocity field
flow from one interprofile channel into another one doesn't
happen as distinct from waveguiding oscillations.

From Fig. 5 it is possible to understand the mechanical
analogue of anomalous modes, these are oscillations of some
connected chains of connected oscillations. Despite of this
mechanic  analogue being approximated, it allows
understanding the oscillation physics: y; are synphase
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oscillations of one chain, 8, are synphase oscillations of two connected chains (chains oscillate
in antiphase about each other), y, are synphase oscillations of three connected chains. Tt is
nesessary to point out the considerable difference of anomalous oscillations near the plate
grating from synphase oscillations of chain of connected oscillators.

Comparison with experimental investigations

It is nesessary to remark that [3] and later [2] pioneered in investigating the dependence of
waveguiding frequencies on geometrical parameters of the knife-type plates in appliance to
electromagnetic waves. Theoretical and experimental investigations of acoustic resonance and
waveguiding phenemena near plates in the channel and cyclic gratings of plates were
performed independently but later, a comparison with the previously obtained results was not
undertaken.

Experimentally investigated in [5, 6], are the acoustic eigen oscillations near the plate

gratings in a channel, allowing simulation in the framework of the two-dimensional fomulation
of the problem and simulating the cyclic grating (the "mirror" effect [6] is appliable). The
experimental results [5] are presented in table 1 of paper [7]. Performed on this base, is the
comparison of experimental data and numerical investigations of disperse relations
dependences of anomalous oscillation frequencies on geometric grating parameters. The
comparison with experimental and numerical investigations are shown on Fig. 5. The
experimentally obtained results [7], which are
nondimencional, are marked with box, continious
curves are the numerical results, obtained with the
help of dispersion relations. The satisfactory
coinciding of the results can be remarked.
Unsolved problems. The author is not aware, if
waveguiding or anomalous frequencies of problem
more then 27 exist or not. As eigen oscillations are
always connected to the latent symmetry of the
problem, so on the basis of the carried out
investigation it is possible to advance the next
hypothesis: ~ waveguiding ~ and  anomalous
frequencies of the simple knife-type grating higher
then 21t do not exist.

\:)74\
33
Y3
3 2 ~
Y2
1
Te—
——— ‘—.-‘-\_\_._‘_‘
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THE COST OF PLEASURE:
ABOUT SOME CATASTROPHES IN TIME-HARMONIC
WAVE SCATTERING

Alexander I. Nosich

Institute of Radio Physics and Electronics, National Academy of Sciences
Kharkov 310085, Ukraine email: alex@emt.kharkov.ua

The paper is concerned with a review of several situations taking place in the time-
harmonic wave scattering (~ e *'), when solutions to certain wave scattering prob-
lems do not exist. Each of these situations is closely tied to the violation of solution
uniqueness, due to a presence of an eigenvalue, in terms of either natural frequency or
propagation constant, simple or multiple, ceinciding with the corresponding parameter
of the excitation field. Then the reason of solution non-existence can be easily under-
stood based, for example, on the Fredholm Alternative [1,2]. From the physical point
of view, the mentioned catastrophes are always a result of joint action of several major
assumptions, such as harmonic time-dependence, absence of losses or nonlinearities, and
infinite extention of the scatterer. Thus, a loss of solution existence, at certain discrete
values of parameters, is the cost of the pleasure of working with a simplified problem.

1. The first of the considered situations occurs when attempting to analyze the
scattering of time-harmonic waves from so-called "active” scatterers. The latter are the
dielectric or impedance objects characterized by a negative absorption. This is commonly
done by introducing a complex-value dielectric constant with a negative imaginary part,
or a surface impedance with a negative real part [3]. Such a scatterer can be considered
as an approximate model of, e.g., a light-emitting particle in the inversed population
conditions, provided that one neglects the effect of saturation due to non-linear character
of the light emission. The study of the scattering behavior of active objects has attracted
attention since the late 70’s, due to a simplicity of analysis and an opportunity to use
all the experience accumulated before when studying the scattering from the lossy and
passive objects. In the previous works it has been noted a variety of exotic features
of active scatterers, like ”invisibility”, negative scattering and extinction cross-sections,
and oxtraordinarly sharp resonances [3}.

However, if looking closely at the mathematical formulation of the problem, one may
notice that a negative absorption leads to the violation of the conditions that guarantee
the solution uniqueness, and hence, its existence. In fact, the presence of a negative loss
shifts the complex natural frequencies of a formerly passive scatterer towards the real
axis in the complex k-plane. It may even happen that one of them, say ko, comes to the
real k-axis. Then the solution will not exist at this frequency due to a pole of the field
function. In the pole’s vicinity the far-field scattering pattern, the surface current, etc.,
can change drastically due to a small variation of the frequency. The situation described
above is illustrated by the known results for an active-dielectric cylindrical particle and
an active-resistivity reflector antenna. It is emphasized that turning to the transient
scattering results in a formally unique solution, but showing a non-physical behavior of
the unlimited growth in time. Hence the conclusion is that there is no much (if any)
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sense in studying the scattering problem for an active object. Instead, there is a more
clear sense in a search of the conditions for a natural frequency to turn real, by solving
an eigenvalue problem of a special sort.

9. The second catastrophical situation occurs when considering an infinitely ex-
tended open structure able to support a natural guided surface-wave mode, excited by
a surface-wave incident field. The latter can be originated by a modulated electron flow
or by a dielectric-slab waveguide, and is assumed to be fixed, i.e. experience a negligible
influence of the scatterer. Such problems appear, e.g., in the linear theories of vacuum
electron oscillators like BWO and orotron, and the Cherenkov laser. However, if studing
the matter of solution uniqueness, one sees that the presence of & natural guided mode
leads to the existence of a pole hy > k on the real axis of the h-plane, h being the
longitudinal wavenumber. When the incident field wavenumber A > k and comes to
a pole, the solution does not exist. The situation is illustrated by a surface-wave exci-
tation of a regular dielectric slab as the simplest open waveguide. Periodic waveguide
excitation is also discussed. It is known that groove gratings and other types of periodic
structures can support non-attenuating natural modes propagating along the direction
of periodicity [4]. When trying to solve the problem of excitation of groove grating by
a periodically-modulated electron flow, whose velocity is naturally lower than the light
velocity, one comes to the non-existence of solution in the case of sinchronization. Intro-
ducing the losses shifts the h-poles off the real axis, thus returning the situation to the
existence of a unique solution. However, in general, it appears that the problem should
be re-considered as an eigenvalue problem for the natural modes of a more complicated
open structure consisting of a pair of interacting infinite waveguides.

3. The third kind of catastrophe due to solution non-unigueness is observed if a local
scatterer or a source is embedded in a waveguide able to support not only the natural
guided modes, but also associated guided modes. The latter may appear due to the
multiple roots of the dispersion equation. Then the Fourier-transform of the solution
has a multiple pole at the real axis of the h-plane. However, neither a ” parent” natural
guided mode nor the associated guided modes of the corresponding finite chain carry any
power. This eliminates the only reasonable way to determine the sign of the correspend-
ing wavenumber. Hence, there is no way to extract out a physically meaningful unicue
solution of a lossless-waveguide scattering problem [5]. To avoid this, one has either to
switch to the transient scattering or to introduce the losses.
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BEAM PROPAGATION METHOD MODELLING
OF LIGHT PROPAGATION IN OPTICAL WAVEGUIDES

Marian Marciniak
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and Kielce University of Technology, Electronics and Telecommunications Chair,
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Beam-Propagation Method (BPM) is now a widely used tool for computer simulation of light
propagation in transparent media including optical waveguiding structures. The method was introduced
in 1976 by Fleck, Morris and Feit for modelling of laser beam propagation in non-homogeneous
atmosphere [1]. In 1979-1980 the method was adopted by Feit and Fleck for modelling of light
propagation in optical waveguides in a series of papers in Applied Optics [2, 3, 4]. Since then, the
method has been successfully applied to analyze various optical waveguide structures, including glass
fibres and integrated optic waveguides.

