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MMET'98 Proceedings 

Dear colleagues: 

MMET*98 is, no doubt, a development of all the previous meetings of this series. 
By now it has established itself as a truly unique professional forum on the whole space 
between the Baltic Sea and Pacific, and between the North Pole and the Caucasus. How- 
ever, this time it is also a very different meeting. For the first time it has reached, in the 
number of papers in the program (272), and in the scale of international organizations 
involvement and support, the level of major world conferences in electromagnetics. In the 
technical quality of the program, we believe that it is even higher, due to a reasonable 
mixture of applied mathematics and microwave engineering. As all of you perfectly know, 
the more mathematics we manage to put in the electromagnetic problem solution, the 
better algorithms we obtain. 

There is a tremendous variety of problems, both canonical and new ones, that meet 
a researcher in the hilly terrain of computational electromagnetics; there is a reciprocally 
great variety of solution methods. Rope-way of MoM and industrial rock-climbing with 
FDTD electric hammers is a necessary technology here; but a winter solo climb at the 
Everest of analytical regularization is still a fascinating achievement. We are grateful to all 
the authors who submitted their papers to MMET*98 and have come to participate and 
share their devotion to the exciting world of solutions of Maxwell's equations. It was a 
pleasure to work with the members of Organizing Committee and Technical Committee; 
all of us should be especially thankful to the small team of the editors of these Proceedings. 

We wish you to enjoy the conference and hope to be able to gather you again at the 
future MMET's in the next millenium. 

Eldar I. Veliev and Alexander I. Nosich 

The MMET*98 conference program looks truly wonderful. I really, really wish I could be there. 
It is an honor that my name has been associated with it. I am sure that it will be a great experience. Best 
wishes for the meeting. 

W. Ross Stone, IEEE Antennas and Propagation Society 

It is an impressive program that MMET*98 organizers have managed to put together. I wish 
everybody all possible success with the conference. I will have to look into the future for a new possibil- 
ity to go to Ukraine. 

Staffan Strom, URSI Commission "B " 

IAGA is honored to co-sponsor the international conference MMET*98. Besides fostering ad- 
vances in electromagnetic theory, IAGA notes that benefits of this meeting will include in-depth scien- 
tific discussions, opportunities for student and young scientist participation, and leadership develop- 
ment. We wish every success for the meeting. 

Jo Ann Joselyn, International Association of Geomagnetism and Aeronomy 

Kharkov, Ukraine, VHth International Conference on Mathematical Methods in Electromagnetic Theory 
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Ill-posed Inverse Problems Based on Volterra-Type Equations1 
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Nizhny Novgorod, Russia, 603600, 

Phone: 8312 367294, Fax: 8312 369902,E-mail: gai@nirfi.nnov.su 

Abstract - As it is well known, inverse problems based on Volterra equations are, 
as a rule, well-posed. But in the case when a function should be retrieved in the 
range which is wider than the range where the right side of the equation is given, 
the solution appears an ill-posed inverse problem. A number of physical examples 
is given, and it is shown that such inverse problems could be successfully solved on 
the basis of Tikhonov's method of general discrepancy. 

Introduction 
Let us consider the Volterra-type equations of the 1-st and 2-nd kind: 

t 

JK(t,sMs)ds = f(0, M 
a 

t 

<$>(t) + XJK(t,s)q>(s)ds = f(t). (2) 
a 

These equations are practically well-posed in [a,b], when the right side of (1) or (2) is given in 
the same range a < t < b. More exactly, the equation (2) has a continuous and unique solution, 
if the kernel and the right side of (1) are continuous in [a,b\ The equation (1) has the 

continuous solution, if there are continuous derivatives — and —, f(a) = 0, and K(t,t) * 0 

*    r    1\~\ 
m There is the possibility of the new formulation of the problem for the Volterra-type 
equations. It appears, when the right side of equations (1) and (2) is given in the [ac], where 
c < b, i.e., when the retrieval range is wider than the range, in which the right side/0 is given. 
In that case (1) and (2) can be rewritten as 

c ' 

]K(t,sMs)ds = /(/) - \K(t,sMs)ds = F(t), (3) 

XJK(t,s)<?(s)ds = f{t) - <p(0 - \K(t,s)<v{s)ds = F(t). (4) 

'This work was supported by RFBR under grant 96-02-16514 and by grant of Russian Education Ministry. 
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One can see that if we suppose that not only//) is known in [a,c] but also the function <p(s), 
we have the effective right sides F(t) and F(i), and equations (3) and (4) are Fredholm integral 
equations of the 1-st kind relative the solution in [c,b]. Such equations are typical ill-posed 
problems. It is clear, that the solution of (1) and (2) in the whole range [a,b] by//) given in 
[a,c] is still more complicated problem. In this case these integral equations are the ill-posed, 
type of which has yet no special name. 

The most effective approach to solution of ill-posed integral equations is the Tikhonov's 
theory based on generalized discrepancy principle and the solution method of the same name 
[l].The main preference of Tikhonov's method consist in the uniform convergence of the 
retrieval error to zero at mean square convergence of right side errors. As it is in all ill-posed 
problems, its accuracy could be determined only on the basis of numerical simulation. 

Physical problems based on ill-posed Volterra-type equations 
Physical problems related with integral equations are, as a rule, inverse problems. Some of 

them consist in the solution of Volterra equations, and could be considered in the described 
above formulation as ill-posed problems. Some examples are presented here. 

1. Refraction inverse problem in a spherical symmetry medium [2,3]. 
a. Limb-viewing geometry [2]. 
For limb-viewing measurements the refraction inverse problem can be expressed as the 

Volterra-type integral equation of the 1-st kind (the dependence of refraction e on radial 
distance of ray perigee): 

Pmsx  JfKJ   *7 r> 

I &   4P -PI 

where/? = nr, n0 = n(r0),pQ = nQr0, r, r0 are radial distances, N= 106(«-1) is refraction index, 
n is refractive index. 

b. Immersion geometry [3], 
The dependence of refraction on radial position (distance) of the source or receiver in the 

medium can be expressed as Volterra integral equation of the 2-nd kind: 

N(Po)-J*(P)t ,   PP°COSQiPo) 2Vndp=lOUgQE(Po),    p^Po^Pnm,    (2) 
i [P -[PoCOsQ(p0)f\ 

where 0 is the elevation angle of the ray at the source position. 
If one considers the equations (1) or (2) in the case, when their right side is given in the 

region px <p0 <p2, Pi < Pmax, the solution for the region/?! <p <pmax becomes an ill- 
posed problem. Similar equations describe the radiometry inverse problems of limb-viewing 
and immersion remote sensing of planet atmospheres [4]. 

2. Diagnostics of the superconductive films in a strong electromagnetic field [5-6]. 
The measured dependence of averaged over the conductor surface resistance on magnetic 

field amplitude in the case of one-dimensional distribution of magnetic field H in a rectangular 
cavity resonator is related with the true resistance dependence RS{H) as 
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H
* < U I   E7   \2 <R-{H')>--^A±mmRmdH'   0<-H"<-H- (3) 

The inverse problem of i?s(77) retrieval in the range 0 < 77m < 77max becomes ill-posed in real 
conditions, when the measurements region is limited at low magnetic field values, and there are 
measurements only in the range H2<Hm< H^. 

3. Thermal history inverse problems. 
a. Thermal conductivity equation for half-space. 
Let us consider the homogeneous half-space z < 0 with the constant parameters: thermal 

diffusivity coefficient a2. If we have boundary condition for temperature 7(0,0 = ^b(0» then 
the dynamics of the temperature distribution inside the half-space can be determined from 
thermal conductivity equation as a function of depth and time as follows: 

T(z,t) = J T0(t)  ,     ~*        exp(-      Z       )dx. (4) 
L       ^m\t-xf 4a (t-x) 

The inverse problem consist of retrieval of the boundary condition 7o(0 by measurements 
T{z,t). There are two possibilities: the first of them (Tikhonov's [1]) is based on measurements 
of depth profile T(z) at time h, and the second (considered here as ill-posed Volterra-type 
equation) is based on measurements T(t) at some arbitrary depth z0 in the range a < t < t>. The 
retrieval in this, second, case should be found in the region [c,b], where c<a. For the solution 
the necessary condition is T0(t) = 0 at t < c (otherwise, it will be unaccounted source of error). 

b. Thermal conductivity equation for space with the spherically symmetric source. 
If we have the homogeneous space r > 0 with the boundary condition T(R,t) = 70(0 on the 

sphere r = R, the temperature evolution in the region r > R is determined by 

j. R(r-R) ,    (r-R)2 w 

The ill-posed Volterra-type equation for (5) is the same as for (4) - to retrieve the T0(R,t) in 
the range a<t<b by 7(r0,0 at some arbitrary radial distance r0 in the region [c,b], c<a. 

c. Retrieval of temperature evolution of media by thermal emission dynamics. 
More sophisticated inverse problems are based on simultaneous solution of thermal 

conductivity and thermal emission transfer equations [7]. The brightness temperature of 
upward thermal radio emission of half-space z < 0 at wavelength X is determined from 
emission transfer equation, assuming that the reflection on half-space interface is absent: 

0 

Tb(X)= JT(z)y(X)exp(yz)dz  , (6) 
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where y(X) is the absorption coefficient. 

The substitution of (4) into (6) gives [7]: 

Tb(t)= j T0(t)[Tj==-(ja)2erfc(ya^7^)e{ya) (' x)]dx (7) 

If the function Th(f) is known in the whole region {-<x>,b], the equation (7) has the exact 
solution [7]: 

Otherwise, if 7b(0 is known in some limited region [a,b], the problem of retrieval of T0(t) in 
the region [c,b], where c < a, is also the Volterra-type ill-posed problem. 

For the sphere case (see item b), there are different possibilities to choose the beam 
geometry, which determines the form of emission transfer integral. The most simple equation 
corresponds to the case of radial directed (from sphere) measurements: 

(r-R)2 

y     R(r-R)r  4a2(t-x) ,*.!_* ^Mih"eW    ^ww (9) 

More common case, when a ray perigee radial distance r0 *■ 0 (r0 > R), the radiobrightness can 
be expressed as 

; V47W2 4r ~ro 
,    (10) 

ro 

JVwf^ JV«-o3 
'o 

where Ro is the radial distance of the receiver. The ill-posed Volterra-type equations for (9) 
and (10) are the same as for (7). For the equation (10) there is also the possibility to formulate 
the limb-viewing inverse problems, similar with refraction inverse problems (see equations (1) 
and (2)), using the dependence Th(ro). 

Let us consider the solution of equation (7) in detail as a typical example of ill-posed 
Volterra-type equations. If to introduce the time parameter r=l/(ytf)2, which is a typical time 
of the heating of the medium at the skin-depth zs=l/y, it is possible to rewrite (7) in simpler, 
dimensionless form, using dimensionless parameters r=tl T, p=x/T: 
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-»      V^-P) 
(ii) 

To solve such a problem it is necessary to use additional {a priori) information about the 
exact solution. This information determines a regularization method. There are various 
approaches, but in the present paper Tikhonov's method of generalized discrepancy is applied, 
which uses the common information about the exact solution as a function []. It is supposed in 
this method that the exact solution belongs to the set of square-integrable functions with 
square-integrable derivatives. The results of numerical simulation give us the retrieval accuracy 
at various levels of the radiobrightness error. It appears possible to retrieve the function 7o(p) 
in the range [clY,blY] by measurements T\,{r) in the range [afT,b/T], c < a, up to values a - c » 
2 -5-5 T at measurement accuracy about 1%. The main preference of Tikhonov's method consist 
of the uniform convergence of the retrieval error to zero at mean square convergence of 
measurement errors. As in all ill-posed problems, this convergence is slower than it is in well- 
posed problems. 

The numerical algorithm of the Tickonov's method (the same as in [6]) was applied to the 
retrieval of diurnal temperature dynamics of soil by its thermal radio emission evolution 
measurements [8]. The measurements have been carried out using radiometers at wavelengths 
0.8; 3; 9, and 13 cm under metallic screen (to eliminate the influence of reflection on interface 
air-soil). In the Fig. 1 is shown an example of retrieval of the surface temperature in time 
interval from 15h (r = 0) to 12h20m (r = 8.25) next day by measurements of radiobrightness at 
wavelength 3 cm in time interval from 3h10m (after midnight) to 12h20m . The parameters 
values were: a2 = 0.001 cm2/s, y = 0.33 cm"1, T = 2.55h. So, a = 15h, b 12h20m, c=3n10n 

2- 

0 

5Tb=0.3K 

Fig.l. 

It is possible to see that the retrieval in the time interval t > a, where there are 
measurements 71,(0»   ls verY cl°se t0 contact measured dynamics T0(t).   At c < t < a the 
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accuracy of the surface temperature history retrieval reduces, but it appeared possible to 
retrieve the process of night surface cooling. It is clear that the problem is more difficult for 
retrieval of the thermal history than for retrieval of simultaneous surface temperature dynamics. 

The retrieval of the surface temperature dynamics permit then to retrieve the temperature 
profile dynamics in the medium from the equation (4), and to calculate the thermal flux 
evolution [7]. 

Conclusions 
The results of the solution of various physical problems based on Volterra-type integral 

equation in considered here ill-posed formulation show that the domain of definition of the 
solution consist of two very different sub-ranges. The first sub-region (which could be called 
«inner» ) coincides with the domain of definition of equations right side. The second (outer) 
sub-range is located outside the domain of definition of equations right side. The approximate 
solution in the outer region (as, for example, for the considered here in detail thermal history 
inverse problem) diverges to the exact one much more slowly than in the inner sub-region. In 
the inner sub-region the requirements to data accuracy could be very different in different 
physical problems, but always they are less than for outer sub-region. Moreover, in the outer 
sub-region the retrieval accuracy reduces with the distance to the boundary of inner sub- 
region. Considered here new formulation solves the problem of influence of unknown non-zero 
initial conditions on the solution of Volterra equations. No doubt, there are many possible 
applications of this approach, which remain unmentioned in this communication. 
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REMOTE SENSING BY VLF USING "ABSOLUTE OMNIPAL": 
1. INVESTIGATION OF SHORT PATH PROPAGATION FOR POSSIBLE EARTHQUAKE 

PRECURSOR DETECTION 

R. L. Dowden, J. B. Brundell, University of Otago, Dunedin, New Zealand 
M. Hayakawa, University of Electro-Communications, Chofu, Tokyo, Japan 

Abstract. The latest version of the OmniPAL receiver uses GPS to allow drift free logging 
of the phase and amplitude of phase stable transmissions. Any drift in phase or amplitude 
can then be attributed to temporal variation of the lower ionosphere. In this paper, the first 
six weeks of data logged of JG2AS phase and amplitude at three sites in Japan is examined 
for perturbations. Two sources are identified: solar flares during daytime and hiss-induced 
electron precipitation during nighttime. Both of these sources have durations of the order 
of an hour and, in principle, could be detected by other means and the LF effects allowed 
for. However, if earthquake precursors have much longer periods (days), the effects of 
solar flares and electron precipitation can be ignored. 

VLF/LF Receivers 

OmniPAL. The OmniPAL VLF/LF receiver consists of a special DSP card, software which is the 
heart of the receiver, and various ancillaries which may be user supplied. "Omni" means that "all" 
modulations can be decoded. Currently these are MSK (Minimum Shift Keyed), CW (Carrier Wave 
only) and ICW (Interrupted Carrier Wave or On/Off modulation including 10 dB modulation). Others 
(e.g. FSK) are not used by any phase stable VLF (< 50 kHz) transmitters and so are not supported. 
The OmniPAL VLF receiver can log up to six transmitters at a time, logging phase and amplitude 
(PAL) with time resolutions ranging from 50 ms to 60 s. Special techniques (see Section 2. "Validation 
Procedures" in Dowden, et al, 1994) make OmniPAL almost insensitive to sferics. Measurement of 
the phase and amplitude perturbations (Trimpis) enables calculation of the phase and amplitude of the 
diffracted wave [Dowden and Adams, 1988]. If this is done at two sites simultaneously, the direction of 
arrival of the scattered wave can be found [Dowden and Adams, 1990]. Measurement of the phase and 
amplitude perturbations at all time points from onset to ultimate decay, and the transformation of these 
to scatter phase and amplitude, can be used to identify the plasma formed by a "Red Sprite" which 
exhibits scatter amplitude decay with the logarithm of time [Dowden et al, 1997; Dowden and Rodger, 
1997]. The scatter phase variation (Doppler shift) during decay may be due to high altitude (60 - 80 
km) winds [Dowden, 1996]. 

For MSK transmissions, phase and amplitude at both MSK frequencies, 50 or 100 Hz apart, are logged 
separately. Measurements of all four perturbations enable calculation of the arrival delay of the 
scattered wave relative to the direct wave from the transmitter [Adams and Dowden, 1990]. In 
principal this allows location of the source of the VLF perturbation [Dowden and Adams, 1993]. 

In its basic form, OmniPAL requires a stable frequency standard (5 MHz). For Trimpi studies this 
would need to be stable to at least 1 part in 10A8. This would keep the phase drift of a 20 kHz signal to 
within 5 degrees per minute — more drift than this would seriously degrade phase measurement of 
Trimpis. Such stability can be provided by a well-aged, temperature controlled quartz standard. To 
measure departures in phase of a few degrees over days, months, or even years, requires a frequency 
stability of a million times better than this (1 part in 10A14) which is beyond the ability of even Cesium 
standards and certainly beyond the financial reach of researchers requiring a network of receivers. 
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AbsPAL. The AbsPAL VLF receiver, an extension of the OmniPAL receiver, gets around this 
difficulty with an all-up cost of about US$5000. The AbsPAL still has all of the good features of 
OmniPAL for Trimpi studies as described above, as well as logging the phase of VLF and LF signals as 
a time independent absolute. This means that if the received phase of a perfectly stable transmission is 
(say) 121 degrees now, the received phase will still be 121 degrees in a year's time, even if the AbsPAL 
receiver is turned off many times for extended periods, intentionally or by accident. 

Clearly this requires that both the VLF/LF transmitters and the AbsPAL receivers be locked to the same 
world time standard as is now disseminated by GPS. 

AbsPAL achieves this in the following way. A "Service Unit" contains a quartz oscillator inside a small 
box having a thermal time constant of about 30 minutes. The 10 MHz output synthesises 30 kHz and 
30.1 kHz. The GPS lpps pulse, which arrives within 1 us of true time, resets (zeros) all the dividers 
and so the phase of the 30 kHz and 30.1 kHz signals every second. These frequencies need to be 
accurate to only 1 in 106. 

The AbsPAL software can synthesise several frequencies at once which are multiples of 1 Hz. On 
startup it reads the batch file to find which frequencies are required by the user (which must include 30 
kHz), then waits for the GPS lpps to set the phase of all these frequencies to zero at the GPS pulse. 
Although the latter can be up to 1 us early or late with respect to true Universal Time (UT), implying a 
phase error of up to 15 degrees at 40 kHz (JG2AS), any such error is removed as follows. A software 
phase locked loop (PLL) locks AbsPAL to the phase of the 30 kHz from the Service Unit. This PLL 
has a bandwidth of initially 1 Hz or reciprocal bandwidth (RBW) of 1 s. At every later second the 
RBW is increased by 1 s so that after 1000 s, the PLL bandwidth is only 1 mHz. Eventually, the RBW 
reaches the value set by the user in the batch file (such as 30 minutes or 1800 s) and remains at mat 
value. Averaged over this period the GPS time error, and so the 30 kHz phase error is very small, and 
in any case is absolutely drift free. All the frequencies synthesised by AbsPAL are "gear wheeled" (like 
clockwork) to this 30 kHz. 

Generation and logging of the 30.1 kHz might seem to have no purpose since both its phase and that of 
30 kHz "must" be near to zero. However, if the GPS signal is removed from the Service Unit, the phase 
locking stops. If returned many minutes or hours later, and if AbsPAL is not then restarted, the 30.1 
kHz will probably not have the same phase as 30 kHz. Should this happen, a correction calculated from 
the phase difference can be applied to the data at analysis time. 

Investigation of Short Path Propagation of the JG2AS Transmission 

The first AbsPAL VLF receivers were designed and built under contract to NASDA (the Japanese 
NAtional Space Development Agency) for research into possible VLF precursors to earthquakes. Three 
of the five provided were installed in September, 1997, at the sites shown on the map in Figure 2. The 
first six weeks of data from these three are discussed here. These data used the Japanese time and 
frequency transmitter, JG2AS (40 kHz, lkW radiated power) whose location is also shown on that map. 
The distances to each of the AbsPAL receivers from JG2AS are 800 km (Sapporo), 170 km (Shimizu) 
and 600 km (Kochi). The JG2AS signal/noise ratio was best at Sapporo and worst at Shimizu. This 
was due to the high noise environment at the Shimizu site which was only some 200 m from a large 4 x 
3-phase EHT power transmission line. 
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Figure 1 shows the diurnal variation of the phase (lower set) and amplitude (upper set) of JG2AS 
observed at Sapporo. This consists of 38 superimposed traces. The strange appearance of the 
amplitude trace is due to many random transmission gaps by JG2AS usually lasting a few minutes and 
occurring a few times per day. This is not the regular On-Off Keying (OOK) for time code 
transmission which AbsPAL is designed to cope with. The data have 

5QQ 
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degrees 

50dB 

40 dB 

10 15 

hours, UT 
20 

Figure 1. Superposition of 38 days of phase (lower set) and amplitude (upper) variation of 
the JG2AS signal received at Sapporo. The arrow at 02:47 marks the largest of many solar 
flare effects during the 38-day period. Local noon in Japan is at about 0300 UT. The 
inverted U-shaped windows mark the periods used to calculate the daytime and nighttime 
means shown in Figure 2. 

been filtered by MATLAB to remove all rows (20 s apart) for which the amplitude dropped below 35 
dB (rendering the phase meaningless), hence the cutoff in Figure 1. 

Similar traces, but noisier, were obtained at Kochi. At Shimizu the noise was generally (it varied from 
day to day) too great for meaningful measurements. 

A large solar flare occurred on the UT day 267 (24 September, 1997). This began at 02:47 UT, only 
about 10 minutes before local noon in Japan, increased to maximum within four minutes and then 
decayed to zero in about one hour. Further details on this flare can be obtained on the WWW at 
frp://uleth.ca/pub/solar/1997/. The perturbation in phase and amplitude of the JG2AS signal is clearly 
seen at Sapporo (see double headed arrow in Figure 1) where the phase perturbation was 65 degrees and 
the amplitude perturbation was 4.2 dB. At Kochi, the perturbations are less obvious but measurable as 
33 degrees in phase and 6.4 dB in amplitude (the ordinate scale in Figure 1 is in degrees for phase and 
in dB/8 for amplitude). At Shimizu, the perturbations are lost in the noise. 
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One would expect the effect of the flare on the lower ionosphere to be uniform over Japan. If we 
express all perturbations in terms of ratios (phase in radians, amplitude normalised to the unperturbed 
amplitude) the magnitude of the total perturbation is approximately given by the square root of the sum 
of the squares. Thus the magnitude of the flare-induced perturbation measured at Sapporo is within 
about 10% ofthat at Kochi and so essentially the same within the approximations and errors involved, 
though the Kochi amplitude perturbation is nearly four times the Kochi phase perturbation in these ratio 
units, while the amplitude and phase amplitudes are about equal at Sapporo. This is due to modal 
interference — the phase difference between the dominant modes may be decreased by the solar flare 
modification of the ionosphere (lowering the effective LF reflection altitude) thus increasing the received 
amplitude. In any case, whatever the reason for this, an earthquake precursor may effect the ionosphere 
the same way so both phase and amplitude perturbations should be measured to calculate the total 
perturbation. 

Careful inspection of the traces in Figure 1 during the times around local noon (23 UT to 07 UT) show 
many smaller perturbations having the characteristic shape of solar flare-induced perturbations ("flare 
trimpis"?) _ fegt up, slow down. The periods indicated in Figure 1 by the inverted U shapes are those 
used for finding the "daytime" and "nighttime" average for each day to be discussed later. Note that the 
relatively frequent solar flares will have a significant effect on the day to day variation of the daytime 
averages. If we assume that solar flares affect the dayht ionosphere uniformly, it might be possible to 
remove the flare effects from the phase and amplitude data later. 

On the other hand, the nighttime means cannot be directly affected by solar flares, though maybe 
indirectly via electron precipitation with a delay of a few days. The Sun's steady XUV is by far the 
dominant source of ionisation of the lower ionosphere, and so of the LF reflection altitude, during the 
day. Thus one would expect that the nighttime JG2AS phase and amplitude means would be a sensitive 
measure of the much weaker causes of ionospheric modification such as cosmic rays, electron 
precipitation and earthquake precursors. Of these, the slowly varying (months) cosmic ray flux would 
effect the lower ionosphere uniformly over vast areas. Electron precipitation and (presumably) 
earthquake precursors effect the lower ionosphere over small areas having lateral dimensions of 100 km 
or so. As seen in Figure 1, the day to day nighttime means are likely dominated by large perturbations 
having a duration of a few hours. Earthquake precursors are supposed to develop over a few days. Mid 
latitude hiss bursts, which are thought to result in electron precipitation, have similar durations to those 
observed in Figure 1 [Dowden, 1962]. With continuous recording of hiss at two or three sites (for 
location), it might be possible to remove electron precipitation effects from the nighttime phase and 
amplitude data later. 

Figure 2 shows the phase and amplitude means during daytime and (except for Shimizu) nighttime. No 
attempt has been made to "correct" the data for solar flare or electron precipitation effects. In feet, the 
effect of the solar flare on Day 267 is clearly seen in the Sapporo data and, less clearly, in the Kochi 
data. Trends such as the slow increase in the JG2AS phase means at Shimizu and (less clearly due to 
gap) at Kochi may be an earthquake precursor (no earthquake data was available at the time of writing). 
If this slow change over many days is typical of earthquake precursors, we can probably ignore the 
effects of solar flares and electron precipitation which vary randomly from day to day. 
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Figure 2. Phase and amplitude means during daytime and (except for Shimizu) nighttime. 
The panels show the means for Sapporo (top), Shimizu (middle) and Kochi (bottom) in 
the same order, north to south, as the site positions shown on the map. The phase means 
(in degrees on left hand scales) are shown as asterisks (*) and the amplitudes (right hand 
scales) as circles (o). Gaps in the panels for Kochi show data lost when the GPS signal 
was accidentally removed. 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



34 MMET'98 Proceedings 

References 

[1]. Adams, C.D.D. and Dowden, R.L., VLF group delay of LEP echoes from measurement of phase 
and amplitude perturbations at two frequencies, J. Geophysical Research, 95:2457 (1990). 

[2]. Dowden, R. L., Wide band bursts of VLF radio noise ('hiss') at Hobart, Australian J. Physics, 
15:114-119(1962). 

[3]. Dowden, R.L., Distortion of Trimpi shapes by high altitude winds, J. Geophysical Research, 
101:315-321 (1996). 

[4]. Dowden, R.L., and Adams, C.D.D., Phase and amplitude perturbations on subionospheric signals 
explained in terms of echoes from lightning-induced electron precipitation ionization patches, J. 
Geophysical Research, 93:11,543,1988. 

[5]. Dowden, R.L., and Adams, C.D.D., Location of LEP from measurement of phase and amplitude 
perturbations on spaced antennas and on two frequencies, J. Geophysical Research, 95:4135-4145, 
1990. 

[6]. Dowden, R.L., Adams, C.D.D., Brundell, J. and Dowden, P.E., Rapid onset, rapid decay (RORD), 
phase and amplitude perturbations of VLF subionospheric transmissions, J. Atmospheric and 
Terrestrial Physics., 56:1513-1527 (1994). 

[7], Dowden, R.L., and Adams, C.D.D., Size and location of lightning-induced ionisation enhancements 
from measurement of VLF phase and amplitude perturbations on multiple antennas, J. Atmospheric 
and Terrestrial Physics., 55:1335-1359 (1993). 

[8]. Dowden, R. L., and Rodger, C. J., Decay of a vertical plasma column: A model to explain VLF 
sprites, Geophysical Research Letters, 24:2765-2768 (1997). 

[9]. Dowden, R.L., Brundell, J. B., and Rodger, C. J., Temporal evolution of very strong Trimpis 
observed at Darwin, Australia, Geophysical Research Letters, 24:2419-2423 (1997). 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 35 

Regularization of Maxwell Equations, Corner Singularities and 
Approximation 

Marc Lenoir 

LSM ENSTA-CNRS, Palaiseau, France, e-mail: lenoir@enstay.ensta.fr 

The aim of this paper is to describe different formulations for the time-harmonic scattering 
of electromagnetic waves, with special emphasis about the consequences of the choice of 
the formulation on the finite elements discretization. Despite the fact that any solution of 
the problem is divergence-free, one must take account explicitely of this condition, for the 
associated operator is not strongly elliptic. Roughly speaking, one may handle this constraint 
either by duality or by penalty. Actually, the special form of Maxwell's equations makes 
the Lagrange multiplier a priori known, and the solution independant of the penalization 
coefficient. An other particular feature of the problem comes from the low regularity of the 
electromagnetic field in the vicinity of edges and conical points, from which follows that 
special care must be taken of the choice of the function space for the penalty method. 

1    The classical problem 

We address the problem of the scattering by a perfect conductor, possibly surrounded by 
a bounded inhomogeneous region. For the sake of definiteness, we only consider the non dis- 
sipative case. By U we denote the electric or the magnetic field, and by £ and £ the dielectric 
permittivity and the magnetic permeability (assumed real positive), the choice depending on 
the signification of U. In the vicinity of infinity, the medium is assumed homogeneous and the 
values of the coefficients is denoted by Co and £o- In this region, Maxwell's equations write as 

curl curl U-k2
sU = 0 with k2

s = w2Co£o (1) 

where u> is the pulsation of the incoming wave Uj, and U — Ui is subject to the Silver-Miiller 
radiation condition: 

lim   f     ||curl([/-[//)An-;/es(£/-[//)||2d7 = 0. (2) 
R-*°° JdBR 

In the whole exterior domain Q, and especially in the vicinity of the conductor we have 

curl (C1 curl U) - u2^U = 0, (3) 

with one of the following boundary conditions, 

U An = 0 (electric field), or curlU An = 0 (magnetic field). (4) 

1.1    Weak formulation 

At least locally, the more natural variational formulation would be 

Find U 6 TE^H, such that VV G FE/H, compactly supported, 

/C_1(curl?7|curiy) - u? [ €(U\V) = 0, with 
Ja Jn 

(5) 
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FE = {VeHloc{cml-tt)\ VAnlr = 0} and TH = Hloc (curl; Ü) (6) 

It turns out that the natural injection ?*l* -> j^fl) is not locally compact, which leads to 
the choice of smaller spaces, namely 

j:« = {^e^|diveV = 0}ami^ = {v6^|(A|n)|r = 0,div^ = o}>      (7) 

the constraints beeing actually easy consequences of the equations itself. If we denote by £ a 
boundary surrounding the inhomogeneous region and by fi' the bounded domain limited by 
1 and L, a new formulation can be written as 

Find U € j£/H, verifying (2), such that WeF®/H, 

yV(curltf|curiy) -u?J^{V\V) + ^jf (curl 17 A n\n A (F A „)) dy = 0    (8) 

Due to the constraints, recovering the strong equations from the weak ones is more difficult 
and makes use of the de Rham field decomposition, in a similar way as for Stokes equations. 

1.2    Uniqueness 

It is a consequence of the conservation of the incoming energy flux: 

FdD(U) = —3mj    C1 (™rl U\U A n)d>y (9) 

^inl^if i0n C°ndition- Assume * = 0, as U satisfies (3) in the vicinity of infinity, 
hen AU + k>U = 0 Moreover from Fdü(U) = 0, and the radiation condition it follows that 

hmÄ      J       |\U\\   dy   = 0, and from Rellich's [5] theorem, that U = 0 in the vicinity of 

theorem tf[6] ^ " ^ ^ *"*** ° M & COnSeqUence of the uni(lue continuation 

1.3    Reduction to a bounded domain 

A complete formulation must take properly into account the radiation condition which 

foTmulaim °* a C°nditi0n °n the fiCtiti°US bOUndary S Via the integral cementation 

with 

U = UI + K?[U] (10) 

Kf[U]{x) = JF (GooCx - y) curlU{y) Any~ curl, G^x - y) U(y) A ny) dyv (11) 

where the boundary F surrounds the inhomogeneous region and lies inside £, and G^ is the 
outgoing Green matrix given by 

Goo = gkj + &s 
2Hess 5fcs, with gk = 

e-ifc||x|| 

47r||x|. 
Indeed, let 

21AÜ' = ciirll7An + AnA(C/'An)|E (12) 
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then, one can prove that for 3m(Xks 
2) < 0, the following problem, set in the bounded domain 

0' limited by T and E: 

Find U' e H%H, such that W € H%H, a«,(tf', V') = *oo(V), (13) 

with 

W^ = {V€fl"(curl;«') div£F G L2(£V), V A n)r = 0, V A n|s € L
2(£)} 

ft£ = <jVe#(curl;0')   div£V G L2(Ü'), {V|n)|r = 0, V An,s e L2(E)} 
(14) 

and 

Mtf'.V)   = / r^curlf/'IcurlF') - u2 f t(U'\V) 
Jo,' Jo,1 

+C0-1A /([/'An | V An)d7- Co"1 / CW[tf'] |F') d7, (15) 

4o(n      =Co_1/(rAJ7/|^)d7, 
is 

has one and only one solution: U' = /7|n', if and only if (8) has. 

1.4    Existence 

From the equivalence between (8) and (13), uniqueness for the reduced problem follows 
from uniqueness for (8). As problem (13) is set in a bounded domain, via Fredholm alterna- 
tive, the existence of U' is an easy consequence of the regularity of the Green function outside 
zero and the local compactness result of Weber [7]; the existence of U follows. 

This result is only interesting from a theoretical point of wiew, as divergence-free finite 
elements are rather untractable; it is the reason why other formulations must be sought. 

2    The regularized problem 

An easy way for making A = curl curl U a strongly elliptic operator is to replace it by 
At = A-t~l grad div U; actually if we denote by & the variables in the Fourier space, we 

obtain det At = t~x fe?=1 if)  ■ A generalization of this idea to inhomogeneous media leads 

to replace Maxwell's equations by 

curl (C1 curl U) - ?grad (r"1 div £U) - u2£U = 0, (16) 

where the function r is an arbitrary positive real datum. In the vicinity of infinity equation 
(16) takes the simplified form 

curl curl U - t~l grad div U - k2U = 0 with t"1 = r0
_1Co l£o|2, (17) 

similar to linear elasticity, which can be written as 

\L curl curl U-(X + 2\x) grad div U - ußpU = 0. 

As a consequence, two sorts of waves, namely s -  and p - waves, are carried by (17), and 
the associated radiation condition takes the following form: 

lim   /      \\curlU An-iksn A (U An)\\ dj =0 
R-^oo J9BR ^ 

lim   /     ||div U - ikp (U \n)\\ dj = 0 with k: 
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The boundary conditions must be also completed; choosing condition div U\T = 0, which is 
natural for the electric field, and is a consequence of curl U A ram = 0 and (U |n),r = 0 for 
the magnetic field, will actually make p - waves disappear and (16) be equivalent to (3), as 
we shall see later. 

2.1    Weak formulation 

For irregular coefficients, the meaning of (16) is dubious, consequently, we only consider 
the weak form in the non-homogeneous region: 

where 

Find U e f?/H, verifying (18), such that W 6 F?/H, 

[ C-1(curlE/-|curlV) + / r^div^ div|F -u? f $(U\V) 
Jo,' Ja' Ja' 

+CÖ1 / (curl[/An|nA(FAn))d7 - r1^1 f divU (n\V) dr( = 0 
Jz JT, 

Tf = {V e FH I (H |n)|r = 0, div £V 6 LfJQ)} . 

(19) 

(20) 

2.2 Uniqueness 

The energy flux is now 

F9D(U) = —3mf   (C1 (™l U\U An)-T~
1
 div(U(n\£U)) dry. (21) 

We remark that a solution of the homogeneous problem (19) satisfies (17) in the vicinity 
of infinity, and consequently that A(p + k^ip = 0 for <p = div 17. As FdBR(U) = 0, then 
limR^0OJdBR \divU\2 dj = 0, and div 17 = 0 from Rellich's theorem. The previous proof 
shows now that U = 0 in the vicinity of infinity, and in the whole domain O by unique 
continuation. 

2.3 Reduction to a bounded domain 

The integral representation formula reads now as 

U = UI + Kt
F[U] (22) 

with 

KM*)    = f Gt(x-V) (curl U(y) Any + t~xny div U(y)) dly 
J F 

- / curly Gt(x - y) U(y) A ny dly - r1 / (divy Gt(x - y)f (U(y) \n) rf7 
JF JF 

(23) 

where 

Gt = 9ksI + A;;2Hess (gks - gkp) , (24) 
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whose singularity at the origin is only r_1, whereas it was r~3 for the classical problem. Let 

NvU = dxvU + v(U\n)p, (25) 

similarly we can prove that for 3m(\k~2) and 3m(uk~2) < 0, the reduced problem 

Find U' e Hr,H, such that W € Uf'H, aT(U', V) = lT{V) (26) 

with 

nE = {VeH(cm\;ü'\div^VeL2{ü'), VAnr = 0, VAn|EeL2(E), (V|n)E € L2(£)} 

Wf = {F€if(curl;^|diveF€L2(n,)) (^|n)r = 0, F An|S € L2(£), (V|n)E € L2(E)} 
(27) 

and 

aT{U',V)   = f C1 (curlC/' \cw\V) + r-1div#7/ divfV77 - w2 / £ (17' |F') 

+Co_1 / {\{U' An\V An) +t~lv (V \n) (V \n)) dj 

-Co1 f {{TX&FIU'] \V')+t-1 {NVKF\U'} \V')) d7 
JT, 

W)        = Co-1 / {{TxUi |V") + rl {NvUj \V')) d1 

is well-posed and equivalent to (19). 

2.4 An alternative choice of spaces 

When the coefficients C, £, and r are regular enough, Costabel [3] has shown that 

b(U',V) = [ C"1 (curlU' |curlV) +r-1divftf/ div^F7 

JO! 

is coercive on {V 6 Hl{ü') \ V A ri|ruS = 0} and on {v e fT1^') (V |n)[ruS = 0 } , from 

which we deduce that (28) is well-posed on £E/H, with 

£E = {VeH1(ü')\VAnr = 0} (    . 
£H = {VeH1(üf)\{V\n)r = 0}. {   ' 

Such a result is meaningful when Q! is not regular nor convex, as in this case Hl{Q!) £ 
if (curl; JV) D H(dvv;Q,'); it proves that the solution of (28) can be approximated by H1 - 
conforming elements only when Q' is regular or convex. 

2.5 Classical versus regularized 

Consider first the solution U of (19), following [2] choose any / € L2{QI) and put V = 
grad<£, where <p is the solution of div(£grady) = / in 0,' with </J|ruE (electric field) or 
dcp/dnir = 0 and y?iS = 0 (magnetic field). Let ij; a truncation function identical to 1 in the 
vicinity of T, and to 0 in the vicinity of S, let U' = %I>U and U" = (1 - ip)U = U -U'. As 
V e HEIH, we deduce from (19) that V/ € L2(Q,'), 

f tp'f =u? I £(C/|grad<^) +fV /  (graddiv^'lgrad^), (30) 
Ja,' Ja1 Jw 
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where ip' = T~
1
 div£t/'. Consider now the H1 - solution <p of 

/ £(grad^|grad</)  - -u2 f  fctflgradp")  -^V f  (grad div [/" |grady/'), 
Jw Ja JÜ' 

(31) 

where (p\ruE — Virus = ° (electric ßelc0 or "P|E = Vi's = ° (magnetic field) and take ip" = ip, 
we obtain thus 

f <pATp =u2 [ £(U\gr&d<p) i-t^Co1 [ (graddiv*7" |grad<p). (32) 
7«' Ja Ja 

Prom (30) and (32) we deduce that ip' - (p G H1^')» and tnen from (31) thatr-1 div \grad </+ 
wV = 0 in Q' and <^jr = 0; as a consequence cp G -ff^ft), ¥>|r = ° and div £ grad <p+u;2T^ = 
0 in the whole domain tt. By the integral representation formula (22), we show that <p satis- 
fies the outgoing radiation condition, and thus vanishes by Rellich's theorem; the solution of 
the regularized problem is thus identical to that of the classical one. 

Such a proof is not valid for the alternative choice of spaces for the singular case, for 
grady? g" SEIH V/ G L2(tt'); consequently div£17 £ H^c(ü) and does not necessarily vanish. 

2.6    A singular field method 

For the sake of simplicity, let us consider the case where the coeeficents and the artificial 
boundary E are regular. By SE we denote the space of singular functions of the Laplacien, 
which is of finite dimension, i.e. 

SE = {<p e Hfotf) [ 3/ G AfE, (gradp |grad^) + (/ |V>) = 0, W> G H%(p')} ,        (33) 

J\fE beeing any closed supplementary of the range of A, considered as an unbounded operator 
with domain H^(ü') nH2(tt'). Similarly, let 

SH = {tp G Hi (IV) | 3/ G AfH, (grad p |grad ^) + (/ \TJJ ) = 0, W> G H{tf)} , (34) 

where H(tt') = {ip G H1(fi/) | <p\% = 0 } and HH is any closed supplementary of the range of 
A with domain F(fi') n H2{ti'). Bonnet et al. (see also [1] and [4]) have shown that 

HE/H = £E/H9gradSE/H (35) 

Problem (26) can thus be written as 

Find U' = P' + grad^ G £E'H © gcadSE/H, 
such that W = Q' + grad ip G £E/H © grad SEIH, (36) 
aT{U',V')=tT{V) 

where P' and Q' G SEIH can be approximated by standard H1 - conforming elements even 
for non-regular 0'. 
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UKRAINIAN RADIO PHYSICAL SYSTEM OF SEISMO-IONOSPHERIC MONITORING 

Leonid N. IJvinenko, Yury M. Yampolskii 

Institute of Radio Astronomy, National Academy of Sciences of Ukraine 
Ulitsa Krasnoznamennaya 4, Kharkov 310002, Ukraine 

The paper reviews basic ideas, goals and structure of the System of Under-Satellite 
Ionospheric Sensing (SUISX which is currently under development within the framework of research 
project "Warning". The team of principal developers of this system is with the IRA NAS in Kharkov. 

It is supposed that SUIS will be based on two sub-systems (SS), namely, Monitoring and 
Calibration. The output data of both SS will be first transferred to and processed at the Central 
Terminal of Ground Data Processing (CTGDP), and further transmitted to the Center of Scientific 
Data Processing. 

In die framework of the Monitoring SS, four observatories: West, South, East, and Antarctic, 
are planned to be built. They will be equipped with identical radio physical instruments in 4 radio 
frequency bands and with preliminary processing terminals (PPT). Such a concept of the ground-based 
system is recognized to be the most economic, reasonably corresponding to the existing research 
background and experience, and will provide a sensing of the whole ionosphere in the interval of 
heights from 50 km to 1000 km. After a preliminary processing at the observatories, the data streams 
will be transferred to CTGDP. 

About the research goals of SUIS, the following should be mentioned. The Monitoring SS is 
planned to work in a continuous routine regime. It will be put into operation half a year before placing 
the satellite into orbit. 

The other SS of SUIS, Calibration one, will involve all existing active radio systems in 
Ukraine that are purposed at the ionospheric sensing. It will work only according to a special timetable 
based on the satellite passing and on the international geophysical calendar. As all the equipment of 
this SS operates with powerful transmitters, its work requires significant expenses and resources. The 
data from this SS also are gathered at CTGDP. SS Calibration is purposed at the calibration of the 
satellite sensors and the sensors of the Monitoring SS. The diagrams showing the connections of its 
equipment with the ionospheric and other sensors of satellite will be presented. Integration of the data 
of this SS with the other data of the whole SUIS will make it possible to model ionospheric 
phenomena, extract the seismic precursors and carry out the data interpretation. Here, it is supposed to 
arrange an exchange of data with all major centers of ionospheric sensing. Using the foreign 
observatories for the under-satellite sensing is possible; the needed agreements have been obtained 
from many of them. This will naturally require a direct link to Internet from CTGDP. 

Now consider a planned strategy of the SUIS output data processing (SIDP). Here, two 
blocks can be separated: processing the Monitoring data, and the Calibration one. The system of the 
data processing should be integrated with all the data streams from the observatories through PPT, 
calibration equipment, world ionospheric observatories, and global data center. The SUIS data 
processing is planned to be three-level one: sensor - PPT - CTGDP. A sensor transforms the streams 
of radio data into radio physical parameters. PPT determines, at every location, the background levels, 
makes archiving and storage of data, extracts the anomalies, and sends the latter to CTGDP. The 
Center compares the data of all the PPT and Calibration SS, and sends them to CPSD in terms of real- 
time and modeling representations. 

Making up a decision about a seismic warning then is done as follows. At PPT, the "Zero" 
(Calm) level corresponds to the absence of anomalies detected by sensors; level "One" (Suspicion) 
implies an anomaly detected by a single sensor; level "Two" (Trouble) means a correlated in 
frequencies and routes anomalies in several parameters. This information is sent from PPT's to 
CTGDP. There, the level "Three" (Alarm) is initiated: correlated in time, space and frequency 
anomalous variations of physical parameters detected by different observatories and SUIS. 

Kharkov, Ukraine, VIM International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 43 

Fractional Calculus and Fractional Paradigm in Electromagnetic 
Theory 

Nader Engheta 

University of Pennsylvania 
Moore School of Electrical Engineering 

Philadelphia, Pennsylvania 19104, U.S.A. 
Tel: (215) 898-9777, Fax: (215) 573-2068 

E-mail: engheta@pender.ee.upenn.edu 

Introduction 
In recent years, we have been interested in bringing the concept of fractional calculus and 

the theory of electromagnetism together [1-7], and to develop an area in electromagnetics which 
we are naming Fractional Paradigm in Electromagnetism. The field of fractional calculus 
addresses mathematical operations involving differentiation and integration to arbitrary non- 

integer real or complex orders ~ operators such as       v    where v can be a non-integer real or 

complex number [see e.g., 8]. In other words, in this field the operators that are so-called 
"intermediate" cases between the integer-order differentiation and integration are addressed and 
studied. The electromagnetic theory, on the other hand, is a classical field in which the usual 
differential and integral operators are commonly used. So it is interesting to explore what 
possible applications and physical implications one would find if one brought the 
fractionalization of operators and electromagnetism together. In our earlier work, we have 
applied the concept of fractional calculus in certain electromagnetic problems, and have obtained 
some interesting results demonstrating some salient features and potential applications of these 
operators [1-7]. Inspired and motivated by our earlier work in application of fractional calculus 
in electromagnetism, we have also been interested to explore fractionalization of some other 
operators commonly used in electromagnetic problems and to search for potential applications 
and physical meanings of such fractionalization of linear operators in electromagnetism. We 
recently introduced the concept of fractionalization of the cross-product and the curl operators 
[1,2] and showed that such operators can provide us with fractionalization of duality principle in 
electromagnetism [1]. 

In this paper, we provide a brief overview of some of our ideas and recent work in this 
area and discuss some of the salient features of the results obtained in our analysis. The 
interested reader is referred to our work reported in [1-7] for more details. Before we give this 
overview, for the sake of easy reference we first give a brief summary of some of the definitions 
of fractional integrals and derivatives that have been utilized by mathematicians over years. 

What is Fractional Derivative/Integral? 
Fractional calculus is a branch of mathematics that deals with generalization of well- 

known operations of differentiation and integration to arbitrary non-integer orders ~ orders that 
can be non-integer real or complex numbers [see e.g., 8-11]. The mathematical idea of fractional 
derivatives/integrals, which dates back to the seventeenth century, has been the subject of interest 
for many mathematicians and has seen much development over the years [see e.g., references 
given in 8, pp. 3-15]. Fractional derivatives and integrals are shown symbolically by some of the 
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dvf(x) 
notations such as aDxf{x) [see Davis, 10] or — — [see Oldham and Spanier, 8] where v 

d(x — a) 
is the general order of the operator (not necessarily positive or negative integer), and a is the 
lower limit of the integrals used to define these operators (as shown below). 

One of the definitions of fractional integrals is that known as the Riemann-Liouville 
integral [8, p. 49; 9, p. 33]. It is the generalization of Cauchy's repeated integration formula. 
Cauchy's formula states that the nth-order (or n-fold) integration of a given function f(x) can be 
written as 

X X„_y X\ x 

aD-x
nf(x) = \dxn_x \ dxn_2....\f(x0)dx0 = —\(x-uf-xf(u)du (1) J * w (n—1)!'' 

a a a 'a 

where aDx    denotes the n-fold integration with the lower limit of the integrals being a.  It is 
clear that (n-1)! = T(n) where T(-) is the Gamma function. Replacing -n with v which is a non- 
integer negative number, the Riemann-Liouville integral for definition of fractional integration is 
obtained [8, p. 49] as follows 

1     x 

DvJ(x) = \(x-uyv'lf(u)du.      forv<0andx>a (2) 
n-v) i 

For fractional derivatives with v >0, this definition can still be used if combined with the 
dm 

following additional step aD
v

xf{x) = —r aD
v

x 
mf(x), for v > 0, where m is chosen such that 

dx 
dm 

(v-m) becomes negative and thus Eq. (2) can be applied for aDx 
mf(x).   Then —- is the 

dx 
ordinary mth-order differential operator [8, p. 50]. 

Another definition of fractional differentiation/integration was given by Liouville for 
functions that can be expanded in a series of exponentials.   For a function g(x) which can be 

written as g{x) = 2^cie"iX, according to Liouville [12], [8, page 53] the vth-order fractional 
;=o 

differentiation/integration (with lower limit a = - <x>) can be given as 

__D:g(x) = ^ = ±crfe->'. (3) 

There are several other definitions for fractional derivatives and integrals which can be found in 
some of the references on fractional calculus [see e.g., 8, ch. 3]. Fractional calculus has had 
applications in various topics such as differential equations, complex analysis, Mellin transforms, 
and generalized functions to name a few. For a historical review of the field of fractional 
calculus, the reader is referred to the excellent bibliography prepared by B. Ross that is reprinted 
in pp. 3-15 of the monograph by Oldham and Spanier [8], and also the historical outline given in 
[9]. 

Our interest in fractional calculus has been particularly focused on finding out what 
possible mathematical applications and/or physical roles these mathematical operators can have 
in electromagnetic theory. Needless to say, electromagnetics is a field in which the use of 
conventional (integer-order) calculus plays a major role, and it is of interest to see how fractional 
calculus may offer useful mathematical tools in this field and how these tools help us to develop 
the area of fractional paradigm in electromagnetism. We have applied the concept of fractional 
derivatives/integrals to certain electromagnetic problems, and have obtained interesting results 
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and ideas showing that these mathematical operators can be interesting and useful mathematical 
tools in electromagnetic theory ([l]-[7]). Some of these ideas, which are the steps in developing 
fractional paradigm in electromagnetism, include the novel concept of "fractional" multipoles in 
electromagnetism [3], electrostatic "fractional" image methods for perfectly conducting wedges 
and cones [4], "fractional" solutions for the standard scalar Helmholtz equation [6], mathematical 
link between the electrostatic image methods for the conducting sphere and the dielectric sphere 
[5], fractionalization of curl operator and its role in fractionalization of duality principle in 
electromagnetism [1,2]. Below a brief review of some of these problems is given. Due to the 
space limitation here, only some of these problems are reviewed. The interested reader may refer 
to our work reported in [1-7] for further details and for our other findings. 

What is our Fractional Paradigm in Electromagnetic Theory? 
In the mathematical treatment of electromagnetic theory, for any given general problem 

we often solve canonical cases. For example, if the goal is to solve the standard problem of 
propagation of electromagnetic wave in a source-free region we usually consider well-known 
canonical cases of one-dimensional plane wave, two-dimensional cylindrical wave, and three- 
dimensional spherical wave propagation. Here if we just consider two of these canonical cases, 
e.g., plane wave and cylindrical wave, we can symbolically show the chart of Fig. 1 where the 
box entitled "problem" is what describes the general problem of interest (in this example, the 
wave propagation in free space), and the two boxes "Case 1" and "Case 2" indicate the two 
canonical situations (in this case plane and cylindrical waves). Now, one can ask the following 
questions: 

Are there any "intermediate" situations between the two well-known cases represented 
as canonical situations for the "problem"? In other words, as symbolically depicted in 
Fig. 2 can we have fractional "intermediate" domains between the two cases shown in 
Fig.l? 

Fractional (Intermediate) Paradigm 

iCase2 

Fig.l Fig. 2 

These questions can be rephrased and interpreted in the following way: 

If we consider certain "entity" whose properties (or identifiers) depend on a parameter 
with integer values, can we still consider (or think of) that entity when that specific 
parameter takes a non-integer "fractional" value? In other words, can we conceive an 
"intermediate" case for that entity? 

In order to illustrate this idea, let us consider the following example: The concept of multipoles 
and multipole expansion in electromagnetic theory has been well known and studied extensively. 
Let us take our "problem" as, for instance, the electrostatic potential distribution, and consider 
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the canonical "cases" as the "entities" of electric point-monopoles, electric point-dipoles, electric 
point-quadrupoles, etc. These entities have specific properties. For instance, for the static 
electric point-monopole, the scalar electric potential has the radial dependence of R_1. The 
scalar potential of electrostatic point-dipole, however, varies as R~2 (and of course it has an 
angular variation). Comparing the scalar potentials of these two entities, we obviously notice 
that the R-dependences of these electrostatic multipoles have exponents that are negative 
integers. Now the above questions that we posed can be rephrased as follows: Can we have an 
"intermediate" electrostatic multipoles whose R-dependence varies as R_a where a takes a non- 
integer value between 1 and 2? If yes, how would such a "fractional"-order multipole look like? 
Of course, such an "intermediate" multipole should not, and cannot, simply be made by a linear 
combination of one point-multipole and one point-dipole with appropriate coefficients. Because 
if that were the case, the scalar potential in the distant region of such a combination would be 
dominated by the potential of the monopole only, since the static dipole's scalar potential drops 
faster than that of the monopole. Therefore, a specific charge distribution should be sought in 
order to have a potential with R-dependence of R~a. We have studied this issue and have 
introduced the idea of fractional-order multipoles using the tool of fractional calculus [3] and 
have shown that such fractional multipoles can be used in describing potential distribution in 
front of a perfectly conducting cones (for the 3-D case) and perfectly conducting wedges (for the 
2-D case) [4].  We have found the volume charge density of a fractional multipole in 3-D case as 

,z dz 
5{x)8{y)U{z) z1-" 

T(2-a) 

(4) 
where a is in general a non-integer number between zero and unity, U(z) is the unit step function, 
and the multiplicative constant /a, where / is an arbitrary constant with dimension of length, is 
used here to keep the physical dimension of this charge density as Coulomb/m3. The subscript 
2a in p2a z(r) describes the multipole fractional order of this new charge distribution.   This 

subscript is chosen such that it provides the right order of multipoles in the limiting cases of a = 
0 and a = 1. For a = 0, we get the point-monopole Pi(r), and for a = 1 we obtain the first z- 

derivative of 8(r), thus showing a charge distribution of dipole p2(r) along the z-axis. The 
subscript z in p2a Jr) indicates the fact that we have this charge distribution along the z axis 

(resulted from the ath-order z-derivative of the point-monopole). We have analyzed the scalar 
electrostatic potential function of this fractional 2a-pole multipole [3]. It can be written 
explicitly as 

Q2.z(x,y,z)=la „A^T2-"! = gfrr"t«1; Pa(-cosB)     for0<a<l 2 -zl " zL47tei?J     47t£i?1+a     aV ' 
0 < 0 < % (5) 

where Pa(-cos0) is the Legendre function of the first kind and the (non-integer) degree a. A 

series of contour plots in the x-z plane for this potential for several values of a, 0 < a < 1 is 
shown in Fig. 3. (See the caption for more details). It is interesting to note from Eq. (5) that, as 
predicted, the scalar potential function of the intermediate "fractional" 2a-pole drops as R-1_a 

(with 0 < a < 1), as R increases. Thus, it is a potential distribution that can be regarded as the 
"intermediate" case between potentials of the point-monopole and point-dipole. The angular 
dependence of this potential is Pa(-cos0) with the degree a which is, in general, non-integer. 
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oc = 0 a = 0.2 Fig. 3. Contour plots for 
the     electrostatic      scalar 

potential of 2a-pole charge 
distribution of Eq. (4) for 
0 < OC < 1. The expression 
for the potential is given in 
Eq. (5). Since this scalar 
potential is azimuthally 
symmetric, the intersection 
of equipotential surfaces 
with the x-z plane is only 
shown here. The contours 
are shown for the region 
-2<z<2 and 
0<X<2, and for six 
different values of a. For a 
= 0 (top left Panel), the 
source is a single electric 
point-monopole (shown as 
+) located at x = y = z =0, 
and the contours are 
independent of 9. For a = 1 
(bottom right Panel), the 
source is an electric point- 
dipole (shown at + -) 
located at the origin, and the 
angular dependence of the 

potential is -cos(0). For fractional values of a between zero and unity, we can see from the above contour plots that 

the scalar potential of fractional 2a-pole are "intermediate" cases between those of the point-monopole and point- 
dipole, and in a way it "evolves" from one case into the other. The dashed lines, which are added later on top of the 
contour plots show the approximate location of zero potential (root of Pa(-cosQ) = 0.) In the region of x-z plane 

shown above, to the left of these dashed line, potential is positive and to the right it is negative. Along the positive 
z-axis, the charge distribution is also sketched. The plus and minus signs below the z axis indicate the sign of the 
charge distribution along the z axis. (Originally published in N. Engheta, "On Fractional Calculus and Fractional 
Multipoles in Electromagnetism," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, pp. 554-566, 
April 1996. Copyright© 1996 IEEE.) 

We have also addressed the case of fractional "intermediate" situations between the plane 
wave and the cylindrical wave propagation in free space, have obtained "fractional" solutions to 
the standard Helmholtz equation, and have found specific sources that generate such intermediate 
fractional solutions [6]. Our results show that for the time-harmonic two-dimensional electric 
current distribution described in the Cartesian coordinate system as 

J(x,y; t) = i^p- [_„D;aS(x)?>(y) + _„D:^(xfi(y)]= zl^'^^- (6) 

where 0 < a < 1, the z-component of the radiated electric field in the far zone can be expressed, 
for 9 not being too small, as 
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E (x,y;k) = —!--s-cos   \(ksin\Q\)   J—e^ —-^ ;— (7) 
« 4p>>f 4TI       I     2     r \kp AkaT(a) (k\y\f 

where p = Jx2 + y2, 9 = sin-1(y/>0> and k s ©"Vus . For 0= 0 when the observer is along the x 
axis, another expression is obtained for Ez [see Ref. 6], which shows that the magnitude of this 

field along the x axis drops as Ixl-0^2. It can be shown that the source expressed in Eq. (6) and its 
far-zone radiation field given in Eq. (7) are the intermediate case between the two cases of the 
line current and the sheet current. (Note that the source given in Eq. (6) is not a simple linear 
combination of a single line current and a single sheet current.) More specifically, we notice that 
when a = 0 in Eqs. (6) and (7), the current source becomes an infinitely long thin line current 

along the z axis and its far-zone radiation field approaches QE(x,y;k)=~     9 J—e
ikP-'*/4 

zh»i 4TC    \ kp 
which is the far-zone cylindrical wave of an infinitely long two-dimensional wire antenna. When 
a =  1, Eq. (6) represents a one-dimensional sheet current with intensity I0/2, and its 

corresponding far-zone field is ,£ (x, y;&) = -—*—V*'*1 which is, as expected, a plane wave. 
*p>>I 4k 

Therefore, Eq. (7) represents an example of a wave which is an "intermediate" case between a 
plane and a cylindrical wave. 

In some cases, however, the fractional cases may not be directly or obviously related to 
the known parameters for the so-called "integer" cases. As an illustrative example, let us 
consider the very well-known concept of duality principle in electromagnetic theory, that is for 
any given electromagnetic problem there is another problem named dual problem that can be 
obtained by appropriate transformation of fields, sources, and material parameters, namely, 
E->H', H-> -E', u-»s\ e-»fi\ J->J'm, J m -»- J', p-»p'm, and pm ->-p\ Following the same 
line of inquiry, we should ask: Can we have "fractional duality" in electromagnetism where the 
fractional dual problems would be intermediate problems between the original and its dual 
counterpart? To answer this question, first we needed to seek an "operator" which "connects" 
the two cases together, i.e., a mapping which takes the original case and brings it into the "dual" 
case. Symbolically, we can show such an operator (which can be linear) as a mapping between 
the "Case 1" and "Case 2".   We should then "fractionalize" this operator L, and the new 

fractional operator, which we symbolically denote by La, can be used to obtain the intermediate 
cases from the original case 1. This fractional operator should have the following properties: (1) 
For a = 1, one gets the original operator L and this provides us with Case 2 from Case 1; (II) For 
a = 0, one obtains the identity operator / and Case 1 can be attained; and (III) For two numbers 

a and ß, we should have Lajß=jßjfL=_La+P. We have used this technique to fractionalize 
some of the well known operators such as cross-product operator and the curl operator [1-2]. 
The fractional curl operator, as we defined, is a new operator shown symbolically as curf with 
parameter a that is in general non-integer. When a=1, we get the conventional curl operator. 
When a=0, we should obtain the identity operator. For values of a other than zero and unity, 
one then gets operator curla with appropriate mathematical operation [see Ref. 2]. Under certain 
appropriate mathematical conditions, this operator, when applied repeatedly, is additive and also 
commutes, i.e., curt curf = curf curf = curla^. This operator is an interesting mathematical 
operation that may offer some possible utility in certain electromagnetic problems. In particular, 
we have found that using "fractional curl" operator we can fractionalize the duality principle in 
electromagnetism [1,2]. 
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Our hopes in introducing the fractional paradigm in electromagnetic theory are to explore 
various fractional intermediate cases in electromagnetic problems which may lead to some 
interesting possibilities. Many real-world problems in electromagnetism may not always be 
identified or modeled as one of the standard ideal canonical problems. For example, in some 
situations it may not be possible to model waves as ideal canonical plane, cylindrical, or 
spherical waves. Similarly we may not be able to model antennas as having simple canonical 
shapes. So it is hoped that "intermediate" cases we study will shed light on mathematical 
treatment of some of the real-world problems in electromagnetic theory. 
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TIME-DOMAIN ELECTROMAGNETICS 
OF WAVEGUIDE-TYPE OPEN RESONATORS 

NataliyaP. Yashina 

Dept. of Diffraction Theory and Diffraction Electronics 
Institute ofRadiophysics and Electronics, NASofthe Ukraine 

12 Proskura St., Kharkov 310085, Ukraine 

Introduction 
New algorithmic schemes for modeling the problems of linear theory of waveguide disconti- 
nuities are presented. Numerical experiment is still the main tool for investigation of the reso- 
nant wave scattering phenomena, which are characteristic for such structures. The mathemati- 
cal approaches employed for such purposes have to satisfy relevant demands as for accuracy, 
efficiency and versatility, and for ability to be focused on particular details of various practi- 
cally interesting regimes. 
The approaches for analyses of transient processes in the waveguide-type open resonators con- 
sidered herein satisfy all these requirements. They rely on the description of the scattering 
properties of discontinuities in regular waveguides in terms of transform operators related to 
"evolutionary basis" of non-stationary signals that are qualitatively the same for all guiding 
structures [1]. They suppose an application of the analytical regularization technique at key 
stages of the solving procedure [2]. The approaches developed can be applied to the solution 
of wide range of electromagnetic and acoustic boundary value and initial value problems. The 
class of considered model problems comprises resonant type discontinuities in circular and co- 
axial waveguides excited by an axisymmetric TEop electromagnetic wave. The choice of mod- 
eling objects is motivated by scientific interests of the author. 

Evolutionary basis of non-stationary wave and transform operators 
Investigation of a TE-type axisymmetric wave scattering in circular waveguiding structures, 
such as coaxial bifurcation or annular iris, is reduced to solving the following initial boundary- 
value problem: 

■ e(z)—rU - o-(z)—U + —TU+ — 
dt1 dt       dz1       dp 

fie^ ■ F(z,p,t),t>0,{z,p}eQ; 

U(z,p,0) = <p(z,p),    |W,P,0| 
dt 

pdp 

¥{z,p); (1) 
t=0 

^'C^0' 

where e(z) is the relative dielectric permittivity of the material filling the discontinuity, 

a{z)^{^y   )   a0(z),   s^jUg are the free-space permittivity and permeability, ö"0(^)is tlie 

specific conductivity; U(z,p,t) = E9. For the axisymmetric wave, Ep=Ez=Hp = 0, while 
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the non-zero components of the magnetic field vector are given by the relationships: 

TtH^ 
r ~\ft 

It is supposed that the functions F(g,r)^W^(g)^U)-l,anda(g) are rnütemöand 

satisfy the conditions of the theorem about a unique solution of the problem (1) in the energy 

class(Sobolev'sspace)^(ör),Ör=ßx(0^)'   ^ [3] Wmmatimv 
The separation of variables in (1) enables us to represent the solution ofhe, problemO) at «9 
section of regular waveguide (i.e., where its cross-section is constant along the axis z, and 

s(g)-\ = a(g) = 0), as Mows: 

where the sequence of functions v(z,/) = {vm(z,t)} solve the equation 

d 

(2) 

dt1 dz1   " (3) 

+ vn{z,t)r<x><t<™, w <QO, 

(4) 

v     'dt1      dt 
with initial conditions 

vn(z,0) = bn(z) ;    ^v„(z,0     =c„(z); 

{2 }is the set of eigenvalues relevant to eigenfonctions Y», **> is the generalized de- 

rivative of the Dirac delta-function, «.(i,/),*.M.*.M are the Fourier coefficients of the 

functions F(g,t), cp(g), ^expanded in terms of the series of basis functions. 
Suppose now that a wave of the type (2) excites the open waveguide resonator. We consider 
the field of excitation U%t) = ^vn(z,tpAp) to be nonzero only in the waveguide A, 

which is regular for all z1>0 (left bound is placed in the plane z, =0). The scattered field 
that is exited in the regular semi-infinite waveguides A and B and propagates m each 
waveguide towards the increasing values of z, and z2 can be expressed in the form 

u;(z,P,t)=2>.,(vK-W; *> " °'    j=u (4) 

Boundary transformation operators R" and 2" (at the boundaries z, = 0) of the evolution- 

ary basis of nonstationary wave coming from the waveguide A are introduced via expressions 

w 
(5) 
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o    L J 

The transporting diagonal operators ^(zj and £B(z2) that characterize the field variation 

while propagating along a finite distance in a regular waveguide, are defined as follows: 

^'(0,0 = {^/(0,0} = ^+^^][v(0,r)];   7 = 1,2. 

^(^,0 = K(^,o}==[^(^>?+^feH2^/(o^)]; (7> 
It is clear, that all together these operators characterize the scattering features of discontinuity 
(in the case of A-side excitation) in complete manner. Here Jq(..) is the Bessel function, x 

is the Heaviside step function. 

Elementary discontinuities in circular and coaxial waveguides 
In this section we shall outline the principal ideas of the approach, which can be used for the 
solution of rather wide range of problems of transient scattering theory. 
Hereinafter the wave of excitation, USj(z,p,t), is supposed as coming to the discontinuity 

from the left-hand side and chosen to have the form (2) with vn(0,t) = S„pS(t-i]). Integer 
number p > 0 and the time when the observation started, r\ > 0, are fixed. 
1.Coaxial bifurcation of a circular waveguide will serve us as the first example. This configu- 
ration is characteristic for all the structures of so the called Wiener-Hopf geometry. According 
to (4)-(6), the scattered field U{z,p,t) formed in the regions z > 0 and transformed by the bi- 

furcation (regions A is coaxial waveguide, B is the circular waveguide of radius b; the region 
of the regular circular waveguide of radius a is denoted by E) can be represented as 

» o    L J (g) 

U(B, A) = -2p.k((' - *)' - *f]z[(' - ') + •W(*- *)*•*.» ' " * 
n   0       L J 

The eigenfunctions y/n(p), Vnj(p)md the eigenvalues A„,Anj are defined as follows 

^(/>)=4^);A/0(vn)p; 
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X. *»=ya> r--(^-rfn 

where J (...), Nq (...) are the Bessel and Neumann functions; v„ ,pn,n = 1,2... are non- 

zero positive roots of equations J,(v) = 0 and 0,(^,1) = 0. The eigenfunctions 

Vnip) > Vm(p)>Y*(p) form the orthonormal p-independent bases in the relevant plane do- 
mains: two circular and one annular waveguides, respectively. 

Satisfying the boundary conditions for the functions u and y^z at z = 0 (i.e., the condi- 

tions of continuity of the total field tangential components) providing the uniqueness of the 
solution of (2)-(4), we arrive at functional equations. In terms of the Fourier coefficients ot 
matching functions, one of them has the following form: 

n m=l,2... (9) 

where R„ = 2R^{t - if) Jx(vn9)lJQ(vH) ; 

Sj a+sj b Oj a-t-pj u 

Sjb 

+ 
n 0 

d sit-ri-jj^jb-TJlxit-THMdT^ 

Expression (9) is a dual series operator equation with respect to the set of unknown functions 

[Rfp{t - rjj\. It is well known from the theory of matrix operators of convolution type [4], 

thaT(9) provides the solution in explicit form via application of the residue calculus of mero- 
morphic functions over a contour in the complex plane. It is noteworthy that the elements of 

the vector function {R™ (t - ??)} in the right-hand side of (9) make invest only by their values 

at the moments of time t that are strictly earlier than t. Thus, the initial boundary value 
problem is reduced to the Volterra integral equation of the second kind. The properties of the 
matrix kernel enable us to solve this Volterra equation numerically, without inverting the ma- 
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trix kernel at each step of integration, that considerably increases efficiency of numerical algo- 
rithm. It has been thoroughly tested and cross-checked. 
2.Thin axially symmetric irises have been chosen as the second example, to demonstrate that 
the mode matching technique in time domain can arrive at a considerably simpler example then 
described above. The total field in domains A ( z > 0) and B (z < 0 ) can be presented as: 

If- 
(Ä 
B 

AA\ 

n   o        L J V   "P   J 
{t-r)dTVn(p)+ 

After satisfying the boundary and continuity conditions at the plane z = 0 and caring out sev- 
eral obvious transformations we obtain that 

m [       0 J 

» = 1,2...;   y = l,2. 

(10) 

S}a+S}b 

Here F    =2x    Wn{p)^m{p)pdP■ If 7 = 1» formula (10) characterizes the scattering 

properties of an annular-type iris, and if j = 2, it corresponds to the one of circular shape. 
Similar to the bifurcation problem, the elements of unknown vector function {/?^ (t - r)) that 
are in the right hand side of (10) influence its value at the moment t only by means of then- 
values at the time moments T that are earlier than t. Thus, for a fixed t (regular step in time) 
we can consider (10) as explicit solution of the problem of non-stationary excitation of sym- 
metrical irises in circular waveguides. 

Conclusions 
The discussed above algorithms have been implemented in numerical codes for computer-aided 
simulation of several key problems. Characteristic cases studied showed these algorithms to be 
a powerful and reliable software tool for fundamental and application-oriented investigation of 
the physical features and peculiarities of time-space field transformations in the resonant 
structures that are of practical interest in many areas of today microwave engineering and sci- 
entific devices design. 
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Abstract: In the spectral analysis of practical open integrated waveguiding structures, multiple non-removable branch points occur in the axial 
Fourier-transform plane. When the inversion integral for the distant radiation field is approximated asymptotically by deforming the real-axis 
integration contour (C) into a steepest-descents contour (SDC) all of the associated branch cuts are crossed twice. Passage from the top 
Riemann sheet to lower sheets and back to the top sheet occurs so both ends of the contour lie on the top sheet and C can be directly 
connected into SDC. If the observation aspect angle is sufficiently large, however, all but one of the cuts are crossed a third time and the 
two ends of the SDC lie on different sheets. Deformation of C into SDC then requires a fourth crossing of those cuts and integration around 
them to remain on the top sheet. A continuous spectrum contribution consequently augments the saddle-point term contributed by the SDC 
approximation. These wave phenomena are studied in detail for the asymmetric planar dielectric waveguide, which is the simplest canonical 

structure for which multiple non-removable branch points occur. 

INTRODUCTION: 
Integrated waveguide structures consist of conducting or dielectric guiding regions immersed in a 
planar-layered background environment. The analysis of such configurations proceeds typically from 
a spectral formulation for the currents/fields in the axial Fourier-transform domain. Integral 
representations for the complete electromagnetic field maintained by excitatory electric currents are 
obtained by subsequent inverse transformation of the spectral-domain fields. Evaluation of the integral 
representations requires that singularities of the spectral-domain currents/fields be identified. Those 
singularities consist of simple poles associated with the integrated guiding structure and branch points 
contributed by the layered background environment. The author has demonstrated previously [1,2] that 
the latter branch points arise from both the wavenumber parameters and the discrete surface/leaky-wave 
poles of the layered background. Asymptotic evaluation of the distant fields proceeds through a 
steepest-descents approximation of the axial inverse-transform integral representations. The latter 
procedure is complicated by the presence of multiple non-removable branch-point singularities in the 
spectral-domain fields. For simple canonical waveguides (such as the symmetric planar dielectric slab), 
the steepest-descents integration contour (SDC) crosses the single branch cut twice so both of its ends 
lie on the top Riemann sheet; the original real-axis integration contour (C) is consequently directly 
deformed into the SDC. When applied to spectral fields of integrated guiding structures, a SDC crosses 
all of the branch cuts twice, but can cross all but one a third time for adequately large observation 
aspect angles. As a result, those latter cuts must be crossed a fourth time and the integration path 
deformed around them to return to the top sheet prior to connecting C into the SDC. Additional 
continuous-spectrum wave contributions consequently arise in distant approximations to the complete 
field. Since no prior efforts on asymptotic evaluation of integrated waveguide fields is apparent, a 
simple canonical waveguiding structure which shares the presence of multiple non-removable branch 
points is investigated to obtain insight into the more practical integrated structures. 

CONFIGURATION AND ANALYSIS: 
The asymmetric, planar dielectric-slab waveguide is perhaps the simplest canonical waveguiding 
structure for which multiple non-removable branch points are present in its spectral-domain field. The 
configuration of such a structure excited by a line source is indicated in Fig. 1. It consists of a 
dielectric guiding layer with refractive index n2 and thickness t located between semi-infinite cover 

and substrate layers having refractive indices nx and n3, respectively, where n1<n3<n2. Wavenumbers 

in the various layers are krntk0, Z=l,2,3, where kQ=2^k0 
is ^ free-space wavenumber. An axial 

Fourier-transform solution for the TE field is constructed by well-known methods [3-5] leading to an 
integral representation for the region 1 field as 
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v*--w:-^a^-~* 
where reflection coefficient R(£) depends upon the wavenumber parameters pt = ^£2 -kf. 

The spectral-domain field has two types of singularities in the complex axial transform (£) plane. The/;, 

lead to branch points at ±k}, although those at ±k2 are removable, while R(Q leads to simple pole 

singularities. Those complex £ -plane singularities are indicated, along with the relevant wavenumber 
locations, in Fig. 2. Sommerfeld-type branch cuts, also shown in Fig. 2, are selected leading to a 4- 
sheeted Riemann surface for which the spectral field decays or remains bounded transversely for all 
points on the top sheet, while it grows transversely on the lower sheets. The pole singularities consist 
of two distinct types; proper surface-wave poles occur on the top Riemann sheet while improper leaky- 
wave poles appear on the remaining three. Various representations of the total field are considered 
below, including asymptotic steepest-descents approximations to the distant (from the line source) field. 

ALTERNATIVE FIELD REPRESENTATIONS: 
The real-axis integration path C in Fig. 2 can be deformed in various ways to obtain alternative field 
representations. Of particular interest is the distant radiation field, for which asymptotic techniques, 
such as the method of steepest descents, are applicable to approximate the inversion integral in Eq. (1). 

A polar coordinate representation of the field point is defined by (x±x') = r cos 0, (z-z') = rsin 0 where© 
is the polar angle measured from the x-axis. For asymptotic evaluation of the cover field, the steepest- 
descents contour SDC is found to depend upon the observation aspect angle as indicated in Fig. 3. 
If 0 is sufficiently small then the SDC crosses both branch cuts twice and its ends both lie on the top 
Riemann sheet. There exists a critical angle 0C, however, beyond which the SDC crosses the k3 

branch cut a third time and the two ends of the SDC lie on different sheets. That angle is found to be 
given by 

i(M n ft -1 0   = — - cos c      2 1^3/ 
n, 

(2) 

Asymptotic evaluation of the integral in Eq. (1) consequently depends upon whether that critical angle 
is exceeded.  The two possibilities are considered below. 

case no. 1:   0<0C (two fc, branch-cut crossings) 

In this case, the two ends of C and SDC lie on the top sheet so they can be connected along CM to 
form a closed contour as indicated in Fig. 4. Note that a segment of the SDC, between the two pairs 
of branch cut crossings, lies on the bottom Riemann sheet. The SDC may consequently capture 
surface-wave poles on the top sheet and leaky-wave poles on the bottom sheet, although this is unlikely 
at small aspect angles. The SDC must be deformed about such captured poles, and the contour which 
excludes all such poles is designated as Cp.  Cauchy's integral theorem then provides 

£ (•••)<*£ = 0   =>   f (~)dZ = ((~)cK + L (-■)# 
J-C+SDC+C+C. ■> C JSDC JCp 

(3) 
p 

but it is well known that 
-ar 

/<-■)* 

'CP 

e (4) 

along radial lines as ^r-«». The pole residues consequently do not contribute to the distant radiation 
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field. The SDC can also be deformed into the lower half plane and about branch cuts Cw and CM, 

as indicated in Figs. 2 and 4, leading to 

£ (-WC = 0   -   f    (-WC = f„   „ (~WC <5) 

T-sOC+cp+c.+cw+cw
l j ^ W J(V«+c» 

where the pole contribution is neglected. It is concluded that in this case the SDC contribution 
mcludes the entire proper radiation spectrum. Finally the saddle pomt approximation to the SDC 

integral provides the well-known result 

c                     "Ho 
E,r(rJ&) = -./«H„l     (-)<K 7~\      "v"'       n— im-  (6) 

case no. 2:  8>8C (three Jfc, branch cut crossings) 

In this case, the left side of the SDC lies on the top sheet (of the ^-related Riemann surface) while 
its right side lies on the bottom sheet as indicated in Fig. 5. The right end of the SDC must 
consequently be deformed along C. to cross the Cu branch cut a fourth time and pass back to the top 

sheet; it is subsequently deformed about the Cu cut to remain on the top sheet and connected into the 

left end of the SDC. By Cauchy's theorem 

J-SDC+CsCp+Cbl
K   ' JSDC JCU 

where pole contributions have been neglected. The SDC integral now represents the incomplete 
radiation field. It includes the Cu component but excludes the C„ component. This implies that the 

SDC contribution is discontinuous at 6=6C unless the C„ contribution vanishes there. 

The two ends of C lie on the top sheet, while the left end of the ^^.m**^**%^ ^ 
end lies on the bottom sheet. C is deformed into the SDC as indicated m Fig. 6. The left ends of C 
and the SDC are connected directly on the top sheet along Cm. The right end of C is deformed alongC. 

and around Cb3 on the top sheet. Finally Cb3 is crossed to pass to the bottom sheet and connection 

with the SDC is made along C„.  Cauchy's theorem then requires 

and the complete radiation field is recovered by augmenting the Incomplete SDC component with the 
missing C component. The additive continnons-spectmm component is a lateral wave discussed 
WeÄsi in a different context. Replacing «he SDC component by the asymptouc saddle-pcn, 

approximation leads to 

which includes the additive continuous-spectrum component. 

The significance of the additive continuous-spectrum component to the reflected field is studied in Figs 
7 and 8, where the saddle-point contribution (E^, branch-cut contribution (E^ and the total 
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reflected field E r = {E )s +.(£ r)fe are displayed. These numerical results are for a dielectric 

waveguide having ?/A0=.5 and nx = 1., «2 = 3.2, n3 = 3.0 which supports only the principal surface-wave 

mode and leads to a critical angle of 0C = 19.5°. Fig. 7 displays the radial dependence of the field for 

6 = 88°; clearly the branch-cut contribution is negligible except for relatively small r/X0. The angular 

dependence is shown in Fig. 8 for fixed rß0 and again the branch-cut contribution is negligible except 

for 0-90°. 

CONCLUSIONS: 
The spectral analysis of open-boundary waveguides leads to multiple non-removable branch points in 
the axial Fourier-transform plane. The presence of multiple branch points complicates the asymptotic 
evaluation of the distant radiation field. The SDC crosses all of the associated branch cuts twice but, 
for sufficiently large observation aspect angles, can cross all but the cut associated with the field region 
a third time. This results in one end of the SDC residing on the top Riemann sheet while the other 
end lies on a lower sheet. Connection of the SDC into the original integration path C consequently 
requires deformation of the SDC to cross the cuts a fourth time to return to the top sheet and then pass 
around them to remain on the top sheet before connecting with C. The result is a continuous spectrum 
branch-cut contribution which augments the asymptotic approximation arising from the SDC integra- 
tion. These lateral waves are found to decrease more rapidly than the asymptotic contribution with 
distance from the line source. The portion of the SDC which lies on the bottom sheet can capture 
leaky-wave poles while surface-wave poles can be captured on the top sheet. The pole residue terms 
decay exponentially with radial distance from the line source and consequently do not contribute to the 
distant radiation field. Modifications necessary to extend this technique to practical integrated 
waveguiding structures are will be identified. 
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Fig. 1 Configuration of asymmetric planar di- 
electric waveguide with unit line-source 
excitation. 
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Fig. 3 SDC in ^-plane for various observation 
aspect angles; relation to k3 branch cut. 

Fig. 2 Integration path and singularity points in 
complex i^-plane. -4.0 J 

Fig. 4 Appropriate closure of C into SDC when 

e<e,. 
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Fig. 5 Appropriate  closure  of SDC  into  Cbl 
branch cut when 9>8„. 

Fig. 6 Appropriate closure of C into SDC and 
Cb3 branch cut when 0>0C. 
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Fig. 7 Radial dependence of saddle-point and 
branch-cut contributions to the reflected 
wave component of the distant radiation 
field in the cover layer of an asymmetric 
planar dielectric waveguide. 

Fig. 8 Angular dependence of saddle-point and 
branch-cut contributions to the reflected 
wave component of the distant radiation 
field in the cover layer of an asymmetric 
planar dielectric waveguide. 
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Abstract 
A universal and efficient iterative scheme for solving eigenproblems is presented. It is based on a func- 
tional analysis approach. Several variants of numerical implementation of the method are proposed. 
The application to the problem of electromagnetic waves propagation in anisotropic waveguides with 
arbitrary transversal inhomogeneity of the permittivity is briefly specified. Several examples of the 
computed mode vector fields in various complex dielectric guiding structures are shown. 

1    Introduction 

The main difficulties of solving eigenproblems of electromagnetic waves propagation are due 
to the following facts: 

- electrodynamical coupling between the magnetic and electric field components of a mode 
in the region of the permittivity variation, 

- energy radiation from an open guiding structure, 
- complicated geometry and profile of the transversal inhomogeneity of the permittivity. 

The mathematical difficulties corresponding to the above physical facts, when one seeks the 
solution in the space of square integrable functions, are the following: 

- nonselfadjointness of the operators constructed from the vectorial equations describing 
propagation and possible nonorthogonality of the eigenfunctions (guided modes), 

- existence of unbounded or nonvanishing at infinity solutions (corresponding to the con- 
tinuous part of the spectrum of the constructed operators), 

- complexity of the boundary conditions and/or of the (variable) coefficients of the equa- 
tions. 

Because of the above difficulties there exist not many full-wave (vectorial) methods which 
can provide satisfactory solution especially for complicated structures. There dominate purely 
numerical methods, mainly the variants of finite difference or of'finite element methods [l]-[3] 
(for more complete reference see [4]). The common feature of all these methods is that the 
original differential problem is reduced to numerically solving an algebraic matrix eigenproblem, 
after making more or less arbitrary choice of the discrete and finite subbasis in the function 
space the solution is sought for. Often, the correspondence between the original differential 
problem and the discretized algebraic one is difficult to be maintained or is even violated. 
Moreover, these methods require a large amount of memory (mainframes) to be effective in 
more complicated cases. 
Here we present the method called Iterative Spectral Decomposition Method (ISDM) [5], [4]. It 
was derived with a help of functional analysis techniques and after investigating spectral prop- 
erties of the suitably defined propagation operator resulting from Maxwell's equations [6], [7]. 
The proposed iterative process is rapidly convergent, has low computer memory requirements 
and has proved to be an efficient and universal tool for the analysis and numerical simulation 
of various dielectric guiding structures. Some examples are mentioned in this short paper. 
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2    Abstract scheme of the ISDM 

Let T be an unbounded, densely defined and closed linear operator in the Hubert space 
(X(-> -)w)> with nonempty discrete spectrum adisc(T) ^ 0. Suppose that T can be de- 
composed 

T = L-F 

in such a way that L is a selfadjoint operator with known spectral properties and the (un- 
bounded) operator F is ^-compact, meaning that D(F) D D{L) and V> £ a(L) the operator 
F(L - p)~l is compact. 
Under the above conditions, the eigenproblem 

(T-r)« = 0,      u£D(T) 

which can be written equivalently as u = (L - T)~
1
FU if r £ cr(L), is solved by the following 

iterative process 

un = (L- rn_i)_1.Fitn_1 (*) 

"« = «n Il-Ünll^ Tn = (Twn ,  Un)n 

This iterative process, called Iterative Spectral Decomposition Method (ISDM), is rapidly 
convergent, has low computer memory requirements and has proved to be superior to many 
large-scale mainframe numerical methods. 
Several variants of numerical implementation of the process are proposed, relatively to the 
accessible means of solving inhomogeneous equation (*) in various physical situations. 

2.1    Variant I (eigenfunction expansion) 

Spectral measure of the operator L is known, e.g. L has compact resolvent and is semibounded; 
the solution un is expanded in the basis of eigenvectors of L (corresponding special functions). 
This variant is called the Iterative Eigenfunction Expansion Method (IEEM). 
The spectrum a(L) = adisc{L) is discrete and the eigenvectors em 

(£-Am)em = 0,      ||em||w = l,      m = 1,2,3,... 

form an orthonormal basis in H. In the iterative process we utilize known eigenpairs (em  A™)°° 
oi the operator L: 

Ur 

1   Cm = (Am - rn_!) * (Ftin_i , em)n , (*) 

un = Y,Dlem,    Dl = ClC£\Cn
m\
2r"\ 

m- m 

Tn=J2 [A- \Dm?   ~   (Fun , em)HWri 
m 

2.2    Variant II (using Fourier transform) 

T is a differential operator in L2(\Rn); the action of the operator (L - T)~
1
F is simplified by 

means of the Fourier transform in i2([Rn): 

u*< \\) = (2TT)-"/
2
 /   e-is-xu(x) dx . 
JJRn 
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To this end, for any z £ £°°(IRn), let us define the operator: 

Z2(IR") 3«   H   (zuAY 

z{-iV)u    =    (^(A)M
A

(A))
V 

The operator z(-iV) is well defined and bounded in L2(\Rn).   Since F is L-compact, the 
operator (L - T)"

1
F is compact for r £ cr(I). Hence it is bounded and can be expressed in 

the form: 
{L-T)~

X
FU   =   zr{-iV)u = 

=   (zT(A)uA(A))v = //T(-iV)u 

for a function zT = zT(X) G £°°(IRn) of the form determined by the choice of the spectral 
decomposition of T = L - F. We can now perform the iterative process on the Fourier 
transforms of un: 

u. n (zTn_1(-iVK_1)
A = ^wtiW (*) 

rn    =    (((I - F)O
A
 , <)2 = 

■ =    /R"ao"1(A)-/(A))|<(A)|2dA 

2.3    Variant III (using Green's function) 

T is a differential operator in L2(\Rn); the Green's function of the operators L or (L - T)~
1
F 

is used to solve (*). 
If lT £ L2(SRn) n X°°([Rn) or IX £ L\Rn), then the convolution: 

(/T«A)v = (27r)-"/2C*w 

exists for u £ Z2(IRn) and l^{x,y) is the Green's function of L. Then 

{L - rv)-
xFu = ZT(-iV)Fti = (Ir(F«)A)v 

If we choose the spectral decomposition of T = L - F such that l^{x,y) is known, then the 
equation (*) can be effectively solved as follows: 

ün = (27r)-n^ [ nll_1(x-y)Fun_1(y)dy (*) 

Analogously, if the analytical form of zyT can be obtained, then 

{2-K)-n'2 f    zl_^x-y)un_,{y)dy (*) u„. 

3    Application of the ISDM to dielectric waveguides 

3.1    Assumptions about the guiding structure 

Let us consider a waveguide that is: homogeneous along the direction of propagation <c3, trans- 
versely inhomogeneous, magnetically isotropic with \x — \i§ = const, electrically anisotropic 
with the principal axis o3 along X3: 

' en    ei2     0 

£(x) =     e2i    e22     0 

.0        0      e33 
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where the dielectric tensor £{x) is hermitian, positively defined and 

€ij : \R2 3x = (x1,x2)—>C,   itj = 1,2,3 

eij(x) = eci = const for \x\ > Rs. 

3.2    Formulation of the eigenproblem 

Assuming harmonic time dependence e Jwi, after expressing all the six vector field components 
of the guided mode by: 

H±    =   [h1(x1,x2),h2(x1,X2)]eWx*-»t) = 

=   hs. eW**-"*), 

Maxwell's equations for the waveguide can be reduced to the following eigenproblem: 

(T-/?2)ÄL = 0, 

ThL = (L-F)hL = 

V\ h± + 

k2 ^22      -fl2 
Äi. + 

1 
T2' fc33 

e22      -^12 

_-f2l     en. 
{VxessxCVxx/^)} + 

1 

^33 

^33-^22             ^12 

.^21             €33-^11. 
{Vx x (Vj. x hL)} 

where Vx = [£;,-£;],    k2 = uj2^.0e0. 

3.3    Spectral decomposition of T 

Since guided modes are square integrable, we define operator T in the Hubert space H of square 
integrable complex valued vector functions defined on the cross-sectional plane \R2 of an open 
waveguide, or on the bounded region Ü denoting the cross-section of a shielded waveguide: 

n = L2{\R2)®e     or     n = L2{ü)®e. 

We introduce in H the scalar product: 

0 » W
)H = Ki > wxi)2 + (vx2 , wX2)2 , 

where for v = [vXl,vX2],w = [wXl, wX2] e H 

(vx} , wXjj 2 =  / vXj wXj dx,      j = 1,2 

and Ö - IR2, or O = 0, respectively. 
Decomposing the operator T 

T = L-F, 

we pick out as the operator L: 

L = V\, D{L) = D{l)®e 
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with the domain D(l) such that Laplacian lu = Aw is selfadjoint. Hence, we choose 

D(l) = {K€ I2(IR2) : Aw <= I2(IR2)} = #2([R2) 

for open waveguides, and 

D{1) ={u£ H%(ß): ueC2 down to dti, u\m - 0} or 

D(l) -{we H^{Ü): ueC2 down to dfi, £f\dQ = o} 

for shielded waveguides with Dirichlet's or Neumann's boundary conditions, respectively. Now 
we define 

D(F) = {ueH:   FueH},      D{T) = D{L). 

We proved in [6] that T is a densely defined, closed operator in H, that D(F) 3 D(L), and 
that F is X-compact for isotropic structures and ^-bounded for anisotropic ones. 
In the numerical implementation of ISDM for open waveguides we discretize the spectrum 
of Laplacian substituting D(l) = .ff2(IR2) by the domain of Dirichlet Laplacian defined on 
bounded, sufficiently large region P such that the guided mode field together with its derivatives 
is negligible outside P. 

3.4    Features of the numerical implementation of the ISDM 

• Computes mode propagation constants and vector fields of (multi-core, anisotropic, lossy, 
shielded or open) dielectric guiding structures with virtually any cross-section and refractive 
index profile. 

e Compact — requires very little computer storage; runs on IBM/PC with 512K RAM and a 
math-coprocessor. 

• Versatile — shape of the structure and its refractive index profile can easily be modified by 
a user during a computing session. 

• Efficient — mode solution accurate to five digits is obtained after literally seconds of com- 
putation (5-8 iterations) on an IBM/AT platform. 

• Simplicity of the numerical code of the iterative scheme and capability of effective calculation 
of mode vector fields makes the ISDM a powerful tool for numerical simulation, thorough 
analysis and design of complex dielectric guiding structures. 

Numerical cost (variant IEEM; measured) 
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3.5    Problems already solved by the ISDM 

The method (variant IEEM) has been successfully applied to the analysis of the following 
dielectric guiding structures: 

• power profile elliptical fibers with large ellipticity (polarization maintaining fibers); 
• anisotropic dielectric waveguides (truly single mode fibers) 
• asymmetric double-core waveguides (analysis of wavelength selective coupling) 
• multi-core fibers with non-identical cores 

• open waveguides with a large core-cladding refractive index difference (complex modes 
in open lossless dielectric waveguides) 

• optical fibers with a lossy core or/and cladding 
• birefringent structures with lossy intrusions (dichroic polarizers) 
• optical monomode fiber couplers with lossy separating layer of arbitrary refractive index 

(operating as switches or sensors) 

• polarization selective couplers (polarizers and polarization beamsplitters) 
• rectangular shielded waveguides loaded with dielectric slabs 

4    Selected examples of computed mode fields 

4.1    Complex mode in a lossless waveguide 

The possibility of existence of complex modes with decaying at infinity fields in lossless isotropic 
and inhomogeneously filled dielectric waveguides follows from nonselfadjointness of the oper- 
ator corresponding to the propagation eigenproblem. Nonselfadjointness is a consequence of 
inhomogeneity of the permittivity in the waveguide cross-section. In the regions of permit- 
tivity variation the coupling of the electric and magnetic field components of hybrid modes 
takes place. At low frequencies, in structures with a large core-cladding index difference this 
coupling can cause the hybrid mode to become complex [7]. 
Below, the example of complex EHn mode is shown, namely the transversal field components 
H±, E]_ and the distribution of the energy flow (Re{(i? x H) ■ x3}) in the cross-sectional plane 
of the waveguide at the normalized frequency V = 3.0. 

Z=(-D.09I.-0.106!  V-3.D0 O=3D.DO0O 

•^-^-^ •* •$ -& •* 
x^^-fy -fr -& -» + 

*T7  v -v ~v -$ -v 

■fy-b -f> -» •* 

4.2    Fiber coupler with a separating layer 

The monomode fiber coupler with a separating layer of arbitrary refractive index and geometry 
shown below has been analyzed in terms of global in the cross-sectional plane, vectorial modes. 
The coupler is treated as a triple-core structure that is locally homogeneous along the direction 
of propagation. The global transversal modes contain full information about coupling and 
attenuation of the fields in each cross-section of the coupler. 
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The layer can drain some energy from the fibers (a different quantity for each polarization 
state), especially when the refractive index of the layer and of the fiber core are more nearly 
the same. The hj_ field component of the mode that is responsible for the energy transfer to 
the layer is shown below. 

R=25cm 
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Here we also present the result of the severe, energetical test - computed (continuous curve) and 
measured (triangle-dotted curve) transmission coefficient T of the coupler versus the refractive 
index nw of the layer. 

4.3    Multicore fiber with non-identical cores 

In such guiding structures the wavelength selective coupling may occur. An example of the 
mode power density distribution (the real part of the longitudinal component of the Poynting's 
vector) over the cross-section of a multi-core fiber for different normalized frequencies V is 
shown below. 

Re C ExH» 3|| V=2.SD 

u# 

w 

5    Conclusions 

The effectiveness and versatility of the ISDM are the benefits from applying functional analysis 
techniques. The method has been successfully applied to a wide class of dielectric guiding 
structures. The ISDM turned out to be particularly useful as a tool for numerical simulation, 
thorough modal analysis and design of waveguides with complicated geometry and of various 
opto-electronic devices including couplers, switches, sensors and resonators. 
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1. Introduction 
It is known that optical characteristics of diffusive system (OCOS) are related to the 

particle size distribution function (PSDF) f(a) (a is the particle radius) by a linear integral 
equation of the first kind. The equation usually has the following form: 

S(x) = fs(x,a)/"(a)da, (1) 
Jo 

where S(x) is an experimental OCDS; s(x,a) is the same characteristic related to a single 
particle The essence of the problem of inverting lightscattering data into PSDF is to 
determine f(a) from a given kernel s(xsa) of Eq. (1) and from an experimental S(x) obtained 

with an error DS(x) (including computational errors) 

S(x)=S(xj± AS(x). (2) 

The quantity |AS(xj determines the number of Fourier harmonics that can be retrieved by 

inverting Eq. (1). The harmonics of frequencies <o > a>m where &„ is some limiting frequency, 

just disappear in measurement noises of the function S(x). The frequency &0 is determined 

from the following formula (see [1]): 

AS = rs(x,a>ia,°ada. (3) 
Jo 

f _|ASfi . 
The requirement for measurement and calculation error to be small ^ «1,   i\-   § j is, 

however, not enough to construct a stable solution to Eq. (1).   This is obvious from the 

following. . 
The simplest method of solving (1) is to transform it into a system of linear algebraic 

equations of the following form: 

This method is, however, unsuccessful as a rule, because the systems obtained in such a 

manner turn out to be ill-conditioned. 
The reason has to do with peculiarities of some integral equations of the first kind; these 

equations are ill-defined, that is to say, they are very sensitive to the choice of linearization 
points, and to measurement and computation errors. In order to solve the problem, one has to 
"regularize" it. The regularization amounts to invoking additional information about properties 
of the sought-for solution to Eq. (1). This additional information makes the problem stable. 
Strictly speaking, by invoking additional information, one changes one problem for another. It 

Kharkov, Ukraine, VIM International Conference on Mathematical Methods in Electromagnetic Theory 



70 MMET'98 Proceedings 

is important for the substitution not to lead us too far away from our original goal. In other 
words, solutions to the regularized system should be close to the solutions of the initial 
_u :_„i ui^   TU» romUri-ro+inn w +r» Mr» 110 to opt rid of cnmrnitational instability of 

the problem without changing its physical essence. 
The simplest regularization method is to assume that the sought-for PSDF belongs to a 

certain family of functions. The parameters of the distribution are chosen so that the system 
(4) is satisfied. Let us denote the frequencies (or scattering angles) at which the function S is 
measured as yt. We denote the sought-for parameters of our family of functions as vk. In this 

case, the determination of the parametersvk. of the family reduces to solving the following set 

of equations: 
Sfo,vk)=C„  i = l,2,...n. (5) 

The number n of equations must be no fewer than the number k of the parameters in the 
sought-for family. In spite of seeming simplicity, the system (5) is, as a rule, also poorly 
conditioned, so the method does not help much in constructing solutions to Eq. (1). 

The principal idea of the method suggested here is to accept n»k. This means that we 
will deal with significantly overdefined systems. This will make it possible to improve 
essentially the determination accuracy of the parametersyk. This idea is similar to the method 

of least squares Recall that the error As of the mean over n measurements is equal to 

4«=J£L, (6) 
Vn(n-l)) 

and so it is smaller than the error of a single measurement Ae0 approximately by a factor of n. 

2. An example of appreciation of the method Suggested. 
One of the examples of method applications is discussed in [2]. According to recent 

experimental data, the function f(a) car. be represented as a sum of two components: fine and 
large ones. Each component has a lognormal distribution that can be described by three 
parameters: the particle concentration density n» (ern^um"1), the distribution mode 
ri(um), and the distribution variance $ (i=l, 2 for the fine and large components respectively). 

It is more common to use two other parameters instead of m and n2: N=ni+n2, and c =     , 
n2 

where N is the total particle concentration density, and c is the ratio of concentrations of the 
fine and large components. In [2], the authors fix N and c and examine the sensitivity of 
aerosol two-component models to variations of the remaining four parameters r. and *. Using 
different values of r. and $ and Eq. (1), it is possible to obtain an unlimited number of two- 
component models. In order to limit this number, certain intervals for r; and s; and for the 
quantization step are set. The limits of mode radius variations are set basing on data in [3]. 
For r; this interval is Ar = 0.02 - 0.06um; for r2 it is Gr2=0.15-0.75um. 

It is commonly assumed in aerosol models that the value of standard deviation s. is 
approximately equal to 0.3. This value is taken for setting intervals for %. It is presumed that 
s; varies from approximately 50% to 200% of the magnitude. As a result, the interval for s; can 
be specified as Qsr0.15-0.55; for s2, DsrO.1-0.7. 

The possibility of retrieving f(a) from the spectral attenuation a(k) is considered in [2]. 
The spectral attenuation a/particle was calculated by the Mie formulas for 77 wavelengths that 
were spaced evenly throughout the extended visible range from 0.3 to 1.06um. It was 
assumed when doing this that the complex refractive index m(X) of the fine component 
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coincided with that of the rural component in [3], whereas m(k) of the large component was 
identical to that of the oceanic component in the same work. The data for m were taken for a 
relative humiditv of 70%. 

For each component, 25 values of ri and 27 values of si were used in such a manner that 
they were spaced evenly throughout their intervals. Matrices of 25 x 27 elements were 
constructed in this way for the spectral attenuation a(X) for each of 77 wavelengths X 
[distributed evenly throughout the 0.3-1.06um range]. As a result, 675 models for each 
component were obtained for 77 wavelengths. These data arrays of a constituted the basis for 
a further analysis. 

In order to identify aerosol models satisfying optical data, two optical characteristics were 
chosen: the Angstrom parameter a and the attenuation Oo/particle at X=0.55um. These two 
parameters can fully describe the curve of spectral attenuation in the visible range. 

The aerosol models were compared with experimental data for o0 and a. It was assumed, 
in accordance with numerous publications, that the aerosol optical thickness T0 of the marine 
atmosphere in clean oceanic regions varies between 0.07 and 0.09; the value of the Angstrom 
parameter a for the same conditions can change from 0.4 to 0.8. 

As a result, it was taken for o (0.550) and a to satisfy the following inequalities (see [2] for 
more details): 

0.9 x lO^km'W < a <1.1 x lO^kmW, (7) 
0.3<a<0.5 

Using these inequalities, the authors of [2] calculated the basic optical characteristics of the 
above-described 675 x 675 two-component models. From this set, the models were selected 
whose o"0 (0.55) and a satisfy the inequalities (7). At a chosen step of quantization, the 
number of such models amounted to 5292. 

Next, particle size distributions for each model were calculated, and the maximum and 
minimal values of each distribution were determined for every particle size. It turned out that 
individual distributions differ between themselves quite significantly, which corresponds to the 
range of natural variability of the basic optical characteristics. For some intervals of particle 
radii, distributions differ by orders of magnitude. However, all the selected models were found 
to be close to each other within the 0.02-1 .Oum particle radius interval. This interval (optically 
active interval) is responsible for 93% of attenuation in the visible range: 

The mean particle size distribution for the active interval was constructed. The relative 
mean-square error of this distribution grows with the particle radius; for particles of radii of 
0.02-0.2um, the error does not exceed 20%; for the 0.2-1 urn radius range, it is no higher than 
40%; it gradually grows from 40% to 95% as the particle radius changes from 1 to 3 urn. 
These results make it possible to estimate the retrieval accuracy of the aerosol particle size 
distribution from an optical data set at different particle size intervals. 