The paper reports some recent activities in BPM modelling of light propagation in optical waveguides
that have been carried out in the framework of COST 240 European Project: Techniques for Modelling
and Measuring Advanced Photonic Telecommunications Components, Working Group 2, Waveguide
Devices. In particular, the results of an investigation of a guide with a balance of gain and loss has been
reported, and a model for simulation of Second Harmonic Generation (SHG) process in optical

waveguides is presented.

The author acknowledges the co-operation and fruitful discussions with his colleagues from COST
240 Project. He also wishes to express his special thanks to COST 240 Chairman, prof. George Guekos
from ETH Zurich, Switzerland. The support of COST 240 activities by General Department DG XIII
of the European Commission in Brussels is kindly acknowledged. '

L BPM ANALYSIS OF A PLANAR WAVEGUIDE WITH A BALANCE OF GAIN AND LOSS

The problem of light propagation in a planar waveguide with a balance of gain and loss of a geometry
as in Fig.1 has been proposed by Hans-Peter Nolting [S], and formerly has been analyzed with the
eigenmode formalism through the use of programs resolving numerically wave equation like Mode
Solver. Then the interest has been shifted to BPM studies of the problem starting with the results of
BPM simulation of the structure by the author of this paper [6]. BPM which is a nonmodal method can
serve very well for the purpose of modeling phenomena of light propagation in such waveguides. A
BPM benchmark test for waveguide problem with a balance between loss and gain has been proposed
[7] and its results are reported below.

A. Light propagation in a waveguide with gain and loss

The waveguide structure of interest is shown in Fig. 1: two layers with mutually complex conjugate
refractive indices are surrounded with a medium of a slightly lower real refractive index. The exact
values of all parameters are given in Tab. 2. The imaginary parts of refractive indices of guiding layers
vary in a very broad range: in terms of the power absorption (gain) coefficient o, between zero and
+10* em™. The wavelength A=1.55um is assumed.
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ns = 3.160355
ne=3252398-in" |
n =3252398 +in" |

ns = 3.169355

Fig. 1. The geometry of a two-layer waveguide with gain and loss

B.  Notation

The attenuation or amplification of light propagating in a transparent medium may be accounted
for via a complex-valued refractive index

n=n—in" ¢))
and a complex relative permittivity
g=n"=¢ —-isg" )
The relation between the power absorption (gain) coefficient o and the imaginary part of refractive
index is
= 1 3
4
where o is in cm™” and A is in pm.

Dispersion equation of the waveguide was numerically solved in the complex &, plane by the

Newton method [7]. The calculated dependencies of real and imaginary parts of effective refractive
indices versus the absorption coefficient o are plotted in

Fig. 2.
o
& 322°F
i 321} Fig. 2. Effective refractive indices Re{Ny} (a)
- and a,z=(4n/M)Im{N,q} (b) versus
° 320 attenuation/amplification coefficient a
= 319 a) for o < Olprancn * lossless modes,
° 318l b) fOr o = Clyemnen : ONE degenerate lossless mode,
S a7l ¢) for &> Glynnen - the amplified mode is
w . . ‘ o concentrated mainly in the region with gain, while
o 2 4 6 8 10 the attenuated mode is concentrated mainly in the
Absorption/gain coefficient a [x10% cm-1] lossy region.

C.  Beam-Propagation Method
For a planar isotropic waveguide a scalar wave equation is valid. Standard beam-propagation
algorithms deal with a solution to hyperbolic Helmholtz equation

2

0
E(z)=E, exp[i ol ki +ik, (n -n, )z}

O

or with a solution to Fresnel parabolic equation
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— 1 2
E(2)=E, exp{ 5 ;z {-gx—; +k; (n2 -n? )]} ©

where z is the direction of propagation, E, is the initial field distribution at a cross section z=0,
n=n(x, z) is the refractive index distribution in the waveguide, and », is the index of refraction of a
reference medium in which the free-space propagation steps are to be carried out. It is assumed that the
value of 7, is real and close to those of the media constituting the system. E(x,2) is a slowly-varying field
amplitude, and £, is the wavenumber in the reference medium, &, = n,@/c.

The occurrence of loss or gain in a medium may be automatically accounted for in the phase
compensation steps, by an appropriate exponential change (increase for gain, decrease for loss) of the
field amplitude according to the imaginary part of the refractive index » [8].

D.  Problem set

A problem has been set to determine the branching point Gpans value with different BPM programs
and approaches. For o approaching Qranch there are two different effective refractive index values, they
differ in real part for & < Glyyanch OF i imaginary part for o > Qpranch. Close tO Ooranch

@0! . 2@' 6
NzNB————ﬁT(a—-aB)i—-—l——— ,,“(a«(x )1/2 ©
B
NB(I’g 2IVB (I)s

Therefore, the difference of mode effective indices scales with square root of & > Qyranch-

Thus, if we restrict ourselves to a two-mode system only, we may expect two kinds of interference
effects:

ofOr O < Oly,anch , a5 the modes differ only in phase velocity in this case, the result is a periodic beating
with a spatial period A proportional inversely to the (real) effective index difference, which in tumn is
proportional to square oot of (sranch - O ). Thus we expect a linear dependence

™

1
"—7 = COnSfX((Z - abranch), o < abranch 3

ofor 0L > Olyyancs the modes have the same phase velocity, but they differ in a way that one is attenuated
while the other is amplified. At long distances of propagation, the domination of the mode with gain is
obvious. Therefore, a constant growth of the field is the result of two-mode intefrerence. Thus, the
effective two-mode beam power amplification coefficient at long distances is a linear function of gain-
loss coefficient o, which in tum is proportional to square root of ot~ Glsranch - Thus we expect a linear
dependence of the form of

2
aeﬁ' = COHSt.X((l - abranch )7 o > a'branch ; (8)

The task consists of three parts, all of them are to calculate branching point 0tranch value.

E. Contributors and used methods
The contributors and their algorithms are listed in Table 1.
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Table 1. LIST OF CONTRIBUTORS

Institution Equation Numerical Boundary Propagation
method conditions step size

HHI FE/FD BPM

Un. Hagen MoL -

Un. Twente FD Efficient 1 pym

Ac. Comm. Helmholtz | FFT BPM Absorber 1/8 ym

Un. Roma MoL Absorber -

F.  Discussion of the Results

The resulting values of Gyancs are reported in Table 2. The differences with respect to the analytic
solution do not necessarily mean errors of the method, because the propagated beam is not a
combination of two guided modes of the active guide only, but also of a radiation field of this guide.

The participants to the task have done much of numerical effort to avoid inaccuracies due to
numerical errors, thus the observed discrepancies should be attributed to different physical models
modelled by the BPM programs used. In other words, every method used has analysed very accurately a
little different situation.

Table 2. VALUES OF Qs OBTAINED BY THE PARTICIPANTS TO THE BENCHMARK TEST WITH
COMPARISON TO ANALYTIC VALUE Olyanch anat, = 5226.3/cm

Contributor Qpranchs Qoranch = Apranch anal. »
l/cm 1/cm

HHI 5306 79.7

Un. Hagen 5236.87 10.57

Un. Twente 5226.5 0.2

Un. Twente 5226.9 0.6

Ac. Comm. 5500 273.7

Un. Roma I 52425 16.2

II.  BPM MODELLING OF SHG IN A WAVEGUIDE

This part is devoted to an adaptation of Beam-Propagation Method (BPM) for modelling of Second
Harmonic Generation (SHG) process in quasi-periodically corrugated planar waveguides. A type I (eoo)
of SHG has been chosen as a working example. A model of split-step formalism of SHG has been
developed. The model involves propagation of two beams: the fundamental (pump) beam and second
harmonic beam, and is outlined below.

As a starting point the following coupled set of goveming equations has been adopted [9]:

& 1% . ) a, adla .
]—5—;+E o‘szl +aja, exp(— jABE)=0; 3?—57;;%1“012 exp(+ jABE)=0

The adopted numerical model of two beams propagation consists of a sequence of two steps:
propagation step, and compensation step.
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Step 1 involves propagation of the beams only, and diffraction effects. The beams are propagated
separately, and SHG process is not included in this step. This is equivalent to uncouple the governing
equations by assuming the other's wave amplitude =0:

.  10%q, . 2 :
14y 2140=0, (a,=0); =2 0+a’ exp(+ jABE)=0

Step 2 involves nonlinear compensation of the amplitudes and phases of both beams. Simultaneously,
no diffraction occurs, what follows from an assumption of vanishing transverse variation of the beams,
i.e. 0%0x* = 0. This is equivalent to plane wave propagation.

j &, _joda

2 &
The propagation step of the beams can be easily modelled via standard BPM techniques. The non-

linear compensation step involves more difficulty. Under assumed conditions, the fundamental (@) and
second harmonic (20) field amplitudes are a subject of following nonlinear changes [10]:

'Z"’(zl"[ﬂ’”""ﬁ“‘””"z[ﬁ’”——)zimﬂm

n,c n L.

@

2,6)- 0, sn(%u”})tmj

where the notation of [10] has been adopted. The above amplitude changes are explicitly given and do
not present difficulty in calculations.

Similarly, phases of the waves change in the following way [10]: The fundamental and second
harmonic wave phases are:

j%’}‘—+0+af’a2 exp(-—jAﬂ§)=0; +0=0, (a,=0)

n

o 0 2 -l

—1 22U _sn
n,c n,

47Aq dz
P
(Dm (Z) (Dmo on moj 8 (K(m)z.mJ
Lo

d)2m(z): D, +”ZStep(z - ZEaNL)
=1
Of the above, the first only the first expression for fundamental wave phase change is given not
explicitly, since it contains an integral. The integral has to be evaluated numerically.

In quasi-periodical planar waveguide the phase mismatch AB varies according to the local thickness in
a given section of the waveguide. Since in realistic corrugated waveguides the thickness variation is very
small, this may be considered as an perturbation in a homogeneous waveguide. This issue and its impact
on the amount of reflections at the boundaries is currently under study. It is believed that one could

neglect the reflections.

In the analysed problem the beams propagate in a planar waveguide, which is a one-dimensional free
space for the beams. This means that without nonlinear effects the propagation step length might be
arbitrarily long. However, as the SGH process is sensitive to amplitudes and phases of the interacting
beams, the propagation step should not involve significant amplitude and phase changes. Thus carry has
to be taken out that propagation steps are not to long in order to properly model the SHG process.
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As in a standard BPM, for achieving better accuracy with given propagation step, the calculation
should be started with an initial half-step propagation. For keeping the accuracy of the modelling and
also to shorten the computational time needed for device modelling, it might be necessary to use an
adaptive propagation step length. This is due to the dependence of efficiency of SHG on both the waves
amplitudes, and phase relations.

For checking the accuracy of SHG modelling in a given waveguide structure it is necessary to
compare the results with an analytical solution for the geometry considered. Such solutions are available
when second harmonic beam has zero amplitude at the starting point [11].

The above two-beam propagation procedure is actually a subject of further development COST 240
laboratories in University Roma 1 “La Sapienza”, Dipartimento di Electronica, and Institute of
Telecommunications, Department of Fibre Telecommunications, Warsaw, in order to obtain an efficient
tool for SHG modelling in planar waveguides, including quasi-periodic corrugation of the guides along
the propagation. ‘

M. CONCLUSION

Beam Propagation Method has been successfully applied to analyze non-modal beam propagation in a
waveguide with a balance of gain and loss. A model of SHG modelling in a waveguide with BPM has

been presented.
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MICROWAVE METHOD FOR THE STEP-LIKE RECONSTRUCTION
OF LOSSLESS MULTILAYERED DIELECTRICS

V. Mikhnev and A. Palto
Institute of Applied Physics, Akademicheskaya 16, 220072 Minsk, Belarus

Abstract

A novel one-dimensional microwave imaging approach based on successive
reconstruction of dielectric interfaces using the complex reflection coefficient data collected
over some standard waveguide band is described. The method is valid for highly contrasted

discontinuous profiles and shows low sensitivity to the practical measurement error. Some
numerical examples are presented.

Introduction

Development of microwave reconstruction methods has drawn attention of notable
number of researchers during past decade. Existing inversion algorithms are based on
perturbative Born-type approach or optimization schemes applied to exact integral equations.
Unfortunately, all these algorithms suffer from serious problems when discontinuous profiles of
high contrast are to be reconstructed. Besides, they usually require the input data to be given in
an infinite frequency band (at least, starting from zero frequency). It cannot be realized in
practice, because for each frequency band special measuring equipment and antennas should be
used.

In this paper, a new method of step-like reconstruction, which is intended, for
reconstruction of the profiles of high contrast is presented. The complex reflection coefficient
of normally incident wave obtained in 2 frequency band essentially limited both from upper and
lower frequencies is used as input information for the reconstruction process.

Reconstruction algorithm

The algorithm is based on the Newton — Kantorovich procedure applied to the
inversion of the boundary problem for the Riccati equation [1]. Let the normally incident
electromagnetic wave with the wavenumber k; is reflected from the interface between air and
the inhomogeneous half-space. The reflection coefficient 7(ko,x) and the refractive index profile
n(x) are related by the Riccati nonlinear differential equation:

1—r2(k0,x)-dn(x)

dr(ky,x) ..
0 = Diky - r(ky,x)+ 1
dx iky - n(x)- r(ko, X) (%) dx (D
Let's introduce a new variable 7= jn(x')dx' ,
0
@)

which represents the optical path length in the medium.