It follows that by specifying the interval of basic optical characteristics, one can determine 
with the above-stated accuracy, an optically active and quite stable are of PSDF. It should be 
noted that data on the spectral attenuation alone measured in a limited spectral range is not 
enough to determine PSDF over the entire particle size interval, because differently-sized 
particles affect the radiative transmittance differently. So, small particles, numerous as they 
are, possess weak extinction properties, whereas large particles are strong attenuators, 
although they are few. 
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3. Conclusions 
The information content of data for the spectral attenuation o at X=0.55um and for the 

Angstrom parameter a in the visible range for the marine atmosphere was examined for the use 
in the reconstruction of the aerosol particle size spectrum. The particle size distribution curve 
was parameterized by a sum of two log-normal distributions, which means that it contained six 
unknown parameters to be determined from the two measured characteristics. Some 
parameters were fixed at their typical values in order to diminish the uncertainty of the 
problem. In the example illustrating the procedure, the total particle concentration and the 
fraction of the fine and large component were fixed. The number of members of the ensemble 
was great, because the answer was ambiguous. It is remarkable, however, that in the active 
particle interval, different members of the ensemble have close distribution curves, so it is 
natural to accept an average curve as a solution to the problem. In spite of the small body of 
initial information, the accuracy of the procedure was quite reasonable. It can also be seen 
how the error grows with the particle radius. 

The most important for the method is a correct choice of the initial function in Eq. (1) and 
of the interval of parameter values. One can expect, for example, that by applying the 
described procedure directly to some nonaverage atmospheric conditions (such as storms and 
fogs), one would obtain much worse results. For these conditions, one could possibly vary 
both the initial formula in Eq. (1) and, more importantly, the intervals of the parameter 
variability. 
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Time-domain solvers versus analytical regularisation in the integral-equation 
analysis of canonical scatterers. 

P.D. Smith Department of Mathematics. University of Dundee. Dundee DD1 .jHN, Scotland, UK 

Introduction. 
In the analysis and measurement of electromagnetic systems, much emphasis has been placed on their 
characterisation in the frequency domain. Although this is entirely appropriate for those systems 
which are narrow band, an increasing number of practical systems are wideband or ultrawideband 
(UWB), spanning several octaves of frequency in operation. The advances in UWB pulsed source 
performance over the last decade have given rise to several novel applications, including UWB radar 
[1], ground penetrating radar [2], and ultrawideband synthetic aperture radar [3]. Current source 
technology, providing pulsed waveform risetimes of the order of 100 picoseconds, is reviewed in [4], 
whilst other faster rise time applications, albeit of lower power, are reviewed in [5]. The book [6] 
reviews present approaches to UWB studies. 

Ultrawideband radar requires the faithful radiation, and reception, of a temporally compact, ultrawide- 
band pulse of some pre-determined waveform, coupled with analysis of the target scattered signature, 
both in the early time and the late time. In the early time, scattering by features such as edges is 
important, whereas the later time response is predominantly of a damped, oscillatory nature which 
can be described in terms of the so called "complex resonances" or "poles" of the Singularity Expan- 
sion Method [7]. These later time features may be strongly pronounced for structures with cavities, 
especially if the Q factor of the cavity is high, so that one or more oscillation has relatively long dura- 
tion. Determination of the corresponding poles has been explored as the basis of target identification 
algorithms [6]. 

In other areas as diverse as personal communications and satellite communications, attempts to cir- 
cumvent various physical constraints, such as antenna size, have lead to the increasing deployment 
of wideband antennas in the form of multiband antennas. A novel antenna is the fractal antenna re- 
cently examined in [8]. Electromagnetic intereference (EMI) and electromagnetic compatability(EMC) 
continue to grow in importance as the operating frequency of devices increases and the spectrum be- 
comes increasingly crowded. Wideband antennas are central in the effective location and assessment 
of sources of EMI, and in the determination of both in-band and out-of-band responses of radiating 

devices. 

Time domain techniques are especially attractive to the wideband community. The impulse response 
of a radiator or scatterer theoretically contains the complete frequency spectral response; in practice, 
the finite risetime of sources and measurement systems restricts attention to the smoothed impulse 
response stimulated by a transient pulse of short duration (such as the "Gaussian" pulse), which 
then provides (via a Fourier transform) a wideband system response, up to a maximal frequency 
inversely proportional to the pulse duration. For these reasons, numerical simulations often calculate 
a smoothed impulse response to assess the corresponding finite bandwidth response. 

Whether it is obtained directly (by measurement or simulation), or by transformation of frequency 
domain data, the time domain response of a scatterer, to transient incident illumination, has a direct 
physical interpretation, which is invaluable in discerning such features such as the specular return, 
creeping wave phenomena, and cavity resonances. 

Let us consider the available analytical and numerical techniques for obtaining the time domain 
response, and, by implication, the wideband frequency response, of a scatterer. 

Kharkov, Ukraine, VHth International Conference on Mathematical Methods in Electromagnetic Theory 



74 MMET'98 Proceedings 

Analytical and Numerical Time Domain Techniques. 
Analytical techniques find their greatest success on narrowly restricted classes of problems. Examples 
include the Mie series solution of scattering by a sphere (and other such "separation of variables" 
solutions for canonical scatterers), low frequency (Rayleigh) scattering, and canonical problems scrape 
by the Wiener-Hopf technique [9]. Techniques applicable to wide classes of scatterers are invariably 
numerical. At high frequency, ray techniques, such as the geometrical theory of diffraction (GTD) and 
its extensions [10], can provide good approximations for relatively large scatterers. For the smaller 
and intermediate wavelength regime, integral equation approaches have been successfully used for the 
numerical calculation of electromagnetic wave interaction with scatterers, both in the time domain 
[11] and the frequency domain [12]. We will briefly describe how integral equation methods can be 
efficiently exploited to obtain scattering signatures across a broad band of frequencies, particularly 
focussing on the time domain form. The scope and advantages of frequency domain techniques are 
well explored in [12]. In this regime, other possible approaches include finite difference time domain 
(FDTD) schemes [13] and finite element methods(FEM), resulting from the direct discretisation of 
Maxwell's equations. Of course, none of these techniques exists in isolation, and various hybrid 
schemes, combining analytical approximations and numerical attacks, have been devised. A discussion 

of these issues is in [14, 15]. 

Between the extremes of purely analytical and purely numerical techniques lies the Method of Reg- 
ularisation (MoR). This (frequency domain) method is based upon exact inversion of a singular part 
of the original equation, which is often identifiable as a "static" part. In the process a system of first 
kind equations is converted to a set of second kind equations, enjoying various beneficial properties 
such as guaranteed rates of convergence; the resultant system of equations can be solved vastly more 
efficiently than with the general purpose numerical schemes mentioned above. It is perhaps the only 
available method, of some limited generality, that is capable of providing a truly wideband response 
for a restricted class of scatterers, spanning the frequency range from quasi-static to quasi-optical. 
This method works well when scattering problems are posed as mixed boundary value problems in 
coordinate systems in which the scattering surfaces form portions of level surfaces (in which one coor- 
dinate is held constant). Usually the scattering problem is formulated in terms of the eigenfunctions 
associated with separation of variables for the Helmholtz equation giving rise to dual or triple series 
equations, although the basic idea can be applied to the first kind integral equations arising for these 
problems [16]. The class of scatterers to which the method applies includes objects of some com- 
plexity, with edges and cavities, and is therefore extremely valuable in providing rigorous solutions to 
"benchmark" scattering problems for testing more general purpose numerical codes. Indeed complex 
scatterers remain the ultimate challenge for electromagnetic signature characterisation [17]. 

In the next section we consider time domain integral equation. If the incident field is taken to be a 
Gaussian pulse (i.e. a smoothed impulse), the smoothed impulse response can be calculated. After a 
Fourier transform the bistatic response as a function of frequency is obtained; the highest frequency 
in this broadband response is dictated solely by the effective frequency content of the pulse. Although 
a frequency domain integral equation approach might be considered for such broadband calculations, 
the time domain approach is often more efficient. The computational complexity grows substantially 
as the surface area (in square wavelengths) of the scatterer increases, so that whilst the integral 
equation approach is formally correct for all frequencies, it is of practical use only for scatterers up 
to several wavelengths in linear dimensions. (The computational complexity of differential equation 
methods is determined by the volume (in cubic wavelengths) of the truncated free space grid in 
which the scatterer resides.) The time domain integral equation approach and other "resonance" 
regime methods therefore complement high frequency methods. As well as accurately determining the 
response at longer wavelengths, it enables one to determine the scattered response in the transition 
regime where the accuracy of results obtained by GTD and other methods is less certain. 
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Time Domain Integral Equation Methods. 
In free space, an incident electromagnetic field T,T induces currents J and charges^ onthe surface 
5 of a perfectly conducting object. In turn these set up a Maxwellian scattered field E , H  satisfying 

V x Es = -/i-^~ , V x H   = e-^- + J (1) 

A standard approach expresses the fields in terms of a scalar potential <f> and a vector potential A via 

r = M-1VxX,F = ~-V^ (2) 

where, in the Lorentz gauge, the potentials may be constrained so that 

V.Z+e^O (3) 

This choice is convenient because individual components of I and <£ satisfy the scalar wave equation. 
A continuity equation connects the surface currents and charges 

ft(f,t) +  VsJ(r,t)  =  0, (4) 

where Vs is the surface divergence on S. The potentials are then given by: 

^ t)=±[ pP4dS> , A(^) =   f / 5^' , (5) n'j        47reis|r-r'| V     ;        4TT JS |r - r'| 

where r = t _ |r _ f'l/c is retarded time, and c is the speed of light. The electric field integral equation 

(EFIE) arises by setting the electric field component tangential to S,(E + E )ian, to zero: 

—  j.\tan K(r,t) 
dA      tan 

V^(r,*) +  -^(f,t) (6) 

This holds at every point of the surface S and is valid for surfaces, open or closed. It is worth noting 
that the Sommerfeld radiation condition is automatically satisfied. The equations (4), (5), (6) are 
central to our numerical scattering calculations. As explained in [11], a choice of basis functions can 
be defined on a triangular mesh which approximates a dissection of the arbitrary scattering surface 
5, and utilises the equations so that present current and charge values are calculable in terms of 
previous values. This principle can be easily explained by considering the related magnetic field 
integral equation (MFIE), which is valid only for closed surfaces (without apertures or edges); it is 
derived (see [18]) by examining the components of the magnetic field tangential to the surface (that 
is, n x IS = 7), obtained from the curl of the vector potential, and has the form 

^^nxi/^rJ + ^WrP^X^ =  » X if (7) 

It is now transparent that the value of the surface current, at a particular point r on the surface and 
at present time t, is formed from a (weighted) sum of surface currents at every other point on the 
surface, but taken at times earlier than t : specifically the contribution from point r' is retarded by 
an amount equal to the travel time of light, namely \r-r'\jc. 

This forms the basis for a numerical discretisation scheme, in which the surface S is divided into N 
fiat patches Si,...,SN with centroids ra,..., fN and unit outward normals nt,. ^, nN._The current 
is assumed constant on each patch. A discrete time step At is chosen, and we set Jiik = J(rt, kAt). If 
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the time step is chosen to be less than the minimum travel time of signals between any two centroids, 
and linear interpolation is used to approximate J(fi,t') when t' is not an integral time step value, 
then the discrete solution value Ji,k+i is a linear combination of the solution values at earlier time 
steps kAi, (k — ±}Ai,..., and the exciting held. The self patch contribution 

is normally approximated by zero. 

The system is supposed quiescent before the transient pulsed illumination arrives, at, say, time zero: 
J^k = 0, k < 0. Subsequently, the discrete surface current values are updated at each time step in 
terms of the values previously calculated by this scheme. Both this scheme, and the more sophisticated 
scheme described in [11] for the EFIE, work well once a stabilising device is employed. Typical results 
based upon the MFIE appear in [19]; a variety of problems arising in the study of wideband antennas 
and their impedance, radar polarimetry and calibration, and scattering problems, including obstacles 
with a surface impedance coating, are described in [11, 20, 21, 22]. 

Time Domain Response of Canonical Scatterers via MoR. 
Canonical problems involving thin perfectly conducting shells are amenable to the frequency domain 
solution technique known as the method of regularisation (MoR) or semi-inversion method. Although 
the shells should coincide with part of one or more coordinate surfaces of spherical or spheroidal or 
other special geometries, within this constraint a wide variety of diffraction problems has been solved, 
including the spherical reflector antenna [23], a sphere with one or two holes [24], a spheroid with one 
or two holes [25], spherical or spheroidal shells enclosing interior shells, and such structures enclosing 
multilayer dielectric shells [26]. 

Consider the wave diffracted by a thin, perfectly conducting, spheroidal shell, which possesses two 
symmetrically placed circular holes to form a hollow spheroidal cylinder, in which the axially aligned 
source is a vertically polarised electric dipole. A rigorous formulation of Maxwell's equations with 
boundary and edge conditions, produces a triple series set of equations of the first kind [25]. The MoR 
technique analytically transforms the set, via a form of Abel's integral equation, to an infinite matrix 
equation of the second kind. The Fredholm nature of the equation so obtained ensures the existence 
of a unique solution. The numerical solution algorithm is always stable, and converges to the exact 
solution with increasing truncation numbers. For practical accuracy, a matrix of the order slightly 
greater than the electrical size of spheroid should be solved. Two noteworthy advantages gained by this 
approach are great reductions in computational complexity (compared to the more general methods 
described above) as well as reliable quantification of edge scattering and cavity effects. 

The frequency dependence of radiation patterns was computed in the resonance range 0 < kb < 20 (b 
denoting the semi-major axis of the spheroid and k the wave number) for spheroidal shells with axial 
ratios in the range 0.1 < q < 0.999 that corresponds to changing the form from practically cylindrical 
to spherical. It is instructive to examine, via an inverse Fourier transform, the time domain response 
of such cavities to a finite duration pulse: it is convenient to employ the Gaussian time dependence 
exp(-6^(ct/27r6)2), whose duration depends the dimensionless parameter b\. The radiated response 
for a closed sphere at 10° off axis is shown in figure la, in which the incident pulse is initially visible, 
followed quickly by the specular return, then the creeping wave response followed by very small 
amplitude late time oscillations. New electromagnetic features appear when the closed sphere is 
opened up as a cavity, most notably the occurrence of lightly damped (high Q) oscillations which 
are identifiable as internal cavity oscillations whose frequency is slightly shifted from the frequencies 
at which the closed spherical cavity would oscillate. In the frequency domain response these appear 
precisely as near resonant features. Two such oscillations are visible in figure lb (note the incident 
pulse is broader). 
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These results were compared with those obtained by the time domain EFIE code discussed above. 
For the closed structure, the results are in good agreement ; for the unclosed structure the cavity 
oscillation frequencies (obtained by Fourier analysis) are correctly predicted but are more strongly 
damped The accurate prediction of the cavity Q factor is thus perhaps the most demanding test of 
a general purpose time domain numerical code. On the other hand, care must be taken m frequency 
domain calculations to resolve such features adequately as a function of frequency, otherwise acausal 

features will appear in the transformed time domain response. 

SpherB radius a, dlpole location 1. 

Sphere radius a, with two holes of angle 8Q =30 

Figure 1: Radiated field at 10° off-axis for the closed sphere (a) and the spherical cavity (b). 

Conclusion. . 
Our understanding of diffraction phenomena, is enhanced by examining both time and frequency 
domain aspects, particularly when complex scatterers, incorporating edges and cavities, are involved. 
Some features such as high Q resonances are better perceived in the frequency domain, whilst other 
broadband features such as specular returns and creeping waves appear more clearly m the time 
domain This article discussed the relative merits of several low and high frequency general purpose 
techniques, concentrating upon time domain integral equation techniques. The validity of codes based 
upon these techniaues can be established by comparison with rigorous solution techniques for classes 
of canonical problems, such as spheroidal shells, which include the required features of interest (such 
as cavities). In this context the method of regularisation herein discussed is particularly useful. More 

results will be presented at the Symposium. 
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Abstract 
The Galerkin methods of obtaining approximate solutions of integral equations and their applications to 

problems of scattering of electromagnetic and surface water waves are examined . Two typical problems, one 

occurring in electromagnetic wave propagation and the other in the propagation of two dimensional surface 

water waves, are taken up as illustrative examples of the methods. 

1. Introduction 

Varieties of mixed boundary value problems (see Sneddon [6]), of Mathematical Physics 
are solved by first reducing them to those of solving integral equations of various types and 
forms. It is only in some specially simple situations that exact closed form solutions of the 
integral equations can be determined completely, and, in the cases of integral equations with 
complicated looking kernels or otherwise, only approximate solutions of certain types can 
be worked out successfully. Of all such approximate methods for solving integral equations, 
the Galerkin methods (see Jones [4], Evans and Morris [2],[3], Banerjea and Mandal [1], 
Mandal and Das [5], and others) appear to be extremely powerful, in the sense that certain 
practical results of high accuracy can be recovered with appropriate choice of certain sets of 
independent functions, to be described in section 2 of the present paper. 

After explaining the major mathematical ideas behind the Galerkin methods in section 2, 
we have taken up in section 3, two different mathematical problems of scattering, occurring 
in Electromagnetic theory and in the theory of water waves respectively, and have reduced 
each of these problems to those of solving two integral equations of first kind, with two 
different kernels. In section 4, we have presented the approximate solutions of the integral 
equations formulated in section 3, by employing just one term Galerkin approximations and 
in section 5, we have derived approximate results for certain special quantities of practical 

interest for both the problems considered in section 3. 

2. The major Mathematical ideas 

In many practical situations, like the ones considered in the present work, the principal 
mathematical problems turn out to be those of solving some linear operator equations (linear 

integral equations, for the problems considered here) of the type 

(Lf)(x) = l(x), xeA, (2.1) 

where L is a linear operator from a certain inner product space S to itself and A C M (can 
be IT, in general), where / and I are real valued functions. It may also be required (as in 
the problems considered here) to determine the inner product : 

[i,f\ = \fA--=JAf(*)K*)d*, (2-2) 
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Whenever the mathematical problems at hand are expressible in the forms of the two relations 
(2.1) and (2.2) we can resolve them, approximately, by utilizing the following senses and 

Definition: A real valued function F(x) <= S is said to solve the equation (2.1), approximately, 

if and only if 
[LF,\]==[\,LF]*s[\,t\, (2.3) 

where the symbol « means "approximately equal to" and we shall write:    / « F, in the 

sense that 
[L/,A]«[LF,A], (2.4) 

for all A(ar) G S. 

Then, using the approximate solution F of the equation (2.1), we can derive an approx- 
imate value of the inner product [/, I], as given by the relation (2.2), in the form: 

[fJ]*[F,l]. (2.5) 

In the Galerkin methods which can be successfully utilized for many problems (especially 
for the problems considered here), we express the approximate solution F(x) , in the form: 

n 
^) = £^-(.T), (2.6) 

i=i 

where {<ßj(x)}^=1 denotes a set of n linearly independent functions (not necessarily orthog- 
onal) in S and c/s are n constants to be determined, as desired below. 

Using the relation (2.6) in the relation (2.3), after choosing X(x) = <ßk(x), for a fixed 
k (1 < k < n), we obtain the following set of approximate linear relations 

itcjlLtjixlMz)] ~ \!{*)Mx)l (* = 1,2, • • • ,n). (2.7) 

Treating the above approximate relations (2.7) as a set of n linear equations, we can de- 
termine the constants c/s (j = 1,2, • • •, n) and then the determination of the approximate 
solution F(x), can be completed by using the relation (2.6). 

Also, the approximate evaluation of the inner product [/, I] can be completed and we 

obtain 

ft*]« £<*[<M- (2-8) 

As an example, by taking n — \ only, we obtain 

/w»^) = S*w-        "-"-war        (M) 

It is obvious from the above discussion that varieties of Galerkin methods can be developed 

by varying 0/s and n. 
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The methods for which n = 1 are called (see Evans and Morris [2,3]) "single-term" 
methods, whereas for values of n > 1 the corresponding methods are referred to as "multi- 
term" methods (see Banerjea and Mandal [1] and others). In the present work we shall 

concentrate only on "single-term" Galerkin approximations. 

We shall now make the following observations: 

We have 

(t) [F,LF\*[F,t\, (ii) [f,l} = [lJ] = [lJ} + [U-n 
m P, / - F] » [Lf, f] - 2[LF, F] + [F, LF\, (by using (<)) 
(it;)    [f - F, L(f - F)} « [L/, f] - 2[LF, F] + [F, LF}. 

By using the results (iii) and (iu) we find that 

[lJ-F]^[f-F,L(f-F)}, (2-10) 

and then one of the following two cases hold good. 

Case (a): If L is a positive semi-definite linear operator, i.e. if [h, Lh]>0, for all h&S, 

then /o 11 \ 
[l,F]<[lJi (2-11) 

Case (b): If L is a negative semi-definite linear operator, i.e. if [h,Lh] < 0, for all h G S, 

then /f> .. oX 
[Z,F] >[*,/]. (2-12) 

The above results (2.11) and (2.12) imply that the "approximate" value [l,F], computed 
with the aid of the "approximate" solution F of the equation (2.1), provides a Lower bound 
for the actual quantity [I, f] in Case (a) whereas [I, F] will provide an upper bound for [I, }\ 

in Case (b). 

"The above observations clearly help in obtaining estimates of the quantity [I, f] in many 
practical problems, and in sections 4 and 5 we have demonstrated the applications of these 

ideas to the two problems of scattering, considered in section 3. 

3. Two mathematical problems of scattering theory 

Problem 1. 
A problem occurring in Scattering of Electromagnetic Waves (bee Jones [4JJ 

To solve 

^ + ^ + ^ + ibV = 0, (k>0), for -oo<2<oo, 0 < x < a, 0<y<b,    (3.1) 
cte2     dy2     dz>        v        v 

with - <k, such that 

(i)      (j) = 0, on x = 0 and x = a,    {ii)    j- = 0, on y = 0 and y = b 

(iii)      (j) 

(e-«Az -|_ ReiXz) sin ( — ) , as z —> -oo, A > 0 (a known constant) 

Te~iXz sin f — J , as 2 —> oo, A > 0 (a known constant) 
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(iv) 

(Note that R and T are unknown complex constants to be determined). 

'(A)   ^ = Q. onz = 0±. fovd<y<b,0<x<a, 
" '   dz 

(B)   (j>\z=ö+ = 0U„- , for 0 < y < d, 0 < x < a, 

(C) 
dz z=0+ dz 

for 0 < y < d, 0 < x < a, 
z=o- 

along with the edge condition that \/<ß possesses a square-root singularity at the edge y - d. 

Note: The forms of (j) as given by (Hi), suggest that 

-A5 + k2 = 0 A2=   *s _ 
^2 

>o, 

along with the equation (2.1). 

Reduction to two integral equations. 

Setting 
4>(x,y,z)=ip(y,z) sin 

7T.T (3.2) 

with 

<P{y, z)   =   e~iK°z - f) ane-iK^ Sgn(^) cos (^), (Sgn(z) = ±1, (3.3) 
n=0 

according as z > 0 or z < 0), 

with 2^2 

/vn —      2£in,   ßn 
■XT-K 

- A2 ] > 0, (assumed), and «0 = A, (3.4) 

where OQ = R = (1 - T) and an's (ra > 1) are unknown constants, we find that all the 
conditions of the probleml are met with, except the two conditions (A) and (B) of (iv), which 
lead to the following DUAL SERIES RELATIONS, for the determination of the constants 

£ an cos (^) = 0, for 0 < y < d, (3.5) 

and ^ 
-*, + £ Knan cos (^f-) = 0,hvd<y<b. (3.6) 

n=0 \    0   / 

These dual relations can be easily reduced to two integral equations, in the following manner: 

Firstly, setting the left side of the relation (3.6) as equal to -a0K0bg(y), and noting that 

g(y) = 0, for d < y < b, we can easily determine the Fourier coefficients, in terms of g(y) 
and then the relation (3.5) easily gives rise to the integral equation: 

[dK(y,t)g(t)dt = —, (0<y<d), 
Jo «o 

(3.7) 
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with ~      1       /mvy\       fnnt\ 

n=l v    -    / v   -    / 

We also find that a quantity H can be defined as : 

2«V   oo   / 4 Jo 

(3.8) 

(3.9) 

IK0 

As a second approach, setting the left side of the relation (3.5), as equal to —j (1 - 

ao)bgi(y), and noting that ffl(y) = 0, for 0 < y < d, we can again determine the Fourier 
coefficients easily in terms of 9l(y) and then the relation (3.6) gives rise to the Mowing 

integral equation: 

1 + fKiiyrffrMdt = Q,{d<y< 6), (3-10) 
Jd 

W):=So£e-»cos(7M^> (3J1) 

We also find that . , 
2mo  =KO    giW- (3-12) 

Jd 

1_ 

H 1 -Oo 

We have thus reduced the problem 1 to that of solving either of the integral equations 
(3.7) and (3.10), along with either of the two relations (3.9) and (3.12), respectively, which 
determines an "important" quantity H. It should be emphasized that knowing either g(y) 
or gi{y), the problem 1 can be solved completely. However, the kernels K and Kx are 
complicated and hence, we will adopt approximate methods (Galerkin methods) as explained 
in section 4. We also make the observations that the functions g, gx and the constant H are 

real, since the functions K and Kx are so. 

Problem 2: 
A Problem occurring in Scattering of Surface Water Waves, 

(see Evans and Morris [2]) 

Tosolve     av   av   aV 

such that 

Ü) 

(ii) 

 + £Ü + 5lZ = o, for - oo < x < oo, y > 0, -oo < z < oo, 
dx2     dy*     dz2 

K<f> + — = 0, on y = 0 and - oo < x < oo, 
dy 

-oo < z < oo, (K > 0, a known constant) 

(A)    ^ = 0, on and 0 < y < a,     (B)    — 

k (C)    <^L=0+ = 0L=o- • for y > a 

(3.13) 

B=0+ 
dx 

, for y > a, 
x=o- 
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-       e-Ky+ipz(e-imw + Jfeim*^   as X  ► OO, 

Te-Ky+ipze-imx^   ag x  > ^ 

(in)      (j> —► <j      where p = xsin(a),m = Kcos(a), (0 < a < f) 

(ß and T are unknown complex constants to be determined). 

(iv)      0,V0—>°> as?/—>°° 
along with the edge conditions that \J(j) possesses a square root singularity at the edge y = a, 

ensuring uniqueness of the solution of the problem. 

Reduction to integral equations 

Setting 
4>(x,y,z) = ^(x,y)e^z, (3.14) 

with 

„r  M      /•«> b(k)Sgn(x)(k cos(ky) - K sm(ky))e'k^ 
iP(x,y) = e + Rbga(x)e + JQ k^k2 + K2) 

(3.15) 

where A* = {k2 + p2)* and R = (1 - T) and &(fc) are unknowns, we find that all the 
conditions of the problem are satisfied, except the conditions (A) and (C) of (ii), giving rise 
to the following "DUAL INTEGRAL EQUATIONS" for the determination of the function 

_ r- b(k)(kcos(ky)-Ksin(ky)2dk + im{R _ 1)e_*y = 0, (0 < y < a), (3.16) 
Jo k2 + K2 

r Kk)(kcos(ky)-Ksm(ky)) Rß__Ky ß) (317) 

Jo k1(k
2 + K2) 

in which R is also an unknown constant. 

The above dual integral equations can be reduced to two separate integral equations, by 
employing a trick, similar to the one used for the problem 1, along with the use of the 
Havelock's expansion theorem (see Ursell [7]). In fact, this has already been done by Evans 

and Morris [2]. 
KR 

Firstly, setting the left side of the relation (3.16), as equal to —f(y), and noting that 

f(y) = 0, for 0 < y < a, we can determine b(k) in terms of f(y), by using Havelock's 
expansion theorem, and then the relation (3.17) gives rise to the integral equation: 

f°° f(t)L(y, t)dt = e~K\ for y > a, (3.18) 
Ja 

_ f°° (kcos(kv) - Ksin(ky))(kcos(kt) - Ksm(kt)) .   _ 
L{y^-Jo h(k2 + K2) ' 

along with the defining relation: 

A.jH^ß_=rme-KtdL (3.20) 
ixKR Ja 

where 
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Secondly, setting the left side of the relation (3.17), as equal to --(1 - R)fi(y), and noting 

*w f (,.\ - 0  t«r„^ n   we can determine b(k) in terms of /j(y), by using IWlnck's 

expansion theorem^ Ld then the relation (3.16) gives rise to the integral equation: 

fa Mt)M{y,t)dt = e~K\ for 0 < y < a, 
Jo 

where 

r°° ^(kcos(ky) - Ksm(ky))(kcos(kt) - ifsinfot))    M 

(3.21) 

along with the relation 

(A;2 + K2) 

K2A    Jo JU; 
,-Kt dt. 

e~kSdk,        (3.22) 

(3.23) 
7T2K2A 

We note that /, /i and A are all real quantities, since L and M are real. 

From the above discussion it follows that the problem under consideration can be solved 
completely, either by solving the integral equation (3.18) along with the use of the relation 
(3.20), or by solving the integral equation (3.21), along with the relation (3.23). 

4. Approximate solutions of the integral equations. 

In this section, we shall employ " single-term"-Galerkin methods to obtain approximate 
solutions of the integral equations (3.7) and (3.10), derived for the .Problem^ as well as of 
the integral equations (3.18) and (3.21), derived for the ProbJem_2. In fact these solutions 
have also been presented earlier by Jones [4] and Evans and Morris [2], respectively. 

For the equation (3.7) we assume a "single-term" Galerkin approximation as given by 

g{y) ~ ^0 (a constant), 

in the light of the relation (2.6), with 

d d 

b0 = 
Kosi&KtoWdv  Kogf>vn)-w (^ 

(4.1) 

(4.2) 

n=l 

in the light of the first of the relations (2.9). 

Similarly,we assume a "single-term" galerkin approximation to the solution of the integral 

equation (3.10), as given by 

fir (b — y' (4.3) 

with 

C0 = -8(6 - dfir 

,n=l 4(6 -dy 

imd 
cos 

(4.4) 
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Again, for the solution of the integral equations (3.18) and (3.21), we assume the following 

"single-term" Galerkin approximations ( see Evans and Morris [2] ) : 

M « Cj(y) = d J 
r ... . Ku "I 

,-Ky Iy _^L Tdu i for a < y < oo, (4.5) 
Ja   (ni? — a2) 2 

e 

and 

h(v)« CM) = <**-* jf ^Sjl""'for °< y*"' (46) 

where Cx and C; are to be calculated by using the first of the relations (2.9), giving 

= L°°e-«yf(y)dy (4 7) 
1     E° J? L(y,t)f{t)f(y)dydt 

an<1 a = SSe-K'f*M (4.8) 
1   Jo !o M(yM(t)h(y)dydt 

5. Some approximate results 

In this section we shall explain about the derivation of some approximate results for the 
quantities H and A associated with the two problems 1 and 2, considered in section 3, which 
represent important quantities of practical interest in the theory of electromagnetism (see 
Jones [4]) and in surface water wave theory (see Evans and Morris [2]), respectively. 

By using the relations (3.9) and the approximate solution for g(y) as given by the relations 
(4.1) and (4.2), we can easily determine H approximately.  We find that in the particular 

situation, when d = - and //n « — (i.e when KQb « TT), we obtain 
2, 0 

Similarly, by using the relation (3.12), along with the approximate solution for g^y) as given 
by the relations (4.3) and (4.4), we can determine an approximate value for the quantity H. 

b rar        . 
We find that when d = - and /in = —, we have 

gg.Jlfgf + f       2n      U-Q.87^- (5-2) 

From the theory that has been explained in section 2, we find that the two results in the 
relations (5.1) and (5.2) provide some upper and lower bounds respectively, for the quantity 

H, and, we find that the average of these two bounds gives the value -0.73—, which, 

according to Jones [4], is very near the actual value -0.71 — . 
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Also by using the approximate solutions as given by the relations (4.5), (4.6), (4.7) and 
(4 8) into the relations (3.20) and (3.23), we can determine two values of A, approximately, 
which provide some upper and lower bounds, A, and A2 respectively, for this quantity. Then, 

with the aid of the defining relation (3.20), we find that 

\R\ = (l + TT2A2sec2(a))  a (5.3) 

The numerical values of |fi| have been worked out by Evans and Morris [2], by using 
the two bounds for Ax and A2 of A as described above, and we give below a representative 
table for a = 30° for the purpose of completion of this article. The table clearly shows the 
closeness of the bounds of \R\, i.e. \RX\ and |i?2|, which must be attributed to the P^ular 
choice of the "single-term" Galerkin approximations as suggested in the relations (4.5) and 

(4.6). 

Table 

IÄI / p 0.2 0.4 0.6 0.8 1.0 1.4 1.8 

\Ri\ 0.0569 0.2432 0.5389 0.7971 0.9252 0.9900 0.9984 

W 0.0569 0.2430 0.5382 0.7961 0.9246 0.9898 0.9984 

Table of values of \Rj\ = (1 + 7r2^sec2(a))  2, j = 1,2, 
for q = 30°, /i = Ka~ 
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Abstract 

Maxwell's equations form the basis in electromagnetic field theory. The electromagnetic field, 
if it exists, satisfies Maxwell's equations and the boundary conditions associated. These equations are 
simple in the form but contain the variations of the field quantities throughout three-dimensional 
space (rectangular, cylindrical, and spherical coordinate systems are used) and time. The general 
solution to Maxwell's equations is usually difficult to find. However, analysis of electromagnetic 
fields requires to find the general solution without simplifications and assumptions, and our goal is to 
obtain explicit analytic solutions to Maxwell's equations with the corresponding boundary conditions. 
This paper researches methods and reports a straightforward mathematical foundation for solving 
Maxwell's equations in analysis of transverse magnetic (TM) and transverse electric (TE) fields. 

1. Introduction 

The electromagnetic field model is governed by four Maxwell's equations, which are given in 
the point form for time-varying fields as 

oH(x,y,z,t) VxE(x,y,z,t) =-fl- 
at 

VxH(x,y,z,t) = aE(x,y,z,t) + edE(x\y,Z,t)+J(x,y,z,t), 
dt 

V-E(x,y,z,t) = P(X'y'Zj) , V-H(x,y,z,t) = 0, 
£ 

where E is the electric field intensity; H is the magnetic field intensity; J is the current density; p is 
the charge density. 

The development of analytic methods to solve Maxwell's equations in the coordinate systems 
used is our particular interest. The common coordinate systems applied (rectangular, circularly 
cylindrical, and spherical) are studied, and complete analytic solutions to Maxwell's equations are 
given. The rectangular and cylindrical coordinate systems are commonly used. This paper 
demonstrates that an analytic solution to Maxwell's equations, if it exists, can be find in the chosen 
coordinate system by the superposition of TM and TE fields, and the reciprocity theorem can be used. 
In the circularly cylindrical system, the TM and TE potentials satisfy the Heimholte equation, and the 
first-, second-, and third-kind Bessel functions are applied. Only the spherical coordinate system has 
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complete coordinate surfaces of finite size, and therefore, in this system the boundary value problem 
can be solved. Hence, the spheroidal configuration, which has 0 -symmetry, is of a great importance. 
The wave or Helmholtz equation for the field quantities (E or H) in terms of the time-varying sources 
can be expressed and solved in the spherical coordinate system. 

2. General Methods of Solution 

For time-varying fields, the sinusoidal steady-state behavior of the field vectors is our interest. 
We assume that the E and H components are varying sinusoidally; in particular, 

E(x,y,zj) = Ex(x,y,z,t)ax+Ey(x,y,z,t)ay + Ez(x,y,zJ)az , 

where Ex(*,y,z,t) = Emxcos(cot +yrx),Ey(x,y,z,t) = Emycos(eot+yry), Ez(x,y,z,t) = Emzcos(wr+yft); 

H(x,y,z,t) = Hx(x,y,z,t)ax + Hy(x,y,z,t)ay+Hz(x,y,z,t)az. 

vfl^Hz(x,y,z,t) = Hmcos((X+yrx),Hy(x,y,z,t) = H^cosfa 

The magnitudes Emx, Emy, Emz, Hmx, Hmy, Hmz and phase angles are independent of time, 

however they depend on the spatial coordinates. 
By using complex phasor quantities of E and H, and canceling the eJ0)' term which is 

common to the right and left sides of equations, one obtains the time-domain form of Maxwell's 
equations. In particular, the electromagnetic field satisfies the following equations in the point phasor 
form 

V x H = JCüEE + J , V x E = -jüJfjH, 

V-£=£, V-# = 0, (1) 
£ 

which should be solved. 
It has to be emphasized that the permittivity, permeability and conductivity are nonlinear 

functions of frequency. 
By defining H2=H-Hl, E]=E-E2 and / = /, + J2, we have 

V x (//, + H2) = jcoe(El +E2)+ (/, + J2), 

Vx(£,+£2) = -jO)n(H1 +H2). 
A set of equations is found to be 
VxH{ = ;'6>eE, +/pVx£,= -J0)^H{, 
V x H2 = j(oeE2 +;2,Vx£2= -joifiH2. (2) 
Compare to equations (1), equations (2) can be easily solved because the divergence is zero. 

That is, H can be represented by a vector potential P, which is given in terms of its components along 
and perpendicular to the coordinates used. Hence, 

H = VxP,P = Pmai+P,. 
Here, P, = V x PTElat is transverse (perpendicular) to the unit vectors a,; Pm and PTE are the scalar 
potentials. 

We obtain 
H = '7xP1Mal +VxVxV; • 
Using Hl =VxPTMai in VxH = j(oeE + J ,one finds 
V x V x Pm a{ = j(oeEl + J . 

Furthermore, V x (£, + iw^P^a; )= 0, 
and hence 
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E^-jaflPwai+Vp. 

By making use of Ey, the following equations result 

H,=Vxf„„„£|=
VxVx/'^-\ 

jcoe 

VxH2= jcoeE2, V x E2 = -jco^iH2 - M2. 

From equation 
E2 = VxPTEan 

one finds PTE by solving equation 

V1PTEai=y2PTEai + M2. 

The thorough analysis performed indicates, that for TM and TE fields the equations 

and      E2=VxPTEai 

should be solved by using the following procedure. In the Cartesian coordinate systems, as one 
obtains Pm and PTE, Hl and E2 results. Furthermore, El can be found by solving 

V x Hx = jcoeE1 + /,, EY = -jo)fjPTMai +- 

dR TM 

\ fy J 
JCOE 

while E2 is obtained using PTE , and H2 is found from 

Vx£2= -jto/jH2, H2 = jo}£PTEai 

rdP   A or
TE 

V&j  J 

jtafi 

In the cylindrical coordinate system, which is given in terms p,^>,z, the TM and TE field 

equations are 
H = VxPmat 

and      £ = Vx Pr£a,, 

and the scalar potential satisfies Heimholte equations are given by 

V2Pm=Y2Pm,y2=-(02ii£ . 

The following partial differential equation for PTM results 

dR TM 1    d 

Pdp{       dp 
+ - 1  d2PTM . d2R 'TM + - TM 

■r2Pm=J,> 
p-    dip- dz 

and the solution of this equation is found using hyperbolic functions. In particular, 

Pm=Qp(p)QtW<l>z(z), 

where Op(p), O0(0) and Oz(z) are the Bessel functions. 

If the spherical coordinate system is used, the field components are found for TM fields as 

H -   ldP™   H -    l    dP™ 
*       r  96   '    e    rsinö   d<p   ' 

Ee=- 
1    d2R TM 

jCt)£r   dOdr 

and for TE fields we have 

. Er=- 
1 fn 

jcoe 

d2R 

dr 
f- + ß2P, TM > E± — 

1 d2R TM 

jaers'mQ dQdr 
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E*=- 
\dPTE 1     dPTE 

rsinö  d$ 

Ha=- 

r de 

1    d2P TE 

jCDfJr dOdr 
, Hr =■ 

im dr2 

\ 

\    <" J 

H 1        d2PrE 

*       j'w/irsinö d<j)dr 

The corresponding Heimholte equation is 

-Li. 
r2 dr 

d(jP«) 

dr 
+ - 

r2 sin0 dO 

1   D       V\ 

sinö 
dfePm) 

de 
+ 

d%Pm) 

r2 sin2 6 de      d<l>2 
+ ß%PrU\- 

v ^ v 

Transient space-time problem should be solved in many applications. Consider the following 
equations 

a A 

V-£(*,y,z,0 = P(*,:y,Z'0, V-H(x,y,z,t) = 0, 

assuming that the excitation is a known function of time. To solve the problem, the Fourier or 
Laplace transforms can be used. The solution is not trivial, and the particular scenario should be 
considered to solve the problem. 

3. Duality of Solution 

If the field varies sinusouidally with time, the time can be eliminated from the fundamental 
equations; that is, the solution is obtained in terms of complex vectors. Assume that the 
electromagnetic field satisfies the following two equations 

V x Hl = jmx Ex + J,, V x £, = -jtofii H{ 0) 
with the corresponding boundary conditions. 

If the solution of these equations is known, one can solve 
V x H2 = jcoe2E2, V x E2 = -jo>ii1H2 - M2 

by using the transformations 
El=-H2, Hl=E2, Jl=-M2,el=p2, ft=£: 

El=H2, Hl=-E2, /,=M2,e,=/i2, (i1=e2, 

(4) 

or 
or EX=H2, Hx :E2,   J1=~M2,£i=-ß2,   ft 

In particular, by applying these transformations, solution of (4) is identical to (3). 

4. Conclusions 

This paper addresses the problem of solution of Maxwell's equations in the rectangular, 
cylindrical and spherical coordinate systems. Sinusoidal steady-state and transient space-time 
problems have been researched. By using the results, it is shown that Maxwell's equations can be 
solved, and important problems have been focused and solved. In particular, the complexity of the 
solution depends on the coordinate system used, and spherical coordinate system has advantages to 
find analytic solutions to Maxwell's equations. 
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RECENT DEVELOPMENTS IN FAST-MULTIPOLE BASED FREQUENCY AND TIME 
DOMAIN SOLVERS 

E. Michielssen, W. Chew, A. Ergin, V. Jandhyala, B. Shanker, and J. Song 
Center for Computational Electromagnetics 

Department of Electrical and Computer Engineering 
University of Illinois at Urbana-Champaign 

UrbanaJL 61801 

Abstract: This paper reviews the state of the art in fast integral equation techniques for solving 
large scale electromagnetic scattering and radiation problems. The Multilevel Fast Multipole 
Algorithm and its frequency and time domain derivatives are discussed. These techniques permit 
the rapid evaluation of fields due to known sources and hence accelerate the solution of 
boundary value problems arising in the analysis of a wide variety of electromagnetic phenomena. 
Specifically, the application of the Steepest Descent Fast Multipole Method to the frequency 
domain analysis of radiation from quasi planar structures, e.g., rough surfaces and finite 
microstrip structures, is described. In addition, the extension of the fast multipole concept to the 
Plane Wave Time Domain algorithm that permits the efficient analysis of transient phenomena is 
outlined. 

INTRODUCTION 

Surface integral equations coupled with Method Of Moments (MOM) based solution algorithms 
have long been conceived as very accurate, but computationally expensive schemes for 
analyzing electromagnetic radiation and scattering phenomena. Unlike finite difference and 
finite element techniques which require the discretization of the entire volume of the structure 
under study, surface integral equation techniques utilize basis functions only on interfaces 
between homogeneous regions, thereby resulting in fewer unknowns. However, in contrast to 
these differential equation techniques, the application of the MOM to the solution of surface 
integral equations leads to a matrix equation involving a dense matrix. As a consequence, for 
large problems, the solution of the MOM equations using direct inversion is impractical due to 
the large CPU time and memory requirements associated with this procedure. The iterative 
solution of the MOM system is also a time consuming process, with both the number of 
operations per iteration and the memory cost associated with storing the matrix scaling 
asO(Ns), where Ns is the number of spatial degrees of freedom of the discretized surface 
current, i.e., the dimension of the system. Integral equation techniques for analyzing surface 
scattering and radiation phenomena have been developed as well. Unfortunately, their 
computational complexity scales as 0(NtN^), where Nt denotes the number of temporal steps 
in the analysis, and prohibits their application to the analysis of large-scale scattering 
phenomena. 

To expedite the iterative solution of electromagnetic boundary value problems, researchers have 
exploited the underlying structure of the Green's function kernel and developed techniques that 
facilitate the fast computation of MOM matrix-vector products [1-5]. We have recently 
developed a host of fast multipole based algorithms for analyzing large-scale radiation and 
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scattering phenomena [6-7]. In this paper, we report on the implementation of the Multilevel 
Fast Multipole Algorithm (MLFMA), and a derivative of the latter, the Steepest Descent Fast 
Multipole Method (SDFMM). These algorithms accelerate the iterative solution of surface 
integral equations that are pertinent to the analysis of scattering and radiation from arbitrarily 
shaped three-dimensional and quasi-planar structures, respectively. The computational cost per 
iteration and memory requirements of the MLFMA and SDFMM scale as <9(A^logAQ and 
0(N ) respectively In addition, the extension of the fast multipole concept to the analysis of 
transient scattering phenomena is described. Fast time domain integral equation based schemes, 
reminiscent of the frequency domain fast multipole methods, further termed Plane Wave Time 
Domain (PWTD) schemes, permit the efficient analysis of transient scattering phenomena m 

0(NtNs\ogNs) operations. 

THE MULTILEVEL FAST MULTIPOLE ALGORITHM 

The MLFMA constitutes an efficient technique for analyzing 3D electromagnetic interaction 
phenomena [3 6 7]. The algorithm relies on a multilevel divide and conquer strategy and has 
been implemented in FISC (Fast Illinois Solver Code) technology. The MLFMA is designed to 
accelerate a matrix-vector multiply that arises in the iterative solution of the MOM equations 
resulting from a discretization of the boundary integral equations pertinent electromagnetic 
scattering and radiation analysis. In the MLFMA, the object under study is first subdivided into 
subscatterers, also termed groups. Fields generated by sources residing in separate source groups 
are characterized through each group's far-field radiation pattern, measured with respect to the 
group's center Then, the addition theorem is used to translate the plane wave components that 
characterize each source group's far-field pattern to the centers of all other, receiving groups. 
Fields received at a group center are then redistributed to the individual receivers residing in the 

erouD. 
Whereas a matrix-vector multiply involving a dense matrix and a dense vector requires 0(NS ) 
operations a matrix-vector multiply carried out using a two-level fast multipole algorithm only 
requires 0(Nl

s
5)operations. An analogy with a telephone network is in order. Assume that N 

telephones are connected to one another with direct connections. The number of network wires 
is N2 However, if "hubs" are introduced in the network, then the number of connections can 
be reduced (Fig. 'l(b)). However, the hub structure implies a three-stage connection process. 
Similarly in the two-level fast multipole scheme described above, a multiplication is effected 
through three separate translation procedures: from source to source group center, from the 
center of the source group to that of the receiving group, and from the receiving group center to 
the receiver. All these translations can be carried out efficiently by representing all fields m 
terms of a plane wave basis. The plane wave basis is suitable for translating fields as it gives rise 
to diagonal translation operators. In other words, when relying on the fast multipole method, the 
interaction between two basis functions can be represented as 

j,(r),G/(r,r')js(r))= } fjr(i>-^-(r-r'W 
sr 

T(kh,rr,rs) \\s(r)e^<r-^dr 
s. 

dkh      (1) 
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In Eq. (1), the outer integration is over all real kÄ vectors that characterize homogeneous plane 
waves propagating away from the structure under study. Also, r,. and r, denote the center of the 
receiver and source group, respectively, and Gy(r,r') denotes the free space Green's function. 
Finally, T(kh,rr,rs) is the diagonal plane wave translator from the source to the observation 
sphere. 

Unfortunately, the above described technique for computing receiver fields only applies to non- 
overlapping source and observer groups; Hence, all      83 Camaro Model, f = 1 GHz, V-poi. 
"near-field"   interactions,   i.e.,   interactions   between 
sources and observers that reside in the same or in 
neighboring groups are always accounted for using 
classical MOM techniques. 

By nesting a smaller problem within a larger one, the 
Multilevel Fast Multipole Algorithm (MLFMA) is 
obtained. The   MLFMA   is   characterized   by 
0(N, log Ns) computational complexity per iteration 
and memory requirements. The MLFMA uses the two- 
level fast multipole method as a primitive and 
transitions between distinct levels in the multilevel tree 
structure are effected through interpolation and 
anterpolation operators. We have implemented this 
algorithm in two and three dimensions, and the resulting 
codes are capable of analyzing arbitrarily shaped 
conductor systems comprised of surfaces and wires. To 
date, FISC MLFMA technology has been primarily 
applied to the analysis of large-scale scattering 
phenomena. As an example, Figure 1 shows the surface currents on a car illuminated by a plane 
wave at 1 GHz. 

Figure 1.   Surface currents on a car 
illuminated by a plane wave at 1 GHz 

THE STEEPEST DESCENT FAST MULTIPOLE METHOD 

Although the aforementioned MLFMA permits a very efficient analysis of radiation and 
scattering from arbitrarily shaped structures, further savings are possible if the application 
domain is restricted to the class of quasi-planar structures. The SDFMM is a multilevel solver 
that permits the rapid analysis of radiation and scattering from microstrip traces and patches. 
The SDFMM is in spirit identical to the above-described MLFMA [8,9]. However, the SDFMM 
exploits the quasi planarity of a microstrip structure to further accelerate the solution process. 
This is achieved by casting terms arising in a MOM matrix-vector product in the form of discrete 
inhomogeneous plane-wave expansions, as opposed to a homogeneous plane wave expansion for 
the MLFMA. This representation arises from a representation of the pertinent Green's function 
along a steepest descent path and from the use of the fast multipole method in the transverse 
plane. The difference w.r.t. the standard MLFMA lies in the use of complex wave vectors and a 
modified translator operator. These modifications result in significant CPU cost and memory 
savings over the standard MLFMA. Indeed, the computational cost and memory requirements of 
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the SDFMM scale as 0(NS), as opposed to 0(NS logNs) in the standard MLFMA. Other 
FMM-like approaches for analyzing microstrip structures are described in [10,11]. 

We have developed a general purpose SDFMM solver, capable of analyzing a large class of 
quasi-planar microstrip structures that reside on a finite substrate and ground plane. This solver 
is based upon a multiregion MOM formulation that features both electric and magnetic surface 
currents. These currents model fields tangential to perfectly conducting microstrip elements as 
well as those tangential to penetrable substrate interfaces. The code can handle not only surface 
elements, but also accommodates bond wires and probe feeds [12]. 

(a) (b) 

Figure 2: (a) 7 by 7 array of microstrip patches residing on a finite substrate and ground plane. A probe feed 
connects each patch to the ground plane, (b) Radiation pattern of the 7 by 7 array shown in (a). 

The SDFMM permits the analysis of scattering and radiation from extremely large and complex 
structures within realistic times. To illustrate the capabilities of our SDFMM solver, consider the 
7 by 7 array of microstrip patches shown in Figure 2. Each patch is probe fed (in phase). 
Equivalent currents on the patches, probes, and on the ground plane and the penetrable interfaces 
are modeled using iV=92,280 unknowns. Figure 3 shows the pattern of the array computed using 
the SDFMM. To date, the SDFMM has been applied to microstrip structures modeled in terms 
of as many as 130,000 unknowns. 

TIME DOMAIN FAST MULTIPOLE METHODS: PLANE WAVE TIME DOMAIN 
SOLVERS 

Recently, we have developed a fast time-domain integral equation solver [14]. This fast solver 
permits the rapid analysis of transient scattering and radiation phenomena involving 
electromagnetically large surface structures and can be considered the time-domain analogue of 
the frequency domain multilevel fast multipole solver described above. The cost associated with 
the electromagnetic analysis of a surface structure that is modeled in terms of v, spatial 
unknowns for a total duration of N, time steps scales as 0(NtNs \ogNs) using the new solver, 
as opposed to 0(NtN^) for classical time domain integral equation algorithms.   The solver 
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derives its optimal scaling properties from a time domain plane wave representation of the 
scattered fields, which is exploited through a multilevel divide and conquer framework. This 
representation naturally gives rise to windowed diagonal translation operators. These translation 
operators require convolution of polynomial translation functions with the transient plane wave 
spectrum of the source distribution, characterized in terms of the source's slant stack transform. 
To date, the technique has been applied to the analysis of acoustic and electromagnetic scattering 
from large, three-dimensional surfaces. The application of the solver to the analysis of 
broadband wire antenna structures, nonlinear phenomena, and electromagnetic compatibility 
problems is being studied. 

0.02      0.04      0.06      0.08       0.1        0.12      0.14      0.16      0.18       0.2 
Time [s] 

(b) 

Figure 3. (a) Electromagnetic RCS of a NASA almond, comparison between PWTD (frequency domain 
parameters extracted from time domain solver) and FISC, (b) temporal fields on top of a rectangular 
cylinder, comparison between classical time domain integral equation and PWTD results. 

CONCLUSIONS 

This paper described three different multilevel integral equation solvers: The MLFMA, the 
SDFMM, and the PWTD. The MLFMA is suited for analyzing scattering and radiation from 
electrically large, arbitrarily shaped structures. The SDFMM constitutes an MLFMA variant 
designed to accelerate the analysis of electromagnetic phenomena involving quasi-planar 
structures, e.g., rough surfaces, optical gratings, and large-scale microstrip structures residing on 
finite ground planes. Finally, the PWTD schemes are extensions of the MLFMA to the time 
domain. Hence, the PWTD permits the broadband characterization of scatterers and radiators 
and is applicable to the analysis of nonlinear phenomena. 
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Demonstrated here, are the periodical knife-types gratings always having the waveguiding 
properties. Discovered here, are the existence criteria of the waveguiding properties of 
periodic plate grating for different waveguiding modes. Dispersion relations are obtained and 
investigated, pass and stop bands are determined. The asymptotic form of dispersion relations 
at the infinite increase of a grating elements sizes and the wave number decrease was derived. 
The anomalous oscillations near the periodic plate gratings are discovered and investigated. It 
was proved, that such oscillations always exist. The influence of the geometric characteristics 
and khife-type grating mode on the oscillation frequency, number and type of waveguiding and 
cycle modes was investigated. Wa veguiding and cycle modes of oscillations are classified by 
groups of allowed symmetries of a problem. The comparison with known experimental and 
numerical study was carried out. 
Waveguiding property is an existence of the generalized eigen function of the corresponding 
selfadjoint extention of the Laplace operator, localized in the vicinity of periodic structure. 
Investigation of the waveguiding properties is embarrassed with those fact, that the 
corresponding selfadjoint extensions of the Laplace operator have the continuous spectrum 
filling in all the positive semi-axis. 
An existence of the waveguiding properties of the periodic knife-type grating was proved in 
paper [1] for large enough sizes of grating elements. The approximated investigations of 
waveguiding properties, dispersion conditions, type of waveguiding functions are in [2, 3], in 
these papers one can also see the futher bibliography. 

Formulation and symmetry properties of the problem 

If another is not fixed, then it is supposed, that all the profiles of grating elements are consisted 
of straight line segment, all elements are parallel with each other, periodically repeated and 
perpendicular to the periodicity direction. Such gratings are of khife-type periodic strip grating. 
Grating types and corresponding terminology are on Fig. 1. 

\ 
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Fig 1. Grating types of khife-type periodic strip: I - simple, II - composed, III - double, 

IV - corresponding termonology. 
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The steady-state oscillations near the grating are described by the u(x,y) function whose 
physical content is determined by the investigated problem 

u^+Uyy + X2u = 0, 

3u/ön = 0 onG. 

Here X is considered to be the nondimensional frequency of oscillations, easier to commit to 
paper it is supposed, that X>0 If co, Lp, H - are the natural frequency of oscillations, natural 
length of the grating element and natural period of grating correspondingly, then for the 
corresponding nondimensional magnitudes expressions X=coH/c, L=Lp/H are correct, the 
dimensional period of grating in nondimensional variables equals to 1. In any bounded area 1\ 
which is the subarea of whole domain of oscillations Q, the next condition of local finity of 
oscillation energy should be fulfiled 

E(u,nb)= JV+(Vu)2]dQb<co, 

E(u,fib) is the nondimensional energy of oscillations in the area Qb 

Operator A is invariant under any symmetries of space, so the grating symmetry will 
determine the symmetry of corresponding boundary problem. 
As the symmetry group of the one-dimensional periodic structure obligatory consists the sub- 
group T of translations along the y-axe, so only the next non-trivial sub-groups of the allowed 
symmetry group are possible: Di is the dihedron group with one axe of bilateral symmetry. The 
next two types of bilateral symmetry are possible: D* axe of bilateral symmetry is parallel to 

axe x; D[ axe of bilateral symmetry is parallel to axe y; D2 is the dihedron group (with two 

axes of bilateral symmetry); C2 is the rotation group by % angle; Ta is the group of gliding 
symmetry. Symmetry of plate grating permits an expansion of the allowed solution space in 
invariant subspaces by transformation of this group of symmetry. 
As group of translations T is commutative and its representation x(T) in the space of allowed 
solutions of problem is unitary, so the space of solutions can be expanded in invariant one- 
dimensional subspaces by group T. Functions u(x,y) belonging to these subspaces satisfies the 
condition u(x,y+l)=ei§u(x,y) and consequently are as the next: 

u(x,y) = e^v(x,y)s v(x,y +1) = v(x,y). 

Waveguiding properties 

Definition 1. Waveguiding function of a problem is the generalized eigen function localized in 
the vicinity of plate grating. Corresponding frequency is called the waveguding frequency. 

Classification and type of wavequidina functions. 

Definition 2. If a one-directionally periodic structure has the D\ - type symmetry; ther u;< 
even (symmetrical) and uneven (antisymmetrical) functions with respect to variable x wid oe 
hamed a and ß waveguiding modes correspondingly. Waveguiding function is a or ß mode. 

With the help of discrete isometric transform, the group of grating symmetry space of 
admissible solutions has been restricted and the existence of guiding and anomalous waves has 
been proved. Pass bands modes have been classified with the help of grating symmetry group 
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Existence of the waveguiding property. 
To investigate the existence of waveguiding eigen frequencies the "D-N fork" method was 
used [3]. The following theorem was proved. 

Theorem 1. The simple knife-type grating always has the waveguiding property. 

Composed and double gratings G can be considered as the disturbance of simple knife-type 
grating Gi, caused by a disposition of the additional elements of grating G2. 

Theorem 2. Composed and double gratings G always have the waveguiding property for any 
profile lengths and non-zero values of parameter £,. 

Dispersion relations. 

Dimensionless waveguiding frequency X are the function of wave number parameter £, these 
dependences are so-called dispersion correlations. For large sizes of grating elements the 
approximated dispersion relations are presented in [5]. In the present work these relations are 
presented for the commiting to be entire and being defined more precisely. 
Exact dispersion relations for waveguiding frequencies and corresponding wave numbers of 
the problems are impossible to be written down, even as implicit ones. However, it is possible 
to indicate some their approximations. 
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Here N is natural number, \j/() is the logarithmic derivate of Gamma function. Numerical and 
theoretic results allow making the next statement: 

Statement. For any lengths L of the knife-type grating elements the finite numbe" of 
waveguiding modes exists. 

The above statements refine and correspond with results obtained by other methods and at the 
"physical"-strict level of rigorousity [5]. 
At the infinite lengthening of grating elements the dispersion relation allow determination the 
behavior of waveguiding frequencies X(k)=X(k\^,L) (k=l ... K) of problem for primär 
waveguiding modes. Statements where y is the Euler constant and L»l are correct: 

2) 

L7rtg -*-2*©* ß 
V2 

21n(2)tg ^  -2ytgi 

For the primär waveguiding mode for £«1 the next expression follows from dispersion 

relations: A(,)(£) = ^+(2\n(2)-hK}^2/%2. 
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This describes the dependence of waveguiding frequencies of primär mode on the oscillation 
phase shear in the neighbouring fundamental areas of the translation group. This expression is 
correct for those suppositions in whose framework the dispersion relations are obtained. 

Anomalous properties. 

The statement about the existance of waveguiding property is proved only for the non-zero 
phase shear of oscillations (£*0) in the neighbouring fundamental areas of the translation 
group. In this connection the question arises, if the generalized eigen functions of problem 
exist, localized in the vicinity of simple knife-type grating with the periodicity condition 
correlating with the zero shear of oscillation phase in the neighbouring fundamental areas of 
the translation group? The answer to this question is positive. 

Definition 3. Generalized eigen functions (frequencies) of problem with the periodicity 
condition localized in the vicinity of knife-type grating, will be named futher an anomalous 
functions (frequencies) of the problem. If the one-directional periodical structure has a 

symmetry of the D[ - type, then even or uneven by a variable x anomalous functions will be 

named yor § anomalous modes correspondingly. 

For waveguiding and anomalous oscillation frequencies near the simple knife-type grating the 

next system of inequalities is correct: ai(£,)<ßi(0<...<ak(0<ßk(0<-- <Tt<Yi<5i<...<ym<5m<27t. 
Here ak(E,\ ßk(£), Ym, 5m. are frequencies of corresponding mode. The numeration is given 
according to the frequencies increase. 

Existence of the anomalous property of simple grating. 

Lemma Non-trivial anomalous functions of problem, even by an axe passing through some 
profile of plate grating do not exist Anomalous function of problem is uneven by every axe 
parallel to the abscissa axe and passing through point of symmetry of the dihedron group of the 

problem. 

The statements formulated in the 
lemma allow pointing out signatures 
of the waveguiding mode a and ß and 
anomalous modes y and 8 in inter- 
profile channel, presented on Fig. 2. 

&msmss®sssz'        ssssssssssasmssi». jsmm&ssmsssss: 

+   i  +  ;       ; +   i   -   | ^--i-r-i 

ex B 7 

Fig 2 

Theorem 3. Non-trivial anomalous frequencies and anomalous functions of problem exist for 
any profile lengths of the simple knife-type grating, anomalous frequencies belong to the 

interval (%, 2ti), ■ ■ ::'■■;;■■;. 

Existence of the anomalous property of composed orating. 
Composed and double plate gratings can be considered as the disturbance of a simple grating. 
In the common case they allow more restricted group of symmetries then the simple grating. 
That's why the method of restriction the allowed class of solutions, based on symmetry of the 
problem can not be applied to prove the existence of anomalous oscillations near the simple 

knife-type grating. 
If solution u* of the problem, localized in the vicinity of grating exists, then for all values X it 

should satisfy the nesessary condition   lexp^xA^dQ, =0, which will be fulfiled if and only if 
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Pass bands Anomalous frequencies Unknown spectrum 
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Fig 3 

2*                             ,\ 

for all values x the identity Ju*(x,y)dy = 0 is correct, Q0 - is the fundamental domain of the 
0 

translation group T. With the help of these condition the following theorem was proved. 

Theorem 4. Composed (double) grating has the anomalous property. If length L* of common 
part of simple knife-type gratings Gi and G2, composing G does not equal to zero (LVO), then 
anomalous oscillation frequencies belong to the interval (0, 2rc). If l>0 (double grating), then 
anomalous frequencies belong to the interval {%, 2n). 

Fine structure of the 
spectrum. 
The      carried      out 
investigations of 
anomalous   oscillation 
frequencies   allow   an 
elaboration    of    fine 
structure of the spectrum of problem for the simple knife-type grating of plates. By the 
existence theorems of waveguiding and anomalous modes of oscillations the spectrum of 
problem always consists at least one pass band for the oci mode and the anomalous oscillation 

frequency for the yi mode. Presented on Fig. 3, is the 
scheme of fine structure of the problem spectrum in 
terms of nondimensional frequencies of oscillations. It is 
nesessary to point out, that for every pass band the 
mode (a or ß) of corresponding waveguiding function 
and a pass band type is determined. Types of pass bands 
and anomalous frequencies alternate. The dependence of 
the geometrical properties of gratings on guiding 
phenomena has been culculated (Fig. 4). 

Type of anomalous functions. Oscillation physics. 

Oscillation physics near 
the knife-type grating of 

plates, described by waverguiding functions is known [5] and 
correlates with mechanic analogues, discrete chains of coupled 
oscillators. This can not be said about anomalous oscillations. 
To clarify their oscillation physics it is nesessary to investigate 
the outlook of anomalous functions. Presented on Fig. 4 for the 
case L=2, are the velocity field, level lines and pressure field for 
modes yi, 8i, y2 of anomalous oscillations in interprofile 
channel 0<y<l. It is nesessary to point out, that velocity field 
flow from one interprofile channel into another one doesn't 
happen as distinct from waveguiding oscillations. 

From Fig. 5 it is possible to understand the mechanical 
analogue of anomalous modes, these are oscillations of some 
connected chains of connected oscillations. Despite of this 
mechanic analogue being approximated, it allows 
understanding   the   oscillation   physics:   yi   are   synphase 

Anomalous ~--. 
^frequency': : ~~- 

■^..p Pass band ~t 
/^depending on 

T>C^   length of plates ^ 

Fig 4 
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oscillations of one chain, 81 are synphase oscillations of two connected chains (chains oscillate 
in antiphase about each other), y2 are synphase oscillations of three connected chains. It is 
nesessary to point out the considerable difference of anomalous oscillations near the plate 
grating from synphase oscillations of chain of connected oscillators. 

Comparison with experimental investigations 
It is nesessary to remark that [3] and later [2] pioneered in investigating the dependence of 

waveguiding frequencies on geometrical parameters of the knife-type plates in appliance to 
electromagnetic waves. Theoretical and experimental investigations of acoustic resonance and 
waveguiding phenemena near plates in the channel and cyclic gratings of plates were 
performed independently but later, a comparison with the previously obtained results was not 
undertaken. 

Experimentally investigated in [5, 6], are the acoustic eigen oscillations near the plate 
gratings in a channel, allowing simulation in the framework of the two-dimensional fomulation 
of the problem and simulating the cyclic grating (the "mirror" effect [6] is appliable). The 
experimental results [5] are presented in table 1 of paper [7]. Performed on this base, is the 
comparison of experimental data and numerical investigations of disperse relations 
dependences of anomalous oscillation frequencies on geometric grating parameters. The 
comparison with experimental and numerical investigations are shown on Fig.  5.  The 

experimentally obtained results [7], which are 
nondimencional, are marked with box, continuous 
curves are the numerical results, obtained with the 
help of dispersion relations. The satisfactory 
coinciding of the results can be remarked. 
Unsolved problems. The author is not aware, if 
waveguiding or anomalous frequencies of problem 
more then 2% exist or not. As eigen oscillations are 
always connected to the latent symmetry of the 
problem, so on the basis of the carried out 
investigation it is possible to advance the next 
hypothesis: waveguiding and anomalous 
frequencies of the simple knife-type grating higher 
then 2% do not exist. 

References: 
[1]. Sukhinin S.V. Waveguide effect.//PMTF.-1989.-No 2, p. 92-102. 
[2]. Mittra R., Lee S. Analitical methods of waveguide theory. 
[3]. Brillouin L. Parodi M. Propagation des ondes dans les mileux periodiques, 1956., 
[4]. Reed M., Simon B. Methods of modern mathematical physics. V. 4, Academic press. 
[5], Parker R. Resonance Effects in Wake Shedding from Parallel Plates, Some Experimental 

Observations.// Journal of Sound and Vibration, V. 4, N.l, 1966, pp. 62-72. 
[6]. Cumpsty N.A., Whitehead D.S. The Excitation of Acoustic Resonances by Vortex 

Shedding.// Journal of Sound and Vibration, V. 18, N.3, 1971, p. 353-369. 
[7]. Parker R. Resonance Effects in Wake Shedding from Parallel Plates: Calculation of 

Resonant Frequencies.// Journal of Sound and Vibration, V. 5, N.2, 1967, p. 330-343. 

Kharkov, Ukraine, VIM International Conference on Mathematical Methods in Electromagnetic Theory 



j 04 MMET'98 Proceedings 

THE COST OF PLEASURE: 
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The paper is concerned with a review of several situations taking place in the time- 
harmonic wave scattering (~ e~^*), when solutions to certain wave scattering prob- 
lems do not exist. Each of these situations is closely tied to the violation of solution 
uniqueness, due to a presence of an eigenvalue, in terms of either natural frequency or 
propagation constant, simple or multiple, coinciding with the corresponding parameter 
of the excitation field. Then the reason of solution non-existence can be easily under- 
stood based, for example, on the Fredholm Alternative [1,2]. From the physical point 
of view, the mentioned catastrophes are always a result of joint action of several major 
assumptions, such as harmonic time-dependence, absence of losses or nonlinearities, and 
infinite extention of the scatterer. Thus, a loss of solution existence, at certain discrete 
values of parameters, is the cost of the pleasure of working with a simplified problem. 

1. The first of the considered situations occurs when attempting to analyze the 
scattering of time-harmonic waves from so-called "active" scatterers. The latter are the 
dielectric or impedance objects characterized by a negative absorption. This is commonly 
done by introducing a complex-value dielectric constant with a negative imaginary part, 
or a surface impedance with a negative real part [3]. Such a scatterer can be considered 
as an approximate model of, e.g., a light-emitting particle in the inversed population 
conditions, provided that one neglects the effect of saturation due to non-linear character 
of the light emission. The study of the scattering behavior of active objects has attracted 
attention since the late 70's, due to a simplicity of analysis and an opportunity to use 
all the experience accumulated before when studying the scattering from the lossy and 
passive objects. In the previous works it has been noted a variety of exotic features 
of active scatterers, like "invisibility", negative scattering and extinction cross-sections, 
and oxtraordinarly sharp resonances [3]. 

However, if looking closely at the mathematical formulation of the problem, one may 
notice that a negative absorption leads to the violation of the conditions that guarantee 
the solution uniqueness, and hence, its existence. In fact, the presence of a negative loss 
shifts the complex natural frequencies of a formerly passive scatterer towards the real 
axis in the complex fc-plane. It may even happen that one of them, say k0, comes to the 
real Jfc-axis. Then the solution will not exist at this frequency due to a pole of the field 
function. In the pole's vicinity the far-field scattering pattern, the surface current, etc., 
can change drastically due to a small variation of the frequency. The situation described 
above is illustrated by the known results for an active-dielectric cylindrical particle and 
an active-resistivity reflector antenna. It is emphasized that turning to the transient 
scattering results in a formally unique solution, but showing a non-physical behavior of 
the unlimited growth in time.   Hence the conclusion is that there is no much (if any) 
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sense in studying the scattering problem for an active object. Instead, there is a more 
clear sense in a search of the conditions for a natural frequency to turn real, by solvmg 

an eigenvalue problem of a special sort. 

2    The second catastrophic^ situation occurs when considering an infinitely ex- 
tended open structure able to support a natural guided surface-waye mode excitedby 
a surface-wave incident field. The latter can be originated by a modulated electron flow 
or by a dielectric-slab waveguide, and is assumed to be fixed, i.e. experience a negligible 
influence of the scatterer. Such problems appear, e.g., in the linear theories of vacuum 
electron oscillators like BWO and orotron, and the Cherenkov laser. However, if studing 
the matter of solution uniqueness, one sees that the presence of a natural guided mode 
leads to the existence of a pole ho > k on the real axis of the Mane, ft being the 
longitudinal wavenumber. When the incident field wavenumber Ä» > fc and comes to 
a pole, the solution does not exist. The situation is illustrated by a surface-wave exci- 
tation of a regular dielectric slab as the simplest open waveguide. Periodic waveguide 
excitation is also discussed. It is known that groove gratings and other types of periodic 
structures can support non-attenuating natural modes propagating along the direction 
of periodicity [4]. When trying to solve the problem of excitation of groove grating by 
a periodically-modulated electron flow, whose velocity is naturally lower than the light 
velocity one comes to the non-existence of solution in the case of synchronization. Intro- 
ducing the losses shifts the /»-poles off the real axis, thus returning the situation to the 
existence of a unique solution. However, in general, it appears that the problem should 
be re-considered as an eigenvalue problem for the natural modes of a more complicated 
open structure consisting of a pair of interacting infinite waveguides. 

3 The third kind of catastrophe due to solution ncn uniqueness is observed if a local 
scatterer or a source is embedded in a waveguide able to support not only the natural 
guided modes, but also associated guided modes. The latter may appear due to the 
multiple roots of the dispersion equation. Then the Fourier-transform of the solution 
has a multiple pole at the real axis of the Mane. However, neither a "parent natural 
guided mode nor the associated guided modes of the corresponding finite chain carry any 
power This eliminates the only reasonable way to determine the sign of the correspond- 
ing wavenumber. Hence, there is no way to extract out a physically meaningful unique 
solution of a lossless-waveguide scattering problem [5]. To avoid this, one has either to 
switch to the transient scattering or to introduce the losses. 
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BEAM PROPAGATION METHOD MODELLING 
OF LIGHT PROPAGATION IN OPTICAL WAVEGUIDES 
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Beam-Propagation Method (BPM) is now a widely used tool for computer simulation of light 
propagation in transparent media including optical waveguiding structures. The method was introduced 
in 1976 by Fleck, Morris and Feit for modelling of laser beam propagation in non-homogeneous 
atmosphere [1]. In 1979-1980 the method was adopted by Feit and Fleck for modelling of li^it 
propagation in optical waveguides in a series of papers in Applied Optics [2, 3, 4]. Since then, the 
method has been successfully applied to analyze various optical waveguide structures, including glass 
fibres and integrated optic waveguides. 

The paper reports some recent activities in BPM modelling of light propagation in optical waveguides 
that have been carried out in the framework of COST 240 European Project: Techniques for Modelling 
and Measuring Advanced Photonic Telecommunications Components, Working Group 2, Waveguide 
Devices. In particular, the results of an investigation of a guide with a balance of gain and loss has been 
reported, and a model for simulation of Second Harmonic Generation (SHG) process in optical 
waveguides is presented. 

The author acknowledges the co-operation and fruitful discussions with his colleagues from COST 
240 Project. He also wishes to express his special thanks to COST 240 Chairman, prof. George Guekos 
from ETH Zurich, Switzerland. The support of COST 240 activities by General Department DG XIII 
of the European Commission in Brussels is kindly acknowledged. 

I.        BPM ANALYSIS OF A PLANAR WAVEGUIDE WITH A BALANCE OF GAIN AND LOSS 

The problem of light propagation in a planar waveguide with a balance of gain and loss of a geometry 
as in Fig.l has been proposed by Hans-Peter Nolting [5], and formerly has been analyzed with the 
eigenmode formalism through the use of programs resolving numerically wave equation like Mode 
Solver. Then the interest has been shifted to BPM studies of the problem starting with the results of 
BPM simulation of the structure by the author of this paper [6]. BPM which is a nonmodal method can 
serve very well for the purpose of modeling phenomena of light propagation in such waveguides. A 
BPM benchmark test for waveguide problem with a balance between loss and gain has been proposed 
[7] and its results are reported below. 

A.     Light propagation in a waveguide with gain and loss 

The waveguide structure of interest is shown in Fig. 1: two layers with mutually complex conjugate 
refractive indices are surrounded with a medium of a slightly lower real refractive index. The exact 
values of all parameters are given in Tab. 2. The imaginary parts of refractive indices of guiding layers 
vary in a very broad range: in terms of the power absorption (gain) coefficient a, between zero and 
±104 cm"1. The wavelength X=1.55um is assumed. 
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ne = 3.252398 - i n" 

nL = 3.252398 + i n" 

ns = 3.169355 H„ = ^xl0-4 
mmm  fo.sgm      4*- 

7 0.5 urn      A = 1.55 pm 

ns = 3.169355 

Fig. 1. The geometry of a two-layer waveguide with gain and loss 

B.      Notation 
The attenuation or amplification of light propagating in a transparent medium may be accounted 

for via a complex-valued refractive index 

n = n'-\n" & 

and a complex relative permittivity 

£ = w
2=s'-iB" (2) 

The relation between the power absorption (gain) coefficient a and the imaginary part of refractive 

index is 

W''=^xl0~4 (3) 

4% 

where a is in cm'1 and A. is in urn. 

Dispersion equation of the waveguide was numerically solved in the complex eeff plane by the 
Newton method [7]. The calculated dependencies of real and imaginary parts of effective refractive 
indices versus the absorption coefficient a are plotted in 

Fig. 2. 

*   3.22 

Z   3.21 

3 20 

■-   3.19 

in 

3.18 

3.17 

Fig. 2. Effective refractive indices RefA^} (a) 
and ae#=(4rc/*<)Im{W#} fl>) versus 
attenuation/amplification coefficient a 
a) for a < cw* : lossless modes, 
b) for a = attend,: one degenerate lossless mode, 
c)fora> ow*: the amplified mode is 
concentrated mainly in the region with gain, while 
the attenuated mode is concentrated mainly in the 
lossy region. 

C.     Beam-Propagation Method 

For a planar isotropic waveguide a scalar wave equation is valid. Standard beam-propagation 
algorithms deal with a solution to hyperbolic Helmhohz equation 

(4) 

0 2 4 6 8 10 
Absorption/gain coefficient a ["103 cm-1] 

E(z) = E0 exp iz^ + ky, +ik0(n-nr)z 

or with a solution to Fresnel parabolic equation 
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(5) 
E(z) = E0 exp 

-12 

2k, £+*(?-•<) 
where z is the direction of propagation, E0 is the initial field distribution at a cross section z-0, 

n = «A z) is the refractive index distribution in the waveguide, and nr is the index of refraction of a 
reference medium in which the free-space propagation steps are to be carried out. It is assumed that the 
value of nr is real and close to those of the media constituting the system. E(x,z) is a slowly-varying field 
amplitude, and kr is the wavenumber in the reference medium, kr= nr(o/c. 

The occurrence of loss or gain in a medium may be automatically accounted for in the phase 
compensation steps, by an appropriate exponential change (increase for gain, decrease for loss) of the 
field amplitude according to the imaginary part of the refractive index n [8]. 

D.     Problem set 

A problem has been set to determine the branching point abrmch value with different BPM programs 
and approaches. For a approaching abranch there are two different effective refractive index values, they 
differ in real part for a < abranCh or in imaginary part for a > a/,™**. Close to a*™«* : 

2NB®B 
ZJyB 1NB\ <x> s 

Therefore, the difference of mode effective indices scales with square root of a > abranch- 

Thus, if we restrict ourselves to a two-mode system only, we may expect two kinds of interference 

effects: 

•for a < abranch , as the modes differ only in phase velocity in this case, the result is a periodic beating 
with a spatial period A proportional inversely to the (real) effective index difference, which in turn is 
proportional to square root of (cw* - a ). Thus we expect a linear dependence 

—- = const.x(a - CLbranch)>    a < abranch '■> 
(7) 

A2 

•for a > abranch the modes have the same phase velocity, but they differ in a way that one is attenuated 
while the other is amplified. At long distances of propagation, the domination of the mode with gam is 
obvious Therefore, a constant growth of the field is the result of two-mode interference. Thus, the 
effective two-mode beam power amplification coefficient at long distances is a linear function of gam- 
loss coefficient a, which in turn is proportional to square root of a- abranch . Thus we expect a linear 

dependence of the form of 

alff = const.%{a-a^anch),    U->a-branch> ^ 

The task consists of three parts, all of them are to calculate branching point abranch value. 

E.      Contributors and used methods 

The contributors and their algorithms are listed in Table 1. 
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Table 1. LIST OF CONTRIBUTORS 

109 

Institution Equation Numerical 
method 

Boundary 
conditions 

Propagation 
step size 

HHI FE/FD BPM 

Un. Hagen MoL - 

Un. Twente FD Efficient 1 urn 

Ac. Comm. Helmhokz FFT BPM Absorber 1/8 urn 

Un. Roma MoL Absorber - 

F.     Discussion of the Results 

The resulting values of abranch are reported in Table 2. The differences with respect to the analytic 
solution do not necessarily mean errors of the method, because the propagated beam is not a 
combination of two guided modes of the active guide only, but also of a radiation field of this guide. 

The participants to the task have done much of numerical effort to avoid inaccuracies due to 
numerical errors, thus the observed discrepancies should be attributed to different physical models 
modelled by the BPM programs used. In other words, every method used has analysed very accurately a 
little different situation. 

Table 2. VALUES OF abrmch OBTAINED BY THE PARTICIPANTS TO THE BENCHMARK TEST WITH 
COMPARISON TO ANALYTIC VALUE abra»ch aml. = 5226.3/cm 

Contributor 
1/cm 

^branch ~ ^branch anal , 

1/cm 

HHI 5306 79.7 

Un. Hagen 5236.87 10.57 

Un. Twente 5226.5 0.2 

Un. Twente 5226.9 0.6 

Ac. Comm. 5500 273.7 

Un. Roma I 5242.5 16.2 

II.       BPM MODELLING OF SHG IN A WAVEGUIDE 

This part is devoted to an adaptation of Beam-Propagation Method (BPM) for modelling of Second 
Harmonic Generation (SHG) process in quasi-periodically corrugated planar waveguides. A type I (eoo) 
of SHG has been chosen as a working example. A model of split-step formalism of SHG has been 
developed. The model involves propagation of two beams: the fundamental (pump) beam and second 
harmonic beam, and is outlined below. 

As a starting point the following coupled set of governing equations has been adopted [9]: 

J 
d$    2 6s2 di;     2 ds1 

The adopted numerical model of two beams propagation consists of a sequence of two steps,: 
propagation step, and compensation step. 
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Step 1 involves propagation of the beams only, and diffraction effects. The beams are propagated 
separately, and SHG process is not included in this step. This is equivalent to uncouple the governing 
equations by assuming the other's wave amplitude =0: 

.at,    \d2a, 
J d$    2 ds1 

+ 0 = 0,   (a2=0); j 
.da^ 

% 
-0+a,2exp(+i"A^) = 0 

Step 2 involves nonlinear compensation of the amplitudes and phases of both beams. Simultaneously, 
no diffraction occurs, what follows from an assumption of vanishing transverse variation of the beams, 
i.e. dVott2 = 0. This is equivalent to plane wave propagation. 

The propagation step of the beams can be easily modelled via standard BPM techniques. The non- 
linear compensation step involves more difficulty. Under assumed conditions, the fundamental (o) and 
second harmonic (2ca) field amplitudes are a subject of following nonlinear changes [10]: 

\\(z}= -—/ „ - -^U^sn 
nmc «„ 

K(m) 
1/2 

z\m 
V ^aNL 

XW-^ sn 
K{m) 

z\m 
\^GNML J 

where the notation of [10] has been adopted. The above amplitude changes are explicitly given and do 
not present difficulty in calculations. 

Similarly, phases of the waves change in the following way [10]: The fundamental and second 
harmonic wave phases are: 

**(*)= $»0 
Antsq 

cn„ 
Lo] 

dz 

o^L/ -"hsLU-sn2 

n„c n. 

K(m) 
1 

z\m 

00 

$2*. (Z) =^2^0+ *Z SteP(Z ~ 2%<*L ) 

Of the above, the first only the first expression for fundamental wave phase change is given not 
explicitly, since it contains an integral. The integral has to be evaluated numerically. 

In quasi-periodical planar waveguide the phase mismatch Aß varies according to the local thickness in 
a given section of the waveguide. Since in realistic corrugated waveguides the thickness variation is very 
small, this may be considered as an perturbation in a homogeneous waveguide. This issue and its impact 
on the amount of reflections at the boundaries is currently under study. It is believed that one could 
neglect the reflections. 

In the analysed problem the beams propagate in a planar waveguide, which is a one-dimensional free 
space for the beams. This means that without nonlinear effects the propagation step length might be 
arbitrarily long. However, as the SGH process is sensitive to amplitudes and phases of the interacting 
beams, the propagation step should not involve significant amplitude and phase changes. Thus carry has 
to be taken out that propagation steps are not to long in order to properly model the SHG process. 
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As in a standard BPM, for achieving better accuracy with given propagation step the calculation 
should be started with an initial half-step propagation. For keeping the accuracy of the modelling and 
also to shorten the computational time needed for device modelling, it ^ *«*e»"2£ "** "J 
adaptive propagation step length. This is due to the dependence of efficiency of SHG on both the waves 

amplitudes, and phase relations. 

For checking the accuracy of SHG modelling in a given waveguide structure it is necessary to 
compare the results with an analytical solution for the geometry considered. Such solutions are available 
when second harmonic beam has zero amplitude at the starting point [11]. 

The above two-beam propagation procedure is actually a subject of further development COST 240 
laboratories in University Roma 1 "La Sapienza", Dipartimento da Electrons, and Instituteof 
Telecommunications, Department of Fibre Telecommunications, Warsaw, in order to obtain an efficient 
tool for SHG modelling in planar waveguides, including quasi-periodic corrugation of the guides along 

the propagation. 
III.   CONCLUSION 

Beam Propagation Method has been successfully applied to analyze non-modal beam propagation in a 
waveguide wilh a balance of gain and loss. A model of SHG modelling in a waveguide with BPM has 

been presented. 
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MICROWAVE METHOD FOR THE STEP-LIKE RECONSTRUCTION 
OF LOSSLESS MULTILAYERED DIELECTRICS 

V. Mikhnev and A. Palto 
Institute of Applied Physics, Akademicheskaya 16, 220072 Minsk, Belarus 

AbStraA novel one-dimensional microwave imaging approach based on successive 
reconstmcuTof dMectric interfaces using the complex reflection coefficient data co lee ed 
Z Imf^ard waveguide band is described. The method is valid for highly contrasted 
«nuousFofiles and^shows low sensitivity to the practical measurement error. Some 

numerical examples are presented. 

IntrodU
Dtlpmen, of microwave reconstruction methods has *£«"*%'*£*£ 

„nmher of researchers during past decade. Existing inversion algorithms are based on 
Dative BoX approach or optimization schemes applied to exact integral equa .ona 
MoXaTely aH thL algorithms suffer from serious problems when discontinuous profiles of 
~t^e to be reconstructed. Besides, they usually requhe *•£«*»£ ££» » 
an infinite frequency band (at least, starting from zero frequency). It cannot be realized m 
"acS be-* fo" each frequency band special measuring equipment and antennas should be 

USed In this paper a new method of step-like reconstruction, which is intended, for 
reconstnicuon offte profiles of high contrast is presented. The complex reflection coefficient 
ZlX^dent wave obtained in a frequency band essentially limited both from upper and 
lower frequencies is used as input information for the reconstruct™ process. 

ReC0n7hfaÄTbased on the Newton - Kantorovich procedure applied to.the 
inversion of thfbouTdary problem for the Riccati equation [1]. Let the normally inddent 
Zwefcw" witia tile wavenumber *, is reflected from the interface between air and 
ttelrZoSeous Wf-space. The reflection coefficient rM and the refractive mdex profile 
rix) are related by the Riccati nonlinear differential equation: 

Hr(k  xl                ,    „     ^   l-r*<h,x) d"W in ^%2 = 2*0»(x)z(t0,x)+-— J^ W 

X 

Let's introduce a new variable t = J n(x')dx', 

(2) 

which represents the optical path length in the medium. transformed 
When applying the Newton - Kantorovich optimization algorithm to (1) transtormed 

with theteTcTone can compute a correcting term A«(0 to some imtiaprofile«^[11 
Successive application of the same scheme using the corrected profile function n(t) + A*(0 as 
^ profile allows to obtain the solution of the inverse problem after a few iterations. 
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Unfortunately, this approach works well when the input data are given in some frequency band 
starting from zero frequency. In case the frequency band of operation does not contain low 
frequencies, the solution becomes unstable. Nevertheless, it was found that the maximal 
derivative of the correcting term An(t) corresponds to the point of the greatest change of the 
profile (e.g. interface between layers). Hence, a step can be installed in the initial profile at the 
point of the maximal derivative of An(t) in such way to provide minimization of the maximal 
modulus of the reflection coefficient at large depth for all frequencies, i.e. minimax criterion is 
used. In short, the computational scheme can be summarized as follows: 

1 calculation of r(h, 0 for some initial profile «(0 at all frequencies from the given 
frequency band by numerical solution of (l)-(2) 

2 calculation of &n(t) using the Newton - Kantorovich iterative procedure. Installation of 
the step into the initial profile at a point of the most rapid change of An(t) ensuring 
minimization of the maximum of \r(k0, t)\ at large depth over all operating frequencies 

3 updating the profile. Then return to step 1, with the initial profile being replaced by the 
corrected one. The calculations are stopped, when max(|r(£0,0l) at lar8e dePtn over the 

frequency band of operation is less than desirable error 
4 return to the geometrical depth using reverse coordinate transformation (2). 

Numerical examples 
In this section, the results of numerical experiments are presented. The reflection 

coefficients calculated in the frequency band of 26 to 37 GHz in steps of 0.2 GHz were used as 
input information. 

Fig. 1 shows results of reconstruction of a three-layered highly contrasted structure on a 
substrate. The quality of reconstruction is seen to be good enough. 

The stability of the method was investigated by adding a uniformly distributed random 
noise to the input data. The magnitude of noise was chosen to simulate measurements with an 
accuracy of 20%. The results of reconstruction of a two-layered dielectric structure on a 
substrate for the case when there is a noise in the input data shown in Fig.2 demonstrate good 
stability of the solution. Therefore, the method is suitable for practical applications. 

The method like others has some limitations. Two most important of them derived 
from numerical simulations are as follows. First, the best convergence of the solution is 
achieved when the reconstruction depth is close to A/ = c/2A/, where A/is the frequency 

step. 
The resolution of the method can be estimated as t0 =c/2F, where c is the light 

velocity and F is the bandwidth. 

Reference 
1. V.A. Mikhnev, P. Vainikainen, Profile inversion of stratified dielectric media using the two- 
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584-588. 
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ANALYSIS AND SYNTHESIS OF IMPEDANCE PLANE 

Yuriy V. Yukhanov 

Taganrog State University of Radio Engineering, Taganrog, Russia 
email: airpu@tsure.ru 

Abstract. The problem of synthesis of impedance plane reflecting a plane homogeneous 
wave in a given direction is solved. The law of distribution of impedance is found in 
analytical form. The restrictions on the class of the allowable scattering patterns are 
formulated. Rigorous solution of the problem of the wave scattering by a plane with 
non-uniform periodic reactance is obtained in analytically closed form for the first time. 

Consider solving a two-dimensional problem of the synthesis of an impedance plane in 
the following statement. Suppose that a plane H-polarized electromagnetic wave (Fig.l) is 
incident on the plane S from the direction <p„ At the surface S, the Leontovich impedance 

boundary conditions are imposed: 

Ex=Z(x)Hz. (1) 

It is necessary to find the law of 
distribution of passive surface impedance 
Z ensuring the reflection of the plane 
wave in the given direction cp0. 

Analytical representation of the 
incident and the scattered fields as the 
homogeneous plane waves has the 
following form in half-space y > 0: 

H n zl(xCOS(p    +JSUKP   ) 
Hs _ e-ik(xcos% + ysin%) 

(2) 

This enables us to find the required law of impedance distribution directly from the 
boundary conditions (1) 

ZM = 0.5{(cosyn -cosy0) + /(cosy„ + cosy0)tgr\x], (3) 

where r\=k(cos<pa+cos<p0)/2; cosya=sin(pa; cosy0 = sincpo; y„ , y0 are the angles of incidence 
and reflection, respectively. 

The condition of physical realizability of the real part of passive impedance function 
defines the restriction on the class of the allowable scattering patterns: The passive impedance 
(ReZ>0) provides a total reflection of a homogeneous plane wave only in the following 
angular sectors: <p0 <<p„; (p0> n -<pn. The reactance can ensure such a translation only in the 
backward, <p0=(pn ß=icosyntg(kxcos(p„), or the specular <po=iz-<Pn (Z=0) directions. 
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The question on an opportunity of efficient reflection of a plane wave in any desired 
direction with the aid of reactance is of a special interest. The analysis has shown that the 
reactance determined by the following equation 

Z = iZ0tg(kxcos(pn\ (4) 

creates also a reflected beam in the direction q>0 but besides there is still a whole spectrum of 
reflected waves, both spatial and surface ones. If the following condition: Z0 = sin<p0 , is 
satisfied, then, in the reflected field, only two spatial harmonics: homogeneous plane waves in 
the given direction <p0 and in the specular (mirror) direction ic-q>n are present, with amplitudes 

Ho = 2cosyr/(cosyn + cosy0);    H3 = (cosy„ - cosy0 )/(cosy„ + cosy0). 

The given solution of the synthesis problem enables ones to derive the formulas for the 
reflection coefficient P from a plane with variable impedance Z 

cosyn(3cosy„ - COSYQ)- Z(cosy„ + cosy0) ^ ^ 
(cosy„+cosy0)(cosy0 + Z) 

which transforms to the well-known expression if Z - const. 
Advantages of the new reflection coefficients are especially clearly displayed in the 

vicinity of the angles of observation 9 = arccos(2cosq)0 + cosq>„). 
Consider now a rigorous solution of the problem of scattering of an H-polarized wave 

by the plane y = 0 with a reactance given by equation (4). Note that publications containing a 
rigorous solution of this scattering problem in the closed form are absent for a plane with 
periodic variable impedance (4). . 

From the Lorentz lemma, we obtain a Fredholm second-kind integral equation tor the 
z-component Hz (x) of the total magnetic field: 

..CO <o       -iK(x-x') 

tf ,00 = ~ J WW.V) 1 TT=^dKM+2H: {X)- (6) 
2TC _M ^oo V K — k 

By presenting the required function as HZ(X) = CO$T\XH{X) and using the spectral 
expansion of H(x)  we  obtain the  solution  of the  integral  equation  (6)  analytically: 

Hz(x) = 0^1 + ^ + 2Z02;e^G„/ZV-^ (7> 

where X=4/(D0+AC0); and factor A is determined from the equation of balance of energy at 
the reactive surface y = 0. 

Thus, a discrete spectrum of plane waves travels along the impedance structure. We 
study the scattered field of such a structure. For a fragment of impedance plane of the length 
2L the scattered field pattern takes the following form: 
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2di0 + G_ sin <p)^ + 2Z0X%H1+G. sin <p)^= 

*-< A  w    ^     •    v sin C/ - 2,4Z0]T-f±(l + G_rasm(p)-      " 
(/_ 

(8) 

where Um = Lßcosq>-[2mr]-rin]). Thus the field #/xJ is the same as for an infinite plane. 
In the expression (8), the first two terms are the specular F3 and the synthesized F0 

beams launched by the plane S in the directions (p=7i-(pn and <p=Hp0. With normal incidence of 
the wave, the third term represents the beam F30, which is specular with respect to the 
synthesized beam (p=u-(p0. In this case factor A has a simple analytical representation via Z0 

A^+fJ-ZdGf/fl + ZoGj)2. 

As we see, the amplitudes of the beams of a complex image depend on the value of Z0. 
Hence, with the aid of Z0 it is possible to control the amplitudes of various beams of the 

scattering pattern. So, the expression for Z0, ensuring a maximum \F0((p0)\ of the synthesized 
beam is as follows: 

Z0 = sin <p0(V2(l + sin <p0)/sin <p0 -1). 

Zero amplitude of the specular beam \F,(7V-<pn)\ is provided by the following condition: 

Z0 =A/(2-sincp0)sin(p0 . (9) 

In Fig. 2, the scattering pattern of a fragment of reactance plane of the width SX that 
reflects a normally incident wave in the direction of (p0=300' is given, for the value of Z0 

designed after formula (9) (curve 

30 

/\ 

90"   120    150    180 

Fig.2 

1). Curve 2 corresponds to the 
scattering pattern of an equivalent 
conducting strip tilted by the angle 
0.5((pn-(po) with respect to the 
angle (pn of the wave incidence. 

The obtained analytical 
solution of the wave scattering by a 
plane with variable periodic 
impedance (4) can be used for 
determining the total field (7) on 
the curved surface of a body of 
arbitrary shape, if combined with 
the Physical Optics approach 
approximate solutions. 
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SYNTHESIS OF THE ADAPTED HYBRID REFLECTOR ANTENNAS 

Bohdan Podlevskyi, Petro Savenko, Myroslava Tkach 
Institute of Applied Problems of Mechanics and Mathematics of  NASU 

3"b" Naukova Str.,  Lviv-601,  290601,  Ukraine 
e-mail:kalynjak@ippmm.lviv.ua 

Abstract. One approach of solving the synthesis problems of the adapted 
hybrid reflector antennas (HRA) is proposed. It consists in solving of both 
problems, the synthesis problem of HRA according to the prescribed directivity 
pattern (DP) and the problem of forming the deep gap in DP according to the 
given direction. The variational formulations the synthesis problems are used. 
The mean-square deviation of the given magnitude and the synthesized one is 
chosen as the optimization criterion. 

The suggested approach permits to synthesize the adapted HRA ot the 
different structure. In particular, the cuttings from reflectors can be both 
symmetrical and non-symmetrical, and irradiating feed array can have 
arbitrary configuration. The partial directivity patterns of the elements of the 
array can be different for each of them. 

1 Statement of the problem. The spacecraft hybrid antenna systems are 
used in particular, for the construction of the modern systems satellite 
communication of multy-functional purpose. As rule, they consist of the non- 
symmetrical paraboloic reflector (a some cutting from paraboloidal reflector) and 
the control irradiating feed array. It is supposed that the reflector is situated m 
the far zone in relation to the separate feed element and in the near zone m 
relation to the feed array as a whole. 

Let the field in the far zone is described, using the coordinates ot the 
satellite antenna by the angle of elevation Ä and the angle of azimuth cp- We 
assume that the field (partial DP) of the w-th separate beam in the point of 
observation  (d^cpj, excited by the unit level of power and zero phase, can be 

presented by the complex vector fn(h,Vi)- The feed array in 0Ur reSeach m&y 

have general configuration in the sense that the position and orientation of each 
n-th feed element is specified independently. The excitation coefficients and the 
type of the radiation (a cos? d feed) may also vary from element to element. 

We designate the complex factor of excitation of n-th feed element as ln. 
Then, the electromagnetic field of whole system is considered as a sum of the 
partial fields, and the total directivity pattern is given by 

r(a,9) = Ai = f;i„/n(a,<p)- a) 
n=l 

The value /„ is determined by the physical optics methods. 
2. The synthesis problem of HRA according to the prescribed magnitude 

pattern At first, the synthesis problem of HRA according totiie prescribed DP 
FQ is considered. It is assumed that the magnitude pattern F0 is given in some 

region Ü of angles S and <p, and F0=0 outside of this region. If the geometry of 
the feed array and the partial directivity patterns of the separate radiators of 
array are known, then it is required to determine the amplitudes and phases of 
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excitation of the radiators ( I = {lvI2,...,In} - is the vector of excitation of the 
feed elements). Therefore, the synthesis problem consists in a finding the vector 
/ minimizing the functional being the mean-square deviation of the synthesized 
and given magnitudes in a some region Ü. Thus, the criterion of optimization is 
writtern as 

n ü 71 = 1 

where F0
S, F0

9 and F , F* are components of vectors F0 and F accordingly in 
a spherical system of coordinates, N is & quantity of feed elements and ß > 0 is 
a some real parameter. 

The condition of stationary of the functional (2) results in the nonlinear 
system of algebraic equations, which in the operator form is defined by 

(ßE + B}f = q(?) , (3) 
here B is a matrix, the elements of which do not depend from / ( E is a unit 
matriv 1 Tt nprmits t.n p.nnst.mr.t the following iterative rjrocess of the svstem 
solution 

/(u)=(ßE + B)-1g(7(^1)), (4) 

where u is the number of iteration, (ßE + B)"
1
 .,. is the inverse matrix. 

Numerically the obtained system of equations is solved by the successive 
approximation method. The considered problem is essentially nonlinear problem 
and may possess non-unique solution. 

3. The synthesis of the adapted HBA. It is assumed the problem of 
forming the deep gaps in the DP according to the prescribed directions as basis 
of the synthesis problem of the adapted HRA. Let the amplitude-phase 
distribution (APD) in irradiating feed array is given and directivity pattern of 
HRA is writtern by formula (1). 

The zero synthesis problem in the DP of the HRA according to the 
prescribed direction Q, (Q = fei,£2) = (sin3coscp,sin Ssin cp) are generalized 

angle coordinates) consists in finding such a vector APD /, forming DP close to 
the  output in the  whole range  of visible  angles   Q ,  and  equal  zero in the 

direction Qm. Last demand can be formulated as an inequality  /(Q*)| <e, where 

e is a small prescribed constant. 
Introduce in consideration the function 

N 

0(Q) = FO(Q)-UQ*)= I'i0)lA(Q)-/n(Q*)L (5) 
71 = 1 

where /(0) is the APD forming output (nonperturbed) DP F0. Obviously, that 

F(Q) in all points Qeß coincides with the output DP and <P(Q*) = 0. In the 
space of vector-valued functions Hf we introduce Euclidean metrics determined 

by the scalar product and norm: 

n 
Hence, the synthesis problem consists in finding the vector I eHj 

minimizing the following functional: 
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a = 
-II2 

0-AlW . (6) 

The operator A is determined in accordance with (1).   ... 
Assuming that the system of partial DP of HRA {/J is linearly 

independent we apply the orthogonalization process to it. After certain 
transformations we get the representation of the DP array in the 
orthogonalized basis 

N 

F(Q)=Zßn0n(Q)> <7> 
n=l 

here {gn} - is the orthogonalized system of the functions; 

where 
a 

j = n 

jn   = (fj>0«) J = l,n-l, 

(8) 

dn  = 
7 = 1 II 

Introducing (7) into (6) and on the base of minimum of the functional a we 
obtain the expressions for the optimal coefficients: 

u.=frs„) <9> 
or 

ßn = ßn -   F0(Q,),pu(Q)dQ , (n = 1, JV), (10) 
{ n ) 

here the coefficients ß° are determined on the base of output vector /0 by the 
formula (8). If the coefficients ßn are finded according to the form (10) for DP 

F{Q*) and they satisfy the condition (5), then the problem is solved. The known 

vector / forming DP with the created gap is determined as the solution of 
linear equations system (8) with triangle matrix. In the inverse case we find 
coefficients using the following iterative process 

ßS+l) = ßj)- F®(Q.\IJ$n{Q)dQ ,lp = l,N), (ID 
{ n J 

where j is the iteration number. 
The offered approach and developed algorithms permit to solve the 

synthesis problems of the adapted hybrid reflector antennas with simultaneous 
forming the deep gap (zero) in the directivity pattern according to the 
prescribed directions. This investigations are proved by the numerical results. 
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THE METHOD OF AUXILIARY SOURCES FOR INVESTIGATION OF 
SCATTERED FIELDS SINGULARITIES AND ITS APPLICATION FOR 

INVERSE PROBLEMS 

R. Zaridze, G. Bit-Babik, K. Tavzarashvili. 
Tbilisi State University, Tblisi, Georgia, e-mail: lae@resonan.ge 

Abstract A simple method for investigation of the scattered fields singularities is presented It 
is shown how this technique can be applied to the synthesis problem of 'Veil-matched 
antenna with predefined pattern. The basic idea is that the wave field corresponding to the 
desired pattern must have a domain of singularities, and it is determined by these singularities 

in a unique way. 

I.   Introduction 
It is known that any wave field carrying the energy into infinity must have the centers ot 

radiation i e the singularities in some domain. Otherwise the wave field function must be 
everywhere identically equal to zero [1]. In this paper attention is paid to localization of these 
„: i_u: A~r „,„„n,nt;n« +w »„pro «;avo fiplH is ArtrrvnmeA hv its own singularities in a 

unique fashion. Investigations have shown that these singularities are distributed as bright spots 
and the distance between them depends on frequency! Based on these concepts and on the 
Method of Auxiliary Sources (MAS) [2] a simple numerical method for the field reconstruction 
after its given singularities is suggested. The corresponding mathematical justification can be 
found in [3]. For localization of the wave field singularities, the functions characterizing the 
converging and diverging waves are used. 

The localization of singularities is used for optimization of the inverse problems solution. It 
is known that the inverse problems do not have a unique solution. For example, for a specific 
pattern the different current distributions on the different surfaces can be introduced and there 
fields differ from each other by the reactive part in the near zone. The main problem is to 
obtain such currents distribution that occupies a minimum volume and produces the minimum 
of reactive field in near zone so that the whole feeding energy is transmitted into propagating 
wave. Such antenna is called the "well matched antenna". 

It is assumed that any pattern of the field radiated to infinity should have its own unique 
singularities in a limited domain. On the other hand it is known that a propagating wave is 
analytical everywhere except the domain of its excitation. This is the domain of singularities of 
the radiated field, which forms the propagating wave and its pattern. So the problem is to find 
out the location of these field singularities. 

n. General Algorithm of Near Field Reconstruction 
The problem to be solved is to design a "well-matched antenna" that will produce a given 

far field pattern. This is equivalent to the determination of the singularities of the specific 
pattern. Thus the near field has to be determined as it has been discussed previously. 