When applying the Newton — Kantorovich optimization algorithm to (1) transformed
with the use of (2), one can compute a correcting term An(f) to some initial profile n(#) [1].
Successive application of the same scheme using the corrected profile function n(f) + An(f) as
initial profile allows to obtain the solution of the inverse problem after a few iterations.
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Unfortunately, this approach works well when the input data are given in some frequency band
starting from zero frequency. In case the frequency band of operation does not contain low
frequencies, the solution becomes unstable. Nevertheless, it was found that the maximal
derivative of the correcting term An(f) corresponds to the point of the greatest change of the
profile (e.g. interface between layers). Hence, a step can be installed in the initial profile at the
point of the maximal derivative of An(f) in such way to provide minimization of the maximal

modulus of the reflection coefficient at large depth for all frequencies, i.e. minimax criterion is
used. In short, the computational scheme can be summarized as follows:

1 calculation of r(ko, f) for some initial profile n(f) at all frequencies from the given
frequency band by numerical solution of (1)-(2)

2 calculation of An(f) using the Newton — Kantorovich iterative procedure. Installation of
the step into the initial profile at a point of the most rapid change of An(f) ensuring

minimization of the maximum of |r(k,, 7)| at large depth over all operating frequencies

3 updating the profile. Then return to step 1, with the initial profile being replaced by the
corrected one. The calculations are stopped, when max(jr(ko,)|) at large depth over the t
frequency band of operation is less than desirable error

4 return to the geometrical depth using reverse coordinate transformation (2).

Numerical examples :
In this section, the results of numerical experiments are presented. The reflection

coefficients calculated in the frequency band of 26 to 37 GHz in steps of 0.2 GHz were used as
input information. ;

Fig.1 shows results of reconstruction of a three-layered highly contrasted structure on a
substrate. The quality of reconstruction is seen to be good enough.

The stability of the method was investigated by adding a uniformly distributed random
noise to the input data. The magnitude of noise was chosen to simulate measurements with an
accuracy of 20%. The results of reconstruction of a two-layered dielectric structure on a
substrate for the case when there is a noise in the input data shown in Fig.2 demonstrate good
stability of the solution. Therefore, the method is suitable for practical applications.

The method like others has some limitations. Two most important of them derived
from numerical simulations are as follows. First, the best convergence of the solution is
achieved when the reconstruction depth is close to Af=c/2Af , where Afis the frequency
step.

The resolution of the method can be estimated as ¢, =c/2F, where c is the light

velocity and F is the bandwidth.

Reference
1. V.A. Mikhnev, P. Vainikainen, Profile inversion of stratified dielectric media using the two-

step reconstruction, Proc. of the 27" European Microwave Conf., Jerusalem, 1997, pp.
584-588.
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ANALYSIS AND SYNTHESIS OF IMPEDANCE PLANE

Yuriy V. Yukhanov

Taganrog State University of Radio Engineering, Taganrog, Russia
email: airpu@tsure.ru

Abstract. The problem of synthesis of impedance plane reflecting a plane homogeneous
wave in a given direction is solved. The law of distribution of impedance is found in
analytical form. The restrictions on the class of the allowable scattering patterns are
formulated. Rigorous solution of the problem of the wave scattering by a plane with
non-uniform periodic reactance is obtained in analytically closed form for the first time.

Consider solving a two-dimensional problem of the synthesis of an impedance plane in
the following statement. Suppose that a plane H-polarized electromagnetic wave (Fig.1) is |
incident on the plane S from the direction ¢, At the surface S, the Leontovich impedance \
VA boundary conditions are imposed:

E =Z@H_. (1)

It is necessary to find the law of
distribution of passive surface impedance
Z ensuring the reflection of the plane
wave in the given direction @o.
Analytical representation of the
X incident and the scattered fields as the
homogeneous plane waves has the
following form in half-space y 2 0:

Fig.1

HZ _ .ezk(xcos(pn +ysing ) ’ Hj _ ,~ik(xcosg, +ysing,) @
This enables us to find the required law of impedance distribution directly from the
boundary conditions (1)

Zie = 0.5{(cosy, —cosy,) +i(cosy, +cosy,)ignx }, 3)

where n=k(cosgy+cosgy)/2; cosya=singy; cosy = singy ; ¥, % are the angles of incidence
and reflection, respectively.

The condition of physical realizability of the real part of passive impedance function
defines the restriction on the class of the allowable scattering patterns: The passive impedance
(ReZ0) provides a total reflection of a homogeneous plane wave only in the following
angular sectors: @y < @,; o> 7 -@,, The reactance can ensure such a translation only in the

backward, po=0, (Z=icosy1g(kxcose,), or the specular py=n-p. (2=0) directions.
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The question on an opportunity of efficient reflection of a plane wave in any desired
direction with the aid of reactance is of a special interest. The analysis has shown that the
reactance determined by the following equation

Z = iZotg(kxcosgy), 4

creates also a reflected beam in the direction @o but besides there is still a whole spectrum of
reflected waves, both spatial and surface ones. If the following condition: Z, = singy , is
satisfied, then, in the reflected field, only two spatial harmonics: homogeneous plane waves in
the given direction @ and in the specular (mirror) direction 7-Q are present, with amplitudes

Hy = 2cosy/(cosy, + cosyy);  Hs = (cosy, - cOSYo )/(cosy, + cosyy).

The given solution of the synthesis problem enables ones to derive the formulas for the
reflection coefficient P from a plane with variable impedance Z

p - COsT(3c0sYy, = cosY,) ~ Z(cosy, +c0st,) )
(cosy, +cosy,)cosy, +Z) ’

which transforms to the well-known expression if Z = const.

Advantages of the new reflection coefficients are especially clearly displayed in the
vicinity of the angles of observation ¢ = arccos(2cosQ, +cos®,) .

Consider now a rigorous solution of the problem of scattering of an H-polarized wave
by the plane y = 0 with a reactance given by equation (4). Note that publications containing a
rigorous solution of this scattering problem in the closed form are absent for a plane with
periodic variable impedance (4).

From the Lorentz lemma, we obtain a Fredholm second-kind integral equation for the
z-component H, (x) of the total magnetic field:

ik % @ e—ﬂc(x‘x')
H,(0)=——— [z, (x) | J—?—T_—;;M'+2H;(x). (6)

By presenting the required function as H_(x) = cosnxH(x) and using the spectral
expansion of H(x) we obtain the solution of the integral equation (6) analytically:

H.(x)= o,sx{1 +A4+22,5°0, .G,/ D,e"™ ~2Z,AY h, G, /C_meiz'"“”}ei“"”, )

where X=4/(Dy+ACy); and factor 4 is determined from the equation of balance of energy at
the reactive surface y = 0.

Thus, a discrete spectrum of plane waves travels along the impedance structure. We
study the scattered field of such a structure. For a fragment of impedance plane of the length
2L, the scattered field pattern takes the following form:

F(9) :E’?{k”A)Sin(P“ZO(I*A)]SmUO +—2-Z—°(1+G1 sin(p)smUl ~

UO D 1 Ul
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sinU,,
U

m

- 22120 (1+G_sing) SH;]U“ +2Z,.

-1 -1

e, . .
(1 4+ (G _sin
D,,,(  SIN 0)

—2AZOZ%'"—1(1+G_,,, sin ) S‘?]U-m}, (®)

where U, = L(kcosg-[2mn-n,]). Thus the field H(x) is the same as for an infinite plane.
In the expression (8), the first two terms are the specular F, and the synthesized Fy

beams launched by the plane S in the directions ¢=n-@s and @=,. With normal incidence of
the wave, the third term represents the beam Fj, which is specular with respect to the
synthesized beam ¢=n-@o. In this case factor A has a simple analytical representation via Zo

A = 1 - Z,G )1 + Z,G)).

As we see, the amplitudes of the beams of a complex image depend on the value of Z,
Hence, with the aid of Z; it is possible to control the amplitudes of various beams of the

scattering pattern. So, the expression for Z,, ensuring a maximum |Fo(@y)| of the synthesized
beam is as follows:

Z, = sin @, (/2(1+sin @,)/sin @, ~1).

Zero amplitude of the specular beam |Fy(7-¢,)| is provided by the following condition:

Z, = \[(2 —sinQ,)sin g, . (9)

In Fig 2, the scattering pattern of a fragment of reactance plane of the width 84 that
reflects a normally incident wave in the direction of 0=30" is given, for the value of Z,
designed after formula (9) (curve
30 e : o 1). Curve 2 corresponds to the
‘ scattering pattern of an equivalent
conducting strip tilted by the angle
0.5(ps-@o) with respect to the
; . angle ¢, of the wave incidence.
NN The obtained analytical
BT solution of the wave scattering by-a
v plane with variable periodic
i impedance (4) can be used for
P determining the total field (7) on
e the curved surface of a body of
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SYNTHESIS OF THE ADAPTED HYBRID REFLECTOR ANTENNAS

Bohdan Podlevskyi, Petro Savenko, Myroslava Tkach
Institute of Applied Problems of Mechanics and Mathematics of NASU
3"b" Naukova Str., Lviv-601, 290601, Ukraine
e-mail:kalynjak@ippmmlviv.ua

Abstract. One approach of solving the synthesis problems of the adapted
hybrid reflector antennas (HRA) is proposed. It consists in solving of both
problems, the synthesis problem of HRA according to the prescribed directivity
pattern (DP) and the problem of forming the deep gap in DP according to the
given direction. The variational formulations the synthesis problems are used.
The mean-square deviation of the given magnitude and the synthesized one is
chosen as the optimization criterion.

The suggested approach permits to synthesize the adapted HRA of the
different structure. In particular, the cuttings from reflectors can be both
symmetrical and non-symmetrical, and irradiating feed array can have
arbitrary configuration. The partial directivity patterns of the elements of the
array can be different for each of them.

1 Statement of the problem. The spacecraft hybrid antenna systems are
used, in particular, for the construction of the modern systems satellite
communication of multy-functional purpose. As rule, they consist of the non-
symmetrical paraboloic reflector {(a some cutting from paraboloidal reflector) and
the control irradiating feed array. It is supposed that the reflector is situated in
the far zone in relation to the separate feed element and in the near zone in
relation to the feed array as a whole.

Let the field in the far zone is described, using the coordinates of the
satellite antenna by the angle of elevation & and the angle of azimuth ¢. We

assume that the field (partial DP) of the n-th separate beam in the point of
observation (8,,9;), excited by the unit level of power and zero phase, can be

presented by the complex vector 7.(8,,0,). The feed array in our reseach may
have general configuration in the sense that the position and orientation of each
y-th feed element is specified independently. The excitation coefficients and the
type of the radiation (a cof’ § feed) may also vary from element to element.

We designate the complex factor of excitation of n-th feed element as /.
Then, the electromagnetic field of whole system is considered as a sum of the
partial fields, and the total directivity pattern is given by

— — N —_—
F(9,0)= Al = Zlnfn(& ®). (1)
n=1 .

The value ]7” is determined by the physical optics methods.

2. The synthesis problem of HRA according to the prescribed magnitude
pattern At first, the synthesis problem of HRA according to the prescribed DP
]:"0 is considered. It is assumed that the magnitude pattern FO is given in some
region (2 of angles $ and @, and FO=O outside of this region. If the geometry of

the feed array and the partial directivity patterns of the separate radiators of
array are known, then it is required to determine the amplitudes and phases of
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excitation of the radiators ( I = {Il, I,...,I .} - is the vector of excitation of the
feed elements). Therefore, the synthesis problem consists in a finding the vector

] minimizing the functional being the mean-square deviation of the synthesized
and given magnitudes in a some region . Thus, the criterion of optimization is

writtern as
N
o=|f [FOS - |F9|]zd_o + [Fe - \F‘P]]ng B3|, 2)
02 02 n=1

where F’, F? and F % F?® are components of vectors ﬁo and F accordingly in
a spherical system of coordinates, N is a quantity of feed elements and B>0 is

a some real parameter.
The condition of stationary of the functional (2) results in the nonlinear

system of algebraic equations, which in the operator form is defined by

(BE + B)T = olf) , (3)
here B is a matrix, the elements of which do not depend from / ( E is a unit
matrix ). Tt nermits to construct the following iterative process of the system

__________ ;o =t g

solution
I® = (BE+ B) " qI®?) 4)
where v is the number of iteration, (BE + B)—1 _is the inverse matrix.

Numerically the obtained system of equations is solved by the successive
approximation method. The considered problem is essentially nonlinear problem
and may possess non-unique solution.

3. The synthesis of the adapted HRA. It is assumed the problem of
forming the deep gaps in the DP according to the prescribed directions as basis
of the synthesis problem of the adapted HRA. Let the amplitude-phase
distribution (APD) in irradiating feed array is given and directivity pattern of

HRA is writtern by formula (1).
The zero synthesis problem in the DP of the HRA according to the

prescribed direction O, (@ = (€,&;) = (sin 8 cos g,sin $sin ¢) are generalized

angle coordinates) consists in finding such a vector APD I, forming DP close to
the output in the whole range of visible angles £ , and equal zero in the

direction @,. Last demand can be formulated as an inequality 'f(Q*X < g, where

¢ is a small prescribed constant.
Introduce in consideration the function

Q) = F,(@) - F@Q.)= il&")[fn @-7.@.), (5)

where 1© is the APD forming output (nonperturbed) DP 1:"0 Obviously, that

F(Q) in all points @ €2 coincides with the output DP and @(Q,)=0. In the
space of vector-valued functions H; we introduce Euclidean metrics determined

by the scalar product and norm:
(%)= [[#@F @+ r@F@pe. [f=F 7t
f¢.

Hence, the synthesis problem consists in finding the vector I eH;
minimizing the following functional:
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- 2
o= “cp - AI" . (6)
The operator A is determined in accordance with (1).

Assuming that the system of partial DP of HRA {fn} is linearly

independent we apply " the orthogonalization process to it. After certain
transformations we get the representation of the DP array in the
orthogonalized basis

. N
FQ)= 2.B.8.@), (7)
n=1
here {j, } - is the orthogonalized system of the functions;
N e
B, = Y, (h=1N) (8)
ji=n

where

O = (fj:ﬁn) j=Ln-1

=~ il Il

7@+ Zanjéj(Q)“ j=n
j=1
Introducing (7) into (6) and on the base of minimum of the functional ¢ we
obtain the expressions for the optimal coefficients: '

B, = (3.9,) ©)

or

B =B —[FO(Q*)J g:n@)dcz} (=11), (10)
> ‘
here the coefficients B° are determined on the base of output vector I, by the
formula (8). If the coefficients B, are finded according to the form (10) for DP

F (Q*) and they satisfy the condition (5), then the problem is solved. The known

vector | forming DP with the created gap is determined as the solution of
linear equations system (8) with triangle matrix. In the inverse case we find
coefficients using the following iterative process

B+ ) [F@')(Q*), i an<@ié@j, m=i¥),  ay
0

where j is the iteration number.

The offered approach and developed algorithms permit to solve the
synthesis problems of the adapted hybrid reflector antennas with simultaneous
forming the deep gap (zero) in the directivity pattern according to the
prescribed directions. This investigations are proved by the numerical results.