For this purpose an auxiliary circular antenna is introduced. The far field of this antenna is 
calculated and matched with the given far field pattern by distributing the auxiliary sources on 
the auxiliary surface inside the auxiliary antenna. It is obvious that the near field of this 
auxiliary sources can be easily calculated, therefore using the method of visualization of 
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scattered field singularities described before the 
singularities of the given pattern (e.g. the location of the 
antenna dipoles) is determined. 

We consider in detail a 2D case, of antenna with a 
pattern F(<p) to be designed. First of all it is necessary to 
obtain the near field corresponding to the specified pattern 
F(<p). This could be done by distributing N sources of 
H(

0
v(kr) type on some curve S enclosing an area D (fig. 

1). In this case, S is chosen to be the circle of diameter d. 
Here it should be noted that diameter d must not be less 
than some definite value to provide the necessary width of 
the main lobe. This condition is: d > XI®, where X is the 

Figure 1: The geometry of the near   wavelength and 0 is the width of the main lobe. The field 
field reconstructing algorithm.        radiated by these sources will be: 

(1) 
N 

E(r)=Ila„HSL\k(r-r„))t 
n=0 

while the far field pattern will be determined by the asymptotic approach of the expression (1). 

So, (1) becomes:   
N 

lim E(r) - 1 nkr »=o 

-ik{x„ oos(<p)+y„ sin(<p))+z- 
(2) 

By using the collocation method to bind the radiated field of these sources in M directions with 
the given one in far zone, the system of linear equations is obtained 

Yjane~Hx"C0"Pa~y"s'ia<Pm) =F(<pm)   M = l,2,....,m. (3) 

On solving the system of linear equations (3), the coefficients can be determined. They are the 
complex amplitudes of the sources that generate the desired diagram. The accuracy of this 
solution depends on the number N of collocation points. So after obtaining the pattern with a 
desirable accuracy, the field of such sources is known everywhere outside the area D including 
the near field (1) It must be noted that the reactive field of these sources decreases as the 
diameter d increases, since no standing wave is described by these sources. Hence, area D 
should be taken large enough to provide low reactive part of the field in near zone. 

As the near field is known outside the area D, the second step is to continue it analytically 
inside D using the following scheme. Taking into account all mentioned above, the 
continuation of the near field will be also unique up to the singularities regarding the chosen 
area D. Let us choose some curve L outside D, where the near field is known. Assume that N 

sources H$\kr) are placed at some distance from the curve L. These sources act as 

absorbers of the wave, traveling from the area D to infinity. The N chosen sources will 
reconstruct the field at the curve L if 

ibnH^{k{rn-rm)) = E{rm), (4) 
72=1 

where bn is the complex amplitude of the n-th source, and E(r„) is the near field value at the 
corresponding point on the curve L. If the number N is large enough, the reconstructed field 
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approximates the real one. Since there is a matching of fields on the curve L, there must be 
also matching inside the area D up to the area of singularities of the given near field. So the 
numerical analytical continuation of the near field will be found inside area D. 

m. Example of the Inverse Problem Solution 
Consider one more example of optimizing the inverse problem solution. The aim is to 

synthesize a given radiation pattern, originally generated by two electromagnetic wave sources 
placed at a distance of several wavelengths from each other. The corresponding pattern is 

L.4Da*OC 

Figure 2.: Suggested pattern 

-1.00*HJ0-4.00a-0ia.GOft-0i   B.OOe-Ol   l.«O*>00 l.OOe+OO 

Figure 3.: Field corresponding to the given pattern 
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Figure 4.: Reconstructed field. Figure 5.: Reconstructed coordinates of the sources 
to be found. 

shown in Fig.2. and the near field in Fig. 3. With the sources placed at the circle, it is possible 
to reconstruct this radiation pattern, as it has been described above (see formulas (1) and (4)). 
The result is shown in Fig. 4. Then using a set of absorbing sources, the near field is continued 
inside the circle. The field obtained in such a way gives two sharp maxima near the area where 
the original sources were placed (Fig 5.). Therefore the information about the field singularities 
is generated: the latter are actually at the points of original sources, and one can note that this 
information was obtained only after consideration of the radiation pattern without a previous 
knowledge of original sources. It is now obvious that by placing in two sources at the 
corresponding point, the desired radiation pattern can be obtained in the most optimal way. 
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INVESTIGATION OF THE SOLUTIONS OF THE NONLINEAR 
ANTENNA SYNTHESIS PROBLEMS 

M. I. Andriychuk 
Pidstryhach Institute of Applied Problems of Mechanics and Mathematics 

Ukrainian National Academy of Sciences 
3"b" Naukova str., Lviv, 290601, Ukraine 

E-mail: voi@ippmm.lviv.ua 

Abstract - The antenna synthesis problems according to the prescribed amplitude 
radiation pattern are considered. The variational statement of the problems is used. The 
correspond nonlinear Eulerian equations can have nonunique solution. The finding these 
solutions and investigation of their properties carried out using numerical approach. 

The considered problems concern to inverse problems with the partially given 
information on the radiation pattern (RP). The incomplete complex RP but only its amplitude is 
accepted as initial RP. Thus the choice freedom of the RP phase is used as additional 
possibility for better approximation to the prescribed amplitude RP. The variational statement 
of the problems is used [1], namely it is required the incomplete coincidence of the received - 
amplitude RP with the given one, i. e. only the best approximation to it. 

We consider the functional 

K = (F,|/|)//||«|| 0) 

as a criterion of the optimization. Here F is the prescribed amplitude RP (real positive 
function), l/l is the module of the synthesized RP. The functions F and / concern to 
Hilbertian space ff, of the radiation patterns, (-,-)/ is the inner product in this space, ||i/||isthe 

current norm in the Hilbertian space Hu of the currents. 
The radiation pattern / and forming its current u in the antenna are related by the 

formula 

f = Au. (2) 

A is the known linear limited operator. In the case of the plane curvilinear antenna the 

operator A has the form [2] 

/ = Au = \ u(S) exp(/Ar(<p') C0S(Q ~ <p")>& ■ • ^ 
s 

The inner product (•,•)/ in the Hilbertian space Hf is determined as 

(/,/)/ = jV(cp)/(<P)/*(q>>*p. (4) 
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p((p) > 0 is the weight function, cp is the angular coordinate in far zone. The inner product 

(u,u)u in the Hilbertian space Hu, is determined as 

(«,«), = ju(S)u(S)dS<f., (5) 
s 

where dS . - yjV2 + (dr I d<pf dy , (p is the angular coordinate in the antenna. 

The complete complex function u is necessary to determine in the amplitude-phase 
synthesis problems, but only its phase V|/ in the phase synthesis problems is determined, here 

U =| u\ exp(A|/). We receive the corresponding nonlinear Eulerian equations 

u = M A* (Fexp(i arg Au)\ (6) 
K 

i|/ = arg(A * (F exp(/ arg Au))) (7) 

for the amplitude-phase and phase problems respectively using the standard technique of the 
•    1- INI     ■ •      A variation^ calculation. In the equation (7) the nonessential positive multiplier — is omited. 

The operator A* is adjoint to A, it is determined from the condition 

(Au,f)f = (u,A*f)u. (8) 

The equation (6), (7) are nonlinear integral Hammerstein equations [3], if operators A and A* 
are determined by formulas (3) and (8) respectively. 

The changing of the characteristical electrophysical parameter of the equations (6), (7), 
contained in their kernel, leads to the appearance of the several solutions. The analytical 
investigation of a number of these solutions and their properties is difficult problem 
(particularly for the equation (7)), therefore the numerical approach is used. For the numerical 
solving these equations the successive approximation method is applied. The calculation 
carried out by the formulas 

„    = il^l^(Fexp(/arg^«J), (9) 
K„ 

v|/„+1 = arg(^*(Fexp(/arg^w„))). (10) 

The  successive  approximation method  is  applied to  the various types  of the  initial 
approximations for reception of the various solutions [4]. 

The numerical calculations were carried out for plane circular antenna (r(q>*) = a, a is 
the antenna radius). The results are presented for the phase synthesis problem. The prescribed 
amplitude RP were  Fx (cp) = sin2 (<p / 2)   (a) and  F2(cp) = sin8(cp/2)   (b).  As the initial 
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approximations for the desired phase distributions next functions were prescribed: 1 - \|/ = 0; 

2- v|/ = 0, (0<<p'<7t),v|/ = 7i (%<(?'<2%); 3- \|/ = sin(<p');4- v|/ = cos(cp'); the amplitude 

distribution of current |«|s 1. In Fig. la, b are presented normalized values of K functional 
which correspond to solutions of (7). These solutions are obtained using the iterative process 
(10) (the curves 1-4 correspond to various types of the initial approximation). At the small 
values of ka for the prescribed amplitude RP Fx and F2 exist two and three solutions 
respectively. The new solutions appear if the value of ka increases. For more exact 
determination of the branch point of solutions is necessary to apply analytical approach. 

The synthesized amplitude RP |/| corresponding to the curves 1 and 2 in Fig. la, b 

respectively and the prescribed amplitude RP F are presented in Fig. 2a, b for ka = 5. 
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SYNTHESIS OF IMPEDANCE REFLECTOR 
WITH GIVEN SCATTERING CHARACTERISTICS 

Yuri V. Yukhanov, Sergey N. Sorokin 

Taganrog State University of Radio Engineering, Taganrog, Russia, airpu@tsure.ru 

Abstract - The problem of synthesis of an impedance reflector having, at the working 
wavelength, the same radar cross-section as some perfectly conducting reflector is considered. 
Analytical expressions for determining the distribution of components of tensor of surface 
impedance for the synthesized reflector are obtained. The influence of the shape of reflector on 
its frequency-selective properties is investigated. 

We shall consider a problem of synthesis of a reflector with the given radar cross- 
section (RCS) and frequency properties in the following statement. 

Suppose that, in the free space, a three-dimensional reflector is located, on whose 
surface the Leontovich impedance boundary conditions are imposed. The surface of impedance 
reflector is assumed to be a body of rotation, the contour of whose longitudinal section is 
described by the equation p{6). The tensor of surface impedance, in order to eliminate thermal 
losses, is assumed as corresponding to a closely spaced mesh of purely reactive strips (Fig.l). 
In some volume V0, located in the far zone of reflector, there distributed are electrical and 
magnetic currents. They generate, in space V, a locally plane electromagnetic wave that 

propagates along the direction (%,<PP) and excites the impedance reflector. It is required thus 

to determine a distribution of components of tensor of surface impedance, such that in the 
backward scattering direction the RCS of the synthesized reflector is same as RCS of some 

reference perfectly conducting reflector with a surface S0. 
As a reference reflector, another 
body of rotation is used, the contour 
of whose longitudinal section is given 
by the equationpa(0o). The reference 
reflector is located coaxially with the 
impedance reflector. 

The formulated above 
problem is solved by the method 
developed in [1]. For the solution it 
is necessary that the radius of 
curvature of reflector is much greater 
than the wavelength. It enables us to 
use the Physical Optics 
approximations. A natural way of 
solving the problem implies 
introducing   a   local    system   of 

coordinates {n,vJ9}. Here « is the normal vector to the surface of reflector, v is the 
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tangential vector to the contour of the surface longitudinal section, f, is the unit vector of the 

spherical system of coordinates centered at the axis of symmetry of reflector at some distance 
from its top In this case the tensor of surface impedance takes a diagonal form. For 
dr^LdisSbution of components oftMs tensor ofimpedance we sM act as foUows. 
determS we derive ^ expressions characterizing the fields scattered by impedance and 
reference reflectors. By equating them in the direction of backward propagation™<****" 
integral relation for the unknown components of impedance tensor. Then we shall find these 
rXen^based on the condition of identity of phase factors in the integrand tod»» A.>a 
esTwe shall come to a set of two equations, which appear not solvable "*^*" 

aStrarv direction of propagation of the incident field or if the reflector surface is not a body of 

ÄmSU* °f the obtained e£*uations shows that for" MTBXy  TZ Ration' ofle incident wave, the distribution of components of the tensor of surface 

impedance Zn,Z22 depends on the both of angular coordinates 8 and cp in a complicated 

mamer' In the most important for practice case, when the incident wave propagates along the 
axis of symmetry of reflector, the derived set of equations splits into two independent 

equations! 

Xu =^(A0/2)/cosr/7;X22 = cosr/g(A0 /2), 

where cosy, *= n9sin9-nrcos0,   A0 = 2k(p cos0-pocos0o) 

Xn =Zn IW,X22 =^22lw, w =12071 ohm is the free space 'mvQdance> 
nr,ne are the projections of a unit normal vector to the surface of reflector on the vectors of 

the spherical system of coordinates; *«2*/A. The angles 0,% are connected by the 

equation p sin 0 = p, sin 0 „. 
The analysis of the obtained equations shows that with an axial Erection of 

propagation of the incident wave, the distribution of components of the tensor Z depends 
soldy on one angular coordinate 0, as the impedance and the reference «*^«f*l 
coaxial bodies of rotation. The results of computations enable us to make a conclusion that if 
usZ an impedance reflector shaped as a body of rotation, the distribution of components of 
tensor of the surface impedance quickly changes along the generator of reflector. The penod of 
Son of components of impedance tensor and its uniformity along *e generator of 
reflitor is determined the shape of the latter. So, in the case of circular cone used as reflector 
the period of variation of the impedance-tensor component remains constant along the 

reflectogeneratw^ ^^ ^ ^ ^ ^ computations rfthe monostatic scattering 

characteristics of the reference and impedance reflectors. So, for a flat ™P^™J^«™ 
simulating a conical reflector with the tip angle of 90 degrees, the sector of angles of 
competitive values of the RCS patterns is ±2\ Further we investigated an opportunity to 
simulate a flat perfectly conducting disk by an impedance conical reflector. The analysis of the 
obtained results shows that within the approach of Physical Optics, in the axial jetton RCS 
of impedance reflector is equal to RCS of a perfectly conducting disk. The sector of angles of 
close values of the scattering characteristics is ± 5". For the estimation of sector of angles of 
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competitive levels of the scattering characteristics, in the case of axial excitation of reflectors, 
the following analytical formula was derived: 

A6 < 2 arcsin   ^/TC/16 k sup |p0 cos 0 0 -pcos 61, 

where sup means the upper limiting value of a function. 

The analysis of the latter expression shows that the sector of angles of concurrence of 
the patterns is determined by the difference between the shapes of reflectors. It is visible that a 
reduction of shape difference between the impedance and the reference reflectors leads to a 
growth of the size A9. The results given by this formula are in good agreement with 
estimations obtained by means of computing the scattering characteristics. 

The properties of the synthesized reflectors were further investigated in a frequency 
range It was supposed that the obtained distributions of components of surface impedance 
tensor were realized by a closely spaced system of grooves of variable depth. It has been 
shown that the frequency-selective properties of an impedance reflector are determined by its 
shape For reducing the RCS of a reflector outside of a working band of frequencies, it should 
be fabricated as an elongated body, for example as a circular cone with a small tip angle. 
Reflector frequency characteristics in this case have a resonant cnaracter. its wiom is 
determined by the tip angle value of a conic reflector. A variation in the wavelength of the 
incident field results in the deformation of scattering characteristics of impedance reflector. 
The character of deformation is determined by the shape of impedance reflector and the change 

of frequency. 

Interesting results were obtained for an impedance disk simulating a conical reflector 
with a small tip angle. It is known that RCS of a conical reflector in the axial direction 
decreases with a reduction of the reflector tip angle. The analysis has shown that RCS of an 
impedance reflector at the working wavelength of the incident field is the same as that of a 
reference perfectly conducting reflector. However, changing the wavelength of the incident 
wave results in a growth of RCS of impedance reflector. The latter can be explained by the fact 
that the obtained distribution of components of surface impedance tensor at the working 
wavelength results in a mutual cancellation of the fields scattered by various elements of the 
surface of a reflector. With a change of the frequency of the incident field, the phase 
differences between the fields scattered by various sections of the surface of reflector 
experience disturbances that results in the growth of RCS. In the opposite case, when 
impedance cone is used for modeling a perfectly conducting disk, the obtained distribution of 
components of surface impedance tensor should provide, in the axial direction, an addition of 
the fields scattered by the elements of a reflector surface. Therefore a change of the 
wavelength of the incident field results in reduction of reflector RCS. 
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NEW RIGOROUS SOLUTION OF SOME ANTENNA SYNTHESIS PROBLEMS 
ACCORDING TO PRESCRIBED AMPLITUDE RADIATION PATTERN 
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Abstract The problem of the least-square minimization of the difference between the prescribed 
and obtained amplitude patterns is solved for the linear antenna in the closed form with a limited 
number of complex parameters which are calculated from the set of transcendental equations. 
The number of parameters depends on the electrical length of antenna Numerical results 
concerning two concrete problems are presented. The method is extended to the equidistant 

linear antenna arrays^^ ^ ^^ ^ ^^ problems described by the continuous or discrete 

Fourier transformation. 

One of the approaches to the antenna synthesis problem according to the amplitude 
radiation pattern consists in the least-square minimization of difference betweenthe 
prescribed and obtained amplitude patterns. This problem was lormeiiy^«"^ «" « 
non-linear integral equation [1]. The equation has nonunique solutions branching out 
when the electrical antenna size increases. This equation was solved and analyzed 

For the case of linear antenna, the above problem may be analytically reduced to 
a finite set of transcendental equations in some unknown complex parameters 12]. In 
this case the functional to be minimized has the form 

-00 

where >(£) is the given amplitude pattern (a finite positive function with the support 

[-1,1]), /(£) is the obtained radiation pattern 

f(Z) = ]u(x¥*dx, (2) 

c= kasina is a dimensionless parameter of the problem, u(x) is the current distribution 
at the antenna, £= sin-9/sina is a generalized angle coordinate, 2« is the angle outside 
which F(# =0. The problem is reduced to the nonlinear integral equation 

1 f1 sinc(£- ?)Ftp\^ni)fip (3) 
J-i     *_ p S-? 

The current distribution at the antenna is calculated according to the solution of (3) by 
a simple formula [1]. 

It is proved that 
e^M = g{®PAS)l\PM\ (4> 

where g(D = risign^-^>'    £ are possible zeros of /($, 
i 

PM = W-I*& (5) 

N is some integer dependent on c, rjn - ~r\m * 0, n, m = 1,2,..., N. 
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The complex parameters rjn satisfy the following set of transcendental equations: 

f_F{dg(Q?smcZ/\PN{ghd4 = 0, (6a) 

/_l/
,(äg(örcosC#/|^(ä|rf|=0, (6b) 

w=0,l JV-1. Relation between the number of multipliers in (4) and parameter c is 
described by a simple inequality. 

The branching points of the solutions are such values of c at which the equations 
(5) are satisfied for different values of TV simultaneously. 

In Figs. 1-3 the results concerning two cases, ^(D = l/V2, &(£) = 1 and 
F2(£) = sin3|£|, g2(£) = sign£, are presented. Typical dependances Re?7„ (solid lines) 
and Im rjn (dotted lines) on c is given in Fig. 1 for the first case. The curves are indicated 
by numbers equal to the values of N in (5). Fig. 2 shows the optimal values of a (solid 
lines) and values cr0 of the functional at Im/(£) = 0 (dashed lines). Dotted lines denote 
borders between intervals with different values of N in the optimal solution. Numbers 
at the curves are the same as the subscript of F. Dependance of the "synthesis 

presented in Fig.3. This value shows how much the antenna can be shorted due to 
choosing the phase pattern. 

Fig. 1. Parameters in solutions of nonlinear equation (3) 

The results are generalized to the equidistant linear antenna array with d as the 
distance between its elements. In this case the functional to be minimized has the form 
(1) with integration over (-xlc,nlc) where c=kdsin a. In this case the integral 
equation for the optimal pattern is [1] 

arg At) d$ (7) 

where Mis the number of elements in the array. Formula (4) is substituted for 

i arg/(f) 
■■g(9PM/\pM\ (8) 

with r= tan(c£/2). Accordingly, the equations (6) are substituted for 
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J1/(^to^sin(cM^/2)Vl77/|PJV(r)|^ = 0 

135 

(9a) 

(9b) 
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ARBITRARY GEOMETRY 
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ABSTRACT. 

Universal phased array pattern synthesis procedure is considered. Radiating 
elements mutual coupling is taken into account by using the array impedance matrix. The 
procedure is applicable to arbitrary array geometry with N radiators of any arbitrary sort. 
The required array pattern is specified at M prescribed points with a restricted sidelobe 
level. The pattern synthesis is considered as a gain maximization process with arbitrary 
additional conditions. The variational principles are used to obtain the initial 
approximation, than this solution is to be corrected by using some iterative process. Only 
the active part of the impedance matrix is needed to be known for the problem solving. 

1. INTRODUCTION. 

There are three main kinds of the antenna array synthesis problems. They are the 
problems of approximation, interpolation and optimization. 

The first ones appear when it is necessary to provide a required beam shape. In 
this case the required pattern is stated as a function, which is determined in the whole 
angular domain and includes the sidelobes. That is why rather large computational efforts 
are needed for minimizing the aim function in the whole angular domain. For example, 
the Chebyshev-synthesized pattern has one and the same sidelobe level even for the far 
lobes. This is the reason of a gain value decreasing. For the practical needs, important 
parameter is only the level of the sidelobes but not their shapes. 

Interpolation synthesis problems are somewhat closer to the practical needs be- 
cause their solutions provide the pattern control at several prescribed points. If the num- 
ber of elementary array radiators is large, it is possible to tune the sidelobe level by 
choosing prescribed points in the sidelobe domain. However, the intervals between these 
points cannot be controlled. Introducing an additional number of points increases the 
problem «dimension» and hence the computing expenses. Besides, interpolation problem 
solutions do not enable one to minimize the radiated power (i.e., the norm of currents). 

The most realistic problem formulation is to determine the distribution of the cur- 
rents that provides a coincidence between the required and the realized patterns at a fi- 
nite number of points and satisfies a prescribed sidelobe level restrictions. This formula- 
tion implies only the upper sidelobe level restrictions and does not require the coinci- 
dence of the patterns at the sidelobe domain. 

2.PR0BLEM SOLUTION 
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The first step in the problem solution is the pattern synthesis procedure which 
provides a maximum directive gain and coincides with the required pattern at M pre- 

scribed points: 

GtfU)-»max, with    F{0mtVm) = amt (m=\2,...M). 

(1) 

The first condition in (1) is equivalent to F(Ox,<pl) = l and P^, =V 'lr\'rl> 

where G^,%) * the array gain, F(0m,<pm) are the pattern values at prescribed points, 

Pimt is the array input power, (/* is the row-matrix of conjugate current distributions, 

^Ithe column current matrix, [r] is the rectangular matrix of the real parts of input 

impedances. ^^ ^ ^ ^^ ^ ^ variational sense, i.e. as minimization of the 

functional given by 

W)) = p{rYi) + IiM.-(fV.,1>*>i)> (2) 

ju   are the Lagrange factors, </(^J is the row-matrix of array radiators at (0m,<pm) 

-directions. In the minimum of (2) its first variation is zero. That yields the following cur- 

rent matrix: 

M . 

i) = -'Ltt-[rr-fV.>9.))- 
m=l 

(3) 

Unknown expansion coefficients Mm can be calculated by solving the following set of 

linear algebraic equations: 

M > 

^•(/'(«l.ftJ-AU))^.   (k^2,...M). 
m=l 

(4) 

The realized pattern is the following one: 

F(e,<p) = -fx -(/U^-H-1 -m<p)) • (5) 

m=l 

This pattern can have the sidelobe amplitudes higher than the prescribed limit 

So the next step in the solution is to correct the «initial» pattern (5) by adding 
some new control points {9m,<pm) to the synthesis conditions (1). The prescribed pattern 
values at these points must be equal to t. Then the procedure is reiterated. To solve the 
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set (4), the number of control points M can not exceed the number of array radiators N 
minus one. 

Proposed synthesis procedure, in the simplest case when the number of pre- 
scribed points M -\, provides a pattern with maximum gain in the direction (^,^) 
without any other restriction [1]. ForM> /, the current distribution (3) can be treated as 
a linear combination of the several simplest (i.e., corresponding to M = 1) distributions. 
Each of them provides maximum gain in the corresponding direction (6m,<pm). In the 
iterative process, such «partial» patterns develop a minimum distortion of the initial pat- 
tern. By using functional analysis techniques one can prove the iterative procedure con- 
vergence. A great number of sample synthesis computations have shown that normally 
only several iterations are needed for problem solving. 

If M - N, the pattern (5) coincides with prescribed values at the points {9m,(pm) 

without any gain maximization. For M > N, only a mean square approximation can be 
provided. The same conclusions can be done in the case of traditional interpolation syn- 
thesis problems. 

One of the main features of the proposed synthesis procedure is that it takes into 
account the array elements mutual coupling. Only real part of the impedance array matrix 
is needed for the problem solving. Its computation is much easier than a full complex 
matrix determination. 

There are no any limitations either on the radiator type or on the array geometry. 
Polarization properties can be calculated if the radiator pattern is a vector function. 
Several examples of numerical synthesis of cylindrical array patterns, both in the azi- 
muthal and in the axial planes, with specific shapes and differently limited sidelobe levels 
in different angular sectors will be presented. 

3.CONCLUSIONS 

Effective iterative procedure has been proposed for an arbitrary antenna array 
synthesis based on the gain optimization process with some additional restrictions. 
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ON THE STRUCTURE OF THE SOLUTIONS OF THE ANTENNA SYNTHESIS PROBLEMS 
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Abstract It is known, that the antenna synthesis problems according to the 
prescribed amplitude directivity pattern belong to the class of essentially incorrect 
problems The absence of the demands to the phase directivity pattern under the 
conditions of the problem should be used as the additional possibility to improve 
the approximation of the synthesized directivity pattern (DP) to the given one. At 
the same time, the nonlinearity of the problem leads to the aonuiaqueness of the 
solutions that complicates the process of numerical searching the solutions. In this 
report the investigations of the quantity and quality characteristics of the exist ng 
solutions, based on the methods of functional analysis, is given in the cases of the 
linear antenna and the antennas with plane aperture and their discrete analogy 
(antenna grids). It turns out, that the quantity and the quality of the solutions 
depend on the value of the electrical size of the aperture, on the value of the space 
angle (where the DP is given), and on the quality of DP. 

Statement and Solution of the Problem. Let / be the DP of the radiating 

system prescribed by the linear quite uninterrupted operator A(c) acting from the 
Hubert'space of the apertured functions Hv into the space of the realized DP Hf 

f = AÖ^A^Ü + A(f,U. (!) 

The form and the properties of the operator A(c) = {As, Acp} depend on the type 
and   geometry  of  the   radiating   system.   The  parameters       characterizing  the 
electrical size of the aperture (named as the main parameters of    the synthesi 
problem   are contained in the operator A  nonlinearly, as a rule. The vanationa 
problem consists in searching such function of the amplitude-phase distribution of 
the fields (currents) U on the aperture, minimizing the regularization functional 

ap=|Fa-|^|f+|^-K^|f+ßl^f- (2) 

It   consists   of  the   mean-square   deviation  of   modules   of  the   synthesized  DP 

/| = k2+/,p2)1/2 and given one \A-^l+Flf'and limiting the norm of the 

aPertU
TheUproblem of searching the points of minimum is reduced to finding the 

solutions of Euler's equations of the regularization functional ap relative to either 

optimal amplitude-phase distribution (APD) 

of the fields (currents) or  optimal synthesized DP / 
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m = - 44 h - 44/ +44 (Var8/s)+44(Varg/'), 
ß/cp = -44A - 44/ + 44 Warg/s)+44( Var8/9) (4) 

These equations are the equivalent ones. They include besides the nonlinear 
operator of Hammerstein's type the self-adjoint negative halfdefined linear 
operator in the right parts. 

It shoud be noted, that for the analytical investigations the equation (4) in 
regard to synthesized DP is more simple. The equation (3) relative to the optimal 
APD is prefered for searching the numerical solutions for the antenna grids. 

The existence of the solutions of the equations (3), (4) is proved by the 
following theorem. 

Theorem. Let the operator A acts from the complex Hilbertian space of the 
vector-valued functions Hv into the complex space of the uninterrupted functions 
Hf with introduced integral metric, and it is quite uninterrupted. Then, the 

functional OR take on the minimal value at some element Oj m,e space mj, wC 

equation (3) in the space Eu and the equation (4) in the space Hf each has at least 

one solution. 
It is shown, that in the case of arbitrary positive value of the main 

parameters c of the problem the Euler's equation (4) has at least two solutions 
/,, /2 in the region of the real-valued functions. We shall name these solutions as 

primary ones of the first (/,) and second (/2) type. The solutions for the linear 
antennas and for the grids should be written in the evident form. The 
characteristic peculiarity of the primary solution of the second type is that at some 
points of the region Ü, in which the main lobe of the necessary amplitude DP is 
given, it becomes equal to zero. When the main parameters of the problem are 
little, the primary solutions minimize the researched functional (2). The efficiency 
of the primary solutions depends on the properties of the given DP F . If the given 
DP at some internal points of Ü, the region of its definition,^ equals to zero, it is 
more effective to use the primary solution of the second =type f2. 

With the growth of the value of the main parameter C, the complex 
solutions which are more effective (in the sense of the value of functional (2)) than 
the primary ones, are branching from the real primary solutions. The branching 
points of the solutions can be found by solving either the corresponding systems of 
transcendental equations or the generalized eigen-value problem with the 
nonlinear spectral parameter. The corresponding iterative processes are built and 
their convergence is proved. It is shown, that the branching points of two types 
exist for every primary solution. The results of investigations of branching the 
solutions at every point are given. 

The general structure of the solutions can be shown in the form of two 
"trees" of the solutions. The "trunks" correspond to the primary solutions and the 
"branches" to the branching solutions of a certain type. The "tree" of the solutions 
of the linear antenna synthesis problem is shown in the fig. 1, in the case when DP 
has form F(£) = l. The primary solution is denoted by fx{^,c), and the branching 
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solutions are denoted by fg&c) (n=l,2,3). The points of branching of the first 

and the second types are denoted by cp\ #\ where j is the number of the 

corresponding branching points, <f is the branching point of the first branched 

10The investigations of the solutions of Euler's equation (4) for the antennas 
with plane aperture in special cases is based on modelling the problem of synthesis 
of a plane aperture by two independent synthesis problems of linear aperture. The 
dependence of the number of the solutions, branched from the first primary 
solution of the synthesis problem of the antenna with plane rectangular aperture, 
on the main problem parameters, is shown in fig. 2. The given amplitude DP has 
two planes  of symmetry,  cj», 4»   are the points  of branching of the primary 

solutions. 
The equations (3) are solved numerically by the successive approximation 

method according to the implicit scheme 

ßtk, + 44Ä+1 + 4V4+1 = 4 (V"8*0-) + 4< V"8^' )■ <5> 
The convergence of iterative process is proved. To receive the solution of either 

type, the initial approach of it should be taken in a certain way. The numerical 

examples of synthesis of some given DP and the structure of their solutions are 

presented. 

(2) 
C2.1 

c(2) 

nW 

(1) 
111 

7 21 35 35 49\—. 

5 15 25 25 35 j 

5 15 25 25 35 \ 

3 9 15 15 21 

1 3 5 5 7 

J1' -(1) 6%) 
1,2 S.i 

Fig. 1. Fig. 2. 
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Abstract. The paper deals with a theoretical and numerical study of nonlinear inverse 
problems of time-harmonic wave suppression in regular three-dimensional waveguides. In 
these problems the field, which is generated by a primary source is given and it is required to 
suppress it completely or to minimize it by the action of secondary sources. The problems are 
considered as the rmnirnization problems of some cost functionals. The power radiated to the 
far zone of the waveguide or the potential energy of the field in some bounded domain of the 
waveguide are used as these functionals. The coordinates and amplitudes of the secondary 
antennas play the role of controls. Each of the mentioned functionals is a quadratic function of 
the complex intensity and a nonconvex general function of the point source coordinates^ 
Efficient numerical method for soiution of these problems is developed and some results öf 
numerical experiments are discussed. 

Suppose that D^DH ={x=(*. y z)eR3: 0 < z < H, -d/2 < v < d/2, -oo < x < oo} is a regular 
three-dimensional acoustic waveguide of the depth H with a pressure-free upper boundary z-Q 
and rigid other boundaries. Other parameters are: the frequency © > 0, constant density p>0, 
and the variable sound velocity c(z) e 1?{0,H). Denote by (x;,#) a point monopole with a 
center x, = (Jfcjfcz/) e D and a complex amplitude #. Direct problem of the sound radiation in 
the waveguide A generated by N monopoles (x,^),y'=l,2,...^, consists of finding a solution 
(acoustic pressure)/? of the Helmholtz equation 

d2p   d2p   d2p   ,2/.        v1   s/       \      ir*-®2 m 
öx      ay      oz J=x 

c 

in D, satisfying the radiation condition as *-> °o and the boundary conditions 

» = 0atz = 0, ^r = 0atz = #,  J = 0 atv-±<//2. (2) 
r oz qy 

If we set D+ = { x e D: x > x > xJ3 j = 1,2,... Jf}, T = {x e D : x = x+J then, by using the 
Fourier method, the solution of the direct problem can be represented in D+ as [1] 

P(x,y,z) = /£ tü?A(*y>P,(*)X.Ö',)X.Ü')op(C(*-^)>       (3> 
n,m=1 j-\ 

Hererim=(/«-l)7t/^ x,O0 = i^äf2, %m(y) = y/2Tdoos[r]m(y+d/2)],C,2mn = &'<, 
£2and(p„ are the eigenvalues andnormed eigenfunctions of the spectral problem: 

(p"00 + [*2(z)-S2](f> = 0, <p(0) = 0, <p'(#) = 0. (4) 

It is well-known that £f > & >...> ¥„ -» -» as n -> oo. Also, we assume that 

ImC™ > 0 and £. » $2 - ni * Q, v(^w) € NxN • 
Suppose that I is a number of all pairs (m,n)e NxN for which &- r\J>0, and every such 

pair (m,n) corresponds to a single subscript / which varies from 1 to L. Denote by A=Afo) the 
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rectangular LxN - matrix with the components a1} = Cmf 9^)X«0^)exP(~'£*»*<)' mi 

q=iqi,q2,. ■ ■ ,?*)• If "i D+, besides of the field (3), there is a (primary) field 

m,n-\ ■y'^mn 

with given coefficients p\n generated by a noise source, then the powers P(p) of the field p, Pb 

of the fields and P(p+pb) in D+ are determined respectively by [1] 

The analysis ofthe formula for Pfa+p6) shows that this formula contains 4JV+Z, parameters: 
JV complex amplitudes qj, L complex coefficients ß, and 3JV coordinates xjt y, Zj of the point 
sources Denote the 3xJV matrix (lattice), which consists of coordinates Xj, y-, zjt j-lr..Jf of 
considered monopoles, by Z and the corresponding discrete antenna by (Z,q). So one can 
write, in particular, that P(p+pb) - ^(Z,q,b). Hence, we can pose several inverse extremal 
problems each of them corresponds to a case when a part ofthe parameters is fixed while the 
others are to be determined. For example an interesting problem is to minimize the power 
P(p+Pb) in D+ This problem is the inverse problem of active minimization (suppression) ofthe 
time-harmonic acoustic fields that has a great practical importance [1,2]. Another control 
problems are connected with minimization ofthe functional J2(Z,q,b) which oescnoes tne total 
time-average acoustic potential energy, and the functional J3(Z,q,b) which describes the sum 
ofthe squared sound pressures at a number of discrete locations. The role of controls is played 
by the array Z and the strength vector q for all these functional. 

Now we formulate mathematically some inverse extremum problems. Let Q5= [0 < x £ 
x+]x[-d/2+S <y< d/2-S\x[ö <z< H-S\, where S>0 be fixed. By B we denote a set in C 

formed by the vectors q^i,-^) f°r which Mt*=fa?+-+te»?*&' Here Qo k * 
parameter which has a sense of restriction to the power supplied to the antenna (Z,q). Let J is 
any functional of A J% A We are interested in the following minimization problems: ^ 
Problem 1. Given an integer N, and a vector b in C1 ,find a discrete antenna (Z,q), Ze 05 , 

q eB such that J(Z,q,b) ->inf. 
Problem 2. Given an integer N, a vector beCf and an array Z„e Qf, find a vector qe£ such 

to/(Zo,q,b)->inf. 
The last problem in which the coordinates ofthe secondary point sources are fixed, and it is 

required to find the complex amplitudes q, by minimizing the corresponding quadratic 
functional has been studied in [1]. An efficient stable method based on regulanzation method 
and incomplete singular factorization has been developed. Using this method we have 
developed the algorithm (Algorithm 1) for solving nonquadratic Problem 1 for the two- 
dimensional waveguides in [3-5], It is based on using the enumeration type technique with 
respect to coordinates of monopoles on some two-dimensional grid and the above method with 
respect to monopole amplitudes. Here we investigate the capabilities of Algorithm 1 for a 
three-dimensional homogeneous waveguide D with the parameters c=1450 m/sec, «=20;r 
taken from [1], in the case when the primary field is generated by a unit monopole located at 
the point (0 0^0) with z0=H/2. For Problem 2, the secondary array was in the form of a vertical 
one Z={0 6zo-jh:j=\,2r..,N, h=20 m}, located at the z axis. The results of solving Problem 
2 are shown in Fig la where the curves 1, 2 and 3 describe the dependence ofthe magnitude 
of the power suppression (in decibels) |^!P|dB=10|log[P(p+^yP6]| on JV for the depth 
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#=1000m and Qo equal to 1,3 and 10 respectively. The results of solving Problem 1 by using 
Algorithm 1 are shown in Fig. lb where curves 1,2 and 3 characterize the dependence of 
|AP|dB on N for öo2=3, for three values of the depth H equal to 400, 500 and 700 m, 

respectively. 
0-, 

AH 
<3 

210 

Fig.l. 
Analysis of Fig. la and other results of solving Problem 2 (see e.g. [1]) shows that, for a 

fixed antenna configuration, the maximum value of suppressed power output strongly depends 
on the arrangement of primary source and secondary antenna and usually does not exceed 20 - 
25 dB even for the relatively large values of the number N of secondary point sources. On the 
other hand, if one implements the power output suppression by combining an optimal 
allocation and a choice of monopole amplitudes by using Algorithm 1 of solving Problem 1, 
then the substantial reduction in the power output of a primary noise source having the order 
of 100 dB and higher can be achieved even for a relatively small number N of point sources. In 
fact, we can see from Fig. lb that a complete (200 dB) suppression of the primary source 
power is achieved at JV=8 for the depth 400 m when Z=19, at #=10 for the depth 500 m 
(1=23) and at JV=14 for the depth 700 m (1=33). It is worth noting that this fact has been 
observed in a wide range of depths H (or frequencies &) of the waveguide D and distances \XQ\ 

to the primary source. Together with the results of [3-5], this demonstrates a high accuracy 
and robustness of Algorithm 1 when solving nonquadratic active minimization Problem 1. 
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Abstract The method of finding the permittivity profile of graded-index single-mode planar 
waveguide after the given mode parameters is described. For solving this inverse problem he 
some universal mathematical model of profile is proposed. It has the shape of double truncated 
exponential-power function. Each set of function parameters corresponds to a Particular 
distribution of permittivity in the waveguide. Solution of direct problem by the shift formula 
method yields the mode parameters of the waveguide [1]. Multiply repeated numerical solution 
of direct problem by special algorithm using the least-square method enables us to select he 
function parameters for a certain set of mode parameters. As a result of the procedure, the 
profile function in question is synthesized. 

1. For describing ihe peiniiitivity profile in a waveguide, the authors propose a reasonably 
universal function [1]. It has the following form (see Figure): 

e(y) = eg[1-2Ajfj(y)), 0) 

fi-«p^<p,.oor' (2) 
where //=i—; 1 1    {    l-expo;     J 

y = 1, when o<y<r; j = 2, when r<y<\, 

..^^A^V^'-H-        (3) 
2sg 2eg 

,f 

Heree(y) = sft,ify = 0;e(y) = sg,if^ = r;s(v) = ss,if v = l- 

According to this double truncated exponential-power function, the permittivity distribution 
in the waveguide is determined by 9 parameters. Such a model can be used for the studies o. 
the waveguides of vastly different types. By solving the direct problem it is possible to get the 
values of cutoff frequencies and dispersion characteristics of the waveguides with practicaUy 
arbitrary permittivity profile. Such a versatility of the model makes it convenient for solving the 
inverse problem, i.e. the problem of the permittivity profile reconstruction after the mode 

parameters. „ , . .   ,     f 
Generally for solving the inverse problem a knowledge of the propagation constants of 

several waveguide modes is required [2-6]. However, in case of a single-mode waveguide the 
known methods (such as WKB-method) cannot be used. In this work the authors propose a 
method for solving the inverse problem for such waveguides. 

2 The proposed method is based on the representation of permittivity profile using the 
double truncated exponential-power function. As stated above, the profile is determined by 9 
parameters Usually some of them can be specified beforehand considering the implantation 
process of fabricating the buried waveguides [7]. So the problem of profile reconstruction 
reduces to finding the parameters^, qltP2. ft- The difficulty of the problem lies m the fact 
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that the knowledge of at least two values of propagation constants is required. It is possible to 
get them by considering the operation of the waveguide at two frequencies within the limits of 
single-mode operating regime. 

Sg 2.31 

Fig. Permittivity profiles of two waveguides with the parameters: 
solid line: ?;=-3.0, q2=-2.0,p}= p2=4.0. 

dash-dotted line: q/ = q2 =-\.\S,pi' =P2= 2-66 

3. In order to study the details of solution, the conditions of the problem were simplified: 
the respective parameters in both parts of the profile were assumed to be equal, i.e. qt = q2 = 

qwApi=P2 = P ■ FirstlY> a basic Profile with the preset Parameters was chosen- For this 

waveguide the normalized propagation constants Bl, B2 at two normalized frequencies Vj, V2 

[8] were calculated. The frequencies V}, V2 were within the limits of a single-mode regime. 
Furthermore it was assumed that only these modal parameters were known. The aim was to 
find the profile parameters p , q . The way to solve this problem is described below. Some 
arbitrary profile parameters are chosen. The propagation constants are calculated at two 
frequencies Vh V2. Then they are compared with propagation constants of the waveguide with 
basic profile. The difference between the values of propagation constants was estimated by the 
least-square method. If the values were not equal to each other, new profile parameters were 
chosen. At the first step this is made rather voluntarily. Direction of profile parameters change 
is chosen so that the sum of deviation squares becomes smaller. The use of the direct problem 
solution results [1] and some experience made the procedure easy to realize and it could be 

automated. 
However the least-square method appears to give not sufficient criterion for the selection ot 

parameters. So, in addition one more criterion was used: the closeness of the value (B2 - 
Bi)/(V2 -Vj) calculated for the modes of basic waveguide and that of the waveguide under 
consideration. 

Simultaneous application of both criteria gives good accuracy in the selection of profile 
parameters. For instance, in the case of the basic waveguide with the parameters: q =-2.0, p - 
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4.0, 80 =1, Sb =2.280, SS =2.285, $,=2.310, r =0.33 the selection gave the same parameters, 

i%VtdeÄTsdy° the basic waveguide had the profile parameters of wMch one 

pair was different: qt =-3.0, q2 =-2.0, Pl =p2 = 4.0, 8b =2.280, ^=2.285 %=2.310r = 
0 *3 For this profile at the frequencies V, = 3.0, Vr 5-0 within the limits of the single-mode 
regime, the normalized propagation constants Br 0-19599, ^ 0 51072 ™£^^ 

In this case the procedure of parameters selection is similar but still slightly differs when 

com^rTÄ^ 
basic waveguide in the both parts of the profile were equal (q, = q2,Pi~P2 )• The parameters 
of the WA to be synthesized were also selected on the basis of their equahty^Now one 
faiTof paramtters differed (Q, * Q2 ) whereas the selection of parameters was performed on 
the basis of the previous assumption of then equality. Under these conditions the calculations 

gave the following results: qL '=q2'=-\ .15,/?; '-/^-2.66. ,„»_„»„ '=„ ' at 
The propagation constants of the waveguides with profile parameters^ -q2,Pi   Pi at 

the set frequencies coincide with the propagation constants of the waveguide wnh basic profi e 

„„,!.« ™=t «,,* satisfying the conditions of the problem. The difference between the 
w^eguS peelers makes their profiles different, but this difference is relatey sma^ 

Figure shows the profiles of the waveguides with parameters: l):g, -3.0, q2-2AK Pi P2 
=Tn?Y a ' =*,' =-1 15 p,' =p2' = 2.66. It should be noted that despite the difference in 
ptrl^ the'waveguid'es are equivalent to each other if their dispersive characteristics are 

considered, at least in the interval of frequencies between V, and V2 ■ 

"R pfpfPtl CCS 
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Abstract. Inverse problems for a half-space with time-varying conductivity are solved. Determination of 
conductivity time-dependence after the scattered field is carried out in assumption of the half-space 
homogenity, for a propagating conductivity change and for the transient conductivity ingomogeneous in one 
dimension. Analytical solutions for the conductivity are obtained from integral equations and can be used for 
the diagnostics problems or for determination of the conductivity time-dependence providing the required field 
transformation. 
Introduction 

The present work is devoted to solving the inverse problem for media with time-varying 
conductivity. Time-varying conductivity can appear as a result of atmospheric fluctuation, nuclear or 
chemical explosion, or environmental changes, or can be deliberately created, for example in some types 
of semiconductors. Electromagnetic field transformation in the media with specific time-dependences of 
conductivity was investigated for harmonic wave and harmonic conductivity [1], and for the opposite 
case of rectangular pulse and time jump of conductivity [2,3]. Recently, a splash in the studies of inverse 
problems for conducting media in time domain was marked[4-5]. However, although the transient fields 
were considered, the problems were solved only for stationary media. 
Common formulation of the problems 

In this work we consider a sequence of transient problems in the order of theirincreasing 
complexity. Their common formulation is in determination of conductivity time-dependence in a half- 
space x > 0 by initial and scattered fields. 

It is considered that the unknown 
conductivity change starts at the moment t = 0 
(Fig. 1). Before this moment, the conductivity value 
(if it was constant) or time-dependence (if it 
changed) are assumed known, and the fields for t 
< 0 and for t > 0 are called the initial and 
scattered fields, correspondingly. The fields are 
considered to have only those components, which 
are normal to the x-axis and independent on the 
y- and z- coordinates. Thus we solve one-space- 

dimensional problems. 
Three cases are considered there: the case of a homogeneous transient half-space, the case of a 

propagating conductivity change and the case of an ingomogeneous half-space with transient 
conductivity. For each problem an analytical expression for the conductivity time-dependence is 
obtained.The external region is assumed to be a stationary homogeneous lossless medium. 

Mathematically, the problems are formulated in terms of the Volterra integral equation for the 
electrical component of electromagnetic field [6], which has the following form for the internal field 
(inside the transient region) for t > 0, X > 0 .: 

In 
EiB(t,x) = A(t)X)----0(vt-x) jdt'a(t')x-v(t-t'))EiD(t'>x-v(t-t')) (1) 

t-x/v 

1% 

ev 

2 7! 
9(x - vt)J dt' a(t', x - v(t -1')) Efc(t', x - v(t -1')) -—J *' <*(«'. ^+v(t -1')) E^f, x+v(t -1')) 
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and for the external field for t > 0, X < 0 : 
t+x/v 

Eex(t,x) = B(t,x)--7te(vt + x) Jdt'a(t',v(t-t')+x)Ein(t',v(t-t') + x)       (2) 
ev o 

where the terms A and B are determined by the initial field and prehistory of its interaction with the 

media, s is the dielectric permittivity, V = C / A/S   is the light velocity in considered medium and the 

conductivity time-dependence (or time-spatial dependence) a (t, x) is a function to be found. 
Homogeneous half-space with unknown transient conductivity 

Inside the transient half-space, there are two spatial-temporal zones : x > vt and x<vt, where 
integral equations for the fields and the fields themselves are different. For x > vt the transformed field 
is not influenced by the boundary and the processes and formulas here are the same as those m the 
unbounded-domain case. For x < vt, the boundary influence changes the transformed field. But instead 
of this the differential equations for o(t) turned out to be the same as those for the unbounded-domain 

problem and for x > v t. Their solution is : 

0(.)Eta(.,x) = ^}£,K(«-.x)-A(.'.x)l*.-^|[Eh(t,X)-A(,.X)](3) 

The conductivity time-dependence in (3) is determined by the initial and internal transformed fields. In 
the most of applications such as remote sensing, one usually knows not the internal but only the external 
field. So we try to obtain an expression for conductivity depending only on the external and initial fields. 

Introduce a new function F of one variable as: 

F/tw„2_l fdt'cCt'.v^-t^Ei^t'^t-t')), which determines the external field in the external 
EVo 

region - vt < X < 0 by the expression Eex(t,X) - B(t,X) = F(t + x/v), and a new function 

<b(t,x) = E-„(t-X/V,X)-A(t-x/ V X) for 0 < X < Vt, satisfying the following equation 

obtained from (1): 

4>x'(*,x) + -*f'(t,x) =--■■»   Jit'aCt'.vCt-t^E^t'.vO-t')) (4) 

with the boundary and initial conditions ®(t,0) = F(t), and 

®(x/v,x) = Ein(0,x)-A(0,x) = 0 
Knowing the external field at any point, the field in the whole external region can be determined, 

including the region close to the boundary. So it would be enough to obtain the solution for the 

conductivity determined by the external field at the points where \x\«vt . Under this 
approximation, we can solve the equation (4), hence expressing the internal field through the external 
one,   because   the   integral   at   the   right-hand   part   of   (4)   will   be   equal   to   F(t)   : 

2 
Qx'(t,x) + =-<l>t{t,x)*2F'(t), (5) 

v 
After substitution of this equation solution into (7) we obtain the conductivity time-dependence in the 
half-space determined by the scattered field: 

a(t)(Eex(t-x/v,x)-E0(t-x/v,x) + E0(t,0)) = ooA(0,0),    (6) 
where   ao=a(0) is the known value of initial conductivity, and   x   means an arbitrary point 

coordinate (not only \x\«Vt) inside the external region - vt < X < 0 
The obtained expression (6) for the conductivity determination corresponds to the effect of 

current freezing-in at the boundary, by analogy with that for plasma. This formula enables one to 
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reconstruct the conductivity after the scattered field only if the initial conductivity is not zero, as one can 

see from (6). 
To demonstrate the obtained solution implementation, we calculate the conductivity time- 

variation which causes a transformation of initial field as a rectangular pulse into the external field 

taken as a set of pulses (Fig.2(a)). 

a) 

10 

e 
e 

Eo->- 
(t=0) o 

Esx 

m. \#hM&wmwMS~\ 
0.2    0.4    0.6    0.8 1.2    1. 

Fig.2 

The calculated conductivity, shown in Fig.2(b), turns out to be time-harmonic. 
Inhomogeneous time-varying conductivity. 
When the conductivity in the half-space x > 0 depends not only on time but also on space coordinate x 
, the reasoning analogous to the above for a homogeneous half-space leads to the solution for the 
conductivity time-dependence on the boundary: 

(F rt/tn  IIP      ft- — \ ->- / \—ex\ - V / V F-/t4-Y / V 
— UI   -    ■   "  -     • i 

JtO)\ 
■-'J 

n _ AfO 0 ) 
- o- -i - '- / 

n\ 

1) Assuming that the conductivity does not change in the whole half-space simultaneously but 

its change is propagating with a velocity  vi , that is o(t,x) = aft ± X / V1), we can reconstruct 

this dependence by 
a(t±x/v1)(Ecx(t±x/v1+z/v,-z)-E0(t±x/v1+z/v,-z) + E0(t±x/Y1,0))==CToA(0,0) 

This formula corresponds to a wave of conductivity change as well as to the conductive half-space 

uniform motion along the x-axis. 
2) To reconstruct not only the conductivity time-dependence at the boundary but also its spatial 

distribution, we expand the right-hand part of (6) in terms of the full Taylor series: 

(n) 
x=o n 

+...(8) Ox'(t,x) + -<l>t'(t,x) = F(t) + ci(t)Ein(t10)x+...[ar(t-x/v,x)Eill(t-x/v,x)]x
r 

Starting from the boundary conductivity time-dependence determined by (7), we imbed by iterations into 
the transient half-space, substituting the conductivity spatial-temporal dependence determined at the 
previous step into (8) and finding then the internal field and the conductivity for the next x value. The 
deeper we imbed in the half-space, the more terms in (8) we need to provide the required accuracy. 

Electromagnetic field interaction with a transient conductive half-space enables one to 
reconstruct the conductivity temporal-spatial dependence after the scattered field. The obtained results 
could be useful for remote sensing and other diagnostic problems, and for carrying out new field 
transformers based on the time-varying material conductivity. 
1. F.A.Harfoush and ATaflov, Scattering of electromagnetic waves by a material half-space with time-varying 

conductivity. IEEE Trans. Antennas Propagat, Vol.39,N 7, 1991, pp.898-906. 
2. A.G. Nerukh, I.Yu.Shavorykina, Electromagnetic impulse return from a conductive medium which has 

come into being. Proc. Int. Symp. Antennas Propagat., Vol.2, 1992, pp.585-588. 
3. A.G.Nerkh , I.Yu.Shavorykina Transformation of radiation pulse in nonstationary conducting medium". 

Radiophysics and Quantum Electronics(Engl.Transl.), Vol.35, 1992, N 3-4, pp.203-209. 
4. G.Kristensson, RJ.Krueger and RCWinther. Existence and construction of solutions of dissipative inverse 

problems, J. Math. Annal. Appl., Vol.157 (2), 1991, pp.542-554. 
5. T. Melamed and E.Heyman, Local Time Domain Inverse Scattering Using Pulsed Beams, Proc. URSI Int. 

Symp. on EM Theory, 1995, pp. 157-161 
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Kharkov, Ukraine, VIM International Conference on Mathematical Methods in Electromagnetic Theory 



151 
MMET'98 Proceedings 

Limb-Viewing Refraction Inverse Problem in Duct Case 

K.P.Gaikovich, M.B.Tchernyaeva 

Radiophysical Research Institute, B.Pecherskaya st, 25, 
Nizhny Novgorod, Russia, 603600, 

Phone: 8312 367294, Fax: 8312 369902,E-mail: gai@pirfi.nnov.su 
Nizhny Novgorod State University, Gagarina,23 

Nizhny Novgorod, Russia, 603600, 

Abstract - The limb-viewing refraction inverse problem for retrieval of refraction 
index with spherical symmetry distribution in the Earth atmosphere is solved as an 
£"roblem, sup™Jthat the retrieval height ^* ™f^* 
height interval for ray perigee in which the refraction is given. The problem is 
solved for the most important case of duct presence. 

T JS^S^m measurements have been used for investigation of all the planet 
atmo"spheres"inlhe Sun System [1]. Limb-viewing measurements ^££~* 
refraction in dependence on the ray perigee height above the planet surface^ Theff™^S 
averse oroblem consist of the solution of the Abel-type integral equation on the basis ot rts 
IT^ZeZZnsfo^on. The refraction index height profile is determined as the 

integral ofmeasured refraction dependence. . „„Wal hemht 
In the present paper this inverse problem is considered supposing that the retrieval herght 

toterXS 'thin foe height interval for ray perigee in which the refracfron ,s given Such a 
fc^uhtaleads to an ill-posed inverse problem. There are vanous posstbdtt.es of tins 
1C«« ™he most important ease from the practical point of vtew is the ease 
wtn fte"on dependence is given from the lower retrieval level up to some, d.term»d 

also in the height region above this layer. This case is to be considered here for the Earth 
atmo^ itfs aJpossible to solve this problem when foe 'f^X^nZZ 
two or more height intervals. In all such oases the exact solution of Abe equation is 
^UuT-d we have the ill-posed inverse problem for integral equation of the 1-st tad. 

following integral equation: 

10-6 Y ^L(r)^=^==dr = £(/•„) ,     r0 * 'h * ''max j   dhiJ^n7f^J 
CD 

where r = rQ+ h, rQ is Earth radius, N = 10 6(«-D is refraction index, n is refractive index, nh = 
n(rh). In the case of duct absence the nonlinear equation (1) can be expressed in a linear form: 

i^ori^as supportedunder grant of Education Ministry of Russian Federation 
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Pmac dtt ,   .    -lp 10-6.   f   EL(p)   _^Vdp = Z{ph) ,    Po^P^Pmzx 
'   dP     4P -PI 

p = nr, »o = n(r0), p0 = n0r0. In the well-posed case, when the refraction dependence is given 

on the all the retrieval interval, this equation has the known exact solution: 

Pmax Jj. 

N(P)= J S(PJ   rr^-T» PO^P^P™* <3> 
p       MP\-P 

Using the relationship h = r0   the profile N(p) could be converted into 
l + lO~6N(p) 

height profile N(h). There is a finest point in this inverse problem, which hasn't been 
mentioned before. It is easy to see from (1), which depends on derivative of refraction index, 
that the solution is determined in reality up to arbitrary constant shift, ihis fact becomes 
important in the case of numerical solution of (1). To obtain the solution (2), the condition 

NiPmsx) = ° *s necessary to use in addition. 
Let us consider the equation (1) in the case when its right side is given in the region 0 < 

h <hh hi < Ämax. The solution of the equation (1) for the region hx<h< hmax is the typical 
ill-posed problem, the same type as the astronomical refraction inverse problem in the case of 
ground-based measurements considered in [2j. It is easy to show that this problem is more 
complicated than the solution of the Fredholm equation of the 1-st kind. Really, if the 
refraction index profile N(p) is also considered as known in the region p0 <p <P\, it is 
easy reduce the problem to Fredholm integral equation of the 1-st kind. To retrieve the 
refraction index in the region 0 < h <> /^ax by refraction measurements in 0 < h < hx the 

equation (1) is solved numerically on the basis of Tikhonov's general discrepancy method [3], 
which uses the belonging of exact solution to the set of square-integrable functions with 
square-integrable derivatives. The results of numerical simulation give us the retrieval accuracy 
at various levels of the refraction error. 

Results 
In the Fig.l it is possible to see an example of real typical sonde refraction index profile 

retrieval by refraction measurements in the region 0 < h < 5 km at the error level 8s - 5" on the 
basis of linear equation (2). The specific character of the profile above the upper level of 
measurements (hi = 5 km) is retrieved with a good quality. 

The most interesting is the case, when there is the region of the atmosphere duct above the 
upper level of refraction measurements. In this region the refraction measurements are absent 
or distorted because of strong diffraction. Moreover, the linear equation (1) is inapplicable in 
the presence of duct region. So, it is necessary to use in the solution iteration procedure for 
nonlinear equation (1). 
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ffcAJ., Gain D.L., Levy G.S., Eshelman V.R. Astronaut and aeronaut, 1965, No. T-7, 

n 79 
2 Gaikovich K.P. Radiophysics and quantum electronics, 1992, v.35, No.3-4 p 149. 
1 TSOTOV A.N., GoncLsky A.V., S.epauov V.V., Yagola A.G. Regulation algonthms 

and a priori information. Moscow, Nauka, 1983. 
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Regularization algorithms for inverse problems in the radio wave probing of 
the ionospheric plasma 

L. F. Chernogor, K. P. Garmash, V. T. Rozumenko 

Department of Space Radio Physics, Kharkiv State University, 
4 Svobody Square, Kharkiv 310077, Ukraine 

E-mail: Leonid.F.Chernogor@univer.kharkov.ua 

Inversion problems in radio wave probing of the ionospheric plasma amount to 
solving integral equations the right-hand part of which originate from measurements. 
Therefore, the solutions to such equations are unstable and require the application of 
regularization algorithms. As an example, we consider the partial reflection technique. 

The theory of partial reflection yields the following relation between the esti- 
mated from measurements profile R(z) and the electron number density profile N(z) to 
be obtained: 

)K(z'Mz'))N(z')dz' = In^l (1) J R(z) 
z 

where: K(z) is the kernel of the integral equation, Ro{z) is the function known from the 
theory of the partial reflection technique, z0 is the altitude of the lower edge of the iono- 
sphere. 

Earlier, profiles N{z) were derived by differentiating (1) with respect to z. Ine 
quality of the profiles obtained depend on random errors of estimates of R(z), as well as 
on the stability of an algorithm of numerical differentiation. 

Since the inversion problem of the partial reflection technique is ill-posed, the 
Tikhonov regularization algorithm is employed in this study. The collision frequency 
profile is taken from well-known models. 

The algorithm of regularization suggest determining N(z) by minimizing the func- 
tional: 

0[N,R,a] 
z 

\K(z')N(z')dz'-R(z) + aQ[N] (2) 
z0 

where: a is the parameter of regularization, Q is the stabilizer. 
It has turned out that the applying of this regularization algorithm allows to re- 

duce (3 to 5 times) the effects of measurement errors on the restoration of N{z) from R(z) 
and extend the altitude range by approximately 10 km. It should be added that the opti- 
mization of estimating R(z) is achieved at the values of smoothing intervals A T of the or- 
der of 5 to 10 min. 

Errors in the derived N(z) profiles decrease from 50% to 30% when the integra- 
tion time increases from 5 to 10 min, respectively. We have managed to obtain N profile 
in a z~75 to 85 km altitude range; at greater and lower altitudes the signal-to-noise ratios 
are too small. 

The results of modeling efforts are illustrated in Figures 1 and 2. 
The authors have been supported by Science and Technology Center in Ukraine 

Grant No. 471. 
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Figure 2. Dependences of errors and quality of the solution on the interval of averaging 
for different algorithms employed: a - relative root-mean square deviations in profiles 
N(z); b - mean percentage of positive values of N in the profiles: 1,2- algorithm of nu- 
merical differentiation; 3, 4, 5 and 6 - regularization algorithm with different initial ap- 
proximations; the light marks are for the 1.25 km height step, the dark marks and 7 are 
for the 2.5 km height step. 
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NUMERICAL TECHNIQUE FOR INVERSE PROBLEMS OF 
GEOMETRICAL OPTICS OF INHOMOGENEOUS MEDIA 

V. A. Kaloshin, A. S.Venetsky 

Institute of Radioengineering and Electronics, Russian Academy of Sciences 
Moscow, Mohovaya 11,103907, Russia 

E-mail: vak@mail.cplire.ru 

Abstract 
The synthesis of inhomogeneous lenses, the problems of phase tomography of one- 
dimensional gradient media in geometrical optics approximation, etc., can be reduced to 
nonlinear integral equations relatively to an unknown function of the index of refraction 
[1] These equations have closed-form solutions in a small number of particular cases. In 
this work, a new technique to solve these problems is proposed. According to this 
technique'we analyze a layered medium instead of inhomogeneous one. As a result, we 
have a ste'pped-law function of the index of refraction variation. It is possible to decrease a 
difference between the stepped and the continuous-law functions by increasing the number 
of layers Three modifications of this technique: ray, phase and combined, are used to 
investigate inhomogeneous media where index of refraction is a function of a Cartesian 
coordinate or radius. Two latter of them provide a desired accuracy. 

1 In the first case we analyze a medium with spherical symmetry. We suppose that it 
consists of m spherically uniform layers (Fig. 1). We know the phase front of the source of 
radiation (spherical one) and the phase front of the scattered field. Our problem is to 
determine the indices of refraction of the layers, ni 
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At the first step, we suppose that the indices of refraction and the widths of the 1,2,..., i - 
1-5/ layers are known already. We shall trace the path of ray which comes out of the 
source at the angle 0* = 0a-iA0, where 0a =arcsin (Ri/F), A© = 0,/m, Ri is the radius of 
the medium, F is the distance from the center of the medium to the source (Fig.l). After 
passing through the i-1 layers the ray gets to the i-th layer. We suppose that the ray 
touches the inner boundary ofthat layer, R = R i+i , at the point M; , slides along the 
boundary, and takes off it at the point N4. The ray path in this case consists of three parts: 
two lines A H, H Bi and the arc Mj N;. The phase of the ray at the point Bx is: 

0(F,Bi) = I FAj +<t>(A!,Ai )+<D(B;,Bi)+  IA M; I n; + 2| OAI since; n; v|/; +1H B; I n; 

where 0(Al5A) = 3>(B;,Bi) are the optical distances. 
From the law of refraction: 

n; sincii = n;.i sin a;.i = q, 
and geometrical relations we can get the equation: 
(1) I FAj +20(A1,A)+2Ri q (ctgtti+ v|/i) = 0(F,Bi), 
where a; = l/29i-l/2yi+(pi+\|/i, and y; can be found from the equation: 

FsinGi = F; siny 
On determining w from equation (1) by some numerical technique we obtain: 

n; = q/sin a i, R i+i = R; sina; 
The same procedure can be used to determine m , if the index of refraction in the outer 
space, no, is known. Applying this procedure to find m, n2, n3,..., we obtain, as a result, a 
quasi-continuous law of the index of refraction variation relatively to rio . 

2. Instead of a medium with the index of refraction being a function of some Cartesian 
coordinate, for example, n = n(y), we shall analyze now a layered medium (Fig. 2). 

V2 

yi 

n; 

n2 

m 

T Qi 

hi 

L; 

Fig. 2. 

We suppose that n(y) has an extremum and the indices of refraction and the widths of the 
i-1 layers are known, ni being the value of extremum. Tracing the ray which comes out of 
the source at the angle 9i = iAG, we can find the phase at the output point (yi+i=yi+hi): 
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£   hj        (i-A) 
(2) *<^> = 5^"' + -^T* 
Here h is the width of the yth layer, Oj is the index of refraction, 9j is the angle between 
the ray in the ]-th layer and the X-axis, yi and U are the coordinates of the entrance point 
of ray into the layer number i. We suppose that hj ,nj, 8j and y are known if j < 1. Taking 
into account the law of refraction 
(3) n; cos 8i = ni-iCOsGi-i =...= nicos0i = q, 
and the geometrical relations: 

Lt = ZhftgOj 
.7=1 

hi = (1 - L i)tg9i 
we obtain that 
(4) A + (1 - Li)/cos2ei = 0(yi +h ), 

i_1     h 

where A = T~^J 

Equation (4), relatively to 6;, can be solved by any numerical technique. Using a linear 
approximation of the phase front: 

<D(yi +h) = €>(yi)+ki(l-Li)tgei, 
we can obtain the closed-form solution: 

zp 
where P = (l-Li)q, 

C= ArdXyi), 
R = ki(l-Li), 

After that we have: 
n; = q/cosG; 
hi-Cl-LOtgGi 

So the parameters of the layer number i have been found. However we have to know the 
index of refraction of the first layer, m, to start the iterations. Applying this procedure to 
finding n2, n3,..., we obtain eventually a quasi-continuous law of the index of refraction 

variation relatively to ni. 
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ON GROUNDING ONE CLASS OF NONLINEAR INVERSE PROBLEMS OF 
MATHEMATICAL PHYSICS 
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The theorems, that ground the statements and numerical methods for 
solutions of the synthesis problem of the plane aperture shape and amplitude- 
phase distribution of the field in the aperture for a given power pattern are 
presented. It is known [1], that the vector directivity pattern f{Q) of the plane 
aperture D, which is outlined by a continuous function p(i|/), \\i e[0;2%) is given 

as f = fJx+fö = A(p,Ix)ix+A(p,Iy)Ty, where (lx(P), Iy(P))T eL2(D)xL2(D) are 

the components of distribution of electromagnetic field in the aperture, 
2%   p(v|') 

A(p,Iv)=j    J/v(^v|/)exp[-/*(0,P)]rfP, v=x,y. (1) 
0       0 

The inverse problem - the problem of synthesis - consists in approximation of 
components    of    the    given    real    vector    function,    i.e.    a    power    pattern 

F = (FX,F )T eL2(R2)xL2(R2),   by   the   magnitude   of   the   synthesis   directivity 

pattern. The variational statement of the problem considers: 

tfkt.^.p) =   Z IK -|^v«|||^(Ä2) +^|p|k(D)> (2) 
v=x,y 

where the last addition provides the minimum of the area of the aperture. 
Iteration process of numerical minimization of the functional (2) is based on the 

method, which is analogous to the coordinate descent method. Let [Ix,Iy,p ) be a 

point of initial approximation, which is located in a certain area of the minimum 

point (lx,I*y,p*). We'll find a function p0(\|/), which describes the outline of initial 

aperture D°. Let's consider the narrowing of functional (2): 

a(lx,Iy) = c(lx,Iy,p°). (3) 
Theorem 1. Let Fx, F  be the positive functions, that are continuous on the limited 

area Q and are equal to zero outside it. Then the functional (3) arrives at the 
minimum value on a certain element of     = L (D) x L (D). 
The necessary condition of the functional minimum leads to the Euler 

equation with regard to both functions Ix and Iy: 

M^HT-I   ff^v(Ö)exp[/arg/v(0]exp[-/l(ß^)Fß,    v = *,;>.    (4) 
V27W     Q 

The unknown functions Ix and Iy enter the right part of the equation (4) 

through the definitions of functions fv = A{p,Iv). After substitution (4) to (1) and 
non-complicated transformations the equations concerning the synthesized 
directivity pattern are obtained: 
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/v(Ö) = M/v(ß))-f^-1llFv(Ö')^aß'^)exp[/arg/v(ß
,)]c/ß',   v = x,v,   (5) 

\2TZJ •£ 
where   K{Q,Q',k)   is  a  kernel.  It  should  be  noticed,  that   equations   (5)   are 

mdepe^he
en

s
t
olutions of equations (5)   has been found on the basis of successive 

approximations method: 
fin+l)(Q) = B(fln)(Q))    v = x,v,  « = 0,1,2,..   . (6) 

Theorem 2. The numerical sequence of the values of    the functional (3) is 
■    convergent on the steps of the iterative process (6). 

Now we'll fix the functions l\ and l\, which are obtained after substitution 
of solutions of equation (5) into the formula (4). Let's consider the narrowing of 
functional (2): 

ä(p)-a(/Ua,p). (7) 

Theorem 3. Let Fx,Fy be the positive functions, which are continuous on the 
limüedarea Hand are equal to zero outside it. Then the functional (7) arrives 
at the minimum value on a certain element of L"[0;2TC) when y > 0. 

The necessary conditions of the functional minimum leads to the nonlinear 
integral equation: 

G(P)-I|/V(P(V)^)|2-Y(^-1 =0. (8) 

Equation (8) has a simple geometrical interpretation. The solution of this equation 

( k V 
is the proection of the level lines y MM    of the function   ^(p^W) .on 

XOY plane 
The solution of the equation (8) has been found on the basis of Newton- 

Kantorovich method: 
G'(pjAp,=-G(pJ, (9) 

P*+i(v) = P*(v) + Ap*(v|/),    £ = 0,1,2,3,     , 
where G' is the Freshet derivative of G operator. The theorem of convergence of 
iterative process (9) in the sense of convergence of numerical sequence ot 
functional (7) values on the steps of proposed iterative processes are proved 

If we'll continue the successive minimization of the functional (2) with 
regard to (lx,Iy)    and p when the solutions of the previous iterative processes 

are fixed, we'll arrive at the minimum point (l*x,I*y,P )• 
The numerical examples of synthesis of contour directivity pattern of 

complicated forms are presented. The given power pattern is shown in Fi& 1 and 
Fig 2 by solid line. The level of the necessary radiation is equal to 1 mside this 
contour and it's equal to 0 outside it. The synthesized amplitude directivity 
paUern of the fixed circle non-optimal aperture is shown in Fig. 1. Synthesized 
amSde directivity pattern after optimization of the shape of the aperture is 
Resented in Fig. 2. It should be noticed that the square of the optimal aperture 
fF7g I^regular line) is equal to square of the circle aperture (Fig. 3 solid line). 
Amplitude of the field distribution on the optimal aperture is presented in Fig. 4. 

Sly we shall notice, that the given approach can be used for grounding 
the convergence and for building the iterative methods for solution of a system 
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of  potential  integral  equations  with  the  unknown  function  on  the  limit  of 
integration. 
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DIMENSIONAL STRUCTURE DETERMINATION OF BIOLOGICAL OBJECTS 

C. Kechribaris, K. S. Nikita and N. K. Uzunoghi 
Department of Electrical and Computer Engineering 

National Technical University of Athens 
9, Iroon Polytechniou str., 15773 Athens - Greece 

E-mail: knikita@cc.ece.ntua.gr 

An inverse scattering formulation is developed for large size - low contrast dielectric objects, based on 
Rytov approximation and optimization techniques for three dimensional (3D) scalar waves, providing 
an efficient solution to the diffraction tomography problem associated with the imaging of soft tissues 
in biomedical engineering applications. The developed algorithm is based on the following 
assumptions: 
a) The unknown object function o(rj) = n1 (r) -1, where n(r) is the diffraction index of the object 

to be imaged, is described in terms of superposition of Gaussian pulses placed on a rectangular grid 
array with unknown weighting coefficients a{ to be determined as follows: 

odD^^expi-p'lr-rf) (1) 

where p is a constant, depending on the grid cell size. 
b) A Rytov type approximation to describe the field ^(r) inside the scatterer is adopted, leading 

into an analytic expression, 

^ü^ofcjexp Jkl%-i^G(r/rj)o(t)%(rl)dr: (2) 

where %(>:) is the incident wave exciting the scatterer, G(r Irj) the free space Green's function and 

k0 the propagation constant of the infinite medium surrounding the scatterer to be imaged. The 
integral in eq. (2) is computed over the scatterer volume. 
Following the above assumptions, the scattering amplitude F(s) measured along the s unit vector 
direction, for an incident plane wave impinging from the s0 direction is computed using the well 

known relation, 

F(s) = C0 f eikJ -' o(rJV(rJdrJ_ (3) 
Vs 

where C0 is a constant. On substituting eq. (1), (2) into (3), after a series of analytical manipulations, 

the F(s) scattering amplitude is described in terms of the unknown coefficients eci (see eq. (1)) in the 

following form, 
N 

F(S) = 2>,3>(«,A,*) (4) 

1-1 

where O is a non - linear function of the cq coefficients. 
In order to determine the at coefficients, an experimental system has been set up. The object to be 
imaged is immersed in a water tank and is interrogated by an appropriate transmitter with a series of 
incident waves from various directions. The scattering amplitude is measured at different positions of 
a receiver and at every view of the object. The receiver is scanned by stepping motors, controled by a 
PC. The components of the complex wave field are detected, amplified, filtered and stored in the same 
PC. The unknown object function of eq.(l) is determined by solving the non-linear optimization 
problem, 

rmr|F(S)-F„J (5) 
a, 

for s = s1,s2,....sN 

and s0 = s0i,s01,....s0M 

In equation (5), Fmeasund,F{s) denote the experimental and the estimated, as given by equation (4), 

values of the scattering amplitude, respectively. 
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ABSTRACT 

Tomographical methods of image reconstruction of two-dimensional cross-sections of volumetric objects 
in millimeter wavelengths band are suggested and considered. Experimental images obtained using antennas of 
dielectric type and radiation frequency /*136GHz are represented. Volumetric dielectric objects have been taken 
as objects under investigation. 

It is shown that in the frequency band under consideration, the images of investigated objects with 
characteristic dimension A*7X+15X may be obtained by first-order diffraction tomography method (Born, Rytov 
or high frequency approximation of the first-order for scattered electromagnetic field). 

1. INTRODUCTION 

There is a large number of publications on applied and theoretical tomography. In the case of UHF 
radiowaves, for instance, microwaves, important problems of nondestructive testing of materials and industrial 
products , surface and subsurface sensing, receiving of microwave images of inhomogeneous bodies in medicine 
and others may be solved. 

To receive quasioptic tomographic image in the case of diffraction (scattering of electromagnetic wave 
by a sample), methods of diffraction tomography may be used. If the object weakly scatters the electromagnetic 
wave and the scattered field is described by Born or Rytov approximations of the first order [1,2], Fourier 
diffraction project theorem is employed. 

In the present paper methods of the first-order diffraction tomography are considered. 

2. OBTAINING IMAGES BY FIRST-ORDER DIFFRACTION TOMOGRAPHY 

The basic equation of the diffraction tomography may be obtained as a result of solution of an inverse 
problem of scattering of a plane electromagnetic wave on the object under investigation [1,2]. We consider a 

scattering object characterizing by refractive index n(f) = 1 + / (f)     , where / is equal to zero outside the 

refracting object. A plane harmonic exp(-/^) wave Uj (r) = exp[ik0 ■ f)] incidents on the object; 0 is a 

unit vector pointing the direction of the wave propagation; k= a/c; co is radiation frequency; c is light velocity. In 
the case of direct scattering, the total field U=Ut +US (where Us(r) is a scattered wave ) satisfies the given wave 
equation 

2 2 
AM + k   (1 + /)   u = 0 (1) 

and the boundary condition in infinity. The scattered field Ug may be found using equation (1) in the first-order 

Born approximation. Equation (1) may be also solved in the framework of Rytov approximation of the first 

order. In inverse scattering problem, function / should be find with known scattered field Us. Solution of such 
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problem allows us to obtain the main equation of diffraction tomography [1]. After that we may find functions 

f(r) ■ 
Let the incident wave propagate along a positive direction of rj axis of the rectangular Cartesian 

coordinate system £, 0 where measurements of phase and amplitude of electromagnetic fields U, Uj and 

straight line ^ = const > OB are carried out. Let the center of another rectangular Cartesian coordinate system 

x, y connected with the investigated object coached with the center of £ rj coordinate system and with the 

center of circle O with radius OB . The investigated object is characterized by function /(f) which is different 

from zero in a certain region inside circle 0. Then by rotating the £ TJ coordinate system relatively x,y 

coordinate system and using measured data of U and U j, Fourier image of function in frequency domain in circle 

with radius not less than k may be found. Analogous result may be obtained, if system of data collection remains 
immovable and the object under investigation is rotating relatively the center 0 (Fig. 1) and, hence,  x, y 

coordinate system rotates relatively £,, ij coordinate system. 

t1^ 

Fig. 1. Finding of Fourier image of the object function 

From Fig.l one can see that, by changing the angle #, it is possible to find positions when each of the 

pointed points will be located on circle L at values K% >0 of vector Kc projection on axis K$. If we will know the 

values of Jff and angled we will able to calculate Fourier image of the object. 

3. EXPERIMENTAL SET-UP AND RECONSTRUCTION 

Millimeter wave tomography set up allowing to measure phase and amplitude of U and U j fields at 

straight line 77 = const in £, t] coordinate system is shown in Fig .2. Signal from oscillator 1 with operating 

frequency 136 GHz is divided by directional branch into two signals. One of these signals in given to up-convertor 
2, and the other-to down-convertor 8. Signal from reference generator 10 with frequency 160 Hz is also supplied 
to up-convertor 2. As a result a signal radiated by antenna 3 which is represented by an end of a dielectric 
waveguide (electric vector E of the wave is directed along straight line 6 ) is shifted up by frequency at 160Hz 
relatively to operating frequency of oscillator 1. Sample 5 may be rotated round its axis and move along straight 
line 6 (step motors are used to move and rotate). The signal received by antenna 7 in the absence of the sample is 
given to down-convertor 8. 

E 
~T 

Fig.2. Scheme of tomograph with dielectric antennas. 
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The signal from the operating oscillator 1 is given to the same down-convertor, with the result that signal 
at the output of device 8 is shifted "down" and its frequency 160 Hz. This signal is fed then to vector voltmeter 9. 
A signal from generator 10 of frequency 160 Hz is supplied to the same voltmeter. Amplitude A and phase <E> 

measured by vector voltmeter 9 are taken to the equal to amplitude and phase of the incident field U j at straight 

line 6. Analogue signals corresponding to the measured amplitude and phase of the field U j are given then to 

system 11 of processing and obtaining of image which is also manage the stepping motors. 
In this case when an object weakly scatters an incident wave and Rytov or Born approximations for 

scattering field, the measured signal will correspond to the total field U received by antenna 7 in line 6. As this 

takes place, U r measured in   the straight line 6 is substituted into formula for the diffraction tomography 

equation instead of plane wave field   eir]   in the straight line TJ = const at 0 < 6 < lit;  A9 = it I 6 .All 
measurements were carried out at 77 = 7 -5- 9/L. 

Fig. 3-4 shown images of | Q{f)\ cross sections of the objects under experimental investigations: 

Fig.3- cylinders with approximately circle cross-section manufactured from a paper and having the following 
dimensions: height h = 20/1 (A = 2 mm); diameter D = 12.51. The thickness of the wall is t = 0.051. Fig.4 
shows the same cylinder but it has two slots (12 and 7 mm) in the wall 
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Fig. 3-4. Images of cross sections of the objects under experimental investigations. 

5. CONCLUSION 

Thus, an image is a reconstructed distribution function in the region of investigated cross- section of 
the object of one of its electrodynamical parameters. The images are obtained using methods of first-order 
diffraction tomography for weakly scattering objects having a simple structure. Reconstruction of images has 
shown that at millimeter waves the high frequency approximation in the basic equation of diffraction tomography 
may be assumed. 

The investigations carried out have showed that there are difficulties when reconstructing the object 
images with complicated structure ( several short- range located inhomogeneities in the object). In this case, 
there may be observed a multi- scattering and the methods of first- order diffraction tomography do not allow to 
reconstruct the function to be found sufficiently accurately. 
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SOLUTION OF INVERSE PROBLEM FOR A CHARGE COMBINED 
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The inverse problems in electrodynamics are not sufficiently advanced from our point of 
view though they are of certain theoretical interest and practical implementation. Inverse 
problem of radiation of a relativistic charged particle has been solved in 1-3]. Here we propose 

a particular inverse problem of electrostatics. 
It is well known that the field induced by electric charge arbitrary distributed within a 

finite area is in the far-field approximation equal to the field of a point-like charge and dipole 
momentum. Calculation of the field produced by a given charge or dipole momentum is referred 
to as a direct problem. The inverse problem solved in this paper is as follows. Suppose we 
know that some electric field is generated by a distant point-like charge combined with an 
electric dipole momentum. The problem is to restore the position and the value of charge and 
dipole momentum. It is evident that the knowledge of three components of the electric held 
E is not enough to find seven unknown quantities: position of the charge and momentum r, 
vector of dipole momentum d and the value of the charge e. Thus, we assume tlwt we know 
the electric field vector E and a three-dimensional tensor of first derivatives J5y = dEk/dxj. It 
follows from the Maxwell equations that votE = 0 and divE = 0, which yields E{j = Eß and 
#n + #22 + #33 = 0, respectively. Hence, only five independent components of Ekj remain. 
Besides, the considered field is axially symmetric. In cylindrical coordinate system p, <f>, z we 
have three additional conditions: E, = 0, dEp/d<j> = dEz/d<t> = 0 leaving five independent 

unknown quantities: two components of E and three components of Ekj. 
Let the origin of a Cartesian coordinate system afrf, zf be at the point where the vector 

E = (E'x, E'y, E'z) and tensor E'^ are known. It is convenient to use a specialcoordinate system 

x y z which we define as Mows: the axis x is directed along the vector E, the axis y along 
the principal normal and the axis z along the binormal to the field fine. The principal normal 

n is given by the equation [4]: 

71 ~ kEds' 
where E = \E\,k is the principal curvature of the field line, and* is the coordinate along the 
line. After simple algebra we derive the normal n and binormal b: 

n=~[Ex[DxE}},    b=^-3[ExD], (D 

where D = (#V)#, DJ = #;#;* and fc2 = [# x Df/E6.   Now we transform the vector 

E = (#' #' #') and tensor #•, into the new coordinate system in a standard way 

Ei = aikE
J

k,    Ey = aifcaJX.. ® 

where the transformation matrix aik can be found from (1): 

aik = Su,    au^-j^EkEjiEjEik-EiEkj),    a3fe = -^eklmEiDm, (3) 

6ik is the Kronecker symbol. The result looks like follows 

# = (#,0,0), (4) 
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In particular, E12 = k = E~
3
JE

2
D* - (£^)2. 

We consider only those points of the field where k ^ 0. Now let us proceed to the solution 
of the problem. The field of a charge and dipole momentum is (see [5]): 

ß_eR     Z(Rd)R - R2d 
(5) 

with R being the vector from the charge to the point where the field is determined. Taking the 
derivatives we obtain 

a® 
Eij - dx 

uij 

e        Rd djRj + djRj e        Rd 
(6) 

In the coordinate system x,y,z we replace R = — r = -(x,y,0) and d — (dx,dy,0). Then (1), 
(2) take the form 

E = 
ex     Z(rd)x — r2dx + 

En = -*-3 
(rd) 

ey     Z(rd)y - r2dy 

„ 0dxy + dyx 
En = -3 =-*- - Zxy 

6^-3x2 

^_5M 

(rd) 

E33 = -Q - 3 
(rd) 

(7) 

(8) 

(9) 

We have got five equations for five unknown quantities: x, y, dx, dy, e. First we use (7) and the 
last of (9) to find the value of the charge and dipole momentum 

dx = -r3(E + E33x),    dy = -r3yE33,    e = -2r3E33 - ZxrE. 

Substituting this into (8) and the first of (9), we obtain 

x2(2E33 + En)+y2(E33-En)+2yxEn   =   0, 

-xy(E33 + 2En)-y2E12 + x2Ei2 + 3yE   =   0. 

This set of quadratic equations has the following solution: 

ZE 
x = 

4J5& + *? 
F3± 

Eu(Fi — F2) ZE 
4En + Fi 2E12± 

2E\2-F1F3 

(10) 

(11) 

(12) 

where Fi = E22 - E33, F2 = E33 - Eu, F3 = Eu - E22, S — JE\2 + FiF2. Substitution 
of (12) into (10) yields the value of the charge and dipole momentum. We see that (7) - (9) 
have two different solutions. It means that the same field with its derivatives can be created 
by two different sources. Now the solution of the problem can be easily transformed back into 
the original coordinate system by means of the inverse to (2) transformations. 
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Abstract 
The strip gratings on dielectric cylinders are analyzed by using two types of approximate boundary 
conditions and by the moment method (MoM). The used approximate boundary conditions are the 
boundary conditions obtained by the homogenization method (BCHM), where the local planar 
approximation was applied, and the asymptotic strip boundary conditions (ASBC). The results 
show that the both approximate boundary conditions give good results when the period of the strips 
is small compared to the wavelength. However, BCHM gives more accurate results, and practically 
there is no difference between the MoM results and the results obtained by BCHM method if the 
periodicity is small enough. Furthermore, the ASBC cannot predict the coupling of the incident 
wave to the waveguide modes of the strip-loaded dielectric cylinder, which is predicted both by the 
MoM and the BCHM methods. The numerical results are also compared to measurements showing 
a very good agreement. 

Introduction: Strip gratings are well known for their polarization properties. Incident waves with the 
electric field parallel to the strips are mainly reflected, and waves with the electric field orthogonal to 
the strips mainly pass through die grating. In the present paper we analyze strip gratings located on the 
dielectric cylinder (Fig. 1). The analysis can be easily extended for strips located between any two 
layers inside cylindrical multilayer structures. 

Analysis: We have performed accurate analysis of periodic strips inside a multilayer structure by 
expanding the currents on the strips in basis functions, and the amplitudes of the basis functions are 
determined numerically by the moment method (MoM) [l].The electromagnetic field is in the form of 
Floquet modes due to the periodicity of the structure. It is sufficient to determine the current on one 
strip, since the currents on the other strips are identical except for a phase difference. 

If the source excites a full spectrum of plane or cylindrical waves, such as a dipole, the Floquet-mode 
expansion/MoM is a laborious process. A simpler approach is to use approximate boundary 
conditions. We have used two types of approximate boundary conditions: the asymptotic strip 
boundary conditions (ASBC) [2], [3] which in the planar case correspond to modeling the strips as a 
unidirectional conducting screen [4], and boundary conditions obtained by the homogenization method 
(BCHM), i.e. by averaging the fields of the fundamental Floquet mode [5]. 

In the BCHM case we have used a local planar approximation, that means we suppose that the surface 
where the strips are located is locally a plane surface. By this we can easily transform the boundary 
conditions from the rectangular coordinate system [5] to the cylindrical one. For example, for <p- 
directed strips we have 

E; = E:,E;=E- m z 

fi +M e++£ pd<f> 
(2) 
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H, - HA = 2L jto- 
£   +£ 

-E.+ 
M  +M~ \&a 

2p+ju~ p d(j) (3) 

where superscripts + and - denote the E- and H-fields and permittivity/permeability above and below 
the strips, respectively. Parameters le and 4 are defined by 

P riW 
I = —lncsc  e    n IP 

P TtW 
I = —msec—— 
*    n        IP (4) 

where P and Wars the periodicity and the width of the strips (Fig. 1). 

The ASBC are more general, and they do not depend on the geometry. Theoretically, the surface with 
the strips can be of any shape, and the strips can be nonperiödical provided that the distance between 
strips is small enough. For ^-directed strips the ASBC are 

E: = E: 

E;=O, 

H:=H; 

(5) 

(6) 

Note that the ASBC can be obtained from BCHM by letting P -» 0 and by keeping the ratio PIW 
constant. 

Results: Fig. 2 shows the calculated scattered field from the dielectric cylinder loaded with periodic 
circumferential strips. The results are obtained by the MoM (accurate results), and by the ASBC and 
the BCHM methods. The radius and the relative permittivity of the cylinder are p = 1.2 cm and er = 
2.1. The frequency is 10 GHz, and the periodicity and the width of the strips are P = 0.8 cm and W = 
0.3 cm, i.e.0.27 A0 and 0.1 Ao, respectively. The incident wave is TMZ polarized, and angle of 
incidence is 6= 90° (normal incidence). The shown scattered field is normalized to 
E, ^2j I Ttkp exp(-jkp). Both ASBC and BCHM results show a good agreement with MoM results. 

However, the BCHM method is more accurate and practically there is no difference between MoM 
and BCHM results. 

ß^ 

 MoM 

 ASBC 
• • •  Homogenization 

P     W 

rrrnTTTi 

30      60      90      120     150     180 
0 (deg) 

Figure 1. Geometry and coordinates of strip grids    Figure 2. Scattered field from a dielectric cylinder 
on dielectric cylinder. loaded with periodic circumferential 

strips. 
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Fig 3. shows the equivalent blockage width of the scatterer from the previous example. The equivalent 
blockage is a complex parameter showing how wide the cylinder appears for electromagnetic waves, 
and it is obtained from the forward scattered field [2]. The incident wave is TEZ polarized, and the 
results for two incident angles are shown : #= 60° and 9= 90°. The numerical results are also 
compared to the measurements. The results again show that both the ASBC and the BCHM are 
accurate approximations, and that the BCHM method is more accurate (as in Fig. 2, there is no 
difference between MoM and BCHM results). Furthermore, the ASBC cannot predict the coupling of 
the incident wave to the waveguide modes of the strip-loaded dielectric cylinder, which can be seen in 
measured results and in the calculated results by the MoM and the BCHM methods. It is interesting to 
mention that although the cylinder has a relatively small radius (0.42 XQ at 10 GHz) the local planar 
approximation used in the BCHM method works very well. 
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Figure 3. The equivalent blockage width of a dielectric cylinder loaded with periodic circumferential 
strips, (a) 0= 60°,(b) 6= 90°. 
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DIFFRACTION OF ELECTROMAGNETIC WAVES BY 
GRATINGS WITH PIECEWISE SMOOTH BOUNDARIES 

E. K. Lipachev 

Kazan State University, Kazan, Russia 
email: evgeny.lipachev@ksu.ru 

We consider a boundary value problem for the Helmholtz equation that arises in 
the mathematical modeling of the scattering of a plane electromagnetic wave by infinite 
perfectly conducting gratings with an arbitrary piecewise-smooth profile of finite size. 

In the Hubert space of the square-integrable functions we find the solution of this 
problem as a potential whose density represents a solution of a weakly singular integral 
equation. 

1. Statement of the Problem and Notations. Consider the problem of finding 
the field scattered due to a plane electromagnetic wave incident (at the angle 6 with 
respect to the axis z) onto a conducting grating [l]. The geometry of such a grating 
is characterized by the curve 7 = {(s, f(x)) : x € [—a, a]} U (K\[—a,o]), where / is a 
piecewise-smooth function, Q = {£lj}™=i is the set of boundary edges. 

z=m 

*z 

7^P>M^m^Mr 

Figure 1: Geomertry of the gratings 

This problem can be reduced to the following boundary value problem.   Find a 
function 

in the J5-polarization, 
in the JÖ-polarization, 

which satisfies the two-dimensional Helmholtz equation: 

Av(x, z): + : k2 v(x, z) :=: 0,    Im Ar > 0, 

with the following boundary conditions: 

v(x, z) — —UQ(X, Z), : (x, z) € 7\fi,    - in the ^-polarization, 

and 

—(a;, z) :—: — (x, z),: (x, z) G 7\fi,    - in the //-polarization, 
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where % is the incident field. 

We assume that the function v satisfies the edge condition [2] at the points Üj and 
the radiation condition at infinity: 

where r = y/x^+z2, z > 0, v* (x,z) = v(x,z) - v(x,z), 

v(x z) - e-"("+^) + Ce~*l°-'*>     C = [ ~J   ' in Ü" ^ÜZa^ v{x, z) - e i- (, e ,    s       |     i   ; in the ^-polarization, 

g(x) = f(x),x e [-a,a\;    g(x) = 0,x g [-a,a]. 

2.  Approximation method. In [3], the solvability of the scattering problem in 
CW(S) n C(S U 7) (5 = {(a?,«) : 2 > g{x)}) for a smooth boundary has been proved. 
With the aid of this one can prove the uniquieness of solution of our problem in the 
Hubert space of square-integrable functions. 

By using the integral equation method [4], this problem can be reduced to solving 
the following set of integral equations: 

where 

1>(x) = X(x) + (Biif>)(x) + (B2ij>)(x), 

{B^){x) = -y / Hi1\kr)h1(x,x,)rP(x')dx', 
—o 

' If   a 

(B3il>)(x) = -y/ H?(kr*)h2{x,x')xP{x')dx', 
—a 

h^x') = — {(x-x')f'Ax') - (g(x) - f(x'))}, 
rPp> 

hz(x,x') = 4~ {{x-x')f'M) + 0/(«) + /V))}, 
r'pp 

in the case of ^polarization, and 

where 

cp(x) = p(x) + {Dnp)(x) + (D2<p)(x), 

. ,       a, 

(D1iP)(x) = ~ J H[1)(kr)q1(x,x')ip(x')dx', 
—o 

(D*p)(x) = -y J Hl1\kr*)q2(x,x')<p(x')dx', 
—o 

qi(x,x') - — {{g{x)-f{x')) -{x- x')fx(x')}, 
rPpi 
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q2(x,x') = 4- M*) + fW)) -(*- *)f.&)}> 
i ppi 

in the case of Tiff-polarization. 
Solutions of these integral equations are approximated by splines whose coefficients 

are determined via.the mean-values of the input data [5]. A computer algorithm for 
soving the probelm has been developed. 
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MODEL SYNTHESIS OF EFFICIENTLY ABSORBING 
STRUCTURES WITH DIFFRACTION GRATINGS 

L G. Vetichko 

Institute ofRadiophysics and Electronics, National Academy of Sciences of Ukraine 
UAcad. ProskuraSt, Kharkov, 310085, Ukraine 

In this paper we consider certain problems related to the synthesis of the efficiently absorbing 
structure (perfectly conducting periodic grating covered with a dielectric layer having complex-valued 
permittivity e) The optimization of absorbing properties of this structure is earned out. As a result, 
analytical relations between absorbed (reflected) energy and electromagnetic and geometric 
characteristics of the system under study are derived. These parameters form the input data set in the 
synthesis problem. Some algorithms for solving relevant inverse problems are suggested in the paper. 

1. Optimization of absorbing properties of coatings 
Let us consider a perfectly conducting grating covered with a dielectric layer of depth 27r6 (Fig 1)^ 

The absorbing ability of the coating material is determined by the imaginary part of the complex-valued 
relativepermittivity8 = Res + /Im6, Ree>l, lms>0. Let Ime be fixed and a plane £-polarized 

wave U°(y,z) = exp[/(O0v -T0z)] be incident upon the structure (with the angle of incidence cp). 

Here,r„ = <jK2-cD^ Rer„>0, lmr„>0, 0>„ = «+Ksincp, K is a dimensionless frequency 

parameter (the ratio of 1% to the incident wavelength). The series representation of the total field 

U(y,z) has the form: 

£/(v,z) = 

t/0+|;a„e'(O"'+r»z),   z>0, 
«=-00 

]T(</„e-'T»z +cnS
{z+™))ei*»y,   -2*B<z<0, 

(1) 

H=-00 

where r„E = JK
2

E-®1 ,   Imr„E >0,   Rer„E >0. To determine the complex scattering amplitudes 
an, we apply the method of generalized scattering matrices at the 

boundaries of partial regions (in the planes z = 0 and 
z = -2it8).  Consider that the generalized scattering matrix 

R = {r„P}n,p of to«3 SratinS> Placed k ^ medium with 

parameters s0e and n0> is known [1], Further we shall use so- 
called generalized characteristic {N,M} of the scattering 

phenomenon [1]. Here, # = £ jfj"1 Rer„    is the number of 

Fig.l 

the scattered harmonics propagating without decay. M is the 
similar characteristic for 8 -layer as hns = 0 . It is obvious that 
it determines the number of waves that are «deeply» involved in 
the energy exchange between the grating and the radiation region 

J2 r0
_1 Rer„ is the relative part of the scattered energy carried away from the grating 

by the wave with the complex amplitude a„ 
Consider now the ranges of parameters K, O, and e that are characterized by vector {N,M} 

z>0 Wa 
"n 
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with tf = M = 1. Without considering the fields decaying exponentially in a layer even with Ims = 0., 

we get 

rr_ |vn|
2+W2+21Vnil^coS(arg^-argv0)      0<argC>>)<27t; (2) 

0     l+|v0|
2 |^|2+2|v0||^lcos(arg^ + argv0)' 

where K = w*"*, v0 =(T0 -r0
8)/(r0 +r0

E). 
Minimizing (2) as a function of arg K, we obtain the following estimation of the reflected energy; 

W° <(\v0\-\K\)2(\-\v0\\K\r2 (3) 

as 

(4) 
cos(arg£-argv0) = -l . 

Condition (4) can be written in terms of electromagnetic and geometric parameters of the structure as 

follows 

47c9Rer0
B +argr00 -argv0 =-% + 2%m,   ?K = 0,1,2,... . ( ) 

For argv0 approaching % (when the value of Ime is not very high), (5) is coincident with a 
longitudinal resonance condition for the zeroth harmonic in the layer separating free space and the 

grating. In the interval 

0<|üq=:koo|exp(-47ceimr0
E)<2|v0!(l+jv0|

2)-1, <6) 

under conditions (5), the structure has higher absorbing ability than the dielectric half-space, that is 

W0
a <jv0!2. The total minimum of the reflected energy is reached at the same conditions for 

|rOT|=|v0|exp(4weimro). 

Disregarding condition (5) we obtain from (2) that W0
a <] v012 provided that 

n    ^K.    2|v0|[-cos(arg£-argv0)] m 

1+lvol 

In the case of a plane perfectly conducting underlayer, \K\ can be reduced to a satisfactory value only 

through increasing the layer depth (|K|= exp(-47teimr0
E)). In order for (5) to be realized, the depth of 

the layer has to be equal to an odd number of quarters of wavelength X, in e -medium 
(2nQ/Xe = (2m -1)/4, m = 1,2,...). The use of gratings allows to solve the optimization problem for 
absorbing coatings more efficiently. In the first place, it is achieved through choosing the proper values 
of argr00 «accelerating» the wave (the depth of the layer can be reduced substantially); in addition, we 

can select the parameters and operation conditions of a grating in such a way that \rm\ gets into a 

required interval at a minimum layer depth 2nQ. 
An important point is that such satisfactory selection can be realized not only for discrete sets of 

values of K and O, but also if the angle of incidence and the incident wavelength are varied through a 
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wide range. Similar analysis has been performed for 
N > 1, M > 1, when harmonics <docked» within the 

layer come into existence. 
2. On algorithms for solving inverse synthesis 

problems 
The conducted optimization of the absorbing 

properties of a coating allows one to consider the 
problem of synthesis of a grating ensuring the desired 
characteristics of a coating. To do this, the period of the 
structure, the depth of the layer, and the relative 
permittivity of material are settled. We set also the 
ranges of incident angles and frequencies as well as the 
relevant maximum value of the reflected energy, 
max.Wg=W. The algorithms for solving the 
associated inverse problems of synthesis of a periodic 
structure in a frequency band are suggested. These 
schemes are based on the integral representations 
relating the complex scattered amplitudes a„ with the 

continuous current density T|(V) on the boundary S 

(the function /(v) describes a profile of the grating): 

0.16- 

0.7 0.8 

Fig.2 

argflj --1 
•-2 
-3 

-i—— 

^' 

K 

120 

112 

104 

—'— 

0.9 

2* 

\hi\   47tr„ 
ln(yo)e{±}ir"nyo)e-'mdy0,       » = 0+1, (8) 

Ifwehave P amplitudes a^,a^,...,a„p of the scattered field on the frequency interval [Kl,K2],then 

one of the possible solutions of the inverse synthesis problem have the form: 

/(v) = Re 
K2   p 

2r0(* K2-Kl)K,m=l 

(9) 

Numerical examples of the use of this algorithm for different P are presented in Fig.2. The problem is 
to synthesize a periodic structure having scattered characteristics closely approximating the given 
complex amplitudes a^ (K) (curve 1 in Fig.2) at 0.652 < K < 0.952 and <p = 10°. As input data for 

solving the inverse problem the solutions (complex amplitudes) of a direct problem for perfectly 
conducting grating from semicylinders are used. The diffraction characteristics of the synthesized 
structures (by the example of «-1» scattered harmonic) are depicted in Fig.2 by curves 2-4. The sets of 
input data {ö_1(K),Ö0(K),P=2 }, {a±l(K),a0(K),P = 3}, and {a_5(K),...,a5(x),P = U} correspond 
to curves 2,3, and 4, respectively. The detailed description of the algorithms we have given in [2]. 
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ELECTROMAGNETIC WAVE SCATTERING BY SEMI-INFINITE GRATING 
CONSISTING OF METAL STRIPS PLACED IN MAGNETIC-DIELECTRIC HALF SPACE 

Sergy N. Vorobiov and Dmitry L. Litvinenko 
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4, Chervonopraporna St., Kharkiv 310002, Ukraine 
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The problem of electromagnetic wave diffraction by semi-infinite gratings is of particular interest in 
physics and mathematics. On the one hand this structure is almost infinite (far from its first element) and 
should have properties inherent to periodic gratings: discrete spectrum, Wood's anomalies, etc., and on 
the other hand it is a quite finite structure (near its beginning) and should have continuous spectrum, 
cylindrical-type wave propagating (if 2-D problem is considered) in this zone, etc. Dealing with the 
semi-infinite grating consisting of thin metal scatterers, it is obvious that surface current distributions on 
the scatterers will differ not only in a phase shift (i.e. the Floquet theorem can't be used). There is 
another interesting question concerning the previous: at what number of scatterer (counting from the 
first) its surface current distribution will correspond, with the given accuracy, to the one on the scatterer 
placed in the infinite grating having the same geometry and conditions of excitation? 

Moreover, one can find here some mathematical difficulties through the semi-infinity of the 
structure. The Poisson formula in its classic well-known form can't be applied, but summing up in the 
scattered field representation still remains infinite at its upper limit while terms to be summed decrease 
rather slowly. That is why the solution of the mentioned above diffraction problem with the spectral 
method and the method of moments was not yet successful. 

Consider the grating consisting of thin perfectly conducting strips which are placed periodically in 
the magnetic-dielectric half-space beginning at some distance from its surface and extending to infinity. 
The incident wave comes from the free space and illuminates the structure (see figure). 

« = 0 

e = )U = l 

!>(© 

*• ^l* 2d 
Figure.  Geometry of the wave scattering by semi-infinite grating. 