References
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problem in the directivity pattern of conformal antenna arrays. Proc. of the
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THE METHOD OF AUXILIARY SOURCES FOR INVESTIGATION OF
SCATTERED FIELDS SINGULARITIES AND ITS APPLICATION FOR
INVERSE PROBLEMS

R. Zaridze, G. Bit-Babik, K. Tavzarashvili.
Tbilisi State University, Tblisi, Georgia, e-mail: lae@resonan.ge

Abstract. A simple method for investigation of the scattered fields singularities is presented. It
is shown how this technique can be applied to the synthesis problem of “well-matched”
antenna with predefined pattern. The basic idea is that the wave field corresponding to the
desired pattern must have a domain of singularities, and it is determined by these singularities

in a unique way.

1. Introduction
It is known that any wave field carrying the energy into infinity must have the centers of
radiation, i.e., the singularities in some domain. Otherwise the wave field function must be

everywhere identically equal to zero [1]. In this paper attention is paid to localization of these
singularitics under assumption that every wave field is determined by its own singularities in a
unique fashion. Investigations have shown that these singularities are distributed as bright spots
and the distance between them depends on frequency. Based on these concepts and on the
Method of Auxiliary Sources (MAS) [2] a simple numerical method for the field reconstruction
after its given singularities is suggested. The corresponding mathematical justification can be
found in [3]. For localization of the wave field singularities, the functions characterizing the
converging and diverging waves are used.

The localization of singularities is used for optimization of the inverse problems solution. It
is known that the inverse problems do not have a unique solution. For example, for a specific
pattern the different current distributions on the different surfaces can be introduced and there
fields differ from each other by the reactive part in the near zone. The main problem is to
obtain such currents distribution that occupies a minimum volume and produces the minimum
of reactive field in near zone so that the whole feeding energy is transmitted into propagating
wave. Such antenna is called the “well matched antenna”.

It is assumed that any pattern of the field radiated to infinity should have its own unique
singularities in a limited domain. On the other hand it is known that a propagating wave is
analytical everywhere except the domain of its excitation. This is the domain of singularities of
the radiated field, which forms the propagating wave and its pattern. So the problem is to find
out the location of these field singularities.

II. General Algorithm of Near Field Reconstruction

The problem to be solved is to design a “well-matched antenna” that will produce a given
far field pattern. This is equivalent to the determination of the singularities of the specific
pattern. Thus the near field has to be determined as it has been discussed previously.

For this purpose an auxiliary circular antenna is introduced. The far field of this antenna is
calculated and matched with the given far field pattern by distributing the auxiliary sources on
the auxiliary surface inside the auxiliary antenna. It is obvious that the near field of this
auxiliary sources can be easily calculated, therefore using the method of visualization of
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scattered field singularities described  before the
@ singularities of the given pattern (e.g. the location of the
L "7”” antenna dipoles) is determined.
We consider in detail a 2D case, of antenna with a
s * pattern F(g) to be designed. First of all it is necessary to
~ D obtain the near field corresponding to the specified pattern
F(g). This could be done by distributing N sources of
. H{V(kr) type on some curve S enclosing an area D (fig.
1). In this case, S is chosen to be the circle of diameter d.
. Here it should be noted that diameter d must not be less
. than some definite value to provide the necessary width of
the main lobe. This condition is: d > AM®, where A is the
Figure 1: The geometry of the near  wavelength and © is the width of the main lobe. The field

field reconstructing algorithm. radiated by these sources will be:
N
E(r)= 2.0,Hy” (K =1a) )
n=

while the far field pattern will be determined by the asymptotic approach of the expression (1.
So, (1) becomes:

. 3
=ik (x, COS(@)+ ¥ SIPNFi

5 N
lim E(r) = ,|—— 2 ape )

r=>0 n=0
By using the collocation method to bind the radiated field of these sources in M directions with
the given one in far zone, the system of linear equations is obtained

N A .
Zane—zk(xncosq)m—y"smq’m) = F(@m) M= 1.,2,....,m‘ (3)

n=0

On solving the system of linear equations (3), the coefficients can be determined. They are the
complex amplitudes of the sources that generate the desired diagram. The accuracy of this
solution depends on the number N of collocation points. So after obtaining the pattern with a
desirable accuracy, the field of such sources is known everywhere outside the area D including
the near field (1). It must be noted that the reactive field of these sources decreases as the
diameter d increases, since no standing wave is described by these sources. Hence, area D
should be taken large enough to provide low reactive part of the field in near zone.

As the near field is known outside the area D, the second step is to continue it analytically
inside D using the following scheme. Taking into account all mentioned above, the
continuation of the near field will be also unique up to the singularities regarding the chosen
area D. Let us choose some curve L outside D, where the near field is known. Assume that N

sources H(()z) (kr) are placed at some distance from the curve L. These sources act as

absorbers of the wave, traveling from the area D to infinity. The N chosen sources will
reconstruct the field at the curve L if

N
glang” (k(rs = 1)) = Elrm) )

where b, is the complex amplitude of the n-th source, and E(r,,) is the near field value at the
corresponding point on the curve L. If the number N is large enough, the reconstructed field
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approximates the real one. Since there is a matching of fields on the curve L, there must be
also matching inside the area D up to the area of singularities of the given near field. So the
numerical analytical continuation of the near field will be found inside area D.

M1 Example of the Inverse Problem Solution
Consider one more example of optimizing the inverse problem solution. The aim 1s to

synthesize a given radiation pattern, originally generated by two electromagnetic wave sources
placed at a distance of several wavelengths from each other. The corresponding pattern is
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Figure 2.: Suggested pattern Figure 3.: Field corresponding to the given pattern
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Figure 4.: Reconstructed field. Figure 5.: Reconstructed coordinates of the sources
to be found.

shown in Fig.2. and the near field in Fig. 3. With the sources placed at the circle, it is possible
to reconstruct this radiation pattern, as it has been described above (see formulas (1) and (4)).
The result is shown in Fig. 4. Then using a set of absorbing sources, the near field is continued
inside the circle. The field obtained in such a way gives two sharp maxima near the area where
the original sources were placed (Fig 5.). Therefore the information about the field singularities
is generated: the latter are actually at the points of original sources, and one can note that this
information was obtained only after consideration of the radiation pattern without a previous
knowledge of original sources. It is now obvious that by placing in two sources at the
corresponding point, the desired radiation pattern can be obtained in the most optimal way.
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INVESTIGATION OF THE SOLUTIONS OF THE NONLINEAR
ANTENNA SYNTHESIS PROBLEMS

M. 1. Andriychuk
Pidstryhach Institute of Applied Problems of Mechanics and Mathematics
Ukrainian National Academy of Sciences
3"b" Naukova str., Lviv, 290601, Ukraine
E-mail: voi@ippmm.lviv.ua

Abstract - The antenna synthesis problems according to the prescribed amplitude
radiation pattern are considered. The variational statement of the problems is used. The
correspond nonlinear Eulerian equations can have nonunique solution. The finding these
solutions and investigation of their properties carried out using numerical approach.

The considered problems concern to inverse problems with the partially given
information on the radiation paitern (RF). The incompieie compiex RP bui oily iis amplitude is
accepted as initial RP. Thus the choice freedom of the RP phase is used as additional
possibility for better approximation to the prescribed amplitude RP. The variational statement
of the problems is used [1], namely it is required the incomplete coincidence of the received -
amplitude RP with the given one, i. e. only the best approximation to it.

We consider the functional

= (F, 1/, Nl (1

as a criterion of the optimization. Here F' is the prescribed amplitude RP (real positive
function), |f| is the module of the synthesized RP. The functions F and f concern to
Hilbertian space H, of the radiation patterns, (), is the inner product in this space, ||u|lis the
current norm in the Hilbertian space H, of the currents.

The radiation pattern f and forming its current % in the antenna are related by the
formula

f=Au. (2)

A4 is the known linear limited operator. In the case of the plane curvilinear antenna the
operator A has the form [2]

1 = du = [u(S)exp(ikr(¢") c0s(0 ~ @ DS, ©

N

The inner product (), in the Hilbertian space H, is determined as

.1y = [P0 @)f (@)do. )
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p(p) = 0 is the weight function, ¢ is the angular coordinate in far zone. The inner product
(u,u), in the Hilbertian space H,, is determined as

(), = [u(S)u'(S)dS,, , )

N

where dS,. = Jrt +(dr/ do)*de’, ¢ is the angular coordinate in the antenna.

The complete complex function # is necessary to determine in the amplitude-phase
synthesis problems, but only its phase Y in the phase synthesis problems is determined, here

u =|ulexp(iy) . We receive the corresponding nonlinear Eulerian equations
_ e :
u=-—A (Fexp(iarg Au)), 6)
K
y = arg( 4" (F exp(i arg Au))) )

for the amplitude-phase and phase problems respectively using the standard technique of the

variational calculation. In the equation (7) the nonessential positive multiplier L] is omited.
K
The operator 4" is adjoint to 4, it is determined from the condition
(Auf); = W,A°f),. ®)

The equation (6), (7) are nonlinear integral Hammerstein equations [3], if operators 4 and A"
are determined by formulas (3) and (8) respectively.

The changing of the characteristical electrophysical parameter of the equations (6), (7),
contained in their kernel, leads to the appearance of the several solutions. The analytical
investigation of a number of these solutions and their properties is difficult problem
(particularly for the equation (7)), therefore the numerical approach is used. For the numerical
solving these equations the successive approximation method is applied. The calculation

carried out by the formulas

u,, =Ll g (P exp(iarg Au,)), ©)
K”
y,,, = arg(4 (F exp(iarg Au,))). (10)

The successive approximation method is applied to the various types of the initial
approximations for reception of the various solutions [4].

The numerical calculations were carried out for plane circular antenna ( r(e)=a, ais
the antenna radius). The results are presented for the phase synthesis problem. The prescribed

amplitude RP were F,(¢)=sin’(¢/2) (a) and F2((p)=sin8((p/2) (b). As the initial
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approximations for the desired phase distributions next functions were prescribed: 1- w=0;
2-y=0,(0<0 <M),y=7 (R<Q <21); 3- Y= sin(@'); 4 - v =cos(¢ ) ; the amplitude
distribution of current |u|=1. In Fig. la, b are presented normalized values of k functional

which correspond to solutions of (7). These solutions are obtained using the iterative process
(10) (the curves 1-4 correspond to various types of the initial approximation). At the small
values of ka for the prescribed amplitude RP F and F, exist two and three solutions
respectively. The new solutions appear if the value of ka increases. For more exact
determination of the branch point of solutions is necessary to apply analytical approach.

The synthesized amplitude RP |f| corresponding to the curves 1 and 2 in Fig. 1a, b

respectively and the prescribed amplitude RP F are presented in Fig. 2a, b for ka=5.

3
4
0.8
0.6 + \-_.._1_)..__-———/"'
04 b o —ka
3 35 4 45 5 55 6 65 7

Fig. 1b.

Fig. 2a. Fig. 2b.
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SYNTHESIS OF IMPEDANCE REFLECTOR
WITH GIVEN SCATTERING CHARACTERISTICS

Yuri V. Yukhanov, Sergey N. Sorokin

Taganrog State University of Radio Engineering, Taganrog, Russia, airpu@tsure.ru

Abstract - The problem of synthesis of an impedance reflector having, at the working
wavelength, the same radar cross-section as some perfectly conducting reflector is considered.
Analytical expressions for determining the distribution of components of tensor of surface
impedance for the synthesized reflector are obtained. The influence of the shape of reflector on

its frequency-selective properties is investigated.

We shall consider a problem of synthesis of a reflector with the given radar cross-
section (RCS) and frequency properties in the following statement.

Suppose that, in the free space, a three-dimensionai refiector is iocated, on wilose
surface the Leontovich impedance boundary conditions are imposed. The surface of impedance
reflector is assumed to be a body of rotation, the contour of whose longitudinal section is
described by the equation p(6). The tensor of surface impedance, in order to eliminate thermal
losses, is assumed as corresponding to a closely spaced mesh of purely reactive strips (Fig.1).
In some volumeV,, located in the far zone of reflector, there distributed are electrical and
magnetic currents. They generate, in space V, a locally plane electromagnetic wave that
propagates along the direction (6,.9,) and excites the impedance reflector. It is required thus

to determine a distribution of components of tensor of surface impedance, such that in the
backward scattering direction the RCS of the synthesized reflector is same as RCS of some
reference perfectly conducting reflector with a surface So.
As a reference reflector, another
body of rotation is used, the contour

S Q V  ofwhose longitudinal section is given
0 A 0 by the equation p,(6,). The reference
reflector is located coaxially with the
X
5 impedance reflector.
p(®) The  formulated  above

problem is solved by the method
developed in [1]. For the solution it

is necessary that the radius of

Z curvature of reflector is much greater
than the wavelength. It enables us to

] use the Physical Optics
approximations. A natural way of

3 solving the problem  implies
introducing a local system of

coordinates {7, 7/,5';,}. Here 7 is the normal vector to the surface of reflector, v is the

4
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tangential vector to the contour of the surface 10ngitudina1 section, i, is the unit vector of the

spherical system of coordinates centered at the axis of symmetry of reflector at some distance
from its top. In this case the tensor of surface impedance takes a diagonal form. For
determining the distribution of components of this tensor of impedance we shall act as follows.
First we derive the expressions characterizing the fields scattered by impedance and
reference reflectors. By equating them in the direction of backward propagation, we obtain an
integral relation for the unknown components of impedance tensor. Then we shall find these
components based on the condition of identity of phase factors in the integrand functions. As a
result, we shall come to a set of two equations, which appear not solvable analytically for an
arbitrary direction of propagation of the incident field or if the reflector surface is not a body of
rotation [1]. The analysis of the obtained equations shows that for an arbitrary direction of
propagation of the incident wave, the distribution of components of the tensor of surface

impedance Zy-Z;; depends on the both of angular coordinates § and @ in a complicated

manner.
In the most important for practice case, when the incident wave propagates along the

axis of symmetry of reflector, the derived set of equations splits into two independent

Py
Cuatiund.

X, =18(Ay/2)/cosy,; Xy = cosyptg(Ao /2),
where €OSY , = ngysing — n,cos8, Ay = 2k(p cos@ - p,cosb,)

Xy =231 W, Xy =2y /W, W=120m Ohm is the free space impedance,
n,,ng are the projections of a unit normal vector to the surface of reflector on the vectors of

the spherical system of coordinates; k=27/A. The angles 6,6, are connected by the
equation psin 8 = p,sin 6,.