This electromagnetic wave diffraction problem is solved in the present paper using the operator method. 
Working with the operator method one has to deal with the Fourier-amplitudes of reflected and 

transmitted fields existing in some domains and to build operator relations with respect to these 
amplitudes at the boundaries separating mentioned domains. Thus, the fields above the structure and 
between the strips are represented in the form of Fourier integrals. Time dependence is assumed to be 

Kharkov, Ukraine, VHth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 18! 

exp(-/ö#) and omitted. Requested operators for the relations to be obtained at the interface of the 

magnetic-dielectric (in the plane Z = 0) and between neighbouring strips are as follows: 

TQ and tj are reflection and transmission operators of the boundary Z = 0 (if the wave propagation 
occurs in the direction Z > 0 then the sign plus should be used and, on the contrary, if the direction is 
Z < 0 the sign minus must be chosen); 
r and t are reflection and transmission operators of a single thin metal strip placed in the magnetic- 

dielectric medium (£, jll); 

Qzh and Qzi are operators describing phase variations when shifting along the 0Z axis in the direction 

of wave propagation takes place (Qzh in the domain beginning from the magnetic-dielectric surface up 

to the plane where the first strip of the grating is placed, and Qd in the domains between the planes 

where neighbouring strips of the grating are placed); 

e yj, and ej are operators describing phase variations when shifting along the 07 axis occurs (the sign 

plus should be used if shifting takes place in the positive direction along the 07 axis and the sign minus 
must be chosen if the shift occurs in the negative 07 direction; subscripts /land / denote the same 
domains as in the previous case); 
R is the reflection operator of the semi-infinite strip grating placed in the magnetic-dielectric medium 
(£, H). The operator R has translation properties, this means that the operator R is invariant to the 
position of the strip which is taken as the beginning of the semi-infinite grating. 

Introduce the definition of the integral operator   F which acts on some analytic function g($) 

converting it into the function d(<j;): 

d(a = (F-tf(Ö = jV({,s)gfe)#. 

The function of two variables F(§,£) is the kernel of this operator F. Now it is feasible to give the 

analytical representation of kernels for integral operators mentioned above. For the sake of definiteness 
and shortness, assume the incident field to be //-polarised (i.e. to have nonzero components Hx> Ey 

and Ez). The kernels of operators rf and t J, r and t, Qzh and ez/, Q% and e*/ are as follows: 

ib±tf,g)=±r(g)7e/(g)-gg-g)»     wte) = r-fe)+er(& 

r~(s)=V*o2£M-«2> (zso),      y(s)=V*o2-«2' (zSO). 
oo _..    v       °° 

s=l r=l 

rj&) = Js J*(£)/Z>   ** matrix Q has the form Q = (A_!)-1' 
and the matrix A elements are expressed in the form: 

(.   i m :iV* Aw = ^(l+(-irs)Jjr(t?)J,(^)fl+^V^M-^ # 
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Here  S(% — £)   is the delta-fiinction,  Js(ß)  is the Bessel function of the first kind and S -order, 

1} = kQd is the dimensionless half-width of one strip. 

The kernels of operators r and t obey the equality:    t(%, g) = 8{t, -Q)~ r(%, g). 

Qzh(%,g) = exp(iy-(g)h cosv) • 8($ - g),   ezl(£,g) = exp(7y-(s)/ cosyO • S(£ - g), 

e%($,g) = exp(± igh sinyO ■ S(£ - g),     ej(£,£) = exp(± ig I sinyO ■ 5(% - g). 

Connections between the Fourier-amplitudes in the planes Z = 0 and Z = — flCOSXjf bring the 

following six operator relations:    a(£) = r0
+ q(%) + tj C0(£),      b0(%) = tö #(£) + r0

_ c0(£), 

c0(%) = Q-h Qzh R eyh czh b0(&, c0(& = Q~yh ezn (t £?!© + r e+
yh ezh bQQ), 

bfä = rctä) +1 ejfr Qzh ho®, cfö) = Q~yl e2/ R e+
yl Qzlbx(E). 

It would be mentioned that such an approach has been applied successfully to the analysis of the 
semi-infinite structure consisting of plane infinite periodical gratings [1]. 

On using four last operator relations and after some transformations, the operator equation with 
respect to the reflection operator of the semi-infinite grating R is obtained as a result: 

/(R) = R-r-(I-E/-REfr)-1E/-RE/
+t = 0,     where Ef = e±rez/. 

This is non-linear in R operator equation, it might be solved by using the Newton iterative technique. 
The (n + l)-th iteration corresponding to the Newton method is expressed as follows: 

R„+i = R«-(^;/(R)) /(R)IR=R„. 

Transformations of the first three operator relations lead to the expression for obtaining the Fourier- 
amplitude of the scattered field above the magnetic-dielectric (Z > 0): 

a® = (r +1 (I- EJ R E? r)'1 Ej R Ef t) q(& 

The generalised criteria of the accuracy of calculations of the reflection operator R and Fourier- 
amplitudes tf (£) of the electromagnetic field in free space is the energy conservation law. In the 
dimensionless form the power conservation law is expressed as follows: 

l 4w   

j{\ a(k0g)\2 -1 q(k0g)\2)fi^g>dg = I j(\ bQ(k0g) |2 -1 c0(^g) f^eii-gUg, 
-i -4m 

where    b0£) = (I -r0- E~h R Et)'1t0" q{&      E^e^e*, 

coig) = E* R EJ b0($) = El R E+
h (I - ifEjf R EJ)"11~0 q{& 

If the energy identity is not satisfied with a desirable accuracy then some additional iterations should be 
done to determine the operator R more precisely. 

Solution of the wave diffraction problem for the semi-infinite strip grating is of specific interest not 
only due to its "middle" position between infinite and finite structures. This problem has physical 
applications also, for example, such as detection and determination of periodical metal inclusions in 
magnetic-dielectric medium by analysing of their scattered fields rather far from the magnetic-dielectric. 

1. Litvinenko L.N., Reznik I.I. and Litvinenko D.L. Wave diffraction by semi-infinite periodical 
structures, Reports of Academy of Sciences of Ukr.SSR, 1991, No.6, p. 62-67 (in Russian). 
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WAVEGUIDING AND ANOMALOUS PROPERTIES OF 
PERIODIC SLANTING STRIP GRATING 

Shirnen A. A. 
Novosibirsk State University 

Faculty of Mathematics and Mechanics, Department of Hydrodynamics 
Novosibirsk, 630090 Pirogova str.2, RUSSIA 

It has been shown that periodic slanting strip grating possesses guiding and anomal 
properties. The dependence of guiding frequency on the geometrical parameters of gratings 
has been investigated. With the help of discrete isometric transform group of grating 
symmetry space of admissible solutions hase been restricted and the existence of guiding and 
anomalous waves has been proved. Pass bands modes have been classified with the help of 
grating symmetry group. Fine structure of the spectrum has been investigated. 

Statement of problems. 
Steady-state oscillations near the strip grating are 

described by the function u, which satisfies the 
following conditions: 

+ u   +A2u = 0-oscillation equation, 
yy 

du 

dn 

f 
= 0 - boundary condition, 

'yuf +u2dQ<oo- energy finitness. 

(B) 

cp-angle of grating incline, L-length of plate, A,-non- 
dimensional frequency, © and X are points which 
have rotation symmetry by % angle. 

Since the translation group is commutative and its representation in the space of 
admissible solutions is unitary, the space of solution can be expanded into invariant one - 
dimensional spaces, the functions from which are 

u(x + cos(<p),y + sm(p)) = eieu(x,y),   (|0|<ff) (1) 

The problem B with the condition (1) is called the problem B(G). On the ground of 
translational symmetry this problem can be considered only for Q'={(x,y): 0<y<sin((p)}. 

Waveguiding properties. 
Definition 1          

The waveguiding function is defined as the solution u(x,y) of problem B(9)>which is a 
generalized function of Laplace operator. One - directional periodic structure possesses 
waveguiding property, if non - trivial waveguiding function of problem B(9) exist.  

The basic difficulty of investigation of waveguiding property of periodic strip grating is 
that waveguiding and free frequencies of problem B(9) can coincide, in spite of the difference 
of free and waveguiding functions. Let the free and waveguiding frequencies be positive .It 
follows from the condition (1) that the continuous spectrum [0,co). 
Theorem 1. (Existence of waveguiding property) 

Slanting periodic strip grating possesses waveguiding property. 
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ProofThe proof is carried out by the method of "Dirichlet - Neumann fork". Let Dirichlet 
conditions (the problem B(DR)) or Neumann condition (the problem B(DR)) be fulfilled in 
addition to the boundary conditions of problem B(6) for x=R (R > 0). For X(DK) - 
eigenvalues of problem B(DR) and X(NR) - eigenvalues of problem B(NR) the following 
system of inequalities X(NR)<1<X(DR) is right. 
(follows from the variational statement of problem), hence it is enough to prove, that for 
VL>cos((p) 3R that the inequalities 0 < X(NR) < X(DR) <9. 
X>0. It follows from connectedness of Q and condition (1). 
X<6. Any solution u in domain Q represent as u=u+u, where u[r] is function discontinuous in 
the set G, continued with 0 outside the plate grating, u[n] is function discontinuous in the 
whole domain, satisfies all relations of problem B(DR), except the Neumann condition on the 
plate. For all values C - constant the relation 

Nu\ daB 

ADRS 

j]w| dCi.R 

■=--M\C,R) 

is right. Here Q=Qn{(x,y): | x | <R}. For big values R the asymptotic representation 

ju2(C,R) = 02+- + ir+o 
^ R   R1 

'P 
vR'j 

is right. Since the values A and B depend on C, the values of A are negative for corresponding 
choice of constant C, hence for enough big values of R \i < 9. The theorem is proven. 

Dispersion relation. 
Due to the radiation condition, the general representation of wave guiding solution of 

problem B(9) are, accordingly for symmetrical oscillations (symmetry rotation of angle is 
equal to 7m) and anty - symmetrical oscillations 

simmetrical oscillations, 
(    ( 

ul{x,y) = YJA 
n=0 

cosh(a„x)+sin      : , smh(anx) 

sin h(a„x)+ sin 
V    V 

cos h{a„x) 

(in Q])-for 

(inQj)-for 

anty - simmetrical oscillations, 

a/(2«n+ö)v   -trn|a| «2(«»v)=5]5Be'< 

aa=^{mlsm{(pf-l\ ßn =^{2m+ef-X2. 

/ +y CiJ 

/ ft, 
fv 

A* /    fts 

^^>kU For these functions   in order to be solutions of 
problem B(0) on the boundaries of domains Q (j=l, 2, 
3 ), the conditions of continuity of solution and its normal derivative must be fulfilled Grin's 
formula. 
The endless system of equations, which has been received from this Grin's formula, has been 
investigated numerically. 
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One can consider that parameter 9, from relation (1) is a wave number for waveguiding 
function of periodic grating G. Non - dimensional waveguiding frequencies X depend on 
0,these depencies are dispersion relations. In the article, some its approximations have been 
investigated. In particular, the case of little deviation of angel <p for n/2 have been considered. 

Anomalous properties. 
Definition 2 

Anomalous functions are defined as generalized eigenfunctions of problem B, localized 
in the neighborhood of slanting strip grating, satisfying the periodicity condition (2). 

u(x + cos(£>), y + sin(<p)) = u(x, v) (2) 
Since the slanting periodic grating accepts the more narrow symmetry group then the 

simple grating, it's necessary to add the condition 
${uY)dQ = 0 (3) 
n 

to the conditions of problem B, where Y - generalized eigenwave. Thus all anomalous 
functions mast is orthogonal to ingoing generalized eigenwave (the direction of propagation Y 
and plane of plates are parallel). This conditions restricted the space of admissible solutions of 
problem. The problem 'B' with the condition (3) is called the problem 'A'. Continuous 
spectrum of Laplace operator, corresponding to free eigenfunctions of problem 'A' represents 
the set a=[4%% oo), or in terms of non-dimensional frequency [2n, w). 

Theorem 2 (Existence of anomalous property) 
Slanting periodic strip grating possesses anomalous property, then cos((p)<L. 

The theorem is proved through the method of "Dirichlet - Neumann fork". 

Fine structure of the spectrum. 
By the existence theorems of waveguiding and anomalous properties the spectrum ot 

problem consist of pass bands (a mode -simmetrical waveguiding function, ß mode - anty- 
symmetrical waveguiding function), anomalous frequences (y and 8 modes) and unknown 
spectrum. 

Pass bands Anomalous frequencies    Unknown spectrum 

öi 02 OK „   
3—{{   I 1-I * * * (f 

«i A T    V,   6,     y2 27T 
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Moment - method analysis of electromagnetic wave scattering by plane 
array of chiral strip elements 

Sergey Prosvirnin and Tatyana Vasilyeva 

Institute of Radio Astronomy National Academy of Sciences of Ukraine 
4 Chervonopraporna St., Kharkiv, 310002, Ukraine; e-mail: prosvirnin@rian.kharkov.ua 

A numerical method of electromagnetic modelling of scattering by 2-D periodical array consisting of metal strip 
elements which have complex shape is presented. The method is applied to the characterisation of chiral arrays. 
Scattering characteristics of periodical arrays placed in free space and microstrip arrays are analysed. 

Chiral mediums are well known as mediums that have optical activity. Electromagnetic 
wave transforms its polarisation propagated through such medium slab. There are no natural 
media which have properties of optical activity in microwave frequency region. That is why a 
design and a mathematical modelling of artificial media or electromagnetic structures, 
properties of which are similar to optical activity, are a subject of a great interest [1]. It is 
natural to include chiral resonant-size particles, in microwave frequency region, in these 
structures. 

Recently plane structures have been suggested that consist of two-dimensional chiral 
particles and mathematical models were created for the characterisation of electromagnetic 
wave scattering by some structures [2, 3]. Plane chiral structures have typical properties of 
three-dimensional artificial chiral medium but are more feasible in manufacturing. 

In this paper we consider mathematical modelling of plane electromagnetic wave 
diffraction and scattering by periodical structures consisting of strip metal elements having 
complex shape, particularly chirality shape. To the characterisation of microstrip array the 
algorithms were developed and numerical analysis was carried out, i.e. the array which 
elements are placed on magneto-dielectric slab with metal ground plane (see Fig. 1), and 
diffraction array in free space. Arrays are periodical in two orthogonal in the plane directions. 
The elements of arrays are plane metal strips of complex shape, particularly chiral S-shape 
and C-shape. 
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Fig. 1. Microstrip array. 

In each case the solution of boundary value problem was reduced to a moment-method 
solution of integral equation for unknown surface current density on the strip elements of 
array. Spectral representation of Green's functions were used in the both cases: microstrip 
array and array in free space. Integral equations were obtained under the assumption that 
surface current flows along the strip element only, i.e. the width of the strip which can be 
variable is so small that current density cross component can be neglected. The cross current 
density distribution is given by a single moment-method basis function with the necessary 
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singularities for the current distribution at the strip edges. The expansion of the current density 
along the curved strip is made by using the roof-top basis functions. 

Such array scattering characteristics have the resonant behaviour versus frequency. 
Resonances arise at frequencies when a half-wave-length in the free space or the microstrip 
line equals approximately to the strip length. Essential variations of the amplitude and 
polarization of reflected and transmissed fields occur at the wave resonant conditions. 

For simplicity, we shall consider the normal incidence of a plane electromagnetic wave on 
the array: E! = peila. Both periods of array are assumed smaller than the wavelength: dx IX < 1 
and d IX < 1. Then there is only one space harmonic in the reflected and transmitted fields: 

Er = re~ikz, E' =teikz. In each pair, the vectors r, pand t, p are connected by the 
operators of reflection and transmission: r = Sp, t = 7p. When bases are formed by the unit 
vectors e, and ev, the matrices of S and T tensors as follows 

S = 
\Syx 

xy 

yy J 

T = 
\Jyx 

•xy 

yyj 

The identities s^ = syx and i   = t   follow from Lorenz's lemma and energy conservation 

low. The relations T = 0and |sj=|sj hold true in the case of a microstrip array as well. 
The reflection field has an elliptic polarization in usual case of normally incident plane 

line polarized electromagnetic wave on a microstrip array consisting of S-shape elements in 
the regime of the propagation of a single partial harmonic. However the reflected field has 
linear polarization that is orthogonal to the incident field in the certain resonant conditions. 
Such microstrip screen can be as fully transparent for a linear polarization transmitting- 
receiving antennas in the certain conditions. 

\S XX I 

>xy\ 

>yy\ 

l.U ->.   A Z?"**   f\ 
J,3 Vv f   VA /' 

0.5 h ^    A / 
1,3 

0 , i, . 

Fig. 2. The elements of reflection 
matrices versus dx IA ratio 

(dx=dy,e = 2,M = l,a/dx=03, 
w/dx = 0.005, h/dx=015- the 

curves    near     dx IX = 0.285 

correspond to  (px = 120"; the curves 
near   dx IX = 0.37   correspond  to 

^=90°). 

Figure 2 shows the 
dependence of the elements of 
the reflection tensor versus 
period to wavelength ratio for 
the case of microstrip array 
consisting of S-shape strips. 
Such array is a chiral structure 
that has pronounced resonant 
dispersion characteristics. 

If the angular dimension cpx is such that there are some parts on the strip with mutually 
orthogonal current directions, then the diagonal matrix elements of S might tend to zero (see 
Fig. 2, <px = 120°). Let us consider the incidence of a wave that has a linear polarization along 
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one of directions of periodicity of array. The reflected wave is orthogonally polarized to an 
incident wave at the corresponding frequencies in above-mentioned conditions. 

In the case of array placed in free space it is possible that a circularly polarized normally 
incident wave can be transformed to the approximately equal (by amplitudes) reflected and 
transmitted linearly polarized fields at the resonant dimension of S-shape element (see Fig. 3). 
Turning of polarization plane or transformation to elliptic polarisation of transmitted field 
occur in the case of linear polarization of the incident field in the resonant conditions. 

1 i 1 

1 

 i i—i 

0.5 

0 

: \'"T 
. 1  

Fig. 3.  Dependence of amplitudes and 
phases of transmitted and reflected fields 
in the case of left (-) and right (+) 
circulary polarized incident wave versus 
ratio dxl Ä. Normal incidence. The S- 
shape strip array in a free space 
(dx=dy,w/dx=0.005,afdx=03 

<Px = 90°):. l-'x. 2-t+ 3-ty, 

4- /+      5- I y  ,            J Y~ r+ 
'X  1'X .fe" = rx

+), 

6- >y  ,'y ,(fy   = ■"?). 
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ELECTROMAGNETIC WAVE SCATTERING ON TRANSPARENT WAVY 
INTERFACE 

A. S. Hinski and T. N. Galishnikova 

Faculty of Computational Mathematics and Cybernetics, Moscow State University, 
Vorobievy Gory, V-234 Moscow, 119899 Russia. 

Phone: 939-38-57,939-17-76; Fax: 939-25-96, E-mail: celd@cs.msu.su 

The method of observation of the earth surface by various technical tools is one of the 

most JM methods for the investigation of the ^^\^n^ZvZSi 
of the earth surface are of great importance among such tools. We consider the practical 
t^^^Jlg oShe sea water. The most important for applications is the inverse 
p obi m of determination of the reflecting surface boundary. To soto the inverse problem it 
is necessary to have an efficient numerical method for the direct problem solving 

In this paper we consider the numerical procedures for analysis of the diffrartion 
problem of a plane electromagnetic wave incident on a wavy interface between two,dfferent 
mediaAn infinite periodical cylindrical surface as well as the cylindrical surface differed from 
TrtZ on a bonded part of it is discussed here. In the case of an illuminated region wide 
^ZTZ wavelength of the incident field, the choice of periodic model of reflecting 

SUrfaC1Äccurate and approximate methods for solving the ^ofr«, 
gratings have been proposed. We would like to emphasize the methods of Kirchhoff [1] of 
SÄationsP[2]P and of small inclinations [3] among the **^™*££ 
solving diffraction problems for an undulate surface. Approximate methods may have not 
Ahto also low accuracy depending on the range of variation of input paramet** 
These questions are discussed in [4,5]. Approximate methods of solvingthe^fecüon 
problems for reflecting gratings have been thoroughly ^^"^"Sfa^ 
Rectangular profile, a rigorous method of partial regions was developed and e on ant featoe 
of such a reflecting grating were studied in the works by L. Deryugm. Systematic 
invention of grating! with saw-tooth profile was carried out at the Kharkov school of 

radi0Ph^Sinvestigate a full electromagnetic formulation of the problem of plane wave 
diffraction by a periodic wavy interface between two different media on whose surface etfher 
Oe continuity conditions of the tangential components of electric and magnetic fields or the 
SSConditions are satisfied, boundary value problem to™*™* "«£»£ 
in the half-space is reduced to a set of integral equations over a finite portion of the boundary 
ly Secting appropriate fundamental solutions. The authors of this paper have deyebped he 
method of integral equations in [7]. Perfectly conducting structures have been studied by the 
method of integral equations in [8]. . 

Consider diffraction problem in the following formulation. Suppose that S is the 
interface between two media D, and D2 with dielectric and magnetic permeabilities sx, Ml 

and e2, »2, respectively (Im ex = 0). Suppose that cylindrical surface S is periodic along 

the x axis, its generatrix is parallel to the z axis and given by the equation y - f(x). A 

plane wave is incident from A  onto  S. Its time dependence is  exp^erf), with 

K i = (°JhJ^    >where a is the fre(iuency-Let us denote'by E«(x>y>z}' H°(x'-V'z)' 
the incident field of the plane wave, which has the form: 
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E0(x,.y,z)=E0 exp(-ia0x-ißoy+iy0z),     H0(x,j,.?)=A/*i/A Eo(*,.V>4 (1) 

Here a0 = ^sin^sin^,,, /?0 = £,sin^0cos.90, ^0 = A,cosp0, where #>0 is the angle between 

the z axis and the propagation direction of the incident field, 30 is the angle between the 
negative direction of the y axis and the projection on the plane z=0 of the propagation 
direction of the incident field. 

In the domains Dxand D2, we seek a solution to the uniform set of the Maxwell 

equations with the boundary conditions of continuity of the tangential components of 
electromagnetic field across the media interface S. The scattered field satisfies the radiation 
conditions. We shall assume that the total electromagnetic field has the dependence on the z- 
coordinate as   exp(/yoz).  It can be shown that diffraction problem is reduced to the 

determination of the projection on the z-axis of the field E (x,y) and H (x,y), which satisfy 

a uniform two-dimensional Helmholtz equation with coefficients (^2 -y\) in the domains 

Dx   and   D2.   The  boundary  conditions   couple  the  tangential   components   of the 

electromagnetic field. 
In order to derive the integral equations let us introduce two-dimensional quasi- 

periodic fundamental solutions g12(M,P) to the Helmholtz equation in the domains D, 2 that 

satisfy the radiation conditions, and shown in the work [7]. By using the Green's formulas, the 
properties of surface potentials, and the quasi-periodic fundamental solutions gl2(M,P), 

diffraction problem is reduced to a set of four integral equations for u(P)=E^(P), 

v(p)= H^(P), du(P)läi, dv{P)ldn over a finite portion S0 of the surface S [7]. The values 
of du{P)l dx, dv{P)l dx, for a numerical solution of this integral equation set, are substituted 
bywfPJandvfPjonSo. 

In the particular case if wave incident in the xy-plane (y0 =0), boundary conditions 
can be simplified, and the set of four equations splits into two independent systems of integral 
equations of the form 

*0-iJ u(p)-l~{g1(M,P)-gMP)Y^1{g^,P)-ctg1(M,P)) dSp + Wo (M), 

dn       2n S0L 

d 
«{P)-^L

r-ig2iM,P)-g^,P))- 
dnMdn? 

-^■f-(ag2(M,P)-gXM,P)) 
dnp   dnM 

(2) 
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where     a = l,     4P) = u(P) = Ef (P) in the    ^-polarization,     or     a = s2lsx, 

u(P) = v(P) = H{z]{P) in the .tf-polarization. Integral equations are further solved by 
discretization (2).* Algorithms have been constructed based on explicit representation of the 
logarithmic singularity contained in the equation kernels. 

In the case of the media D2 having a strong conductivity, the Leontovich boundary 

conditions are valid on the surface S: [nxE] = -Fr2[nx[nxH]]. These conditions for the 
electromagnetic field, which satisfies the set of the Maxwell equations and has a dependence 

on the r-coordinate as exp(f>0z) can be written as 

W 
-»TV ■ICOS, 

dn 
H=- 

w2ß? *r0 8T 
lCOfix 

dJL 
dn 

(3) 

To solve the diffraction problem, the set of two integral equations for the unknown functions 
cU(P)/ch, &iP)ldx on S0 is obtained. If r0 = 0 > »-e. if the plane wave propagates in the xy- 
plane, the' boundary conditions (3) become simpler, and a single integral equation for 
du{P)läi can be obtained instead of the set of two equations. An integral equations set with 

respect to du(P)lft and v(P) can be derived analogously. In the case of r0 = ° we obtain the 

integral equation for v(P). , 
A similar consideration has been developed for a plane wave diffraction problem on 

the surface differing from the plane on a bounded part of it. The sets of integral equations 
have been obtained for the interface between two different media and for the surface with the 
Leontovich boundary conditions. 

REFERENCES 
1. F.G.Bass and I.M.Fuks, Wave Scattering by Statistically Rough Surface, Moscow, 1972, (in 

2 B Z.Katsenelenbaum," Electromagnetic field perturbation for small deformation of metal," 
Zh Tekhnich Fiziki, vol. 25, No. 2, pp. 542-557,1955, (in Russian). 
3 AGVoronovich, "Small-inclination approximation in the theory of wave diffraction by 
rough surfaces," ZhEksp. Teor Fiz.,vo\. 89,No. 1(7), pp. 116-125, 1985, (in Russian). 
4 V AKorneev, A.G.Mikheev, E.Yu.Rabotnova, and A.S.Shamaev, "Accuracy comparison of 
numerical and asymptotic methods in the problem of plane electromagnetic wave diffraction 
by a periodic perfectly conducting surface," Radiotekhnika i Electronika, vol. 35, No. 2, pp. 
258-266,1990, (in Russian). 
5. Yu.P.Lysanov, "The wave scattering theory by periodically rough surfaces, Akusticn. 
Zhurnal, vol.4, No. 1, pp. 3-12,1958, (in Russian). 
6. V.P.Shestopalov, L.N.Litvinenko, SAMasalov, and V.G.Sologub, Wave Diffraction by 
Gratings (in Russian), Kharkov, 1973, (in Russian). 
7. T.N.Galishnikova and A.S.Ilinski, "The Scattering of the Plane Wave by the Wavy 
Surface," Moscow, MSU-Press, pp.86-111,1995, (in Russian). 
8. YuXKrutin', YuATuchkin, and V.P.Shestopalov, "Diffraction of E-polanzed 
electromagnetic wave by a periodic smooth wavy surface," Radioelectronika, vol. 37, No. 2, 
pp. 202-208,1992, (in Russian). 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



192 MMET'98 Proceedings 

ELECTROMAGNETIC WAVE SCATTERING 
BY RECTANGULAR-CELL DOUBLE-PERIODIC MAGNETO-DIELECTRIC GRATINGS 

N.V.Ryazantseva and V.V. Yachin 
Institute of Radio Astronomy 

of the National Academy of Sciences of Ukraine, 
4, Krasnoznamermaya str., 310002 Kharkov, Ukraine 

Abstract 

The problem of electromagnetic waves scattering by a double-periodic grating is solved by the 
new method based on the rigorous volume integro-differential equations. The Galerkin method 
is applied to reduce this volume integro-differential equation to a set of second-order 
differential ones with constant coefficients in functional. Numerical solution was obtained for 
the simplest double-periodic magneto-dielectric rectangular-cell grating as an example of a 
structure with translational symmetry. 

Introduction 

Periodic screens are used in many applications as a filter of electromagnetic waves. The 
purpose of this paper is to present a simple transformation from the integral equations to the 
differential ones that leads to efficient way of solving the scattering problem for waves 
arbitrary incident on a double-periodic structure. We shall analyze the case of the rectangular- 
cell magneto-dielectric grating shown in Fig 1. 

Fig. 1. Geometry of free-standng surface. 
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Method 

The most general set of integro-differential equations for the electromagnetic field can be 
written in the form borrowed from [1]: 

£(?) = E,{f)+j^{VQ+k2)[{i-l)E{r)G{\r-?\)rr'- 

-^^[(A-DmnG^-riw, (1) 

+j- Vx U*- W)<?(l?- ?'&?', (2) 

where V acts on ?,G(r-f) is the Green's function. The material of the medium is 
characterized by the relative permittivity tensor £ and the relative permeability tensor fi, V 
is the volume of scatterer, EQ(r) and /f0(r) are the electric and magnetic components of the 
incident field Time dependence of the field is assumed to be exp(-iwf) and suppressed 
throughout this paper. 

Taking into account the scattering structure geometry and characteristics of the incident field 
we can rewrite equation (l)-(2), where the Green's function can be represented in the integral 
form as: 

">-Üt-l? G(r,r')= —J J ^ ; dvdy 

and the field inside the grating is expanded in terms of the Floquet modes (see e.g[2 ]): 

B(x,ytz)= 2 2X(z)e     *"   «       '   > 

Em(z)=—l}E{x>,/,z')e       l-   e       L>   dx'dy', 
•^»Ai  n ft 0 0 

M«-CM»-0> 

Hm(z)=—UH(x>,y,z>)e    k e    ' ^r- 
Lxh 0 0 

After substituting these expansions into (1), (2) the obtained expression is integrated over all 
possible variables of integration and differentiated with respect to x mdy. Then we act on the 
left and right-hand sides of these equations by the frnte integration operator: 
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*Jm      ...      2«v „.      2< 

€ 

Eventually, using the easily derivable relations: 

where /„(*■) = ^£*#(*y *-*-<*, j^ W= -L-Jf^^yu-^^ m6 

X» - V*"2 ~ (**+ 2äP' As )2 ~ (*) + 2flr I Lf )2 one can obtain linear differential equations of 
nie second order with constant coefficients in the fimctionals /„., Mg. Then, following [3], the 
transmitted field can be determined: 

H  *    » Zm. s 

*T(xfy,2) = -IE Jj^C.W+lXm )[(1- rfW* 
H  *   * Zm. s 

where *y; =y/M=kx+2mnl Lx, k0^ = Om = kf+lfanl L, are the propagation constants of 
the medium, C4 are the coefficients of the expansion, ^, f*J are the eigen values and associated 
eigen vectors of the structure. 
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PLANE WAVE SCATTERING 
BY A CASCADED DIFFRACTION GRATING (JEf-CASE) 

Z.Nazarchuk, O.Ovsyannikov, T.Senyk 
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5 Naukova St., Lviv 290601, Ukraine 
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ABSTRACT The problem of a plane wave scattering on a multielement diffraction grating is considered in 
the paper The diffracted field is sought for as a double-layer potential. The technique of integration contour 
deformation is utilized for Green function's calculation. An accounting for a singularity of an integrand on a 
specially chosen part of the integration contour is adopted to derive a numerical solution. To reduce the 
computation time for Sommerfeld-type integral calculations essentially a Lagrange-type interpolation 
polynomial of several variables is constructed. By an integration contour deformation and accounting for 
residues from poles the estimation of the Green >s function at infinity is provided. A two-layered grating of two 
curvilinear screens on the period was considered. 

The correct modeling and engineering of radiowave equipment in the superhigh frequency range 
require accounting of resonance effects. The high merit of such effects leads to rigorous methods in their 
investigation, in particular - to integral equation technique. Cascaded diffraction grating often is a resonance 
element of such equipment. Effects of resonance interaction of electromagnetic waves with such grating are 
known. But electromagnetic wave diffraction by cascaded grating with shape close to an open planar waveguide 
is not widely presented in papers yet. This paper is devoted to the last case. 

Consider multielement rf-periodic grating in homogeneous isotropic media with wave number*. One 
period of the grating may contain N cylindrical perfectly conducting screens with generatrices paralld to Oz 

axis Cross-sections of the screens by xOy plane are open smooth Lyapunov-type contours Lk, k = \N. The 
grating is irradiated by a unit-amplitude plane electromagnetic wave with exp[-/*rf] time dependence incident 
at jangle to Oz axis. Such problem is reducible to Heimholte equation solution which satisfies the following 

conditions- of Dirichlet (^-polarization) or Neumann (ff-polarization) on the arcs Lk, k = \,N; of Meixner-type 
near the screens' ribs (h arc end-points); of absence of wave propagating from infinity (except the exciting 

one). Consider only the /f-case now. 
The diffracted field is sought for as a double-layer potential. Using Floquet periodic condition a Green 

function of such periodic problem is obtained 

•    -fco 

G(tk,z) = -Hil\irk) + j jff0
a)(xl'* +^-*l)exp[ä«nß]! (1) 

K=-tO 
M*0 

rk =|M, t^m-x^+iy^), sk - arc abscissa of contour Lh z=x+iy - complex view-point coordinate, 

a - period number. .    . 
The evaluation of function (1) requires convolution of weakly convergent series. The series in (1) are 

diverging in grazing points and direct convolution of the series is unjustified. That is why the known [1] 
integral presentation of Hankel function and the future special integral's contour deformation is used [2,3] 

which lead to: 

G(tk,z) = ^Hil)(%rk) + S+(tk,z) + S_(tk,z); 

c(t ,w*««ßJ_f  I e-\m-^m^d-z)(^ (2) 
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Fig. 2. Cascaded grating with two curvilinear 
screens on the period. 

Fig. 1.   Account for existing of poles £;. 

Calculation of integrals (2) requires accounting for a logarithmic singularity in functions S±(fhz) 

S±(tk,z) = e^^^(x\z-tk±d\) + S±(tk+d,z)). (3) 

To reduce the computation time essentially for Sommerfeld-type integral calculations when repeated 
many times a Lagrange-type interpolation polynomial of several variables is constructed [4]. 

To provide estimation of function G(t,z) at infinity it is necessary to change contour Tm like in Fig. 1 
accounting for poles |ra on real axis Ox. Accounting for residues from them derives to: 

7!+       rx(j3{z-<i}|cos*(ß,»i)+SR{z-/Jfc}sm*(p,m)) 
/ V~     &  

= 2tfmh_ cos*(M) 
(4) 

271 
cos*(M) = Jcos2ß-—sinß-fyml   , 3{cos*(ß,m)}£0, sin*(ß,m)=^m+sinß 

Angle 0 is established under condition of the fastest decaying of the integrand function. Then, the field at 
infinity may be obtained as [5] 

■ N a 

H 00 =-;—öZJr -^^XT* l3{z}->±=o    ^cosß£jjL* dnk 

x—(expfo(± 3{z -rj}cosp + SR{z-rt}sinß)])«fcA 

To receive the solution of the problem construct the integral equation system by satisfying the 
conditions on the contours Lk,k = \N. The systems are solved by the mechanical quadrature method [3]. 

As an example, consider the case when one grating's period contains two screens. Contours Lk are 
parabolic arcs with end-points a+il(M) and vertexes -ib+W-1) (Fig. 2). Parametric arc's equations in complex 
plane z=x+iy look like 

tk(T) = a(x + fe(l - T2)) + il(k -1),  x = [-1;1],z = b/a,k = 1,2 (5) 

where / is distance between screens. The wave number x is postulated to be real. Such cascaded grating may be 
considered as an open waveguide. 

Fig. 3 presents behaviour of reflection coefficient [5] 

R = Hs{z\ z{zU+m ■ exp[-/X(3{z}cosß + *{z}sinß)] 

depending on 1$/ and ß (incident angle influence). Here we assume that d=id2 a=dll, and Jlb=W.2=0.0. The 
grating is irradiated by //-polarized plane wave. In the case of /=0.35rf the grating is nearly transparent. The 
increasing of/ leads to increasing of R. The reflection minimum migrates to the larger / values correspondingly 
with the incident angle increasing. . 

Figs 4 6 present behaviour of reflection coefficient of the same grating but the screens camber is 
nonzero. Here we assume that d^2, a=dll, H1=T1L2=0.25 at Fig. 4 and nb=-Tb=0.25 at Fig. 6. In general 
the influence of screens' camber leads to the smoothing of the grating's reflects coefficient (Fig. 4) and to the 
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increasing of the incident angle influence (Fig. 6). The reflection minimum shifts from /-0.35tf at Fig. 3 to 
/=0 40rf at Fig 4 and /=0.45rf at Fig. 6. So, with the higher screens' camber the considered waveguide seems to be 
wider It is also worth to mention the increasing of the reflection coefficient at the high incidence angles (ß>80°). 

Fig 5 presents the "incidence angle - screens' camber" dependencies of the reflection coefficient of 
the same grating. Here we assume that d=n/2, a=dll, l=0.35ld (the case of the reflection mimmum at Fig. 3). 

As a conclusion of the paper one can say that the integral representation of periodic Green function 
that presented here allowed increasing noticeably the calculation accuracy. The application of interpolation 
polynomial to Green function approximation significantiy decreased the amount of that calculations That 
Slows to construct efficient from a computer-resource point view algorithm of solution of scalar problem of 
plane electromagnetic wave diffraction on a multielement grating consisting from arbitrary-profiled screens and 
to provide an accurate numerical analysis of its scattering features in the resonance range. 

Fig. 3.   Reflection coefficient of a two-layered 
plane grating. 

Fig. 4.   Reflection coefficient of a two-layered 
curvilinear grating (flli=flb=0-25). 

ß 
Fig. 5. Reflection coefficient of a two-layered 

curvilinear grating (l=0.35ld) 
Fig. 6.   Reflection coefficient of a two-layered 

curvilinear grating (lH.i=-HL2=025). 
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Analysis of the scattered field from the grating of resistive dipoles 

J. Ziemelis, P. Chertov 

Riga Technical University 

Abstract-Microwire gratings may be used as a component of absorbing structures, so it's important 
to study different gratings consisting of resistive materials. Scattering of electromagnetic waves from 
a two-dimensional regular grating is investigated. The microwires are coated with a glass sheath. It 
effects little on electromagnetic properties but may effect pretty much on the process of heat exchange 
in strong electromagnetic fields. 

A simulation methodology with reference of different parameters of gratings is worked out. 
Also, a degree ofmicrowire heating is estimated with different intensities of the incident field. 

Resistive microwires are thin cylinders with diameter over a range from some tenth of a 
micron to some microns. The cylinder consists of an amorphous material and coated with a glass 
sheath [1]. Microwires properties are specified by a value of the resistance per unit length, which may 
vary over a wide range. Such microwires may be used as a component of absorbing structures [2]. 
While the analysis methodology of infinite gratings is well known [3], few works concern gratings 
with elements of finite size and specific resistive properties. A method of computer simulation for the 
analysis of the field scattered from gratings with different parameters is to be worked out. 

ir 
V 
A 

/ 
iX 

7 

«=-/ 

m=l 

Y 

m=0 

m=-l 

n=l 

n=0 
Fig. l. 

The analysed grating [Fig. 1] consists of dipoles of equal length L which are parallel to z-axis. 
Let b denote the grating's period along z-axis and / - along y-axis. The dipoles are labeled with indexes 
m (along z-axis) and n (along j-axis). The dipole with zero index is located in the origin of 
coordinates. 

For simplicity, the case of normal incidence is considered. Solution of the electric field 
integral equation (EFIE) is done by the Method of Moments. Electric field is a result from incident 
and scattered field intensities. Scattered field intensity is excited by the current in microwires. 

I eh =jj'ekv-dS = im\ (e-e0)-E-dS 
s s 

Vector potential of the scattered field is a result from all dipole currents. Due to a very small cross- 
section and conductivity of the microwires, current density in the cross-section could be assumed 
constant, thus simplifying solutions of the vector potential: 

n=*,I l J » *eb>2 '" 

-co m=-co o AK-U, 
•ds, (1) 
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where anm = y(z - s - m ■ bf + (y - n ■ if + x2 . 

Scattered field intensities: 

£ = ——(k2+graddiv)n-,   H = rotfl. (2) 
ia>e0  

v ; 

The current distribution is found in the form of the Fourier series 
35 

Iekvz(s)=LPv-m - 
v=l V      L 

z-J>-4? -*.+-J- * ^ I* E E l^-4~ •* •    w V dzl)"\    '„"„ mt^oo   i 4;rüW V   Z, / 

The expansion coefficients we get by writing equations on the surface of the microwire: 
'       d2 ^        »mi -Ma. 

-l .     -uz   • '   fc2 + 

v. £ / M»£0 

where Z is the impedance per unit length of the microwire and £0z - incident field intensity. 

Using orthogonality of the trigonometric functions, from (3), we obtain system of equations 
determining current's coefficients. Also, using integral relation 

-/*«„    «J0(t^(y-n-l)2+x2) e- = f_J___ Le-v-^-»\-^ .t.dt 
anm      o ylt2-k2 

and Poisson's summation formula, Fourier series sum and majority of the integrals principal values 
we can write analytically. 

We used magnetic field to obtain scattered field in the far zone. Components of the magnetic field 
produced by this current (the scattered field from the dipole with indexes m, n) 

g L. exp(-ikanm) 8 h exp(-ikanm) 
Hx»m=-j-\htoz(s) ds      H      =-—-\Ieh,2(s) ds (4) 

<Vo anm dx\ anm 

The total scattered field 
00 00 00 00 

Hx=    x z      Hxnm' Hy =    s z      Hynm      ' ^ n = -oo m = -oo J     n = -oo m = -oo 
Since the argument of the exponential function may be substituted with square root approximation in 
the far zone (x»A), integrals in (4) may be expressed in terms of the Fresnel integrals. In case of 
great distances to the view point \m-b\»L, the results may be expressed in terms of elementary 
functions. Performing integration in (4), for the harmonic of the current with number v 

A2
m-(x-v/L)2-k2im-b-zf   l l " 

where Anm = y(z - m• b)2 + (y - n■ l) + x2 . 

Differentiating the obtained expressions, one may show that the double serieses converge according to 
the Caushy integral criterion. 

Summing the double series with respect of m, a sum over n is derived with its module 
decreasing as riin. Observing changes of arguments of complex terms, it's possible to evaluate the 
result of summation. Since the magnetic field in the far zone almost completely formed by its 
transversal component, the electric field intensity may be found from corresponding expressions for a 
plane wave. 

The simulation were carried out with following parameters of microwires: radius 5[um], 
resistance per unit length Rp=l [kQ/cm] and intensity of the incident field E<j=\ [V/m]. In order to 
compare results, those values were taken for the length of the dipoles L-\ [cm] and wavelength 
A=3[cm]. For convenience, the origin of coordinates is shifted to the lower end of the dipole labeled 
m=0, «=0. 
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Numerical results: 
l.Z>=1.5[cm], /=2[cm]. The view point coordinates jtF=100[cm], .y=0[cm], z=0.5[cm]. Evaluated 
intensity of the scattered field £s=2.8032-exp(i-0.18227)[mV/m]. 
2.*=1.5[cm], /=2[cm],x=l[m\,y=0[cm], z=0[cm],Es=2.8035-exp(i-0.18223)[mV/m]. 
3.*=1.5[cm], fc=2[cm], jc=10[m], y=0[cm], z=0.5[cm], E?=2.7981-exp(i-0.18178)[mV/m]. 
4.6=1.5[cm], /=0.1[cm], x=100[cm], y=0[cm], z=0.5[cm], Es=22.172-exp(i-0.74566)[mV/m]. 

Estimating approximate value of absorbed power, mutual resistance of dipoles in the grating 
isn't taken into consideration. For cylindrical conductors their impedance per unit length is 

7_klrJ0(klr) 1 ._ L     2n 
where kx= ll-i 

2    Ji(k{r)   n-r1-al "'"'     X   ^     G>E0 

With this approximation the absorbed power is 
L 

P = 0.5 ■j\l(sf-Re(Z)-ds 
o 

which includes the active power of radiation. Therefore, the radiation resistance should be subtracted 
from Re(Z) evaluating the power of losses. In the simplest way its value may be estimated by 
comparing with radiation resistance of the Hertz dipole (87.7 [Q]). In our case, it is small part of the 
resistance and may be neglected in the first approximation. 

Outside radius of the glass coating rr=10[m]. Estimating the process of heat exchange, we 
assume that the temperature doesn't increase outside the glass sheath. In that case, the amount of heat 
emitted by the conductor is equal to the amount of heat emitted outside the glass coating. Its thermal 
conductivity =1.13[W/m-grad]. Heat amount emitted per unit time outside the glass coating in the 
stationary case must be set equal to absorbed power 

2^-i7-£-(7j-r0) 

Hnlr)       ~P- (6) 

Expression (6) allows us to find the temperature of the dipoles and change the value of their resistance 
per unit length if necessary. For Eo=l [kV/m], the value of absorbed power P=0.25[mW], that changes 
the temperature of the dipoles approximately for AT=2A-10'\ However, with intensities of the 
incident field higher than 1 [kV/m], behaviour of the impedance per unit length becomes non-linear 
and other methods are needed considering this problem. 

Conclusions. Values of the magnetic field intensities calculated for different x and z indicates 
that the shape of the scattered field corresponds to a plane wave. For sparse gratings, intensity of the 
scattered field as well as the reflection coefficient of plane waves are negligible. For dense gratings 
(/=l[mm]), intensity of the scattered field increases considerably. Thus, microwires are effective 
scatterers with little space filling. The idea of warming dipoles up with medium intensities of the 
incident field is groundless. 
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EXAMPLES OF "FAKED UNITARITY" IN DIFFRACTION GRATING 
COMPUTATIONS 

Sergey Yu. Sadov 

Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia 
and 

Department of Physics and Astronomy, University of Manitoba 
Winnipeg, MB, R3T 2N2, Canada 

Abstract The energy balance criterion is the most widely used tool for verification of diffraction 
computations. Two examples are given, in which numerical methods imply that the criterion 
is fulfilled exactly, but results are incorrect: in the first case due to problem's parameters lying 
beyond the region of the method's validity, in the second case due to a programming error. 
1. Introduction. There exist many methods for solving electromagnetic diffraction 
problems, in particular, grating problems (see e.g. [1,2]), but very few ways to confirm the 
correctness of numerical results. In the author's opinion, the following three approachs 
have a good reputation and may be recommended: 

(1) varying the algorithm's parameter(s) like a stepsize until the results stabilize; 

(2) comparison of results obtained by independent methods; 

(3) for conservative problems — checking the energy balance. 

See [3] for critique of some other verification methods. 
Methods (1) and (2) require a series of (at least two) calculations for the same prob- 

lem. Besides, (1) meets practical difficulties for certain diffraction grating algorithms 
realized with the limited-precision arithmetics. For example, in the Rayleigh point- 
matching method, decreasing the stepsize leads to a poor-conditioned matrix. 

Consequently, the energy balance criterion, if applicable, is widely used to determine 
the validity and to evaluate the precision of a solution directly. 

Usually one assumes a real number to be the criterion's output. That number is, 
however, just one of the diagonal entries of a quadratic complex matrix S*S, where S 
is the scattering matrix [2]. It is useful (especially in test computations) to have the 
whole matrix S*S computed and to compare it to the identity matrix. In case of the 
S-matrix's size greater than 1, this approach increases the probability of error detection 
— or the confidence in the correctness of results. 

The energy balance (or the unitarity) criterion is a helpful and, in general, a reliable 
tool. However, in this paper we draw the reader's attension to possible misleading 
conclusions that may be caused by a blind belief in this criterion. 

In our first example we deal with the Rayleigh point-matching method. This method 
has well-known, theoretically argued bounds of applicability [l],[3]. We show, however, 
that the numerical scheme inherently satisfies the energy balance criterion in case of nor- 
mal incidence of a long wave, no matter what is the profile height and the stepsize. The 
second example, from the programming practice [4], concerns a hard-to-detect program 
bug. Despite of the bug, the calculation demonstrates the convergence and exactly sat- 
isfies the unitarity criterion. In both examples we avoid complications and consider the 
simplest versions of scattering problems: scalar fields, 2D geometry, Dirichlet's boundary 

conditions. 
2. Notation and Problems. Put the grating period d = 2K, angle of incidence 8, 
wave number k. Coordinates: x (along the grating), z (upright).  The field U(x,z) is 
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considered above the grating (Reflection Problems, abbr. RP) or above and under the 
grating (Reflection-Refraction Problems, abbr. RRP). It satisfies the Helmholz equa- 
tion MJ + k?U — 0 outside the grating. For RP, k2 = const above the grating; for 
RRP, we have two different constants k? and Ar, above and under the grating. A 
problem formulation includes: a boundary condition, the quasiperiodicity condition 
U(x + d, z) = U(x,z)eia, a = sin0, and the radiation condition, which we replace 
by a direct definition of the scattering matrix. In our examples boundary conditions are 
the Dirichlet conditions at the grating surface: for RP, U = 0; for RRP. U and dU/dn 
to be continuous. 

Denote, for n G Z: an = a + n, V = {n G Z : \an\ < k}, £ = Z\V. {V stands for 
propagating waves, £ for evanescent waves). Next, ßn = (A;2 — a2)1/2; square root sign 
rule: ßn > 0 for n G V, Im/?n > 0 for n G S. For RRP, we introduce, in addition, the 
notation V, £ and ßn corresponding to k. 

Scattering matrix — RP. The field above the top of grating consists of incident (-), 
reflected (+) and evascenent (0) waves: 

U(x, z) = £nep Af* exp(ianx ± ißnz) + J2ns£ ^ exp(iotla: - \ßnz\). 
(l)Thereexistsaone — to — onelinearcorrespondencebetweenthesetsof coefficients 

{A«} and {4->}: 

/£ 1/24+) = Em& Snmß^lß A^. (2)C'omplexnumbers 

Snm constitute the scattering matrix. It is the goal of a computation. 
Scattering matrix — RRP. In addition to the latter paragraph, the structure of the 

field under the bottom of grating is described by Eq. (1) with tilded notation: A^^~^°\ 
P, £, ßn. Now A(~) are the amplitudes of refracted waves, 4+^ the amplitudes of the 
waves incident from below. The reflection matrix R and the transmittion matrix T relate 
the coefficient sets {4_)}> {4+)} and {•^1~)} under the condition 4+) = 0,n£V: 

&-1/24+) = ZmZP Rnmß-1/2A(-\ n G 7>, 
k1'2^ = Emev Tnmß^A^\       nef. 

To define the reflection R and transmittion T matrices w.r.t. incidence from below the 
grating, one exchanges the symbols with and without tildes. The whole scattering matrix 
consists of four blocks R, T, R, T. 
3. Example 1: Faked unitarity in Rayleigh's point matching method. Recall 
the simplest version of the Rayleigh method for solving the Reflection Problem.=20 
The expansion (1) is supposed to be valid up to the boundary. The infinite series over 
n G £ is truncated at n = ±iV; points (XJ,ZJ) on the boundary are chosen. Given 
coefficients A^~\ the system of linear equations U(XJ, Zj) = 0 is solved w.r.to unknowns 

{4+)}, {40)}- 
Consider a normally incident long wave: k < 1.  Only one diffraction order exists, 

and the scattering matrix reduces to the complex number SQO = 4   /4   • 
Theorem.   Let k < 1 and a = 0 Then the Rayleigh method with symmetric truncation 
always brings to a unitary scattering amplitude \Soo\ = 1. 
Proof. Consider matrices A — (a_,n) and A' = {a'in) defined by 

ajn = exp(ianXj + ißnZj),        -N <j,n< N, 
a'jn = ajn    (n ^ 0),        a'j0 = - exp(zanxj - ißoZj),      -N < j < N. 
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By Kramer's rule, 5«) = det A'/det A i   s „«Fti,- 
Denote by B the (2N + 1) X 2iV matrix obtained from A by means of exclusion at the 

0-th column. The mirror permutation (» ~ -n) of the columns of the matrix B_gives 

us the matrix B. Since a « 0, we have a» = n, ft = /L». Consequently «*-«*- 
(1 < „ < N), and B = 5 (bar stands for complex conjugation).Hence, f^W + V 
minors M„ of order 2N of the matrix B possess the property Mn = (-1) M», i.e. Mn 

are either all real or purely imaginary. Now, 

detA=    y    (-l)-exP(ißoZn)Mn,       detA' = -    £    (-l)nexp(-^„)Mn. 

Since all Mn have the same complex arguments, we obtain j det A\ == | det A'\. Q-^j 
4.    Example 2:   faked unitarity in a wrong realization of the differential 
method. The differential method [1] for the Reflection-Refraction problem consists in 

the Mowing. The field is expanded in quasi-periodic Fourier series 

Using the Helmholz equation and the boundary condition, an infinite system of second 
order ordinary differential equations w.r.t, the functions Un(z) if derived. The system 
is truncated at n = ±N. Then one subsequently assigns the Cauchy data under the 
bottom of the grating corresponding to sole refracted and evanescent waves (but not to 
the waves incident from below) and solves the ODE^ystem to the top of the grating. 
So, for z « 0 we have: Un(z) - Snj exp(i/^) for j € V; Un{z) = 6nj exp(|ft k) for J 6 £. 

For the j-th set of data, we obtain as z > 0: 

[/„(z) = Af+-exp(t^) + M-exp(-^^). 

From=20the matrices M+ and M" we derive the reflection matrix R: it is the submatrix 
of {M-)-lM+ whose column and row indices belong to the set V. Other blocks of the 

scattering matrix are calculated similarly. 
Now, what happened once to a computer program. Because of a typing error, the 

Cauchy data corresponding to the exponents exp(^), j € V, were replaced by the 
data corresponding to the real exponents ex?(ßjz). Matrices M+ and M" appeared to 
be complex conjugate, and the matrix Ä was always unitary, that was considered as 
an excellent result in the case of total internal reflection. However, the unitarity of the 
ß-matrix was unexpectedly observed beyond that case as well. It ultimately made the 

programmer to seek an error. 
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CLASSIFICATION OF WAVE INSTABILITIES PRODUCED 
BY INTERACTION OF GRATING MODES 

Yu. Terent'ev 
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Here we present the criteria and the main results of the wave instability studies in a 
phase grating containing space garmonic set. It is now generally accepted that all instabilities 
may be reduced to those of Bragg's kind. The Bragg's corellations pertain, however, barely to 
special case periodical system. Now we assume that the dielectric permittivity tares the 
grating form 

e(x)=s{\ + hg(x)}; h«\, 0) 

where 
M 

*(*)=£<:,«*(*,*). (2) 

Any common relations between ki are assumed. 
Consider the appropriate differential equation 

U"{x) + a{l + hg{x)}u{x) = 0. (3) 

We expand the acceptable solution U(x) in a power series in h 

£/(*) = |>'t/,(x). (4) 

A similar presentation we apply to a(h): 

a(x) = f>V (5) 
i=0 

by substitution, differential equation takes the form of an infinite set of differential equations. 
The left-hand side of any equation has a simple form: 

LU = U' + a0U. (6) 

Combining (3), (4), (5), we obtain 
\U'0+a0U0=0 

U'; + a0U: ^-gaüUQ-axU0 

r„ -a,U, -a,Un 
(7) 

U\ + a0U2 = -ga0U2 -ga,U0 -axUx -a2U0 

«-1 

U'; + a0Un =-gYjalUn_i_, -%ajUr,-j 
[ M H 

The presence of divergence, i.e. resonance terms in the right-hand side of the w-th order linear 
equation, in this set is accounted for by the parametric wave instability. The order of 
instability will be depending upon the order of the linear equation. 
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For any chosen value a, we solve the set of equation by integrations. ^ 

Removing the secular member at the n-th order we get the pan a. , a. 

*»><*» 

The center of the instability band is settled near 
■*o ~ "■« 

For the band of the instability we obtain 

±a«h"<a<ta?h". (10> 
In the most mere situation condition of instability has the following form: 

So, this instability is formed by the difference of grating modes. Sum of grating modes forms 

the instability a2) 

The width of the band A£ can be written as 
Ak-is = h2CiCJ. W 

For the even order such an instability takes the form 

2*^ = «|*,-*,|;   »=1'2-;   './=1»2-Af C14) 

and                               2kg4-e-n\k,+k\;    -1,2...;    U^-M ^ 

wi*                                                        Ms,„ (16) 

For the simple instabilities at odd order we got the condition: 
2k^s=\2k,-k\;    i,rh2..M ([l) 

and, respectively, (lg) 

WhCre                                                 AJfc = Ä3C-C-. <19> 

We have carried out similar calculations in the band of instability. Suitable unknown function 

(/(x)isdefmedas                      l/M=K(xV, ^ 
where q is expanded in a power series in h 

M^pMi- (21) 

As above we may calculate the solution by «^^ *£^ interaction between 
Tn   summarv    the   existence   on   instabilities   is   aue   to   uncia 

e.ectron^ "e and phase grating .nodes. Periodiei,y of grating, ,e. «W «ton 

^°dtiSy«Ä«udieS with „rode, eaierdations may >ead to a better 

understanding of wave instabilities. 
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DIFFRACTION OF PLANE WAVE ON DIELECTRIC GROOVE 

Katerina Yu. Kramarenko, Nikolay A. Khizhnyak 

Chair of Applied Electrodynamics, Kharkov State University, Svobodysq. 4 
Kharkov 310077, Ukraine 

Consider a diffraction of a plane wave on dielectric groove by the method, which was 
used, for example, in [1,2] for theoretical study of similar problems (Fig. 1). 

Fig. 1 

We divide the whole domain into two sub-domains: I - z<0, z>h i. e. , uniform 
medium; II - CKz<h a dielectric layer with periodically varying dielectric constant. For the 
perpendicular (transverse magnetic, TM- mode) polarization assumed here, the tangential 
components of the electric and magnetic fields below the groove (z<0) are given, respectively, 
by 

(1) 
«=-oo      & 

x k° 

Hy = rfe-i{k*x+k*z) + 24,e-'^^v) > (2) 
»=-00 

where H° is the amplitude of the incident wave and sn = k° sin#+(2m I L),c* = (k0)2 - s*. 
Time dependence expfiat) is assumed and suppressed. 

The reflected field is represented as a sum of Floquet harmonics. The terms An in (1) 
and (2) denote the amplitudes of the diffracted wave Floquet harmonics of the reflected field, 
while 0 is the incidence angle and k° = ©(/^e0)

1/2with e0and ^ being the permittivity and 
permeability of the air, respectively. 

The transmitted field above the grating (z>h) is similarly given by 
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j,   _  y T> AL.e~i(snx+dn(z-h)) (3) 
&X      LiDn ,0 

tfj-iv"'^^' (4) 

where rfM
2=(fc°)2e-5„2. , u . 

In the periodic layer (0<z<h), the field is represented as a sum of the groove modes. 

wherefonctions [/,(x)and U2(x) are the fundamental solutions of the equation 

( y
d (  *   dD* I i ((/c°)2r(.v)--/r,2)r>A =<> with the corresponding boundary conditions 

Values of kffl are assumed to be known for any given combination of e,l{ and l2 These 

quantities are found by solving an eigenvalue problem for the "^ » ^^^^ 
medium, by following, for example, the analysis in [3]. The values of km are the complex roots 

of the dispersion equation: 
1 

cosÄ-„L= cos/?,/, cosp2l2 - - ^+— sin/?,/, sin/^/j ^ 

where p\ = (k*)2 -k*,p\ =(/c0)2^-^. An infinite number of   sn corresponds to each 

value of km  (snL is the phase shift of the waves during the period). 
To determine the scattered amplitudes 4>*„ «* the raodal amplitudes Fm,Cm we 

impose continuity conditions for Ex and H, at z = 0 and z = Ä: 

(8) 

(9) 

(10) 

ff|=-00 

W=-co 

^4t*"y-^ (11) 
e

 m=-oo 

where: S^ft Ux^^^-U2{x) }^isttx)dx 

JfÄortov, Wrame, K/M International Conference on Mathematical Methods in Electromagnetic Theory 



208 MMET'98 Proceedings 

Equations (8)-(ll) can be solved for the unknowns An,Bn,Fm and Cm by truncating the 
infinite sums. The resulting set of linear equations can be manipulated by various standard 
methods. 

Consider the electromagnetic field under the groove. It consists of the incident and the 
reflected fields. The behaviour of the reflected field depends on the harmonic amplitudes and 
the propagating constants. There are a few real values of cn and an infinite number of 
imaginary ones. The imaginary values of cn correspond to the guided waves propagating along 

the x axes with the amplitudes vanishing along z as e~c"z. The waves propagating constants 
sn along x-axes more than the propagating constant of the incident wave. 

If X » L, only c0 

has the real wavenumber kn 

sin $ is real, and only one mode in second sub-domain 

k{  )   ,el = 
sL et2+h 

rf,+/2 ' 
The 

ratio of the reflected wave amplitude to the incident wave amplitude is the following: 

*b ,/2 .^b e 

7=1- 

2 Voo p-cos V + 2/S55 TQT^W 
Kz kzUQ 

SooSi oo°oo 
v do    kV 

coskoh+i r.2   ,  e/2   k0e 

(12) 

sinfc0A 

As for the waves, propagating in dielectric (z > h), for A» L and e<—  only one 

propagating constant has the real value d0 = — v£-sin 0 , and the ratio of the amplitude 
A 

of wave transmitted in dielectric to the incident wave amplitude is 

Z(i00°00   J 
"0 

00^00 SnhSi 
ICQS   ko 

+ - 
yd0  k°j 

cos kQh + i Q2     ,   rr/2   ^0g 

kzd0J 

(13) 

sinAoA 

To  conserve  power,  the  sum  of the  reflection  and  transmission  coefficients 
r\ I2 + lu |2 must ^e ^"^ t0 un't- ^his *s *e condition of truncating the infinite sums (8)- 

(11). 
Using such an approach enables one to extract the situation when the most part of the 

energy of the incident field transforms into the one guided wave propagating along the x-axes. 

1. Theory and calculation of linear accelerators. The collection of articles. Gosatomizdat, 
Moscow, 1962. 

2. Henry L.Bertoni, Li-Hsiang S. Cheo, Theodor Tamir. Frequency-selective reflection and 
transmission by aperiodic dielectric layer, IEEE Transactions on antennas and 
propagation, V.37, N. 1, pp.78-83,1989. 

[3]. NAKhizhnyak, K.Yu.Kramarenko, Propagation of electromagnetic waves in space 
periodic structures with dual periodicity. Ukrainian Journal of Physics, N 10, V.42,1997, 
pp. 1256-1259 
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SCATTERING AND ABSORPTION OF A VIDEOPULSE 
BY A SET OF ALTERNATED LAYERS WITH RESISTIVE FILMS 

Vladimir V. Podlozny 

Chair of Theoretical Radiophysics, Kharkov State University, 310077, Kharkov, Ukraine 

ABSTRACT 
Presented paper deals with a videopulse reflection from a periodic layered structure 

with resistive films. The role of resistive films under the videopulse-structure interaction is 
described. Influence of the number of periodic composite cells is discussed. 

INTRODUCTION 
Layered structures based on the alternated magnitodielectric layers with dissipative 

elements are simple in manufacturing and have wide electromagnetic applications. Periodicity 
of these structures permits to simplify significantly the treatment of their scattering character- 
istics [1]. An effective investigation method based on the matrix polynomial theory [2] was 
presented in [3]. In this work, a monochromatic wave diffraction problem on a set of the al- 
ternated magnitodielectric layers with resistive films has been solved. The solution of this 
problem is presented as direct analytical formulas for reflection and transmission coefficients. 
These formulas stay simple for arbitrary number of the basic elements and structure load. 
Such a solution avoids large volume of calculations. These features permit us to employ this 
method for numerical investigation of a videopulse diffraction problem using the Fast Fourier 
Transform. 

FORMULATION OF A PROBLEM 
The structure consists of a consecutive set of N identical composite cells (periods). The half- 
spaces before and after the structure have arbitrary wave conductivities (YOJT). The compos- 
ite cells contain two dielectric layers of different width (dß (di+d2 =L), permittivity (§) and 
permeability (juj). There is a thin resistive film of conductivity Ya between them (Fig.l). 

s o 

f 
*> 

y f 
o 

e l 

H i 

e 2 

M 2 

e l 
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e 2 
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e i 
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e 2 

H   2 

8   1 

Hi 

jr. 

8   2 

V-   2 

S   T 

H   T 

-, [-. 

di   L 
—i 1 r  
m L        (tn + 1)L 

-i 1 * 
N L  i 

Fig.l Multilayered structure. 

The videopulse 
fit) = (exj(-a, t)-extf-a2 f))/(exp(-ö, ^j-expf-^ 7})) 

(1) 
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is incident from the half-space z<0. 7) is the interval of the pulse front, a, a, are the con- 
stants. By varying ajah we can change the videopulse form in a wide range [4]. The question 
is: what kind of pulse will be reflected and what part of the videopulse energy will be ab- 

sorbed? 

METHOD OF ANALYSIS AND NUMERICAL RESULTS 
We use analytical formula of the reflection coefficient [3] and the direct and inverse 

discrete Fourier transforms to calculate the reflected field in the following principal cases 
To describe the role of resistive films in videopulse reflection, we shall consider a 

set of resistive films on a metal screen (Fig. 1, 2). For this configuration, we assume that the 
common width of the structure is constant: addition to the structure the resistive films leads to 
decrease of the spaces (dj) between them. 

For one film (N=1), the reflected pulse has three mam negative peaks (Mg. I.), ine 
first peak is caused by resistive film. Its response time interval is Ar, * 0.66xlO'10 sec. This 
and any other time intervals can be easily calculated by using the following formulas: 

r. = £Ar,, where Ar, = 2dj^iJ'/c, c is the light velocity, j is the index of the layer. The 

second peak is caused by the metal screen. It has the maximum amplitude. The third peak is 
coming up after the double reflection between the film and the metal screen. After the third 
peak we can observe vanishing peaks due to the film-screen multireflections. _ 

For the five films (N=5) we obtain a smoothed time dependence (Fig. 2.) with a low 
level of amplitude. Increasing number of resistive films results in the reflection, wich is simi- 
lar to the metal screen one. Therefore, we can note that: there exists an optimum number of 
the resistive films, which provide a low level of reflection. Moreover, such a number of resis- 
tive films masks the peak from metal screen. 

m 

1x10 

t, sec 

Fig. 2. Time dependences of diffracted field, Tr0.25*1 V10(sec), a2/ai =1.0001, 
£o.i.2=M0,1.2=1, dj= d2 =(0.01)/N(M), YC=0.5, YT -W 
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To specify the conditions of the maximum absorption, we have investigated the ab- 
sorption dependences from the number of resistive films (N) and their conductivity (Ya). The 

energy of the incident and reflected videopulse can be presented as: W+ir) = Y\<P+' (OMT > 
i=1 

where tt are the elements of discrete time observation interval, Att is the step of discretization. 

Then, the absorbed fraction of energy is: S = 1 - W'/W+. 
Fig. 3 shows the existence of maximum absorption zones for different configurations 

of the structure. Decreasing the conductivity of resistive films leads to a growth in their num- 
ber at the fixed level of absorption. 

These features of the structure open a way to construct the high-efficient absorbers 
and successfully resolve the problems of electromagnetic compatibility and ecology. 

Fig. 3. Absorption in the structure, £o,2=Mo,i,2~1, £i=2, di=d2-0.01 (M), 

Tf=0.5*10-10(sec),YT->Go. 

CONCLUSION 
Periodic structures with resistive films can be used in the design of low-reflecting absorbing 
coatings. A pulse method is efficient in non-destructive testing of such structures. 
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SIMULATION OF CONTROLLABLE SOLID-STATE STRUCTURES 

V. A. Obukhovets, A. O. Kasyanov, S. V. Piven 

Taganrog State University of Radio Engineering, 44 Nekrasovsky St., Taganrog, 347928 Russia 
Phone +7(86344) 61883. E-mail: decan@vao.rnd.su 

Abstract - New class of controllable reflective type antenna arrays is considered, made as rnicrostrip 
integrated circuits with arbitrary-shape microstrip radiators and controlled elements (crystal diodes) 
Electromagnetic characteristics of the array are varied by tuning the diode baa voltages. For a digital 
control possibility, all microstrip radiators are divided into several groups (modules). Each module can 
be at least in two electromagnetic conditions which are defined by the diodes states (open or closed one). 
The array controlling is carried out by a microprocessor. The digital array probable states; number is 
proportional to the number of modules and each module allowable conditions number. Digital diffrac- 
tion reflect-array has a set of microwave radar images whose changing enables one to create so called 
"intellectual covers" capable to adapt for radar-tracking environment. _ 

The report is devoted to theoretical modeling of controllable microstrip arrays. Microstrip ar- 
rays have many applications in radomes, frequency selective surfaces and artificial dielectrics. High 
price of arrays and their complicated experimental research cause a significant interest to development 
of their mathematical models. The most known models describe the array in the radiation mode when its 
element excitation is carried out by feed source currents. At the same time the questions of analysis of 
microstrip diffraction arrays, which serve as a basis of low-cost reflective type antenna arrays with an 
optical feeding system, remain less investigated. Practical requirements of microstrip diffraction array 
applications alongside with phased antenna arrays include the design of antenna reflectors, frequency 
and angular filters, wave converters and antenna radomes, traveling wave systems, etc. The microstrip 
diffraction arrays perspective applications are the multireflector antennas for space communication 
systems in which the microstrip diffraction arrays are used as the frequency-selective surfaces 

Proposed mathematical model is based on the periodical structure concept and integral equation 
system solution. Vector integral equations are formulated after the Lorentz lemma. The application of 
periodicity condition has allowed reducing the solution domain to one Floquet channel. The column ma- 

trix of magnetic current density components at the array aperture JM (<?) ), and electrical currents in 

controllable elements I] 0') have to be determined from the set of integral equations obtained based 

on the boundary conditions [1]: 

AT  0 , JT 

[{K^iplqp^q)) dSq-f2xa^i;V)-[l?"{plqj,*))di= I#°(P)); 
sA ;=1* J=l 

\(K3M(Pi,z/q))-JM(q)) (K9-2xaj$i;V){K™{P„z'qj>*)) #= Ifu®. 
I 
where i = 1 2   , N. z 1 [-h; 0], h is the thickness of the array substrate, a is the shunts radius; SA is 
the aperture surface. The kernel of the integral equation is a square matrix. This row-matrix blocks 

(Kv"(p/q)} describe interaction between electrical and magnetic currents. Right-hand parts of equa- 
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tions are formed by the excitation fields. Several possible ways of the microstrip elements excitation are 
cSed including a plane wave one and feeding by periodical system of coaxial Probes. 

m first equation represents the condition of the field tangenüal components continuity at the 
array «££lto * remaLg equations (i = W,..N) are Poklington's type«»nations on dieN 
controllable element surfaces Those elements are simulated as conducting shunts with impedance loads^ 
S^SS2SSce distribution functions along each shunt are known. Tne moment method 
Ksrr£g7afionnumerical solution. The sub-domain rooftop function set is ^*£»* 

^ÄSÄpi Such loads can execute a role of either phase shrfters, or swi^h- 
n^kmetrSr^e cL be a crystalline semiconductor. In this case the diodes became an «to- 
^S^tuJSS^ TWs electronic structure is of a solid-state constructs. Some ways of 

^T^Z^s^Tl^^ «"*■ - be applied as hf « 
«femJm TtaE arrays are capable to compete with conventional parabolic antennas for DBS (Do- 
SoBrSdlShg M Such a reflective type antenna consists of a flat microstrip diffraction 
:Z « Ä aToffset feed system. Wider opportunities can be provided by using nucrostnp 
Sis with switching diodes. Tne array electromagnetic characteristics are varied by changing the 

Ztal nhase shifters The array controlling is carried out by a microprocessor. This controllab e imped 
Soad I ptato « microLp reflective arrays is investigated hi the paper. Such elements can be 
applied both for beam scanning and for fixed phase delay «pedestal» creating^ 

leides of reflective antennas, flat microstnp lenses are investigated m the paper ine most 
perspelT^f ^ anlennas is a lens wiüi electrically controlled radiation pa= Con^oUable 
CesTan b^onsidered as media with electrically changed refraction coefficient^ so, caUed « 
Sis main disadvantage is the great number of diodes used in die array. A moAfiri1 lens <<^^> 
5 has no this disadvantage because the H-shaped microstrip elements are used in rt. We have calcu 
fü tnis arrattcattiing characteristics applying the above-mentioned mathematical model The other 
SS^^«Sia1i»nmltii^ hennas for space communication systems where.micro- 
SÄT are used as a frequency-selective surfaces [6]. Such structures are promising as 

by means of created mathematical model. 

f f ^Ka^ov, V. A. Obukhovets, Radiotekhnika, 1995, no 12, PP 32-6 (inM«i) 
o A w nikson. D R. Wilton /£££ Tra«*. ^nfö«nas Pr^aga/., vol. AP-25,1980, pp. 593-6U /. 
3  vlSi lo. kasyanov, Proc. Int. Conf. Antennas, Radio Commu, Systems and Means, 
aCARSM'97), Voronezh: VSU, 1997, Vol.1, p. 174-178 
4.C.Chekroun,D.Hemck,MC^^ TO743-746 

f^G^T^FiMoiv, A. P. Sopolev. ft****» MoMa^ Moscow: Radio i Sw. 1974 (in 

Russian). 
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LOW-FREQUENCY ASYMPTOTICS IN THE DIFFRACTION 
OF WAVES BY ECHELETTE 

I. L. Verbitskii 
Kharkov State Pedagogical University, Kharkov, Ukraine 
Tel: 380-(572)-47-14-92, e-mail: verb@reg. kharkov. ua 

The subject of this communication is the H-polarized plane wave diffraction from a 
symmetrical metallic echelette T whose dimensions are small comparing to the wavelength 

(see fig. 1). 

„ty      A 
■+X 

Fig. 1  Domain Q with boundary T. 

Mathematical formulation of the problem is the Helmholtz equation for the Hz 

component of field, denoted as u: 

Au+k2u=0 (1) 

with the Neumann boundary condition 

= 0, (2) 
du 

On v 

condition of quasi-periodicity (Floquet) 

u(x+d,y)=eipdu(x,y), (3) 

condition of radiation or limiting absorbtion at y~»oc, and Meixner conditions near the edge 

points.  The incident wave is u(0) =Aeißx+oty, where ß=ksü*p, a=-ikcos<p, k=—- = —   is the 

wave number, 9 is the angle of incidence. 
To solve the problem, we apply the Quasistatic Green Function Method developed in 

[1]. From this method it follows that the solution of the general diffraction problem on the 
periodical surface can be represented in the form 

u = Ar(x,y)+fiC„Ux,y) + fdBmgm(x>y), (4) 
m=0 

where 
d       00 

f\x, y) = -k2 ]dx'lG(x,y,x\y')e^+ay'dy\ (5) 
00 

Ux,y) = -k2\dx]G{x,y,x\yyß^^dy\ (6) 
0     0 

gm(*,y) = -k2 ]dxJG(x, y,x',yyum(x\y'W, 0) 
0     0 

and 
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G~   L 2\ßn\d n=-a> 

is the quasistatic Green's function, ß^ß+lmt/d, a^Jßf^, ßo-ß, ao-a; <K+*n » 
the function conformally mapping n onto the halfplane n>0, {«.(*,>)>- is any complete 
in D set of functions. The coefficients C and Bm are the Fourier coefficients of u according 
to ie^) and (uJxy)} respectively. They can be found from the fast convergent set of 
linet alglbTaic IÄ Z it has been shown in [2], functions f . and f can be represented 

in the form 
f„(x,y;a„) = eiß"x(e-a"y-e^y)Q{y) + (an-\ßn\)Kn ,   f = Ux,y;-a),        (9) 

where 

Q(yy \0, y<0, 

»   iRt coshßvJ] . <£e*J ^pLLanp,n>0 
sinh ß v 1    P=O PP (10) 

P v p=n r-p 

anp an b»P are known coefficients. It is clear from (9) that if <d/tf «1, one can neglect in the 
first sum of (4), all the terms except C0fo, so we have: 

uzAf+(x,y) + CMx,y) + flBmgm(x,y) • (11) 

m=0 

To simplify the second sum, we must at first choose the functions um. In case in 
question we can take for those coming out from separating of V^^'^^l 
where *.= mTt/y, and p, cp are the polar coordinates with ongm O at (d/2 -h) and a» along 
the side of D. Then for the small |kp| we can neglect all um except u0, and take u0-l as the first 
approximation. So we obtain: 

uzAr(x,y) + C0f0(x,y)-B0k>ftG(x,y,x<,y<WdS • (12) 

Then equations for Co and B0 take the form 

a* 

\d 

(13) 

B0J-)[Af\x,y) + CJ0(x,y)-Br\\GdxWy<P 

where one must take p<h in the second of equations (13). In [2], the following results have 

been obtained: 
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/. = £j£e»™chßtr,    1 j/0(x,OK*V* = ^gl+lf2 , and 

— \G(x,0,x\y)e~ißxdx = eißx , where ^■ = lim(g,-r),iy->Qo. 
rfJ0 2jft/ 

Accordingly to the accepted approximation, we can take in (13) that 
1+ I p'ßX  |2 1   £ 1 

2 </J0 /fcf 

Gs-- ,   and /0 = £^-(l+/j0Imj) . 

It gives after some calculations for the reflection coefficient R=€o/A: 

cos <p - k[(e1<P sin <p) Im % —-] 
R= : 2W (14) 

cos#>-£[(e 1(p sin <p) Im % + — ] 

Conformal mapping of the halfplane T|>0 onto fl can be expressed explicitly with the 
aid of the Schwarz-Christoffel formula, and after some algebra we obtain: 

id 
x = — 

n 
Z±-+ + ln2 + — (15) 

where ¥(0) is digamma function and C=0. 5772... is the Euler constant. Substituting (15) into 
(14) we obtain finally: 

cosp-*{— (ei<psin<p)[y/(©)+C + 2\n2+^- ]--} 
R = 2K d      2    f (16) 

cosq>-k{—(e*m?)M®)+C + 2ln2 + —] + -} 
2n d       2 

The problem of low-frequency diffraction on the general periodic surface has been 
studied in the works [3] and [4] where some expressions for R have been proposed. In the 
limiting cases of normal incidence ((p=0) and grazing incidence (cp= n/2), the values of R 
obtained  from these  expressions  are  in  agreement  with those  obtained  from  (16): 

R = —— s e,tt and R=-l. However, for the other values of <p they do not coincide with 
l-ikh/2 

the rigorous result (16), so they turn out to be incorrect in general case. 
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NEW DESCRIPTION 
OF SPATIAL HARMONICS OF SURFACE WAVES 

Vladimir Onufrienko 

Zaporizhzhya State Technical University 
Zhukovsky Str., 64, Zaporizhzhya, 330600, SP-39, Ukraine 

Abstract In the paper, one idea concerning potentialities of fractional calculus^description of 
iiXmon^cs of surface waves by means of the a-features, is considered. The application 
oft boundary conditions for detennining the a-features of a field is discussed. Nurnencd 
solution of one particular scattering problem for an electromagnetic wave incident on an 
impedance and edged surface is outlined. 

Intr0dtoP
0edance boundary conditions and their classical variant: the Shchukin-Leontovich 

condition afe widely allied to the description of processes of interaction of an 
etom^tic field withsurfaces. These conditions are basedI on ■ ™"££J^ 

assumptions which simplify the statement and solution of a problem [1]. However these 
«ion 'impose restrictions on some geometrical characteristics of contours and surface^ 

TonsS a surface of the unit of media as fractal, we propose to take mto accoun 
its impedance properties at the expense of representations about such its structure, when all 

V^tt£^^^t^^ extent the use of the recently developed 
diiftrii^S -> to example, [2]) allows to take into account a fractal st^ 
of both ideal and real conductors. It can be easily done by considenng an incidence of a plane 
wave on the interface between two media. 

,^ÄÄ scattering problem, when the required field can be 
considered as independent on one of the Cartesians coordinates, let us consider, instead of a 

scalar potential function, its a-features as a differintegral (D^u^y) satisfying the 

Helmholtz equation on the plane 

V%{D£U«)X, Y) + ^{D^U^X, y)=0,    0 < a < 1,    k = 2n/ X 

(1) 
and boundary conditions on the surface T 

f,ai(D£iuay = g(M),   /Wer, 

which characterize reflection and transmission of the wave at the surface completely. 
It is obvious that with fll= 1, ai = 0, a2 =jS, a2 = 1 we have a statement of a problem 

about a field of magnetic polarization (S= Z/kW0, Z is the surface impedance, Wo - 120 *Sl 
is the free-space impedance). With a1= /, a, = 1, a2 =jrj, a2 = 0, we have a problem about a 
field of electrical polarization (t] = kZ/ W0). 
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The problem as (1), (2) is stated mathematically correctly. It is possible to prove 
rigorously its solution existence and uniqueness (following, for example, [3]). 

The introduction of the differintegrals a-features satisfying the boundary conditions 
(2), enables us to work with components of the field as with smooth regular functions. It is 
essential while considering fractal boundaries that have breaks and edges. Thus the differ- 
integration not only keeps, but also essentially improves the properties of the functions. 

Examples of solution of particular scattering problems 
We shall further consider examples of the solution of the problems about the 

scattering of an electromagnetic wave from an impedance flat surface and with an edged 
surface, in new statement. 

1). Consider a particular scattering problem about the propagation of a slow electric 
wave above a flat surface in the direction of the axis Oz. 

The solution of equation (1) concerning the a-features of longitudinal component of 

electric field, E^, is obtained as follows: 

Fa / E cz ' czmax 
/ae 

-kx fö- 

kx f> Ph 

a 

(3) 

where 
ß -r n ^ = — - .. 11 + —_-   is the deceleration factor of the phase velocity, 

k2 = g2 + ß2,     g - h,    la  is the scale multiplier. 

With a = 0, a classical result is obtained from (3) (compare, for example, with [4]). 
In Fig.l, the longitudinal z-component of theis-wave, above the impedance plane, is shown as 
a function of the normalized distance kx (curve fl corresponds to parameter a = 0.1; curve £2 
to a = 0.9; curve gl to a = 0; nph = 2). 
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2). Consider now an impedance surface, which is formed by the metallic plane at x = 0 
with the grooves (a gratings with period L). Suppose that the a-features of the field 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 

component Ez transform to zero on the surface of metal. 
From (1) we obtain that 

00 oo 

£z / ^zmax -   L.E-Z p=   L 

221 

L     H  

p=-oo p=^c    [fo^njfo-lj 

(4) 

wup„ w   =
an($Pd/2)    is the amplitude factor of harmonic (structure form- 

wnere mp        ^^/2 

factor) 
The distribution of the electrical component of the field, E% / Ez max, along the axis 

Oz is shown in Fig.2 (curves f(z) and g(z) here correspond to the 0- and  0.33-features of 
field-  k=0 2-  ZHac/4; d=O.S L). If a = 0 (the structure of the ridged surface of a rracta 
structure is not taken into account), a complete coincidence of our results of numerical 
solution with the known data is observed (see, e.g. [4]). 

°nC TThis paper we have briefly outlined some of the applications of differintegrals in 
electromagnetics. Since fractional differintegrals are in fact an intermediate case between the 
conventional integer-order differentiation/integration, one may speculate that the use ot these 
fractional operators may result in obtaining interesting novel solutions in electromagnetics. 

The application of fractional calculus enables one to estimate interaction ot 
electromagnetic waves with fractals surfaces with the help of the classical Maxwell equations 
without introduction in them any additional specific addendum, that inevitably follows the 
attempts of construction of adequate physical model. c».«i„,w« 

As well as in the case of approximate boundary conditions of the Shchukm- 
Leontovich type, the boundary conditions (2) allow to take into account the presence of a 
fractal surface and neglect the field inside a body (the same properties take place for the 
boundary conditions on an perfectly conducting surface). Some other cases, such as 
fractionalization of the internal and external boundary problems, are currently under study by 

the author. 

~D fkfAt'An CCS 
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Analytical Expression Transformation for the Engineering Calculation of 
Parametric Absorption Effect 

Svetlana A. Gayvoronskaja, Victor I. Sergeev 
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Recently the investigations of the effect of electromagnetic wave energy 
parametric absorption by the material objects, its consequences and practical 
applications have been increasing steadily [1,2]. 

In the previous works, the analytical expressions which took into account 
the fact that the irradiated object was dielectric, were proposed. In the 
engineering design, in the case of the practical (radar) implementation of the 
known expressions characterizing the effect of parametric absorption, it was 
revealed a necessity to modify the mentioned expressions for a material object 
constructed of metals (lossy conductors) but not dielectrics. 

In this paper we present the transformed analytical expressions for the 
engineering calculation of the parametric absorption effect under interaction of 
an electromagnetic wave and an object made of conducting materials. 

The original analytical expressions for determining the irradiation 
parameters (the irradiation power and the maximum value of absorbed energy, 
respectively) have the following form [1]: 

^0 = l + L\ 
i 

■ + ^e/u 
y^iMi 

s/u {.Flxexp 
2nL0{i~l) \\ 

A.. 
:{jtg2S + \-l 

Mi 

30-1)/' 

(1) 

i&A lexP 
EM=SJl± (2) 

where P0 is the power irradiating a material object that is sufficient for the 
display of the parametric energy absorption effect; L'0 is the dimension-less 
value, numerically equal to L0 that is the length of the closed curve of the 
refracted wave propagating in object; e, \x are the dielectric and magnetic 
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refracted wave propagating in object; 8, u are the dielectric and magnetic 
constants of the propagation layer (external layer); eh ^ are the dielectric and 
magnetic constants of the reflecting layers (internal layers); i is the quantity of 
the microwave pulses in the irradiation packet; xv is the single pulse duration; 
Fl is the multifunctional parameter determining the interrelation of irradiating 
parameters and resonant and physical properties of the object; X^ is the 
wavelength of the refracted wave; QA is the quality factor; tan 5 is the loss 
tangent; Sk is a linear coefficient characterizing the pulse form; PH is the 
normalization factor; Ej is the maximum value of the absorbed energy; Sg is the 
coefficient having the energy dimension and corresponding to the manner of the 
observation object reaction on the high-power outer influence. 

The expressions for determining the irradiation power and the maximum 
value of energy required to compensate for the arisen shortage contain the 
parameters characterizing the electromagnetic wave circulation and attenuation 
in the material object. A requirement to modify the expression for the 
engineering calculation is connected with the fact that when irradiating the 
object constructed of the conducting materials one can not use the expressions 
having the parameters characterizing the dielectric medium. For instance, the 
loss tangent for the dielectrics is less than 1, while the conductor loss tangent is 
much greater than 1. As a result, the expressions for the attenuation ratio of 
dielectrics and lossy conductors are different. 

Attenuation ratio for dielectrics is commonly defined as follows [3]: 

k^\\{-^^7^. (3) 

Whereas the expression for a lossy conductor attenuation ratio differs 
from the written above, namely [3]: 

*»f^Jf. (4) 
where e', JLI'- are the real parts of the parameters e, u. Instead of s' H \I\ it is 
necessary to take \s\ and \ju\, because in the considered case \d * s\ |//| * ju.. In 

our work we had accepted the notations: \e\ = e, where s = sjs0 and \n\ = /u, 

where ju = MJMo- 
In the given expressions such a value as quality factor (Q-factor), which 

is equal to the inverse value of the loss factor, is present. For good dielectrics 
Q-factor reaches large values, while for lossy conductors it is small. 
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All the listed above reasons point out to a necessity of the 
transformation, which is, for instance, in the substitution of the dielectric 
attenuation ratio for the conductor attenuation ratio. As a result, the expressions 
for the calculation of the irradiation parameters (irradiation power and absorbed 
energy maximum value) of the material object made of lossy metals (conducting 
materials) were obtained as follows: 

1 + L'0 Jr* ■ + isju 

\MeA 
v^3- Fl x exp 

2^(i-l) ,tS 

'SjU 

Ä 
rap 

Hi 

p{i-\)li 

(5) 

EM=SJl±- 

iQ\ ^xp 

*V 

2xL0(i-\)^\tgS 

Anp V 2 PoTy 

\ + L\ + ^£ju 

V^i 
V SfU 

(6) 

The engineering calculation performed for a material object made of a 
lossy conductor (Aluminium) has confirmed the necessity and validity of the 
introduced modifications. 

Summarizing, in our paper we have shown that the transformation of the 
analytical expressions for the engineering calculation of the parametric 
absorption effect widens the range of applicability of the presented expressions 
and improves the agreement of modeling and experimental data. 
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Numerical calculation of the electron distribution function 
with the goal of simulating a current drive 
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The results of numerical emulation of the current drive via solving the Fokker- 
Planck equation are presented. The problem of numerical rnstaUhUes rs dvcussed. 

1   Introduction. The numerical simulation of any kinetic problem associated with auxil- 
•        ,     t!l   current drive requires the solution of a Fokker-Planck type equation. 

rfcInserX formulation, that is not so trivial especially for the Coulomb operator. There is 
I^number of^^Sck designed especially for avoiding the numerical instabilities (as example of the a number of tricks designea    p        y ^ ^ ^ ^ ^^ & 

reircrrnoThe Ä^ 
Z r^et on with launched into plasma RF fields and collisional relaxation of the induced 

££=äSäSSS= 
=5 = cr=^m^^ 
iT^^rlX^ ™lly are one from the main sources of numerical inaccuracy 

aPPZoTtepresents the results of numerical simulations of some problem associated with pro- 
ducml recurrent drive by lower hybrid heating (LHCD). f^^J^^Z 
solving bv the finite difference method with the help of the developed FPTM code [21. In the 
otlgCshol the results of successful application of the developed code to the one specific 

wlvlh appearance of a plateau on the distribution function in the resonance region 
"VtZtnZlZ^lern. Apart from omitted small number of relativist particles 
J-a-SUay electrons and a-particles, for the typical pWa parame ers m^maks 
the basic assumption about time-scales is that rB « rc ~ rql « Tneo,Ta holds, where rB 

;l/;   s  heTeriod of bounce oscillations, r. and r, are the; character times of collisions an 
ouiilinear heating, respectively, evaluated in order of magnitude from (df/dt)coU,qi -//£*, 
quasümear heat mg       P v, ^ ^ ^^ mä anomalous t rt, respectively This 

ZZI mel hit having so far separated the rates of redistribution of any perturbation m 
rvt city :Llri being interested only by kinetic effects of RF heating we can neglect 
[he ™of"ny space diffusion and solve the kinetic equation for the given magnetic surface 
wth'given Plasnia parameters. Bounce averaged Fokker-Planck equation can be written then 

M [M ^o     te{EK*)B = E (c°/ß [fßJao])   + (L** M)B • (1) 
dt       ma     " dv]{ ß=ie \ 

Here and below index "0" is related to the point of minimum of the steady magnetic field 

"value B for the given magnetic surface situated at ^^f^J^X^ 
collision operator Ca^ is defined for maxwellian distribution functions of ground particles 
t= fßMTanVfor the most kind of problems this approach has a high accuracy.   Only 
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simulations of resistivity or another similar problems related to the electron current require to 
use a more complete model. The operator LRF describes a quasilinear diffusion of electrons 
in velocity space during lower hybrid heating and has usual for it form (see, for example, [5]). 
Below, the set of spherical coordinates is used, which turns the Coulomb operator to the diagonal 
form. 

In fact, equation (1) is a system of equations for passing, co-passing and trapped particles, 
coupled by boundary conditions along those lines in velocity space which separate these popula- 
tions. These equations can be also coupled by Coulomb operator Ca/a (depending upon the type 
of the model used). In the set of dimensionless variables u = v/vth and 60 (pitch angle computed 
in the minimum of B) this system, labeled by index TO, can be expressed in dimensionless and 
conservative form as 

A^T = AlVO + -^-^-(sinöoS^), (2) dt       v? du u2 sm 9Q O6Q ° 

where A == VTB |cos0o| / §dsBmin/B(s), and S™$0 are the fluxes in velocity space in V and 
"0o" directions, respectively: 

am       nm @J0     ,   r>"i   "Jo „m pn cm _ jyn    °70     ,   i-jm   "h     ,   nm m /o\ 
Su = DUU-Q^ + Du8o -QQ^ + ^io.       be0 ~ ve090 -QQ^ + Veou du + fe0 h ■     W 

To descretize the equations the accurate and absolutely stable difference scheme of Karetkina 
(see [6]) is used.  Formally this procedure is executed by integration of eqn.   (2) with weight 
v? sin6»o over the mesh unit cell Uj_1/2 < u < ui+1/2,    0,-_i/2 < &0 < %+i/2- In tne approach of 
Karetkina the flux term (3) is rewritten as [2] (for brevity here and below only "u" component 
of flux is shown) 

cm   _ cm        / a cm \ 
am _ Pm (   m cm   ,   am cm  \   ,   j^m Ji+1 {i_   ,    [ jym      JO    \ (/] 
6u,t+l/2 - *n,t+l/2 Kai Ji   + Pi Ji+l) + Uuu.i+l/2       Au        + \^vßo QQQ J        ^ ' \V 

where the weight coefficients ctj and ßi are 

„,m _    1    (i       1 l+m       \ am _ _JL_ Urn    _i\ ..m _  A,,    u,i+l/2 

n 
+1/2 till/2 = exP   I    ^rduvexp A« ( F?   [    Fl+^ 

*    V-^iiUpi uu,t+l/2 

(5) 

In comparison with the most commonly used scheme of discretization of Chang and Cooper [1] 
the approach (4)-(5) has much more generality and does not request any "physical" assumptions 
to define the weight coefficients a™ and /3f\ 

A conservative, finite-difference, two-step operator splitting algorithm [3,6] is used for the 
time advancement (between the 2th and the (I + l)th time steps) of f$ = f^(ui,6o,j,ti), 

I f-m.,1+1/2     jm,l \ ..,,„ , , 
\    / Ji,.i ~h,j    I _ \m,l\fm,l+1/2]   i   Am>'rfm''l AJ      '     At/2 _ Auü i/o J + A«0o WO    J' 

A 

fm,l+l/2_,m,r 

\ (6) fm,Hl_fm,l+l/2 \ v   ' 
J',3 

■J I At/2 
1        /,m,lr fm,l+l/2-,   .   i,m,l r fm,l+l] 

' I - Ae0«wo        J+Ae0eoUo      i' 

At being the time step. The operators Am incorporates the collisions, the quasilinear heating 
and the Ohmic terms. One can see that this scheme is implicit one only for diagonal operators, 
while other ones in equation are written as explicit part. To suppress inaccuracy produced by 
the explicit part of the differential operator the time step At has to be kept as enough small. 

3.   Applications.   The triangular spectra model [5] is one of the most commonly used 
for the description of LHCD problem.   We apply this model too, studying current drive for 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



227 
MMET'98 Proceedings 

the wide set of plasma parameters. A tokamak configuration with circular magnetic surfaces 
was used and all calculations were done for the given inverted aspect ratio e = 0.8 As mostly 
sensitive for quasilinear heating, the case of low density plasma was studied, with the following 
parameters of plasma: ne = ni = lO^W3, Ze„ = 1,T. = T< = 2keV, which are typical or the 
middle size tokamaks. To cover as much as possible number of cases suitable for any analytical 
estimations the launched power was varied in very wide area from small 0.05W/cm3 up to almost 
irreal lOW/cm*. Comparison of the forms of the distribution functions calculated with taking 
into account the existence of trapped particles (Fig.la) and without it (Fig.lb) shows that the 
visible part of the moment got from external wave packet is lost due to collisions with trapped 
particles, which are excluded from those not contributing to the current. This is also illustrated 
at the Fig.2, where the dependence of efficiency versus launched power is shown. 

Note by'the way that, in the formal consequence with appearance of the plateau, the order 
of the solved equation degrades locally in the region of the plateau (at least the leading term 
becomes small) This fact often can be the reason of some numerical instabilities. The approach 
of the conservative discretization holding is a good guarantee from any numerical instabilities 

of this kind. 
This work was partly supported by the Ukrainian Ministry of Science and Technologies. 
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Fig.lb 
Fig.la. Contour lines of the electron distribution 
function with taken into account an existence of 
trapped electrons (bounce averaged model). 
Fig.lb. Contour lines for the local model, i.e. 
obtained in assumption of absence any trapped 
electrons. 
Fig.2. Dependence of the efficiency of current 
drive producing on launched power. 
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Introduction. 
The present report is devoted to developing the electrodynamic theory of superconducting structures 
and its application to the technique of the microwave band. The actuality of the given problem lies in 
the fact that nowadays there is no any acceptable mathematical methods, by means of which it would be 
possible to investigate in sufficient details and give designers of the radioelectronic equipment practical 
recommendations on solving internal and external boundary value problems (stationary and 
nonstationary), associated with excitation, scattering and propagation of electromagnetic waves on the 
superconducting (SC) objects of simple and complex shape. Therefore the developing of the 
electrodynamic foundations of SC structures for external and internal problems with the methods of the 
spectral theory is important practical task in antenna and waveguide technique. The report consists of 

tree parts. 
In the first part solution of internal problems of the electrodynamics with boundary conditions of the 
third kind in contexts of methods of the spectral theory is considered. It's known that when studying 
such problems an important role plays the superconductor impedance [1]. Therefore the attention 
should be paid to selection and grounding the physical models for the surface impedance of the 
superconductors (stationary and nonstationary models). A number of particular boundary value 
problems has been solved: excitation and propagation of the electromagnetic waves (EW) in 
superconducting waveguides, cavity and open resonators of the ordinary and complex shape. For 
certain devices the numerical experiments have been carried out. The physical analysis of these results 
enable us to make a conclusion about the efficiency of the proposed methods. New approximate 
boundary' conditions for superconducting structures with time-periodical electrodynamical 
characteristics will be developed. 
In the second part the algorithms for external boundary value problems for the first time will be 
obtained and justified. These model problems can be used in practice [2-22], for example, for 
calculating the basic electrodynamic characteristics of superconducting superdirectional antennas, 
superconducting spiral antennas, superconducting planar printed antennas for the satellite 
communications and television, superconducting RSA used for remote sounding of underlying surfaces 
of different nature, as well as integrated circuits and microelectronic devices based on superconductors. 
In the third part solutions of nonstationary boundary value problems on waveguide and antenna 
technique will be obtained. An analysis of the results obtained will be made and practical 
recommendations for constructing particular superconducting microwave devices will be given [22]. 

Modeling of Physical Processes in Various Superconducting Structures. 
We consider the cycle of problems on excitation, diffraction and scattering of the electromagnetic 
waves by superconducting structures. Such structures are the plane, the strip, the system of strips, the 
circular and elliptic cylinders, the sphere, the thin shell and a number of other bodies. Such wide range 
of problems was considered in works of the author [1,9-22]. Investigations associated with the 
scattering and propagation of the electromagnetic waves in the superconducting structures are caused 
first of the progress toward the microelectronics and advances in the different solid-state 
superconducting devices. The practical success that was achieved in low-temperature and high- 
temperature superconductivity [1] within the last years made it possible to obtain quantitatively new 
results on determination of the basic electrodynamic characteristics of the different microwave devices 
and structural elements. The mathematical modeling of physical processes performed by author and his 
colleagues when solving the wide class of boundary value problems of the third kind (internal and 
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external) is based on the superconductor surface impedance mentioned in [1]. New mathematical 
methods for solving the boundary value problems of this kind are developed and justified are based on 
the theory of spectral operators. These enabled us to solve a number of the important application 
problems. Following the practical purpose of these or those radiotechnical systems and devices we 
could emphasize several groups of such problems. First of all are the problems associated with 
scattering and propagation of electromagnetic waves along the boundary between the free space and 
superconductor. To the same class of explored structures can be attributed the scattering of the 
electromagnetic waves on one, two and system of superconducting tapes. Here also should be regarded 
problems on the propagation of electromagnetic waves in waveguides with "sandwich" type walls, 
determination of the basic electrodynamical characteristics of the microstrip superconducting resonators 
and cavity resonators of complex shape. The second group of problems deals with the excitation and 
scattering of electromagnetic waves on the superconducting disk and two disks, cylinder, sphere, rough 
wedge and so on. Hereto problems group adjoin the many problems of the antenna and waveguide 
technique, microwave microelectronics. Finally, the third group of problems, when soling them it is 
expedient to use the superconductor surface impedance, concerns developing of the theory of open 
superconducting resonators. To basic scientific results can be attributed: solution of the diffraction 
boundary value problem on two thin superconducting tapes which represent the open resonator and 
results of the study of open superconducting resonators, formed by rectangular and circular planar, 
cylindrical and spherical mirrors. Many of the mentioned problems should be solved in nonstationary 
approximation. 

Theory and Its Applications. 
Developed and grounded mathematical methods for solving of stated in [1-22] scientific and technical 
problems are perspective and can find wide applications in various fields of the physics and technique 
of the microwave band. Mention some of them. The creation of the advanced radar and radiomeasuring 
systems on the element base of the superconductors will permit one to solve the next major problems: 
in space communication, location and ship navigation, search and detection of heat-radiating objects, 
remote measurement of temperatures, spectral analysis of temperatures, spectral analysis of the 
planetary atmosphere, medicine, microelectronics, fundamental metrology. So in [20] for the first time 
the research in the refinement of the fundamental physical constant (FPC) the velocity of light on the 
basis of superconducting circular cavity resonators have been carried out. The performed numerical 
experiments on refinement and determination of the FPC the velocity of light by two different 
mathematical methods (the perturbation technique and the method of the generalized natural 
oscillations) on the basis of cavity resonators are reference to building the theory of open 
superconducting resonators. In such a way a principle possibility, having created this theory, to obtain 
the algorithm and the programs software for its refinement on the basis of superconducting open 
resonators appears for the first time. Besides on the basis of these relationships for particular physical 
models of the open superconducting resonators (for example, confocal) the real possibility appears to 
perform experimental studies concerning the determination of the velocity of light. Note that the theory 
of open superconducting resonators represents the new scientific research area in modern 
electrodynamics [2,4,5,11,12]. How it follows from the analysis of the results obtained, it is clear that 
they will find wide application in electronics, instrumentation and antenna technique of the microwave 

band. 
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Evolution of a Magnetic Resonance Line Under Microwave Field 
of High Intensity 

A. M. Zabolotskiy*>5 S. I. Tarapov "> 

*>1 Vavilov St., Maysky, Belgorod, RUSSIA, Belgorod State Agricultural Academy. 
"> 12 Ak. Proskura St., Kharkov, UKRAINE, Institute ofRadiophysics and Electronics of 

NAS of Ukraine. 

1. The classical description of the Electron Spin Resonance (ESR) phenomenon is 
based on the known Bloch equation [1] for a motion of a vector magnetization Jin a variable 

magnetic field H(t): 

dJ/dt = y[J,H] + R 0) 
here vis the gyromagnetic ratio, R = {JM J/w (J, - Wn} is the dissipative term, 

whose components contain the times of the longitudinal (r;) and cross (v2) relaxation. The 
dependence H(t) usually is chosen in a form 

Hx = Ho sin (at),    Hy = H0 sin (cot + <p), Hz = const. (2) 

At <^±n/2 it is possible to determine the periodic solution of (1) in an analytical form, 
which corresponds to the stationary mode of oscillation of the vector J(t). Here the 
dependence of the amplitude ^ of magnetization in XOY plane on the detuning value (S) of 
a microwave field frequency is given by the expression: 

qJl + 82 

J*(9 = W+ly2 =^tf7yJ° 
(3) 

where 
Ö=(ß>-)Hz)T2, q = ^or2, Q = )ffo^2 

see 

The function^ (8, determines the shape and the structure of the ESR lme. It is easy to 
_ that depending on the value of parameter ß it has either one (at Q<1), or two maxima (at 
0>1) Thus, for large enough intensity of the microwave field, the splitting of the ESR line to 
two components is observed, when the intensity of the variable field H0 exceeds the critical 
value, Hcn determined from the condition Q - 1: 

H„=\IY4W* (4) 

Using (3), it is easy to see also that at the resonant frequency a>=)Hz the magnetization 
JL decreases with growing of intensity of the microwave field, if H0>Hcr. But it is difficult to 
explain physical nature of this phenomenon within the framework of the classical model. 
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2. In order to study the magnetic relaxation mechanism of ESR phenomenon observed 
in the high-intensity microwave field, the authors developed a statistical method of the 
process simulation. Here the paramagnetic medium is represented by a system of elementary 
magnetic moments M{ (i=l, 2,... n), which interact with phonons of a crystal lattice in the 
random moments of time fv*). In the time intervals % <t< *{,*+/ the motion of the moments 
Mi is determined by the equation 

dMt/dt = r[MhH\ (5) 

The description of interaction of magnetic moments with phonons is based on the 
following assumptions: 

a) a sequence of values of energy Et =-MiH at the moments of time vfe after interaction 
with phonon will form the homogeneous Markov process [2], which has the Boltzman type 
stationary distribution; 

b) the intervals of time A v* = V/,*+; - vfr have an exponential kind of distribution with 
parameter X=1/T, where r is the average interval of time between interactions (magnetic 
relaxation time). 

Thus, in the presented model, magnetic moments M{ are the randomly oriented vectors 
having regular trajectories in space {Mx; My; MJ, which are broken by the random 
perturbations at the moment of time v& according with the equation (5). 

A computer program realizing numerical algorithm of solution of (5) and simulating 
the interaction of magnetic moments with phonons using the Monte-Carlo method [3] in 
accordance with the conditions a) and b) has been developed. For simplicity the absolute 
values of the magnetic moments were assumed identical. 

J^-iOVOe 

1,0 

■ 

1 

/2 
0,5 

0 

- 

3 

 1 1 L ■  ■          * i     i  . 
0,85       0,90      0,95       1,00       1,05       1,10       1,15       1,20 

Hz,0e 

Fig.l.   Formation   of  a   resonance   line   versus   the   amplitude   of  the   microwave   field 

3. Numerical experiments performed on the basis of statistical method demonstrate 
the effect of splitting of magnetic resonance line to two components, as well as the solution of 
phenomenological equation (1). In Fig.l the dependencies of the magnetization J^ on the 
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static magnetic field HZi for different values of H0
0)>Hcr are presented. One can see the 

reduction of magnetization with growing the intensity H0 of the microwave field under the 
condition of resonance c^yK*. The analysis of dynamics of this process demonstrates that 
this phenomenon is caused by the fact that in the vicinity of the resonant frequency, at 
H0>Hcr, the system of magnetic moments splits on two subsystems with opposite orientations 
of vectors Mh This phenomenon leads to the reduction of the medium magnetization m the 

XOY plane. 

1,2 
4y,-104,Oe 

Fig.2. Dependence of the magnetization value Jv on the intensity Ht at the resonant frequency 

a>=)flz. 

The ESR phenomenon was also simulated under the conditions of amplitude 
modulation of microwave field. Here the variation of the value of H0 in time is linear. As 
calculations show, for a high intensity #0 and incomplete magnetic relaxation the double loop 
of hysteresis caused by the effect of the resonant line splitting is formed on the diagram J^ — 
Ho (Fig.2). As far as the width of the hysteresis loop is one-to-one connected with the 
relaxation time, this phenomenon can be used as a basis for the development of an 
independent method of definition of magnetic relaxation time. 

Thus the statistical method, whose opportunities are discussed here, appears to be 
rather efficient method of simulation of dynamic processes in magnetics. The analysis of the 
calculations of magnetoresonance absorption evolution demonstrates that by taking into 
account the crystal fields and exchange interaction it will be possible to apply this method for 
the research of more complicated magnetic structures such as ferromagnetics, 

asperomagnetics, spin-glasses, etc. 
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Abstract - The methods of calculation of electric field in granular materials are 
analyzed: classical, conformal mappings and breakdown into sections. A conclusion 
about necessity of solution of the Laplace equation for the exact description of a field in 
granular material is done. 

The measurement of humidity is important in many industrial and agricultural 
applications. Wide class the media, whose humidity is necessary to monitor, are granular 
materials (GM). They are: seeds of grain cultures (wheat, rye, etc.), crushed coal and ores of 
minerals, various powders: from mould mixtures in foundry shops up to raw material for 
obtaining electrotechnical ceramics. 

For an operational and non-destructive control of GM humidity, a high-frequency 
method is applied, which provides definition of humidity of a material by the analysis of its 
parameters in alternating electric field with frequency 5 kHz...50 MHz. In most cases empirical 
dependences specific only to one type of GM are used. 

For obtaining the generalized characteristics of an electric field in GM used in the 
process of design and graduation of moisturemeters, it is necessary to consider the character of 
electric field in GM. 

In [1] it is simply assumed that all the particles of GM have identical and definite form 
and are packed in a cubic lattice. 

For a single spherical particle, an exact solution of the problem of calculation of a can be 
obtained with the aid of the Laplace equation [2, p. 250]: 

V2<p = 0. 

Thus the field inside a particle is represented as uniform, that is true only in the case of 
absence of active conductivity. In calculation of the field for a group of particles of GM, it is 
necessary to take into consideration the fact that each particle GM is surrounded by other 
particles, which distort the field. That is to accept the following boundary conditions: the 
particle is limited by two tangents equipotential planes, which are perpendicular to force lines 
of the uniform (before depositing a particle) electrical field. Such a solution has not been 
obtained yet. 

However a portrait of the field can be obtained, under some assumptions, without a 
solution of the Laplace equation. 

According to [1] a particle and the medium enclosing it are divided into two zones: the 
first is the conductivity zone and the second is the contact one (Fig. 1). Thus the boundary 
between the zones is assumed as an equipotential plane and in each zone the field is calculated 
separately. 

We shall assume that the specific resistance of the particle material pp is significantly 

smaller then of the medium pm (the space between particles is filled by air), that is, with 
Pp « Pm> considered in [3]. As a dump particle has not only reactive (capacity), but also 

active part of conductivity, a picture of a current field enables us to consider the force lines in 
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the zone of contact of a particle as the straight lines [4] outgoing from the point of contact; in 
the zone of conductivity the force lines are the arcs of ellipses [5, p. 10]. 

Fig. 1. The scheme of decomposition of a particle into zones 

Several ways of calculation of the field in the zone of conductivity for the shaped as 

ellipsoid of rotation, with pp « pm, are possible. 
In [61 calculation is carried out by the Roters method with the mentioned assumptions 

on the picture of the field (Fig. 2a). In case of the picture of the field after [6], the boundary 
between zones should have, approximately, the shape of a part of a sphere. 

TT^WN    7 / \     -° J''ß^ 
'   \      1 I        [ 

-trr 
a) b) 

Fig. 2. The field portraits in the zone of conductivity after [6] (a), and [7] (b) 

With a picture of the field after [7], see Fig. 2b, the calculation of the field is talyti» 
method of conformal mappings, thus the boundary between zones is a sort of a hyperboloid o 
rotation. Essential difference, except for the boundary of zones, is that in the second vanan 
the force lines converge not at a point of contact, but on the line KK   that does not 

correspond to a real picture. , , 
The relative difference of values of active resistances at the computation after [6] and 

after \1\ with a relation of semiaxes of an ellipsoid of rotation a/b from 1.5 up to 10.0 
decreases from 33 % up to 0.4 % with insignificant change of absolute difference. It happens 

for two reasons: 
a) the forms of force lines with an increase of a/b draw together; 
b) the influence of the different forms of boundaries between zones «significantly 

depends on a/b, and is reduced with the growth of a/b. 
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Thus, for the final solution of a problem about a choice of the picture of the field in the 
zones of conductivity and contact, and, correspondingly, the form of the boundary between 
zones, the solution of the Laplace equation for a group of particles of GM is necessary. 
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Nikolay G.Kokody 
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Mechanical action of electromagnetic radiation on material objects (pressure 
or rotation) is exhibited in many physical phenomena. It plays an important role in the 
processes inside the stars. It influences on the orbits of small particles which move in 
the space. In the physics of condensed media the electromagnetic (ponderomotive) 
forces are exhibited in the electrostriction effect. The radiation pressure plays great 
role in the interaction of laser pulses with plasma in the laser-heating nuclear fusion 
machine. It is used for the   measurement of the power of microwave and laser 

radiation. . 
Ponderomotive action of electromagnetic field on the isolated objects in tree 

space has been investigated well, both theoretically and experimentally. It is not so, 
however, when there are two or more objects. P. N. Lebedev made such experiments. 
He had not finished them, however. There are modern publications on the research of 
the radiation pressure on a system, which contains several dipoles in a waveguide. 
They investigate the case when A/a » 1 (A is the wavelength, a is the size of the 

dipole), however. 
Ponderomotive forces in the system for two circular cylinders, which are placed 

in the field of a plane electromagnetic wave are found in the present work. It is a 
simple case but its results can be used for a system of other objects. 

It is necessary to find the electromagnetic field in the neighbourhood of each 
cylinder for determining the ponderomotive forces. This problem was solved for two 
identical cylinders with the radius a and the complex-valued refraction index m, placed 
at the distance d from each other. The wave is incident normally to the plane, in which 

the cylinders are located. The ratio A/a can be arbitrary. 
The addition theorem for cylindrical functions was used for solving of the 

problem. The formulas representing the sum of fields of the incident wave and the 
waves which are scattered by cylinders are found: 

EZ=EC 

«=-00 

/.(*r)-V^M + ^(*r) !*>*$(«) 
/=-0O 

-inq> 

dE, i dE, 
9       COJUQ  dr o)ju0r d(p 

where 8 = 2nd/X, 
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K=b, V,n 

b0i„  is coefficient for a single cylinder. 
It is necessary to solve an infinite matrix equation for finding the expansion 

coefficients bn . One can limit the number of equations based on the physical 
conditions: radius of cylinders, distance between them and wavelength of the radiation. 
For this problem lmax &2p,p= 2nu/L 

The longitudinal F\ and transversal Ft the forces acting on the cylinders were 
calculated through the components of the Maxwell stress tensor Trr and Tr(p by using 
the results of the solution of the previous problem[ 1,2]: 

2n 

FI = j (Trr coscp - Trf sin^adcp = -Qpl 

o 
2m 

Ft= \ {Trr sing? + Tr(p cos<p)ad<p = —Qpt 

where 

T ■%-EX+& [Hr 
sk jje \ 

H„ -HmHm}, 
-<p   <p. 

L _ Mo 
r(p ReHM r1-*- cpy 

P is the power of radiation incident on the cylinder, c is the light velocity, Opi and Qpt 

are the efficiency factors of the radiation pressure. 
The functions of Qpi and Qpt versus the distance 8 = 27td/X are shown in Figs. 1 

and 2. The cylinders are perfectly reflecting (w-><x). The electric vector of the wave is 
parallel to the axes of cylinders. 

«   Q 
tn    ,J* pHi 

S Qpti, 

P=l 

Distance between cylinders 

p-10 
2 T 

I  QPH0j 
a- 

|QPt10i 

Distance between cylinders 

Figure 1 Figure 2 
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The dependence of the longitudinal force F{ oscillates about the asymptote, 
which is corresponding to a single cylinder. The amplitude of oscillations decreases 

very slowly. It is still large even with 8= 60. 
The character of transversal forces F, depends on the value p. The cylinders, 

which have small value of A can attract or push away from each other at the different 
distances 8 between them (see Fig. 1 for p = 1). The direction of the force depends on 
the function of distribution of currents on the surfaces of the cylinders. These currents 
interact with the magnetic field of the wave. On the surface of a single cylinder this 
function is symmetric about the direction of the wave vector. The symmetry disappears 
with the appearance of the wave scattered by the neighbouring cylinder. The maximum 
of the current may be on the inner or the outer part of the surface of cylinder. The sum 
of transversal forces is directed outside (in the first case) or inside (in the second case) 
of the cylinders, which are pushed away or attracted, respectively. 

When p » 1, the cylinders are pushed away only (see Fig. 2 for p =10), since 
the wave scattered by one cylinder does not circle the surface of the second cylinder. 
The maximum of the surface current is always on the inner part of the surface of the 

cylinder. 
The efficiency factors of the radiation pressure are well approximated by the 

following formulas: 
_2 

QPt = yPi  3 5S2 
_p_ 
28 

The magnitude of the transversal forces decreases as 1/d. 
General behavior of the forces remains the same for the other polarization of the 

wave and in the cases when the cylinders have a finite real or complex-valued 
refraction index. Only the magnitudes of the forces vary. 
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Abstract Analytical solution is given of the problem about an angle of deviation of magnetic 
arrow for want of modification of a distance between it and conductor with a current in 
experience of Oersted. Existence of a maximum in the dependence of the indicated angle on 
the distance is revealed. 

The experiments of Oersted on the force acting due to a conductor with current on 
magnetic arrow are considered now mainly as a historical fact [1-3]. The mentioning the 
Oersted experiments is present basically in the textbooks where attention is paid purely to the 
fact of the force action of magnetic field of a current on the magnetized substance. However, 
the experiments of Oersted by no means should be "given up" to the history. They contain an 
interesting material for the problems, which can be included in the modern teaching of the 
theory of electromagnetism. A review of one of such problems, namely the problem about a 
force action of conductor with current on magnetic arrow parallel to the conductor (in the 
absence of current) is given in this work. Analytical approach to a solution of this problem 
enables us to obtain new results about the angle of deviation of magnetic arrow due to the 
indicated force action. 

Oersted himself wrote the following about the angle of deviation of magnetic arrow 
originally parallel to a conductor with current, [3]: " If the distance from a wire up to arrow 
does not exceed 3/4 inches, the deviation makes about 45°. If a distance to increase, the angle 
proportionally decreases...". 

Our goal is to update this 
qualitative solution. To this end 
we model a magnetic arrow as 
two magnetic charges of opposite 
sign (fictitious charges) located 
on the arrow tips, that quite 
corresponds to the modern 
representations about permanent 
magnets with homogeneous 
magnetization [4]. Then, the 
force action of magnetic field of 
a conductor with current on the 
magnetic arrow of length 21, 
located at the distance h from 
conductor, is equivalent to the 

force actions of this magnetic field (force F^) onto the indicated fictitious magnetic charges. 
This force action is counterbalanced by the force action of magnetic field of the ground (force 
F3) onto the active magnetic charges of the arrow. 

In Fig.l the top view (Fig.l, a) and axial aspect (Fig. 1, b) of an equilibrium of 
magnetic arrow in the horizontal plane (we neglect the earth magnetic field tilt) is shown. 
Equilibrium is achieved under condition of moment equality of indicated forces concerning a 

FIG.l 
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central suspension of magnetic arrow (point About in Fig. 1): 

Fjjj.-i-cosa F3 -i-sina. (1) 

If one takes into account that the forces Fm and F3 are proportional to the strength of magnetic 
field (H„e mdH3 respectively, Fig.l) then instead of (1) it is possible to write 

i?nr-cosa = i/3-sina, (2) 

If we consider equality (2) as an equation concerning the angle a, then on solving it we can 
obtain the dependence of the angle a on all the parameters of the problem including the 
distance h. However, a direct solution of (2) for a, is rather complicated and inconvenient for 
the analysis. These inconveniences can be avoided if we consider the relation (2) as an 
equation for the distance h that brings us to the following equation: 

2aff. 
-ctga-h+t2-sin2a=0, (3) 

whose solution is given by 

ä = - 
4«ff. 

-ctga + 
n4tf3 

ctga -f$m2a. (4) 

This solution enables us to construct the function h = h(a), whose inverse is the required 
dependence a = a{h). So the properties of the dependence a(h) are determined by the 
properties of the right-hand part of the formula (4). In particular, it is possible to deduce from 
it the existence of a limiting angle a = a0, for which the formula (4) is meaningful. This 

limiting angle a0 is determined by equaling to zero the radical in this formula: 

an = arcsin 
4nH3l) + 4    2 

(5) 

) 

p    ho 

FIG. 2 

determined by the equation (see(4)): 

From the form of the right-hand part of the 
formula (4) it is possible also to see the following. 
If the distance h is varied in a leg of a diminution 
after some large value (it means that the increase 
of h reduces in a diminution a), the angle a will 
at first increase, and then, after some distance ho 
(the value a0 corresponds to this case), it will 
decrease. This qualitative description of the 
dependence of the angle a on the distance h is 
presented in Fig.2. 

The value of the distance h (h = ho), for 
which the angle   a  has maximum value,  is 

h0=f-sina0 (6) 

Note that, according to Fig.l, from the formula (6) it follows that in the considered 
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experiment there is always an angle of a maximum deviation of magnetic arrow from the 
direction of the axis of the wire. It is achieved if the angle ß (Fig.l,b) is 45 , as in this case 
{a = a0) the distance h0 is equal to the horizontal deviation of the top of the arrow from initial 

position. 
This feature of the dependence a = a (h) corresponds to what had been noted in the 

Oersted experiments, only for rather large distances h (i.e., for small A). So, from the formula 
(4), it is easy to obtain the following dependence of the angle of deviation on the distance h, 
provided that h is large: 

a—i-4, (7) 
2iäi3  h 

This fact was noted by Oersted as a decrease of the angle of deviation of magnetic 
arrow from its initial position when increasing the distance between conductor and this arrow 

[3]- 
Concluding, we remark that the first of the authors of the given work made an 

experiment with magnetic arrow of a tourist compass and a conductor of diameter of 6 mm (in 
isolation) with the current of 4 to 8 A. Stabilization of the angle a from distance of 10 to 15 
mm and up to a maximum approaching of magnetic arrow to conductor was observed. To 
detect the effect of decrease of the angle A when decreasing further the distance h in this 
experiment was not possible. 
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METHOD OF ASYMPTOTIC PERTURBATION OF FUNDAMENTAL 
SOLUTION AND ITS APPLICATION TO PROBLEMS OF WAVE FIELD 

INVESTIGATION 

Victor I. Selin 

Lenin St., 210-22, Obninsk, 249020, Russia 
Tel/fax: +7-(8439)-73637, E-mail: iate@storm.iasnet 

Abstract. Major points of a new method of calculation of integrals containing the Bessel function 
are summarized. On the basis of the method of asymptotic perturbations of the fundamental 
solution the results of the analysis of fields in a layered structure are obtained. The leading terms 
of the asymptotic behavior of the fields in layered structure are obtained. 

Many problems of mathematical physics, including the problems of calculation of fields in a 
layered medium, are reduced to the calculation of integrals of the following type [1,2]: 

(1) I(r,z)=]j0(Ar)F(A,z)dA: 

where J0 (z,r) is the cylindrical Bessel function of the first kind and zero order, F(A,z) is a function 
determined from the solution of a boundary value problem for an ordinary differential equation. 

In work [3], the method of calculation of integrals (1), based on their consideration as 
integral representations (perturbed by the differential in general sense operators) of the 
fundamental solution of the operator of mathematical physics was offered. With a reference to the 
problems associated With the Laplace operators, we formulate such an approach as the following 

Theorem 1. 
Suppose that it is possible to decompose the function F(A,z) in (1) in terms of the series: 

F(A, z)= exp(- Az) f(A) = exp(- Az) 

YuanA
nS)<A<A* 

M 
(2) 

Y^,A*<A 
»=1 A 

Then (I) can be presented as an operator function: 

\j0(Ar)exp{-Az)f(A)dA = 

./A\l = y.(_i)«aj> \dz)R tr 
d" 1 

/ 

dzjR   to" "' 'n0znfzl 

f* M  ^(-iya-n\(z-t)n 

r,   lo/z2+r2 

\dt 
Vo    J 

(3) 

Inside its domain of convergence, series (3) can be differentiated in term by term manner. 
Representations (2), (3) are down in a limiting form valid if the function Fftz) is infinitely 

differentiable function. Request now that F(Az) has n continuous derivatives, and the (n+l)-st 
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derivative is bounded. Then the infinite series in (2) and (3) should be replaced by finite sums. In 
this specific case, when z=0 in the area r>l of (3), we shall obtain the result known from the basic 
A. N. Tyhonov theorem of his work [4]. 

Further we write down the representations similar to (2) and (3) for the integral (1) in 
problems with the Helmhöltz operator. 

Theorem 2. 
Suppose that it is possible to decompose function F(A,z) in (1) in terms of the series: 

V 

exi 

7 

f>„?7w,0<77<77* 
M=0 

a TO 

n=\   if 

Then (I) can be presented as an operator function: 

]j0(Är) 
exi 

V 
f{ij)dX- 

fd)exp(ikR)_ 

f jdt 
\o     J 

f 

exp(ikR) 

R I(-i)X 

R 

8" expjikR) 
dz"      R     ' 

(-l)"q„ Uz-tf-'expifkyl^+r1 

\<kR 
n=0 

(5) 

ylt2+r2 
'-dt,0<kR<\ 

where ?j=:^JA2-k2 , k is a constant value, R-^z2-tr2 . 
Inside its domain of convergence series (5) can be differentiated in term by term manner. 

The series (3), (5) are analogous to the Taylor series with reference to the integrals, which 
are solutions of boundary value problems for the operators of mathematical physics. In this sense 
the representation (3) and (5), in the domain of their convergence, are identities. With reference to 
the problems of wave field investigation these formulas serve as a generalization of the principles 
of Huygens and of superposition of waves. 

In practice, one uses a finite number of terms from (3), (5). For finding the asymptotic 
behavior of integrals (1), sometimes it is sufficient a knowledge of the first term of the series (5) 
only. For calculation of surface waves along the interface of media, it is possible restrict the 
analysis by the quadrupole («=2 in (5)) approximation of the fundamental solution of the wave 
equation with the Helmholtz operator. In some cases the fundamental solution corresponding to 
n=0 in (5) is enough. 

As an analysis model, we shall consider the structure presented in Fig. 1. Integral V(r,z) 
corresponds to the single non-zero z - component of the Green's tensor function of the layered 
medium. The principal values of the integrals V(r,+0) and V(r,-H-0) determine the surface waves 
at the part of external interface of the layered structure. It is possible to calculate these integrals, 
V(r,+0) and V(r,-H-0), in the quadrupole approximation of the fundamental solution of the wave 
equation. The values of V(r, +0) and V(r,-H-0) decrease with distance as IIr2. Integral V(r,z) with 
a source at the interface: z'->+0 at ze[0,-HJ, can be calculated in the approximation of the 
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fundamental solution of the wave equation. This approximation determines a communication wave 

of the layered medium 

vM*)= 

1                          \ 

*1 
exp^vV+r2 

1+^,-1 *„#+/ 
ylz2+r2 j{z + 2H) a+r2 

+ 

+0 
z + 2H ,ze[0,-HJ. 

Xz + 2Hf+r7 

If z-> -0, Vc becomes a communication surface wave of a layer at the interface with a source 

r.M): 

l + e,^,-1 k0H + 
zv^Ti 

V S\      S2  J 

expfry)   exp^A^ff2 +r2) 

JÄH 2+r2 
+ 0 

IE 

4H2+r' 

The presence of the interface of the media at z=-H results in the behavior of the field on the 
internal interface of a layer with a source as ~ 1/r. 

Fig.l. Model of layered media 
with one layer. 

Fig.2. Scheme of the principal-value 
integrals V (r) of layered structure. 

In Fig.2, the behavior of the principal value of integral V(r) of the layered structure is 
shown, depending on the position of coordinate z of the point of observation. This scheme shows 
the domains of communication, Geometric Optics field (In r=-l), and that of the field decreasing 
according to the law -1/r2 (In r=-2), including surface waves of layered structure. The scheme 
clearly demonstrates the properties and the essence of the concept of communication waves in a 

layered media. 
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SIMPLE APPROXIMATE FORMULAS 
FOR EVALUATING SOMMERFELD TYPE INTEGRALS 

Peter L. Tokarsky, Vladimir V. Dolzhikov 
Kharkiv State Technical University of Radio Electronics, 

14, Lenin Av., Kharkiv, 310726, Ukraine 
Tel: +380 572 409 430, Fax: +380 572 409 113, E-mail srurrin@kture.kharkov.ua 

Introduction. Analysis of antennas and scatterers, located in a close proximity to the air/ground interface is concerned 
with calculation of Sommerfeld type improper integrals [1]. This problem has no rigorous solution in a closed form, 
therefore it is solved either by numerical integration or with the use of approximation. Among the latter, widespread are 
the methods of the high-contrast approximation (HCA) [2] and of the reflection coefficient (RCM) [3], which are 
convenient for application but always have not a high accuracy. The purpose of the present paper is development of 
more accurate expressions for evaluating near fields of an infinitesimal electric dipole located over the lossy half-space. 
We assume that the dipole is located at a point M'(0,0,n > 0) in the cylindrical coordinate system (r,<p,z), and the 

plane z = 0 separates the homogeneous material half-spaces. The upper half-space (z >0) is a medium 1 with the 

permittivity £j , permeability^, and conductivity ox - 0 (air), and the lower half-space (z < 0) is a medium 2 with the 

electrical parameters e2 ,/i2, o2 (ground). Besides, it is assumed that the dipole current has a unit amplitude with a 

harmonic time dependence exp(jax). We examine the radiated field from an electric dipole into the medium 1 and take 

account of two dipole orientation cases: one is along the axis z (vertical dipole) and the other is along the radius r at 

<p = 0 (horizontal dipole). 
Vertical electric dipole (VED). The Hertzian potential of the VED field has a z-component only [1]: 

n(M) = z°n„,    where     Tla(M) = G(R1) + G(R2) + ATla , ma=-—]fa(v)J0(vr)txp(.-^lOdv, 
-TO o 

/ (v)=     2*fo_v., R^^Hz-hf, R2=^C S = z + h, Yn=-F-kl*> *i=fflÄ". 
*$Yi+tir2Yi 

k2 = co,je2(l   ,-,.-„_ , -. ,    4ff       R 
jo2 I coe2)ß2 , G(R) = —-6XP   ; '      is the Green function of the free space, Jm(x) is the Bessel 

An       R 
function of order m, (r,(p,z) are coordinates of an observation point M. The correction term A]TZZ is expressed 

through the Sommerfeld type integral, where the integrand has two branch-points v = k{ and v = k2, in the vicinities 

of which the sharp bursts are observed. When \k2\ > |^| it can be presumed that the contribution of the point v = k2 to 

the integral value is considerably smaller than of the point v= kx due to the decreasing exponential factor. Taking this 

into account, we reduce the algebraic factor of integrand to the following form: 

2k? ■ jk2-v '     . 2h   v , ,   ,, 

*22y,2i+ W ■ JWi ■ fo )J    n+1 K 
that enables the integral in the expression for AUZZ  to be transformed as follows [2]: 

^o n ^i^t2-(r/R2)
2 

We expand the denominator of the integrand in the latter expression in the power series and then we can find the 

required expression for AII^ 

tfl~-j^-I(r,R2), (1) 

-d     EJzH^* 

zz . i n + 1 

1   - , „      l-3-5...(2m-l)f  r ) 
where I(r,R2) = — ^AmE2m+x{jkxR2),   Am= ~ 

4ffm=o 2-4-6...2m    {K2J I      .. 

is the exponential integral [4]. The series (1) is fast convergent and its calculation usually requires no more than 3 or 4 
terms. The general term can be easily obtained using the recurrent formulas: 

Wi»)»55^ 2m 

<x_   jkR ^ 

.      2m -1 , 
(**)*        =•        ,;n     A    -lm~l 

( 
E2m-i(JkR), Am 

2m(2m-l)    m 2m 

\2 

r 
R2 , \  l J 

^m-\ > AQ-1 , 

E{(jkR) = -ci(fcR) + jsi(kR), si(jt) and d(x) are the sine and cosine integrals. 
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Horizontal electrical dipole (HED). The Hertzian potential of the HED field has two components: 

ft = x°Il + z°U ■ We consider first the vertical component of the Hertzian potential, mat is defined by the 

equation [1]: 

n„(Af) = -^J/„(v)J,(vr)exp(y,Odv, where fvfy) = 2v 
a An n *227i+*272 

We shall simplify the function /„ (v) in two ways. At first we proceed the same way as in the VED case: 

/»~2v2      jh~ih . 2 n-W 

k}7l[l + (kjk2)}       k2n + \yx 

The substitution of tins approximation in the integral yields: 

. cos<p 2 n-Y v2dv 2 «-1 d (2) 
n^m)     J  An  *2H + lJ 7i £2n + ldr 

In the second way, before a simplification of the function fu (v), we present its denominator as the sum of the squares: 
,.2..      ,2.. ,   .2At    . 2 «2+lV2       2 V2 

,.,,,.2,2      71-72      *frl-*fr2   „ A£±iV
2 _  ■ 2«   + 

1 7!    n2 7i2 

and obtain 
2 U2+l 

n'ZJ(M) = -cos(?.-I-T-- 
K7   n -1 

ih - + 
dr    drdt; 

G(R2) + k?-~I(r,R2)\ (3) 

By using expansion of the integral I(r, R2) in the series (2) it is easily shown that 
-l 

or K2 

iWi-(^n"^)+;^£^ Vl£2»UW 

(4) 

Calculations with the use the formulas (2) and (3) enabled us to establish that the deviations of n'w (M) and TTa{M) 
from the exact value are rather close in magnitude but have opposite signs, so the best approximation is given by their 

mean value: , 
nw(M) = o.5[n'^(M)+n'a(M)J. 

The horizontal component of Hertzian potential of Ihe HED field is expressed in the following form [1]: 
I - 2v 

n„(W) = G(Ä1)-G(Ä2) + An„,   An„=—//„(v^o^exiK-y^dv     /-(v)-^^ 

The function fxx (v) can be approximated in two ways as well 
2v 

f»(y)"-J JfcjCn + l) 

J    fft.->-    2v    71-72,2/^-72^ 
aDd   ^"^^T   *iV"D 

from which it follows that 

and 

ATI' (M) = j 

AU"(M) = - 2/2 

.,    d       d' 

G(R2) 

G(R2) 

(5) 

(6) 

Expression (6) is equivalent to similar one in [7], where it was obtained by using the Fourier transform method (FTM). 

Numerical results. The calculations were carried out for the case well known from the literature [5,6]: e{ =e0 , 

£2/ei=10, H2=^H0, cx2=0.01(Q-mr\ K2=10m, 02=arctan(r/O = lO°, cp = 0. The results of 

calculation of AHZZ by(l), Tl„ by(3),(4) and AH „ by (5), (6) are presented in the Tabs. 1-3. For acompanson, 
here are given also the exact values obtained by a numerical integration method and the results of calculation by using of 
the HCA-method [2]. Besides, numerical results of calculation by the RCM and FTM methods are taken from [5], [6] 

included in Tabs.2,3. 

Conclusions. Comparative analysis of the numerical results shows that the derived formulas ensure rather high accuracy 
of the Hertzian potential calculations for the vertical or horizontal electric dipoles over the lossy half-space. Simplicity ot 
the formulas and absence of numerical integrations makes them convenient for many electromagnetic applications. 
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Table 1. The correction term AE lzz for Z-component of the VED Hertzian potential 

F, RCM, from [5] HCA Present, eqn. (1) Exact results 

MHz 
R2/X 

xlO4 xlO4 xlO4 xlO4 

1.0 0.033 -10.0 -j 5.45 - 0.76 -j 4.12 - 0.90 -j 3.88 - 1.00 -j 4.16 

2.0 0.05 -15.2 -j 3.81 - 4.46 -j 7.16 - 4.55 -j 6.39 - 4.93 -j 6.87 

3.0 0.1 -18.8 +j 0.05 - 9.48 -j 7.77 - 9.15 -j 6.46 - 9.95 -j 6.92 

6.0 0.2 -18.7 +J16.6 -21.16 +j 3.86 -18.20 +j 4.97 -19.56 +j 5.82 

9.0 0.3 -4.08 +J28.5 -15.93 +J23.30 -11.75 +J20.97 -11.80 +J22.90 

12.0 0.4 16.3 +J26.7 5.00 +J32.76 6.52 +J26.83 8.09 +J28.14 

15.0 0.5 31.1 +J11.2 28.26 +J23.53 24.67 +j 17.30 26.69 +j 16.98 

18.0 0.6 32.5 -jlO.8 39.46 -j 0.48 31.82 -j 2.85 32.96 -j 4.48 

21.0 0.7 19.5 -J29.3 31.62 -J26.87 23.76 -J23.32 23.45 -J25.18 

24.0 0.8 -2.43 -J35.7 7.92 -J42.31 4.06 -J34.05 2.65 -j'35.14 

27.0 0.9 -23.9 -J27.3 -20.74 -J39.08 -18.31 -J29.89 -19.98 -J29.78 

30.0 1.0 -35.9-j 7.42 -41.31 -J18.30 -33.37-j 12.54 -34.48 -ill.43 

Table 2. Z-component n^ oftheHED Hertzian potential 

F, HCA FTM, from [6] Present, eqn. (2) Present, eqn. (4) Exact results 

MHz xlO5 xlO5 xlO5 xlO5 xlO5 

3.0 -39.54 +J53.60 -45.0 +J19.6 -24.75 +J48.90 -34.82 +J33.84 -34.51 +J28.69 

6.0 -16.54 +J60.59 -20.1 +J41.6 - 2.59 +J47.05 -11.80 +J44.04 -14.08 +J43.14 

9.0 16.26 +J64.13 9.95 +J45.6 21.21 +J41.04 15.03 +J43.56 13.90 +J44.36 

12.0 51.68 +J47.29 36.2 +J30.6 40.34 +J22.56 38.03 +J27.01 37.95 +J27.81 

15.0 72.77 +j 9.50 47.6 +j 2.87 46.08 -j 4.42 46.93 -j 0.58 47.21 -j 0.19 

18.0 66.91 -j36.il 40.0 -J25.7 35.10 -J30.20 37.59 -J28.24 37.86 -J28.13 

21.0 33.61 -J70.49 16.9 -J43.7 11.04 -J44.93 13.66 -J44.95 13.85 -J44.94 

24.0 -14.96 -178.28 -12.2 -J44.2 -17.07 -J42.90 -15.45 -J44.26 -15.29 -J44.30 

27.0 -59.38 -J55.02 -36.0-J27.3 -38.92 -J24.78 -38.46 -J26.60 -38.33 -J26.70 

30.0 -81.43 -j 9.19 -45.2 +i0.42 -45.99 +.j 2.62 -^6.63 +j 1.13 -46.56 + j 0.97 

Table 3. The correction term AIl^ for X-component of the HED Hertzian potential 

F, RCM, from [6] HCA Present, eqn. (5) Present, eqn. (6) Exact results 

MHz xlO4 xlO4 xlO4 xlO4 xlO4 

3.0 18.30 +J0.0076 22.42 -J30.40 18.23 -J29.07 24.40 -j 17.29 21.45 -j 19.75 

6.0 18.30 -J16.1 9.38 -J34.36 5.43 -J30.52 11.56-J26.64 9.98 -J27.24 

9.0 4.11 -J27.7 -9.22 -J36.37 -10.63 -J29.82 -5.27 -J29.88 -6.48 -J29.82 

12.0 -15.70 -J26.2 -29.31 -J26.82 -26.09 -J19.81 -22.51 -J22.39 -23.38 -J21.83 

15.0 -30.30 -jll.l -41.27 -j 5.39 -33.70 -j 1.44 -32.53 -j  5.09 -32.91 -j 4.22 

18.0 -31.80 +J10.4 -37.95 +J20.48 -28.93 +J18.80 -30.05 +j 15.60 -29.86 +j 16.45 

21.0 -19.20 +J28.5 -19.06 +J39.98 -12.66 +J32.73 -15.22 +J31.05 -14.60 +J31.59 

24.0 2.15 +J34.9 8.48 +J44.40 9.11 +J34.36 6.33 +J34.58 7.10 +J34.62 

27.0 23.20 +J26.9 33.68 +J31.20 27.87 +J22.63 25.98 +J24.34 26.57 +J23.93 

30.0 35.10 +i 7.5 46.18 +j 5.21 36.13 +.i 1.86 35.71 +j 4.18 35.91 +i  3.54 
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1. Introduction 

The increase of output power is an important task of the theoretical and experimental 
research of resonant oscillators of millimeter and submillimeter waves (orotron, diffraction 
radiation generator, laddertron, ledatron, etc.). It is well known that the application of 
relativistic voltages for acceleration of electron beams in millimeter wave oscillators allows to 
obtain high levels of output power of radiation. Dynamic relativistic variation of the electron 
mass can considerably change the character of the electron-wave interaction process. This 
effect is essential if the magnetic guide field strength is limited or dc focusing field is 
nonuniform. In this case the transverse electron-wave interaction and to motion of electrons 
in the trnsverse direction should be taken into account, and for a theoretical description of the 
device a multi-dimensional model should be applied. 

2. Theoretical model 

We consider the following model of a resonant relativistic oscillator. A sheet electron 
beam is passing through the resonator (cavity or open one) near to the slow-wave structure 
surface. The electron beam is subjected to the dc longitudinal magnetic field applied in the y 
direction. The focusing field can be nonuniform in general case. The rf field is assumed to 
have fixed spatial structure and change slowly in the scale of the electron transit time through 
the resonator. This is justified if the oscillatory system has sufficiently large value of the 
quality factor. 

For a self-consistent description of the electron-wave interaction process, we start 
from the Maxwell-Lorentz equations, which can be written assuming the ordinary for 
resonant devices approximations in the following form [ 1 ]: 

dt 

1 In 

+i(e> - cos)Cs = ——~ f  fJE; extfiatyK&W, 
/ M     IT »        " 2Nsnv 

(1) 

dt m0V 
E + vxB-^j(vE) (2) 

where Cs is the complex amplitude of rf oscillations of the 5-th resonator mode. The 

components of the electric field strength vector E = (ß,Ey,E,) are given by: 

Ey =Csf(y)yy{z)tx${ßy-(oi)\ 

Ez = JCs/(jK(2)exp[z(#>-ß4 
The functions / and  yy,y/z define the longitudinal (along the coordinate y) and 

transverse (along the coordinate z) spatial distribution of the 5-th resonator mode field, 
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respectively; Ns = sA \ES\ dV is the        Q5 
J I I 

Q4 - 

Q3 

modal norm; ms =eo's +ico's/2Qs is 

the fundamental complex frequency 
of the s-th mode; Qs is the resonator 

quality factor; m is the generation 

frequency; J is the convection 
current vector of the beam;  e,m0 are 

the electron charge and rest mass,    ^ 02 
respectively; v is the velocity vector 
of the electron; c is the light velocity; 

Y = (l - v2 / c1) ; B is the magnetic 

displacement vector; ß = a>lvp; vp 

is the phase velocity of the slow wave. 
The equations set (1,2) is 

resolved numerically. Preliminary 
results are obtained for different 
values of magnetic displacement of 
uniform focusing field. 

i 

0.1 ■ 

Q0 

0.15- 

0.1C- 

■     il 

0.0E- 

Fig.3. 

Discussion 

The efficiency dependences upon the parameter  <J> = (l-v0/vp)a£/v0  for the 

different values of y0 ( To=/\ _  ) aa^ normalized cyclotron frequency  oJa-eBImco 
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are shown in Figs. 1,2 and 3. Solid curves correspond to a drooping regime of the oscillations 
excitation and dotted curves correspond to a hard regime. All graphs are plotted for the fixed 

value of the beam current. 
Dependences #) forthe value mc 1®= 0.4 are shown in Fig. 1. Electron trajectories 

can be assumed linear in this case. A relativistic factor increase results in the generation zone 
narrowing and efficiency enhancement. These results correspond to the one-dimensional 
theory of relativistic resonant oscillator. Hence, the longitudinal electron-wave interaction is 
the basic energy exchange mechanism between electrons and rf field in the case of 
o)Ja> =0.4. The cyclotron frequency decrease results in the narrowing of the hard excitation 

regime domain and efficiency reducing for all the values of relativistic factor (Fig.2, 3). Note 

that here o)Jo) =0.15 (Fig.2) and G)C/CD=0.\ (Fig.3). 
It should also be noted that the maximum efficiency value almost does not depend 

upon the parameter n * coc Im =0.1 (Fig.3). Furthermore the electron hysteresis (especially 

nonlinear phenomenon) is absent in this case. The additional calculations showed that the 
focusing field displacement decrease results in the particles settling onto the slow-wave 
structure surface. The electrons which interact with the most intensive rf field are settling 
first Therefore the settling of the electrons results in the change of relation between the 
electrons, which interact with damping, and the accelerating rf electric field of the slow wave. 
Conditions of the electron-wave interaction may be changed significantly in thisi case> ■ 
and efficiency changes as well. If the electrons interacting with the damping rf field are 
settling onto the grating, the efficiency decreases. On the other hand, the settling of the 
accelerated electrons may be a reason of the efficiency enhancement [ 2 ]. 

In the considered situation (uniform focusing field), the electron settling results in the 
efficiency decrease. To obtain the efficiency enhancement one should use a nonuniform dc 

magnetic field [2]. 

3. Conclusions 

The efficiency of the relativistic resonant O-type oscillator depends upon the focusing 

field displacement value. . . 
The settling onto the slow-wave structure surface results in the efficiency decrease. 

Moreover efficiency reduction is more significant in the relativistic case in comparison with 

nonrelativistic case. 
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MAGNETIC FIELD DISTRIBUTION FOR SUPERCONDUCTORS 
WITH ROTATIONAL SYMMETRY 

V. Ivaska, V. Jonkus, and V. Palenskis 
Vilnius University, Department of Radiophysics, Sauletekio al. 9, 2040 Vilnius, Lithuania 

Abstract. Some studies on the magnetic flux trapped in a hollow superconductor and 
an applicability of the hollow superconductor for the magnetic shielding are reported. 

Superconducting sample with a hole has some different properties than the continuous 
one. Consider the loop of metallic wire is initially placed in a static magnetic field such that flax 
threads the hole. After the system reaches the steady state, the field is suddenly turned off. 
Consequently, as required by Lenz's law, a current will be induced in the wire to resist the 
change of the flux. From elementary circuit theory, we know that the current will decay in the 
exponential fashion with the time constant t=LIR. In case of superconducting wire R=0 and 
T-»ao; this means, that a persistent current will flow in the superconducting loop and the 
magnetic field it produces will never be observed to decay as long as the loop remains in 
superconducting state. Because of this property superconductor with a hole may act as steady 
magnet or can be applied for magnetic field shielding. 

In [1-5], the investigated samples were made of type-II high-Tc materials and had a 
shape of a hollow cylinder In some papers the critical currents were investigated, evaluating 
them from the magnetic field strength measurements [1, 2], and an applicability of the 
superconducting hollow cylinder for the magnetic field shielding [3-5]. The case with a hollow 
superconductor forces to use an approximate formula or numerical modelling. In a hollow 
superconductor (in other word multiply connected) it is observed magnetic flux trapping 
phenomenon. Moreover, this magnetic flux is quantized. 

In this paper we present the numerical solution method. This method is suitable for 
evaluation of magnetic field and surface current distributions. We only assume that 
superconductor is an ideal diamagnetic and has the rotational symmetry. The external field (if it 
was switched on) is parallel to rotation axis and assumed to be static. Since the problem 
assumed to be static, the final field distribution depends on the way the superconductor was 
cooled down. Therefore the solution takes into account the trapped magnetic flux. Modelling 
results are given for two cases: a superconducting torus and superconducting hollow cylinder. 

Due to rotational symmetry the sheet current and the vector potential have only one 

component (in cylindrical coordinates {p, z, <p})\    j = j ep,   Ä = A9 e^ . 

A corresponding vector potential can be expressed by 

pAv(P) = jj(p')G{P,P')dS'; (1) 
r 

where integration region r is the superconductor surface in p-z plane; kernel G(P,P') is the 
Green's function; F and P is the set of source {pf, z'} and field {p, z) coordinates, 
respectively; j{F) is unknown sheet current density. Kernel G(P,P') can be calculated 
analytically [6]. The boundary condition is the continuity of the normal component of the 
magnetic induction. If one finds such coordinates {u,v,cp}, where «=const defines the shape of 
the sample, while v and <p run over its surface boundary condition may be expressed as [6] 
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d(pAy+B0p
2/2) 

dv 
= 0 

a = «o 

This condition can be reduced to: 
( 2^ 

= f(4       = 
u=u0 \u = «o 

0 
const = — 

In 
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(2) 

(3) 

here quantity ®0 is the flux, which threads the hole of the sample. If the sample has no hole 

then always $b=0. Now, we can write the integral equation for/F): 

lj(P>)G(P,P')dS> 
r 

lj(P')dS' = I 

3i 
In 

= -B„ 
,PeT (4) 

Besides HP'), in this integral equation the quantities B0, <Z>0 and / are mvolved. Two of 
them considered to be known. The next one and the/P') can be found as a solution. Which of 
three quantities (Bo, <ft, I) are considered to be known, it depends on the way by which the 

superconductor is cooled down. For 
solution of this problem we approximated * ° 
the integral equation by linear equation set 

[7]. 

Magnetic field distribution 

Superconducting torus 
1) Let us suppose the torus was 

cooled down in the zero external magnetic 
field. When we apply the static magnetic 
field, then, the induced surface current 
prevents field penetration into the 
superconductor and keeps the flux within 
the hole zero. This property may be used 
for the magnetic field shielding. 

2) Suppose we placed the torus in 
the    external    magnetic    field    at    a 
temperature higher than Ta. After this we , 

,ower ,he temped   and _*,  .cms ^^SSSSSXS^^ 

Fig. 1. Superconducting torus (<£b=0, #o=l); 
(a) magnetic field profile in the central plane (z=0); 
(b) magnetic field lines. 

becomes superconducting. If the external 
wasn't changed, it is no induced persistent 

current. 
3) Let us now examine slightly 

different case. The superconducting torus 
was cooled down in the presence of the 
static external magnetic field as in 
previous case. After this the external 
magnetic field is switched off. As required 
by Lenz's law, the magnetic field change 
induces the current. Because there is no 
loss in the superconductor, this current 

(a) magnetic field profile in the central plane (z=0); 
(b) magnetic field lines. 

BZ/BQ 

1.04 

(.02 

"^7>J   -2.5 

p/R 

a) 
Fig. 3. Superconducting torus (<Ai=l, 50=0); 

(a) magnetic field profile in the central plane (2=0); 
(b) magnetic field lines. 
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cannot decay away and the flux is permanently trapped. In this case superconducting torus acts 
as steady magnet. 

Superconducting hollow cylinder. As we can see from Fig. 4, the superconducting 
hollow cylinder is more suitable for the external field screening than the torus. The magnetic 
flux density in the inner space of the hole is considerably lower than the external field. In order 
to increase screening properties of the cylinder we need to increase the height of the cylinder. 

Bz/Bo 

-2 

a) b) 
Fig. 4. Superconducting hollow cylinder (B0=l, dV=0); 

a) magnetic field profile in the central plane (z=0); 
b) magnetic field lines. 

Summary 

a) b) 
Fig. 5. Superconducting hollow cylinder (B0=l, I- 
(a) magnetic field profile in the central plane (z= 
(b) magnetic field lines. 

=0); 
0); 

In this paper a method for the magnetic field modelling in the superconductor with 
rotational symmetry is presented. It is supposed that superconductor is an ideal diamagnetic. 
This method takes into account magnetic flux trapping phenomenon, which takes place for 
hollow superconductor. As a solution it is possible to determine the circumferential current and 
the sheet current density. Therefore this method is suitable for the current evaluation from the 
field measurement, and for the field distribution investigation inside the hole of the sample. 
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Technique for Determination of RF-Magnetic Field Dependence 
of the HTS Surface Impedance by Microwave Resonators1 

K.P.Gaikovich', A.N.Reznik2 

1 Radiophysical Research Institute, B.Pecherskaya st, 25/14, 603600, N.Novgorod, Russia. 
2 Institute for Physics of Microstructures of RAS, GSP-105, 603600, N.Novgorod, Russia. 

Introduction. The investigations of nonlinear electromagnetic properties of high- 
temperature superconductors (HTS) in the last years arouse active interest in connection with 
the prospects of HTS application in various microwave devices (resonators, filters, antennas 
etc.), with problems of quality control of these materials, with fundamental problems of 
physics of superconductors. Nonlinearity of HTS is usually characterized by the dependence 
of a surface impedance Zs on the amplitude of a variable magnetic field H on HTS surface, 
i.e. ZS(H). This dependence is determined by using microwave resonators of various designs 
[1-5]. The parameters to be measured are nonlinear broadening of the frequency response 
A/ß and the resonant frequency shift A/0 ■ The algebraic equations which relate Afo.Aft, to 
RS(H) = RcZs(H), XS(H) = ImZ5(H) are in use. For all resonator types there is a strong 
inhomogeneity of a field H distribution on a HTS surface. In the present paper it is shown 
that HTS nonlinearity and fields inhomogeneity lead to essential errors in conventional tech- 
niques, and a new approach to the problem of diagnostics of nonlinear microwave properties 
of HTS is advanced. 

The integral equations. The techniques used for determination of ZS(H), are based 

on the following equation: 
A/ = A/o + MWB = (iß**) \H2Zsd

2r  , (1) 
s 

where W is the energy stored into the resonator, and the integration is made on a HTS sur- 
face. In the nonlinear resonator the nonuniform field structure leads to an inhomogeneous dis- 
tribution of Zs (H) on a HTS surface. In this case we obtain from (1) 

Af = (i/2)G<ZS> , (2) 

where G = (l/4nW) J H2d2r is the geometrical factor which is calculated for each particular 

resonator or is measured by calibration, 

<Zs>=\H2Zs(H)d2r/lH2d2r (3) 
s I s 

is the averaged surface impedance. Thus, the use of equation (2), as is done in [1-5], yields 
<ZS> rather than Zs, which largely reduces the value of the obtained results, since <ZS> 
depends not only on the properties of HTS material, but also on the resonator type and the ex- 

cited mode. 
We shall assume that the resonator contains one HTS film as a conducting wall whose 

dependence ZS(H) is the sought-for parameter. The H field structure on a HTS surface near 
the resonant frequency is determined by the eigen function of the appropriate mode <D(r): 

H(r) = Hm®(r)  , (4) 

1 This work was supported by RFBR under grant 96-02-16997 and by the Russian State Program on Physics of 

Condensed Matters under grant 96129. 
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where Hm is the maximum value of H (<f> is normalized so that Omax =1). The field Hm 

of the nonlinear resonator for each value of the input power is calculated on the basis of the 
well-known techniques (for example, for a microstrip resonator see [6]). Passing in (3) from 
integration on the coordinate variable to integration on H with the account of (4) we obtain 

Hm 

< Zs (H) >=  JK(Hm, H)ZS (H)dH , (5) 
0 

where K(Hm,H) is the kernel of the integral equation, which depends on the resonator type 

and the exited mode (J m K{Hm,H)dH=\). We have obtained the expressions for 

K(Hm, H) for different resonator types: confocal, microstrip, cavity, dielectric. 
Using (5), we have calculated a relative excess R$(H) over <RS(H)> for various 

types of resonators and for typical dependencies R$(H), observable in experiments [1-5]. We 
have found out that the use of equation (2) gives an underestimated value of RS(H): 1.3-1.7 
times less for cavity-, 2-3 times less for confocal-, and 4.5-7 times less for microstrip resona- 
tors. 

Method of solution of the inverse problem. The method we offer consists in meas- 
urement of < Zs > by a HTS resonator using formula (2) at several input powers. Then 
Zg{H) is defined by solution of equation (5). Equation (5) is the integral equation of Volterra 
of the 1-st kind, whose solution is an ill-posed inverse problem. In the given work the Tik- 
honov method [7] was applied for solution of (5). We shall rewrite the equation (5) in the op- 
erator form 

KR = Rm , (6) 

where Rm is the vector of experimental data, obtained with some tool error. In the Tikhonov 
method the approximate solution is sought for by minimization of the functional 

Ma{R) = KR-Rm \ +*!!<> . (?) 

II   l|2 where \f\     is the norm of function / in space ZT of square integrable functions, and 
'2 

\f\w\ is the norm of function / in the space W\ of square integrable functions together with 

their derivatives. The problem of minimization of functional (7) after appropriate discretiza- 
tion was solved by the method of conjugate gradients [8]. Smoothing of the solution derived 
from (7) is adjusted by parameter a which, as is shown in [7], is connected with the inte- 
grated measure of an inaccuracy of experimental data and is sought as the root of the nonlin- 
ear algebraic equation 

p(a) = I&0-Äj|*2-82, (8) 

where Ra is the solution of (7). 
Parameter of an effective error 8 in (8) includes all errors of measurements and interpre- 

tations. Thus, in the used method smoothing of the solution is determined by an error 8 . For 
high measurement accuracy, the error 8 reduces and, hence, there is less smoothing in the 
obtained solution, i.e., the details of ZS(H) can be reconstructed. 

Results of numerical modelling. The investigation of opportunities of retrieval is car- 
ried out on the basis of numerical simulation for typical RS(H) and limits of tool errors. We 
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have used the expression for K(Hm, H) in (5) obtained for a rectangular cavity resonator and 
the power field dependence for Rs, which is met more often in practice. Modeling of the re- 
construction procedure was done in the following closed circuit. For the given initial function 
RS(H) the exact dependence < Rs(Hm) > was calculated from (5), for which a random error 
with the given rms §Rm was added in discrete points m = 1,2... M, simulating the measure- 
ments errors. Thus obtained "data of measurements" were used for solution of the inverse 
problem, and the retrieved dependencies were compared with the initial one. For estimation of 
the efficiency of the Tikhonov method equation (5) was solved also by the method of direct 
inversion, i.e., by solving a numerical analogue of the integral equation (5), which after ap- 
propriate discretization becomes a linear system of algebraic equations. 

The results of numerical modeling are presented in Fig. 1,2. In Fig.l one can see an exam- 
ple of retrieval. In Fig.2 the normalized dependencies of an integral measure of inaccuracy 

bR = [H^n f™xG2
R(H)dH]yi on a number of experimental points M are shown. It was 

obtained from the results of numerical simulation that the Tikhonov method provides qualita- 
tive reconstruction at dRm < 0.02mOhm, whereas the direct inversion - only at errors 
8i?m < 0.005mOhm, close to extreme values, achievable for the state-of-art measurement 
techniques. We emphasize the existence of optimum value M, at which the error of recon- 
struction is minimum (Fig.2), and this minimum for the Tikhonov method corresponds to a 
much smaller error than for the method of the direct inversion, and at smaller values of M. 

Conclusions. The method offered here is based on the theory of the solution of the in- 
verse problem for ZS(H), which allows to take into account the inhomogeneous structure of 

an electromagnetic field in resonators. 
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MODERN METHODS FOR CALCULATION OF MAGNETIC FIELD 
FORCE ACTING ON MAGNETICS 

M.V.Zagirnyak, Yu.A.Branspiz 

East Ukrainian State University 
Molodeznuy, 20-a, Lugansk, 348034, Ukraine 

Abstract 

It is shown, that formulae of the magnetic field action force on ferromagnetic body, 
corresponding to various models of magnetization of its substance, give the same result while 
calculating summary action force of the magnetic field on this body, coinciding with a real 
force. 

1. Problem Statement 

One of the modern description fundamentals of force action of direct magnetic field on 
ferromagnetic bodies is the use of volume density / of the magnetic field ponderomotive 
force for which the following main methods of its definitions are known energetic, equivalent 
magnetic charges, equivalent magnetic moments, equivalent currents of magnetization, 
Maxwell tensions [1-4]. This work deals with three calculation methods of magnetic field force 
acting on ferromagnetic, corresponding to three simulation methods of its magnetization: 
equivalent magnetic charges, equivalent magnetic moments (dipoles), equivalent currents of 
magnetization. Consideration of these three methods is explained by the fact, that both 
energetic and tensor methods of volume density determination of the magnetic field 
ponderomotive force, with rigorous approach, is based on certain formulae for space 
distribution of ponderomotive force of the magnetic field in magnetic [1,2], that is energetic 
and tensor methods are secondary with respect to the methods, which allow to determine 
directly volume density /. 

In the case of absence of electrical current in ferromagnetics, the given three methods 
enable one to obtain the following formulas for numerical calculation of specific (per unit of 
magnetic volume) ponderomotive force of magnetic field: 

fA=rot{M)xB, (1) 

/P=-u0#.<#v(M), (2) 

fMM^V-o&K&^H, (3) 

where fi0 - vacuum magnetic permeability; B, H - vectors corresponding to magnetic field 

induction and strength; M - magnetization vector. 
As it is known [1-4], these formulae do not describe real distribution of magnetic field 

ponderomotive force in the volume of magnetic. But they can be used for determination of sum 
action of magnetic field on ferromagnetic body. 
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2 Integral Equivalency of the Formulas of Volume Density of Magnetic Field 

Ponderomotive Force Acting on the Magnetic for Various Models of its Magnet.zat.on 

It is to be noted, that the formulas (1-3) are often used in general form when instead of 
the vectors and the vectors and , are considered which are induction and intensity of he 
magnetic field source, external in respect to the magnetic [2,4]. For this less general case rt is 
Si that the considered methods of determination of value f are mtegraUy eqmvalen^ 
awhile calculating summary force, acting on solitary ferromagnetic body, the same result 

[2 4] 
'   '  The given work shows that the considered methods of determination /, to say more 

exactly corresponding to them formulae (1-3), are integrally equivalent: the integrals 
\fA.dV ,\fP-dV ,\fm-dV (4) 
V, VB V» 

are equal to each other (here VB is the whole volume of solitary magnetic body). 
For solving this task we usedjt special integral ratio: 

Mägrad)b+b divä\dV = }*•(« a)dS, (5) 

valid for any continuous (in volume V) vectors 5 and b and reducting the integration over an 
arbitrary volume V to surface the integration over the surface S of the volume V [5] 

As a result we obtain that: all integrals (4) in the process of integration yield the same 
surface integral. This proves, eventually, the integral equivalency of the formulas (1-3). 

3 Correspondence of the Considering Formulae to Real Distribution of Volume Density 
of Magnetic Field Ponderomotive Force in the Solitary Magnet.c 

The next step of this work was the determination of the fact, that the formulae (1-3) at 
volume integration give the result, coinciding with integration of real distribution of volume 
densitv of the magnetic field ponderomotive force. # 

It was taken into account, that all three models of magnetized magnetic material produce 
outside of it one and the same magnetic field, whose influence on external source is equal and 
anti-derected to action of the applied (external) magnetic field on the solitary magnetic. 
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HOMOGENIZATION THEORY 
AND IMPURE SUPERCONDUCTORS 

Leonid Pankratov 
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The paper is devoted to the homogenization of the Neumann boundary value prob- 
lem for the stationary and nonstationary Ginzburg-Landau heat equations in a porous 
medium consisting of a melange of a superconductor fi(s) and a dielectric Q^ with com- 
plicated microstructure. Let us consider, for example, the Ginzburg-Landau heat flow 

equation : 
Hit 

= Au + (1 - \u\2)u 

«2 

dt 
in a porous medium. The so-called weakly connected domain Q^ is taken as a model of 
the porous medium. The positive integer s characterizes the scale of the microstructure. 
The domain Cl^ consists of two non-intersecting subdomains Q^ and Q\ that are 
interconnected by a "thin" set R^. 

In the present paper we study the asymptotical behavior of the solutions u^a\x, t) of 
the Neumann boundary value problem for the Ginzburg-Landau heat flow equation in 
the weakly connected domains Q^ as s -» oo. It is shown (see [14]) that the first term 
of the asymptotical expansion of the solution of the initial boundary value problem is 
described by the solution of the Neumann boundary value problem for a system of two 
parabolic partial differential equations in the domain fü (homogenized model) : 

«*i(*)|r = £ ^ (4(*)|r) + <M*)Mi - M2] - tf* - 

*»(*)^ = £ £: (4(*)|r) + ^M1 ~ N2^" ^* " u^ 
The coefficients of the homogenized equations are obtained by some local characteristics 
of the domain. 

The coupling term appears in the homogenized model because of the structure of 
the domain fi^ and it is not related to the nonlinearity. For example, the same term 
appears in the linear case (c.f. also [13]). We can regard this term as an interaction of two 
"phases" of the complex superconductor. In the particular case of the weakly connected 
domain, we can calculate all the coefficients of the homogenized system explicitly. 

The homogenization problem in weakly connected domains for the linear elliptic and 
parabolic problems was studied for the first time by E. Khruslov [6]. 

In the recent years, different boundary value problems related to the Ginzburg- 
Landau equation have been of great interest not only for physicists but also for math- 
ematicians (see, for instance, [1-4]).   The steady-state Ginzburg-Landau equation is 
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the fundamental model in the theory of superconductivity.   On the other hand, the 
Ginzburg-Landau model characterizes the superconductor near a critical temperature 

TC'' ^1«1. (1) 
% 

Within the framework of this theory it is naturally to consider a composite supercon- 
ductor fl that is a melange of a superconducting material fl« = fi\QM and a dielectric 
QW (impure superconductor). Since the current does not penetrate the dielectric, the 
Neumann boundary condition is true at the dielectric boundary ÖQ« In fact, in the 
absence of the magnetic field we can use such a boundary condition if the temperature 

of a superconductor satisfies the following inequality: 

5«0 
j-xi/a 

Tj 
(2) 

Here a is an interatomic distance and & is a coherence length (see, for example [5]). 
Thus, our approach works nicely under conditions (1), (2). It is well known that the 
magnitude of the critical temperature is much smaller than in a pure one. However, ma 
number of practically important cases we can assume that our conditions are physically 
reasonable. From the physical point of view these conditions imply the limits of possible 
applications of our model in the theory of superconductivity. Note that the emphasis in 
the paper is placed on the asymptotical properties of the abstract mathematical model of 
such impure superconductors. The dielectric Q<*> is usuaUy a strongly "fme-dispersioned 
set The notion of weakly connected domains appears here as a result of analysis and 
generalization of the notion of weak connection that is widely used in the superconducting 
theory. The homogenization results for the steady-state Ginzburg-Landau equation m 
weakly connected domains and in domains with "traps" were obtained in [8]. 

The homogenization of non-linear non-stationary equations in the weakly connected 
domains are also of a great interest. The corresponding results for the scalar nonlin- 
ear elliptic and parabolic second-order partial differential equations were proved by the 
author [11, 12] and also by A. Kovalevsky (see, for example, [9]). 
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NITMFRICAL THEORY OF EXCITATION OF AXISYMMETRIC OPEN- 
ESSMSIOW WAVE STRUCTURE ON THE BASIS OF 

TOE TOÄRY SINGULAR INTEGRAL EQUATION METHOD 

V.A. Shcherbina, G.I. Zaginaylov, S.A. Zhuchenko 

Kharkov State University, Svobody sq. 4, Kharkov, 310077, Ukraine 

Open-ended axisymmetric slow wave structures (SWS) are commonly used as 
interaSchambers in high-power microwave (HPM) sources. According to [1] finite length 
^nrluniformit/o/sWS can be exploited to ^J^^JZ^y 
frequency tunability. However, they cannot be analyzed with a proper^ accuracy_ by 
conventional theoretical methods [2], and using special -^^^ ££ 
numerical analvsis appears to be the most preferable approach [3]. In turn, the former soiar 
LTSotiaTed wJh a U amount of computations that, occasionally, results m a too high 
ZUSZ"n^cmHe to min the accuracy of simulation. Therefore a sophistication 

or development of alternative methods of study is still very actual 
Below we present a new approach, which appears to combine positive features of both 

analvtSaTand dkect numerical approaches, i.e. it will enable us to.consider the same 
£SSi*da> or 3D configurations of electromagnetic structures as those by using special 
codes but with considerably lower computational expenses. 

ConsMer an axisymniric open-ended SWS (see Fig. 1) typical ***^*££ 
wave oscillators (BWO), traveling wave tubes (TWT) and some other ™JJ^He^for 
simplicity we use the simplest model of the electron beam: hin, annular^ imgnetized, 

modulated current of given amplitude: / =(0,0,/>,z,* U^') = 

/,*(r)«p(fe / ß - *4 where * = o / c, ß = VIc, o is the modulation frequency, V» the 
beam velocity The walls of SWS are assumed to be perfectly conducting. The problem of 
SWS IxSon cL be formulated in the mathematically rigorous manner as the boundary- 

value problem: 

(A + ^_!2*7,    re^\S CD 

El=0 
where 5 is the surface of SWS, H = (l/ik)VxE, the time factor is omitted.^ 

Representing the solution of (1) in the form: E = El+E0, where E0 is some partial 

solution of (1) in the space <R3, we come to the problem: 
(A + A^O, re<K3\S & 

F\—E\ (3) 

We look for the general solution of (2) in the form Ex = VxÄ where A is the 
superposition of the double and single layer potentials with unknown densities [4] 
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Both the first and the second terms in (4) satisfy the radiation condition at infinity and 
have the jumps across S that can be expressed in terms of the densities j(r') and 7(r'), 
respectively. Taking into account that Eh must be continuous across S, we can state a simple 

algebraic relation between j(r') and 7(r') that cancels the jump in Elx, and furthermore 
using (3) we obtain a boundary singular integral equation. After integration over the azimuthal 
angle it becomes one-dimensional: 

L 

Jßfc*Mc)<=/(*x*e(ai), (5) 
0 

whereöfcz) = *(?{*-(c)f-|-^)) ^A-l^fc^^,, 

,         x     rcos(pexp|/£/(C,z,p,r;(p)]       , .    /,      ., \vi 
*fc w) = J Apr   )        **> 'fe W;<p) = ((C-*) +P2 +r2 -2rpcos<p)   , 

u(z) = j{r,z^r=K(,) > /(*) = -Eoxh^m,) > R(z) is the radial Profile of SWS. 

The kernel of (5) contains strongly singular terms ccfc-z) , integration of which must 
be understood in Adamard's sense. Numerical analysis of (5) has been fulfilled by two ways. 
One of them is associated with the interpolation quadrature formulae listed in [5], another is 
based on the original quadrature formulas. The difference between the obtained results is 
becoming negligible at a sufficiently large number of quadrature terms. In both cases after 
discretization we obtain the set of linear algebraic equations with dominant diagonal terms 
expressed through well-tabulated analytical functions (full elliptic integrals) that enables us to 
construct the computationally efficient algorithms. Results of numerical modeling for ß = 0.8 
are shown in Figs. 2-4. The main attention was paid to the study of SWS electromagnetic 
behavior within the passband of the lowest order symmetric transverse magnetic mode ( 7M0,). 

The total radiation power as a function of frequency (Fig. 2) has several sharp maxima 
associated with different axial 7M01 mode forming due to the end reflections. As it is well 

known, finite-length SWS with N periods has N + l different axial modes. In Fig. 2 we can 
clearly recognize only six of them, possibly because near the upper and lower passband ends 
they are located very closely, fusing together. The highest of them (/ = a 12% = 8.966 GHz) 
corresponds to the Jt-type oscillations and exceeds the others more then ten-fold. It is 
interesting to point out that in this regime the real part of the surface potential density 
distribution u(z) is approximately equal to image one taken with the opposite sign (see Fig. 3 
a,b), and both are almost symmetrical with respect to z = L/2. Radiation pattern in the far 
zone has only one maximum in both forward and backward directions within the 7M01-mode 

passband that agrees with the radiation features for an open-ended single-mode waveguide [7]. 
Approaching to the lower end of the passband, the maximum of radiation pattern shifts away 
from SWS axis (Fig. 4, a,b) up to normal direction at the cutoff frequency (Fig. 4,c). Beyond 
the TM0l -mode passband the level of radiation is much lower then within it, while the radiation 

pattern drastically changes becoming similar to that for a solid conducting body (see Fig. 4,d). 
Thus, application of new approach enables us to reduce the problem of excitation of a 

realistic electromagnetic structure to a one-dimensional singular integral equation, for which 
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computationally efficient numerical codes have been developed. Obtained results are in good 
qualitative agreement with experimental ones [6]. Some difference from the measured 
resonance frequencies seems to be caused by certain differences of considered SWS from 
experimental ones and neglecting the ohmic losses. 
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HAMILTONIAN APPROACH TO THE PROBLEM OF WAVE 
COLLAPSE 

Valeriy V. Gushchin 

Department of Physics and Technology, Kharkov State University, 
Svobody sq. 4, Kharkov, 310077, Ukraine 

Formation of singularities in the wave system within a finite time, or, in the other words, 
a wave collapse is one of the basic phenomena in nonlinear physics. The collapse plays an 
essential role in various fields of physics. For example, great interest has focused on collapse 
with application to beam-plasma and laser-plasma experiments, ionospheric modulation, the 
Earth's foreshock, nonlinear optics, solar wind, etc. [1-3]. 

Intense, localized, high-frequency waves can modify the medium in which they propagate 
via excitation of low frequency disturbances by their ponderomotive forces, for example. A 
common feature is that the collapse involves interaction between high- and low-frequency 
waves coupled by nonlinear interactions that cause the refractive index of high-frequency 
waves to increase with increasing the wave intensity. The resulting tendency to focus into 
regions already of high intensity can then lead to collapse. 

The Langmuir waves collapse has been studied most intensively. The main results are 
obtained in the framework of Zakharov's equations [1]. However, these equations do not take 
in to account various nonlinear effects of higher order: electron nonlinearity, variations in the 
wave dispersion law, hydrodynamic ion nonlinearities, etc. Their significance increases with the 
caverna compression and according to the estimates, all nonlinearities are to be taken into 
account simultaneously. 

A generalization of Zakharov's equations by taking into account additional nonlinearities 
turns out to be the best if the Hamiltonian formalism (HF) is used. It is necessary to underline 
that commonly used HF needs an implementation of general variants of canonical transforms 
[6]. Only after this it enables one to obtain the "improved" dynamic equations, which have the 
following form: 

dak     . ■ SHint    dbk .SHint      „    _„      „    , m —^kak=^-j^~ +,nkbk=-r^r-, Hint-H^H^~    (1) 

Here ak=a(k,t);bt = b(k,ty,6)ksa)(k);nk=Q(k) are the complex amplitudes, 

dispersion functions of the high- and low-frequency waves respectively, and H int is the 

reduced interaction hamiltonian (see the details in the papers [7,8]). 
Equations (1), written in the momentum (£,e>) representation, can be written in the 

coordinate (r,t) representation by using the inverse Fourier transform. They are significantly 
more complicated but in the limiting cases can be expressed in terms of the well-known 
equations studied in [1-3]. 

In the framework of equations (1), it is possible to obtain the increment of the 
modulation instability of nonlinear Langmuir wave cluster localized in a cavity. The single 
isolated cavern can be divided to the parts changing the general scenario for the Langmuir 
collapse. 
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Introducing a positively defined value: 

267 

'= \dk\dak ldk\ 

one can write the Talanov theorem [1-3] in the k representation with an account of higher 
nonlinearities, which forbid the existence of well-known automodel solutions. 

By using HF for the analysis of stationary solutions, one can prove that the hamiltonian is 
limited from below for the fixed plasmon number. This fact enables us to conclude about a 
possibility of existence of stable solutions. 

The presented results prove a significant impact of higher nonlinearities on the collapse 
dynamics. But a deeper understanding of the problem requires further investigations. 
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A METHOD FOR DERIVATION OF ELECTRIC FIELDS IN THE 
LOWER IONOSPHERE FROM MEASUREMENTS WITH A PARTIAL 

REFLECTION FACILITY 

Gokov A.M., Martynenko S.I., Rozumenko V.T., Tsymbal A.M., and Tyrnov O.F. 

Department of Space Radio Physics, Kharkiv State University, 4 Svobody Square, 
Kharkiv 310077, Ukraine; e-mail: 01eg.F.Tyrnov@univer.kharkov.ua 

Abstract 

The distribution of variations in the effective electron collision frequency was 
obtained at the 60 - 66 km altitude range in the lower ionosphere (experimental 
errors within this altitude range were less than 50%). A technique for estimating the 
variations in atmospheric electric fields at the lower boundary of the ionosphere was 
developed using the experimental values of the effective electron collision frequency. 
From our measurements Mows that the electric field E > 0.25V ■ m"1 in approxi- 
mately 70% cases under quiet ionospheric and atmospheric conditions. These facts 
must be taken into account in the investigations of ionospheric processes, meteoro- 
logical and propagation effects. 

It is well known that electric fields can produce large disturbances in ionospheric 
parameters of the lower ionosphere. Our experimental results indicate that a possible 
cause of the appearance of big enough variations in the electron collision frequency is the 
effect of external electric fields of atmospheric origin. This provides an opportunity to 
measure electric fields in the lower ionosphere using remote sensing instruments employing 

radio-wave techniques. 
The measurements were made with the Kharkiv State University partial reflection 

facility during 1978 through 1997 at frequencies of / = 1.8 - 3.0 MHz using a 25-micros 

pulse length. , 
The data on the effective electron collision frequency, i/, are collected at altitudes ol 

60, 63, and 66 km. The transcendental equation in v 

ÄL      [{u + COL)
2
 + v 

[(to - uLy + v 

LÜ ■VL)
2
K, 

W-UIJ. + v lK (*=*>) 

A\ w •WL ?K2 (<-* '+"!. + v2Kl U+UL 
(1) 

is being solved where Al is the intensity of the extraordinary mode of partially reflected 
signals averaged over an 8 to 10 min interval, and A\ is the intensity of the ordinary 
mode of partially reflected signals averaged over the same interval, wL = 2irfL, /L is the 
component of the electron gyrofrequency along the ambient magnetic field direction; in 
middle latitude experiments, the value of fL is assumed to be equal 1.35 MHz, Ks and 
Ka are the kinetic coefficients which describe the kinetic effects in the permittivity e 
and conductivity a of the lower ionosphere. The dependences Ke{x) and Ka(x) can be 
approximated with an error of an order of a few per cent by the relations 

KJx) = 1 + fli 

h + x2 
ai = 0.155,    6i= 0.075,    0.05<x<oo; 

#,(*) = 0.89+ 7-^-3;    «2 = 0.027, o2 + xl 
0.052,    0 < x < 3.5; 
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Ka{x) = 1;    3.5 < x < oo. 

where x = (w — ^L)JV for the extraordinary mode, and x = (w -f- UL)/I/ for the ordinary 
mode. Partial reflection random measurement errors in 1/(2) do not exceed the magnitude 
of the order of 30 — 50% in the altitude range indicated above. 

The processing of partial reflection signals have allowed us to establish a database that 
presently contains data on the electron collision frequency at 60, 63 and 66 km over more 
than 170 events. 

If we take into account the fact that fluctuations in the number density of neutral 
particles and in their temperature in the ionospheric D region generally are not more 
than 10 — 20% (in reality their most probable magnitudes are significantly smaller), then 
the sharp maximum in the vjvm distribution should be expected within a (1 ± 0.2)i//z/m 

value interval (here vm is the model value of nue at the same altitude from which partial 
reflection signals are received; vm(60km) = 3.75-1075ec_1, vm(Q3km) = 2.55-107sec-1, and 
ism(66km) = 1.68 • 1075ec_1). However, taking into account random measurement errors 
of 70%, the values of v/um exceed the above-mentioned threshold for the conditions of 
our experiment. From our standpoint, a single reasonable explanation of this fact could 
be the hypothesis that Te > Tn (where Te is the electron temperature, and Tn is the 
temperature of neutral particles) in 70% of cases in the lower part of the D region. 

The most probable cause of existence of increased values of Te can be strong atmo- 
spheric electric fields. Supposing this is true, electric field values could be estimated from 
v jvm measurements. It is natural to suppose that the cases of v = vm correspond to the 
absence of electric fields. 

In order to obtain the dependence of E upon v, let us use the well-known set of 
balance equations in the electron number density N, the electron temperature Te, and 
the number density of positive ions iV+ in a plane D-region weakly ionized plasma, and 
take into account the condition of quasi-neutrality 

^ = ft + vd\N - vaN - arN
2(l + A) + £ i{Dt + Da)~X , (2) 

8M+ f)  ( BM+) 
— = ft - arN\l + A) - aiN

2X(l + A) + £|(A + Da)°-~-\, (3) 

§=3^-^-^< W 
N+ = N + N-, (5) 

where t is time, ft is the total production rate per unit volume of positive ions resulting 
from the ionization of neutral atmospheric constituents, v& is the effective rate at which 
the negative ions are destroyed by electron detachment, A = N~ jN is the negative ion to 
electron number density ratio, N~ is the negative ion density, va is the effective rate at 
which the negative ions are formed by the attachment of electrons to neutral constituents, 
ar is the effective ion-electron recombination coefficient for positive ions, Dt is the coef- 
ficient of eddy diffusion, Da is the coefficient of ambipolar diffusion, z is the altitude, a; 
is the effective ion-ion recombination coefficient, k is Boltzmann's constant, Qe/N is the 
average energy acquired by the electron from an external source of heating (for example, 
from external electric field), 8 is the fractional loss of energy per electron collision, Tn is 
the neutral constituency temperature. In the ionospheric D region, the disturbances in 
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the ion temperature are neglected because they are M/m times less than the disturbances 
in Te (M is the average ion mass, m is the electron rest mass). For a low-frequency dis- 
turbing electric field E (that is when the inequalities to2 <€.u2

L<i/2 hold, where wi is the 
frequency of the disturbing field), the kinetic coefficient Ka{\w\ ± uL\/u) ~ Ka(0) ~ 1.4, 
and a ~ \Ae2Njmv where e is the electron charge. The multiple time-scaling analysis 
helps considerably simplify the initial set of equations (2)-(5) by introducing the following 

time scales: 

h = tTe = (Sis)'1,    i2 = tjv = ("«* +"a)-1,    t3 = tN = {4qi{ar + \ai)/{l + \)} 
-1/2 

where tTe is an electron temperature relaxation time, t'N is the evolution time of the 
disturbances in N caused by activating attachment processes, tN is the evolution time of 
disturbances in N due to changes in the ionization-recombination balance. Note that m 

the lower ionosphere txe < t'N < ijy. 
For 0 < t < tTc, one can easily derive the following simplified energy balance equation: 

where: 6 = Te/Teo, v = v06
h'\ 9(0) = 1, E(t < 0) = 0. This equation is no longer 

dependent on N and N+. As a result, in a quasi-steady case, we readily obtain the 

following relation between E and v. 
v6/5 

E2 1.67 10-18Tey 1 (6) 

o" stands for were E is measured in V ■ m_1, Te in K, and v in sec'1. The subscript 
parameters of the ionosphere at E = 0. When deducing (6), transport processes were 
neglected for L > 10 m ( L is a characteristic size of the disturbed region) at the heights 

z „ 60 - 70 km. Using (6), one may determine the atmospheric electric field on the lower 
ionospheric boundary from the experimental values of v. If we set Tn = Te0, then the well 

known relation 
i/o = 5.8-10-niVnTe

5/6, (7) 

were Nn is the neutral particle number density at a particular altitude (in cm"3) allows 
to determine the undisturbed values of v. Usually, we assume v0 = um, although it is 
possible to determine v0 from partial reflection data. The results obtained with relations 
(1), (6), (7) and our partial reflection data show that on the ionospheric boundary there 
are'electric fields of E > 0.25V • m-1 in about 70% of cases. The analysis of relations (6) 
and (7) shows that relative random measurement errors in electric field intensity E are 
due to relative random measurement errors in u, and in our experiments do not exceed 

30-50 %. 
The results obtained significantly improve understanding of complicated physics of 

the disturbed ionospheric D region. The presence of significant electric fields at the lower 
edge of the ionosphere (when partially reflected signals occur) indicate that an additional 
source of electron heating should be taken into account while investigating a disturbed 
ionosphere and radio wave propagation conditions. The technique described here permits 
the real-time derivation of changes in the electric field intensity at the lower edge of the 
ionosphere from partial reflection measurements. 

The authors have been supported by Science and Technology Center in Ukraine Grant 

No. 471. 
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OF VLF SIGNALS OF ELECTROMAGNETIC BACKGROUND 
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Siberian Institute of Physics and Technology 
Novo-Sobornaya Sq., 1, Tomsk 643050, Russia 

tel: +7-(3822)-412797, fax: +7-(3822)-233034, e-mail: natalia@elefot.tsu.tomsk.su 

The problem of searching for forerunners of earthquakes of different intensities numbers 
tens of years but nowadays is still one of the hot unresolved problems. Recently it has been 
shown that the processes of preparing the earthquakes that take place in the Earth lithosphere 
manifest themselves not only on its surface, but in the variations of parameters of the 
ionosphere plasma as well. This manifestation is ambiguous and, as a rule, is at the level of 
noise of ionospheric plasma, that does not enable one to use only these effects as practical 
earthquake forerunners. 

It was established by numerous studies in different seismoactive regions of Earth that 
anomalous changes of intensities of natural electromagnetic radiations (EMR) in the wide 
range of frequencies preceded a significant number of strong earthquakes. These anomalous 
changes of intensities of natural radiations are formed, in general, by ionospheric plasma. For 
the first time such anomalous changes of natural electromagnetic fields before the earthquakes 
were registered in 1973. They are represented mainly by an increase or reduction of intensity of 
a natural pulsing electromagnetic signal, in comparison with the background, for several or 
more hours before the strong underground hits. When generalizing these results, it is necessary 
to point out to certain general regularities of observed anomalies of the ionosphere parameters 
connected to the seismic events, in spatial and time scales. In the spatial scale it is: 

- "effect of crater": spatial scale of the earthquakes preparation process decreases when 
approaching to the source; 

- latitude-longitude asymmetry: vertical spatial scales of F2 layer along the parallels are 
considerably greater than the spatial scales along the meridians. 

Besides, two characteristic time scales of manifestation of the earthquake preparation 
processes are observed in the ionospere: l)several hours, and 2)several days before the 
earthquake. 

Based on [1-4], it is possible to note the principal anomalous characteristics of 
earthquake harbingers (in the range of heights of 90 to 2500 km) according to the results of 
various observations: by the methods of ground-based, satellite and vertical sounding, VLF- 
radiographing the wavetide in the Earth ionosphere, reception of ULF radiations, etc., in a 
wide range of frequencies: 

- change of electronic concentration at all the ionopsheric levels and height h that causes 
characteristic variations of N (h)-structures; 

- increasement of fluctuations of critical frequencies in ionosphere; 
- increasement of variations with t> 2 h in the critical frequency f o of the F2 layer, 
- pulse and noise radio radiation in the range of frequencies of 10Hz to 10kHz and more; 
- generation of alternating EM fields in the range of frequencies of 1kHz to 10kHz; 
- formation of inhomogeneities of various scales in the whole ionosphere. 
The listed harbingers are characteristic for the earthquakes with magnitude M > 4 and 

manifest themselves during several days to hours (tens of minutes) on vast territories at 
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hundreds and thousands of kilometers. The authors would like to mark that the physical 
mechanisms connecting the disturbance in ionoshere with the earthquake preparation processes 
involve both electromagnetics and acoustics, as revealed by research. 

A qualitatively new information for the forecast of earthquakes is possible to be obtained 
by sounding the whole space of ionosphere disturbed by forerunners, i.e. by realizing a 
monitoring of space-time parameters of the ionosphere in a wide range of heights and vast 
areas, that is by using ionosphere as a detector of the events accompanying the earthquake 
preparation process. 

In this work, the regular measurements of parameters of VLF-signals along the routes of 
different orientation and extention, passing near seismoactive regions, and the data of vertical 
sounding of ionosphere are analyzed. These data were obtained by a receiving-measuring 
complex of electromagnetic background of environment in different radiobands including the 
frequencies from 0.01 Hz to 30 MHz. Joint analysis of data has shown that in the time period 
from 15 minites to 4 hours before the earthquakes, an increase of amplitude of VLF-signals 
and a growth of self-wave structure of F2 layer can be fixed. In Fig.l, the amplitude value of 
VLF-signal at the frequency of 12.9 kHz along the line Tomsk-Japan on June 9, 1997 are 
presented. During this period, manifestations of 2 strong earthquakes occured: l)at 07.19.48 
UT in Xizang, M=4.5, and 2)at 09.36.08 UT in Hokkaido, Japan, with M > 5. Before the 
earthquake, an increasement in the signal amplitude was observed. These earthquakes occured 
at the magnetoquiet time. It points out to the absence of both planetary sources of 
electromagnetic radiation and hence the conditions perturbing the propagation of 
electromagnetic waves, and local anomalies of EMR due to the seismoactive phenomena of 
earthquake preparation. 

1568.879 

flnOHMfl 

215.009   -1—r 
9 10 11 13 13 14 15 16 17 18 19 20 21 22 23 24 

Fig.l Diurnal variations of amplitude receiving the signal frequency 12.9 kHz   of route 
Tomsk - Susima for 09.00.97 y., arrows show time-start the earthquake 

In Fig. 2, an increase the signal amplitude is observed at the frequency 12.9 kHz on the line 
Tomsk-Japan on November 28, 3 hours before the second earthquake at 06.10.48 UT in the 
Sea of Okhotsk, with M> 5.1. 

This earthquake occured at the background of a strong magnetic storm, i.e. before the 
earhquake a burst of X-ray class was recorded. Thus, the manifestations of seismic events 
before earthquakes, in amplitudes of VLF-signals, are observed both in magnetically disturbed 
periods and in magnetically quiet time, see Fig.3. 
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Fig.2 Diurnal variations of amplitude receiving the signal frequency 12.9 kHz of 
route Tomsk - Susima for 28.11.P7 y 
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Fig. 3 Diurnal variations of module magnetic feld on a) for 09.06.P7 y. and 
on b) for 28.11.97 y 

From the additional spectral analysis of fluctuations of critical frequencies of F2-layer it was 
found out that on the previous day before a group of strong earthquakes with M> 4.5, located 
approximately in one region, the increase of separate spectral peaks (periods 4.8; 1.846; 1.2 
and 0.522h.) occured. This fact can be used as an additional information in determination of 
electromagnetic forerunners of earthquakes. 
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MULTI-SIGNAL STUDYING OF SEISMO-IONOSPHERIC INTER- 
CONNECTIONS USING VLF OMNIPAL RECEIVER 

M. Hayakawa1,0. A. Molchanov2, A. V. Shvets3*, N. Yamamoto1 

■> The University of Electro-Communications, 1-5-1, Chofugaoka Chofu^shi Tokyo 182, JAPAN 
2NASDAEORC, 1-9-9, Roppongi, Minato-kuToJo 106 >\f™ 

3 Institute of Radio Physics and Electronics, 12 Proskury St., Kharkov 310085, UKRAINE 

ELF-VLF measurements aimed for the seismo-ionospheric effects studying had been 
started at the University of Electro-Communications in Chofu, Tokyo from the beginning of 
W ^ The testhvg of this field site, placed in a such industrial region as Tokyo is, showed a 
gTd quality of measurement with a wide spectrum of electromagnettc ph_ m = 

resonance, Trimpi effect 
etc.) Electronic data bank 
was stored with high time 
resolution (0.1 s) consisting 
of diurnal runs of narrow- 
band signals received from 
Omega, Tsushima (till its 
stopping); China; NPM, 
Hawaii; NWC, Australia 

120   140   160   180   2oo   2zu yjj; stations using digital 
Day of 1997 • rv       "DAT 

Fie 1 Wavelet transform amplitude of terminator minimum time vana- receiver OmniPAL. 
tions of Omega Tsushima signal along with earthquake activity withm the This work is a further 
third Fresnel zone of the corresponded propagation path. extension of the study by 

Havakawa et al [1996] in which the terminator minimum time method for the searching of 
SI   — las proposed. The authors.found^^o^^n^ 

H minimum time in diurnal dependencies of the Omega (,isu 
shima) VLF station just few days before the Kobe earth- 
quake (M = 7.2 January 17, 1995) and repeated up to the 

day of the earthquake. 
In the present work we apply a new processing tech- 

nique based on wavelet analysis to clarify the hypothesis 
about interconnection between an intensification of planetary 
waves and seismic activity supposed in the original paper by 
Hayakawa et al. [1996], An amplitude of a Morlet wavelet 
transform calculated for a day-to-day dependence of the eve- 
ning terminator minimum times in diurnal runs of the Omega 
signal received at Chofo, Tokyo is presented in Fig. 1. The 
contour map of the wavelet amplitude is combined with a 
time-date map of the earthquakes occurred along the propa- 
gation path during the semi-annual observational period. A 
geographical distribution of corresponding earthquakes are 

Fig. 2. Earthquakes distribution in 
the vicinity of the Omega, Tsushima 
- Chofu, Tokyo propagation path. 

* Invited scientist at EORC NASDA of Japan during preparation of this work. 
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amplitude is combined with a time-date map of the earthquakes occurred along the propagation 
path during the semi-annual observational period. A geographical distribution of corresponding 
earthquakes are shown in Fig.2. with the strongest cases (M>5) marked by numbers in both 
graphs. The contour lines shown begin from 1/3 of the dynamic range of the wavelet transform 
amplitude. An intensification of some frequency components in this graph can be referred to the 
periods in March and July with an enhancement of seismic activity included the most strong 
earthquakes (M ~ 5.1-5.9, cases 1-4). It is clearly seen two wide maxima corresponded to perio- 
dicity of about 10 days. In the third case the ~10-day oscillations in the lower ionosphere pa- 
rameters ascribed to the evening terminator time are accompanied in part by ~5-day and ~2-day 
harmonics. We can also see not so prominent maximum of about 8 days period preceding to the 
last earthquake (case 4) with M = 5.1. A comparison between different station signals show, that 
the effect of increasing of the 10-day oscillations corresponded to seismic processes is observed 
rather clearly for relatively short (less than 1000 km) propagation paths, such as Tsushima - To- 
kyo path is in our case. Nevertheless, some coincidence is observed in the terminator minimum 
fluctuations of China and NPM station signals within a propagation path of about 3000 km and 
6000 km length correspondingly. 

In the result of this study on the base of wavelet analysis of VLF data describing the lower 
ionosphere parameters fluctuations ascribed to the terminator time and covering a semiannual pe- 
riod we can make the next conclusions. 

•An enhancement of periodical components in fluctuations of parameters of VLF signal 
during evening terminator period is observed before relatively strong earthquakes (M = 5.1 - 5.9). 

•These oscillations arise with periods of about 10, 5, 2 days which are in the range of dif- 
ferent modes of the atmospheric planetary waves. 

•Data from relatively short propagation paths (less than -1000 km) reveal a better corre- 
spondence to seismic activity in comparison with more longer paths. 

The signature of planetary waves in the fluctuations of ionospheric parameters observed in 
our study connected with seismic activity let us to consider the planetary waves as a possible part 
of a mechanism of triggering of earthquakes. We hope that experimental evidences of a connec- 
tion between seismic processes and planetary waves found in our study will induce a discussion 
about this mechanism. 
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STATISTICAL ANALISYS OF A DISPLACEMENT 
OF AUTOCORRELATED FUNCTIONS PROCESSING 

PROCEDURES BY INCOHERENT SCATTERING IN IONOSPHERE 

Mazmanishvili A.S., Rogozhkin E.V.,  Suriadniy A.S. 

Kharkov State Polytechnic University, 
Ukraine, 310002, Kharkov, Frunze str., 21 

The new statistical approach to the analysis of data of an incoherent scattering in iono- 
sphere is offered. It consists on accounting the displacement of values of autocorrelated 
functions estimations. It is shown that with such account the error of estimations of tem- 
peratures of ionic and electronic ionosphere components is reduced up to twice. 

1. The advantage of the incoherent scattering (IS) method is a possibility to trace the dy- 
namics of ionosphere processes during long periods (solar activity circle, seasonally and daily 
changes) as well as short periods of time. For want of those it's suggested that hardware observa- 
tions be conducted correctly, it means that hardware parameter changes take no place or they are 
post-corrected. The information about ionosphere is being obtained using the values of autocor- 
related functions (ACF) of signal scattering spectrum valuation analysis and it still might happen 
that in conditions of great estimation variance the estimations of ionosphere parameters would be 
also displaced. Thus the changes of external conditions lead to errors of systematic kind. There- 
fore the problems that appear are to reveal the fact of displacements existence, to detect the de- 
gree of those displacements, to detect the character of errors and to find out how to avoid such 
errors. 

On the nature the IS signal is properly a casual signal with normal rule of amplitudes 
distribution. Each ordinal value of IS ACF may be considered as a normal random value. When 
the data are numerically processed one of processing operations is to put an ACF R(r) to a stan- 
dard form when i?(0) = l. Dividing all the counts of ACF on its zero count approaches this. 
When estimating necessary ionosphere parameters it is these normalized ACF data to be used. 

In this work the question of ACF valuations displacement appearing as a result of nor- 
malizing procedure is considered using an example with selected ACF sequences. Meanwhile it's 
suggested that ACF-valuations are not displaced till the normalization and the noises relevant to 
all ACF-counts are normal values with zero expectations and fixed variance. 

2. Mathematically the problem is being reduced to statistical exposition of a casual value 

- estimation of R which is expressed by the ratio 

R = Xn/X0, (1) 

where X0 - zero ACF-count, and Xn - remaining ACF-counts (« > 0) The densities of ACF- 

counts distribution are given below 

1 f   (x0-k0f\ 
Po(xo) = 

2/r<7n 

-expi 
lal 

Pn(
Xnh 1    cxpf  k-*")1 

2^C7„      1       2cr„2 (2) 

where k0  - perfect (undisplaced) ACF-value (n > 0), o\  - variance, k„ - perfect ACF-value, 

a2
n   - variance (n > 0) . The distribution densities of the required ratio equals to the following: 
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00 
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For digital accounts realization the following modification of formula (3) is convenient: 

fj_)\ 

erf (a) - error function. where A = 

(3) 

(4) 

In special case, when k0=0 mdkn=0 for any n, densities (4) turns into its analogue, 

which corresponds to a casual value, distributed under the Coshi's law. There are no moments 
this casual value has, and when estimating by method of maximum approaching it is an argument 
point used, which gives maximal densities. In this case estimation displacement appears because 
of k0 ± 0 and k„ * 0 . 

3. To detect the degree of the displacement the modeling numerical experiments were 
conducted. In those experiments well known ACF-depending were used as perfect values At 
fig. 1 an example of 45-item densities set is represented f(r) Account parameters: Tt = 1000K, 

Te =2000K, working wavelength -2 m, a0 = an = 3% . Estimations according to depending 

(fig.l) are given at fig.2. The set of estimable depending is taken for a perfect case 
cr0-an=0 % (continuous curve) and a0 = an = 30% (circles). Figures shows that even surplus 
estimation displacement take place. Using (5) one can show that estimating surplus A? we ob- 
tained 

At figures 3-6 there are estimation results of selected pairs of ionic and electronic compo- 
nents taken for different variances represented (selected average values and scatter value are 
specified). The results were obtained conducting modeling numerical experiments (with use of 
pre-counted ACF-hbrary). It's obvious that surplus account (5) realization (pictures on the right) 
reduces to diminution of obtained temperature estimations statistical scatter on a comparison 
with traditional approach (pictures on the left). 

4 Thus the distortions of ACF-data appearing during the data zero count normalization 
are investigated m the work. Assuming parasites normal and signal/noise ratio value small an ex- 
plicit expression for displacement Ar of ACF-estimation/? is obtained. Account of specified 
displacement will allow to obtain more fiducial information about ionosphere parameters 

f(r)      10   " 
ACF 

-0.5 0.0 0.5 

Fig. 1. The set of densities f(r) of casual 

-0.5 

Fig.2. Perfect ACF (continuous line) 
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estimation for 45-item ACF. and its R estimations (circles). 
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Fig.3. Ionic temperature estimation and scatter (T, = 856K;Te = %56K). 
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Fig.5. Ionic temperature estimation and scatter (T, = 856K;Te = 3181Z"). 
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Fig.6. Electronic temperature estimation and scatter (Tt = 856K;Te = 318LT). 
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VLF SCATTERING FROM RED SPRITES: VERTICAL COLUMNS OF 
IONISATION IN THE EARTH-IONOSPHERE WAVEGUIDE 

Craig J. Rodger (1), James R. Wait (2), and N. R Thomson (3) 

(1) British Antarctic Survey, Cambridge, United Kingdom 
(2) 2210 East Waverly, Tucson, Arizona, USA 
(3) Physics Department, University of Otago, Dunedin, New Zealand. 

Abstract Red Sprites were discovered by chance in 1989 when a Low Light TV system was pointed above an 
active thunderstorm Optically, red sprites are observed as clusters of short-lived (-50 ms) pinkish-red luminous 
columns, stretching from -40 km to -85 km altitude, each about 1 km wide. Red sprite discharges produce 
columns of ionisation in the Earth-ionosphere waveguide, which can persist for up to - 100 s at higher altitudes. 
The ionised columns have been observed through "VLF Sprites", perturbations of the phase and/or amplitude of 
subionospheric VLF transmissions, which can be used to study the electrical properties of the red sprite columns. 
Previous theoretical studies of red sprite columns have simplified the problem by assuming the columns were of 
infinite length, or inside a "flat-earth" waveguide. We present calculations using well-developed VLF 
propagation methods to describe a finite length sprite inside a realistic Earth-ionosphere waveguide. 

Introduction 
Red sprites were discovered by chance in 1989, when a Low Light Level TV (LLLTV) system was 
tested through night-time observations of near-horizon stars. During this time, an active thunderstorm 
occurred, just over the horizon. The LLLTV camera observed a twin upward flash originating in the 
distant cloud tops lasting over two 1/60 s TV fields [Franz et al, 1990]. This was the first known 
observation of this phenomenon, now termed a "red sprite". Optically, red sprites are observed as 
clusters of short-lived (~50 ms) pinkish-red luminous columns, stretching from -40 km to -85 km 
altitude, each about 1 km wide [see the review by Rodger, 1998]. While the original observation was 
made with a LLLTV camera, red sprites are often visible to the unaided human eye. 

Red sprite discharges produce columns of ionisation in the Earth-ionosphere waveguide, which can 
persist for up to - 100 s at higher altitudes. The ionised columns have been observed through "VLF 
Sprites", perturbations of the phase and/or amplitude of subionospheric VLF transmissions, which can 
be used to study the electrical properties of the red sprite columns. Previous studies of VLF scattering 
from red sprites have made a number of simplifying assumptions; for example assuming the columns 
are infinitely long to examine the scattering from multiple interacting (non-Born) columns, or 
examining a single column inside a "flat-earth" waveguide. In this paper we make use of a modified 
form of the theory put forward by Wait [1991], to examine a column of ionisation inside the 
waveguide, and including the effects of mode conversion at the scatterer. The Wait [1991] expressions 
are extended to remove the first order Born approximation used to estimate the induced currents on the 
column. 

Scattering from a Column in the Earth-Ionosphere Waveguide 

In our scattering situation the Earth's surface is at r = a, and the ionosphere at r - a+h in a spherical 
coordinate system (r, 0, <fi), with origin at the Earth's centre. The Earth's surface is characterised by 
constant surface impedance Zg and the reflecting boundary of the ionosphere by an effective surface 
impedance Zv The time factor in our analysis is exp(+jcot), where a is the angular frequency of the 
primary field. The radial (i.e. vertical) electric field, at great circle distance s = r0, 0 = 0, and r = a+z\ 
is designated E* (s, z% where z' is the height of the observer above the Earth's surface. The scattered 
field from a radially orientated column of ionisation, stretching from r = a+za to r = a+h, with 
conductivity aiz1) = a (i.e. constant with z\ cross-sectional area ÖA, at great circle distance dx from 
the source dipole (and great circle distance d2 from the observer) is designated E'(s, z1). Wait [1991] 
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shows that the ratio of the scattered field to the primary field at the observer (point P, at great circle 
distance d from the source dipole and altitude z^ is: 

E?(d,z2) y       1 2njkdxd1 

_e-ß{äi+<h~<1) x n    m ; __^^_ a) 

where  k=Je~^(D, %={kal2)™(dla\        *, = (faß)« (</,/«),      z2 = i^2)m (djd), 
v, = (kail)™ kh, yx = (ka/2)^ k zx,        y2 = {kail)™ k z2, 
n order number of the primary (incident) waveguide modes, 
m        order number of the scattered waveguide modes, 
Gn, Gm height gain functions, which satisfies the differential equation, 

<PG„/df = (t„-y)G„ 
for eigenvalues t„, which satisfy A(i) B(f) -1=0 [see Wait, 1991, or Wait, 1995] 

/1„, Am excitation factors of the waveguide modes, 
C        mode conversion factor, which in the case of an ionised column from z = za to z = h is: 

c.--i fG.MG.M* h 

A simple modification of the working equations in Wait [1991], is to replace the actual column 
conductivity o(z) by an effective (complex) conductivity o;(z% The implementation of this step is: 

aiz1) ÖA^> oiz^Ttä* => ae(z) % a2 => [Z^z) + ZJ1 

where   a is the radius of the conducting column, 
Zjiz) is the axial (z' dependent) internal impedance of the column, 
Za is the external impedance of the column, 

Once again assuming that electrical properties {a, ec, pc) of the column are independent of z\ the 
column impedances are given by [Wait, 1986]: 

f 1 ^       Wc°>  h(r£) 
2mNa + jecw lx(yca) 

where yc = ^MM^ + Jsfi>) 

Ixis the modified Bessel function of type one and order x, 

Z^ = !&£■ K0(J k ä) where K0 = modified Bessel function of type two and order zero 

Example Calculation 
The scattered electric fields from red sprites can be investigated using equation (1), along with the 
modification detailed above. We investigate the situation appropriate for the VLF transmitter NLK 
(Seattle, 48° 12' 15" N, 121° 55' 00" W, 24.8 kHz) propagating to Colorado, where several red sprite 
research campaigns have been conducted. The transmitter-column distance is set to 1000 km, the 
column radius a is 500 m, lowest column altitude 50 km, and column conductivity a is 10"4 S/m. The 
surface impedance Zg of the ground (with electrical properties ag, Sg, ßg) is given by: 

z   (120^)LJM 
? 

Of great importance in any studies of propagation inside the Earth-ionosphere waveguide is the 
selection of an ionospheric model. We make use of propagation parameters produced by the US Naval 
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Ocean Systems Center program Modefinder to calculate the waveguide mode eigenvalues, and the 
ionospheric surface impedance Z(, which is dependent upon the mode order (n, or m). The ionospheric 

height h is 84 km, which is reasonable for night-time propagation. Given the quite short propagation 
distances involved in this situation, a large number of modes must be included in the calculations. 
Guided by the results of Modefinder, we include 22 modes in our calculations (although this includes a 
large degree of redundancy). 

Figure 1 shows the magnitude of the ratio given in equation (1). As is clear, there is a large degree of 
variation in the observability of the scattered signal relative to the primary. However, this is somewhat 
similar to the results of Rodger et al. [1998], where there was large variability in the scattered signals 
azimuthally around a set of columns. Thus, one can expect large variability in the scattered signals in 
two situations - when one moves azimuthally around a set of columns, but also when one travels 
radiaily away from a set of columns (a red sprite event). 

At a great circle distance of 200 km from the column (that is the observer is 200 km from the column 
and 1200 km from the transmitter), the magnitude of the ratio of scattered field to primary field is - 
27.2 dB. At 1200 km from NLK (towards Boulder, CO), the primary field strength is 74.15 dB above 
1 nV/m (about 5.1 mV/m). Thus the perturbation is 224.4 jiV/m, which is very small. However, 
Rodger et al. [1998b] have shown that the field from 15 columns (experimentally determined from a 
red sprite image) can be more than 20 dB higher than that for a single column, resulting in a 
perturbation of -2.23 mV/m, which will certainly be detectable! Rodger and Dowden [1998] estimate 
a reasonable lower limit for direction finding measurements of VLF sprites from NLK as 30 dB below 
the primary (the detection limit is more like -40 dB). Figure 1 suggests that VLF sprites should be 
observable on NLK for most great circle distances from 100 km to 2000 km, but with a small "blind 
patch' near 450 km (depending on the number of columns present). Dowden et al. [1996] found that 
the detection efficiency of (optical) red sprites through observations of VLF perturbations was -95%. 

600    800   1000 1200 1400 1600 1800 
Radial distance from columiVkm 

Figure 1. The variation in the magnitude of the ratio of the scattered field to the primary field (as 
given by a modified equation (1)), with distance from the radiating column. 
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WAVELET ANALYSIS OF THE ELF STATURES OF GLOBAL 
THUNDERSTORM ACTIVITY 

Vladimir Vinogradov, Galina Litvinenko 

* the given wo* the signals from near andean« fl—rm• «Jj££ rf £ 
method of wavelet transform with the purposet0 *f » ^^fwhln *e titunderstorm 
Iff -noise component in the mvesttgated process*,« s■■*£££. on a specfral plane 
center moves up to a reception pomt, the Schumann orgtobal «so 
decrease, gaining a character of flicker-notse process wth a power spectrum    / 

accepting values in limits [from 1. to 1.2]. 