The analysis of the obtained equations shows that with an axial direction of
propagation of the incident wave, the distribution of components of the tensor Z depends
solely on one angular coordinate 9, as the impedance and the reference reflectors are the
coaxial bodies of rotation. The results of computations enable us to make a conclusion that if
using an impedance reflector shaped as a body of rotation, the distribution of components of
tensor of the surface impedance quickly changes along the generator of reflector. The period of
variation of components of impedance tensor and its uniformity along the generator of
reflector is determined the shape of the latter. So, in the case of circular cone used as reflector,
the period of variation of the impedance-tensor component remains constant along the
reflector generator.

The obtained formulas were used in the computations of the monostatic scattering
characteristics of the reference and impedance reflectors. So, for a flat impedance reflector
simulating a conical reflector with the tip angle of 90 degrees, the sector of angles of
competitive values of the RCS patterns is £2°. Further we investigated an opportunity to
simulate a flat perfectly conducting disk by an impedance conical reflector. The analysis of the
obtained results shows that within the approach of Physical Optics, in the axial direction RCS
of impedance reflector is equal to RCS of a perfectly conducting disk. The sector of angles of

close values of the scattering characteristics is + 5" For the estimation of sector of angles of
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competitive levels of the scattering characteristics, in the case of axial excitation of reflectors,
the following analytical formula was derived:

2

A® < 2 arcsin \/n/16 k sup |p, cos ©,—pcos 6

where sup means the upper limiting value of a function.

The analysis of the latter expression shows that the sector of angles of concurrence of
the patterns is determined by the difference between the shapes of reflectors. It is visible that a
reduction of shape difference between the impedance and the reference reflectors leads to a
growth of the size A®. The results given by this formula are in good agreement with
estimations obtained by means of computing the scattering characteristics.

The properties of the synthesized reflectors were further investigated in a frequency
range. It was supposed that the obtained distributions of components of surface impedance
tensor were realized by a closely spaced system of grooves of variable depth. It has been
shown that the frequency-selective properties of an impedance reflector are determined by its
shape. For reducing the RCS of a reflector outside of a working band of frequencies, it should
be fabricated as an elongated body, for example as a circular cone with a small tip angle.
Reflector frequency characteristics in this case have a resonant character. Iis widiin 18
determined by the tip angle value of a conic reflector.. A variation in the wavelength of the
incident field results in the deformation of scattering characteristics of impedance reflector.
The character of deformation is determined by the shape of impedance reflector and the change

of frequency.

Interesting results were obtained for an impedance disk simulating a conical reflector
with a small tip angle. It is known that RCS of a conical reflector in the axial direction
decreases with a reduction of the reflector tip angle. The analysis has shown that RCS of an
impedance reflector at the working wavelength of the incident field is the same as that of a
reference perfectly conducting reflector. However, changing the wavelength of the incident
wave results in a growth of RCS of impedance reflector. The latter can be explained by the fact
that the obtained distribution of components of surface impedance tensor at the working
wavelength results in a mutual cancellation of the fields scattered by various elements of the
surface of a reflector. With a change of the frequency of the incident field, the phase
differences between the fields scattered by various sections of the surface of reflector
experience disturbances that results in the growth of RCS. In the opposite case, when
impedance cone is used for modeling a perfectly conducting disk, the obtained distribution of
components of surface impedance tensor should provide, in the axial direction, an addition of
the fields scattered by the elements of a reflector surface. Therefore a change of the
wavelength of the incident field results in reduction of reflector RCS.
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NEW RIGOROUS SOLUTION OF SOME ANTENNA SYNTHESIS PROBLEMS
ACCORDING TO PRESCRIBED AMPLITUDE RADIATION PATTERN
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Abstract. The problem of the least-square minimization of the difference between the prescribed
and obtained amplitude patterns is solved for the linear antenna in the closed form with a limited
number of complex parameters which are calculated from the set of transcendental equations.
The number of parameters depends on the electrical length of antenna. Numerical results
concerning two concrete problems are presented. The method is extended to the equidistant

linear antenna arrays.
The results may be applied to other problems described by the continuous or discrete

Fourier transformation.

One of the approaches to the antenna synthesis problem according to the amplitude
radiation pattern consists in the least-square minimization of difference between the
prescribed and obtained ampliiude patierns. This provlein was formeily reduced 1o a
non-linear integral equation [1]. The equation has nonunique solutions branching out
when the electrical antenna size increases. This equation was solved and analyzed

numerically.

For the case of linear antenna, the above problem may be analytically reduced to
a finite set of transcendental equations in some unknown complex parameters [2]. In
this case the functional to be minimized has the form

o= T(F(é)—lf(cf)\)zdé 1)

where F (&) isthe given amplitude pattern (a finite positive function with the support
[-1,1]), f(& is the obtained radiation pattern

4

(9= [ulx)eax, @)

—C

c= kasin & is a dimensionless parameter of the problem, u(x) is the current distribution
at the antenna, £=sin /sina is a generalized angle coordinate, 2¢ is the angle outside
which F(& =0. The problem is reduced to the nonlinear integral equation

f9= -l‘ﬂjjlﬂl—;(_—%—j@F(é’)eia“gf“')df’. )

The current distribution at the antenna is calculated according to the solution of (3) by
a simple formula [1].

It is proved that
¢/ = g(oP,(9)/|P(8) ©)
where g(&) = [[sign(&- &), ¢; are possible zeros of 1(9),
B (&=110-n2) ®)

n=1

N is some integer dependent on ¢, 7, -7, #0, ,m=1, 2,...,N.
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The complex parameters 7, satisfy the following set of transcendental equations:

[ F(9go& since|p,(&]ag=o0, 62)

1
[ F(9g(9& coscg/|p, () dg=o0, (65)
n=0,1,...,N-1. Relation between the number of multipliers in (4) and parameter c is

described by a simple inequality.
The branching points of the solutions are such values of ¢ at which the equations

(5) are satisfied for different values of N simultaneously.

In Figs. 1-3 the results concerning two cases, F(&)=1/ V2, g(®=1 and
F(&=sin3|8, g,(&) =signé, are presented. Typical dependances Re7, (solid lines)
and Im 7, (dotted lines) on c is given in Fig.1 for the first case. The curves are indicated
by numbers equal to the values of N in (5). Fig. 2 shows the optimal values of o (solid
lines) and values o, of the functional at Im (&) =0 (dashed lines). Dotted lines denote

borders between intervals with different values of N in the optimal solution. Numbers
at the curves are the same as the subscript of F. Dependance of the "synthesis

00 ittt NN NS i e o emrlensea s mndialisag A asriatimn AN — o~ () ia
CLICCLIVILY ¢ C)=\(; — )/ L VIl C, WIIRIT {; datisties v Syuanivir O(Ly = Uy, 1o
presented in Fig.3. This value shows how much the antenna can be shorted due to
choosing the phase pattern.
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Fig. 1. Parameters in solutions of nonlinear equation (3)

The results are generalized to the equidistant linear antenna array with 4 as the
distance between its elements. In this case the functional to be minimized has the form
(1) with integration over (-z/c,z/c) where c¢=kdsina. In this case the integral
equation for the optimal pattern is [1]

1

N\ c Sln(Mc(f—é")/?.)F iargf(;)
=3 ey T ()

where M is the number of elements in the array. Formula (4) is substituted for

&Y = (9P, (2)/|Py(7) @®)

with 7= tan(c&/2). Accordingly, the equati