^„«ion. The radiation from the ~^££g^££££ 
spherical Earth-ionosphere cavrty to tto££ *«SÄ-ta. « a«*- » * 
Low Frequency (ELF) range (4-40 H4 ^»^T ^e        * tra of ELF noise, the 
research of this range of frequences In the^mertal1»     J h     oti^ for 

resona.ce maxima on cer£n *«.»«* *tÄ *1» - <■» **; 
the first time was specified by Schumann ii]. ne „   d Med ^ Baiser a„d 
ionosphere resonator eigen frequences, »« were ^emauy j^ ^ ^ 

Wagner, Such a ^ <*££*» ^™*££l As itwas shown earlier 
frequencies 8,14, 21, 26,32 ta usually caueu connected mainly to a radiation 
(see for instance [2]), electromagnetic energy of ELF^range' »^ ^   d mtracloud 
^vertical thunderstorm discharges (disc^ ^ a 

discharges). It is necessary to ^^^ 
measurement of signals from long-distance thunderstorm^ AS     g {  („ m 

is accepted to name a thunderstorm activity ofglobal "«^^Sse  However, for the 
äscharges in In) and produces Mu-f»^ 
observations of a near thunderstorm signals^ * ^J™^ ^ the signai intensity 
to 500 km from the receiver, the spectra form ^^^^d resonLe maxima 
increasesmtensto hundreds time, Secondty^ 

in the energy spectra^^^f^Z^^ * ^ *« s^eSted t0 

In view of such spectral character or IHMU manifested flicker-component. 
M^'-^fc^^^niÄnSS. SL«* l/f- »oise, is The flicker-noise or, as tt is accepted to name it m me 
characterized h, a spectra, de-y which de^nds on frequency£ /7^-JT -^ rf 

constant accepting the values from 0.8.up to2 Till now 
thunderstonns has not been mve^ btained in the y0 

Observatio» data. ^^^^^,^W Observatory during the 
Astronomy Institute of the NAS-™^ carried ^ by a ^ 0f the employees 
summer season of 1997. The experiments in* nt authors 

of Ionospheric Research Department of th^.^^2^ signals was measured, 
for research. In experiments, the vertical electnc*^£^* J^ by the near 
the noise circumstances for which in the range of 4 to 40 HZ are 
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thunderstorm discharges, rainfall and wind. The characteristic feature of a reception tract was 
in building-up a "rectangular" frequency characteristic in the band of the first five Schumann 
resonances. The level of noise signals corresponding to the Schumann maxima at the place of 
reception was \Ez\*>(2 + 4)-10~4 V/m that did not contradict with the known from the 

literature data. 
Method of the analysis. Processing of signals from the near and long-distance thunderstorms 
was carried out by the method of wavelet analysis which is now widely applied in the problems 
of signal processing. For one-dimensional signals s(t), a wavelet transformation consists in their 
expansion in terms of obtained from the mother-wavelet $(t) basis of functional Hilbert space 
by the scale transformations and shifts: 

*(0 = I 2>I>;(0, (1) 

where y/"(t) = 2'm,2x¥(2'mt-n),   m,n e{...,-2,-L0,l,2,...}, M is the scaling index, n is the 
translation one. 
So the wavelet transform performs a time-frequency description of the signal s(t) with the 
wavelet coefficients s™. 
To prove our supposition that ELF signals produced by the near thunderstorms have 
component with a spectral density proportional to 1/ fr, algorithm developed in work [3] for 
determining the spectral parameter y was used. The indicated algorithm is based on a maximum 
likelihood estimation for the wavelet coefficients  s™. It was supposed that the near 
thunderstorm signal s(t) can be considered as a superposition of a flicker-component and a 
white Gaussian noise: 

s(t)=f(t) + w(t), (2) 

where f(t) is the flicker-type process, w(t) is the white Gaussian noise. Because of the linearity 
of the wavelet transformation, the wavelet coefficients s™ for (2) are also a sum of two 

components. Wavelet coefficients s™ for (2) were obtained numerically. 
Results. Thus we analyzed the signals from long-distance and near thunderstorm centers. A 
special interest for processing represented a recording, which included both as "quiet" 
conditions (global thunderstorm activity) and the beginning of a near thunderstorm. For these 
events in Fig. 1 a histogram of a variation of parameter y as function of time is constructed. 
Simultaneously, in Fig. 2 a time dependence of the signal to noise ratio (SNR) is presented ( 
hs,TQf(t) was assumed as the signal in (2)), to show the efficiency of s(t) modeling with the 
flicker noise component. A comparison of the graphs in both Figures shows good correlation 
in the behaviour of obtained dependences. While a thunderstorm center is moving up to the 
receiver, substantial increase of the values y and signal to noise ratio takes place. Estimation of 
the values y and SNR from Figs.l and 2 showed, for a signal of a near thunderstorm, that 
y=1...1.2 and SNR 27...32 dB that proves the presence of a clearly expressed flicker- 
component in the investigated signal. 
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Conclusion. Application of the wavelet analysis method to a research of the noise radiation of 
ELF range generated long-distance and near thunderstorm discharges has enabled us to 
determine the presence of a flicker-component in the signals produced by the near 
thunderstorm center. This result can be used for a determination and classification of noise 
signals of both terrestrial and extraterrestrial origin. It is necessary also to notice, though by us 
such a problem has not been considered, that an analysis of mathematical model of the process 
(for example, the characteristics of the form of the given signal) possessing the 1/f - noise, can 
throw a light on the understanding of the physical mechanism causing the given phenomenon. 
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1. Introduction 
The propagation of radio waves through the ionosphere generally results in nonlinear inter- 

actions of the electromagnetic field with the plasma, modifying the electrodynamical charac- 
teristics of the latter. The question of principal importance for the observation of such effects is 
sensitivity of the methods and devices applied for the registrations. It should be noted that the 
threshold levels of the external fields for stimulating nonlinear effects in the ionospheric plasma 
are quite low, varying between 10'5 and 10'2 V/m for different types of the effects at different 
heights [1]. Active experiments with the "heating" facilities in the USA, the USSR (and later in 
Russia and Ukraine), and Norway allowed investigating a series of new phenomena in the 
ionosphere [2]. Obviously, implementation of such experiments is very complicated. Mean- 
while, other possibilities exist to investigate nonlinear interactions between natural wave fields 
and the ionosphere, involving no active (i.e. using dedicated transmitters) experiments. Such an 
approach was realized by the authors in paper [3], where a cross-modulation effect between 
the Schumann resonances (SR) and round-the-world HF signals was detected and interpreted. 

This paper describes an attempt of detecting nonlinear effects in the ELF band alone (4 to 
40 Hz) where the Schumann resonance spectrum belongs. Preparing the investigations we used 
the following speculations. Passage of a radio signal through a nonlinear "device" (propagation 
medium) is accompanied by the appearance of combination spectral lines at frequencies fv, 

that are either higher-order harmonics of the initial spectral components, i.e. fv=j-f, (here i 

and j are integers and /, is the i -th spectral component frequency of the initial signal), or 
sum/difference combinations of the frequencies contained in the signal spectrum, i.e. 
fs± = fi±fj- A distinctive feature of the "new" harmonics is their statistical relation to the initial 

spectrum components at the frequencies /, and f}. It is obvious that the common thermal 

nonlinearity type would be quite weak at ELF, as far as the Schumann signal power ~ E\ is 
small in comparison with the plasma field power ~ E\ in the lower ionosphere. The estimates 
made in paper [3] show 

El a-io15, (1) 

in the ELF band, and hence direct heating of the ionospheric plasma by the Schumann reso- 
nances does not exceed 10"4 K. This means that in order to detect the extremely weak combi- 
nation effects in the band the averaging time should greatly exceed that of observation of the 
Schumann spectral maxima themselves. 

Yet, in spite of the unsatisfactory estimate of equation (1) the band was chosen for a search 
for natural nonlinearities, the reasons behind being as follows. First, the global Earth - iono- 
sphere resonator exists permanently; second, it is constantly stimulated by the world lightning 
activity; third, the average parameters of the resonator are quite stable, and, fourth, the Schu- 
mann spectrum is of multimode character with well known frequencies of the spectral peaks, 
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i.e. F, «7.8 Hz; F2 «14.0 Hz; F3 «20.0 Hz; F4 «26.1 Hz, and F5 «3L8 Hz [4]. In addition, we 
would note that there is a rather strong natural nonlinearity in the atmosphere and lower iono- 
sphere, caused by super-powerful lightnings, which can play the role of nonlinear transformers 
of incident electromagnetic fields [5,6]. 
2 Measuring technique. Power spectra of the Schumann resonances 

The first stage of data processing was computing the average amplitude spectrum ot the 

signal U(t), 
S(f) = il<\SN(ff>   > 

where S,(f) is the spectrum for the i -th period of length T , and the angular brackets denote 

averaging over N realizations. 

<is„(/)i2>=^2>,(/)i2 • 

The realization length was chosen to be equal to T * 6.8 s. It is known (see, for example, [4]) 
that the optimum averaging period is between 5 and 10 minutes which allows calculating dis- 
tinct SR spectrum. However spectra obtained at such periods contain no sign of nonlinear 
transformation of the observed signals. For this reason we averaged the spectra over much 
longer periods (about 2 hours of averaging). Fig. 1 shows typical SR spectra m the cases of 
low (Fig 1A) and high (Fig. IB) external noise circumstances. The interferences are charac- 
terized by wide frequency band, with the intensity increasing in the low frequency part of the 
spectrum, and considerable (tens and hundreds times) excess over the SR level. 

A B 

20 
Frequency 

Hz 
Fig. 1. The SR amplitude spectra under the conditions of low (A) and high (B) level of exter- 
nal interferences. 

During two measuring campaigns (July 1996 and July - August 1997) over 100 hours of the 
SR observational data were accumulated. The amplitude spectra averaged over the intervals 
from 2 to 4 hours were calculated. Nevertheless, for these long averaging sessions no consid- 
erable increases of the spectral density in the vicinity of doubled frequency of the first SR mode 
If = (15.6 ±0.5) Hz and combination frequencies of the first and second ones /12_ = (6.2 ±0.5) 

Hz and /12+ = (218 ±0.5) Hz were detected. 
3. Multiplicative algorithm for processing the SR data 

To discover the combination lines in the Schumann resonance spectra a special multiplica- 
tive algorithm was applied. It's essence is as follows. Let us assume the analyzed signal U(t) to 
consist of two initial narrow-band components at the frequencies /, and f2 and their combina- 
tion harmonics at /„_=/,-/, and /I2t =/,+/. which raised as the result of a nonlinear inter- 
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action between the initial components. Using a digital filtering procedure(2), let us pick out the 
initial components U1(t)=Arcos(2t$-q\), U2(t)=A2-cos(2rf2-<p2) and then multiply them: 
ua(t) = ul(t)-u1(t). It is obvious that this synthesized signal will contain combination harmonics 
coherent with those in the analyzed signal and, as assumed, born by some natural nonlinear 
physical process. Now, if we calculate the coherence function between the signals U(t) and 
U12(t), it will be of non-zero value at the combination frequencies f12_ and /12+ (3). 

f    0,  f<f,-6f 
n<A=ju-4f*/£j;+Ar. (2) 

I     0,   f>fi + Af 

Then the output of the filters are ^(O^js (/)•]"[(/),} ■ Further the complex spectrum of 

the product is calculated: Sa(f) = F{u1(t)-U2(t)}. At the final stage the coherence function is 

derived as the result of averaging and normalizing the cross-spectrum: 
\{s(f)-s;2(f))\ 

r(/)=- (3) 
yj(\S(f)\2)-(\S12(f)\

2} ' 

where asterisk denotes the complex conjugation operator. Here we should note that the algo- 
rithm might be considered as a specific particular case of the bispectral analysis method [8]. 

Let us turn to the results of the data processing. First examine a "quiet" record containing 
practically no non-stationary interferences (Fig. 1A). In this picture the Schumann resonance 
modes (up to the fifth one) along with the spectral peaks due to the fundamental power har- 
monic and low frequency "wind" interferences are seen. The plot in Fig. 2A illustrates presence 
of coherent components in the region of the first mode doubled (16 Hz) frequency (in this case 
both digital filters (2) are tuned to /, = f2 = 8 Hz with the halfwidth A/ = l Hz). Close to this 
results were obtained while tuning the filters to frequencies of the SR modes having different 
numbers (Fig. 2B). 

A B 

Fig. 2. Coherence of the second harmonic of the first SR mode (A) and the combination har- 
monic of the first and second ones (B). 

Results similar to those shown in figures 2 and 3 were obtained while processing the over- 
whelming majority of measuring sessions both for day-time and night-time conditions, which 
allows affirming existence of the nonlinear interaction between the SR modes. After this fact 
has been established, additional careful tests of the algorithm, the data collection system, and 
the receiving complex were performed. We should note that in no test experiment any increase 
of the coherence function level was detected in the band of combination harmonics. 
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4. Discussion .      , 
Currently authors cannot offer a strict physical model which would allow interpreting the 

discovered fact of nonlinear transformation. Nevertheless, some conclusions can be suggested. 
For instance, we estimated the transformation factor of the SR energy which is transformed to 
higher-order and combination harmonics under the influence of presently unknown natural 
mechanism. The analyzed signal was simulated numerically assuming the nonlinear transforma- 
tion is described by a quadratic function: 

U(t) = N(t)+u(t)+K-u2(t) (4) 

where N(t) is "white" noise with zero average and dispersion c£, and «(') is superposition of 
two narrow-band components with Gaussian power spectra. The factor K characterizes 
"steepness" of the nonlinear transformation. As Fig. 1A shows, the noise level is constant over 
the analysis band and can be estimated as 2.6 mV-Hz1/2. The spectral components 5, and S2 

simulated two first SR. In this way the model signal having spectrum close to the SR (dashed 
curve in Fig 1A) was simulated. The K factor was varied till the coherence function (3) 
(dashed curves in Fig. 2) became approximately equal to the value calculated from the experi- 
mental data It turned out that in the model (4) the nonlinear transformation factor is constant 
within accuracy of 10% both for the second harmonics of the two first SR modes and their 
combination ones /u+: K - 2.4-Kr1 mV1. Calibrating the value of K on spectral densities of 
the observed and simulated spectra allows estimating the quantity of stored in the resonator 
energy which is transformed due to the quadratic nonlinear mechanism (3). According to our 
calculations about 0.5% of the SR signals power is transformed to the higher-order and combi- 
nation harmonics. 
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CALCULATION OF ATMOSPHERIC ELECTRICITY DAY TREND 
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Lenin St. 63, Tomsk, 634050 Russian 

Abstract. In this paper, we discuss the problems of approximation of the atmospheric electricity 
day trend. It is shown that for the approximation of the time trend with a 3 to 4 % error, 5 sine 
harmonics or 10 sine-cosine harmonics are enough. 

From the physical viewpoint, averege means of tension (AMT) should be in good agreament with 
the integral value of the electrical field and show the global 24 hour trend alterations of this field. To 
verify this, the folowing algorithm was used, under an assumption that the time trend for various 
realisation of AMT should be correlated with the integral value of AMT. This algorithm was developed 
for the analysis of the oportunity to design a mathematical simulation tool of the 24-hour trend of the 
Atmospheric Electricity Day Trend (AEDT). It is based on two groups of methods: spectral and 
statistical ones. The use of spectral methods is justified by the general purpose (to raise the information 
efficiency of the spectral research by means of the analises of spectra containing fast fluctuations). Fast 
Fourier Transform (FFCT) application is useful here from the point of view of deriving the mean values 
of AMT. FFT ratios can be calculated by the formula: 

a(»)=zW. (o 
where x(j) are the measured tension values, N is the number of values in selection. Then the first 
member in the frequency dependence, devided by (N-l), will represent the average value of x . On using 
FFT in every selection of 3500 values and dividing the first member of the transform by N, we obtain 
72 mean values of AMT. The choice of Vinogradov's method is explained by the independens on the 
data, unlike that of the "butterfly" one. 

With the developed algorithm, several dosens of 24-hour trends have been processed. Polynomial 
approximation functions have been chosen in the method of the least squares (MLS). MLS is a 
particular case of the maximum similarity method providing assimptotic non-shifted effective and 
significant values of the randomly measured data; besides, the function of the tension density 
distribution is normal. Unknown coefficients C; were determined at each iteration step. The algorithm 
calculated the root mean square deviations, OJ at the points j=l,..., k (where k is the number of points) 

k 

and the total root mean-square deviations, o = ^aj, for each polynomial of the order N. The 

polynomial of the order having the minimum total root mean square deviation was taken as an 

approximation polynomial. The given approximation error, a^ =-*—l—*100% , where k is the 
max 

number of points , AIw is the maximum scattering of experimental values of E, was also calculated. 
As a result, from the available trends testing data, we obtained the minimum values of a and o^, based 
on the fifth-degree polynomials, the scattering in the values of a„ being 5 to 30%. 

The calculation revealed a decline in the hipothesis results testing with N=5 and 6 during the 
observation season. 

Here, the character of the curves for the same observation seasons and the relative values of the 
coefficients C for similar degrees agree well enough. Besides, one and two peaked time trend 
distributions of AMT have been observed, as well as the known from publications integral values. It is a 
reliable validation of the derived by us time trend and integral distribution law correlation. 
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However it should be noted that a demerit of this method is in the considerable discrepancy 
between the calculated curves and the elementally obtained ones within the observation period From 
our viewpoint, thise can be explained by the feet that the representation of the function of AMT with 
the application of our technique, was carried out at the starting point of «^^^jj^J° * 
quite natural that the error increases the farther the point is from the observation start. Evidently this 
problem solution is in the representation of AMT by a set of orthogonal periodic ninctions 

Representations by the trigonometric functions set are the most probable ones. The ^ations 
show that h almost all the possible cases the time change of AMT can be described by the fifth-order 
polynomial, the root mean square deviation at the point not exceeding 7%. The calculation results and 
ft* comparison with the experiments are shown in the Figure, where time, counted m hours, is marked 
along the horizontal axis, and the field tention mean value is plotted. Solid curve shows the real^24-hour 
trend obtained as a result of data prosessing with automatic measuring complex, dotted curve shows the 

calculated dependence. 

-200.00 ■= 

time.h 
-600.00 111 11 111 11 H " 11 11 111 11 111 1 in in M n 11 11'' '■■■■■■ 1 

0.00 5.00 10.00        15.00        20.00        25.00 

However the suggested approximation by means of polynomials tends to a noticeable error 
encreasement at the upper limit of approximation interval. The behavior of the Earth electrostatic field 
trend enabled us to suppose that the most natural kind of approximation will be by the periodic 

functions. 
Here, two problems arise: 
a) about the basic period of periodic series, 
b) about the number of approximation harmonics needed for the trend to be characterized 

accurately _^ ^ ^^ ^ ^ publications, the 24-hour time is commonly taken as the basic period. 

However our experimental data studies did not agree with this. We solved the problem of the basic 
period determination. The basic period was assumed as an unknown quantity, the random realisation of 
fte experimental data obtained in different seasons being taken as the function. 

As a result we obtained the mathematical expectation of the basic period equal to 9 hours. The 
second problem deals with a simpler and more accurate approximation convenient in fte practical 
applications. We used fte Fourier series with T=9 hours and various numbers of harmonics. The 
analysis has shown that for fte approximation of fte time trend with a 3 to 4% error, 5 sine harmonics 
or 10 sine-cosine harmonics are enough. Besides, fte obtained approximation, unlike fte previous one, 
has a sufficiently small continuous error throughout fte interval observed. We can predict fte time 
progress of fte electric field with a sufficiently good accurately. 
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We discuss an impact of the seasonal north-south drift of the global 
thunderstorm centers on the results of observation of the first mode Schumann resonance 
(SR) frequency. 

Global electromagnetic resonances were predicted by W.O.Schumann in 1952. The resonance 
is observed in form of separate peaks in the power spectra of natural EM noise of the Earth- 
ionosphere cavity, and the global lightning activity is the source of these oscillations. The world-wide 
thunderstorms are concentrated at the tropics, their maximum follows the Sun and circles the globe 
during the day producing regular duirnal variations in the SR amplitudes and apparent resonance 
frequencies. These last occur due to finite conductivity of the cavity boundaries. Frequency 
characteristics of individual SR modes overlap substantially, and as a result, the particular peak 
(resonance) frequency depends on the interaction between the given mode and the nearby resonance 
peaks. Since amplitudes of individual peaks depend on the source-observer distance, the apparent 
resonance frequencies become modulated on a daily span. 

We apply two models of the global thunderstorm distribution. The first is the model of a 
single compact lightning center. This center is positioned near evening terminator and has the size of 
some tens of degrees. At solstice period of a year, the center shifts southward (during the winter time 
in the Northern hemisphere) or northward (during the summer). Its diurnal trace coinsides with the 
equator at equinox conditions. The second model is based on the concept of three global thunderstorm 
centers situated over Africa, Central America and South-East Asia. Seasonal drifts of the centers are 
pertinent to the model as well. Physically, the difference between above two models is as follows: the 
first one suggests the gradually moving (crawling) thunderstorm zone, while the second is based on 
the model of the lightning activity striding in wide steps from one continent to another during the day. 

The main goal of the report is an attempt to interpret the year-to-year variations in the diurnal 
frequency patterns. It had been established experimentally that the diurnal patterns for a particular 
month remain very similar the year after year, but they are shifted as a whole by 0.1-0.2 Hz. 

There two possible explanations may be suggested for the effect. The simplest one is the 
global annual change in the lower ionosphere. The second, much more realistic interpretation exploits 
the year-after-year variations in the spatial distribution of the global thunderstorms. Their positions 
and size do not coinside for different years, producing relevant changes in the SR signals. 

After comparison with the results of the SR monitoring, the first approach allows for a 
conclusion that the scale factor of the atmospheric conductivity profile should be changed by 5-8 %, 
while the second shows that the position and/or size of the source undergoes the 5-10° variation from 
year to year. 
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We model numerically the sub-ionospheric propagation of an electromagnetic wave in the 
extremely low frequency (ELF) band from a few hertz to some kilohertz frequency using the time 
domain presentation for the field. A point vertical electric dipole is the source of the radio wave that 
arrives to ground based observer through the spherical Earth-ionosphere cavity. We suppose the 
radiation moment of the source to be the delta-pulse, hence, the solution obtained is the Green s 
function of the problem. Formal representation for such a function is well-known either for the cases 
of postulated propagation constant or for a given effective surface impedance of the low ionosphere^ 
The formal solution is constructed using the zonal harmonic series representation (ZHSR) that applies 
the Legendre polynomials describing the angular field dependence and sphencal Hankel functions 
accounting for the radial dependence. 

The ZHSR is valid in the frequency domain and describes the well-known Schumann 
resonances (SR). To obtain the fields in the time domain, we had transformed ZHSR applying the 
Fourier transformation (FT) analytically to each term of the infinite sum. Two cases are treated 
separately The first one corresponds to the linear frequency dependence of the propagation constant 
of the ELF radio wave. The second radio propagation model exploits the linear frequency dependence 
of the effective surface impedance of the lower ionosphere. After the FT is applied, each term of the 
ZHSR turns into a standard function that is a time-decaying cosine function representing the response 
of the Earth-ionosphere cavity on the input delta-pulse. It is shown that the field representation 
obtained in the time domain converges uniformly and absolutely for arbitrary time t > 0. 

Results of the ELF field computations are presented for a set of the source-observer distances. 
A specific feature of the ELF field in the time domain is the 'bouncing' of an electromagnetic pu se 
from the source antipode and from the point where the source initially had been placed. The ELF 
pulse width grows with the propagation path due absorption the lower ionosphere. 

The main result of the present study is as follows. 
.   The time domain representation obtained allows computing the electromagnetic pulse everywhere 

in the Earth-ionosphere cavity for t > 0, while the ZHSR diverges at the source point. 
.   When computing the field in the frequency domain first and applying a FFT algorithm then to 

obtain the temporal dependence of the field, one fails to describe the field at the source regardless 

. WuTthe analytical FT is used first and the time domain field representation is obtained initially, 
the series describes the pulse everywhere, including these multiply crossed the Earths 

circumference. 
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Temporal variations of the global lightning activity are deduced from the 
long-term Schumann resonance (SR) continuous records. The intensities of the 
horizontal magnetic field component of the first, second, and third SR modes were 
monitored at the Tottori observatory (35.5° N and 134.33° E). Variations of the 
effective source-observer distance were estimated from the data using the ratios 
between intensities of individual SR modes. This allowed us to compensate for the 
source motion in respect to the observatory and extract from the records the average 
diurnal variations of the global lightning activity itself The procedure had been done 
for every month within the observation period. The results show that estimates for the 
effective distances between the field-site and the global centers of the lightning activity 
remain very stable. Simultaneously, the temporal changes of the fields monitored and 
of the relevant global lightning activity derived from the records demonstrate 
substantial variability. 

The global electromagnetic resonances are named after W.O.Schumann, who predicted 
the phenomenon in 1952 and estimated the eigen-frequencies of the Earth-ionosphere cavity. 
The global lightning activity is a source of the oscillations. Resonances are detected as separate 
peaks observed in the power spectra of the natural electromagnetic radio noise around 
frequencies of 8, 14, 20, and 26 Hz. 

The world-wide lightning activity is concentrated in the tropical zone, and its maximum 
circles the globe every day producing duirnal variations in the SR amplitudes and apparent 
resonance frequencies. Amplitude variations depend on both the source-observer effective 
distance and on the current lightning intensity. This is why the Schumann resonance allows 
monitoring the world-wide thunderstorm activity from a single field-site. 

We use the results of the long-term records carried out at Tottori observatory from 1968 
to 1975. A comparison was made between the experimental records and computed data obtained 
in the framework of two different models of the global lightning distribution. This allowed us to 
elaborate the signal processing procedure aimed to the evaluation of both the median distance 
and the level of the world-wide lightning activity. 

A magnetic loop antenna had been used to measure the SR field, that is a solenoid about 
5 cm in diameter with permalloy core, number of turns is 30,000. The frequency characteristic of 
the amplifier was made flat in the frequency range from 5 to 35 Hz. The magnetic field intensity 
has been measured in the frequency bands 2 Hz wide around resonant frequencies of 8, 14, and 
20 Hz. Intensities of individual SR modes were recorded on a chart paper, and so we had to read 
the data first. The tables obtained were used then to plot a survey of the diurnal variations in the 
intensities of three SR modes. This allowed performing the final check of the experimental time 
series and eliminate the reading errors together with the omitted changes of the receiver gain. 
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Abstract 

A lithosphere-ionosphere interaction model is put forward, involving atmo- 
spheric vertical conduction electric currents, the variations of which can change 
the electric potential of the lower ionosphere. The ionospheric parameter varia- 
tions have been estimated, compared with the gathered data, and both quantitative 
and qualitative agreement found. 

Introduction.One of the most important topics in ionospheric physics is coupling 
with lower altitudes which focuses on response of the ~ 60 — 150 km region to forc- 
ing mechanisms originating in lower atmospheric regions, and the transmission of these 
effects throughout the thermosphere-ionosphere system. Effects are revealed in the iono- 
sphere which are due to earthquakes, volcanic eruptions and anthropogenic impacts; 
explosions, rocket launches, accidents at nuclear power stations (NPS) accompanied by 
radioactive materials releases. 

Precursors of earthquakes in the D region of the ionosphere are investigated by VLF 
radio waves in the Earth-lower ionosphere waveguide. Anomalous variations in signal 
amplitude and phase is an indicator to disturbance. On paths near seismic regions, 
anomalies in signals appear in a few days before the earthquake and show that the 
lower boundary of the ionosphere in the disturbed region descends. Similar anomalies 
were revealed on the VLF paths near the Chernobyl NPS during the accident in April 
1986. The fact that two different processes, natural and anthropogenic, result in similar 
perturbations may be interpreted as that they both are caused by changes in conductivity 
near ground. The conductivity in this part of the atmosphere is the result of action of 
nuclear decay in the ground, radioactive contamination in the atmosphere, and space 
radiation. Before earthquakes the conductivity increases because of enhanced radon 
emissions, one of the major sources of ionization near ground, and during the Chernobyl 
accident because of radioactive material release. 

Atmosphere-ionosphere interaction. In our analysis, we use a model of the 
spherical capacitor, the inner plate of which is the negatively charged liquid and solid 
surface of the Earth and the outer plate is the positively charged ionosphere. The ex- 
ternal electric fields produced by thunderstorms cause electric currents, / = U/R, to 
flow between the Earth and its atmosphere over the entire planet. The potential of the 
upper conductive atmosphere, the outer plate, reaches an equilibrium value of approx- 
imately 200 or 300 kV with respect to the surface of the Earth, when the fair weather 
electric current flowing between the plates balances the electric currents produced by 
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the thunderstorms. Both these currents are closed through the Earth's surface and the 
ionosphere at z ~ 60 km. The electrical resistance between the Earth and the iono- 
sphere is R = /0 p(z)dz, its magnitude mainly being determined by the lower layers of 
the atmosphere up to z < 5 km. The resistivity is controlled by the Earth's background 
level of radiation. The increase in the background level of radiation by a factor of several 
times, which occurs befor earthquakes or during nuclear accidents (with the discharge 
of radioactive material), leads to a proportional increase in the near-Earth atmospheric 
conductivity, a = 1/p, and in the current / in the capacitor. 

The magnitude of the fair-weather vertical electric field component is about 130 V 
per meter at the Earth's surface. Electric-field variations observed before an earthquake 
are sometimes so large that one even observes a change in the direction of the electric 
field at the Earth's surface. As a result, we may expect that large changes in the electric 
field intensity will occur at the outer plate of the capacitor, i.e. in the lower ionosphere. 
Measurements have shown that the magnitude of electric field at the altitude of 60 km 
is of the order of 1-10 V/m. We suggest that variations of the electric potential of the 
lower ionosphere may lead to changing lower-ionosphere parameters. 

Changes in lower-ionosphere parameters. To estimate the effect of the vari- 
ations in the electric field intensity, E, on changes in lower-ionosphere parameters, we 
shall use the well known system of equations, the energy balance equation (in terms of 
the electron temperature Te), the two continuity equations in the electron density N and 
the positive-ion density N+ in the stratified inhomogeneous weakly-ionized plasma, and 
the condition of quasi-neutrality: 

8N 

dt 

dN+ 

dt 

ft + vd\N - vaN - arN\\ + A) + £ i(Dt + Da)?
N " 
dz) 

ft - ariV2(l + A) - a*iV2A(l + A) l{<*^1 
/' 

at 
2Qe 

3kN 
6v{Te-Tn), 

(1) 

(2) 

(3) 

(4) 

where t is time, ft is the total production rate per unit volume of positive ions resulting 
from the ionization of neutral atmospheric constituents, vd is the effective rate at which 
the negative ions are destroyed by electron detachment, A = N~/N is the negative 
ion to electron number density ratio, N~ is the negative ion density, va is the effective 
rate at which the negative ions are formed by the attachment of electrons to neutral 
constituents, ar is the effective ion-electron recombination coefficient for positive ions, 
Dt is the coefficient of eddy diffusion, Da is the coefficient of ambipolar diffusion, z 
is the altitude, a, is the effective ion-ion recombination coefficient, k is Boltzmann's 
constant, Qe/N is the average energy acquired by the electron from an external source 
of heating (for example, from external electric field), 6 is the fractional loss of energy 
per electron collision, v is the effective electron-neutral collision frequency, Tn is the 
neutral constituency temperature. In the ionospheric D region, the disturbances in the 
ion temperature are neglected because they are M/m times less than the disturbances 
in Te (M is the average ion mass, m is the electron rest mass). 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



300 MMET'98 Proceedings 

The initial system of equations (l)-(4) is considerably simplified with the help of the 
multiple time-scaling analysis by introducing the following time scales: 

t2 = tTe = {6v)-\    t2 = HN = (ud + va)~\    h = tN = {4$(ar + Aoi)/(l + X)}~1/2, 

where tTe is the Te-relaxation time, t'N is the evolution time of the disturbances in iV 
caused by activating attachment processes, tN is the evolution time of disturbances in 
N due to changes in the ionization-recombination balance. 

Note that in the lower ionosphere tTs « ^ « tN. For 0 < t < tTe, one can easily 
derive the following simplified energy balance equation: 

d9     0.97e2ff2 

dt ~ kmu09
5/6 6(9)iy06

5/6(9-l)Teo, (5) 

where: 9 = Te/Teo, v = i/09^6, 9(0) = 1, E(t < 0) = 0. The subscript "o" is used 
to denote the magnitude of the ionospheric parameters in the absence of electric field 
variations. Equation (5) is no longer dependent on N and iV+. It has easily been solved 
using basic integration techniques. Then, neglecting the transport processes, it may be 
used to fined the solution to equations (1) and (2) with respect to N and JV+, using the 
expansion of them in the t2- and £3~scales. The steady state value of the N, caused by 
the presence of the electric field E, is given by: 

^oc - qli2{(l + I>«(0OO)/"<J)M0OO) + <Wa(0°o)/^)}"1/2, (6) 

where 9^ is the quasi-stationary solution of equation (5). 
The numerical estimates of the expected changes in the main parameters of the lower 

ionosphere were made for E\ = 1 V/m and E2 = 10 V/m at the altitude of 60 km. Our 
calculations show that the decrease in the electric field E and the corresponding v and 
N changes lead to a lowering of the ionospheric conduction contour by Az (for instance, 
for the level z = 60 km under E\ = 1 V/m, we have Az < 5 km and, under E% = 10 
V/m, we have Az < 10 km). The main cause of this effect is the v decrease from i/TO to 

Analysis. Thus, there are some reasons to suggest that during processes before 
an earthquake or during a nuclear accident, the near-Earth atmospheric conductivity 
increases, the electric field in the ionosphere decreases, and there is an inhomogeneous 
region with a lower altitute on the VLF wave-propagation path. In the Earth-ionosphere 
waveguide, the decrease in the altitude leads to an increase in the phase velocity of the 
waves and, hence, to a decrease in the phase delay of the signal received in the case of 
one-mode propagation. The estimates show that in order to match our theoretical results 
with those obtained experimentally, changing the ionospheric altitude by 5-10 km, the 
inhomogeneous region along the path should be 600-300 km, respectively. The presence 
of significant electric fields at the lower boundary of the ionosphere indicate that an 
additional source of electron heating should be taken into account while investigating a 
disturbed ionosphere and radio wave propagation conditions. It has been shown that the 
model of the interaction between the near-Earth atmosphere and the ionosphere (caused 
by the vertical conduction-current) clearly allows us to explain the cause of the changes 
in the lower ionosphere occurring before an earthquake and during accidents at a nuclear 
power station with radioactive releases. 
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A necessity of investigation of ULF and ELF electromagnetic emission polarization characteristics is grounded in 

the connection with earthquake precursor problem. The investigation method is suggested. 

Introduction 
Inhomogeneities in the earth crust are a necessary conditions for an earthquake 

precursor appearance. Deformations and micro cracks appear before a seismic gap by the 
reason of inhomogeneities of earth rocks. Each seismic break is unique and has its 
peculiarities of earthquakes and precursors [ 1 ]. 

Certain seismoelectric transformations appear at the time of deformations of earth 
crust before the earthquake, and we can detect an electromagnetic emission in a wide 
frequency band long before a seismic gap. Maximum of electromagnetic emission takes place 
in ULF and ELF bands, commonly within 0.1 Hz to 20 Hz [2]. 

Grounding a necessity of studying the electromagnetic emission polarization 

Equivalent electromagnetic source has a large size that is approximately equal to the 
dimension of the area of origin of the possible earthquake. This source is appeared by 
deformations in the stress field along gaps. Equivalent source is determined as specific 
structure, which is inherent to this gap, although the currents have chaotic nature in each small 
volume. Preferential orientation of chaotic currents is important in ULF and ELF bands for a 
polarization anisotropy appearance of electromagnetic emission. Electromagnetic emission 
has well determined polarization characteristics that can be called a polarization signature [3]. 

Polarization characteristics of emission are conditioned in main by the seismic source 
structure. By this reason they are in average a less varying over a small time interval (minutes 
and hours) than amplitude variations of electromagnetic field burst. That is why polarization 
measurements may open a possibility to identify the field burst in some random set that is 
associated with one source of radiation. On the other hand the variations of polarization 
characteristics during a longer time interval can be interpreted as essential variations of the 
source structure in the earthquake origin and the stress field in this region. 

Choosing the frequency range 

Earth rocks are a medium that has a high conductivity. Electromagnetic radiation 
penetrates on the earth surface mainly in the frequency range from 0.3 Hz to 10 Hz. There are 
some sources of electromagnetic emission in this frequency range besides of the seismic 
sources. We note the main two of them. One magnetic field excitation frequency is associated 
with the earth rotation in the electric and magnetic environment. A dominant peak is observed 
in the frequency domain from about 1.2 to about 1.9 Hz [4]. Another magnetic field excitation 
frequency is associated with the first Shumann resonance. This resonance is dominant near 7.8 
Hz. Seismogenic electromagnetic field emission has a peak commonly within 2 to 5 Hz 
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between the mentioned above major field peaks [4]. This frequency range choosing is worth 
while for a study of seismic activities. 

Requirements to magnetometers 

As it is known, magnetic field of geomagnetic pulsations is mainly a horizontally 
polarized one (H polarized). Shumann resonance electric field is Z-polarized and magnetic 
field is H- and D- polarized. That is why magnetic field emission sources, which have 
Bz IBH > 1 and Bz IBD > 1, can be identified as seismic field sources with large probability. 

Three-component magnetometers are needed for a study of polarimetric signatures of 
the seismic magnetic field. Typical magnetic field level is approximately from 0.1 to 10.0 nT. 
It is necessary to have the sensitivity of a magnetometer near 10"4 nT and the dynamic range 
near 40 dB. The speed of information collection is estimated as 40 counts per second. 

Numerical processing of data 

It is necessary usual preliminary data processing. After that the goal of processing 
consists in deducing some polarization characteristics of magnetic field in the frequency range 
within 2 to 5 Hz. The first of these characteristics is the polarization degree. The polarization 
stage of fully polarized magnetic field component is characterized by three Stock's 
parameters. These four parameters can be shown as a polarimetric signature of a seismic 
source of magnetic field in the chosen seismic region. 

Conclusion 

Systematic study of electromagnetic emission polarization characteristics and its 
analysis can give us the possibilities to determine the practical significant polarimetry in the 
monitoring system of seismic activities. The polarimetric behavior of electromagnetic field 
then can be implemented for the earthquake hazard mitigation measures. 
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We discuss the results of application of the ELF-VLF wide-band measurement 
technique suggested earlier for locating the nearby lightning discharges. The measurements 
were performed at Singapore from the field site situated on board of the research vessel. Three 
field components, namely, vertical electric and two orthogonal horizontal magnetic fields, 
were digitally recorded and used for the analysis then. The distance from the lightning 
discharge was established using the characteristic frequency dependence of the complex wave 
impedance spectra pertinent to the nearby lightning discharges of vertical orientation (Korol et 
al 1993) The method implies the frequency dependence of the transition range between the 
static induction and radiation field components of the wide-band radio signal, similarly to the 
well-known E-H field technique (Ruhnke, 1971; Kononov et al, 1986). The technique 
suggested is distinguished by the wide-band measurements that include completely the ELF- 
VLF range The horizontal Poynting vector components (Rafalsky et al, 1994) were used to 
find the source bearing. This technique eliminates an ambiguity in the arrival angle 
automatically. Simultaneously, a product of the electric and magnetic field components 
integrated over the pulse duration depends only on coherent portions of a signal. This 
particular feature allows for extraction of the linearly polarised signal, improving the output 
accuracy of the direction finding. The results of analysis of the atmospheric waveforms 
recorded agree reasonably well with the concurrent visual observations of the parent lightning 

discharges. .       , 
After the source coordinates were established, we used the spectra of the electric and 

magnetic field components to reconstruct the spectra of the particular current moments of the 
lightning observed. It is shown that that the experimental spectra tend to be constant within 
the frequency range of our studies, i.e. from 1 to 10 kHz, while the model spectra of the 
current moment usually applied in the range vary as/". 
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REMOTE SENSING BY VLF USING "ABSOLUTE OMNIPAL": 
1. INVESTIGATION OF THE DECAY OF SPRITE PLASMA. 
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Amplitude perturbations, or both amplitude and phase perturbations, of VLF transmissions 
in the Earth-ionosphere waveguide have been recorded since their discovery by Trimpi in 1963 
[Helliwell et al, 1973] after whom such perturbations are named. The amplitude and phase 
perturbations define the phasor of the perturbed signal. Vector subtraction of the unperturbed 
signal defines the phasor of the scattered signal [Dowden and Adams, 1988]. This scattered 
signal can be regarded as the wave scattered off a localized plasma anomaly beneath or 
extending down from the base of the ionosphere into the Earth-ionosphere waveguide like a 
stalactite [Dowden and Adams, 1988]. Measurement of the echo phase (phase of the 
perturbation phasor) simultaneously on two receivers spaced a short distance (1/2) apart and 
broadside to the VLF transmitter enables determination of the direction of arrival of the 
scattered signal. This can be as much as 180° from the direction of arrival of the direct signal 
[Dowden et al, 1996a] implying a "hard" scatterer — one in which the incident wave is 
strongly modified — such as a bundle of highly conducting plasma columns [Rodger et al, 
1997]. 

A close relationship between such "Trimpis", whistlers and electron precipitation [Rycroft, 
1973; Voss et al, 1984] lead to the general acceptance that the localized plasma anomaly 
causing the Trimpi is produced by whistler-induced electron precipitation from the Radiation 
Belts. 

Discovery of the "early/fast" Trimpi [Armstrong, 1983], which onsets too soon ("early") 
after the initiating lightning to be produced by electron precipitation and reaches full 
perturbation rapidly ("fast"), showed that such Trimpis are directly caused by lightning. 
Campaigns monitoring both optical "red sprites" and VLF early/fast Trimpis showed that 
nearly all sprites within about 300 km of the VLF receivers produced simultaneous early/fast 
Trimpis on two or more VLF transmissions [Dowden et al, 1996a], showing that the luminous 
columns of sprites are highly conductive [Dowden et al, 1996b]. Such early/fast Trimpis 
clearly associated with sprites are called "VLF sprites", though it may be that all early/fast 
Trimpis have the same cause and so indicate the presence of sprites when optical observations 
are not available. 

Here we consider observations [Dowden et al, 1997a] of very strong early/fast Trimpis or 
VLF sprites observed at Darwin (12° 26'S, 130° 59E) only 2,000 km from the US Navy 
transmitter, NWC (21° 48'S, 114° 9"E). The unperturbed signal strength was about 20 mV/m 
during the Trimpi observations (at night). The echo amplitudes of the strong Trimpis ranged 
up to 8 mV/m, some 30 dB stronger than those studied previously in Colorado. The much 
higher signal/noise ratio enabled accurate measurements of the time variation of the amplitude 
and phase of the echoes. The illustrations shown at Kharkov in the oral version of this paper 
cannot be included here but the points made with each illustration are given below in the same 
order. 
1.    Immediately before the Trimpi only the direct wave from the transmitter is present at the 

receiver. Immediately the Trimpi begins, and until it decays, both the direct wave and the 
wave scattered by the sprite plasma are present and so interfere. 
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2 The result of this interference, that is, the vector sum of the direct wave and the scattered 
wave, is the perturbed wave which is defined by the amplitude and phase perturbation 
(note'that both the phase and amplitude perturbations must be measured, as by OmniPAL, 
to define the vector perturbation). If the direct wave vector is constant, and so given by 
the unperturbed wave vector, and if the perturbed wave vector is measured, the scattered 
wave vector is easily found by vector subtraction. 

3 The initial Trimpi phase and amplitude perturbations are sensitively dependent on the 
position of the sprite plasma, the source of the scattered wave. Thus these perturbations 
can be of any phase/amplitude combination: phase advance or phase retard, amplitude 
increase or amplitude decrease. However, if the Trimpi phase and amplitude perturbations 
versus time for the duration of the Trimpi are transformed to scatter wave amplitude and 
phase versus time, the transformed amplitude and phase variation of very different Tnmpis 
look quite similar. In particular, the scatter wave amplitude decays as the logarithm of 
time  This implies that the scatter amplitude decays to zero at some time t = h. 

4 This behaviour cannot apply at t = 0, for then the scatter amplitude would be infinite, nor 
for t > to for then the scatter amplitude would be negative. However, logarithmic decay is 
not logically absurd between, say, t = 1 s and / = f0. Plotting scatter amplitude on a 
logarithmic time scale should be strictly linear if decay (on a linear time scale) is strictly 
logarithmic. Tests show such a linear fit (on a logarithmic time scale) is quite good. Any 
departures could be attributed to unknown variation of the direct wave vector during the 
scatter wave decay. Such variation is probably due to other natural perturbations 
independent of the sprite plasma decay under investigation. If this is so, departures from 
strictly logarithmic decay should vary from one "VLF Sprite" event to another in a random 
fashion How can we test this? A neat way is to normalise all events so that the scatter 
amplitude at t= 1 s is unity and that log10fo = 1 so that t0 = 10. Then the normalised decay 
for all events should fit the same straight line. 

5 Four events were superimposed to test this, the different events being distinguished by 
using different plot symbols and colours. Unfortunately, the result depends on the order 
of plotting because the earlier plots are overlaid by the later plots. A better test used 12 
events plotted as fine line segments without plot symbols. This more clearly showed no 
consistent departure from logarithmic decay. 

6 During the decay of the scatter amplitude, the scatter phase also varies monotomcally with 
random error variations which increase as the scatter amplitude decreases, as expected. 
The total change over the typically 100-s duration of the Trimpi decay is around 90°. This 
Doppler shift of some 2 mHz implies movement of the scatter source either horizontally 
(mesospheric winds [Dornten, 1996]) or vertically (rising scatter altitude). Since the total 
variation is small, a linear fit is as good as a logarithmic fit. At Darwin in November the 
scatter phase decreased with time at a rate (Doppler shift) which was much the same from 
event to event. If we therefore replace the measured scatter amplitude by its best fit 
logarithmic decay and the measured scatter phase by its best fit Doppler shift, we can 
synthesise the original "pure" Trimpi perturbation cleaned of its random noise. 

7 The mesosphere where sprites occur is too high for balloons and too low for satellites and 
so inaccessible for in situ measurements except by rockets for fleeting times. However, 
over the last decade or so, atmospheric chemists have established that the plasma decay by 
attachment is dominant even for sprite plasma which initially is several orders of 
magnitude denser than ambient. At any given altitude, the sprite plasma decays 
exponentially with time, but at a rate which decreases rapidly with altitude. Atmospheric 
chemistry shows that the decay rate is proportional to the product of [O] and [N], each of 
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which decreases exponentially with the scale height of about 7 km. This means that the 
sprite plasma decay rate decreases exponentially with altitude with a scale height of 3.5 
km. The VLF reflection coefficient of sprite plasma columns remains near unity until the 
plasma density decays below a critical level for which VLF reflection is insignificant. At 
any given altitude, at the time when the plasma density has decayed to e"1 (37%) of its 
initial value, plasma at the altitude 3.5 km below will have decayed to e"6 (6.6%) of its 
initial value. 

8. Thus at any given time the sprite plasma columns "appear" to the VLF wave from the 
transmitter as having a well defined bottom whose altitude increases with the logarithm of 
time, this being the inverse of exponential. The top of optically-observed sprites appears 
to be well defined so presumable the plasma remaining after the sprite luminosity 
(electrical discharge) ends has this same well-defined top. If we suppose the VLF scatter 
amplitude is proportional to the vertical length of the plasma "seen" by the VLF incident 
wave, then the scatter amplitude will decay with the logarithm of time as observed. The 
time t - to is when the plasma density at the top of the sprite has fallen below critical for 
VLF scattering. Observed (by OmniPAL) values of k over the range of about 30 s to 500 
s agree with optical measurements of the altitude of the top of sprites of 75 to over 80 km. 
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TIME-DOMAIN NUMERICAL SIMULATION OF EM PULSE 
PROPAGATION THROUGH A TIME-VARYING SLAB 

Igor V. Scherbatko and Alexander G. Nerukh, 
Kharkov Tech Univ. of Radio Electronics, 
Lenin Ave. 14, Kharkov, 310726, Ukraine 

I. Introduction 

Problems involving time-varying parameters are of interest for the purpose of 
investigation of electromagnetic wave propagation in ionosphere, for remote sensing of 
unstable objects by short electromagnetic pulses, etc. A necessity of considering such problems 
stems also from the investigation of ultrafast electromagnetic phenomena in semiconductor and 
quantum electronics. For the problem solving in the differential statement, FDTD method has 
gained a wide recognition. An alternative approach reduces the problem to a perturbation 
method [1] or integral equations [2], Using a resolvent method for solving the obtained 
Volterra integral equations that characterise electromagnetic transients enables us to formulate 
the evolutionary recursion method [3]. In this paper, ä direct numerical time-domain integral 
equation method is extended to the case of a dissipative dielectric whose permittivity and 
conductivity change arbitrarily in time, 

H. Integral equation 

The time-domain solution of the transient wave propagation problem relies on an 
integral equation technique, which has been used for pulsed EM transient problems recently 
[3,4]. A starting point is the integral equation for the electric flux density D in an active 

medium: 

D(r,Z)- 
1 ,2,-. 

a2(r,4) 
D0(T,t)--ldT 1»   ,aV,0 

a2(r,4) 
b(r',4) + 

l-a2(f,Z) d 

a2(T>,t)   & 
>x 

(1) 

where £ and rare spatial and temporal coordinates respectively; a and b are parameters 

which are related to the permittivity £](T,^) and the conductivity ff(r,£), respectively, as: 

a2,T & = £    uT £) = J—ä{r£). The initial values of permittivity, conductivity and 

electrical flux density before parameter changing are e, a(r<0,£<0)-0 and 

L\(T,%) = MQ(T,$), respectively. v = l/4ee0M0 is the velocity of U§ht m the MM 

medium, S0, Mo *** permittivity and permeability of vacuum, A" is the wavelength factor, 

6(t) is the Heavyside unit function. 

HI. Scheme of numerical solution 

For the purpose of the Ration (1) numerical solution we assume a uniform grid on the 
coordinate plane (r,£) with equal time Ar and spatial A<* steps: Ar = A£. This equality is 
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met with the stability condition for the numerical analysis: Ax < vAt. Than the integration 
paths in the equation (1) are straight diagonal lines, which pass through nodes of the grid, 

The essence of the proposed methodology is the sequence solution of (1) by marching in 
time step by step. We can find the electric flux density at the specified temporary step T = Tn 

by using solutions for previous steps. We would like to avoid the repetitive calculations of 
integrals that have been calculated along the covered time intervals. Hence we select from the 
integral in the (1) the integrals over the line segment [0, xn_\ ] introducing new function: 

xn-\ 

0 

(2) 

where   Pi(T„,r,£;j) = ll-a*(T',4i + Tn-rn. This enables us to make use of previously 

calculated values of the integrals over preceding time layers. Since D(r,^,+r„-r') = 

= D(r, £;+4 + T„^4 - r), then, according to (2), we have the recursive relation: 

(3) 
Tn-l 

Tn-5 

On introducing in the same manner the functions: Bbi*n£i)>Bc(TnM) anc* Bd(Tn>%i) we 

can obtain the following equation [4]: 

+ o(Ar), 

where o(Ar) is the contribution of the integral (1) over the segment [r„_j,rH] into the 

electric flux density Z)(r„,.|/). Here it is assumed that this contribution can be neglected, 

Under such an assumption, we derive ä formula for the calculation of the field D(rn,$j) 
through the mediation of the calculated values of this function on preceding time layers. 
Depending on the desired observation time period, a simulation run on a Pentium PC with 16 
MB of RAM takes from 1 to 10 min. For the case listed below the grid spacing was selected 
uniform as AT = A£ =0.015. 

IV. Discussion of numerical examples 

In order to present ä visual illustration of developed numerical technique we consider a one- 
dimension problem of propagation of a TEM square pulse: Z>o(r,£) - 6{r - £+ 2) - 
- #(r-£ + l) through the dielectric slab with time-varying permittivity and conductivity 
(parameters a and b respectively). Spatial-temporal distribution of electric flux magnitude is 
presented in Fig.l. Before r-l, when permittivity of the medium s is still constant and 
conductivity equals zero ( a=l and 6=0, respectively), the pulse propagates in the positive 
direction without perturbation. When t = 1, the permittivity of the slab ( medium with % > 0) 
becomes 1.7 times greater then initial one and the conductivity appears ( o=0.6 and &=0.01, 
respectively). The pulse transforms into two opposite-propagating pulses. They are well 
recognisable in Fig.l. The magnitude of backscattered pulse is negative because a<0. The 
backscattered pulse is incident to the boundary of slab, passes it through and is partially 
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reflected back. Iii Fig. 1 this is shown as the third trace which follows in the positive direction 
from the boundary (doted line at £ = 0 ). The different angles of traces correspond to the seve- 

ral velocities of pulses due to medium 
parameters changing. The second jump 
of the medium parameters to initial 
values appears when r=7, and then the 
difference between the left and right 
half-spaces vanishes  This leads to the 
splitting aH the located in the slab pulses 
into forward- and back-scattered ones. 
The results presented here are in a good- 
agreement with those obtained by the 
analytical resolvent method [3]. 
Direct  time-domain   solution   of the 
integral    equation    (4)    accumulates 
numerical errors during the time of 
observation. That is why the last-time 
distribution of field suffers from "noise". 
The rough sealing  of the  level-plot 
hampers the  fine  recognition  of all 
details of propagating pulses. 

V. Conclusions 

An evolutionary algorithm for direct 
numerical calculation of a nonstationary 
electromagnetic field in an active (gain 
or lossy) medium with time-varying 

permittivity and conductivity is presented, This field is described by the time-domain two 
dimensional Volterra integral equation of the second kind. The algorithm is based on the 
discrete time scheme and does not impose restrictions on the signal shape and duration, äs well 
as on the time behaviour of the medium parameters. The influence of a jump in the medium 
parameters On electromagnetic square pulse transformation is shown. 

10.200- 1,200 

i 0.060- 0.1 m 

-0.010 

-0.040 

; -0.100- 
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.-0.011 

-0.041 

Fig. 1 
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RADIATION OF A LONG CONDUCTOR EXCITED BY A SHORT PULSE 

Yu. I. Buyanov, V. I. Koshelev, V. V. Plisko 

High Current Electronics Institute RAS 
4, Akademichesky ave., 634055 Tomsk, Russia 

e-mail: koshelev@hcei.tomsk.su 

During recent years a great number of papers devoted to the investigation of nonstationary 
radiation of wire antennas were published, but most of them have a theoreücal character. In 
the well-known experimental works electromagnetic field was radiated and registered near a 
metal surface. To use ultrawideband (UWB) impulse signals in practical aims it is required to 
Sate and receive signals in free space. The study of peculiarities of UWB impulse signal 
radiation and receiving was carried out taking as an example a long conductor disposed 
perpendicularly to a metal plate as the most simple for investigation. 

For this aim an experimental setup presenting a 1.64-m 
long and 10-mm diameter conductor installed 
perpendicularly to a 1.8-m diameter metal plate has been 
created (Fig. 1). Electrical field was registered by means 
of a specially developed receiving antenna on the basis of 
a biconical vibrator having a dimension 2/ = 15 cm with 
nonuniformity of an amplitude-frequency characteristic 
in a 400-1200 MHz range no more than ±3 dB. To excite 
the conductor, a 2-ns long bipolar pulse was used (Fig. 
2a). The choice of a bipolar pulse is conditioned by its 
sufficiently wide frequency band and absence of a 
constant constituent in the spectrum. 

re!, units 

tz 

Fig. 1. 

X 
—► 

-1 t,ns 

At numerical simulation the metal plate was substituted for a system of radially divergent 
conductors of a corresponding length. The conductors were perfectly conducting. A bipolar 
pulse was simulated by means of a derivative in time from a gaussoid (Fig. 2b). For numerical 
calculations of ultrawideband signal radiation a program has been developed on the basis ot 
expression for electromagnetic field of the conductors excited by the given current [ 1 ]: 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 313 

*» 

1     A3(aR)R-q(M) , XJW-JW , (IMzliSl// 
£(F'0=4^;)l    A5 cÄ4 c2*3    1 

where jand 7' are the current and its derivative in time, respectively, R = r-r'i& the 

distance from the conductor surface point to the observation point, q{t) = pV'W > so is the 

dielectric constant, c is the velocity of light in vacuum. 

The obtained simulation results were compared with the results of calculations with 
application of the program WIRES [ 2 ]. Fig. 3 presents the calculation results of the £z-field 
component for the point x = 0.7 m and z = 0.84 m made by means of our program (dashed 
line) and program WIRES (solid line). The difference in the delays between the first and 
second pulses is due to the difference of velocities of current pulse propagation along the 
ond^tofln our program this velocity was taken to be equal to the light velocity m vacuum. 

E , rel. units 

Fig. 3. 

9    10   11   12 t, ns 

Fig. 4. 

In the experiment a z-component of electrical field was measured. For comparison^ Fig 4 
Resents the field oscillogram in the point x = 0.7 m, z - 0.84 m. As is follows from the 
calculations by the program WIRES and from the experiments, the amplitude of the second 
nulse radiated by the linear conductor end is less than the amplitude of the first one The 
Sference of the calculations by our program and by WIRES (Fig. 3) is related to the fact that 
in the first case the conductor diameter is not taken into account and m the.second^ case the 
conductor diameter is 10 mm. Fig. 5 presents the results of cabulation (dashed hne) and 
measurements (solid line) for the point x = 0.45 m, z = 0.08 m. Theore ical (dashed hne) and 
™7mental (olid line) dependencies of maximal ratio of the second and first pulse hatf- 
SETS11= coordinate z for the x - 0.45 m are presented in Fig. 6. The difference in the 
curves can be explained by the finite frequency band of a receiving antenna and the difference 
of exciting pulses in the experiment and calculation (Fig. 2). 
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As it follows from the obtained results, the main contribution into the radiated field give the 
currents at the conductor ends and radiation from the plane plate edge can be neglected. 
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PULSE SIGNAL SCATTERING BY OBJECT LOCATED NEAR 
THE EARTH SURFACE 

0.1. Sukharevsky, S. A. Gorelyshev, A. V. Muzychenko 

Kharkov Military University, Maidan Svobody 6, Kharkov 310043, Ukraine 
Tel. +380-(572)-450096 

Mathematical simulation of a pulse signal scattering by an object placed above a 
dielectric media boundary (Fig. 1), for example, air-to-earth interface, is of interest for a 
number of electromagnetic and radar problems. 

Using the Lorenz lemma in the different space regions and combining these results, we 
can obtain the integral representation for the field scattered by the object S in the direction R° 
under a monochromatic illumination: 

ja?(ä(R0)-E(R0))=lET(x\R\p)HAx)* 0) 

Here E (x\R° ,p) is the field generated by the plane wave propagating in the (- R°) direction 

in the presence of only the half-space V+ (i.e., in the absence of scatterer S); E(R°),E(R
0
) 

are the back scattering patterns of considered structure in the presence and absence of scatterer 
^respectively. 

The field E(R°) scattered in the (-R0) direction can be approximated by zero in the 
case of oblique (to L) incidence of the plane wave. Finally, considering the phase shifts caused 
by the reflection from the boundary L, equation (1) can be rewritten as follows: 

P
E

(
R
 r-J—^7T-' (2) 

where R^R0-2n(R°n);px is the polarization vector of the plane wave reflected by 

I v • w I -4- h 
boundary L   n=x - \~ ; x Rl;h is the distance from the plane of L to the origin of 

(R}n) 
coordinates associated with object S; n is normal unit vector to boundary L . 

Function HL(x) is the surface current density on S generated by the plane wave 

propagating in the (-R0) direction due to the boundary L of the half-space V+. The 
existence of media interface L leads to the fact that both the wave reflected from L and that 
propagating in the (- Rl) direction are incident together on the object S surface. Therefore, 
two mutually intersecting (in general case) "lighted regions" Su S2 regions are present on the 
object surface (Fig. 1). In this case, on using the Physical Optics approach for the surface 
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current density on S and the known connection (by means of the Fourier-transform) between 
the object response to the temporal 8-function and the object frequency-domain characteristics 
(i.e., a response to monochromatic illumination), we can obtain the transient characteristic of 
the object (response to step-function): 

E(0=    I 

+ 1 

:dl + :Ctl + 
(in 

j I I 2dl+     i I 

(R°+R1)-n 

Bt(x) 

_ \ 

(3) 

rdZ 
(^°+Äi)-Ä?y 

where r; (?) are the integration contours, i.e., the intersection lines of the "lighted regions" 

Sj,^   and   the   planes   determined   by   different   combinations   of  vectors   R° ,R1, 

4 ( x ),B1( x ) (/ = 0,1) are the functions depending on the mutual configuration of scatterer 

S, media interface L, and illumination direction and polarization vector of the incident wave. 

Thus, the calculation of the transient characteristic E[t) of an object near media 

boundary is reduced to the computation of four integrals. By using the expression for the 

probing signal Cl(t), (due to its entire-function character), we can obtain the expression for 

the response to the pulse probing as follows: 
T 

E(t)=JQ'(s)E(t-s)ds, (4) 
0 

where T = min { ru, t}, TU  is the duration of signal Q( t). 
The proposed approximate method of calculation of back-scattering from perfectly 

conducting objects near a media boundary can be efficiently applied in the analysis of 
complicated shape objects, provided that object dimensions are noticeably greater than the 
signal duration (as measured in the "light" distance units). 

When performing numerical studies, a video pulse 

n(*)=exp(-*2/ru
2) (5) 

with duration ru = 1 ns was chosen as a probing signal. As a result, a number of dependences 
(on time), of the normalized magnetic-field density in different model illumination conditions 
and a horizontal polarization of the incident plane wave have been obtained. These results are 
presented in Figs.2 to 5. The following parameters were taken for the lower half-space: e = 7, 
ju = 1. The pulse signal responses at the height of the sphere lower point above the surface, 
L= 0,5 m, for G = 45° and 0 = 15°, respectively, are shown in Figs.2 and 3. Responses in the 
case that the sphere touches the L plane, for 9 = 45° and 0 = 15°' are shown in Figs.4 and 5, 
respectively. 

In all figures the time (in nanoseconds) is counter along the horizontal axis. The relative 

response, InrxlOpE^t}, where r is the distance to observation point, p is the horizontal 

polarization unit vector of receiving antenna, is counted along the vertical axis. 
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CONSTRUCTION OF BESSEL-TYPE BEAMLIKE 
SOLUTIONS TO THE MAXWELL EQUATIONS 

Victor V. Borisov 

Institute of Physics, St.Petersburg University, St. Petersburg, Russia 

1. The aim of this report is to construct the transient solutions to Maxwell's equa- 
tions describing the Bessel type beamlike TM waves in free space. We suppose that the 
current pulse of special transverce and angular distributions belongs to a plane that is 
at rest or starts its motion with a constant velocity v at the fixed moment of time. The 
explicit solutions of the initial-value problem are the transient beamlike modes of the 
cylindric coordinates system. We discuss peculiarities of these solutions, which describe 
both transient and steady-state waves. In the previous communications, the beamlike 
solutions: a scalar steady-state wave [1] and a transient electromagnetic wave of TE type 

■WOT-C. t<ki-a\r\oA fnr tht* mnfipR rif nrrW zero onlv. , .,~x„ -.-„. —    ■     ■ - „ 

2. At first, we obtain the explicit solution of the scalar problem 

9s Air 
or1 c 

(1) 

Here r = tc is the time variable, c denotes the velocity of light.  We suppose that the 
source of the wave perturbation in the cylindric coordinates p, <p, z is given by 

j = h(r)6(z - ßT)f(r)exp(imp)Jm(ap),   ß = v/c, (2) 

where h(z) is the Heaviside function, 6(x) is the Dirac function, Jm(ap) is the Bessel 
function of the first kind, m is an integer, and a > 0 is a constant. 

Separating the variables ip, p and using the Riemann formula, we obtain the solution 
of the problem (1), (2) in the form 

cy/r=~p 
Jo (a^Tß-T'f-zf) = Jm*Jm{ap)${zß,Tß), 

(3) 
where rß = (1 - ß2)'1^ - ßz), zß = (1 - ß^^z - ßr), T = rß - zß if zß > 0, 
and T = rß + zß if zß < 0. One can interpret the wavefunctions ipm as beamlike modes 
in cylindrical coordinates having the same profiles for arbitrary time-dependence of the 
source. It should be noted that the function $ is a solution of the telegraph equation in 
1-D space. Hence, the time-longitudinal structure of the above modes is similar to both 
the transient plane waves in collisionless plasma and transient guided waves. In partic- 
ular case of the time dependence /(T) = eikT (k is a constant), one can represent $ by 
means of Lommel's functions of two variables U„(w,z) or Vn(w, z) (see [2] for extended 
consideration). 
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3. Now express the components of the TM electromagnetic field vectors E and B via 

the Bromvich-Borgnis potential II 

^ _ a2n     _ 1 J5L m   &n     _ 1.051.    =_^njB2 = 0. (4) 

Then Maxwell's equations together with the initial conditions £ = B - 0 r < Ojield 
the scalar problem (1) where * = f and j is the non-zero component of the current 
density vector j = ezjz. Therefore the solution (3) permits us to obtain he components 

of the magnetic induction vector B by differentiating the ^"f^^^ 
to the variables <p or p. To calculate the components of the electric field strength, one 
should integrate solution (3) with respect to the time variable. 

4. Consider the limiting case of the current pulse which travels with the velocity of 

light. When zß < 0 and ß = 1 we have from expression (3) 

^c JO K (5) 

In the particular case of /(r) = efcT, one gets 

$(T, 2) = (1/cfc) [I7i(w,*) + W™,*)], (6) 

where w = *(r + z), and * = aV^1^-  We rewrite the above expression using the 

functions Vn(w,z) [3] as 

$ = (1/cfc) e|(fc(r+Ä)+4(^))-f + ^(w, 2) + iV&K*) (7) 

and supposing that f = \J& > 1 obtain the steady-state wavefunctions 

1 
^n cfc 

Amp Jm{ap)e 2fc        T 2k (8) 

The condition f > 1 determines the space-time domain where the steady-state waves 
exist. Hence the boundary of the above domain is 

z = ßoT,   /5o = (a2-fc2)(a2 + fc2r1> (9) 
where ß0 > 0 if a2 > fc2 and ß0 < 0 when a2 < k\ It ta easy to verify that the equation 
jfe» = (ü/cf - a\ where S> denotes a frequency and k denotes a value of wave-vector^ 
satisfied if ^c = \e + a>)/(2k) and k = (k* - a2)/(2fc) or */c = * and A^ v^ 
It should be noted that we do not obtain the localized wave structures of Bnttmgham s 
type in the case of a source moving with the velocity of light. 

5. Let us discuss the axisymmetric solution of the wave equation (1) for the Gaussian 

transverse distribution of the immovable source 

j = (l/2i:)6(z)f(r)exp(-p2/a'i) r > 0, j - 0 r < 0. (10) 
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One can verify that the function 

„ . i-^ r- ^me-^h (*J(T^y-A        (ii) 
cal Jo \fl / 

is a solution of the problem (1) and (10) in the space domain z > 0. Here J0(^) is the 
modified Bessel function of the first kind. One can see that the transverse distribution 
of the above wavefunction has, in general case, a variable profile. Changing the function 
S(z) in (10) to 6(r -z),we obtain the source moving with velocity of light. In this case 
the solution of the scalar problem (1) describes Brittingham's focus wave mode forma- 

tion if /(r) = eikT (see [4]). 

Acknowledgement. This research became possible in part due to the Grant 96-02- 

17166 from the Russian Foundation for Fundamental Research. 

References 

I1 J. Durnin Exact solution for nondiffrarting beams. I. The scalar theory. J. Opt. 

Soc. Am. A, Vol. A 4, no 4, 1987, pp. 651-654. 
[2] V. V. Borisov, Nunsteady-State Electromagnetic Waves, Leningrad: Univ. Press, 

1987 (in Russian). 
[3] G. N. Watson, Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 

1945. 
[4] V. V. Borisov, A. B. Utkin, On formation of focus wave modes, J. Phys. A: Math. 

Gen., Vol. 27, 1994, p. 2587. 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 321 

EVOLUTIONARY BASIS AND OPERATORS OF TRANSFORMATION 
OF NON-STATIONARY WAVES IN PERIODIC STRUCTURES 

Andrey O. Perov 
Institute of Radiophisics and Electronics of National Academy of Sciences 

12 Ac. Proscura str., Kharkov 310085, Ukraine 

A new approach to solution of model problems of the linear non-stationary theory of gratings is presented. 

Itsfo^tS^ 

Development of the spectral theory of gratings [1] made it possible to clarif>r the: basic 
directions of analysis within the time domain. The problem of development of both the 
mathematical models adequate to situations dealt with and nurnerical-analytica methods; of 
their realization has become a high priority one. The proposed method of sohxtion.erfths 
problem is based on the description of the scattering properties of periodic structures in terms 
of the operators of transformation, the latter being qualitatively identical for all the regular 
sections of the Floquet channel of the "evolutionary" basis of the non-stationary wave. 

Consider a model initial-boundary problem (see Fig. 1) 

'a2 a  a?   a>2 

d (i) 

assuming that the functions F{g,t), <p(g), %), *(sH <K*).' which are Mte 'm the 

domain Q = R\MS, R = {g eR2:0<y <2x, M<oo}, satisfy the conditions of the theorem 

of unique solvability of (1) within the W&QT\ QT =Q*(Oj), T «c energy class 

(Sobolev space) [2]. Here: M is either an identical operator in the E-polanzation case of 
liy z t) =4, Hx = Ey = Et = 0, or an operator of differentiation along the outer normal to S 

in the H-ca'se of U = Hx' Ex=Hy=Hl=0;Sis the boundary of perfectly conducting 

grating generatrices at the period 0<.y<2;r; R2 is the plane of variables y,z; g={y,*\, ® 

is a real parameter of the Floquet channel R, real-value functions e(g) > 1 and a{g) determine 

the influence of the Floquet channel nonuniformity on the velocity of Propagation of 
perturbation and on its dissipative characteristics; intS is the closure of domains in R filled by 
metal (i.e., the section of the grating metal generatrixes by a plane x = const). 

In the specific case of a Floquet channel that is regular on the whole length R (int S-0; 

Jg\ _! _ ^g) = o), we shall present the solution as an expansion 

tfM=Ev-MAM gGQ> t>0' (2) 

in   terms   of the   system   of  eigenfunctions   /i„(>') = exp(U^)-(2^)",/2,    An=n + ®, 

„ G{n} =0+1... of the homogeneous boundary problem produced by (1) after separation of 

the lateral coordinate .y. 
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The expansion coefficients   vH(*,t)= G(X„)*fncm be obtained as a convolution of functions 

G(Än,z,t)=(-i/2)x(t-\4JO[K('2-T]     and  /.(*,0=«-M-^W-»»- 
-S(t)cn(z}> here an(*,t\hAfi) md CM are the Fourier coefficients of F(g,t), <p(g) and 

y(g) functions, respectively, when the latter functions are series-expanded in terms of the 

basic system {fiH(y)}H> *(•••) is Heaviside's function; S{m)(..) is the generalized derivative 

of the order of m of the delta-function; Jm{...) is the Bessel function. 
Expansion (2) gives both the general and the particular (corresponding to the given sources) 

form of the field of a non-stationary wave propagating in the regular Floquet channel. Its 
change both in space and in time is completely determined by the system of functions 

v(*,f) = {vH (*,/)}, the properties of which justify its role of the universal "evolutionary 

basis" of non-stationary wave in any finite regular (containing neither sources nor 
discontinuities) piece of the strip R. , 
Suppose now that a wave of the type (2) is exciting an open periodic resonator shown in Fig. 1. 

rQ Excitation field t/i(g,f) = 2X(*>')A,0') 

we consider to be non-zero only in the reflection 
Ä zone A with *, > 0 (the upper boundary of the 

discontinuity of the Floquet channel R is located in 
ix = 0 plane). We present the secondary field 

h arising both in the reflection zone (A) and in 
transmission one (B), propagating in the positive 
directions of z, and z2, as 

wJ(g,t)=Ilw.j(*j>'My). ^<u=u P) 
n 

Further we introduce, by expressions 

OZ-j ■> 0   m 

+ Tn
BA

m (t - T)6* ]vm(0, r)dr, j = 1,2; n,m = 0,±1..., (4) 

the boundary values ( on the boundary *, = 0 of the discontinuity of the channel R ) of the 
operator of transformation of the evolutionary basis of a non-stationary wave coming from the 
upper half space (from the region A): 

^M'tr'n&tyA*"<+TBA^K0'^ j=l>2- (5) 

It is obvious that together with the expressions [3] 
wnl{zJj) = -\jAU(t-^-^rU{t-r)-^¥:j{^r)dr,. Zj>0,   , = 1,2, (6) 

o 

specifying the diagonal operators E^z,) and EB(z2): 

*,M*K>(*>.')L=[EAh)si+*°M%h(°-*) z< -0J=l>2> (7) 

monitoring the field changes during a "free" run of wave over a finite distance in the regular 
section of the channel R, the operators RM and TBA completely characterize all the scattering 
properties of the grating under its quasiperiodic excitation from the halfspace A. 
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By determining, as is the case with R    and 
TBA, the transformation operators RBB  and 
TAB  of the evolutionary basis of the non- 
stationary wave coming from the halfspace 
region  B,   at  the  boundary   z2=0,   and 
considering such operator sets to be known for 
individual elementary gratings, we develop an 
algorithm of solution of the problem arising in 
the analysis of the scattering properties of the 
complex structure containing those gratings. In 
the  model  situation  shown  in Fig.2,  the 
structure contains two In -periodic gratings I 
and II located one above another in parallel 
planes. The gratings are connected through the 
Floquet channel B having a finite length t. 

Keeping the same notations as accepted before ( the obvious changes are caused by 
presence of two different gratings I and II) and following notations (3) - (7), we obtain ( see 

Fig.2 

rig. wjKt, 
., ,  ^  /TV..  /_  ti\ *\\ ■■eit*j\v»jy*jw,'f\  (IH 

, and   Sliimairy IUI   rrjyujj. 

(8) 

'w;(i)=i?-(i)[v]+/?-(i)EB(^i(ii)}   w2(nyTCB(ll)EB(l\wl(l)] 

By the method of elimination, system (8) is reduced to the operator equation of the second 

kind with respect to the unknown vector-function w2(l): 

wi(i) = r^(i)H+JRBB(i)Es(^eB(n)EB(4w;(i)], (9> 
and to the transformation formula determining all the components of the field formed by the 

structure 
The initial "complex" problem has been converted to a form admitting a direct inversion^ 

The operator in the right hand part of (9), because of the finite velocity of propagation of 
perturbations, influences the unknown vector-functions w'2{l) having values relating only to 
the time moments previous to the calculated one. The "complex" grating is reduced to the 
category of elementary ones after calculation of elements of the boundary operators according 

t0 The^odd situations considered above demonstrate practically all the basic features of the 
proposed method at the stages both of description of the scattering properties of gratings in 
terms of boundary transformation operators and of construction of algorithms of the analysis 

of complex periodic structures. 
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Transient Analysis of Transmission Lines with 
Time-dependent Terminations and General Input 

Ahmad Cheldavi: Iran University of science & Technology, Narmak, 
Tehran, 16844, Iran, Fax: +98-21-7454055, Tel: +98-21-7808022 
E-mail: cheldavi@ece.ut.ac.ir 

Abstract 

In this paper an exact time-domain solution for wave equation in lossless 
TEM transmission lines with time-dependent boundary conditions in the 
input and output terminals will be peresented. 
First a mathematical closed form time-domain solution for the wave 
equation in lossles TEM transmissions lines subject to arbitrary 
terminations will be peresented, then this general solution will be 
specialized for some time dependent resistive terminations. 
Foundomentals of transient analysis of teransmission lines with random 
inputs such as white noise also was considered in this paper briefly, in the 
latter situation the results are in the form of some statistical parameters, 
such as, correlation function, mean, variance and spectral density of the 
voltage or curent stochastic processes, in the line as a function of time and 
distance. 

1- Introduction 

Time dependent loads especially loads with sinusoidal variations are very 
important in engineering and modelling the actual behaviour of some 
physical phenomenas. moreover when the parameters of the input to the 
line is not completely known, then frequency domain methods fail to solve 
such more complicated problem exactly, so we will use the time domain 
approch to solve such problem. 
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2- Mathematical Tools 

The main problem is shown in fig.(l) 

Rg d 

zT(t) 

Time domain exact solution for the voltage wave propagation in this line, 
using dallamber solution is, [1]: 

v(x,t) = Mi;K£Vg(t-x/u-2md/u) riKL[t-x/u-(2k-l)d/u] 
tn=n k=L m=0 

L 
+ M t Kr'vJt+x/u-Zmd/u) f[KL[t-xlu-(2k-l)d/u] 

m=r k=0 (1) 

m which v K and KL are velocity of the wave and reflection coefficients ,, ~~g 

in the source and load terminals, respectively. 

K = 
R„-Rft Rn       „ ,.x   ZL(t)-Z0 

ZL(t) + Z0 8   RB+R0 

, M = 
R„ +R0 

, KL(t) (2) 

3- Statistical Results 

If the input to the line is a stationary white noise with mean My and 
correlation function Ry(t), the steady state voltage mean and correlation 
function as a function of time and distance will be (for ZL(t) = RL): 

mv(x't) = R^Kmy (3) 

Rw(x,t) = M2(l + K2
L) Ry(x) + KL[Ry(t - 2(x - d)/u) 

+ Ry(x + 2(x-d)/u)] (4) 
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4- Sinosoidal Load Termination 

Here we present two examples for the sinosoidal load terminations. 
Figure (2) shows the voltages in the middle of a 20m length line with 
Z0=50        ,     Rg=150        ,     Vg(t) = Sin[(27txl06)t]u(t)     and 

ZL(t) = 20+10Cos[(27ixl06)t] . 
Figure (3) shows the voltages in the middle of the same line, but with unit 
step input, and the load is ZL(t) = 50+50 Cos [(2TT X 106)t]. 

5- Reference 

A.Cheldavi, H.Oraizi,  and MKamarei;  "Time Domain Analysis of 
Teransmiton Lines" proc. of. 25th EuMC, Bologna, Italy, Sep. 1995 
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FDTD METHOD IN PROBLEMS OF PENETRATION OF TRANSIENT FIELDS OF 
ELECTROSTATIC DISCHARGE INTO A CAVITY 

P. Shubitidze, R. Jobava, R. Zaridze, D. Karkashadze, R. Beria, D. Pommerenke,** S. Frei* 

Laboratory of Applied Electrodynamics, Tbilisi State University 3 Chavchavadze Ave., 
Tbilisi, 380028, Georgia, Tel & Fax: +995 32 290845, e-mail: lae@resonan.ge; 

♦Technical University of Berlin, Germany 
* »Hewlett Packard, Roseville, USA 

Abstract - FDTD (Finite Difference Time Domain) method is a well-known method for numerical solution of 
Electromagnetic Compatibility (EMC) problems. In this paper this method is used to calculate the shielding 
efficiency (SE) of enclosure with aperture. Transient fields related to indirect Electrostatic Discharge (ESD) are 
used as incident fields to investigate EMC problem of aperture penetration into cavities. 

Metallic shields are commonly used to protect the equipment, sensitive electronic parts of 
which can be disturbed or even destroyed by transient EM fields. Practical shielding enclosures 
always contain many apertures such as vents, cable feed-through and seams that allow electro- 
magnetic energy to couple into the structure. This paper presents a numerical study of the 
coupling of transient fields radiated due to Electrostatic Discharge (ESD) into the metallic 
enclosure with aperture. Computer simulation of ESD is done using a full-wave Method of 
Moments in time domain for discharging bodies of revolution located near the ground plane [1- 
4] For a discharging structure shaped as spheroid that can be considered as a model of human- 
hand related ESD, calculated arc currents and fields were compared with experimental data 
and showed a sufficient for EMC applications accuracy of the developed technique [1-4]. Such 
realistic fields are used in this paper as incident fields to investigate aperture penetration into 
cavities. Time domain analysis has been done by using FDTD method. 

ftj« 
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_  
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Fig.l. Node structures FDTD cell after Yee [5]. Fig. 2. Configuration of the shielding enclose. 
(All dimensions in mm) 

We describe here briefly the FDTD algorithm. It is based on the discretization of the 
Maxwell equations according to the field component definition illustrated in Fig. 1. For 
instance, consider the magnetic field components normal to the face of the cubic cell and 

discrete coordinates U+f'k+I andthne "+f B? usinS a central difference of the time and 

space derivatives, it can be updated from its value at the previous time step and from the 
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electric field components located at the edges of the face at the previous time step, in the 
following manner: 

Hr5(U+Lk+l) = Hr5(i,j+,
2,k+1

2)--^-[(E°(ij+l,k+^)-E°(iJ+l!k4))- 
Ml 

(E^iJ+^k+D-E^iJ+U)) 

where A and At are the space and time steps, respectively. Similar recursive formula can be 
established for the remaining field components [5]. To ensure numerical stability, time and 

space steps have to satisfy the stability criterion (cubic cell): —z-fic, where c is the light 

velocity of the medium. The modeled and experimentally measured enclosures are based on 
cubic metallic box (Fig.2) with reconfigurable front panel. Here we will limit ourselves to some 
results for the cylinders with rectangular aperture cut in the center of the front panel. The 
configuration is excited by the plane wave having the same time dependence and magnitude as 
a transient field of ESD at some distance from the discharging body. 

In all calculations below, a metallic spheroid of semi-axes a=31 cm and b=5 cm is chosen 
as a discharging object. Spheroid is charged to some voltage denoted as V. Discharge occurs 
at a distance h from the plane. Fig. 3 shows radiated electric fields for two different cases: a) 
V=5 kV, h=0.7 mm; b) V=10 kV, h=1.0 mm. Observation point is located at the ground plane. 
The distance to the point of observation from the location of arc is lm. 
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a) b) 
Fig.3. E-field radiated by ESD from spheroid 0.31m and 0.05m semi-axes: a) V=5 kV, h=0.7mm; b) V=10 kV, h=1.0mm. 

We estimate the shielding efficiency of the cavity as a maximum of field inside the cavity 
normalized to the incident pulse. Characteristic time duration of the ESD fields from the 
described above geometry dictates the low-frequency scenario of aperture penetration. To 
investigate the characteristic behavior of ESD fields penetrated into aperture, we calculate 
aperture penetration of the fields of ESD into infinite perfectly conducting cylinders with 
rectangular cross sections. The code described above determines the complete electromagnetic 
field in the space surrounding the cylinder for all time moments of interest. This massive of 
information can be used to obtain a better insight in the field coupling phenomena. For this 
purpose we present the field portraits in Fig.4. 

These portraits show the electric field in the space near and inside the cylinder for 
different moments of time. In Fig. 4, for the moment ct=2.815 m the incident pulse approached 
to the cylinder and the energy began to penetrate via the aperture. The next portrait shows a 
cylindrical wave inside the cavity with the center located at the aperture. This field propagates 
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with a small reflection from the walls. Reflection can be detected via curvatures seen after the 
first peak in the pulse inside the cavity. At ct=3.75 one can see the moment when field reaches 
the right wall of the cylinder. After this, the field begins reflecting from the wall and focusing at 
some points. As the aperture is quite wide, the incident field is penetrating inside, and all the 
portraits in Fig. 4 can be explained by considering the pulse propagation inside the cavity. After 
some time we can expect to see resonant fields inside the cavity. 

ct=2.815 m 

m 
ct=3.475m 

-0.5 0 05 

ct=3.75 m 

-0.5 0 0.5 

ct=4.0625 m 

-0.5 0 0.5 

ct= 4.375 m 

Fig 4 Time-history of the field inside the cavity. Width of sides of cylinder lm. Size of rectangular aperture: 0.3m 
Incident field is radiated by ESD from 90° (5 kV, 0.7 mm). 

These results show that time-domain analysis has its own peculiarities that should be 
considered carefully from the physical point of view. In the future work our attention will be 
focused on the investigation of transient field coupling in the cavities having different shapes. 
Different kind of ESD events (voltages, arc lengths) will be also considered. 

We want to thank the Volkswagen Foundation for sponsoring this work. 
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Abstract. A transient field radiation of the coaxial waveguide aperture is considered. The 
approach used is based on the Evolutionary Equations Method in the case of electromagnetic 
waves propagation in free space. Three-dimensional problem is solved analytically in time 
domain by means of the Separation of Variables Technique. The results are illustrated by 
numerical simulation. 
Introduction. The application of superwideband signals shows promise for the development of 
communication systems. In parallel with the classical approach to the problems of transient 
signal radiation, the analytical methods in time domain attract particular interest because of 
their clarity from the energy and information standpoint. A technique of this sort is the Modal 
Basis method, which was intended originally as the procedure of solving the electromagnetic 
problems in resonators [1] and waveguides [2] filled with nonhomogeneous-layered nonlinear 
morliiitri 

The essence of the method is a construction of coordinate basis in the cross section 
plane and an expansion of the transversal field components in terms of the eigen functions of 
this basis. Unknown expansion coefficients can be evaluated from the set of evolutionary 
equations that can be recast into three independent partial differential equations, of which two 
Klein-Gordon equations in longitudinal field components govern independent propagation of 
the H- and E-waves. The third wave equation describes propagation of the TEM-waves in the 
waveguides with multiply connected cross-section contour. These equations can be solved in 
the time domain by the separation of variables method or the Green's function technique, 
according to which transversal component amplitudes are found by differentiation of the 
obtained solution with respect to time or longitudinal coordinate. 

This approach has been applied to the transient field radiation problems [3]. The self- 
adjontness of the matrix operators constructed in the plane of cross-section is ensured by the 
boundary conditions on the perfectly conducting metal in the case of interior problem, whereas 
the self-adjontness of the same operators in the case of exterior problem is provided by the 
condition of radiation. The former case is characterized by the discrete spectrum of eigen 
values while the latter case is marked by the continuos spectrum of eigen values. In response to 
the change-over from discrete spectrum to the continuos one, the eigenflinctions are modified 
and the problem solution is an integral of modes over spectral parameter from 0 to oo rather 
than a sum of modes. The problem of unknown evolutionary coefficients evaluation is basically 
the same except for the transversal wavenumber not being a constant but an integration 
variable. 
The Statement of the Problem. Let a TEM-wave with an arbitrary time dependence 
propagates in the direction of increasing the longitudinal coordinate z in the semi-infinite 
coaxial waveguide with the outer radius R and the inner one r. According to [2], 
electromagnetic field in the interior of the waveguide is presented as 

^/plnäi7^; " v (-/pin 
A 
RJ 
- —I(a-z), 

dz 
(1) 

where /(•) is an arbitrary function which defines the time dependence. 
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Suppose that coaxial waveguide has an open end with infinite flange in the cross 
section at z = 0. We use the free-space electromagnetic field expansion in terms of the Modal 
Basis from [3] in the absence of currents and charge sources: 

m=0 0 
dz 

d_ 

dt 
(2) H(p,(p,Z)0 = SUxVM/m^^-ij4f0xV(b"]eo^'"; 

ffl=0 o oz «=° o 

where the functions vS^h'M^/fi and 0*<l>*) = '"(^A£ 6Mxäaß 

the field distribution in the cross section, /v() is the Bessel function of order v, hm and en 

are the evolutionary coefficients to be found, which must obey the equations 

r 1 a2     d2      -1 .  .      x    .    f 1  S2     ö2        ' 
■~+x2KM = 0; -+$2k(z,**) = o. 

[c2 or2 Öz2 ' * J--N-'"' ' [c2 dt2 dz2 , 
One should match together all the field components at z = 0 and make sure that the H-wave 
radiation is absent, since hm(z,t;X)^. The boundary and initial conditions on the Klein- 

Gordon equation solution are of the form: 

dz 

d 
e(z,^)|r=0=0; ^<z,^)|I=0=0, 

where <z,^Ho(^) because e„(z,^0 at ,^0 by virtue of axial symmetry. We 

impose the first condition implying that the field amplitude equals to zero at infinity. It will be 

desirable to specify the function l(ct - z) in the following manner: 

\ct-z,   ci-z>(y, 
'(*-*) = {   o,      ct-z<0. 

Hence, the time-dependence of electric and magnetic fields at the waveguide open end has the 

step shape given by expressions (1). 
If we set up the problem 

c2 dt2    dz 
|T + ^25(z,^) = 0 

for the new function 5(z,^) = |<z,^) with the boundary condition 

B(z,rtl-^Cmt),where C© = (c,0[/0(^)-/0(^)])/ln^, H(t) isHeaviside's 

function, we can write immediately the solution: 

B(z^)--m{4 
which was obtained by means of separation of variables method in [4]. With the other 
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conditions (3) we find the evolutionary coefficient 

»1=0 ct + z. h^^717)- (4) 

One can draw on formula 2.12.42.2 [5] to find transversal field components of H and 
E from (2) by using the first term of the series (4) that yields a leading contribution to the 
electromagnetic field at great z and t. Precize values of the field strength are obtained from 
(2) by the numerical integration with respect to £. 
Numerical Illustrations. The time and angle dependences of the transversal electric field 
strength are depicted in Figure 1 ( r = 0,5 m, R = 1 m). The time scale is given in the units of 
(ct). The distance between the centre of the waveguide open end and the observation points 
equals to 10m. Transversal field components are approximately proportional to each other at 
the chosen observation distances. The dependence of the signal energy in the sector of 0° -10° 
on the distance is illustrated in Figure 2. The energy in a fixed sector becomes constant starting 
from some distance, but the longer this distance the more part of the energy concentrated near 
the axis 02. 

9,90 9,95 10,0010,0510,1010,1510,20 
ct, m 

Fig. 1. Time and angular dependence 
of the transversal electric field component. 

62 

eo 
58 

56 

54 
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50 
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0 10 40 50 20 30 

Distance, m 

Fig.2. Signal energy in the sector of 
0° -10° at different distances. 

Conclusions. Transient signal radiation of the coaxial waveguide aperture has certain features 
of electromagnetic missile. These are: anomalous slowly decreasing amplitudes of field and 
considerable concentration of the signal energy near the longitudinal axis 02. A uniform 
distribution of the field at the aperture is obviously not needed for electromagnetic missile 
radiation. The main condition for the radiation of such a signal is infinitely fast jump in the 
time-dependence of a source. 
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SOME EXACT SOLUTIONS FOR ELECTROMAGNETIC FIELD IN MEDIA 
WITH DIFFERENT TYPES OF TRANSIENT CONDUCTIVITY 

Irena Yu.Vorgul 

Applied Electrodynamics Chair, Kharkov State University, 
4 Svoboda Sq., Kharkov, 310077 Ukraine, e-mail: ira@unicom.kharkov.ua 

Abstract Electromagnetic field transformation in the media with continuously time- 
varying conductivity is studied by solving Volterra integral equation for the field. Exact solutions for 
the fields are obtained for a continuous temporal variation of the medium conductivity from one 
constant value to another, and for time-splashing conductivity. Their analytical and numencai 
analysis shows features of wave splitting on the non-abrupt temporal step of conductivity for the 
former case, and spatial field re-distribution for the latter one. 

Investigation of electromagnetic field behaviour in transient media started from 
the simplest but fundamental case of abrupt temporal change of media parameters [1- 
2] It has been shown for different media that the time jump of media parameters leads 
to electromagnetic wave splitting onto direct and inverse ones [1-3]. Only a few works 
dealt with continuous temporal changes of environmental parameters, as sucn ine ones 
by F AHarfoush and A.Taflov [4] for harmonic time-dependence and by ANerukh 
[5] for an approximation of continuous change by a sequence of abrupt ones. In these 
works the problems usually were solved numerically or approximately and only a tew 
types of continuous dependences were considered. 

In the presented work we consider electromagnetic field transformation for two 
cases of the conductivity continuous time dependences. The first is the conductivity 
changing continuously from one constant value to another, which is actually a more 
accurate description of the conductivity jump. The second one is a medium with time- 
splashing conductivity. Such a dependence of conductivity describes many natural and 
simulated processes having a splash character, especially those which arise due to 

discharges. „ ,      ,   . 
The problems solved exactly display the advantages of a more general analysis, 

avoiding any doubt about the solution accuracy. 

PROBLEMS FORMULATION 
The transient media are assumed homogeneous, and the fields are considered to 

have only a component which is normal to the x axis and independent on the y and z 
coordinates. That is, one-space-dimensional problem is to be solved. 

The conductivity nonstationarity starts at t = 0 moment. Ei is an electrical 
component of electromagnetic field before the medium change, also called the incident 

field. . .   j      .,   j 
First type of nonstationarity is described 

 by hyperboiic tangent, as Fig. 1. shows. It 
includes    cases    of   the    conductivity 
increasing and decreasing. 

Fig.1 
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The conductivity time splash in the second case is determinated as 

a (t )= a   0{ A  (t +  c)e"a * - 

( t +  c )f d X 
a.  (t-x  ) 

X   +   C 
1 + a z + 

2 a 

( x  +  c Y x +  c 

(1) 
} 

which can be a splash in the positive values of conductivity (Fig.2(a)) as well as in the 
negative ones (Fig.2(b)). 

0.02 

Fig.2.Dependences of conductivity time-splash shape on a   and   a  in  (1) 

The field E after the nonstationarity starts is to be found, that is we are 
interested in the transformation of the incident field in the transient media,. 

No restrictions on the time and space (one-dimencional, as mentioned above) 
dependence of the incident field were made while obtaining an analytical solution of 
the problem. Numerical analysis is carried out for the incident field taken as a plane 
harmonic wave. 

Mathematically, the problem is formulated in terms of Volterra integral 
equation for electric field that has the following form in one-space-dimensional case: 

(t,x)= E , (t,x)--- Jdt'a(t')J dx'6[t- t'-'x""xj4 jE(t',x')      (2> E 

where 8 is Dyrak's function , s is a dielectric permittivity, and  v= */    is the light 
/We 

velocity in considered media . 
PROBLEMS SOLUTIONS AND THEIR ANALYSIS 

1) The former problem is solved by reducing the integral equation (2) to a 
partial differential equation for the field E(t - x / v, x) at the shifted time moments. 
After some manipulations it is reduced to a first-order partial differential equation 
which can be solved. 

2) The problem for the conductivity splash is solved by resolvent techniques 
[6]. When the incident field is a plane harmonic wave the following exact solution for 
the transformed field is obtained: 

EU*)/E0^(2-e«<) 
09 

cos—x + 
V 

sin — 
V      v 

t7c  |(t + c)expja(t-t)-Jq)(t1)dt, Ux> 

x + (l/c-a-Ac): 

<^t)=typ(t). 

CD 
'cos—X 

(3) 
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Its asymptotic and numerical analysis shows that when the splash is large, the 
incident field amplitude reduces very quickly and before the conductivity starts 
decreasing it already is equal to zero. In this case the field completely disappears 
during the conductivity splash and does not appear after the conductivity becomes zero 

again. . . . 
In the opposite case of a small time-splash of conductivity, the held is 

decreasing before the conductivity reaches its maximum value and increasing after this. 
When the conductivity has completely disappeared the field takes its initial form. 

In the intermediate case, the field was calculated by the exact formula for 
different values of x The field time dependence here has a very short splash. Its 
maximum value is more then 4 times as much as the initial field amplitude. It reduces 
to the initial value before the conductivity reaches its maximum. These results are for 
x = 0, that is for the points where the initial field had its maximum at the zero time 
moment. For x = % 12 the field time dependence shape seems to have the same form, 
but the field values here are hundred times less and do not reach the values of initial 
field at the corresponding moments for constant conductivity. For x = % 14, the field 
splash having the same form as two ones mentioned above, is about one and a half 

times less than for x = 0 . ,    • •    • 
Thus the field under the influence of intermediate time-splash of conductivity is 

focused in the planes where x is divisible by % that is where the initial field was 
maximal at the moment the nonstationarity turns on. 

1 

w H fxJS^P^ 

The opposite situation take 
place in the case of large 
conductivity splash 
(Fig.3).The field is focusing 
here in the planes where x 
is divisible by % I 2, that is 
where the initial field at 
zero moment was equal to 
zero. It can be due that at 
the planes where the initial 
field was maximal it had 
time to disappeared before 
the conductivity began to 
reduce. 

Fig.3. 
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TRANSIENT ELECTROMAGNETIC FIELD IN A DISSIPATIVE 
MEDIUM WITH RECTANGULAR PULSE MODULATED 

PARAMETERS 

O. Rybin, A. Nerukh 

Kharkov Technical University of Radio Electronics, 14, Lenin av., Kharkov, 310726, Ukraine 

A plane electromagnetic wave transformation by a series of repetitive variations of infinite 
medium parameters is considered. This variation is a modulation of both the permittivity and 
the conductivity with a rectangular-pulse law. Expressions, which characterise the electric field 
evolutionary with time, are derived. The time dependences of both the permittivity e(0 and 
the conductivity a(t) of the medium are assumed as: 

(1) 
s(0 = so + (si - so) S {9(f - (k -1)7) - 9(f - X! - (k -1)7)}, 

k=i 

~/Yk-s«, V fMi-(1r-X\T\-(\(l--ri -(k-X\T\\. 
w\>/ — •-'1   i-i    lwV"        V"        -J~ I       ~V '>■        v" /     *}> 

lc=l 
As it follows from (1), a periodicity of the permittivity and the conductivity variations is t2. 

During one part of this period, of the duration x\: 8(0 = ci, o(t) = ah during the other part: 
e(0 = 80, a(0 = 0, that is at these ones they have the same magnitudes as for t < 0. 

To solve this problem an evolutionary approach [1] based on the integral equations method 
is used. To this end, the time half-axis is decomposed to the time intervals where the medium 
parameters are constant. The expressions for the electric field are 

t 00 

En{t,x) = F„(t,x) +  \df jdx' R„(t,f,xJ)F„(t'J), 
tn-l   -°° 

F„(t,x) = E0(t,x) + Z   \df ]dx' Ki(t,t\x,x<)Ei(t\x'). 
i=\ tj-\   -oo 

Here, 

(2) 

W^) = -^0-^+2ä4)^^-^/{^S 

K(t,t,x,x') = 
5(v0(t-t')-\x-x'\)(       l 

äl+±(l-a2)d in      the      intervals 

(i-\)T<t<xi + (i-l)T,     and     R(t,f,x,x') = 0 = K(t,t',x,x') in     the     intervals 

x\ + (i-l)T<t<iT,    i=l,...,N.   In   these   formulas:    a = Vso/si,    ai = 2iai/si, 

vi = c/ijsi, Re ^p2 - öl   > 0. 

Let us consider an initial field in the form EQ(t,x) = ei((0t-kx\ where k = a/v0. We 
introduce the coefficients, which do not depend on the period number 
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A_L-(»-»*l-ff/2g){2s-/(l-a2)}sinÖTi). 

Using the mathematioal induction method we derive the expressions for an eleetric field at 

the arbitrary period: 
E(ß,x) = e^<l(d^ +g-e-^y^e^-^ + (3) 

forsubintervals (/-l)T<t<xi + (l-l)T and 

Eit^A^-^+Bte-^K () 

for subintervals ,l + il~W<t<IT,  1*2. Here, a^A^, bt = B{e^, and alM 

satisfy the recursion relations 

[fljfc+1 / -« (5) 

Atthefirstinterval(0</<xi):a1 = -/V^,   &i=te"2. 
For an analysis of behaviour of direct and inverse wave amplitudes at the end of any period 

one hLTclder the relations «,+1/«/ and W*/ • These relations are determined by the 

equations: 

<2±U/-£,  ^ = f*-hQ, (6) 

where C/ = a//fy satisfy the recursion relations 

_-h*+JCi (7) 
O+i 

/-AC/ 
The analysis shows that |Q| > 1 as |C,| > 1, that is an absolute value of the direct wave 

amplitude Ak is greater than the absolute value of the inverse wave amplitude Bk. The 

analysis also shows that the coefficient Q can be presented in the form 

Q = cl+Wuxh 
(8) 

Real variable Xt satisfies the recursion relation 

XM = 
Au1 (9) 

4M
2
-X/' 

a2 + l . 
where u = cos(^i)cos(r2 - tO-Z—MM)*^ ~ 1) • 
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Xi is a function of the period number, for the parameters a = 1,25, s = 0,06, t2 = 16, is 

shown in Figs. 1 and 2. These figures illustrate that variation of Xi and the amplitudes of the 

direct and inverse waves can be periodical (Fig. 1, t\~l) as well as monotonous (Fig. 2, 

'1 = 12). 

Fig. 1. a = 1,25, s = 0,06, t2 = 16, t\ = 7 

Fig. 2. a = 1,25,5 = 0,06, t2 = 16, ^ = 12 

1. A.G. Nerukh, N.A. Khizhnyak, Modern Problems of Nonstationary Macroscopic 
Electromagnetics, Kharkov, Test-Radio Publ., 1991, (in Russian). 
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OPTIMUM DESIGN OF RADAR PULSES FOR STEALTH TARGETS 
(TIME DOMAIN APPROACH) 

Ahmad Cheldavi 

Iran University of Science and Technology 
Narmak, Tehran, Iran, 16844, 

fax: 98-21-7454055, e-mail: cheldavi@ece.ut.ac.ir 

In this paper, principles of optimum design method of radar nonsinusoidal pulses for 
stealth targets will' be presented. To extract the principles of the method, first we have to 
obtain a time-domain performance of the special absorber, which is used on the target. 

Using the results of this time-domain approach, we can design an optimum pulse figure 
to maximize the reflected wave energy from the surface of the stealth target. This optimum 
pulse figure is not necessary unique. 

In this paper we use a single-layer model of absorbing material, but this method can be 
generalized for multiple-layer absorbing materials. 

Also we suppose there is only some attenuation during pulse propagation in absorbing 
material (there is no dispersion). Results of the time-domain analysis of such an absorbing 
layer over metal backing plate, using the transmission line model in [2] can be found in [1] 
Results of [1] can be specialized for single-layer absorbing material; the main problem, which 
is the transmission line model, was exactly and completely solved in [2]. 

Then we show, for the same absorbing material structure and the same reflected energy 
with [3], one can use nonsinusoidal radar pulses with larger time-width (narrow-band pulses). 
So, it is'necessary for time-width of the pulse to be less than propagation delay time in the 
absorbing material (as it was stated in [3]). 

Finally, some optimum nonsinusoidal radar pulses presented for some special 
applications of stealth targets. 

References 

[1] A. Cheldavi, M. Kamarei, Time-Domain Analysis of Capacitive Jaumann Absorber, Proc. 
oflEEEMTT, Denver, Colorado, 1997. _ 

[2] A. Cheldavi, H. Oraizi, M. Kamarei, Time-Domain Analysis of Transmission Lines, Proc. 
of 25th EuMC, Bolonga, Italy, 1995. 

[3] N.J. Mohamed, Nonsinusoidal Radar Signal Design for Stealth Targets, ILLL Irans. 
EMC, vol. 37, no. 2,1995. 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



340 MMET'98 Proceedings 

TRAPPING OF AN ELECTROMAGNETIC WAVE BY THE 
BOUNDARY OF A SUDDENLY CREATED PLASMA HALF-SPACE 

M.I. Bakunov and S.N. Zhukov 
University of Nizhny Novgorod, 603600, Nizhny Novgorod, Russia 

The study of the interaction between electromagnetic waves and bounded plasmas 
with fast growing density is of considerable interest due to its potential applications in genera- 
tion of tunable microwave radiation. Fante [1] was the first who discussed some peculiarities 
of reflection of electromagnetic signals from the plane boundary of time-varying plasma. Later, 
Kalluri [2] presented complete analysis including both steady-state solution and transient proc- 
esses in the case of the reflection of a time-harmonic electromagnetic wave by a suddenly cre- 
ated (switched) plasma half-space. Kalluri and Goteti [3] brought the solved problem closer to 
the practical situation by considering the switched plasma slab. Finally, the effects of a mag- 
netized plasma were examined by Kalluri [4]. 

In all of the above papers, however, only the degenerate case of normal incidence of 
electromagnetic wave on the boundary of time-varying plasma was treated. In this paper, we 
examine the case when the boundary of plasma half-space whose density instantaneously giows 
in time from one value to another is perpendicular to the plane wave front. The distinguishing 
feature of this case is the possibility of creation of surface waves guided by the plasma bound- 
ary. In other words, the part of the original wave energy may be trapped by the boundary of 
time-varying plasma via transformation into surface waves. 

Initially, when t < 0, a plane TM-polarized electromagnetic wave of frequency ©o with fields 

Ey(x,t) = Bz(x,t), Bz(x,t) = B0exp(i(Dot - ihox)      (ho = ß>0/c) (1) 

propagates in unionized medium (gas) with dielectric permittivity 8 * 1 along the x-axis. Then, 
at t = 0, the plasma half-space y < 0 is instantly 
ionized due to effect of an external ionizing factor 
and the cold collisionless plasma with density N is 
created. The conversion of the wave fields on this 
spatial-temporal inhomogeneity of the medium is 
described by Maxwell's equations and equation for 
electron motion. By applying Laplace transforma- 
tion to these equations and eliminating the Laplace 
transforms of the components of electric field and 
velocities, we arrive at the equation for the 
Laplace transform of the magnetic field [5]. It is 
solved in the regions of the medium homogeneity 
and solutions are matched at the boundary y = 0. 
Inverse Laplace transformation defines both 
steady-state solutions (surface waves and free- 
streaming mode) and transient outgoing radiation. 

is critical plasma density for the original wave).     TwQ    frequenCy    down-shifted    surface    waves 

propagating along the plasma boundary in the opposite directions are shown to be excited. 
Their frequencies are given by 

2 4 6 N/No 
Fig.   1. The frequency conversion coefficient 
(öJCöQ vs the parameter N/Nc (Nc =ma>„ /47ie2 

Q± = + G)s,   ©s k+^2
p 2) 
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(see Fig. 1) where © p = ^e'N/m is plasma frequency and amplitudes are 

((o2
p-of)(o0±os) 

B± = B0 
(3) 

(see Fie 2) The limit B+/B„ -> 2 at N -> oo seems to be in contradiction with the law of en 
ergy conservation. To explain the situation calcula- 
tions for original wave beam of the form 

Bz(x,y,0) = B0^^exp(-ih0x)     (4) 
y/a 

with hoa »1 have been done In this case we arrive 
at the expression 

K 
B^Bo-J 

-<Ös)(<Ö0+ßO 1 

with parameter y 

^-yarctg-      (5) 
y 

QS/CO0) and coo= cho 

(dashed curves at Fig. 2). Thus.. B+/B0 grows oniy 
0 20     „- •     T, n^0/        ix while the resion of surface wave localization near Fig 2 The amplitude coefficient B+/B0 (curve 1) wnlie tne region ui »"^ nii„\na\ 
aSßJBo (curve 2) vs parameter N/Nc for original the boundary is less than the width of the ongina 
plane wave. The dashed curves show the coeffi- beam. For greater N/Nc the amplitude coefficient 
cient B+TBo for the original wave beam with hoa = B+/Bo decreases. 
10 (curve 3) and hoa = 5 (curve 4). T^e free-streaming mode is excited within 

the plasma half-space and consists of static magnetic field 
2 ' 

B?(x,y) = 
G), 

oJ+ffl2p 

Bz (x, y,0) - B0 expf ^ ^/öT + fö^ - ih0x y<0, (6) 

and spatial distribution of dc electric current f(x,y) = (c/4rc)rotB- . 
To investigate the angular distribution of transient outgoing radiation we use the tech- 

nique proposed in [6]. Spatial density of electromagnetic field energy is integrated over y in the 
limit t -» oo and angular densities of radiated energy in vacuum (Wl(9)) and m the plasma 
(wn(G)) are obtained (Fig. 3; angle 9 is measured from the normal to the boundary both in vac- 
uum and in the plasma, -TT/2 < 0 < K/2, 6 = TT/2 coincides with x-direction). In the ideal case of 
original plane wave it is not possible to estimate energy effectiveness of the wave trapping^ 
Therefore we have analyzed energy relations for the wave beam (4). Energy W0 - B0a/8of 

the original beam transforms into the surface wave energies 
cB2

+   (l-es)(l + s2) (7) 

-      167tCDs     E2V-1-SS 

where s s = 1 - e> \ /© 2, the radiated energies 

Ww 

Jt/2 

fwI,n(9)de: 

-it/2 

(8) 

and energy of the free-streaming wave 
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-nil 

102 
4 Wj 

102 

J^ 

W„ 
B*a <a 

32 <ö2p+Oo 
(9) 

Fig. 4 shows the energy distribution in de- 
pendence on the created plasma density for 
the original beam with hoa = 20. Transfor- 
mation into the backward surface wave is 

*fl   negligible:        (W./W«,),^ «7-1CT at 

wu 

N/Nc «1, whereas more than 40% of the 

original wave energy may be converted into 
the forward surface wave. Maximum of the 
transformation effectiveness is achieved at 
N/Nc ~ (hoa)2 when the scale of the forward 
surface   wave   localization   in   vacuum 

(l/h0)VN/Ne  coincides in order of magni- 
Fig. 3. Angular densities of radiated energy into vacuum 
wi(6) and plasma wM(0) at N/Nc = 0.5 (solid curves) and 
N/N0 = 4 (dashed curves). All curves are normalized by tU(je with the ^^th of original beam. 

cBo / 167i2ffl 0. Interestingly, trapping of an electro- 
magnetic wave is accompanied by the concentra- 
tion of electromagnetic energy near the created 
plasma boundary, in other words, in a course of 
transient processes energy is leaking to the cre- 
ated boundary. The most perspective application 
of the phenomenon of wave trapping is the de- 
velopment of new methods for input of electro- 
magnetic radiation into planar waveguiding 
structures filled with solid-state (semiconductor) 
plasma. Nonstationarity of a semiconducting 
medium can be provided by various mechanisms: 
carrier injection, photoionization by laser pulse, 
«switching» of effective mass etc. As the 
achieved up to now time-scales of nonstationarity 
lie within picoseconds, these mechanisms can be 
used for transient input of submillimeter and 
infrared radiation. 

0 10"'    10°     101     102    103     104     105 

Fig. 4. Energy coefficients W+7W0 (1), WstAV0 (2) 
and W/Wo (3) vs parameter N/Nc for the original 
beam with hoa = 20. 
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Development of physics and technology of ultrawideband radiation during last time allowed to radiate into space 
electromagnetic pulses with a nanosecond duration and power up to 1 GW [1, 2]. So, application of such 
impulses for radar of both air and underground objects becomes to be promising. When a received signal is a 
finite set of digital data, a number of problems concerning the determination of properties of sounding objects 
appears. 

In the conditions of full information (input and output signals are known at all temporal axis) the task to find 
impulse responses (IR) is solved easily on the basis of Fourier transformation. Actually, the coupling between 
the input signal X(t), output signal Y(t) and IR hit) is determined by the integral relation 

Y(f)=^h{r)X{t-r)dT (1) 

In the general case, IR h(j) is a linear operator. Making Fourier transformations over the left-handed and right- 

handed parts of the expression (1), it is easy to obtain 
h{a) = Y{a)jX{co), 

where X(co), Y(co) and h(co) are Fourier images of corresponding functions. 

A transition from continuous signals to the discretized ones will entail a series of difficulties having a principal 
character. The main of them are as follows: violation of a causality principle resulting in arising of presignals, 
appearance of spurious side lobes and zeros in spectral evaluations, finiteness of a frequency band, absence of a 
sole solution both at the evaluation of radiated and received signal spectra and at the evaluation of impulse 
responses. By taking into account these factors one can essentially increase the evaluation accuracy of impulse 
responses. 

A complex spectrum (CS) of X{co) is determined in the form of a linear model relative to an unknown M- 

measured vector F: 
I(ffl) = F-f'(ffl), 

where * is the complex conjugation. To this CS corresponds a model N-measured vector 

1 
X=— \x(a))e(co)da) = FE 

OTT J 2TT_„ 

Here and later co is a dimensionless frequency. For substantial signals, the elements of matrix E are determined 
according to the expression 

Em =— sin(^(rm -t,)/T). 

Vector F is determined by the expression 
F = XE-', 

where E'1 is a pseudoreciprocal matrix with respect to E. 

A condition h(r) = 0 at r < 0 satisfies the causality principle. Besides, in the paper presented, the cases are 
A ft 

considered when the input and output signals satisfy the same condition. Model signals X(t), Y(t) and IR made 
on the basis of Fourier transformation by the limited frequency band will not satisfy such condition, i.e. they will 
have presignals. At least two ways of struggle with prepulses can be suggested: 
a) At an invariable frequency band of a signal determined by the frequency of its disretization, the detail of the 
spectrum describing by increasing the dimension of vector F is increased. The following expression is suggested 
to be used as a functional and its minimization allows to evaluate the value of the components of vector F: 
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*4J|*(0 dt + XX 

b) Expansion of a frequency band up to the interval (0, <x>) is a radical means of suppression the prepulses. In this 

case the integral Fourier transformation is used for a model function X(t) and Fourier coefficients can be found 
by means of Kotelnikov interpolation or Lagrange interpolation. The latter is more convenient for practical 
application as it provides more rapid decrease with the frequency rise of absolute values of Fourier coefficient, 
besides the expressions for them are less unwieldy. 

Evaluation of IR is possible in the time domain as well. In this case, convolution integral (1) at interpolation of 
integrands is transformed into the following vector relation: 

Y = HD(X). (2) 

The unknown quantity in the expression (2) is the IR vector H. The dimensions of the vectors and a matrix in (2) 
are limited by the relations: 

dim Y + dim H +dim X,   dim D = dim Y • dim H. 
So, solving of the equation (2) is finding of a pseudoreciprocal matrix D'1. In the given paper, this matrix was 
found by means of a specially developed procedure of conjugation of rectangular matrixes based on the method 
of Gram-Schmidt orthogonalization. 

In the general case, when impulse response looks like 

(3) 
dr 

the members corresponding to the differentiation operators will appear in the right-handed part of the expression 
(2): 

Y = H0-D(X) + H,-D(X) + ... (4) 

To find the kind of elements of matrixes Dt, k > 0, the interpolation expressions corresponding to a k- 
derivative should be used. When testing the IR evaluation, the level of influence of the output signal Y additive 
noise on the accuracy of IR recovery at the known input signal X was investigated. The most simple situation 
was investigated when in the expression (3) one member dominates for IR. In this case the expression (4) comes 
to the form (2) where either vector X (if h0(r) is dominating for h(r)) or the input signal derivative 
corresponding to the dominating member. 

The modeling process consisted of the followings operations. A noise-free vector Y was calculated by the known 
initial vectors X and H on the basis of (2). Then an white Gaussian noise was added to the signal Y. Evaluation 
of vector H components for the obtained signal was made by three different methods: 

by solving an overdetermined system of linear equations - variant (a); 
on the basis of Fourier transformations when the spectra of the signals X and Y were evaluated on the 

basis of Lagrange interpolation - variant (b); 
on the basis of a traditional finite Fourier transformation - variant (c). 

To describe the noise immunity of the IR evaluation algorithm, coefficients /j.h and //   determined by the 

expressions 

M„ = log. 
<K 

H 
/*„=log2- 

<m > 

were used, where < |<SH|   > and < |<5Y|  > are root-mean-square deviations of vectors H and Y. Side by side 

with the coefficient [ih, a coefficient 

<-"*>=log2 

|<H>-Hj 

|H|2 

was evaluated. 
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Approbation of the algorithms was made at two model signals X{t): smooth (Fig. 1) and noise-like (Fig. 2). A 

Fig. 1. 
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Fig. 2. 

recommended to use a time domain algorithm. 

References 

model of a IR under recovering is 
presented in Fig. 1 and Fig. 2 by a 
dashed line. Fig. 1 and Fig. 2 
present the dependencies /ih and 

< nh >   on the  coefficient   fiy. 

Designations of the curves in 
letters correspond to the algorithm 
variants by which IR were 
estimated. Brackets < > indicate 
that the curve corresponds to the 
averaged coefficient < fih > for 

64 realizations. 

The investigations that have been 
carried out allowed to make the 
following conclusions. 
• The choice of method of IR 
evaluation should be made taking 
into account the output signal noise 
lpvel     For    a RaV 

preference should be given to 
solving the system of linear 
equations in the time domain 
basis. At a high noise level it is 
recommended to use spectral 
methods of IR recovering. 
• Averaging of IR evaluations 
obtained by the time domain 
algorithm allows to increase their 
accuracy by the value proportional 
to the sample volume in the whole 
investigated range of the output 
signal noises. Spectral algorithms 
have saturation by the accuracy of 
IR evaluations at the sample 
volume increase. 
• The highest noise immunity at 
the impulse response evaluation 
have the systems with noise-like 
signals at the input for which it is 

1 JA. Oicles, J.R Grant, and M.H Herman, "Realizing the potential of photoconductive switching for HPM 
applications", SPIEProc. 2557, pp. 225-236, 1995. „,.,., 
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Plisko! K.N.Sukhu'shin, V.A. Vizir, V.B. Zorin, "High-power ultrawideband electromagnetic pulse radiation", 
SPIE Proc. 3158, pp. 209-219,1997. 
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NON-SINUSOIDAL SIGNALS 
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Svobody Sq. 4, Kharkov, 310077, Ukraine 

Tel: +38-0572-457257, e-mail: Nicolay.N.Kolchigin@univer.kharkov.ua 

ABSTRACT 

An approximate solution to the problem of reflection of restricted in space transient 
electromagnetic field from layered lossy dielectric halfspace is described. According to 
the results obtained an algorithm of determination of dispersion and angular charac- 
teristics of dielectric material using the space-time distributions of the reflected field 
i i J : ] ucts  uccii uciivcu. 

INTRODUCTION 

Employment of non-sinusoidal signals for determination of dielectric material char- 
acteristics gives one essential advantages as compared to use of contineous time-harmo- 
nic signals. These are a high information capacity of each measurement, an opportunity 
to obtain the dispersion and angular dependencies of the material investigated in short 
time, a high measurement accuracy in the free space without an unechoic chamber 
employment due to a possibility to resolve the signals from various scatterers by em- 
ploying "time window". 

SOLUTION TO THE PROBLEM 

Pulse method of the measurement of dielectric material characteristics is based 
on comparison of the pulse signal reflected from the investigated material with the 
one reflected from perfectly conducting (metal) surface and followed by the obtained 
data processing usually with the help of the Fourier transform. To interpret correctly 
the results of experimental measurements the solution of transient electromagnetic 
waves reflection from stratified dielectric medium have to be used. In the report, an 
approximate solution of the problem of restricted both in space and time transient field 
reflection from lossy stratified medium is presented. 

The structure under investigation consists of a plane dielectric slab of thickness 
d, permittivity e\ and conductivity u\ on a dielectric halfspace of permittivity e'2 and 
conductivity er2 (Fig. 1). A rectangular aperture antenna uniformly excited with 
linearly polarized pulsed field is situated at a distance z from the structure. Pulsed 
wave beam radiated by the antenna is incident upon the structure under an angle a0. 
It is assumed that an observation point is situated in far-field zone which is determined 
asr> Ll /2cT (T is a pulse duration, Lx, Lv are the antenna dimensions, c is speed 
of light in free space). It is also assumed that the incident and reflected pulses can be 
well separated in time (for instance, by using "time window"), and only the reflected 
field will be considered in following analysis. 
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Fig. 1. Geometry of the problem. 

Solution of the problem is based on 
expansion of the incident transient field 
over time-harmonic plane waves using 
the integral Fourier transform. Spatial 
spectrum of the field reflected from the 
layered dielectric halfspace is found by 
employing known plane-wave reflection 
coefficient for the such medium. An 
integral obtained over wavenumbers is 

evaluated in the far zone by the stationary phase method. The field reflected from 

stratified halfspace can be written as follows [1]: 

Ur(r, 0o, ¥>o, t) = -tte4- cos 60 f™ fi(w, «o, #o, ¥>o) U{u, 0„, Vo) w e-iwTdw,     (1) 

where r 0O, V?o are coordinates of the observation point in a coordinate frame Xr, Yr, Zr 

associated with the reflected field, Ä(u>,a0A,<A)) is a reflection coefficient for time- 
harmonic plane wave of frequency u> which is incident upon the investigated structure 

under an angle a0, r = t - rjc is a retarded time, and U{u>,60,<Po) 1S a Founer 

counterpart of the incident field. . 
In a plane of incidence ^ = 0 and R = ß(w, a0 + *<,)■ The reflection coefficient R 

of the investigated structure for linearly polarized time-harmonic plane wave can be 
written for the cases of s and p polarization in the form, respectively [2]: 

RsW = 
sin(7id)(7? - 7072) + i cos (71(f) (7172 - 7o7i) 

Rp(ifr) = 

sin(71 d) (-7i - 7072) + i cos(71(f)(-7172 - 7o7i)' 

sin (71 d) (7J-_7o72£?/£2) + * cos^^eiM - 7o7i£i) 

(2) 

(3) 
sin(71f/)(-71

2 - -?&ftel/e2) + i cos(71(f)(-7i72^1/^2 - 7o7i£i) 

where Vis an angle of incidence, 70 = fc0cos^,7i = hsje, - sin2 xP,l2 = hfe- sin2</>, 
k0 = u/c is a wavenumber in free space, ex = ex - »<Ti/e0w, e2 = e2 - io2\s^, 

£o = 8.85-10-12 F/m. ,   t.„u. 
Substituting (2) or (3) into (1) one obtains an expression for the reflected held m 

the integral form. Solution to the problem could not be derived in an explicit form 
because of complicate dependence of the reflection coefficients R, and Rp on frequency. 
To calculate the integral an algorithm of the Fast Fourier Transform had been used. 

NUMERICAL RESULTS 

The results of numerical calculation of the reflected field for various observation 
angles a = 90 + a0 are presented in Fig. 2. In Fig. 2a presented the field reflected from 
perfectly conducting halfspace for comparison with the case s-polanzed field reflected 
from a dielectric slab (Fig. 2b). The time dependence of the excitation field was chosen 
to be a first derivative of gaussian function, Lx = Ly = 0.2m, T = 0.66-10" s, r = 10m, 

ao = 40°, d = 0.2m, e2 = 4, e3 = 1, a2 = a3 = 0. For the chosen ratio between the 
pulse duration and the aperture dimension (cT/Lx,y = 1) the radiated pulsed wave 

beam is found to be strongly diverges. 
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Fig. 2. Time and angular dependencies of the field reflected from metal surface (a) 
and dielectric slab (b) and angular dependency of the reflection coefficient (c). 

This phenomena is illustrated in Fig. 2a in which one can see that for the observation 
angles a = Q" and 60s magnitude of the pulse is reduced twice as much compared to 
the main direction a = 40°. It can be used for obtaining both frequency and angular 
dependencies of the reflection coefficient of the investigated material during a single 
measurement. For this one have to measure the time dependencies of the field reflected 
from the investigated material for the various observation angles (like those represented 
in Fig. 2b). Then dividing the frequency spectrum of the measured reflected signal by 
the frequency spectrum of the signal reflected from metal surface one will obtain the 
frequency and angular dependencies of the reflection coefficient (Fig. 2c). The method 
proposed is convenient for the investigation of absorbing materials and covers and for 
the investigation of the objects with vast varying in time characteristics as well. 

CONCLUSION 

To determine dielectric material characteristics and to model a measurement pro- 
cess the problem of restricted in space transient electromagnetic field reflection from 
layered lossy dielectric halfspace has been solved. Numerical calculation of the measure- 
ment process allows us to propose some improvements concerning the measurements 
of dielectric material characteristics. 
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The initial set of equations, algorithms for their solution, computer 
programs, and the results of numerical simulations of nonlinear interaction 
of non-stationary high-power electromagnetic radiation with plasma in the 
ionosphere are presented. 

The initial set of relations consists of the transfer equation in ampli- 
tude of an electromagnetic wave in the approximation of nonlinear non- 
stationary geometric optics, the set of balance equations in the electron 
temperature and in the electron number density, as weil as in the number 
density of positive and negative ions. Attachment and recombination proc- 
esses are taken into account. 

The transfer of heat and particles in the transverse direction is ne- 
glected. The conditions for the breakdown of the atmosphere by electro- 
magnetic radiation are indicated. 

A model of the medium in an altitude range of 50-300 km for daytime 
and nighttime conditions is presented in a tabular form. The parameters of 
the medium are assumed to change only with height. 

Simulations for a broad band of frequencies (1-1000 MHz) and effec- 
tive powers (103-109 MW) for both the ordinary and extraordinary compo- 
nents of the electromagnetic wave are performed. 

The results of numerical simulations of perturbations in the spatial 
and temporal parameters of the near-Earth space and in the characteristics 
of electromagnetic waves are presented. 

It is shown that the perturbed parameters of plasma change with time 
nonmonotonically. . 

Such a behavior results from the competition of a number of micro- 
processes in plasma and from the self-effect of the wave in underlying lay- 
ers. The relative perturbations in the concentrations of particles are deter- 
mined to reach about one order of magnitude, and those in the electron 
temperature to reach two orders of magnitude. 

The results of modeling efforts are illustrated in Figures 1 and 2. 
The author has been supported by Science and Technology Center in 

Ukraine Grant No. 471. 
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80     ~^9^^r , 
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Figure 1. Relative changes in the electron temperature (upper panel) and in the 
electron number density profiles (lower panel) caused by high-power HF radio 
waves at a frequency of 10 MHz and effective power of 300 MW. At £=0 the 
plane unmodulated wave arrive at the 50 km altitude. 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 351 

Figure 2 Relative changes in the electron temperature (upper panel) and in the 
electron number density profiles (lower panel) caused by high-power HF radio 
waves at a frequency of 10 MHz and effective power of 3 GW. At t=0 the plane 
unmodulated wave arrive at the 50 km altitude. 
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TRANSIENT WAVES PRODUCED BY A MOVING 
SOURCE ON A CIRCLE 

Victor V. Borisov 

Institute of Physics, St.Petersburg University, St. Petersburg, Russia 

1. The goal of the present paper is to obtain the solutions of the initial-value problem 
to the inhomogeneous wave and Maxwell's equations in the space-time domain. We sup- 
pose that the point source starts at the fixed moment of time and moves with arbitrary 
velocity on a circle. General expressions obtained in [1] enable us to give a description of 
the wavefunctions and components of the vector potential in terms of the transient modes 
in cylindrical coordinate system. Eventually, we represent the obtained expansions in 
terms of the Fourier series, whose coefficients are explicit functions of the space-time 
variables. Due to the property of the delta-function, we manage to sum up the series. 
We apply the obtained expressions to the description of waves in the particular case of 
a point source moving with the constant angular velocity and give the relations, which 
characterize both transient and steady-state waves. We define the space-time domain 

where the steady-state waves exist. 

2. We represent the electromagnetic field vectors E and B via the scalar and vector 

potentials $ and A and use the Lorentz condition: 

dA     - -    d$ 
E = -X7$--z~,   B = rotA,    — + divA = 0, v dr or 

(1) 

where r = ct is the time variable (c is the velocity of light).   Then one can get from 
Maxwell's equations the scalar wave equation: 

d2 4?r 
—4-V24 = — ji,   i = 1,2,3,... 
or1 c 

(2) 

where A,; and j,: are the Cartesian components of the vectors A and the current density 

vector ?', respectively. 
We derive the solutions of equations (2) in cylindrical coordinates p, <p, z supposing 

that Ai — Ax, Ai = Ay, A% = 0, and the sources on a circle with the radius a are: 

jx = -jifi sin ^>   3v = U cos Vi   J* = °» 

where jv is the <p -component of the curent density. 

3. Suppose now that the point source moves on a circle, then 

1 8{p-a) 

(3) 

3v 2TT 
'-6[<p - <f>(r)}h(z)   r>0  ,jv = 0   r < 0, (4) 
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where h(z) is the Heaviside function, 6{p - a) is the Dirac.deltatoction,and ^ 
In arbitrary continuous function. The starting point of the current <5-pulse IB (PO, *(0)). 

The initial conditions are 
A* = A/ = 0>  r<0- 

With the aid of expansions 

m 

we obtain from (2) - (5) the following scalar problem: 

(5) 

(6) 

^m = -—Jim,   ^m = 0,T<0 

where 
Jxm 

3ym 

_   1   ö{p-a)ß(z) ( -sin(Hr) ^ e-im0(T) 

(7) 

(8) 
Y jyv<>  / — r \ 

We derive the solutions of the above problem by using a general expression constructed 

in [1] and find the coefficients of expansion (6) to be 

tyxm 

yym 

I       rr-y/ip'-af+z2        COSTO^T')  /  - sin (j)^) \    _im^(r'  . .VV   ,e       - (9) 
i9(r')   \   cos0(r)   J 

y + a2 + ,2-(r-r')2]1/2 

-«(*)] (10) 

where   T = m«{0>T->/(H-<02 + *8}.   cosl9(T,) = ^ 

which is easily transformed into 

\^ym)-VcL Biß) \ «*#-«(*)] ; 

where s(tf) = Vp^T^T^-Sapco^ and f = max{arccos ^(p2 + a2 + *2 - r2),TT}. 

In the case of the space-time domain given by r - fipTäfTT* > 0, we have from (6) 

and (10): 

\Ayj- c L     aifi) \   «*#" - s<ß)\   ) 

To obtain the functions A* and A * the explicit form, we have to solve the equation 

tp + # - ^T - Jp* + a> + z* -2apcosd) =0 (12) 

with respect to the variable of integration 0. 

4   To construct the transient solution in the case <j>{r) = *r (fc> 0 is-constant), we 
apply the general expressions (10) and get the coefficients ^xm and ^m in the torm: 

(13) 1   rf   „cosrri'd f - sink[T-s{d)]\i,nkiT-a{d)] <A 
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In the space-time domain r - yj{p + a)2 + z2 > 0, assuming that r = y/p2 + z2 » a 
and sin (9 = p/r, we have from the above expressions: 

( $rm \ = _L(_i)me-*mfc(T-r)fei*(T-r)jTO^m + 1)feadnö] 
\ tpym j 2crV L 

+ —I e-ik^-r)Jm[(m-l)kasme] (14) 

(15) 

5. Consider now a solution of a scalar wave equation where 

1%-a^ r)pi(z) 

In this case we get the representation of the wavefunction iß in the form 

Assuming that r » a and 0(r) = fcr, one can write the terms of the above expansion in 

the space-time domain r - \J(p + a)2 + z2 > Q as 

w,   = -le~^fc(T-'-)-iOT'r/2Jm(mfcasinÖ) 
er 

(17) 

The obtained relations are commonly used for description of the synchrotron radia- 
tion (steady-state waves). This result is found by representing the solution of the wave 
equation in terms of the spherical harmonics. We obtain the explicit expressions for 
the coefficients if)m by using the representation of the solution in terms of the modes in 
cylindrical coordinate system and describe both transient and steady-state waves. 

Acknowledgement. The research described in this publication was made possible 
in part by the Grant 96-02-17166 from the Russian Foundation for Fundamental Re- 

search. 
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ROTATIONAL MODE OSCILLATIONS IN A CAVITY 
WITH A TIME-VARYING MEDIUM 

Svetlana V.Chumachenko, Oleg A.Tretyakov 
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l.Statement of the problem. The problem of electromagnetic oscillations in a cavity partially 
filled with a time-varying dielectric is considered (see Fig.l). The state of the field in the 
dielectric (region II) is determined by the constitutive relation for the polarization vector as 

p(E)=a(r)E(r,0. The coefficient a(t) (or the linear operator of Volterra's kind) determines 

an electrical susceptibility of the medium in the region II. The problem is solved by the method 

of modal basis [1-2]. 

Fig. 1. Cavity partially filled with a time-varying dielectric. 

Suppose that the intermodal transformations in the dielectric can be neglected. Than 
every mode will oscillate individually under the influence of the time-varying medium In this 
case the electromagnetic field of a rotational mode under consideration can be expressed in the 

following way: ,*-, v 
E(r,/) = e(t)E(r), ll(r,t) = h^i{f), (D 

where the vector functions of co-ordinates are known, and the scalar coefficients depending on 
time should be sought for. The indices identifying the mode are omitted. The vector-functions 
of co-ordinates are the basis elements in the space of solutions. In general case they are 
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determined as a solution of the Dirichlet or Neumann boundary eigenvalue problems for the 
Laplacian. The scalar time-dependent coefficients satisfy the evolutionary equations, which are 
obtained after projecting Maxwell's equations on the same basis elements: 

|[(l+Co(0X0] + 4*A(/) = ^ 

h(t) + icke(t) = 0, 

dt 
d_ 
dt 

(2) 

where c is the velocity of light; k is the eigenvalue of the Dirichlet or Neumann boundary 
eigenvalue problem for the Laplacian; coefficient C, determines the self-transformation of the 
mode under consideration due to dielectric in the region II. So, the latter is some function of 
geometrical parameters of the cavity. 

To solve the problem, the eigenvalue k should be found. Solving the evolutionary 
equations is the main goal of this paper. It will be further obtained in analytical form and 
analysed in the final part of the paper. 

2. Eigenvalue problem for the basis elements. Electromagnetic field of symmetric modes of 
electric kind can be expressed through the one-component Hertz vector TL = z0Tl(r,z). 
Potential function of the latter can be written down as follows: 

Yl(r,z) 

niM = Z M A(fl/)cos ^-z),a<r<b,0<z<l; 

^2(r,z) = J^smBJ0(qmr)cos[-—zlO<r<a,0<z<d, 
(3) 

where 
Rn(P/) = Jo(p/)No{pnb)-JMP)N0(pnr\ 

p„=jk2 -(m/tf, qa=^k2-(nm/df, 

Ej(j = n,m)is the Neumann number; J0,N0axe the Bessel and Neumann functions; ^4M,i?mare 
the unknown numerical coefficients. 

Subjecting the tangential components of electromagnetic field to the boundary 
conditions at the surface of the cavity, one can obtain a direct formula for the coefficients Bm 

and a homogeneous matrix equation with respect to the unknown coefficients An. A condition 
of existence of eigenvalue is the vanishing of the determinant that results in the set of 
independent dispersion equations with respect to the eigenvalues k, namely: 

det[8snpX(psa)~ SsPß&ßK] = 0, » = 0,1,2...; 5 = 0,1,2. • •; 
where k is involved in ps and qm, see (3); 8sn is the Rroneker delta; 

/    -VF a -iMAv  K K   = mrf        ms 
m=0 

sin n(m - sQ)    sin n(m+s&) 
%(m-sQ)        it(m+sQj j 

3. Solution of the evolutionary equations. Re-writing the system of evolutionary equations 
(2) in the matrix form, we can solve it following [3-4]. Further on suppose, for example, that 
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the coefficient of electric susceptibility is a(t) = exp(~y/). As a result, we obtain the formulas 

for the calculation of coefficients e(t) and h(t): 

e(t)=  jC2+®*   smickt-f,), k(t) = ijc2 +Z)2cos(c*r-/1), 

where C =CJ>-ih{0\ D =C,Q-e(0), fx = arctg-, 

 I^Tö       ZT~T~1 »tj _ i      *-2r2   ,  r2r   T 

LX,L2,L3 are functions of / 
2- (y sin2cfo +2cos2ckt)sxy(-yt) 

AW = 77^ ' 
y2 + 2+[y (sin 2c£/ - y cos2 cfo)-2Jexp(-yf) 

^=  ^4) ' 

l-C^+CAA 

Za(0 
2 - [2+y (sin2 ckt - y sin 2c£f)jexp(-y/) 

y(y2 +4) 

Notice that the exponent brings the greatest contribution to the functions LUL2,L3 in some 

interval of values: 0 < t < T, and cc(f) -> 0 when t -> «>(/ > 71). 

4.Conclusion. Thus in the considered case the time dependences for the unknown field 
E(f,t), H(0 have been found. They have been obtained in explicit form and are expressed in 

elementary functions. We suppose that the coefficients for the field e{0\h{0) are known from 

the initial conditions. 
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SUB-SURFACE GROUND MEDIUM 
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Usykov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 
12 Proscura St., Kharkiv, 310085 Ukraine, 
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Introduction. Lately the interest to non-stationary electromagnetic waves, expanding radar opportunities, is steadily 
growing. Having a wide low-frequency spectrum, the non-stationary radio waves find a use at sounding absorbing envi- 
ronments, in particular, grounds and rocks, and provide large depth of penetration. 

The problem of transient radio-waves scattering on earth structures, discussed here, closely adjoins to a problem of 
interpretation of results of sounding and is one of the major components of work on the increase of efficiency of a sub- 
surface radar. Only limited class of similar tasks can be solved analytically [1]. For modeling of non-stationary scattering 
we use the approach consisting in finding the solution in frequency domain after a normal impedances method [2,3], and 
its translation in time domain with application of the inverse Fourier transformation. Thus for the given (continuous) law 
of a humidity change on the depth of a structure on the basis of experimentally received frequency dependences of per- 
mittivity and specific conductivity, the appropriate frequency-spatial dependences of these electrical characteristics are 
formed. In the given work, a mathematical model, features of construction of computing algorithm, basic features of be- 
havior of the transient electromagnetic fields reflected from earth structures are discussed, the examples of the analysis 
of obtained results through the inverse-conjugate filtration [4] are summarized, and the limits of its applicability are 
shown. 

2. Method. Suppose that K -1 homogeneous dielectric layers of the thick- 
nesses dk (k=2+K) are located between the half-spaces 1 (z>0) and K+l 
(z<-hK ) (Fig.l), thus each of the partial regions is characterized by electri- 

cal parameters ek , nk, and ak . From the half-space 1, at the angle 6X, a 

plane electromagnetic wave is incident on the system of layers. At any de- 
pendence on time, and if D t  is a time interval extended enough to capture 

the whole transient process, and q>{t) = 0 for t £ [0, At ] c [0,D, ], by use of 

the direct (F) and inverse (F~ ) discrete Fourier transformations in the time 
domain, the scattered field can be reprezented as 

{nn(tn)} = ^{F-i({vm(iwm)}F[{<p„(tn)}]{exp(-icomt0)})^ 

where j Vm (iwm) J are the values of complex amplitudes of necessary com- 

ponents of electric or magnetic fields, or the factors of reflection at the frequencies: 0, Sf, 28f, ...,Dj, found after the 

normal impedances method [2,3]; f0 is an entered temporary delay deterrrdning a spatial location of the incident pulse 

front at the moment t = 0 relatively to the point with coordinates [;t,z]=[0,0] at given d{. It is reasonable to choose 

t0 = z0 yj £0/JQ (cos20j) / (cos 6X). This sets a location of the incident pulse front, when at the moment t=0 its be- 

ginning is observed at the point [x0, z0 ]=[-z0tan#;, z0 ], be disposed on the ray of reflection from the upper bound- 

ary of the layers. 

To find j Vm(icom)j Recalculations for the frequencies 0,Sf,2Sf,...,Af (A/ is a width of a spectrum cp(t)) 

are made and then the mirror complex conjugate extension of a definition relatively to the Nyquist' frequency Df 12 

under the given below circuit is carried out, equivalent to an introduction of negative frequencies in the continuous 
Fourier transformation 

Fig. 1. Geometry of the problem. 

{Vm(i6)m)} = o, 
m 

m =N 
1,      N   r, 12 

D f 
D /2 + 1 

VD/ + 2-"'(/(U^0/ + 2- ™ m = N n    12 + 2,  N , D 
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The values of NDi and ND   coincide and determine a quantity of discrete temporary readouts of a diffraction field at 

the moments 0, St, 28t, ...,Dt, or a quantity of values Vm {iam) at the discrete frequencies 0, Sf, 28f, ...,Df, with 

Sf = l/Dt,Df=\/St. The condition Af<Dfl2 should be satisfied in the calculations or, that is the same, 

St<l/(2Af). It is obvious that St = At/(NAl -1), whence NAt >2AtAf + l. It is possible to minimize com- 

puting expenses by choosing N At = 2AtAf +1. 

3. Transients for single-layered structures. The analysis of the frequency dependences of the absolute vaule of the re- 

flection factor IßjO'ffl)] and the results of calculations of diffraction fields with 9{ = 0° reveal the following features, hi 

the frequency domain, the growth of losses conforms to the reduction of reflection factor |#i(/«)| oscillation (Fig.2), 

and, in time domain, the reduction of a transient duration. Thus the rise time of each subsequent pulse of a sequence 
leaving a layer grows, that is connected to a faster attenuation of the high-frequency spectral component. Significant re- 
flection of spectral components of low frequencies (for which tan 8 = a I (sa>) > 0.2) from boundaries of the unit of 
partial regions causes: 1) an increase of the amplitude and a pulse rise time reflected from the upper interface of the 

structure; 2) a tightening of trailing edges of pulses of a se- 
quence leaving a layer, in the case that cr2 < cr3. (If <r2 > <x3, 

the reflections of the low frequencies of a pulse spectrum from 
boundary of regions 2-3 cannot compensate their decreased 
level after the passage through the boundary 1-2; in the upper 
half-space the sequence of two-polar pulses is observed). 
Thus, the use of single-polarity sounding pulses allows visu- 
ally to estimate a ratio of the specific conductivities of the 
border regions; 3) impossibility to use, for underground 

sounding, video pulses of durations At>e2 ''°2 > which spec- 

trum is in the frequency interval / e [ 0, a2 I s21, and for 

which tan 8> 0.2. This for example, for chestnut loam 
means a good efficiency of application for the sounding pulses 

4 = 7, ^ = 15, <T] =0Siem/m) at various values of specific    with the low frequency of a spectrum from 47 MHz (for hu- 
conductivities a2 and a3 : a2 = a3 = 0 Siem/m (continuous     midity ^=2-5%) "P to 413 MHz (ff=20%); but At cannot be 

,„ ,„_2 0.   ,   ,,    ,. too small, as it is not favorable from the power point of view line), <r2 = <j3 =1.2-10      Siem/m (dotted line), an =o%=     , , ■    ,       •, ^ ,    T    .    .    ._ 1     i      (ai an excessively wide spectrum only its insignificant part 
=5-10- Siem/m (dots), a2 = cr3 =20 Siem/m (dot-and-dash gets in the oscillating part of Is^^)! dependence, which the 
line); b) time dependence of diffraction fields. ' 

specific conductivities of environments are minimum). Thus, 
the efficiency of usage of video pulses for underground sounding is due to the fact that their spectral density is concen- 
trated in the range of the low frequencies, where the oscillating character of |5,0'e>)| is most expressed due to smaller 

values of specific conductivities of environments. 
4. Transients at continuous humidity variation along the depth of the structure. Within the framework of the used 
method, the calculation of the scattering by layers with continuously varied in depth dielectric properties dependent on 
humidity is reduced to the calculations for an equivalent structure, which replaces the real ones and which is formed by 
rather thin homogeneous layers. Their thicknesses d{ are determined on the basis of the maximum value of permittivity 

as a function of frequency in the previous elementary layer. On the other hand, these thicknesses allow to determine spa- 
tial coordinates, in conformity with the given law of humidity change W (h), determining in its turn the frequency de- 

pendences of permittivity and specific conductivity. Thus, at  £ai=£ai(f,W(hi)),  <Ti = cri(f,W(hi)), and 

x10* 

Fig.2. a) Frequency dependences of the absolute value of reflection 

factor |ß; (im)\ for a single-layer structure (d2 = 0.5 m,   e\ = 1, 

*/=!>*, we assume 
k=2 

d,=- 
c At 

<VSUP(^/-1 (/,'-!)) 
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h, m 

1.5 

Humidity W, % 

Fig.   4.   Law of humidity variation in 
depth for the structure «gray loam-clay». 

where / is a number of the current elementary layer; m is the value showing how 
much the spatial duration of the pulse exceeds the chosen thickness of a current 
elementary layer in given environment (for the calculations with the minimum 
computing expenses and sufficient accuracy, the value m=100 is most suitable 
(minimally acceptable));/is the frequency. 

In the case of frequency-dependent parameters of a layer of gray loam of the 
thickness of 1 m, laying on the half-space formed by clay, and humidity variation 
according to Fig.4, the transient process for the time interval between the end of 
reflection from the loam boundary with air and the end of reflection from the 
lower boundary is presented in Fig.5. The incident pulse is bidirectional in the 
considered case, angle of incidence thus is ^=10°, and z0=l.5 m. As can be 

seen, the diffraction field of a video pulse is rather sensitive even to insignificant 

0.015 

1.5 

/, seconds 

2.5      3      3.5 

t, seconds 

Fig. 5. The pulses reflected from the lower 
boundary of the layer of gray loam in the case 
of continuous humidity variation in depth ac- 
cording to Fig. 4 (solid line) and the fixed 
humidity W= 2.5 % (dotted line). 

depth h, m 

depth h, m Fig. 7. Frequency-depth dependence of 
specific conductivity. 

\ , 

A 
*   1 

* 
* 

Fig. 8. Dependences on time of the magnitude of 
diffraction field (dots) and the result of the proc- 
essing (solid line). The asterisks at arrows denotes 
characteristic «harbingers» of the reflections, and 
figures are the numbers of the received responses; 
the response 1 corresponds to the moment of arri- 
val, at the point of observation, of reflection from 
the upper boundary of a ground. 

xHf 
frequency / Hz 

Fig. 6. Frequency-depth dependence of per- 
mittivity. 

fluctuations of the humidity on the depth. The evidence to that is an appreciable 
decreasement of amplitude of reflection from the lower boundary of the layer, 
some increasement of growth times of the field strength, and also an occurrence 

of reflections on the moments previous to occurrence of reflections from 
the lower boundary. 

The dependences on depth and frequency of electrical parameters of a 
typical earth structure «gray loam (0.6 m) - chestnut loam (0.2 m) - clay 
(0.1 m) - sand », according to the measured law of humidity change in 
depth, are shown on Fig.6,7. Fig.8 illustrates the behavior of the absolute 
value of the scattered field in time (dots) for a bidirectional video pulse 
(0j =10°, z0 =1 m) and the result of its processing by the method of the 

inverse-conjugate filtration [4] (solid line). As can be seen, up to the 
depths of 0.6 m this method allows to allocate rather precisely the mo- 
ments of formation of reflections from the basic electrical inhomogenei- 
ties of the structure. For larger depths, where there is a significant distor- 
tion of the form of initial pulse, the used filtration method proves to be in- 
applicable. 
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A Novel Approach to the Computation of Fields inside Waveguides 
and Cavities by Fourier Series 

H. Rahman 
Saint Louis University 

Department of Electrical Engineering 
Saint Louis, MO 63156, USA 

Ab^-This^perahernptatoprese»,^^^^^ 

presented to illustrate the theory. INTRODUCTION 
.  G ,. . ,Amc -.want to waveguides and cavities is associated with the dyadic The analysis of electromagnetic field problems relevant to waveS™** " & fi ld tom a ^ven source 

Green's function which is most appropriately consid^« »*~£ SXSS*i have t*en developed by 
function. Several different but equivalent representations of ^ ^^X was handled by obtaining an 

lossless and perfectly conducting. !£<to««»" «* *^^SSr(7<<l)ie»aiattaginto the cavity 
diicotioo, respectively. Co^aP^M^f^^^^n^piSlel to the x-axis, and is 
interior through a small hole located * (a, y  «J. ^™^^««^ to media in bod. the interior and 

the currents induced on the wire due to external sources. 

Figure 1. (right «He) 
A rectangular cavity with a single 
straight »ire within.it 

,*fA 

L 
Smc.me^istmt.omytheaxialcom^^^^ 

„hemVMStheLapIactaopem.or,tistbev^ 
deoends on the assumed axial current, and is expressed as J - u, l(x) 0(y y0; o^z ^, 
Sfn. Kx) can be represented by a truncated Fourier a»» as. 

/(x)=Z B.cos^-, 

when^areunlmownFouriercÄ^^ 
ct^rti^^Stained. We can solve the electric field vector m terms of A by 

E=-m^—W.^- (3) 

The general expression of the x^mponent of the ^^*^* «**«*«*«**»«* 
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^ = ?oSS^C°S~Sm^Sm—' (4) 
where A^np are the mode amplitudes yet to be determined. Obviously, the field component represented by eq. (4) 
satisfies the boundary conditions on the walls of the cavity. However, it remains to satisfy the boundary condition on 
the wire surface. 
Equations (1), (3) and (4) can be combined to obtain a relationship between mode amplitudes and Fourier coefficients, 
and is 

I L I* " *^1<<U> «'s—- sm-j-sm — 

where 

= -^S(y- y,Mz- z,)Z B,[kl - (—)l]cos 

^=OJ+<T>2+<T)J 

> a (5) 

(6) 
We must assume that the series given by Eq.(4) converges uniformly over the fundamental ranges, dictated by the 
cavity dimensions, 0<.x<.a, Ozyzb.Ozzzc. Now multiplying both sides of Eq. (5) by the product cos(m 'n a/x) 
sin (n'itfb)y sin (p' rfc)z and carrying out integrations term by term over the fundamental intervals by forming suitable 
inner products, one ends up with solution to A^ in terms of the unknown Fourier coefficients as 

4jBm[k2-(mx/a)2]     nxy0      pxz0 
A_„ = —: rrj—rr—;—Sin—;—Sin . 
^       bc6>e0[k

2 - k2^] b c (7) 

Note that the indices m'.n'.p' have been changed back to m, n, p respectively to avoid notational complexity, and 
orthogonality properties have been utilized to obtain Eq. (7).   Substitution of Eq. (4) into Eq. (7) results in 

nxy0 . pxz0 M <*>  » 4j'Bm[k -(mnld) ]sin—— sin max . nxy .  pxz 
-cos sin-—sin . 

a b c bcms0[k
2 - KIJ a   — be (8) 

It is sufficient to enforce only the condition that the axial component of the electric field vanish on the wire surface. 
In case of a thin wire, the boundary condition is applied to a single generatrix along the wire surface, whereas, in case 
of a thick wire, although the current is still assumed to reside on the wire axis, the boundary conditions are applied on 
four generatrices spaced equally around the wire surface. The boundary condition appropriate for this problem is 

Ex-*(*)/(*) =-£f, (9) 

where z(x) is defined as the impedance function of position, and E? is the impressed field. 
Define a testing function of the following form: 

Wm = cos S(y- y0 - r)5(z- z„), 
8 (10) 

where r is the radius of the thin wire under consideration. Substituting E* and Iz from Eq. (2) respectively into Eq. (9), 
multiplying both sides of the resulting equation scalarly by W„, and finally performing integrations within the limits 
of the cavity dimensions, we have 

£ Z'B, + £ Z'„B, =VH,u = 0,1,2 ,M, 

»=1 p=l 

4[k - (vx la) ]sin—r-3-sin 
nxy0  . nHy0 + r) . 2pn2l sin 

jbc0sa[k
2 - k$i 

ZL = j0Vx) 

-f UfTK        VXX  , 
cos cos ax, 

a a 

cos cos ax, and 

U7TK 
cos- -dx. 

Equation (11) can be expressed in matrix form, and is 
[ZJ[5J=[FJ, 

(11) 

(12) 

(13) 

(14) 

(15) 
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Where KJ-K.M*]. -r71
(16) 

Note that KJ is an (M + 1) x (M + 1) matrix, since „ - 0,1,2...,M and v = 0,1^2...,M. If thematnxIZ.] .non- 
SXitslnverse exists. The unknown Fourier coefficients Bv are then given by 

[5 ]=[Z ]"l[^l ^    ' 

electromagneüc cavity. F = ^ ^ .g ^ lump ^^^ at ,,=0. 

coefficients increases beyond 10, demonstrating ^f^^J^^S^2S^SZ£i^^ 
m«iescorrespondingtoxvariatio^^ 
the properties of orthogonality. Impedance ^^f^l^^^^^Zl^^ and numerically 

enforced on four generatrices. 

15.00 20.00 

N HETERS 

90.00 

'(X10-'> 

CunlÜnt magnitude on a single, straight thin-wire for different 
numbers of Fourier coefficient Fc, computed with / = 60 MHz, 
n = 1000 and 2o = 50 ohms. 

  10.00 15.00 
(XlO-'l LENGTH   IN  METERS 

Figure 3. 
Current magnitude on a single, straight thin-wire for various 
mode indices n, computed with Fe = 10, / = 60 MHz, 
Z„ =50 ohms and D/2 = .0001. 

IV. CONCLUSION . . 

concept of Fourier series method which can te easily «^J^^^Sm; since Ute field existing in 

^S. waveguides and cavities with a considerable computational advantage. 

pf"«-.R, and ,. Perini, "Cm™, on a vrirepurah^•»«•-"• re*^lar -*" W0/ 
Electromagnetic Waves and Applications, Vol. 2, No. 3/4,195-317,1958. 
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MICROWAVE CAVITY WITH NONLINEAR LOAD 

Diana V. Semenikhina 
Taganrog State University of Radio Engineering, Taganrog, Russia, airpu@tsure.ru 

Abstract A rigorous solution and numerical results for the problem of excitation of a resonator with nonlinear 
load are presented. Numerical results are obtained for the excitation by a primary source, whose first or third 
harmonic in frequency is close to resonance at the fundamental mode Hi0i. It was discovered that the amplitude 
of the third harmonic of field exceeds the amplitude of the field at fundamental frequency by 20...40 dB. 

1.INTRODUCTION 
In a series of the previous publications [1,2], solutions of exterior and interior nonlinear 

problems of electromagnetic wave excitation and scattering were discussed. Numerical results 
and experimental studies have revealed the phenomenon of nonlinear excitation and scattering for 
the bodies with natural nonlinear contacts or with nonlinear loads such as microwave diodes. In 
the case of exterior problems they can be considered as a weak effect. They need to be taken into 
account in a number of special cases. If these effects would be used in antenna design, it is 
necessary to develop the measures for amplification of higher harmonic fields excited due to 
nonlinear loads. 

Solution of internal nonlinear boundary problems enables one to investigate 
electromagnetic wave excitation by nonlinear loads of internal regions for example, in 
waveguides and resonators. Analysis of the problem about a waveguide excitation is caused by 
the fact that nonlinear effects even due to natural contacts have an essential influence on the 
waveguide workability [3]. The problem about a nonlinear load excitation in a microwave 
resonator is one of important problems for a practical application in the microwave device 
engineering. First, whereas the resonator is a frequency-selective system and can serve as an 
amplifier of the fields of higher harmonics excited on the nonlinear load if their frequencies are 
resonant. Second, nonlinearly loaded resonators are already applied in microwave devices but 
approximate methods of their analysis are used. 

In the present paper, a rigorous solution and numerical results for the problem of 
excitation of a resonator with nonlinear load are offered. 

2.NONLINEAR BOUNDARY VALUE PROBLEM 
We consider a cavity resonator formed by a section of rectangular air-filled waveguide 

loaded with a distributed nonlinear load in the form of cross-shaped narrow non-uniform 
nonlinear contact with the cubic V-I characteristic located at z = zk. In the internal region of the 

resonator primary source distributions je(m) pr are set (Fig. 1 a), where index 2 refers to currents 

at the wall x=a, and index 4 to the one x=0. In these equations, an auxiliary magnetic source at 
each observation point has the same direction as the magnetic current on the site. The problem is 
solved by the method of integral equations with the use of the Lorentz lemma and nonlinear 
boundary conditions (NBC), which are derived from the following mathematical model of 
nonlinear contact (Fig. 1 b). 
Assume that the contact is narrow along z (Az«An), where Xn is the n-th harmonic 

wavelength. Then the electric current flows across the contact along z, and magnetic one flows 
along x and y on the wide and narrow walls of the resonator, respectively (Fig.l). Decompose 

the contact into elementary cells whose sizes are A«An. 
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Within the limits of a cell the currents can be considered constant and parameters of the contact 
do not vary. We consider parameters of cubic V-I characteristic connecting the current I and 
voltage U are given at each cell. Then local NBC at each cell can be obtained as follows [ 4 ]: 

' Z „ 

+*V&^   S   Jy     (X^ry (X,)- 
S=-oo 

00 

-Cylx^ Z Jy     (x^ 
q=-cc 

00 

s - -oo 
where the indices 1 and 3 relate to the currents on the 
top and bottom walls, respectively; and An ,Bn,Cn 

coefficients defined by the nonlinear load parameters. 
Further the Lorentz lemma is applied, and the auxiliary field is chosen as a field in a resonator 

without nonlinear loads satisfying the boundary conditions ET = 0 at the resonator walls. 

The system of nonlinear integral equations is solved by the method of moments with piece- 
constant basis functions and Dirac weighting functions. The observation point is consecutively 
placed on each site and NBC are applied. As a result, a system of nonlinear algebraic equations 
(NAES ) for the harmonic amplitudes of magnetic surface currents in nonlinear cells is obtained: 

" ' o——rr-. S=-CC 

oo   
*     rffl        ,     v  v    jm       /„   wm   (r   \_  flm'cmHmdV + 

s=-oo V. 
J 

N x  +Ax/2 x  +6x12 

ft=l x,;-Ax/2 x
fJ~

Ax/2 x  -Ax/2 
M 

y^+Ay/2 y^+Ay/2 

p=\ yfWi y^-tyi* 

where index 2 relates to the currents at the wall x=a, and index 4 at the one x-0. In these 
equations, auxiliary magnetic source at each observation point has the same direction as a 

magnetic current in the cell. 

3 NUMERICAL RESULTS AND CONCLUSIONS 
The total field in the resonator can be found either with the aid of Lorentz lemma or as a 

superposition of primary source field and the ones of the secondary sources in the form of piece- 
constant magnetic currents on the nonlinear contact at all harmonic frequencies whose 
amplitudes are determined by NAES. In the calculations the second way has been chosen The 
computational experiment was carried out for a resonator 23 xlOxlO mm with a nonlinear 
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contact (of the width 10"2 mm) excited by a 
primary magnetic source in the middle of the 
forward wall. 

The resonance characteristics for the field 
of the third harmonic excited by the nonlinear 
contact located only at a top wall are shown 
in Fig. 2. It was obtained that the amplitude 
of the field third harmonic exceeded the 
amplitude of the field at fundamental fre- 
quency by 20...40 dB. The resonant 
characteristics for the third field harmonic 
have the width of the order of 1 %. The 
difference of the first harmonic from the third 

one at the resonant frequency depends on the primary source amplitude and off the resonance it 
is effected also by the source frequency (Fig. 3). Generally, the difference between the first 
harmonic and the third one off the resonance remains at the same level as in the waveguide with a 
similar nonlinear contact and exceeds the first harmonic by 40 ...50 dB. Results of numerical 
experiments conducted at the frequencies of the first harmonic close to resonance are interesting 
also. From Fig. 4, in which the field harmonic amplitude dependences on the primary source 
amplitude are shown, it is visible a sharp increase of not only the first but also the third field 
harmonic due to a resonance. The field of the third harmonic becomes comparable with the 
fundamental frequency field (difference is around 10 ...15 dB). Thus, even near to a fundamental 
mode resonance not taking into account the field of the third harmonic leads to a grave error. 
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The new technique of the inversion of a principal part of the integral equation with weighted 
singularities in the kernel was applied to problem of wave diffraction on a step discontinuities 
in waveguide. The properties of resulting matrix operator were investigated. 

Introduction. 
The mathematical models for modern CAD systems have a number of specific properties 
concerning to an accuracy, speed of numerical convergence and stability of evaluations. 
Frequently it is meaningful to apply approximate methods to modelling of such 
electrodynamics key problems, which have analytical solution poorly approaching for 
computing. The raise of effectiveness of such approximate methods has a large impotence for 
development of a CAD systems software. 

The field calculation within a region of space bounded by a surface of geometrically 
complicated shape mav be obtained by means of dividing the whole region of the field 
determination into a number of simple partial subregions. The equations of the applied 
electrodynamics methods which use the idea of a region decomposition and boundary 
conditions of the fourth kind would be noted on the base of the Green's identities formalism. 
At such form the presence of singularities in a kernel of the resulting integral equation 
exposes easily. It is connected with the moving and fixed singularities of the Green function 
of a simple partial region, which suppose a clear physical interpretation. The methods of a 
complete or partial inversion of the principal part of resulting integral operator lead to 
effective mathematical models. 

As it was shown in [1], the method of partial overlapping regions [2] is an equivalent 
regularisation of the convolution-type equations of a mode-matching technique. In the given 
paper the regularisation technique is advanced for deriving more effective mathematical 
models, than the method of partial overlapping regions produces. 

Theory. , 
In [3] the technique of the inversion of a principal part of the electrodynamics singular integral 
operators was developed and substantiated. An integral equation to solve for one of 
electromagnetic field vectors is formulated for each of partial region using the integral 
theorems of the diffraction theory. The field continuity on a common part of the partial 
regions leads to the integral equation with complicated kernel. According to this method the 
initial equation of the first kind is rearranged to the equivalent form 
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j{[K,(r\F') + XM(r\r')} + Z[K2(r\r')- M(r\f ')]}u(r >)dr> = f(r),r eQ,       (*) 
n 

where Kj(r\F'),i = \,2, are the Green functions or their derivatives, M(r\F') is a special 
constructing regularisation kernel. In (*) the first sum in the square brackets is the simply 
invertable part of compound kernel and second part is a continuous function. As it can be 
shown the method of partial overlapping regions is the special case of the new technique. 

To demonstrate further development of this approach it is necessary to consider not abstract 
but the specific problem. As such problem conveniently to choose problem of wave's 
diffraction on a step in the parallel - plate waveguide, which would be solved by many other 
methods. 

We shall consider the case of a diffraction dominant mode of a wide waveguide. The relation 
of the field continuity on the line x e[0,b] with reference to boundary condition at the step 
looks like 

Ul(x,z) = Uinc(x,z) + v 

-J 
dU2(x',z')' 

~dV 

z'=0 

dx',   (LM) 

dx',   (LE) 

x e[0,a]; 
0 < z < oo. 

z'=0 

The Green function Gx(x,z\x' ,z') of the wide waveguide can be expressed in terms of Green 

function G\v)(x,z\x'\z'^ of closed area [0,ö]X [0,C] with reference to mirror reflections in 

metal walls. It yields the integral equation 

dU, 
dz 

dU;„ 

z=0 dz 
+ • 

z=0 

d_ 
dz I 

dR 
dx' > 

z'=0 z=0 
dz 

;   (LM) 
z=0 

U2{x,0) = Uinc(x,0)-j 
dU, 

Glv)(x,0\x',0f^i 
dz' :' = 0 

dx' + R(x,0),   (LE) 

where 
oo 

R.(x,Z) = ^ U(x,2cm + z)x U(x,2cm - zj\, 
m=l 

Ul (x, z) = Ux (x, z) - Uinc (x, z). 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



MMET'98 Proceedings 
371 

Using Galerkin's method and representation of Green function G[v)(x,z\x',z') in the form of 

Fourier-series expansion in the closed area [0,b] x [0, c] as it was made in [3] 

/  n n=0 

♦IZ^M^'F-; r,=JIT 
n=0 m=0 

nn (LE) 

we finally obtain the infinite matrix equation 

(l + D2)B + DlA = f. 

Here 5 and ^ are the vectors of unknown coefficients for the second and first semi-infinite 

waveguide respectively. 

Theorem. The matrix operators Dx, D2: lp -> lp, 1 < p < «>, defined by the elements 

exp(-rc^) 
d® = O sinl (nn6) 

m2-n292 
t,6>0; 

d{2}=0 
f i— A A     4mn p 

j^p2+m2r2   p2+n2r2, 
,    T>0, 

are compact. 

For a case of LM-wave diffraction the form of final matrix equation is the similar as the one 

given above. 

Conclusion. .    .    .    , ,, , 
It is shown for the key problem of waves diffraction on the step discontinuity in the parallel- 
plate waveguide that proposed regularisation technique converts the initial integral equation 
into the infinite matrix equation, which permits efficient solving by a computer. 
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In this paper we discuss the problem of an electromagnetic wave diffraction by a thick inhomogeneous 
diaphragm in the parallel-plate waveguide. Our approach is based on the analytical method of Boundary 
Singular Integral Equations (SIE) [1]. Similar problems are frequently encountered in the computer-aided 
design of waveguide circuits. They are normally reduced to the matrix equations by the mode-mathing 
approach. To obtain a stable and accurate algorithm, analitical semi-inversion has been used in [2,3]. 
Unlike this, we develop discrete mathematical model and numerical algorithm by using the technique of 
[5]. 

1. Introduction 
We consider diffraction of the principal electromagnetic E-polarized mode (dependence on time is 

e~twt) by a thick inhomogeneous diaphragm in the parallel-plate waveguide. 
The geometry of the problem is shown in Figure 1. 

Fig.l. Thick diaphragm in a parallel-plate waveguide. Vertical bound- 
aries of the waveguide and diaphragm are perfectly conducting. Hori- 
zontal surfaces of the diaphragm are impedance. 

T 
The total electric field vector is E = (Ex, 0,0). Let us denote Ex — 
u(y,z). Maxwell's equations that describe the model can be reduced to 
the Helmholtz equation A« + k2u — 0 with the following conditions on 
the vertical boundaries: 

w(0, z) = 0,    z £ R;    u(a,z) = 0,    z > 0, z < -h;    u(b,z) = 0, 

and "impedance" condition on the horizontal surfaces of the diaphragm: 

-h < z < 0; (1) 

du du 
^(y,0) + <«(y,0) = 0,     — (y, -h) - (u(y, -h) = 0,     (b<y<a,    ( = Ci+i<2,    Ci x <2 # 0).   (2) 

We reqest also, for the totat field, satisfying the radiation condition and the edge condition at the 
right two-sided edges. 
Decompose the total field u(y, z) as 

(uo(y,z) + u+(y,z), z>0,  0<y<a 
u(y, z), -h<z < 0,  0<y<b , (3) 

u~{y,z), z<0,  0<y<b 
where 

uo{y,z) eV*Mf)2* + ~?VF ~ (f 
v*2-(f)2+c 

V.VSMIF'U^. (ka > -K) 

is the sum of the incident and reflected fields in the case of diaphragm completely blocking the waveguide 
(b — 0), and the functions u+(y, z), ü(y,z), u~(y,z) are the diffracted fields in the domains {z > 
0, 0 < y < a}, {-h < z < 0, 0 < y < b}, {z < -h, 0 < y < a}, respectively. Note, that 

du0 «o(0, z) = u0{a, z) = 0,z>0;    -^-(y, 0) + (u0(y, 0) = 0, y £ (0, a). 

Conditions (1) tell us the following modal expantions for w±(y, z) and u(y, z) 

u~(y,z 

wn 

n=l 

X>e*«+»>«n3E» 

0<y<a,    z>0 

0 < y < a,    z < —h 

(4) 

(5) 

(6) 
n=l 
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ü(y, z) = J2 \Dne-l"(*+V + Cne*»' 
n=l 

sin —y,    0 < y < 6,    — ft < z < 0 (7) 

where jn = y (xO - ^2' 7"_ = y (x) ~^2' Taking into account the radiation condition, we 
choose Rej„ > 0,    Imyn < 0- Re% > 0,    i"m7„ < 0. 

2. Singular Integral Equations. 
Following the main idea of the Boundary SIE Method [1], we introduce new functions F±(y), y e (0, a) 

as follows: 

F+(y)= f^ + C«+) =f>«-7n)sin™y, 
V fz ) (»,o)     ^ ro « 

F-(y)=-f^-Ct.+l =V5n(C-7n)sin^ 

(8) 

(9) Y]-Sn(C-7n)sin—j/. 
(».-*)     »=i a 

The important characteristics of the functions F±(y) are: 
1. F±(y) = 0, y€ (6, a); 
2. Taking into account the continuity of electromagnetic field and the statement (4), we get another 
representation for the functions F±(y), namely: 

CO 

F+(y) = £ [Dn(C-7n)e-^h +C„(C + 7n)]sin^j/! j, e (0,6); 
7TO 

F 

F-{y) = £ IMC + in) + Cn(C - %)e-l*k) sin ^y, „ € (0,6) 

(10) 

(11) 

3. Considering the behavior of the field at the edges we request the functions F±(y) to have the form as 

v±(y) 
Hv) 

h\/l - y' 
= ,    v±(y) = w±(y)$/T-f 

where v±(y) belong to the class of the Holder functions C'a(0,b), 0 < a < 1. 
4. Representions of the coefficients An, Bn, C„ and Dn, (n 6 iV) by means of F±(^) (|£| < 6) functions 
are as follows: 

0 6 

-b -t -b 

b 

Bn = ^^)IF~i0shl^d^   Cn = b(Y*-x*)J[F~{°Yn + F+{°XnJsinT*^   (13) 

where Xn = 7n + <, Y„ = (C - %)e~^h. 
On using the Fourier representations (5)-(7) and continuity property of electromagnetic field at z = 0, 

we come up with equations: 
CO 

—An cos—y-}^T [Dne-i»h + Cn] cos-j-y^-uo'iy),    y 6(0,6); (14) 
n;Bo o»=1 

J]A,sin™!/o-5][D„e-w + C„]siny!(=-ti„(Ä),    Ito 6(0,6) (15) 
n=l n = l 

A similar pair of equations is derived from from continuity conditions at z - -h. 
c 

Let us consider the Hilbert operator with cotangent kernel:   (HcG)(x) - ^ / cot %-{y - x)G{y) dy. 
— c 

Applying operators Ha and Hb to functions F+(£) and the property 1 of F± functions, we get the 
following statements: 

(HaF)(y) = £ An(( - 7n) cos ?fy = i / cot £(£ - j,) F+tf) ^ 
n=l -6 

(tf^+Xy) = £ (CnXn + DnYn) cos fy=±J cot fj(£ - „)F+(fl df. 
n=l 
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Taking into account integral representations (12)-(13) of coefficients An, Bn, Cn, Dn, we rewrite (14) 
and (15) in equivalent forms: 

I [&cot Ut -y) + hcot &« - y)F+(0) de - H *'*(£, y)FHO ^ 
-b -b 

-± / [K^,y)F+(0 + K2(i,y)F-(0] # - ti0'(y,0), 
-4 

/ [Qi(t, vo) + Q2(e, 3/o)]^+(o de + / Qs(*, yo)^-«) de = -«0(2/0, o), 
-6 -b 

where Ka(£,y), Ki(£,y), K2^,y), Qz(£,y) are some smooth functions. Functions Qi(£,y) and ^3(^,3/) 
have the logarithmic singularities, which can be isolated. 

Thus, we have reduced the original diffraction problem to the set of SIE with additional conditions. 
3. Discrete Mathematical Model 
For the creation of discrete mathematical model we use the technique of Discrete Singularities Method 

[5]. Interpolation Gaussian quadratures are applied both to the singular integrals, and to the regular 
ones. The integrals with logarithmic singularities are discretized by the formula from [6]. Based on the 
suggested mathematical model a numerical experiment was worked out. We calculated \An\, \Bn\, \Cn\ 
and I At I coefficients under the different values of a, 6, C and h parameters. An example of numericul 
experiment is shown in Figure 2. 

Fig.2.      The   dependence   of   \B\\   on   the 
wavenumber k with the following values of 
parametres: 
a = 7T, b= f, A=1,C = -^ 
1. Z, = 2.4784 -10-3 + il.4648-10-2 is the 
impedance of niobium at T = 8.83-ff [7]; 

2. Zs = 8.23657 • 1CT3 + J'2.64552 • 10"2 is 
the impedance of a smooth niobium layer on 
a dielectric layer at T = 8.83Ä"[7]; 

3. Zs = 1.10491 • 10-2 + »3.54889 • 1(T2 is 
the impedance of a rough niobium layer on a 
dielectric layer at T - 8.83A' [7]; 
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Architecture of Dielectric Bandpass Filters with Symmetric Characteristics 
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Abstract 
The problem of electromagnetic wave scattering from a system of coupled Dielectric Resonators (DR) 
placed in a cut off waveguide section has been examined. It has been established a common form of 
characteristic equation for the coupled oscillations, that realizes frequency-symmetrical S matrix pa- 
rameters. A new structure of the coupling between DRs is indicated as well. Analytical expressions of the 
power transmisson coefficients and experimental investigations of 4 and 5 cylindrical DRs in a microstrip 
line is given. 

Introduction 
The scattering characteristics of the DR system in metallic cavity depend on their mutual location, non 
resonant transmission and, for example, in microstrip structures, on the presence of parasitic modes, ets. 
We consider here the problem of determination of DR structure that realizes frequency-symmetrical scat- 

tering parameters: U\AöJ = \T\-Amj , where Am = co - co0, co0 is the center frequency. 

Common form of Characteristic Equation of Symmetric DR Filter 
We shall try to answer the question: what conditions will lead to the S matrix frequency symmetry of the 
DR filter scattering parameters? To this end we consider the characteristic equation which determines ei- 
genvalues of the coupling operator K [1]: 

A      +a A + a  A + + a^    A + ö:    =0 
N - 1 N (1) 

where    a, a ., I k, k k 
13 

..I    are   the   complex   functions   of   the   coupling    coefficients; 

/,. = 2\ Am   + ico      / co \   Am<. = co ico is the coupled oscillation frequency of the N DR 

system Is = 1, 2, ... , N). Solutions X , I   of (1) will be called anticonjuate if X= -X, where "*" is 

the complex conjugation symbol. (1) has a pair of anticonjugate solutions only if the coefficients a,t are 

real, and a7s +I    are imaginary: 

a2s ~ a2s '< a2s +] = ~a2s +1 ■ (2) 
We have established that if all the solutions of (1) exept the imaginary ones are anticonjugate, the filter S 
parametrs are frequency symmetric. In reality, eigenoscillations of the DR system that form a pair of anti- 
conjugate solutions have identical Q factors, but their resonant frequency detunings differ by sign. The 
sum of the oscillations form the frequency symmetrical scattering parameters. 

Architecture of DRs with Symmetric Scattering Parameters 
At first we shall examine four DRs symmetrical geometry. We shall denote a single DR of such a system 
by a point, the coupling between DRs through the cut off field by a straight line, and the coupling through a 
propagating wave by an oscillating line (Fig. 1, b-d). In arbitrary case obtained from [1], the power trans- 
mission coefficient of the four DRs symmetric filter is given by 

T H k_ 

Qi 

*; + #i 

2<d~ 

k_ (3) 

>o • where k = k -0   is the coupling coefficient between the input or output DR and line; 

Q   = JmX -QD +co/ co  - 2iQD(l -co/ co)] QD =1/ tgg; b1'2 - X    -k    ', biA = X     + k    ', ^s s   ^ s        *■   \ SI '   ^ 6      L] '7 2 23      1 3,4 23 
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X 
1,2 Yk+~2 {kJ4+k23) K]4 + k23) + ^d+;   *3i4=yk [k14 + k2s) l

2(
k14 + + id~ 

d' 
ik±l-[ku-k22) +(k12±k13y (4) 
2    - 2 

In Fig. 1, a it is shown the measured (by dots) and computed from (3), (4) (by a solid curve) insertion loss 

£ = 20lg\r\ of the filter composed from the cylindrical DRs and a microstrip line. This curve is readily 
seen to be non - frequency -  symmetric. From  (2) or (4) the symmetry will take place under the condi- 

tions:    k14 = k23 =0  (Fig.  1, b), or k13 k74 = 0 and k23 k 14 4k 12 k    (c), or k12 = k ̂34 0  and 

k23 = kI4 4kj3 - fc   (d). 

The coupled oscillations of DR structures are determined from the obtained simple conditions (2) before 
the solution of the corresponding scattering problem. For example, even eigenoscillations of the five DRs 
system are found from the symmetry conditions: kis =k24=0 and either k13 =k35 = 0 (Fig. 1, e); or 

k23 = kH4 =0 (Fig. 1, f); or k]2 = -k14\ k4S = -k25 (Fig. 1, g). The systems shown in Fig. 1, e, g have 5 

types and that in Fig.1, f has 4 nontrivial types of the coupled oscillations. The power transmission coeffi- 
cient of the filter shown in Fig. 1, e, for example, has the form 

T 
ik 

2 ik)(X3 - ik)   jc_ ^ A^   (ij-ik^Aj-ik)   j^ 

(A,-*^,-*,) QJ ik 

where 

A (A, - ik){ A „ - ik \ k A 

ik   (A}- A3)(A2- A,) Q3    [X5-X4) Q-4 

A, =[k/3 + Sj+s2)i\ 

A< 

A, A 05 

(5) 

A 
2,3 

k / 3 -^[S, -r s. 

1     = / /2k+ 
4,5 

2^i 

\kn - K 

i + 
2 (si-s2): 

kj-(k/2f 
ll / 2 

and    S 1,1 r±\q'+r< 
1/2 

1/3 

(6) 

;   r = k/3 (k/3)2 -J/2\kI2 +k14f +2k^ 

q=l/3(k]2+k14)
2 +2/3k2

23-{k/3)2; q3 +r2 >0 

In Fig. 1, h shows the measured and computed from (5), (6) insertion loss of the five DR frequency sym- 
metric filter. 

Conclusion 
A common form of the coefficients of the characteristic equation providing frequency - symmetric scatter- 
ing parameters has been found. New structure of the coupling and analytical expressions of the power 
transmission coefficients of the four and five DR symmetric filters was established and verified. Measured 
characteristics of these filters are in acceptable agreement with theoretical calculations. 
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NUMERICAL SIMULATION OF SOME PLANAR  MICROWAVE 
GYROTROPIC STRUCTURES 

S. A. Ivanov & P. I. Dankov 
Faculty of Physics, Sofia University, Sofia, Bulgaria. 

Introduction 

The numerical simulation of different gyrotropic structures plays an increasing role in 
modern microwave practice. In comparison with the usual analytical/experimental methods 
known for a number of years it can propose a considerable saving of time and efforts 
combining with some new possibilities for improvement of the analysis before realization of 
the structures . Below this new alternative is demonstrated for the case of stripline circulator 
operating in S-band and below ferromagnetic resonance. The consideration is done with a 
planar model analysis [1] which offer a reasonable compromise between time consumption 
and accuracy. 

Theoretical Background 

The main steps of the planar model analysis includes: i) Replacing of the coupling 
stripline width Wmd disk resonator radius R with its planar equivalents of the same height 
h and characterized with effective dimensions We and Re respectively; ii) Assuming a 
magnetic wall approximation for the investigated planar models the analysis is done in 
closed-form, and as a result of that, the convenient expressions for the main junction 
parameters - Input impedance Zi71 , Isolation IS, Return Loss RL etc. are obtained; iii) 
Through a computer simulation an extensive information for behaviour of the above 
mentioned junctions parameters is easy obtained in advance before experiments. 

The described procedure was demonstrated in [1] for an S-band stripline circulator. 
Because the junction input impedance deviates considerably from standard value Z0 = 50 
ohms, the matching of the investigated nonreciprocal structure seams to be one of the 
important circulator problems. In [1] this task was solved with one- and double-step 
quarter wave transformers. This way however, leads to a considerable increasing of the 
junction dimensions. The inherently matched stripline Y-junction described in [2] can be 
considered as an alternative of the classical stripline circulator because its dimensions are 
determined on ferrite disk diameter mainly. So, the Y-junction construction is appropriate 
for the case when a narrow band devices are of interest. If some wider operation 
bandwidth is necessary and the circulator dimensions should be as small as possible a new 
decision for circulator design should be proposed. 

The investigated structure consists of two perpendicularly magnetized ferrite disks with 
diameter Df and height h . The radius R of the disk conductor is assumed to be smaller 
than ferrite radius Df 12. The stripline conductors thickness t is supposed to be thin enough 
, i.e tlh «1 . At these conditions the planar equivalents of resonator and coupling lines 
can be introduced as it is point out with a dashed lines on Fig. 1. The expressions for 
calculation of the junction input impedance Z,„ and circulator isolation IS are as in [1], 
but with the corrections for the characteristic impedance formula of the ferrite stripline Zcf 

[2] determining the load impedance ZL. The matching of the nonreciprocal junction shown 
in Fig. 1 is done through a two short ferrite striplines. 
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Fig.l 

The width Wfl , Wp and the length Lp , Lp of the coupling matching lines, as well as 

the radius of conductor R and magnetizing field Ht should be detennined for proper 
circulator operation. This aim is done through a numerical simulation of the described 
nonreciprocal junction. During optimization procedure the principle of frequency 
compensation was used elsewhere. For this purpose the dimensions of the coupling matching 

lines were varied until the condition Rln + jX,„ <=> RL 
was satisfied. 

Numerical results 

The numerical calculations are done for S-band junction with ferrite disk dimensions: 
Df = 22 mm and h = 2 ram. The ferrite parameters: saturation magnetization Ms = 700 G 

and permittivity sf =14.5 are taken as for substituted I-A1 garnet - a material typically 

used. The input stripline of 50 Q is designed for a conductors of width W0 = 5.6 mm and 

thickness t = 0.1 mm. The simulation procedure is realized through a FORTRAN program 
SLC2TF which operates in dialogue regime and can calculate the junction characteristics 
when the dimensions of the coupling striplines are varied. The practical realization of this 
procedure is convenient to be done for different width Wf, and constant values of the 
lengths Lfl , Lp and Wp. . As a result of simulation a number of configurations for 
matching striplines dimensions were proposed. It was found out that the operational 

bandwidth is increased when the coupling angle ^aresinfo,, I2R\ decreases. This tendency 

is explained with the weaker frequency dependence of the junction input impedance at 
smaller coupling angles. For example the matching structure characterized with 
dimensions LfI = 3.5 mm, Lp = 1.5 mm, Wp. = 5,6 mm and coupling width values Wfl = 
2.5,2.0, 1.5 and 1 mm provides the values for the bandwidth (characterized at level IS > 20 
dB) 110, 170, 210 and 260 MHz respectively. In all cases the mechanism of the above 
mentioned frequency compensation has took place. For the last case that is illustrated in 
Table 1, where all necessary calculation data are summarized. As can be seen the proposed 
configuration of the coupling ferrite striplines ensure matching of the junction with radius R 
= 6 mm  in the frequency range 2.34-2.60 GHz.. With a small degradation the bandwidth 
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can be slightly shifted (± 50 MHz) up and down through a deviation of the magnetizing 
field Hi in the range 90-150 Oe. 

Table 1 

R = 6mm, Wp = 1.0mm,Lfl =3.5 mm, Wp = 5.6mm, Lp = 1.5 mm , Ht =120 Oe 

/.GHz k/fi IS, dB RL& XL,Q. R,„,Q. X-m ,Q 3 dB   IS     -20 dB 

2.320 0.97 -16.65 14.3 -10.9 12.7 8.4 $r¥V***L'%VW 

2.340 0.95 -20.60 14.2 -10.7 13.0 9.2 ********** 
2.360 0.94 -22.32 14.1 -10.5 13.1 9.2 ********** * 
2.380 0.93 -24.45 13.9 -10.3 13.1 9.3 ********** ** 
2.400 0.92 -27.24 13.8 -10.1 13.2 9.3 ********** *** 
2.420 0.91 -31.26 13.7 - 9.9 13.3 9.4 *T^T^T***I*T*T**nT*     ^t HC *|C *JC *JG 

2.440 0.90 -33.36 13.5 - 9.7 13.1 9.5 **********  ****** 

2.460 0.89 -41.03 13.4 - 9.5 13.2 9.5 **********   ********** 

2.480 0.88 -37.15 13.3 - 9.3 13.3 9.5 **********  ******** 

2.500 0.87 -31.11 13.2 - 9.0 13.4 9.6 **********  ***** 

2.520 0.86 -27.46 13.0 - 8.8 13.5 9.6 **********  *** 

2.540 0.86 -24.92 12.9 - 8.6 13.6 9.6 sfesk-fcsksff'fcsfesfe^fi^ skA 

2.560 0.85 -23.00 12.8 - 8.4 13.8 9.6 ********** * 
2.580 0.84 -21.46 12.7 - 8.2 13.9 9.6 %}£%%%; %%$;%% 

2.600 0.83 -20.11 12.6 - 8.0 14.0 9.6 ********** 
2.620 0.82 -19.03 12.5 - 7.8 14.1 9.6 ik:k:{:^ jfe$ *H<^ 

It is interesting to point out that the presented data are comparable with the results 
obtained for the case when a quarter- wave transformer is used [1]. This statement is proved 
with a program SLC1TD which calculates the parameters of circulator matched with 
dielectric ring. For the junction with radius R = 10 mm and coupling width W= 6.5 mm 
the optimum transformer parameters are: Wd = 3 mm, Ld = 1 mm and sd = 15. At these 
conditions the circulator will operate with H,: = 70 Oe in the bandwidth 2.40-2.65 GHz, 
which practically coincides with that in Table 1. The construction of circulator matched with 
dielectric ring however, has several disadvantages. It is more expensive, less technological 
in production and has greater dimensions. 

Conclusion 

The proposed procedure for numerical simulation of nonreciprocal ferrite junction can 
produced a number of new design and decisions for below resonance stripline circulators. 
The principle of the frequency compensation between the junction input and loading 
impedances can be successfully used for broadening of the frequency range as well as for 
optimization of the matching procedure. In this way a considerable time and efforts can be 
saved during practical realization of different microwave gyrotropic devices. 
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National Science Foundation. 
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Dielectric elements and structures of different geometry, placed inside rectangular waveguide sections, are 
widely used in microwave techniques such as control, limiting and stabilizing devices. Dielectric «inserts» with 
flat boundaries filling the whole rectangular section of waveguides belong to one of the simple types of such ui- 
homogeneities. Such inserts can serve as functional elements of phase shifters and filters, dielectric windows, lay- 
ers of absorbing coatings, etc. In electromagnetic analysis of most of them it is necessary to consider the problem 
of excitation of three-layer dielectric structure placed inside a waveguide section. Orientation of boundaries be- 
tween the layers (across the axis of the waveguide) determines such a filling as longitudinally-inhomogeneous. 
Thus a solution of the problem of excitation of rectangular waveguide section with three-layer longitudinally- 
inhomogeneous filling is of great practical interest. 

It is known that exact analytical investigation of the fields in a plane-irregular m longitudinal direc- 
tion structure can be done in a convenient way by the method of cross-sections [1] that is based on the 
field expansion in each cross-section of a regular waveguide in terms of the eigenwaves of a certain stan- 
dard waveguide with parameters coinsiding in this cross-section with parameters of irregular waveguide^ 
This very method, as a matter of fact, is used when considering the sharp irregularities of the step type of 
the open waveguide cross-section or, in other words, a junction of two open waveguides [1]. Obtained ma- 
trix equations have infinite order. Their analytical solution can be found only approximately usmg any 
small parameter characterizing the perturbation (smpothness of transition, value of material parameter 
jump at the junction, etc.). Numerical investigation of the fields in considered waveguide dielectric struc- 
tures can be efficienly realized by using the methods of integral equations [2], singular integral equations 
[3]orpartialdomains[4]. ,,..., j-   . u      A 

Nevertheless, the problem of excitation of electromagnetic waves in the domains with coordinate bounda- 
ries can be solved conveniently with the aid of the Green's tensor function for the Hertz vector potentials. Thus, 
in [5] they are built for homogeneously filled rectangular waveguides and resonators as well as for otherdo- 
mains whose boundaries partly or fully coinside with coordinate surfaces of an orthogonal cylindrical coordi- 
nate system (including rectangular one). Here, solutions of the vector equations for the Green's functions were 
built in the form of the series expansion of three (one longitudinal and two cross-sectional) vector functions in 
terms of the scalar eigenfunctions. It turns out that by a similar method, not using more complicated apparatus 
of the Green's field functions, one can solve the problem of excitation of the considered dielectric structure for 
longitudinal (oriented along the axis of the waveguide) given currents. The present paper is devoted to building 
the Green's functions of magnetic and electric types for the sections of rectangular waveguides with three-layer 
longitudinally-inhomogeneous filling excited by such currents. 

Consider three types of waveguides sections: infinite waveguide (Fig. 1, a), semi-infinite waveguide 
(Fig 1 b) and rectangular resonator (Fig. 1, c). Let us introduce a coordinate system, whose axis Z is di- 
rected along the axis of rectangular waveguide and the axes x and y along the contour of its cross-section, 
that is along the wider and narrower walls having dimensions a and b, respectively. In the Figure, longi- 
tudinal sections are presented with indication of coordinate boundaries of dielectric layers and face walls 
(all the walls of waveguide structures are considered as perfectly conducting). 

0 z, z, i   0 s, z, z   0 

M'^0 (fiiwi) (£3^3} (BJ;HI) fa; HI) fa;^3> (EpHl) (e2;ii.2) 

l4 

(63^3) 

a) c) b) 
Figure 1. 

The expressions of [5] corresponding to the case of longitudinal given currents, for the Green's tensor 
functions of rectangular waveguide are used as the key ones: 

= z 
m,n=0 

(2-80w)(2-8 
ab 

n„)  .   mnx  .   rmtx'  .   nny  . 
^sin —-sin sin—— sin 

a a b b 
"mn\Z> Z )■> (0 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



382 MMET'98 Proceedings 

z 
m,«=0 

(2 - 60„,)(2 - 8QM)       m%x       mttx'       nny       n%y' 
ab 

-cos cos- - cos —-^-cos- 
b ■f%»(z,z'); 

5\ £ ♦V,»  V, 
äWCm^     l/V/Illt,     tlllU- 

(x,y,z) are the coordinates of the point of observation; functions Ge,h£1„(z,Z') are the functions of elec- 

tric and Gu ,h%„(z,Z') of magnetic type, respectively. 
Universality of expressions (1) lies in the fact, that they contain dependences on the longitudinal co- 

ordinate z in implicit form defined by functional coefficients rQn(z,Z') = h^u'. They should be found 
from the Helmholtz inhomogeneous equations by the method of variation of arbitrary constants in the 
layer, where the given currents are located, and from the homogeneous equations in the rest layers of the 
dielectric structure. Such an approach is justified because for a waveguide with transversal layers of dielec- 
tric excited by the longitudinal currents the structure of waveguide modes remains invariant, and this 
gives an opportunity to build a full system of independent transverse and longitudinal vector eigenfunc- 
tions similarly to [5]. 

Unknown coefficients in the representations of the functions hpu' (s is the number of the dielectric 

layer) can be found from the sets of equations obtained from the boundary conditions for hpu' on the 

surfaces of dielectric layers. They are formulated in accordance with the behaviour of normal and tangen- 
tial components of unknown vector fields: 

J,e(M) _ he(u). e(M) dh e(M) 

dz 
7e(M)    "Vl 
J+1    '     ÖZ 

(2), 

where a&
s = \/&s for the functions h^, and af = l/u5 for the functions hf(es and u.s are the relative di- 

electric and magnetic constants of the medium in the layer with the number s, respectively). While deriving elec- 

tric Green's function on the face wall structures, functions /z| must satisfy a homogeneous Neumann boundary 

condition, and in the case of magnetic Green's function hf must satisfy a homogeneous Dirichle boundary 

condition. For semi-infinite front layers, the functions hpM' must satisfy a condition of radiation at infinity. 

The obtained expressions for the functions h^'(z,Z') can be reduced to the following form, in the 

case of the given sources located in the layer with parameters Sjj Uj: 

h$?Hz,z') = 

Fe(-M)(z,z'),   z<z'\ 

— smjiiz-z),    z <z<Z\, 
71 

Fe(M)(z,Z')- 

<De<MV)-<M)te), Z\ <Z <Z2', 

Z >Z2, 

(3) 

where: 
1) in the case of infinite waveguide (Fig. 1, a): 

<Die(M)(z) = -4* 
/y3a,e(M) 

COS y 2 (Z2 ~ Z) + *(M) Sin Y 2 (Z2 - Z) 
;Oe(M)(z) = _47ar,y3(^2). 

<D e(M) 
MM) ,e(M) 

1      -r2^-sinY2fe-^1)-/y3-^rcoSY2fe-z1); **M> .11 
4% 

<M)fei); (4) 

<De<M)(£') = e-tfiizi-zyiQtM _ id)|(M)]; 

Fe(M\z,Z') = =r~(eiy^z-z,) - e-^l(Zi'z) • <De(M)(z') • [OJ
(M)

 + /' • <&|
(M)

]) 

2) in the case of semi-infinite waveguide (Fig. 1, b): 
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<De(z') = cosyiz'/(9t-oosyizi +4>1 siny,^); $M(z') = sinyiZ'/O&f siny^ - *£ cosy^); 

jr°(s,Z') = - —cosy^-fsiny^' -tgy^ -cosy^' + (D6(z')$2/cosYl^l) (5) 

Yl 

71 v 

Functions <J>?"\z) and *f>(«) , as well as auxiliary coefficients <tfM) and oJM>, are analo- 

gous to the case of infinite waveguide (4); 
3) in the case of rectangular resonator (Fig. 1, c): 

<D^(z) = 4TC 

9?(z) = -4* 

cosy2(z2 -z)-cosy3(z2 -l) + 1^2-smy2(z2 -z)siny3(z2 -I) 
72s3 

cosy2(z2 ~z)-siny3fe> -O-^-sn^to -z)cosy3(z2 - 0 

<t|(z) = 4% cosy3(z - /);    A»"(*) = -4« siny3(z - /); 

d,e = y3£LCosy2(Z2 -*l)• siny3(z2 -0- Y2 — siny2fe -Zi)cosy3(z2 -0; 
1 83 

s2 

(6), 

<t,M = ÜLcosy2(z2 -*l)• cosy3(z2 -0 + y2 —cosy2(z2 -Zi)siny3fe> -0- 

Expressions for the auxiliary coefficients 0>e
2
(M) are analogous to the case of infinite waveguide (4), and 

those for the functions <Pe(M)(*') and Fe(u\z,Z') are analogous to the case of semi-infinite waveguide (5). 

By the same method the functions A*M> (z,Z') can be obtained for the given sources located in the other layers 

of the dielectric structure. In (4)-(7), y2
s = k2 - (m* / a)2 - (nn / bf, where ks = w^7 is the wave 

number and CD is the frequency. The constructed Green's functions give an opportunity to determine the longitu- 

dinal components of electric Ti\(x,y,z) and magnetic Tlf(x,y,z) Hertz vectors in every region of the consid- 

ered waveguide-dielectric structures in the form of a volume integral: 

where V is the volume of the s-th layer, in which the given longitudinal electrical ;£(*',y',z') or magnetic 

j?(x',y',z') currents are located, (e,;^) are the parameters of dielectric layer, in which ufM) is to be found. The 

form of expression for Ge(M) is defined by (1) and by the concrete form of the functions h^\z,Z') -Based on the 

known coefficients, the sought electromagnetic fields are determined with the aid of n| M . 
Thus the constructed Green's functions of the sections of rectangular waveguides with three-layer 

longitudinally-inhomogeneous filling, in the case of excitation by longitudinal given currents, enable one 
the "enthe possibilities of mathematical simulation of various electromagnetic problems, including 
problems of diffraction on inhomogeneities inside considered waveguide-dielectric structures. 
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Abstract 

In the search for low cost high power semiconductor 
diode oscillator device, a new millimeter wave 
evanescent mode power combiner with Gunn diode 
oscillator at 35 GHz employing combination of 
suspended stripline and evanescent mode resonator is 
developed. With a 35 GHz diode rated at 100 mW, 
stable power output of more than 1 SO mW is achieved 
over a tuning range of about 3.5 GHz. The oscillator is 
simple in fabrication, cost effective and is amenable 
for integration with other planar circuits. 

Introduction 

Gunn diode is one of the most important solid state 
millimeter-wave source. It exhibits low noise and a 
wide   operating   frequency  range   and   capable   of 
generating  power   100  mW  or  greater.   Although 
enhanced power output can be easily obtained from 
IMPATT  devices,   these   are   usually  not   suitable 
because of higher noise. Therefore employing more 
than one diode in series shows promise as a method 
for increasing the output power of these devices as 
millimeter-wave oscillator. Most of the application of 
Gunn diode oscillator at Ka-band are based on its 
compact size, light weight and stability. Some of the 
applications  are  in missile-guidance  and tracking, 
traffic control radar, satellite communication, helmet 
mounted trans-receiver system for soldiers, pattern 
recognition, weather prediction etc. 
Millimeter   wave   oscillators   in   MIC   form   offer 
advantages  in  terms  of small  size  and  ease  of 
integration   with   other  planar   circuits.   Since   an 
oscillator forms an essential part of a millimeter 
receiver   front   end,   its   development   leading   to 
simplicity of fabrication and lower circuit losses while 
retaining the advantages of MIC fabrication is of 
considerable importance. Bulk of published literature 
on Gunn diode oscillators are in waveguide and 
microstrip configurations [1,2]. Recent paper [3] has 
proven feasibility of utilizing Gunn diode oscillator 

employing evanescent mode guide as a resonator in 
suspended stripline configuration. Most millimeter 
wave Gunn diode oscillators reported in MIC form 
employ microstrip medium with Varactor tuning [4]. 
For application not requiring electronic tuning, 
microstrip oscillator employing evanescent mode 
resonator offers an attractive cost-effective solution. 
In the circuit reported [4], Gunn diode is mounted 
inside a section of evanescent mode waveguide and 
resonance is achieved by tuning out the capacitive 
reactance of the diode with the inductive reactance of 
the evanescent guide section. The output is taken 
through a microstrip electromagnetically coupled to 
the evanescent mode guide. It is well known that in 
millimeter wave band, the microstrip tends to be 
excessively lossy. A low loss planar transmission line 
which overcomes this problem is the suspended 
stripline. In the present paper, the low loss feature of 
the suspended stripline and the inductive property of 
the evanescent mode guide are utilized to realize a 
simple, small size, low cost, Ka-band power 
Combiner, with broad-band performance. 

Evanescent Mode Resonators 

Microwave oscillations in an evanescent mode wave 
guide (EMWG) were first observed in high power 
TWTs.   The occurrence of pass bands below cut-off 
often was given an explanation for the conditions, and 
the  fact  that  this  phenomenon  can  have  useful 
applications was later demonstrated in the field of 
passive microwave components.     Components for 
microwave integrated circuits with EMWG resonators 
which is having very high value of quality factor was 
reported [5], and the properties of evanescent mode 
resonator   as   now   are   well   understood.   In   this 
technique, inductance is realized by a short section of 
rectangular wave guide below cut off. It is well known 
that a rectangular waveguide operating at a frequency 
far  below  its   dominant  mode   cut-off frequency 
behaves like a pure inductance, and therefore stores 
magnetic     energy.     Resonance     conditions     are 
established by introduction of a device that stores 
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electrical energy, such as active devices that are 
capacitive in nature. 
An EMWG (evanescent mode wave guide), of length 
L, impedance Zu and propagation constant v can be 
represented by a"« section, shown in Figures 1 and 2. 
In present power combiner circuit shorted end «- 
section EMWG  is used. The main feature of the 
equivalent circuit  is that the  individual  elements 
closely   approach   genuine   lumped  elements.   The 
relationship    between    reactance    and    frequency 
normally associated with a distributed network is 
absent. Broad-band operation should therefore be a 
characteristic of active device (Gunn-diode) used with 
evanescent mode resonators over a large frequency 
range. The lumped element nature is considered a 
problem of matching the impedance of an active 
device over a large frequency range. If distributed 
elements   are   used   for   matching   purposes,   the 
operating bandwidth is degraded due to the parasitic 
pass bands associated with these elements. Normally, 
these  pass-bands  are  related  harmonically  to  the 
operating frequency. However, with evanescent mode 
resonators, as long as frequency of operation does not 
exceed  the  cut-off frequency  of the  waveguide, 
additional   pass   bands   do   not   exist.   At   higher 
frequency, parasitic pass band are possible, but these 
do not fall at harmonics of the working frequency. 

385 

load to the Gunn-diode. A dielectric screw is inserted 
from the opposite side of the substrate so that the 
diode makes firm contact with the strip conductor. 
Unlike   in   [4],  where  biasing  the  diode  requires 
bonding a wire to the anode, in this configuration DC 
bias is easily provided through a low pass filter 
printed as part of the suspended stripline circuit. The 
evanescent mode section located immediately next to 
the diode presents an inductive load to the Gunn 
diode. Additional tuning screw is provided in the 
vicinity of the diode to facilitate the tuning. The 
output can be taken either through a K-type coaxial 
connector connected to the suspended stripline or 
through  a Ka-band  rectangular waveguide via a 
suspended   stripline   probe   transition.   The   latter 
arrangement is shown in Fig.3. 

*0 = JX0{ i) 

!_....     L      . — B-l 

V- ... ^ 
X0   SINK i L 

' .—rgrmr—i 

X     COIH il n 

Figure 1 Figure 2 

FiK i Length of the EMWG and equivalent circuit («-section) 
Fig~2 Length of the shorted end EMWG and equivalent circu.t (it- 

section) 

Oscillator Configuration 

As illustrated in Figure 3, the oscillator employs a 
suspended stripline terminated in an evanescent mode 
guide section. The evanescent mode guide is formed 
by simply extending the suspended stripline channel 
(without the substrate) with reduced dimensions. The 
dual Gunn-diode is shunt mounted in series 
configuration at the end of the suspended stripline so 
that the evanescent guide section presents an inductive 

—Low Pass Filter 

Tuning Screw ,  j - Matching Transformer   Probe Transition 

„ Inductive line 

| Dual Gunn diode location 
Fig.3 Layout of EMWG power combiner in suspended stripline 

configuration. 

Equivalent Circuit and Design 

Figure 4 shows the equivalent circuit of the oscillator. 
The circuit elements L„ C, and C2 constitute a n- 
equivalent circuit representation for the encapsulation 
of the diode. The diode is supported in the channel by 
means   of   a   brass-metallic   post.   This   post   is 
represented   by   a   T-network   composed   of   the 
capacitance  Cb   in   series   and  a  shunt  reactance 
consisting of the series combination of an inductance 
L, and a capacitance Cg. The capacitance due to tuning 
screw is represented as Cm. L is due to an inductive 
line printed as a part of the matching network.. The 
capacitive reactance due to C„ accounts for the phase 
variation of the field across the post in the direction of 
propagation, due to its finite diameter. 
The oscillator is designed at 35 GHz by considering 
the following main aspects: (i) accurate modeling of 
the resonant-region    taking     into    account    the- 
equivalent circuit of the dual-Gunn diode, admittance 
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due to the mount and the load presented by the 
evanescent mode waveguide (ii) computation of the 
overall impedance of the above network and 
establishing resonance condition (iii) arrangement for 
dc biasing the diode through a low pass filter and bias- 
suppresser (iv) the transition from suspended stripline 
to Ka-band output waveguide. 
The equivalent dual device impedance Yd (where Yd, 
and Yd2 corresponding to MDT-diodel & diode2) is a 
strong function of the frequency and DC bias current 
and a weak function of the RF current and 
temperature. The equivalent circuit admittance Yc is a 
function of only the frequency. The criteria for circuit- 
controlled steady-state oscillation are given by, 
Im (Yd +YC) = 0 and Re | (Yd) | > Re | (Ye) | , 
where Yc = Gc + j Bc , is the load admittance 
transferred to the equivalent dual diode plane. 

To son 
Line 

<>     cr 

fcf •:C, 
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Fig.4   Equivalent   circuit   of   power-combiner   EMWG   Gunn 

oscillator. 
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Fig. 5 Combiner power output as a function of bias voltage. 

Experimental Results 

The evanescent mode Power-Combiner Gunn 
oscillator as configured in Figure 5 is fabricated using 
two MDT diode (MG 1018-16) rated at 100 mW. 
Each diode and its resonant condition was tested 
individually and optimised maximum power at desired 
frequency. Two diodes were than stacked in a 
common EMWG and tested as a single resonant 
assembly. The operating current for the dual diode 
oscillator was 1.09 Amp. Biasing the diodes from 
separate power supplies or single power supply did 
not make significant difference in. the results. 
Different spacing between diodes were tested, but 

only small change in frequency and power was 
observed. The output is taken from a Ka-band 
waveguide via a suspended stripline probe transition. 
Figure 5 shows a graph of the measured output power 
versus the bias voltage. The oscillator offers more 
than 180 mW of power output at 20°C. With a variable 
short provided at one end of the output Ka-band 
waveguide the oscillator could be tuned over a 
frequency range of about 3.5 GHz around 35 GHz. 
For oscillator requiring coaxial output, this tuning is 
provided by the tuning screw in the evanescent guide. 

Conclusion 

A new configuration of a suspended stripline Ka-band 
power Combiner with two Gunn diode employing 
evanescent guide as part of the resonant circuit is 
reported. Further more the evanescent, mode 
combining concept may be extended to two to more 
diodes in suspended stripline configuration. The 
oscillator permits nearly 100 % combining efficiency, 
in addition to offering advantages in terms of low 
cost, ease of biasing, easy tunability over a bandwidth 
of about 3.5 GHz, small circuit losses and ease of 
integration with other planar components. 
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NUMERICAL ALGORITHM FOR THE DESIGN 
OF PLANE JUNCTION OF TWO WAVEGUIDES WITH ARBITRARY 

STEPPED BOUNDARIES OF CROSS-SECTIONS 

Anatoly A. Kirilenko 

Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 
12 Akad. Proskura St., Kharkov, 310085 Ukraine 

The usage of waveguides with nonstandard cross-sections or pieces of such waveguides as 
fragments of complicated diaphragms or frequency-selective surfaces is now a common 
practice in microwave engineering. Therefore the general key-building blocks that are oriented 
on arbitrary waveguide geometry, as well as the specialized key blocks for the fixed geometries 
are needed when developing the software for exact design of microwave devices. We shal 
discuss here the computation of the S-matrixes of a plane junction between two different 
waveguides with arbitrary stepped boundaries of cross-sections. H- and II-waveguides [1], T- 

and cross-shape waveguides, L-waveguides and waveguides having cross-section similar to the 
Jerusalem cross [2] are particular cases of such waveguides. In the absence of an exact 

specialized algorithm, the approach briefly outlined below can be used as a tentative tool of 
simulation of plane junction of two waveguides with nonstandard smooth cross-sectional 
boundaries approximated by the stepped contours [3]. The latter approach is useful, for 

example, for a rapid preliminary estimation of "what if?" ideas in the microwave design, before 
runnine more exact specialized algorithms. 
Let us describe the waveguide cross-sections S0 and S, as two sets of rectangular domains 
where two sides of each of the latter are metallized (see Fig.l). Similar division is common for 
the majority of conventional methods of such waveguide modal basis calculation based on the 
mode-matching technique or on the surface integral equation for the fields on the domain 
boundaries The used here form of the field expansions is oriented on the transverse resonance 
method where the above-mentioned domains can be treated as pieces of plane waveguides. 
Such an approach is the most convenient one within the frames of large modeling packages, 
where a set of various plane waveguide key-building blocks enables one to form rapidly the 
dispersion equations for the most complicated cross-sections. v Arbitrary      cross-section       or 

S, considered type can be completely 
characterized   with  the   aid   of 
geometry matrix 
Gm[0<j<Jm,0lk<3], where 

    j is the number of domain, Jm is 
Fig.l. Cross-sections of two connected waveguides the total number of domains, m is 
and their division into partial domains the number of waveguide.  The 

elements of the i-th line describe 

sequentially the abscissa of the left lower edge of the partial domain, the width of the 
corresponding waveguide, the ordinate of the left lower edge of the domain, and the length of 
the plane waveguide section. The single restriction imposed on the Gm-matrices is as follows: 
the cross-section of the i-st waveguide must be placed completely within the cross-section of 

■:y.- 
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the 0-th waveguide, as it is supposed to use the mode-matching method to find a required S- 
matrix. In the opposite case it is possible to implement a "zero-length virtual rectangular 
Waveguide    liäving til6 ClOsa-»CVUUii uuUnuov* uy  u*v<    wvu^mw    uajiuvuw U1 Uu» uxu..»»..». 

After that the problem is reduced to two standard ones and to the assembling the final 
geometry by the S-matrix technique. 

■JSSP' 

fin 

partial subdomain 
of overlapping 

Fig.2 Overlapping of cross-sections and partial sub- 
domain of overlapping of the 3-rd domain of the 0- 
th WG with the 1-st domain of the 1-st WG 

When calculating the coupling integrals 
we have to integrate the scalar products 
of two electric fields of eigenmodes that 
are  defined  sectionally at  a  set  of 
domains.    Therefore    an    additional 
preliminary step is required to determine 
the   set   of overlappings   among   all 
domains of S0 and Sx. This procedure 
consists  in  the  verification   of the 
systems of simple inequalities, defining 
the location of each domain of the ö-th 

  waveguide relatively each domain of 
the 7-st waveguide and fixing their overlapping. Such an operation produces a matrix 
CM0 < /' < 1,0 < k < 3] that characterizes the set of overlapping sub-domains. Here / is the 

ordered number of sub-domain, I < JÜJX is the total number of sub-domains. The elements of 
the /-th line define sequentially the numbers of corresponding overlapping domains of S0 and 

Su y
st and yfl" are the ordinates of the lower and upper boundaries of the /-th overlapping 

sub-domain, respectively. The problem of calculation of the matrix of coupling integral consists 
in summing up the partial integrals over the set of overlapping sub-domains according to the 
Ci?-matrix. Thus, for the c>"-th mode of the 0-th waveguide and the "s"-th mode of the 7-st 
waveguide we have the following coupling integral, where s(vi) denotes the k - th domain of 
cross-section Sv. 

JjU, H^=IS JJ k *k=EI W^sds 
sx V J *-o y=o 5(°.*)ns(u) V J *=o 7=0 <f(o,*)nS(u) 

Suppose now that the mode bases of both waveguides have been found and ordered by a set of 

transversal wave numbers- %^, where v=0,l and s=0,l,2,.. are the number of the waveguide 
and of the mode in this waveguide, respectively, and by corresponding set of vectors of the 

Fourier-amplitudes: cfcfi , b^ of the expansions of the Hertz vector within eachy'-th domain. 
Here we emphasize the standard character of sub-domain geometries (see Fig.2-metallized side 
walls and open or shortened upper and lower walls) and standard presentation of eigenmode 
fields. It becomes clear that this is a proper way to develop a generalized algorithm for the 
analysis of junction between two waveguides with stepped boundaries, based on a standard 
procedure of calculation of partial coupling integrals for arbitrary sub-domains. 
The latter have the form of the double sums and up to the constant determined by the chosen 
normalization of the eigenmodes, we have, for example, for the ZE-waves in both waveguides: 
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where, for example, 

y* 
Such an algorithm was first realized in a general form by V. I. Tkachenko, as a C++ code, and 
has been tLed for the plane junctions of rectangular, ridged and double-ndged wavegmde^ 
After developing a generalized algorithm of the search for the eigenmode bases of generalized 
waveguides with pLewise boundaries specified by their G-matnxes, we shall obtam an 
extremely powerful and versatile tool for high-precision microwave CAE. 

REFERENCES 

1   J Bornemann, F. Arndt, Modal S-matrix design of metal finned waveguide components 
'  and its application to transformers and filters, IEEE Trans, MTT,vof*™7'1992- 

2. J. A. Arndt, F. A. Pelow, Resonant-grid quasioptical diplexers, Bell System Tecnn. J., vol. 

3. A4Tförä9enko, M. V. Orlov, Approximating decomposition for the analysis of smooth 
inhomogeneities, J.Commun. Ttechn, Electronics (Engl. Transl), vol. 41, pp. 1028-1032, 

1991. 

Kharkov, Ukraine, VUth International Conference on Mathematical Methods in Electromagnetic Theory 



390 MMET'98 Proceedings 

NUMERICAL INVESTIGATION OF MULTIPLE RECTANGULAR APERTURE 
IRISES IN RECTANGULAR WAVEGUIDE 

L. P. Mos'pan, A. A. Kirilenko, V. I. Tkachenko 

Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 
12, Acad. Proskury St., Kharkov, 310085, Ukraine 

It is known that rectangular irises are conventional elements of microwave waveguide 
circuits. However application area of them is limited essentially by their low quality factor. 
Using multiple aperture irises makes it possible to design circuits with non-conventional 
features. For example, a design of easy manufactured bandpass filters based on multiple irises 
with four equal apertures was reported in [1]. Frequency response of multiple rectangular irises 
with different apertures was firstly studied in [2]. It appears that such irises have a bandstop 
feature but this attractive result has been obtained on the basis of approximate model. So, 
development of proper rigorous model is of particular interest. The purpose of this paper is to 

+ 
1                        1 + 

1 tb2 

a) b) 
Fig. 1 Multiple rectangular aperture iris 

develop rigorous numerical models of multiple rectangular irises with different apertures and to 
study their frequency response. 

The structure under consideration is shown in Fig. la. It represents itself a multiple iris 
placed in a rectangular waveguide. Iris cross-section contains arbitrary number of different 
rectangular apertures. Exact numerical model of the structure has been developed by solving a 
adequate discontinuity problem, that is N-fiircated double plane discontinuity. Solution of this 
problem was obtained by the mode-matching technique. S-matrix of multiple aperture iris was 
obtained from the S-matrix of discontinuity with the aid of the generalized scattering matrix 
technique. To examine the validity of developed model, irises with single, two and three 
apertures were studied numerically. Obtained numerical results were compared with numerical 
and experimental data cited in [1,2,3], and a good agreement between them was observed. 
Besides, the phenomenon of the relative convergence of obtained solution and the problem of 
choosing the optimal number of modes inside iris apertures were also studied to provide 
accurate results. 

As it was reported in [4], frequency response of a multiple iris with at least two 
different apertures has two resonances corresponding to the total transmission and one 
resonance corresponding to the total rejection. In order to reveal a mechanism of forming the 
latter resonance, numerical studies were carried out for the iris, whose cross-section is 
presented in Fig. lb. The iris cross-section contains three rectangular apertures located one 
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under another. Upper and bottom apertures have equal dimensions. The third aperture of 
different dimensions is located symmetrically between them. Numerical studies were earned 
IST.ZW nf threp-anemire irises placed in rectangular 22.86x10.16 mm2 waveguide 
wlthin^heTingle-mode frequency range. Scattering parameters of the irises were calculated 
Tccounm; for 100 to 120 H-modes and a proper number of E-modes in the circuit. A required 
number of E-modes was taken in such a manner that maximum transversal wave numbers of 
mod«Tand E-mode were equal. The number of H- and E-modes inside ins apertures were 
taken respectively to their cross section dimensions. „«„„„„, 

An effect of changing the dimensions of iris apertures on the ins frequency response 
has been numerically studied for the irises with different dimensions of ^ »P^ * » 
first example the iris with central aperture of 16.86 by 1.52 mm2 is considered. The height of 
ST^nd bottom apertures is 2.52 mm, whereas the width of them is changed from 7 m. 
to 22 mm Frequency responses versus tf-aA, for of this ins are presented in Fig. 2 for some 
valuesTafXhe above mentioned resonances are observed on the plots for the ins with 
Injure   wide dimensions of which are close to each other. While changing a2 m such a 
mler that a2 and a,  are close, the character of frequency response ^£*g* 
whereas the resonant frequencies of total rejection resonance and one of thetc«d*«^^ 
resonance are shifted. The band of rejection resonance is ch^fd e^sentf 11 f ^ 
frequency of the second total transmission resonance remains the same  As the^ second 
«Lie the iris with central aperture of 22.86x1.52 mm2 is considered. The width of the 
^ and bottom apertures a2 =19 mm whereas the height of the upper and bottom apertures 
bTchanged Frequency responses of the iris are presented in Fig. 3 for different values of b. 
It S the effJt of changing the height of upper and bottom apertures on the ins 
Lquetcy response is essentially less than the one of changing the wide dimension of them 

0,8      - 

Fig 2 Frequency response of three aperture iris for different values of bottom and upper apertures width a2 
although it 2 to sirrTar results. Changing the dimensions of the central aperture shows a 
St on the iris frequency response as changing the dimensions of upper and bottom 
^res        Similar resuhs were obtained for a five-aperture iris cross section of winch 
Sned two pairs of equal apertures, located symmetrically with respect to the central 

aPertUrAccording to obtained data, the lower resonant frequency corresponding to the total 
transmission resonance is determined mainly by the dimensions of the aperture having the 
ZZ rdth- the upper resonant frequency «»responding to the total transmission resonance 
rSdmÄr by the dimensions of the aperture having the smaller widtk Rejection 
resonances formed by "combining" the frequency responses of the ms apertures. By choosing 
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appropriate dimensions of the iris apertures (i.e. by playing with electromagnetic interaction of 
iris apertures), it is always possible to achieve high quality of rejection resonance (see Fig.4), 
which has the same nature as conventional rejection resonanse known before. Rejection 
resonance at a desired frequency with a required quality factor can be obtained easily by 
choosing proper dimensions of the iris apertures. So, it is obvious that the rejection filters 
based on the multiple rectangular aperture irises can be designed, and such filters are easy in 
manufacturing because of their simple geometry. 

QS>   0,51    0[52   QSS   a54   QS5   Q56   0,J7   Q5B   0,39   0,60 

K 

0,60     0,62    0,64     0,6S    0,68     0,70     0,72     0,74     076     0,78     0,80 

K 

Fig. 4 Transmission loss for two different three aperture irises 
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MAGNETIC FIELD FINDING IN THE SOURCE-REGION OF 
LONGITUDINAL SLOT IN A WAVEGUIDE FILLED WITH LAYERED 

DIELECTRIC 

Ludmila P. Yatsuk 

Kharkov State University, Svobody Sq.4., Kharkov, 310077 Ukraine, 
e-mail: Ludmila.P.Yatsuk@univer.kharkov.ua 

Abstract. The problem of finding the scattering matrix coefficients of longitudinal slot in a 
waveguide filled with a layered dielectric is under consideration. The difficulties of representa- 
tion of the field excited by a longitudinal magnetic current in the source region are discussed. 
The new way of this representation is proposed, ensuring convergence of the excitation solu- 

iTroduction There are different ways of an excitation problem solution for an arbitrary mag- 
netic current in a waveguide. The solving of this problem is necessary for obtaining the scat- 
tering matrix elements of slot inhomogeneity. The field is to be found in the region where a slot 
is located. In the case of a longitudinal slot the problem can be easily solved for an empty 
waveguide but not for the waveguide filled with a layered dielectric. The main reason of it con- 
sists of the impossibility to construct the Green's function for a vector potential when the me- 
dium in a waveguide is layered. The Green's function for a field and the eigenwaves method 
are followed with the solution which is not admissible for calculations. The essence of this 
problem and one of the ways of overcoming it are discussed in this papen 
The main part. Let us consider a waveguide filled with three-layered dielectric in parallel to 
the narrow walls of the waveguide. The permittivities of layers are slt s2, s3. The longitudi- 
nal slot of length L and width d is cut in the broad wall of the waveguide over one of the lay- 
ers The electric field es can be found from the magnetic field continuity condition on the slot 

surface. If we use the Galerkin method with en (n=l, 2, 3,...) as a basis set for finding es, it is 

necessary to find the field under the slot excited by the magnetic current Jm equivalent to en. 

In the case of an empty waveguide this field can be found with the aid of magnetic 
vector potential for which the Green's function is constructed using the set of the mdependent 
vector eigen functions of the waveguide cross section 

where 

|yvV°J,vx",*Y 
.   rmac .   nity 

\i/m =sin sin-—, 
a o 

rrnvc      nvy 
1   =cos cos- 

(1) 

(2) 

(3) 
a b  ' 

m,n =0,1,2,...; a,b are the dimensions of the broad and narrow waveguide wall, respectively. 

It was shown in [1] that the independence of the functions (1) is due to the fact that 

they originate from the full set of vector eigen functions L,M mdN introduced by Hansen 

[2] . The set (1) is available because the boundary conditions for L and M are the same. The 
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transverse eigen values for the eigen vectors are the same as well. All this enables one to unite 
all these functions under a common operation of summation and obtain the convergent series 
for the required field. This is valid for an infinite waveguide with a homogeneously filling. 

Another situation is taking place in the case of layered rilling of a waveguide. The 

boundary conditions for the functions L,M and N on the boundaries of adjacent layers of 
dielectric are different. Their eigen values are to be calculated from different dispersion equa- 
tions. So, the set (1) of independent transverse and longitudinal functions cannot be con- 
structed. It does not give an opportunity of traditional Green's function construction for the 
vector potential. As a consequence, the Green's function for a field or the eigen waves method 
(EWM) [3] is to be used in order to obtain the required field in the source region. 

There are two ways of Green's function construction depending on a choice of longitu- 
dinal direction: along the waveguide axis or normally to it (or to the boundaries of the adjacent 
layers). The first way was used in [4 - 6], the second in [7, 6]. When the source is a magnetic 
current, neither the first way-Green's function nor the eigen waves method yields a solution 
suitable for calculations. The structure of the solution obtained with EWM [3] is as follows: 

H(es)=^Cs(z)Hs +ZC_»ff_5 -z°- J? 
(4) 

Here H±s are the vector-functions representing magnetic field of the mode indicated with 

index s, C±s(z) are the amplitude coefficients depending on the coordinate z within the source 

region, z° is the unit vector along the z-axis, m is the frequency, \xa is the absolute magnetic 

permeability, J™ is the projection of the vector of volume magnetic current density on the z- 

axis. 
Volume density J™ is connected with the surface density J™ by the relation: 

JT = OM> (5) 

where S(j>) is the Dirac delta-function. 

It means that the third term in (4) is divergent, so are the first two sums. The same situation 
occurs when the first way-Green's functions for the field are used. Using the second way- 
Green's functions is equivalent to solving the non-homogeneous Maxwell equations from the 
very beginning with the aid of the Fourier integral. It requires an integration in the complex 
plane using the residue theory and results in very complicated expressions for the required 
field. 

The most compact expressions could be obtained if the third term in (4) is laid out in 
series and united somehow with the first two terms. But the problem in the proper choice of 
basis functions to be used in the expansion. In [1], it was shown that the additional term in (4) 
is exclusively due to the compulsory presence of potential functions in the expressions de- 
scribing the field inside the source region. This leads to conclusion that this term in (4) is to be 
expanded using only the potential basis. 

The potential eigen functions L are as follows: 
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I=V<p, 

where (p satisfies the equation 

A(py + k2Sj(?j =0, 

with j denoting the number of the dielectric layer, and boundary conditions 

dn 

Ö(p, 9q>y+i       , 

(6) 

(7) 

(8) 

(9) 
dn dnJ+1 

at the perfect metal, and at the boundaries of adjacent layers, respectively. 

Eauations (8) and (9) lead to the dispersion equations for determining the eigen values of the 
Kt!L of (7) gives the infinite set of orthogonal fimctions, which were used 

for the expansion of the extra term in (4). All three functions L, M and N have the same 

eigen values ^ along the narrow wall in the cross section. So three series in (4) can be united 

under the sign rf sum over the index n. The terms of this series are three sums over the eigen 

values obtained from three dispersion equations for L, M and N Junctions, or potential 
actions anc!TL and IE-waves. It was numerically shown that these terms converge to zero 

not worse than \/n2 . It means, that the series obtained is convergent. 

Conclusions. On the ground of investigations of this paper it is clear that the excitation prob- 
"a waveguide 4h layered dielectric excited with a magnetic current could be solved by 
S two method. One can either apply the Green's function technique to the normal direct on 
toTheboundaries of adjacent layers, or modify EWM expanding the extra term in terms of the 

potential vector eigen functions. 
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WAVEGUIDE SECTION OF SEQUENTIALLY INCLUDED IDENTICAL 
ELEMENTS 

V.B. Kazanskiy, V.V. Podlozny, V.V. Khardikov 

Chair of Theoretical Radiophysics, Kharkov State University, 310077, Kharkov, Ukraine 

ABSTRACT 
This paper presents a solution of the problem of symmetric wave diffraction on a set of 

identical periodical elements in circular waveguide. Each period includes elementary 
inhomogeneities such as ring, radial diaphragm or resistive film, and adjusting magnetodielectric 
spacers. Period can be equivalently characterized as a four-pole. Analytical formulas for the 
scattering coefficients are obtained by using the matrix polynomial theory. In these formulas, the 
indices of Mauguin polynomials depend on the number of identical elements in the waveguide. 

GEOMETRY AND METHOD OF SOLUTION 
The analyzed section of a circular waveguide consists of N identical elements with «period» L. 
The waveguide has radius a. Each of identical elements contains two magnetodielectric spacers. 
The spacers have different widths bj (bj + b2 =L) and are specified by permittivity e, and 
permeability Uy. There is a thin resistive film (RF) or a nondissipative anisotropic conductive film 
(D) of equivalent conductivity Yu between them. We suppose these elementary inhomogeneities 
do not transform the incident field. That is why we can describe the basis element (period) by a 
transfer matrix of an equivalent four-pole T(tjk). The filling material in the input and in output 
waveguides is characterized by the permittivities e0, sr  and permeabilities <x0, pT, respectively 

(Fig- 1). 
Either E0n - (s = e) or H0n - (s =: h) mode diffraction problem is considered with the 

expf-icot) time dependence. The amplitudes of the modes in the right direction of propagation are 
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Fig. 1. Waveguide inhomogeneities 
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denoted as Am and in the opposite direction as Bm. The amplitudes of propagating waves on the 
shadow border (between the Mh and (N+1)-th media) are related in such a way that: AN=aoAN+i, 
BN=boAN+i. The coefficients a0 and b0 depend on the filling material of the output waveguide 
{z<NL). For example, if er=ei, \LT= VI, then a0 =t11t b0 =t12. The relation between the amplitudes 
at the m -plane (z=mL+, m=1,2, ...,N-1) and the amplitudes at the borders of the section (z=0~) is: 

f A   \ 

\B0J 2^ 

Yo+Y,       ±(Y0-Y1) 
±{Y0-Y1)      Yo+Y, \BU 

A      ^    rr\t 
a0-d-A+1 

\b0AN+1 j 
(1) 

The upper sign in (1) corresponds to the H0n- mode and the lower sign corresponds to the E0n- 

mode     with     the     wave     admittances:      Yh: = ^SJ/HJ p - \y0n/
ka 4£JfXJ / J and 

Y; = Jej/Mj\! - {MO./^^JMJ)
2
 ] 1/z > respectively, where jU0„ and Von are the zeroes of 

the Bessel functions of zero and first order. 
Since the determinant |T|=7, the roots of the characteristic equation £ + £"' -X = 0, where 

X = t11+t22, satisfy the condition: %1 = %2   . This feature and the matrix polynomial theory [1] 

enable us to obtain: 

rpOT   _ hl"m       *m-1 t     P l12rm 

*21 "m ^22^m        "m-1 

(2) 

where Pm (x) = (%"' - %~m )/(<£ - £"') are the Mauguin polynomials [2]. These polynomials satisfy 

the recurrence formulas: Po=0, Pi=1, Pi=X, Pm=XPm-i-Pom-2- 
To   obtain   the   reflection   coefficient,    R = BQ/A0,   and   transmission   coefficient 

T = AN+l /A0 , the transfer matrix of the basis element must be determined. 

TRANSFER MATRIX OF A BASIS ELEMENT 

The corresponding periods / of a ring and radial diaphragms are significantly smaller than the 
wavelength X (se a Wit «1). Such a feature of the diaphragms allows considering them as 
nondissipative anisotropic conducting films. Two-side equivalent boundary conditions (EBC) are 
valid for them. In the local coordinate system (s is the parallel unit vector along the strip 
direction, r is the normal unit vector to the strip direction, z0 is the normal vector to the 

diaphragm plane), EBC take the form [3]: 

iY;Es = (s,[z0,#, -£25+iy^M,f -s2Ez2\ 

[r,[z0,H1-H2]j=iYp 
k OS 

(3) 

where     M=(//*+^/fo+^,      rp=ae(si+£2)In0.5(1-u),      Y^p=-(fn+^/(edIn0.5(1+u)), 
u = cos(nd/l) is the filling parameter. For a resistive film (Ya) we use resistive boundary 

conditions [4]: £tgl = Etg2; [%(#? -^j^XAt 
■%- 
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(4) 

Besides of these, a basis element includes the boundaries between half-infinite 
waveguides with the admittances YJ, YJ and regular sections with the propagation constants: 

he^ = [k*£~ju - Mon{yL)/a2 > j = 1>2. Application of these expressions yields a 

transfer matrix T for E0n - and H0„ - modes with the following elements: 

t„ =^rr{(Yi +Y2tYi + Y2 +Y:)*;*~MY2 -r,)fc -Y2 + YJ)^C
+

2\ 
4Y1Y2 

t12=±7^-{{Y2-Y1iY1+Y2+Y:)c-e-2 + (Y1+Y2iY1-Y2+Y:)e-c;\ 
4Y1Y2 

t21=±T^{(Y1+Y2iY1-Y2-Y:)c;e2 + (Y2-Y1iY1+Y2-Y:)c;Q+l 
4Y1Y2 

t22=-^{(Y2-Y1iY1-Y2-Y:)e^2 + (Y1+Y2iY1+Y2-Y:)^e^\ 
4Y^Y2 

where e± = exp(± ihfi). In (4), the upper sign corresponds to the H0„ -modes and the lower sign 

to the Efti -modes. The type of the excitation mode determines the values of wave admittances and 
propagation constants. In view of this reason we must choose also the wave admittances Yj and 
the propagation constants hj (j=1, 2). The admittance YJ characterizes an equivalent conductivity 

of the localized discontinuity. For a resistive film: YJ = Yj ~Ya. In the case of the ring 

diaphragm:    Yu
h=iY+,    YJ = iYJ,    and    of   the    radial    diaphragm:    Yu

h = iY~(l + /*), 

YJ = IT/ /(I + fe), where /'« = £ {£ }M/(kaf . 
If the admittance of the illuminated layer (Y0) is the same as the admittance of the input 

waveguide (YT), the formulas for the reflection (R=B1/A1) and transmission coefficients 
(T=AN+i/Ai) are quite simple: 

T = M^P^ -V2) +V«^r R = WVPN-I +b0{t22PN-1 -PN-ihT (5) 

Presented solution enables one to investigate (by choosing a0 and b0) both reflecting structures 
(YT->°o), and transparent structures. 

CONCLUSION 
Presented method is universal to any types of periodic waveguide structures, composition of their 
basis elements, or open or closed nature of transmission lines. 
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CALCULATION OF FULL-WAVE S-MATRICES OF MONOAXIALLY 
UNIFORM (2D) ELEMENTS IN RECTANGULAR WAVEGUIDES 

Tatyana Vasilyeva, Anatoly Kirilenko, Leonid Rud', Vladimir Tkachenko 

Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 
12 Acad. Proskura St., Kharkov, 310085 Ukraine 

Discontinuities that are uniform along one of the transversal axes form a wide class of 
conventional elements of rectangular waveguides: H- and £-plane bends and steps, H- and\E- 
plane tees and cross-junctions, different bifurcations, and so on. On the other hand, their 
mathematical models in the S-matrix form are often used in the calculation of more 
complicated discontinuities, in particular 3D ones. There is one more reason to consider such a 
class of elements in the calculation of full-wave S-matrices as a special group, but not as a 
particular case of corresponding 3D structures. The matter is that the 3D boundary-va ue 
problems for such structures may be reduced to a set of 2D ones. The investigation of the 
latter has a long history and there are sophisticated methods of such problems solving tha 
heavily take into account geometrical peculiarities and are much more efficient than general 
methods usually used for the analysis of 3D discontinuities. It is a well known fact that in the 
case of 2D structures the residue-calculus method is the most efficient one for the waveguide 
steps method of inversion of difference part of matrix operators is the for #-plane angled 

bends, standard mode-matching procedures are the best for 90° waveguide crosses, moment 
methods that take into account field singularities is well tailored for waveguide bifurcations, 

steps and other discontinuities, etc. 
In view of these reasons, in the development of modeling softwares based on the S-matnx 
technique, it makes sense to work out a special tool that produces full-wave ^-matrices of the 
structures of interest by using well-known algorithms for a solution of corresponding scalar 

problems. Let us define as {TMa } and {TEa }, a rectangular waveguide basis in terms of the 

modes of magnetic {TM) or electric (TE) type, the field of which is normal to the axis 
Oa(a = x,y,z), so that the total field can be expressed in terms of the corresponding 

E(H)a -component. In the case of iV-port, the structure of which is uniform along the Oy axis, 

modaTbasis of {?M'}, {TE*} type is related with {lM% {TE'} one by the following 

equations: 

{7M'} = -/ 
N„„ rnt 

"ryX b 
[TM

!
}+ -i 

kne N„m mn 

w0 klx1 

M-(«^&T. {TM
Z
}+ +*' 

N, 

*ny% 

nm    nn_£ {TE
Z
\ 

where C, is the propagation constant of a considered mode, k0 = a)yje0/i0, W0 - yjMo/eo > 

x = jWJ?l(n*lbf, K - Ifaf-W*)2'- N» is the n0rm °f M^'L mode 

defined relatively to the transversal electric field. 
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Denote the elements of the scattering matrix of considered 3D device as S£, = S^,.^^^ 

WWP /1=1?. AT k a nnrt number. We define the index «max as a maximum value of» along 
all», and mTx as maximum value of m for a fixed n in the z'-th port. To find S-matrix of N- 

"i 

port in a standard (7Mz}and \TE
Z
} modal basis, it is sufficient to calculate the following set 

of ^-matrices for corresponding 2D discontinuities (scalar boundary-value problems): 

Sef\lm™x ,l:m™x] with «=0,1,,... rT* (TMy
mn -modes, Dirichlet problem), 

ShJi\o.mm,x,0:mTx] with «=1,2.... w™"3 (7E^-modes,y=l,2...iV; Neumann problem). 

When solving the corresponding scalar boundary-value problems, the wave number k must be 
replaced by k   for each n. So, the time-consuming problem of full-wave ^-matrix calculation 

is reduced to the solving of 2nmax +1 simpler scalar problems. Having the set of matrices Sen 

and Sh„, one can find the resulting S-matrix in the [lMz] and {lEz} modal basis by the 

following algorithm. Firstly, if «; *■ nt for the given spatial uniformity of our TV-port, we have 

that 

S(TE
Z
 <-mz) = S(IM

Z
 <- TE

Z
) = s(mz <~ mz) = S(IM

Z
 <- TM

Z
) = O. 

Secondly, 

S(TE> *-TE2)}!   w      = 
K0£ N{Jl m.ff 

W0 p r(y) Z   ai 0   Kny%m,,n J 

N 

r] (       1 

V 

+ ;' 

ny A/ m-.jt 

Ai) 

\        m,,n > ) 

\ 

k2 r{i) 2 b 
nyA, m,,n 

nn Ai) 
h mj,n Shj;(mpm^ 

(        x ^ 
j    

l    nKA?) + / 
J 

N{i)    b 
"3 m,-,n 

J 

S(TMZ <c-TEzY 

f 

){nf>) 

N, (/) 
'"j-"    n n As) 

A   2 
k2 r(y) 

T m 

m„n    rnj7t 

p Jj)     ai   \ 
nnyA,nij ,n J   J 

SK{mpm) + i 
1    rmAj 

Nun  b 
As) 

,(m,,n) Similar expressions are valid for S(TEZ <- 7M*)(L. „^  and s(lMz <- TM*)*^ 

scattering matrix coefficients. 
With the aid of above described common scheme, algorithms for calculation of full wave S 
matrices for the rectangular waveguide discontinuities such as tee, symmetrical and 
nonsymmetrical one-side step, and bifurcation were worked out. Let us demonstrate the 
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efficiency of the proposed "scalarization" approach in the problems of a double-side step and a 
resonant diaphragm in rectangular waveguide that are shown m Fig. 1. 

(a) W 

Fig. 1. Structures analyzed by the "scalarization" approach 

The first structure (see Fig. la) is considered as a sequence of the E- and H-plane^one-side 

^SSÄ of coupling waveguide H> i^-«^^^^ 
wave S-matrix for each 2D step was performed by the "scalarization   approach^ (mode 
malctonique was used for calculating the set of 2D scalar steps), and then the 
ÄS technique was applied for 3D step. The last technique was applied *o to 
Size the resonant diaphragm as a junction of two double-side steps at the distance of * (see 
^)^XJ/*t»nad numerical data, the same 3D *^™£^ 
by8the well known mode-matching technique. The «f*?«?^ «J^* ^ 
in the Table for the case of a x b = 23 x 10 mm, a, x 6, = 15 x 0.5 mm, t - 1 mm. When using 
the proposed algorithm, the data are obtained by taking into account N, = 30 modes in the 
arger waveguides and N, = 10 in the smaller ones. As for the mode-matching technique, 
these   values   were   chosen   according   to   Mittra's   rule   and   they   were   equal   to 
N     6UN =*20 One can see that both results are in close agreement even at frequencies 
near'the resonant ones. However, direct using the mode-matching method to analyze the 
considered3EStructures requires CPU time that is tens times greater than the new approach. 

double-side step 

GHz 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11.0 
11.5 
12.0 

"scalarization 
approach 

Pn (ID 

1.0000 
1.0000 
1.0000 
1.0000 
0.0921 
0.8004 
0.8457 
0.8654 
0.8768 

agSfj :») 

-176.34 
-175.07 
-173.19 
-169.36 
-135.10 
179.89 
179.77 
179.71 
179.67 

mode-matching 
technique 

Pn -a« arf 

1.0000 
1.0000 
1.0000 
1.0000 
0.0837 
0.8002 
0.8455 
0.8653 
0.8766 

-176.33 
-176.06 
-173.17 
-169.31 
-139.13 
179.86 
179.76 
179.71 
179.67 

resonant diaphragm 
"scalarization 

approach 
|c(ii)| 
Pll I 

0.9655 
0.9270 
0.8389 
0.6172 
0.1377 
0.3947 
0.6858 
0.8162 
0.8797 

arf 

-164.64 
-157.67 
-146.68 
-127.73 

-97.49 
113.70 
133.79 
145.24 
152.18 

mode-matching 
technique 

tc(ii) Pn 

0.9645 
0.9247 
0.8330 
0.6022 
0.1130 
0.4109 
0.6924 
0.8190 
0.8810 

rf 

-164.42 
-157.32 
-146.06 
-126.64 

-96.07 
114.72 
134.32 
145.51 
152.33 
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ELECTROMAGNETIC ANALYSIS OF THE E-PLANE 
k TT TIT1 jT*t TT T-er-w vmvuAj-uiiJiL siHir 

V.A, Karlov 
Dept. of Radiophysics, Dniepropetrovsk University, 13 Naukovy St., Dniepropetrovsk 320625 
UKRAINE Tel: 28 0562 467995, Fax 7 0562 465523 E-mail: gany@rff.dsu.dp.ua 

Abstract'. Using the method of overlapping regions, an electromagnetic model of the 
rectangular resonance cavity in the E-plane is developed. Based on the theory of transmission 
iines, scattering matrixes of the single ports (of the steps in the E-plane) for the cavities of 
various lengths are calculated. The theoretical results thus obtained agree well with 
experimental data and can aid the design of a standards of the reflection and transmission 
coefficients. 

INTRODUCTION Parameter 
determination of the measurement standards of the reflection and transmission coefficients 
by numerical methods is a perspective tendency in the microwave metrology. The reflection 
coefficient of an E-plane waveguide step has a smooth frequency dependence. Such 
discontinuities are used as reference loads. 

ELECTROMAGNETIC MODEL OF THE WAVEGUIDE CAVITY 
hi the present paper electromagnetic calculation of a scattering matrix of   rectangular 
resonance cavity in the E-plane is made by means of the method of overlapping regions [1]. 
The configuration of the resonance cavity is shown in Fig. 1. 

-* a o 

region I 

A. 

», Z     ! 

region II 

H> a 

cf2   , 

o   ■ :t/2 

rr-i 

r2=1 

a) b) 
Fig. 1. (a) Rectangular resonance cavity in the E-plane. (b) The eigenports of 

the cavity. 

The protruding arm, region I, is a rectangular waveguide (of dimensions a and b, a being 
the broader dimension) which supports the dominant Hl0 mode only. Injunction the modal 

fields must be H-type only (i.e. having no electric field component Ex ) and their 
dependence from x takes the form sin nja(x + a/2). Regions I and II are the overlapping 
regions with boundaries: 

region I: 
a a 

— <x< — 
2 2 

— <y< — 
2 2 

—oo < z < 00 
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a a 
— sxs- 

2 2 

d .    .d 
— s vs — 

2    y    2 

c c 
— <z< — 
2 2 region 11: 

The system of integral equations for the regions 1 and Ü allowing to find   the Hx 

-magnetically field component of the LEXn -mode can be written as 

Hx(y,z)= \ 

-dA 

Gx{y,z,y',z') 
dH2(y',z<) 

W 

m2{y',z') 

b 
y=2 

w b 

dz' + a0(y,z); 

(1) 

/ L 

H2(y,z)= { 
-V. 

G2(y,z,y',z') 
dHx(y',z>) 

dz' 

dHx(y',z>) 

dz' 
z'=— 

2 
z'=— V 

dy' , 

where Gq - is a Greens function, a0(y,z) = exp(-?v) - is an incident field produced by the 

magnetic current jx. 

The system of integral equations ( 1 ) is reduced by the method of eigenfunctions to the 
simultaneous linear algebraic equations in the unknown scattering matrix elements Stj   of the 

rectangular resonance cavity (Fig. l,a). 

LOCALIZATION OF THE E - STEP 
Scattering matrixes of the single ports (of the steps in the E-plane) for the cavities of various 
lengths c have been calculated using the theory of transmission lines. The method of E-step 
localization is based on using the two eigenvalue of the cavity, conditions of the 
antisymmetry, and unitary E-step matrix. A correction of a reference plane of the eigenports 
(Fig. l,b) for finding the parameters of steps was made. The amendments (the distance t/2 on 
Fig l,b) to reference planes that provide independence of the modulus of the reflection 
coefficient of steps, when computing the parameters of cavities of various lengths, were 

found. 

NUMERICAL RESULTS AND DISCUSSIONS Fig    2 
depicts the dependence of the modulus (a) and phase (b) of the reflection coefficient of the E- 
plane for the various amendments t of the length cavity c. The dependencies are got when 
the cross-section waveguide is a x b = 28.5 x 6.3 mm, the cross-section cavity is a xd = 28.5 x 
12,6 mm, the excitation frequency F=8 GGz, the number of the taken into account higher- 
order modes N=15. Figure 2,a shows that \Su\=const=0305vAi&it=lJSZ22mm and the 

nonuniformity of the modulus and phase reflection coefficient for c=26.5mm is small. Fig. 3 
depicts the frequency dependence of the modulus of the reflection coefficient of the E-plane 
(a) and the amendments t (b). The capacitive component of the input reactance of the E- 
plane steps have been determined with the aid of the calculated amendments to reference 
planes of the cavity. The calculated parameters of the E-step capacitive component are in a 
good agreement with the data known from manuals [2]. 
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Fig. 2.    An reflection coefficient of the E-step as a function of the cavity size c. 
F=8GGz, d/b=2,  N=15;   l-/=0,    2-t=l mm,   3-f =1.78822mm,   4-/= 2.5 mm 

/S11/ 
t, mm 

-i | ' | r | i | , | 

.00 7.00 8.00 9.00 10.00 11.00 

F, GGz 
€.00 7.00 8.00 9.00 10.00 11.00 

F, GGz 

a) b) 
Fig. 3. The frequency dependence of the modulus of the reflection coefficient of the E- 

plane (a) and the amendments / (b). 

The obtained results can be used in the metrology of microwave range in the process  of 
designing a standards of the reflection and transmission coefficients. 
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OBJECT-ORIENTED APPROACH TO THE DEVELOPMENT 
OF SPECIALIZED AND GENERAL SOFTWARE FOR MICROWAVE 

CAE & CAD 

Vladimir Tkachenko 
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The oroblems of a computer-oriented research of microwave devices have become an independent field of 
Ir^liS mtcTowte SKw the last 20 years. Under the pressure of growing requirements for the generality 
ÄfdSXss thrive evolved from algorithmization of particular problem ^ons to creation o 

nuXTnäl^'belonging to the maker of microwave ^^%£»£%Z 
w formed on this way They represent two inner conflicting sides of the design process namely generality 
SS^iSdirecLf represents an attempt to embrace a wide range of design prtfcn.| »sing 
Sin«? « a rule very fast but not always rigorous algorithms. The cited above range of problems is wide 
ÄiÄ*i technique^ and variety of electromagnetic objects. The second direction 
JchSe^byZSge of rigorfus and exact models of electromagnetic level and it develop, m the fom 
iSSÄ^SiB whose functional specification is strongly tied to ^f y^-^cnption 
£riS of a Jdn elLromagnetic structure. As a result, the topology of the r^Jf^f^ 
PEmUd and in the design process it can be modified only by the principles determmed beforehand (the 
desien algorithm imposes the manipulation of the design object form). ..^ 
SiSSSaS to creation of the problem-oriented electromagnetic design systems by using spxial C 
S^TtamX^se was the development of a tool that would allow to hide behind the smeld of finished 
^ÄEC. of programming that are inevitable and often ^^^^^^ 
onelthat emerge in problems of wave scattering design processes. Let us ülustrateit by the followmg examp^ 
T?k ^fficuTt o picture a program package for the band pass filter synthesis without certain stages. They are 
IS^^^S^Z the boundary-value problems for the key elements, the ^thesis 
'SÄ^SSÄ^ofS parts !f the filter, as well as optimization of filter parameters taking into 

The°:Ä IcoSTobkms of correct memory allocation to the principal ones, such as relative convergence problem) 
S3S«tf merest into a privilege of only high-skilled professionals. In addition, taking into 
^nSttr—cturingofamore.,less «^1^W*~2«^ 

easily understand why the designers are so eager to §* a rnaximum unification of the f^^^ 
codel aimed at solving standard problems. This desire was the mam incentive for realization of our project The 
^S SoTö^rtimities [1] and the mechanism of heritage in the classes of the object-onented 
?«SSlSäl problem of interest. General structure «f the problem-onemed 
Lm^ L Rented as an aggregate of descriptors (S-matricss), a fence "«"gj^^ S 
rafcd techniques A program support was realized for the first two concepts in the SES-technologyJto 
SLlTSone hand the nSnum generality of research and from the other, an f^c^— 
offteStion process to the minimum time consumption (including buffering and many-di mensiomd 

of calculations we can create generators of applications of certain directions. A combined usage of the Sbb 
SoC and raized synthesis methods of devices with specified characteristics is shown below by the 
l™5rf^eTuency filter generator. It is of importance that the cited sets of classes realize such a design 
22n l^pSSy W single function can be replaced from altering the synthesis strategy m general 
ÄÄS of makingdecisions at any significant point of design. Fig. 1 outlmes a schematic 

diagram of an ^-section in-line type filter. 

Kharkov, Ukraine, Vllth International Conference on Mathematical Methods in Electromagnetic Theory 



406 MMET'98 Proceedings 

transformer 
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1 
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member 
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transformer 
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Fig. 1 

Let us name as a member of the filter a microwave two-port of arbitrary type that realizes one of the three 
characteristics, such as: a) required reflection coefficient at a fixed frequency, b) required quality, c) options a) 
and b) simultaneously. In particular, the variant c) realizes such characteristics as specified values of K- 
inventors or specified values of the coupling coefficient between two resonant cavities. Let us explain the 
implementation of the variant c) in the filter members, using the example of a filter with additional, non- 
consequent couplings. Let us assume that for a dual mode filter it is necessary to synthesize an input element 
that presents a rectangular diaphragm in the junction of rectangular and circular waveguides. Traditionally a 
specified input quality is demanded of this diaphragm. However the number of parameters of such a diaphragm 
(dimensions, shift and the tilt angle relative to the input rectangular waveguide) enables us to demand also the 
specified coupling between the waves of the vertical and horizontal polarizations. If this problem can be solved 
then for a two-section filter we can do away with three diaphragms instead of using five of them. 
The concept of transformer refers to a microwave two-port whose function consists in transmission between the 
input waveguide and the filter itself. Such a situation occurs, for instance, in the case of designing filters on the 
reduced cross-sections of rectangular or ridged waveguides. Fig. 2 shows the class hierarchy intended for the 
program realization of the filter member notion. The solid lines denote a direct heritage in the derived class of 
the basic class properties. The dotted lines show that in the upper-level class the objects belonging to the low- 
level class are made. The names of classes comprised in bold type frames denote their belonging to the library 
of SES-technology classes. Let us consider this diagram in more detail. 
Class Parameter represents a set of techniques for saving, archiving on a disk and connection with dialog 
windows in an interface variant of those structure parameters that do not change in the process of synthesis. 
Class Data performs the same functions for parameters under synthesis. 
Class Response is a container for saving and archiving the frequency characteristics of the filter members 
(return loss, insertion loss, total insertion loss, argument and some others). The objects of this class are 
beneficial while performing a comparative analysis of electromagnetic characteristics of different scatterers. 

Key Elements Diaphragms Cascade 

\             \            I 
MyMember 

t t              t 
MMember KMember QMember 

4 i >                             ♦ 

Member 

T     ' '    t__ 
 1 . 

ZeroHalf ZeroNswton Response 

Fig. 2. 
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can not be a^ted on Ae ™^le^ ^      ^ since in prototype classes the functions of 
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is the creation of one prototype using a prototype of some different kind. For instance, we may synthesize K- 
invertors for a band pass prototype, transform them into coupling coefficients and use the latter as an initial 
approximation while searching for parameters of non-consequent prototype in accordance with the resulting 

frequency response. 
Filter synthesis. It is initialized by an object of prototype class and is realized in three stages. First the filter 
members are synthesized then the section lengths are reconstructed for the case of a single-mode interaction of 
the filter members. This stage is individual for each of the five types of filters. The refinement of section 
lengths is provided for BPF in a multimode regime, as in the case of narrow band filters the fringing field 
interaction leads to a significant shift of the pass band. Our experience of designing different filters suggests 
that after the synthesis stage, the characteristics of an electromagnetic model can differ significantly from those 
required. This can be best appreciated for DMF, when the obtained configuration can not serve as an initial 
approximation for the following optimization. Therefore at the last stage the iterative refinement of filter 
parameters is carried out. Two schemes are realized here. First, we calculate the frequency response of the filter 
in the multimode regime, reconstruct a new specification for the filter synthesis, synthesize an intermediate 
prototype and start the synthesis process over again. Second, we calculate the frequency response of the filter in 
a multimode regime, reconstruct intermediate prototype by using the optimization method, correct the initial 
prototype with the aid of an intermediate one, and repeat the synthesis process over again. 
Filter optimization is initialized by the object of the prototype class. Several standard objective functions are 
realized, including, for instance, the function aimed at the minimization of the mismatch functional between 
the frequency responses of the electromagnetic and circuit theory models. If it is necessary, then each of them 
can be replaced by its own objective function. The filter optimization is based on repeated solving the direct 
problem at a non-predicted parameter state of filter members at specified frequency points. If therewith the 
optimization parameters do not change the geometry of key scatterers (for instance, in the £-plane strip 
diaphragm filter), then we can apply the Buffer class functions. The latter ensure a preliminary calculation and 
saving of the S-matrices of key elements (this, as a rule, presents a very time-consuming problem). From this 
point on the Filter class functions provide a very quick reconstruction of the filter frequency response. Class 
Interpolation ensures one more possibility for a radical acceleration of the calculation process. Its functions 
reconstruct the filter frequency response on the basis of approximation models of key scatterers (the many- 
dimensional polynomial interpolation of 5-matrices is used). 
The author greatly appreciates a valuable discussion on the subject of this communication with Profs. A A. 
Kirilenko and L. A. Rud'. 
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MODELING THE BEAM EXCITATION OF PLANAR 
WAVEGUIDE WITH RECTANGULAR IRREGULARITIES 

G.I. Zaginaylov, V.D. Dushkin, V. Korostyshevski, P.V. Turbin 
Dept. of Technical Physics, Kharkov State University, Svobody Sq. 4, Kharkov, Ukraine 

The problem of the beam interaction with irregular waveguide is of considerable inter- 
est for high-power microwave electronics. Since the waveguides used there have a diameter 
much greater then the operational wavelength, and the shape of irregularities is close to 
rectangular one, a plane model of a waveguide with the piecewise constant cross-section is 
quite reasonable. Due to the strong dependence of the output power and the operational 
frequency on the mode conversion effects caused by irregularities [1], it is very desirable 
to have an accurate and flexible mathematical model for their analysis. 

Figure 1: 

Consider a symmetric plane waveguide with m non-identical grooves of rectangular 
shape (see Fig. 1) driven by the relativistic electron beam, for which we shall use the 

simplest model: thin, magnetized, modulated current of given amplitude: I = (0,0,1*), 
Iz(x,z,t) = I0g(x)exp(ikz/ß - icot) where k = w/c, ß = V/c, d/dx\bag(x)] » k/27r, 
u) is the modulation frequency, V is the beam velocity, c is the velocity of light. The 
beam drives in the waveguide the fields of TM polarization (Ex,Hy,Ez). Finding them 
can be easily reduced to the following boundary-value problem (taking into account the 
symmetry of the problem with respect to the z-axis): 

d2    _&_    i 
(i) 

an 
(2) 

n= \J{D<x<D + hq, ag<z<bq}\J{Q<x<D,-oo<z<oo}, 

9=1 

S is the boundary of the waveguide, * = Hy, Ex = (l/ik)(d$/dz), Ez = -{l/ik)(&S>/dx+ 
(47r/c)4), a„ bq are the coordinates of the walls of the gth groove, hq is its depth. 
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We seek the solution of the value-boundary problem (1), (2) satisfying the radiation 
condition at z -> ±oo and Meixner's condition near geometric singularities in the form 

#+ + tf o, 0 < x < D, z G R /3x 
$-,   D<x<D + hq,   z£hq     ' 

where R = (-00,00) , Lg = (o„ 6,), q = 1, -,m, % is the partial solution of equation 
(1) with the boundary conditions {d^0/dx)\x=D = 0, *o|*=o = 0 that can be easily 
found in the explicit analytical form. We seek the function W+(x, z) in terms of Fourier 
integral, and ^~(x, z) in terms of Fourier series. Furthermore, demanding the continuity 
of the total field ^(x, z) and its ^-derivative at the intervals z Ghqix = D, and using the 
technique developed in [2-4] we derive the following basic equation on a set of intervals 

.   (4) J G(z - ()F(0d( + J[Vq(z -0 + *«(* + C - 2aq)]F(C)dC = 

exp(ikz/ß), z£hq, q — 1, ...,m, 

\t^0 Tn^lndq 27r_^       \{Q 
  m 

A(0 - J? - k\ ReA£ > 0, ImA£ < 0, 7^ = A(WM, L = (J L<*> 

*,(*) /i„ 

9=1 

f 1/2, n = 0 
I   1, n>0 F(2) = -dx~^D- 

In the limit of D —► 00, the kernel of (4) coincides with that obtained in [2-4]. However, 
for the fixed D, the integrand in G{x) can have a finite number of simple pole singularities 
on the contour of integration, and, consequently, the integral for G{x) does not exist in 
common sense. A proper representation for it can be obtained by introducing a weak 
absorption in whole space: k = k' + ik", 0 < k" « k'. This causes the shifts of the 
singularities from the integration contour into the complex plane of £. Then, deforming 
the contour of integration into the upper or lower half-plane of the complex variable £, 
we get a convenient analytical representation for G{x) : 

G(x) 
SI. ign(rc) 00   e»£»|x| 

D £ 
n=0 Cn 

(5) 

where fn = y/k2-Tr2(n + l/2)2/£>2, Re(£n) > 0, Im(£n) > 0. After this it is convenient 
to carry out a numerical analysis of (4) by the method of discrete singularities [2-4]. 
Alternative approaches such as the direct moment method or the Riemann-Hilbert Prob- 
lem technique, which are now used in computational electromagnetics appear to be less 
efficient in the considered case. 
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SOME FERRITE CONTROL COMPONENTS IN A SECTION OF CUT- 
OFF WAVEGUIDE 

F.M. Repa 

Radiotechnical Department 
National Technical University of Ukraine CCKPF' 

Ul. Politekhnicheskaya, 12, 252056, Kiev, Ukraine 
Telefax): 380-(044)-2418416 

A comparison analysis of electromagnetic structure - a constant cross-section of finite 
length cut-off waveguide (SCW) and stepped to reduce/increase of cross-section of cut-off 
waveguide in SCW (SRC) is expounded. 

An algorithm of design of the mentioned structures has been built. In the present paper, 
the results of a solution of the problem of coupling of rectangular waveguides through such 
structures are presented. 

By the mode matching technique applied for eigenfields at the waveguide junction 
boundary, the integral equation set has been converted into a matrix equation. Here we used a 
Galerkin variational method, whose solution determines the values of the tangential electric 
field in the openings. The convergence of the obtained solution to the exact one has been 
proved. 

Using such a design approach, the structures tunable by magnetic field: ferrite and 
ferrite-waveguide resonators in SCW and SRC are considered. 

A method is presented for calculating the elements of the scattering matrix, the 
absorption coefficients, the width of the passband, and the resonant frequency of a system 
consisting of ferrite and ferrite-waveguide resonators. Analytic relationships are derived and 
graphical dependences are obtained, which provide an engineering computation to be 
performed for various designs of ferrite films. 

The utilization of compound ferrite dielectric plates for the linearization of the field 
frequency characteristic is shown. 
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METHOD OF MEASURING 
ELECTROMAGNETIC CHARACTERISTICS OF MATERIALS 

Viktor! Naidenko, Sergey P. Kapustyansky, Alexander P. Prokopenko 

National Technical University of Ukraine "Kyiv Polytechnic Institute" 
37, prospect Peremogy, Kyiv-56, 252056, Ukraine 

Measuring electromagnetic characteristics of various media is a starting point in the 
development of many microwave technologies and instruments. This problem has been 
attracting a permanent attention [1]. One of the most simple and promising methods is the 
method of a partially filled waveguide with a shortened end [2]. 

In a waveguide having a shortened end, a homogeneous along certain direction sample 
is placed. Then the wave propagation along such a partially filled waveguide is measured. 
Provided that the detector used for measuring the field is a quadratic one, we can derive the 
equation: 

|£|2 = u{z) = A(ch2yz - cos 2ßz) (1) 
where A is the amplitude of the measured value, ^2%/K is the propagation constant of the 
waveguide mode, y is the mode attenuation constant. 

Recovering the sample material characteristics, such as 8' and s", or E' and tgd, is to 
be done based on the solution of the inverse electromagnetic problem [2]. 

A method of determining y from the measured distribution of (1) is known [2]. It is 
normally considered that determining ß does not present any problem. To find y, one has to 
determine the first point in the distribution (1), in which | E |2 equals to the value of | E12 in 
the first minimum. Further, by using the expansion of the function ch x in terms of the Taylor 
series and keeping only the first two terms, one finds the formula for y [2]. As experience 
shows, the accuracy of measuring s' and s" is far from desired, and sharply decreases with 
increasing y. So, the goal of the presented work is to provide a mathematical background to 
determination of ß and y, and hence s' and s". 

1. Usage of Further Minima and Refining the Method 

If y is small, then the first minimum is very shallow. Therefore the point of the 
minimum \E\

2
, is located very near to the shortened end. The field distribution near the 

shortened end is not accessible for measuring as it is severely disturbed by the probe. This 
inaccessible distance is not less than the depth of the probe insertion. The latter depth must be 
sufficient to have the detected signal higher than the level of noise and clutter. 

It is possible to remove these shortcomings of the method by using the second, third, 
etc., minima of (1). One can show that if« is the number of the minimum, then 

y = 2sm(2itZ>n)/(xJn2-4Zs
2„), (2) 

where £„ = znAw, zn is the distance from the shortened end to the first point where the value of 
the function (1) equals to that in the n-th minimum. If «=1 we obtain the result derived in [2]. 

One can make the range of validity of this method wider by taking into account the 
third term in the Taylor expansion. Then we arrive at   

Y = rjV6(Vl + 4sin22<(«2
+4^)/(3(«2-4^))-l)/(/72

+4^). (3> 

2. Smoothening Algorithm 
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If y is small, it is reasonable to integrate (1) with respect to z. Then we have 

UI(z)=]u(z)dz = A 1               1 
—shlyz sin 2ßz 
.2y 2ß     K. 

(4) 

Comparing (4) with (1), we can see that if y is small, then the first term is now |ty 
times greater than the second term. Besides, the curve has been smoothened. 
At the points of minima of the original curve (z=«V2), the second term is zero. Therefore 

UMJ^UMJ^shirrflJ/shiqyXj. (5) 
For «=2 and q=\, «=3 and <j=2, etc., one can derive a closed-form expression for y. 
Integrate (4) with respect to z. Then we have 

uAzHu&yk^ 1      ,2. 1 —sh2yz—-sin2ßz (6) 
■ir        ß 

Comparing (6) with (1), we can see that if y is small, then the first term is now ß/y2 

times greater than the second one. Besides, the curve has been smoothened once again. 
At the points of minima of the original curve (z=nlw/2), the second term is zero. Therefore 

pAnKiz)iu„{qKii)=sKwK)isK<r{K)- (7> 
For the mentioned values of n and q one can derive a closed-form expression for y. 
Combining (1) and (6) we obtain: 

2^(l + y2/ß2)ski2ßz = C/-4y2f//7. (8) 

At the points z=0.25Xw(2»-l), «=1,2,...  ß2 = 2Ay2/(u-4y2Un-2A) 
Combining (1), (4) and (6) we arrive at the following expression for the amplitude: 

A = 2y2(üU„ - Uf )/(tM 2yz - 2UIysh2yz + AUuy2ch2yz\ (9) 
So, the first part of the problem: determining ß and y by the results of measurements, 

has been solved. The second part: reconstruction of s' and e" by the obtained ß and 
yt requires a solution of the eigenvalue electromagnetic problem about the modes of a 
partially filled rectangular waveguide. The solution of this problem is obtained by the mode 
matching method. 

3. Solution of the Eigenvalue Problem 

As the symmetry plane of the structure, x=0, is the "electric 
wall", for the principle mode and y=0 is the "magnetic wall", we can 
consider only a quarter of the structure cross section (Fig. 1). It is 
divided into two partial regions: I (0<a:< d{) and II (di<x<a). In turn, 
region I consists of two subregions II and 1.2: the first is filled with a 
dielectric having relative dielectric permittivity su (0<y^/), the 
second with EI.2 (/^*) The field in a waveguide, partially filled with p}    j 
dielectric, is hybrid, therefore the solution in each partial region is 
presented as a sum of LE and LM modes. In each region, components of electromagnetic field 
are denoted through the ^-components of the potentials. As the given area is inhomogeneous 
in the ^-direction, expressions for magnetic and electric potentials in the first region are 
complicate: 

T 
A 

ii 

lljllll 1.2 

Ay = £ AnX sin( ynl*)vi4(y),        Fy = ££„ cos(ynlx)W
h

nM (10) 
ffl=0 «1=0 

where 
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vhM= cosxlwl/' YnXy)= 

.2    ...2 +ra 
Xlnl + Ynl *   EU>      %2nl 

sinx2»i 
.2     ,   1-2 

(»-/)' 

sinXim'' 
cosx2nl^-z) 

lcosx2„, (6-/)' 
,v2     ,r2_r.2 ~2    4.v2+r2 = i;2e Y2     + V2   + T* = &2£ 

+ Ynl+1      ~K  S1.2'      XlBl+rnl+1 Ä   fcU>      A2nl ^  I »2 ^ l "-& 1.2' 

T is the longitudinal constant of the propagation. Dependence on time and coordinate z in the 
form of exp[/(etf - Tz)] is omitted. 

The constants %i„, X2», Xi„> %» ^ derived from (10) and from the equations: 

'l.i -1.2 

For the second partial region: 

A. = lA2sinY,2(rf2-x)sin#,2(y),        F„ = X5.2cosYB2(rf2-x)cos/\2(y), (11) 
n2=0 

where^=f(«2 + l/2> 
s' 1 ! 

3 

2 
v»' 

1 i 
1.5    1.6    1.7 

Fig. 2 
ro» 

60- 
results for both the dispersion and the 
expansion amplitudes can be obtained by 
taking into account 20 terms (10 for LE ® 
modes and 10 for IM modes) in each 20 
region. The calculated dependence of s' on 0 

$b for l/b=0364 and </i/#=0.289 is shown in 
Fig. 2. 

-40 
4. Experimental Results 

The numerical integration was 
carried out by Sympson's method. The 
measured dependence (1), integrals (4) and 

n2=0 

Continuity of the tangential components of electric and 
magnetic fields at the boundary of the partial regions leads to a 
set of functional equations. Galerkin's method then is used to 
transform it into the matrix equation for Anl, B„\, An2, B„\. The 
wavenumbers of modes in the dielectric waveguide are obtained 
by solving the equation obtained by demanding the determinant 
to be zero. 

The results of computations have shown that the very 
accurate       ^ 

20 

-60 

0  100  200  300 400  500  600 700 800 z- "^ 

Fig. 3 
(6), amplitude A and the right-hand part (8) are shown in Fig. 3. 
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RESONANT SYSTEM OF SELECTION AND ABSORBTION OF 
WAVEGUIDE MODE 

O. V. Bondarenko, V. B. Kazanskiy 
Chair of Theoretical Radiophysics, Kharkov State University, 310077, Kharkov, Ukraine 

ABSTRACT: 

Nonsymmetric inhomogeneous lateral expansion of a plate-parallel waveguide containing 
dielectric layers, a resistive film, and a grating of metallic strips is studied. A propagation constant 
is found from two-sided equivalent boundary conditions, and scattering coefficients are obtained 
from the solution of diffraction problem with the method of moments. 

DISPERSION EQUATION SCATTERING COEFFICIENTS 

A lateral expansion of a plate-parallel waveguide with the length L contains dielectric 
layers with widths bj, permitivities e j, and permeabilities //, (j=1,2,3). There is a grating of 
closely spaced conducting strips with period / and gap width d at the boundary y=0 (0 <z <L), 

I \y 

-i 
&MyS^ 

*/        ■/ 

L    K 

Fig. 1. Geometry. Dispersion dependences, b]/l=20; b^/l- b^lS 

ss=l/X«l and a resistive film (RF) «ty = - b2. The whole structure is homogeneous along the ox 

axis (Fig.l). Ep- or Hp - mode with the propagation constant r0{phskl£oMo-(;!:P/biY is 

incident from the region z<0. The scattered field is found in the class of longitudinal waves 

characterized by electrical (s=e) or magnetic (s=A) vector potential [1]:  Ee=-roty0IJ
e, 

Hh=rotyon
h. 

Expansion of the field in terms of orthonormalized eigenfunctions @*v j (y) in the 
resonator can be presented in the form: 

n'j = ElCv exp(/y(v)z)+D; exp(-iy(v»]*;(y) (1) 
v=0 
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The propagation constant y(v) = ^k2Sjßj - k2
yJ(y) is found from the problem of 

propagation of waves. Its solution together with the two-side equivalent boundary conditions at 
the grating and RF [2,3] results in a dispersion equation relatively to y(v): 

ys 
L2  ■ (2) 

where Yg
h^,+fi2)/(^ln(l+u)/2), Ys

e=-^(e^e2)ln(l-u)/2, u=cos(iid/l), Yf = kyJ/k^, 

Ye -ks Ik Using the method of moments for the solution of diffraction problems, we get two 

independent systems of equations 

\Xl z 
XLcth 

Z'jh 

'iy0(m)L) 

,     2 ™Ysrs  [s i + l I 

' ±ll ■z 
=0    ■V^Om^On 

(3) 

where 

H2 
in 

J L^v WJ ^ is the normalization factor, the upper sign refers to Ep - modes and 
~{b2+b3) 

lower sign - to Hp - modes. Transformation coefficients of the exciting p - wave into n - wave in 
the reflected (RnP) and transmission (Tnp) fields can be obtained from the following formulas: 

K =+#;+& -*,')/2; T:p =exp{-iy0(n)4zs
n +^)/2 

Similar sets of the algebraic equations can be derived when solving the problems of 
diffraction of waves at homogeneous lateral waveguide expansion. (See, for example, [4] and 
bibliography there). A characteristic property of the presented solution is that the propagation 
constant y (v) of the relevant infinite waveguide depends on its substructure, grating parameter, 
and a resistive film (8). 

ANALYSIS OF SOLUTION 

If the structure is excited by Hp- modes, the scattered field consists only of superposition 
of guided modes (n>1). Under the excitation by Ep -modes quasi TEM - mode (n=0) exists as 
well. 

If we consider the frequency interval se«l, average values of s j , // j and filling 
parameter - 0.9 <u <0.9, equivalent conductivities satisfy inequalities \Yp \»1, \YP\«1. For 
this reason the grating does not practically influence the phase and amplitude-frequency 
characteristics of Ep - modes, but changes substantially the critical frequencies (£%) of Hp - 
modes. Even in the absence of the dissipative losses in filling media (Im £•_,• = Im/i j =0), the 
propagation constant in the expansion containing a resistive film has complex value. When its 
conductivity is small (TCT<7), the imaginary part of it is in the low frequency range: ee < <=ec, and 
the real part is in the high frequency range: as >ee c, and in good agreement with corresponding 
values at Ya=0. However, in the case under consideration, in low-frequency interval Reyhas small 
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Fig. 2 Frequency dependences of /R / b]/l=20; b2/l
z= &y7=5; L/l=4. 

value not equal to zero. That is why the gradient of the dispersion dependence is much less at the 
critical frequency (OB = ee c), than when RC is absent. Dispersion dependence of three layered 
structure (bi+b2+b3) wide with high conductivity of RC (Y(J»1) presents the properties of two- 
layered structure (Z>/+^) wide, since RC acts like a conducting surface. 

Scattering coefficients of Ep - modes for a homogeneous expansion do not practically 
depend on the grating filling parameter. Characteristic feature of the frequency dependence of 
\Roo\ (Fig. 3a) reflects the conditions of arising of new propagating modes and resonant regimes 
(n>l). Since the coupling between the resonator and the feeding waveguide for the Ep- modes is 
strong, then the level of their mutual transformations is high, and the resonances at trapped-mode 
oscillations have a low Q-factor. For Hp - modes, a resonant coupling is weak. Inserting a grating 
with a small filling parameter (u—0.99) changes abruptly the resonance frequencies and increases 
strongly the Q-factors of the trapped-mode resonances (up to 104). 

A resistive film does not practically change the resonance frequencies, but influences 
critically on the Q-factors of resonances as well as the level of the mutual transformations of the 
waves. 

CONCLUSION 
Considered model of a control device is a structural generalization of the known quasi- 

open waveguide systems. Presence of the local dissipative and polarization-sensitive elements in 
the resonant region opens away to new applications of these structures and substantially enlarges 
their functional opportunities. 
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Abstract. This article examines the physical basis of the superfast SIC components for 
Processing Spatially Modulated Electromagnetic Field Signals. The analysis of the main 
physical effects which are capable to influence on SIC components speed. The possibility of 
fulfillment of subpicosecond analog and digital operations for spatially modulated signals 
with the help of passive microstrip micron-sized components is conducted. The outcomes of 
subpicosecond switch simulation are discussed. The integration concept for such elements in 
SIC, constructed on principles of digital pceudo-holography is offered. 

Introduction. The denseness magnification of integration of SIC elements together with 
growth of their work action causes the growth of signals space complexity conditioned by 
electromagnetic interconnections. In [1] the special discrete characteristic of spatially 
modulated field - the topological scheme - was offered to use for the purposes of digital 
information input. The earlier developed theory (topological approach for boundary problems 
of an electrodynamics) has allowed to make a conclusion about a possibility of fulfillment for 
some logic operations with the help of passive (strip) components. The first device simulation 
outcomes which permits to switch it with subpicosecond speed in different stratums of the 
three-dimensional signal circuit depending on space topology, are considered in [2]. 

Physical analysis and theoretical results. The present article purpose is to research three 
main problems in this area: influence of solid-state effects in conductors and dielectrics on 
signals processing processes, creation of perspective subpicosecond element basis for digital 
processing of the spatially-modulated signals and problems of new elements integration in 
perspective SIC. 

The essential influence upon perspective elements performances have the physical effects in 
solid-states and diffractional phenomena on strip transmission line discontinuities in 
subpicosecond modes area of signals processing. By the outcomes, indicated in Table 1, of the 
analysis of various physical effects, on the basis of micron strip engineering the creation of 
unquantum circuit components with subpicosecond speed is possible. 

The digital components for processing spatially - modulate signals are constructed on the base 
of the usage of field topology for input, transfer and information processing. A typical signal 
of a similar kind can be a sequence of impulses even (logic 1) and odd (logic 0) modes in 
connected strip lines (Fig. 1, a, b). The number of logic operations above such signals 
manages to be realized without use of semiconducting elements with significant time delay. 
On Fig. 2, a, b the switch permitting to switch logic signals (impulses of even and odd modes 
of micron-sized coupled strip transmission lines) into different layers of the three-dimensional 
circuit is represented. In the equivalent scheme the final sizes of resistors and their parasitic 
reactivity was taken into account. The duration of transients for signal switching of a signal 
did not exceed several picosecond shares, and the delay it made was no more than 0,03 ps. 
The settlement energy costs to fulfill that operation have appeared on the order smaller, than 
for transistor analogs. 
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Application of the new super-high speed circuits. The article discusses the new VLSI 
concept taking into account the tendency to create three-dimensional circuits with superdense 
elements accommodation. The evaluations specify, that owing to electromagnetic 
interinfluences space frequency of signals fields in electronic IC may be compared to a bit 
density in the optical three-dimensional holograms. It is offered to design the perspective 
specialized electronic IC on the basis of simulation of the holographic effects in picosecond 
impulses frequency band with the usage of a similarity method. The principle of a field 
topological modulation will allow to use digital methods to realize holographic principles of 
construction for the new circuits. Thus, the number of processing signal operations is offered 
to be executed at the expense of superfast effects such as a diffraction of waves on strip 
components, and other necessary operations, for example, management of interconnections 
structure, switching of compared images frames, amplification and signals generation to 
realize with the help of semiconducting components. The given IC architecture and the 
principles of its work will allow to unite functional advantages of the electronic and optical 
circuits during spatially - modulated signals processing. This report will discuss the circuitry 

solutions from this area. 

Conclusion. Method and circuitry of superfast (subpicosecond logic processing of spatially 
(topologicallv) modulated signals by the passive strip components were considered. The 
evaluations of physical effects influencing on time processes of picosecond signals processing 
were indicated. The conclusion about a basic possibility of creation of strip circuits with 
subpicosecond speed was made. The outcomes about theoretical modeling of the topologically 
modulated signals switch were discussed. The new concept of superdense IC, constructed on 
the basis of holographic effects physical analog-digital modeling for the topologically 
modulated signals was developed. 

Table 1. Time scales of main physical effects in IC elements 

No Physical effect 

10. 

Limited mode velocity in microstrip transmission lines. 
Time delay of signal in a microstrip transmission line on the substrate with 
dielectric permittivity s: 

Inertia of interaction of electromagnetic field with free charge in the region 
of low values of photon energy- 
Maxwell relaxation time of charges in conductors: 
Collective effects in the electronic plasma. 
Period of plasma frequency in the conductors: 
Relaxation phenomenas in dielectric. 
Time constant of electronic polarization: 
Time constant of atomic polarization 
Minimal time of transition an electron from one energy level on the another 
in atom 
Typical theoretical time of electron relaxation in quantum nanoelements: 
Electron-phonone interaction. 
Resonant frequency in conductors: 
Transient-time effects on discontinuities of strip transmission lines of micron 
sizes. 
Time constant of transient process on discontinuities (Idealized Oliner 
model for discontinuities): 
Excitation of higher modes on discontinuities of microstrip transmission 
lines in VLSI. Cut-off frequency of the first higher mode: 

11.        Excitation of surface waves in micron microstrip transmission lines. Critical 
coupling frequency of the strip and surface modes:  

Time or frequency 
evaluation of an effect 

-33.3 Vs,fs///m 

Defined by efficient or 
free mass of charges 

0.001-0.01 fs 

-0,067- 0,2 fs 

~ 1 - 10 fs 
10-10000 fs 

~ 1 - 10 fs 
100-1000 fs 

-10 THz 

10 fs 

-10-100 THz 

10-100 THz 
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Fig. 3. 

Transient characteristics of the switch for topologically modulated signals. 
a) Output signal on the port II (logical 1 on the input I) 
b) Output signal on the port HI (logical 0 on the input I) 

R=18 Ohm, s=3.5, h=3 mm, Ze=84.32, Z047.85. 
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MODEL OF SIGNALS FOR DIGITAL ANTENNA ARRAY WITH 
MUTUAL COUPLING ON THE BASIS OF FACE-SPLITTING 

MATRISES PRODUCT 
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Kiev, Andruschenko Street, 4, e-mail: swadim@777.com.ua 

When considering the multicoordinate digital antenna arrays (DAA) with mutual 
coupling of channels there arises a problem of compact matrix record of the responses of 
reception channels. For the solution of the given problem it is proposed to operate with a 

special type of the product of matrices, named as "face-splitting" (a 0 b =  a^ -Bj ) and 

aij-ßj ), respectively, [1]. "transposed face-splitting" product (TFSP) (a ■ b = 

With the aid of TFSP it is possible to obtain the variant of analytical model of two- 
coordinate DAA with mutual coupling: 

U= (F <g>W)(QBV)-A, (1) 

where U is a block-vector of voltages of the responses of DAA channels, Q, V is the 
RxM matrix of the directivity characteristics of primary channels in azimuth and elevation 
angle planes, 

Q= 

Qi(xi)   Qi(x2) 

Q2(Xl)    Q2(x2) 
Qi(xM) 

Q2(XM) 

QROI)    QR(
X

2)    -    QROM). 

v= 

ViCyO    V!(y2) 
V2(yi)    V2(y2) 

Vi(yM) 

v2(yM) 

VR(yi)   VR(y2)   .»   VR(yM)_ 

QBV 

Qi(xi) 

Q2(xi) 

Vi(yi)' 

vR(yi). 
"v^yö" 

QR(XI) 

vR(yi) 

Qi(x2) 

! Q2(x2) 

Vi(y2)' 

vR(y2) 
V/Cy,)' 

QR(X2) 

vR(y2) 
F, W is the RxR matrix of mutual coupling, 

! Qi(xM) 

Q2(XM) 

VKyM) 

vR(yM)J 
v^yM) 

QR(XM) 

vR(yM). 

JVi(yM)' 

vR(yM) 
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1           F = 

" 1     F12    - 

F21      1     .» 

FIR" 

F2R , w= 

1 

w21 
* 
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1 
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A=[äj    ä2    •••   äM]   is the vector of complex amplitudes of signals of M sources. 

With the aid of identities [ 2 ]: 
(F ®W)(QBV) = (F-Q)B(W-V), 

one can obtain that 
U = P-A,whereP = (F-Q)B(W-V) (2) 

By using the method of maximum likelihood, an estimation of parameters of M sources 
of signals of two-coordinate DAA it is possible to be carried out, by a minimization of a 
functional not differing in form from that used in one-coordinate case. Indeed, it is possible to 
write down: 

L = {U-P-A}*{U-P-A} = min 

The measuring procedure in the wo-coordinate variant is reduced to the minimization of 
expression: 

L = tr[G-R],   where   G = P(P* P)"1 P*,   R = U-U*. 
With the account of (2), on the basis of matrix Neudecker derivative [3] an information 

fisher's block-matrix describing the accuracy of joint estimation of angular coordinates is 
obtained [4]: 

pT.p (A*®PT) 
tfP 

01 

(|)T,A.P) 
.01J 

■(AA*®1RR) 
ft_ 

ft 
where is the Neudecker derivative of the matrix P by the vector Y formed by unknown 

0i 
estimations of angular coordinates of M sources; IRR is the identity matrix of dimension R x 

R; <S> is the symbol of Kronecker-products of matrices. 
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TRANSFORMATIONS AND NONLINEAR OPERATIONS 
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Abstract. A unified structure for performing fast discrete orthogonal transformations 
like Fourier, Walsh, Haar, Cosine and Sine ones and nonlinear operations like scanning 
window data sorting for order statistic and L-filters is proposed and described. It permits to 
implement a wide class of techniques used in signal and image processing applications. 
Keywords: unified structure, fast transformations, nonlinear operations. 

1. Introduction 
Different discrete orthogonal transformations like Fourier, Walsh, Haar, Cosine and Sine 

ones as well as nonlinear operations, for example, scanning window data sorting are widely 
used for analysis of microwave device performance (antenna array pattern synthesis, control 
and investigation of noise influence [1] ), digital signal and image processing - linear and 
nonlinear filtering and enhancement [2,3]. This deals with several aspects. First, many linear 
filtering techniques can be more easily realized in the spectral domain [2]. Second, a lot of 
discrete orthogonal transforms have fast algorithms and they are characterized by very similar 
flow graphs [4]. Third, the data sorting operations used for many nonlinear filters - median, 
order statistic, L-filters, etc. - also have fast algorithms with flow graphs similar to those ones 
used for transformations. These obstacles run us into idea that a unified structure able to 
execute all these operations with switching only the mode of elementary node performance 
can be designed. 

2. Discrete Orthogonal Transform Families. Unified Representation 
A general class of linear orthogonal transform is the class the transform matrices, which 

can be presented in the following form: 
q q   N/rrl 

Hn= i^ffl^ = P0)tt[® V0*>P0>] (1) 
i=l i=l s=0 

where N= r„r„-i n is the order of the transform; n e{ri, rn} for i= n+1, q; V^ are 
(nxr;) matrices called spectral kernels and the symbol © denotes the direct sum of matrices 
[5]. Varying the number q, permutation matrices P(l), i=l, , q and spectral kernels V^\ 
which play the role of parameters in the unified representation (1), a large class G of 
orthogonal transforms can be formed. The common property of the transforms from G is 
possessing fast transform algorithms. It should be noted that different representations of the 
form 1) may exist for the same matrix, or equivalently, different sets of parameters may 
correspond to the same transform. The representation (1) is more convenient from the 
parallel implementation standpoint because it separates arithmetical operations 
(corresponding to direct sums) and data exchange operations (corresponding to permutation 
matrices) each from the other. One important property of orthogonal transforms from G is 
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that HEN e GOHE/SG, i.e. both inverse and direct transforms belong to the same class. 
This family includes such classical transforms as discrete Fourier, Walsh, Walsh-Hadamard 
(DFT, DWT, DWHT, respectively) ones as well as Haar, Cosine and Sine transforms. 

Among many useful properties of the unified parametric approach based on (1) let us 

mention the following: 
1. Representation (1) gives a unified approach to fast transform algorithms, thus, not a fixed 

transform but certain families of them can be implemented using unified, parametrically 
controlled (or programmable) fast sequential and parallel algorithms and architectures. 
This means the universality (or multifunctionality) and the flexibility of software and 
hardware tools designed according to this approach. 

2. The structure permits to consider the problem of searching the best (according to some 
features) transform while fixing some other features. Besides, hybrid transforms can be 
synthesized within the same framework. 

The unified structure of fast transform algorithms is presented in Fig.l in a generalized 
form The nodes of the flow graph (bold dots in Fig.l) are divided into q+1 levels, the l-th 
level representing the vector zr [5i10), A0"""]   , i=0, A- There are edges only 
between nodes of adjacent levels. The sets of edges nodes correspond to permutation 
matrices P(q), P(tH), , P(0). So the outputs of blocks P(q_1) (See Fig.l) represent the vector 
Zi'= P(q-1) x Zj. The blocks V^, i=0, q-1; s=0, , N/n-1, represent executions of the 
basic operations which are simple discrete linear transforms with non-identity matrices V M of 
smaller (compared to N) size r;. Therefore, computations of the i-th stage consists of: 
a) permutations of the components of Z according to P(<H); b) dividing the resulting vector 
Z;' into N/rq.i subvectors Zi;S'and c) implementation of the set of basic operations. So, two 
types of operations are performed in a fast algorithm. The first is called radix-r butterfly and 
the second is the permutation (or reordering) operation. It is worth saying that some 
preliminary operations, in particular data weighting [1] can be performed before 
transformation fulfilling. 
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Fig. 1. Generalized scheme of the unified structure 

3 Nonlinear Operations and Unified Structure. 
Let us consider now an enlarged model of the flow-graph in Fig.l allowing also some 

nonlinear transformations including complete sorting of input data. Formally, fast algorithm 
of the transform y=F(x) where x is a vector of N input samples and F(«) is some operator 
(linear or nonlinear) executed by the flowgraph consists of q stages. So when basic 
operations of (1) are nonlinear then the output of the flowgraph is a bank of N different stack 
filters Such filters have been called FFT-ordered L-filters [6]. 

In the simplest case of r=2 the basic operations are 
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V(l) = auU(l)+a1:2U(2) 
V(2)^a2,1U(l)+a2,2U(2) (2) 

for the linear case which is called "butterfly" and for the nonlinear case "compare and swap" 
operation 

V(l)=p(U(l), U(2)) 
V(2) = p(U(l), U(2)) (3) 

where p is min or max operator and p* is max or min operator, respectively. 
It is known that L-filters involve many known ones as subclasses: median, a-trimmed, 

min/max filters, for many weighted order statistic ones the L-filter with very close properties 
can be found. Moreover, sigma and K-nearest neighbor filter can be interpreted as L-filters 
with temporarily or spatially varying parameters. This makes possible to apply the proposed 
unified structure for implementation of different adaptive filtering procedures both with 
generally converging adaptation [7] and local one [8]. It is expedient from the standpoint 
that among L-filters almost always exists one being optimal for suppression of noise with 
observed probability density function. 

Conclusions 
The unified structure and approach for performing a wide set of different fast 

transformations and nonlinear operations (filtering) is proposed. It is useful for many 
practical applications of microwave device synthesis and analysis, digital signal and image 
processing. The main advantage consists in the fact that the efficiencies of different 
transformations compared to each other and that one optimal for solving the task at hand 
can be selected or updated in adaptive manner. 
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In a linear approximation, a monochromatic impulse Iout{t) passed through diffusing 

medium can be given by 
i0Ut(t)=\G{t-tyin(ndt', (i) 

where Iin(t') is the initial impulse and G(t) is Green function. 

According to 
G(0 = T~- ftW exp(-rjt)dri, (2) 

in i J 

where T(r}) is the coherence function related to G(t) by the Fourier transformation, the 

problem of determining Green function G(t) is equal to that of determining F(T]) . 
Ishimaru [1] studied the coherence function and the time behavior of an impulse radiated 

by plane the z = 0 and detected at the distance z = L at the point r = 0. He did not include the 
dissipative attenuation into his approximation. This paper is an attempt to extend the 
Ishimaru's model by taking this effect into consideration. To do it, let us study an extension of 
the Ishimaru equation taking account of the dissipative properties of the medium 

(3) ^ + ^~r + an(z)^ + b(z)vAnz,r;V) = 0 
. dz    2 or ox J 

with the initial condition r(0,r;7/) = l. In this equation, a, = njlck1; b = p(z)crpk
2/4ap , 

where v is the attenuation coefficient, k is the wave number of EM radiation, c is the 
velocity of light, p{z) is the concentration of the scatterers; op is the scattering cross-section; 

a   is the angular coefficient of scattering which is approximately equal to the ration of the 

scatterers diameter D to the EM wave length A [1,2]. 
Within the random paths model, an output impulse can be represented as a superposition of 

subimpulses which arrive at the detection point along different paths due to the scattering. In 
this case, the EM impulses propagation can be considered a diffusion stochastic process. This 
is the Ornstein-Uhlenbeck dissipative stochastic process which is the solution to the Langevin 
equation dr(z)/dz = vr(z) + u(z), where v is the attenuation and u(z) is the generating 

process. Here u{z) is "white noise" [3]. 
The solution to equation (3) can be written as a path integral over every path starting at the 

points {r0} of the plane z = 0 and finishing at the detection point of (z = L,rL= 0) 

r(z,r,77)= |a'2r0(z = 0,r0|exp - \\r(zf dz |z = Z,0). 
v     0 ' 

The correlator Kn(z,z') of the process r(z) is the following: 

(4) 
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Kn(z,z') = g{z)t]exp(- v\z- z'\), g(z) = 8vca„ (5) 

The required function T(z,r, rj) has the form of 

T{z,r; tj) = exp(-vZ)n(l - 7/&)_1, (6) 
*=i 

where {4} is the set of the eigenvalues corresponding to the set of the solutions |/A(z)} of 
the integral equation 

L 

f{z)=\Kn(z,z')f{z')dz'. (7) 
0 

Solving the eigenvalue problem results in the following equation: 

T(Z = L,0;T]) = 
Oo + v%rL + v)exp(i?0i)- (/■„ - v)(rx - v)exp(-j?0/)' (8) 

where 
L  

r0=Vv2+2/7V£(0),      rL=^v2+2rjvg(L),      RQL = j^v2+2Tjyg(z)dz        (8a) 
o 

Equations (2) and (8) are the general solution of the problem. Let us underline some 
regularities of the found Green function G(t): 

a) all roots of (8) are simple; 
b) G(0)^0; 
c) function G(t) is exponentially damped as t -> oo; 
d) function G(t) has the only maximum and two inflection points. 

The above reveals the Laguerre property of the output time impulses. Quantitatively, those 
regularities can be expressed via low-order statistical moments of function G(t). 

Zero moment equals to 
(l)L=Qxp(-vL). (9) 

The higher moments we obtain considering G(t) a distribution density. Time reference 
point being t-Tx= L/c, the impulse center (its first moment) is as follows: 

/» A-1   oo L 

(t), =   JG(t)dt      \tG(t)dt = \g{z)dz. (10) 

The impulse width aL = ({t2)L - (t)2
LJ    is defined by its standard deviation. With (8), we 

obtain the following dependence of its mean-square width: 

2        g(0)g(L)( x     1 ) 
(11) 

If the initial impulse is crin wide, then the output impulse mean-square width is 

<Jm„=(cr?n+cr2
Ly

/2. 

We have carried out numerical experiments with (2) and (8) to check the found behavior of 
LAO ■In the experiments, there were two types of the density dependence p(z) in (5). The 
first dependence p\{z) = const and the other p2(z) was chosen of Gaussian kind. The results 
of the experiments are given in figures 1 and 2. In the figures, the curves are represented in 
arbitrary units with the calculation parameters being picked out to show qualitative results. 
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Figure 1 shows the evolution of the 
output impulse for p, with the 

following parameters:   v = 10~ tri 

o>=3.10 -
10 ™2 ■ m a„ :3-l(T2; 

t, mks 

p =104m 3. As one can see, Iout{t) 

steadily stretches as L increases. 
Figure 2 shows the results 

obtained for Gaussian-type density 
distribution p2 with the center at 
L = 0.375 KM and the standard 
deviation of 0.1 km. All the 
calculation parameters are the same 
as in fig. 1 but v = 10~6m_1. In the 

Figure 1. Output time impulse evolution for uniform  figure, one can see that the impulse 
density distribution 

Figure   2.   Output   time   impulse   evolution   for 
Gaussian-type density distribution. 

shape tracks the chosen density p2 

parameters values. 
In particular, before the impulse 

runs into the scatterers, it keeps 8- 
like shape. The impulse noticeable 
stretching begins after it enters the 
central zone of the density 
distribution. 

Also, both figures show that the 
stretching is accompanied by the 
impulse energy decrease. 

In addition we have accomplished 
numerical experiments for different 
values of the parameters which 
influence the impulse shape, namely, 
the density distribution center location 

and standard deviation. All the impulse time dependences obtained in the conducted 
numerical experiments behave similar to Laguerre-type curves. 

Thus, we have shown that the approach utilized in Ishimarus's model to describe a time 
EM impulse shape behavior in homogeneous nondissipative scattering medium can be 
extended to inhomogeneous dissipative media. The model extension is based on Ornstein- 
Uhlenbeck dissipative stochastic process application. We have also found the explicit 
expression for the problem Green function. The time-dependent term of the found Green 
function is of Laguerre type for all the considered conditions. 
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SUCCESSIVE APPROACH AND NON-TRADITIONAL 
REGULARIZATION TO SPECTRAL PARAMETER ESTIMATION BY 
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Abstract: Particularities of stable least square spectral parameter estimation technique with 
successive growing model order and adaptive regularization are considered. Advantages of 
novel approach are displayed by results of numerical simulation of complex reflection coeffi- 
cient spectral analysis for the case of phase distortion due to signal propagation in waveguide. 

INTRODUCTION 
Spectral parameter estimation (SPE) methods are very powerful in various applications. The 
least square method (LSM) of SPE is more general and accurate but it consumes more com- 
puter resource. SPE methods can be used for layered structures, microwave component pa- 
rameter measurements [1-3]. Peculiarity of this approach is spectral analysis of frequency 
domain data. Exponential model is supposed to be relevant. Successive algorithm of LSM has 
allowed us to take into account multiple reflections in the data and estimate an order of expo- 
nential model. This approach provides non-traditional regularization in the case of phase dis- 
tortions and non-adequacy of model in the form of sum of exponentials. For example, the 
problems mentioned arise in experimental data processing by method [3] if the experimental 
data are obtained using waveguide with frequency dispersion and therefore phase distortion in 
the exponential model. All these facts induce splitting spectral components but the proposed 
non-traditional regularization overcomes this situation. 

BASIC CONCEPTION 
The method is based on searching the best values (minimum) of cost function (CF) p formed 
as square norm of difference between experimental RE and model RM discrete data 

RE~RM 
_1_ 

AT «=i 

M 
Äir («J - Z V exP(-MO 

!»=! 
(1) 

where N is number of frequency points of observation (measurement); ©n are frequencies of 
measurement; M is order of exponential model; rm and tm are parameters of exponential 
model. For arbitrary fixed 7m, minimizing p is equivalent to searching optimal projector P to 
space LM spanned by vectors em - [exp(-jcontm )]n=] N. Using NxM matrix Fu with columns 

em, we obtain optimal projector as P=FF+, where F1" is Moore-Penrose inverse matrix. Using 

Ffermitian and idempotent properties of P, cost function can be transformed to 

P= Rs\
3-ipB,PRE). (2) 
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Minimization of CF (2) is equivalent to maximization of   CF S - (RE , PRE) = \RS, RM), 

where model is equal RM = Ff (f is vector of amplitudes), and this cost function is equal to 
N 

^^IXKMMK)- 
n=l 

Expression for cost function (3) is given by 
M det# km 

(3) 

(4) 

where H=FiiF is Gram matrix in basis em, H^n is matrix H without row k and column m, Gk 

is Fourier transform (FT) of RE in point tk. For the most simple case M=l cost function is 

Sfa) = jG^I . Thus, the maximum of cost function (3) coincides with maximum of Fourier 

transform modulus. 

Successive algorithm is based on block structure of matrix HM (Gram matrix ofM-th model 
order). For the M-th model order CF may be calculated recurrently using parameters esti- 
mated for the (M-l)-th order one according to 

\&Gj/dM, (5) PM =P, M-\ JM\ 

where AGM = GM-h^_xH^_xgM_x is time difference signal in point tu; dM = l-^ -H^ -\ M-\   "M-\ J 

G
M =\?MA) 

is value of FT in Point ^M; hM_} =[{eM,ek)]k=hM_]; gM_, is vector with sam- 
ples of time signal for h,t%,...,tM.\. Complex amplitude of the M-th component is equal to 
rM = AGM /dM . The process of model order increasing must be interrupted, taking into ac- 

count assumed noise level, QM-I and PM- The procedure discussed above permits the model 
order to be determined. This problem is very important for components situated closely. 

In the last case it is necessary to use a regularization to avoid computing problem. The tradi- 

with regularization pa- Rr-Fr + a\\r\\ 
2 "    "2 

tional Tikhonov's regularization in form  pa 

rameter a in induses following expressions in proposed algorithm 
dM =dM +a    ( forM=l: d?=l + a,  tff1" = 1/(1 + a) ) . (6) 

This regularization reduces standard deviation of the estimates. But it requires to determine 
optimal value of the regularization parameter a. The novel algorithm provides a non- 
traditional       regularization       by       introduction       of       regularization       parameter 

a pM_x - \AGM |2 jdM   in dM according to 

da
M=dM + aldM (forM=l: d° =l + a, lif =1/0 + «) )• (7) 

The regularization protects from splitting estimated parameters, what happens inevitably un- 
der conditions of Tikhonov's regularization. 

For the novel algorithm the model order is being increased successively. This mean protects 
from estimation of additional noise spectral components. This regularization protects partially 
from splitting of true components. If components are situated very closely, the amplitude rm 

of one of them will become approximately equal zero. 
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If two spectral peaks after FT are overlapping and forming single common peak, the follow- 
ing technique is used. After FT and estimation of single peak parameters the model data with 
estimated parameters are subtracted from frequency-domain signal. Parameters of two maxi- 
mum peaks of residue are used as initial guesses of optimization procedure. If amplitudes of 
latter peaks are lower than noise level the decision of presence of only single peak are taken. 

NUMERICAL SIMULATION RESULTS 
Testing the method was carried out for data those are corresponded to measurements of com- 
plex reflection coefficient of metal plates, located in distance 31 sm from reference plane (in 
frequency band 21+41 GHz, JV=101). This distance consists of rectangular waveguide with 
cross-section 7.2x3.4 mm and length 25 sm and 6 sm in free space. LSM method withM=2 
without regularization gives merge of estimated locations (h=t2) and significant growth of es- 
timated amplitudes (>i=38.6; r2=37.6). In this situation the traditional Tikhonov's regulariza- 
tion caused splitting estimated peaks (>i=0.5; r2=0.5). The novel regularization has given 
physically reasonable estimates of peaks amplitudes (ri=1.0; r2=0.0). 

Numerical research of the best value of regularization parameter in form (6) was carried out 
for case h=0.20, t2=0.25,fi=-l,fif=l, N=101 and unit amplitudes in presence of noise with 
standard deviation a=10"3. In absence of regularization (a=0) mean square error (MSE), de- 
fined as a sum of displacement and standard deviation, was 6. MO"3 (for generalized pencil- 
of-function method (GPOFM) [4] it was 7.9-10"3). Optimal value oc=10"5 has reduced MSE in 
almost 50 times. It was 1.7-10"4, thus the displacement of the estimates has decreased on 2 or- 
der, that shows necessity of use of a regularization in LSM to receive significant advantage 
above GPOFM. The mentioned researches were carried out for different levels of noise in the 
data. For G=8-10"

3
 without regularization (a=0) MSE was 6.0-10"2, for found optimal value 

a=1.5-10"4 it was 1.4-10*3. For o=l-10~4 "»+t"«>+ -— .i«~~.+:— (—n\ A^CT? „.„„ ^ n m-4 
found optimal value a=5-10   it was 2.1-10 

without regularization (oc=0) MSE was 6.0-10 , for 
-5 
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REALISABILITY. 
Konstantin E. Yushtin, Sergey N.Savenkov, 

Radiophysics deprt, Kiev Taras Shevchenko Univ., Vladimirskay 64, Kiev, 252017, Ukraine 
e-mail: sns@boy.rpd.univ.kiev.ua.. 

Abstract 
The one of the main aspect of the Mueller matrix measurement is the aspect of physical realisability of 

the Mueller matrix. Condition for the physical realisability of Mueller matrices is the transformation Pomcare 
sphere of the probing radiation to the Poinkare sphere of output radiation. In practice, it means, that 
polarization degree of output radiation must be in range from 0 to 1 for any polarization state of probing 
radiation But there can be the situation, when experimentally measured Mueller matrix may give us 
polarization degree of output radiation more than 1, so, unrealizable Stokes vector. Such Mueller matrix is 
called physically unrealizable. But, in practice, the availability of measurement error may cause situation, when 
experimental (properly measured) Mueller matrix of real object is physically unrealizable. Thus, conditions of 
physical realisability, taking into account Mueller matrix elements measurement error, are obtained. 

Introduction 
Methods, based on studying of changes of polarization state of electromagnetic radiation after reflection, 

scattering or transition through the object, are called polarization methods. Last time polarization methods 
played very important role in the studying and analysis of different anisotropy objects. The explanation of this 
is in the great increasing of information, taken about the investigating object. 

The electromagnetic radiation can be presented by the Stokes vector S. in the following form [1]: 

S = (I,Q,U,V)T ^ 
This presentation contains information about polarization state of electromagnetic radiation, including 

depolarization. Polarization degree of electromagnetic radiation can be calculated by next formulae[l] : 

JQ2+U2+V2~ (2) 
P= J  

where Q,U,VJ - are the component of output Stokes vector. 

For any possible electromagnetic radiation, polarization degree must be in range 0..1. If this condition 
doesn't fulfilled, then the Stokes vector is physically unrealizable. All physically realizable polarization state 

may be geometrically presented using equation of the sphere: 

x2+y2+z2<R2 (3) 

and point defined by there component (Q,U,V) of the Stokes vector must be in the sphere with radius 

I - it is condition for the physical realisability of the Stokes vector[2]. This sphere is called Poincare sphere of 

*^&1£ä^2L* radiation with the investigated object (interaction without change of 
radiation frequency), can be fully expressed by Mueller matrix 4x4 of real elements, which transforms Stokes 
vector of polSzaSn state of probing radiation into output Stokes vector of output electromagnetic rachaurn In 
case of linear interaction, Mueller matrix contains all possible information of anisotropy properties of the object 

l11' Mueller matrix formalism was suggested in 1948, but, for today, the question of physically ^ealkable 

Mueller matrix does not solved completely. There was some attempts to ^„°g™* *2J 
Mueller matrices, but there pays no attention to measurement error influence Wj..^: ^ ^ reason^ Am» 
one state of probing radiation, for polarization degree of output electromagnetic radiation is more than 1, then 

this Mueller matrix is physically unreliasible [1-4]. „Hiatinn i« 1 for all 
As example let us consider the ideal polarizator - polarization degree of output radiation is 1 for au 

polarization states of probing radiation. In case of measurement error presence, it is the typical situation when 
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after model probing of experimental Mueller matrix by folly polarized radiation we can obtain output 
polarization degree more than 1, so, this Mueller matrix must be physically unreliasible. 

This is only one evidence of imperfectence of definition physical unreliasability. So, the goal of this 
work is to present inequation, defining physically realizable objects and taking into account measurement error. 
Another task, which is solved in this work, is the estimation of the measurement error, with which 
experimentally obtained Mueller matrix is physically realizable. 

For all these purposes we have given correspondent analytical expressions 

Theory 
The one of the most exploited methods is the methods of the model probing. In this method, we analyze 

Mueller matrix by the virtual (mathematical) probing by radiation with any possible polarization states. This 
method may give us anizotropic characteristic of the object. The question of physical realisability of made 
measurements is also the question of correctness of the measurement method. For today, measurement error 
presence make it impossible to make conclusion about its physical reality. At present time, the simplest way is 
to say, that if there is a polarization state of probing radiation, for which output Stokes vector is physically 
unrealizable, then, this Mueller matrix is physically unreliasible [1-4] 

So, let us consider arbitrary Mueller matrix : 

M = 

M„   M„   M„   M 12 14 

M71   M„   M,,   M 21 22 23 24 

M„   M„   M„   M ■31 •32 33 34 

MA.   MM   M„   M 41 l42 43 44. 

(4) 

(5) 

We shall analyze output polarization degree, so we will use model probing by fully polarized radiation. 
It is known, that the Stokes vector of fully polarized electromagnetic radiation can expressed in the following 
form: 

1 

COS(2 • 9) • C0S(2 • s) 

sin(2-#)-cos(2-ff) 

sin(2 • e) 
where 0 is azimuth of ellipse polarization, e is the ellipsity of polarization state. 
It is obvious, that for some polarization state of probing radiation the measurement error influence may 

provide the polarization degree more than 1. And now the task is to calculate divergence of polarization degree, 
caused by the measurement error. 

We have found expressions for maximum output polarization degree independent of input polarization 
state. Considering it as the function of 16 variables, we have expanded it into Taylor series by measurement 
error and taken linear estimation. It is quite physically substantiated, because quadratic error dependence is 
neglectively less [5]. 

Let the measurement error of Mueller matrix element be 8, then we can write conditions for the 
physical realisability of the object in the following way: 

Z(^w +MkAf -(M„ +Muf <2K +MJ-S 
k=2 

4 
k=\ 

Z(
M

M -MkAf-{Mn -MM)2<XK, -MkA[8 

j^{MKl +MM)a -(Mn +MI3)
2 <2K +Mj[-8 

X(MW -Mw)2 -(Mn -Mnf <£KI -Mk,3[d (7) 
*=2 A=l 
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£(MM +MK2f -{Mn +Mnf<Y^K1 +Mka[S 
*=2 k=l 

t(W« -MK2? -(Mn -Mnf <XK -M**[s 

*=2 £=1 

2>w -Mw -M12 -M13 < i(|MM| + (Mw|).^ 
ifc=2 k=\ 

jjMta -MkA -M12 -M]4 <£(K2| + K.4M 
jfc=2 i=l 

M,2,«^,2,^^^ 

We can test the execution of inequalities (7) and make conclusion about its physical realisability, basing 
on the standard device measurement error. So, if Mueller matrix of the object satisfies this conditions then we 
have all reason to claim that it is physically realizable. 

From other hand, we can also find the least measurement error 8, for which conditions (7) are fulfilled, 
so, we can make estimation of Mueller matrix measurement error, basing on experimentally measured Mueller 
matrix. 

Conclusions 
For example, let's consider one simple example - experimentally measured Mueller matrix of the empty 

space: 

1 -0.0104 -0.0234 -0.0057 

0.0035  1.0123 0.0161 0.0015 

-0.0030 -0.0096 0.9879 -0.0049 

-0.0049 -0.0037 -0.0128 0.9995 

(8) 

It is evident, that this matrix is physically unrealizable by [1-4], but we have made proper measurement 
(!) [5-6], At the same time, the conditions (7) are fulfilled for standard device measurement error 8 - 0.03 . 
And this is typical error for our Mueller polarimeter, and this Mueller matrix is physically realizable with 
measurement error 8 > 0.015. 

So, we have presented inequations, characterizing physically realizable Mueller matrices, measured with 
measurement error 8. 

We can also estimate 9 measurement errors to fulfil each inequation from (7). The maximal of these 
measurement errors will be taken as a least measurement error, with which this Mueller matrix can be 
physically realizable. 
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1. Introduction 
In contemporary world the information presented in the form of image becomes more and more 

popular. Systems like Windows or WWW use this way of presentation for most applications. In the other hand, 
transmitting and storing huge files containing image data require enormous memory size and broadband 
communication. Thus, seeking new methods of image compression is still well appreciated. In the paper a new 
approach to image compression, using Wavelet and Kecewise-Linear Transforms is presented. 

2. The Transformations 
2.1. One-Dimensional Case 

For a discrete signal x(n), n - 0, 1, 2, ..., JV-1 any discrete transform, mapping the signal from the 
original domain to the transform domain can be given in the form of the generalised Fourier series [1,8,13,17]: 

Af-l 

*(") = ]>]<VPi(«) n = 0, 1,2,..., JV-1 (1) 
i=0 

where: 
Ci - coefficients of the expansion (spectrum); 
<Pi(n)     - set of the basis functions, constituting the transformation kernel. 

The expansion coefficients are defined by the following: 

JV-1 

n = 0, 1, 2,..., N-\ (2) 

where qt - normalising coefficients, depending on the type of transformation. 

The above equations define a pair of transformations: forward (2) and inverse (1). In order to obtain the 
required type of transformation, appropriate basis functions must be used in (1) and (2). Specific cases of the 
Wavelet and PWL Transforms are presented below. 

a) The Wavelet Transform 
The Discrete Wavelet Transform is defined according to (1) and (2), when the basis functions qy,(n) are 

chosen to be the discrete basis wavelets [3,4,7,10,15]: 

hiAn) = ao2 -h(a0 ' -n-k) 

where: / - scale coefficient, k - translation coefficient. 

(3) 

The discrete basis functions are scaled and translated versions of the basic wavelet, given by the following 
equation: 

«">-MT) (4) 
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The shape of the basic wavelet can be chosen dependently on the application. Among many proposed functions 
particularly the Daubechies wavelets are well appreciated, because of their fractal character and compact 
support.[3,4,15] . 
The normalising coefficient in (2) is constant and independent on the analysed signal. 

b) The The PWL periodic Walsh Piecewise-Linear) Transform is defined according to (1) and(2) with the 
basis functions chosen as the discrete PWL functions [5,6,12,13,14]: 

<pt(n) = PWLi(n) (5) 

where PWL,(h) - set of discrete PWL functions defined as the result of integrating the ^f^^tL*™ 
supplementing      th« 
PWLofn) = 1 .[13,14] 
supplementing      the       obtained      set of      functions       with       the       constant       function 

The normalising coefficients in (2) are given by (6): 
 1_ 

where k - index of PWL group, k = 1,2,..., lo&iV. 

(6) 

2.2. Two-Dimensional Case .       . . 
Expansion of the above transformations into two-dimensional case is derived straight from the one- 

dimensional case. The transforms described above are applied to rows and columns of the analysed two- 
dimensional signal, i.e. the image. Detailed description can be found in [13]. 

3. The ^m^*^^ ^^^ an ^ rf a ^ ^ ig first modelled ^ the compreSSi0n 

algorithm to generate some intermediate representation of image depending on the chosen method of 
compression. The attention has been concentrated on the step of modelling, where the two-stage transformation 
is used to generate the intermediate representation of the image. 

First the original image is wavelet transformed to obtain a pre-intermediate representation, consisting 
of four subimages (see Fig. lb), being the result of spatial low-pass and high-pass filtering. At this stage the 
zonal sampling is performed and only the low-pass filtered subimage is kept. 

a) b) C) 

Fig.1. Examples of a) original image, b) Wavelet Transform of the original, c) PWL Transform of the selected 
zone 

Second, the pre-compressed image is PWL transformed what produces the PWL spectrum of the 
former representation (see Figlc). Then the threshold compression is performed and the final intermediate 
representation of the image is obtained. . 

Reconstruction of the original image requires similar two-stage decompression process. First, the 
Inverse PWL Transform is calculated, and then the intermediate reconstruction is transformed by the Inverse 

Wavelet Transform. 
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4. Results of experiments 
The above compression algorithm has been applied to a set of typical test images. The distortion of the 

reconstructed image is measured in terms of classical criteria: mean square error (MSE) and Peak Signal-To- 
Noise-Ratio (PSNR), defined by (6) and (7), respectively. 

1 M-W-l 

^(^) = —--Y.lWJ)-7(ij)f 
M-N 1=0 j=0 

PSVR(/,/) = 10Iog,0- 
255' 

^ [dB] 
MSE(I,I) 

where: 

/, /       - original and reconstructed image, respectively; 

M,N    - number of rows and columns in the original and reconstructed image. 

Some results of application of the two-stage compression are presented in Fig.2. 

(6) 

(7) 

b) c) 

Fig.2. Two-stage compression versus various threshold values/?: a)/> = 0.01, b)p = 0.1, c)p = 1. 

On the base of subjective visual evaluation we can state that the results obtained for/7 = 0.01 and/> = 0.1 are 

acceptable. Significant distortion can be noticed for/? = 1. 

The comparison of compression results for different types of images is depicted in Fig. 3. 

a) MSE versus threshold value 

A k 
Threshold as a % of max spectrum value 

^ .37.397340 

CO 
-o Bridgek 

as "*■       30 
Fru\ 
-a 

OH Tools, 
k 20 

J8.9212 

b) PSNR versus threshold value 

10 

A k 
Threshold as a % of max spectrum value 

Fig. 3. a) MSE versus threshold value, b) PSNR versus threshold value 

We can state that both coefficients, as MSE and PSNR strongly depend on the type of image. They get better 
values for images containing few details (example: Tools) than for images with many details (example: 
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Bridge), In general, both MSB and PSINR are acceptable for threshold values not exceeding about 5% 

maximum value of the spectrum coefficients. 

4. Conclusions .     „   .•    ._,,_ t^- 0f transformations, which combine 

different methods of compression. During the first stage tne_ vvdv 

representation of the image, —»^iSÄi ^Ssing. M the second 
Thanks to the zonal compression scheme only tins sa^^^^Kessed w t£e threshold compression 
stage the PWL Transform gives the PWL f^T^^ TSSZVf^ scheme is effective, 

^Z.T^^^^lZt^^s 2SÄ redefining ^s of images 
SSÄ^^t^^^P^m remains the subject of further research. 
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Abstract: Six-port data processing on base of holographic technique with three reference signals 
and corresponding means of generalized residual formalizes regularization are discussed. 

INTRODUCTION 
Now traditional way of complex reflection and transmission coefficient determination is use of 
vector analyzer in form of six-port reflectometer or four-port reflectometer with different 
successive loads that are utilized as source of reference signals. The four-port reflectometer is an 
ordinary phase-meter with two summers, traditional realization of which is use of magic T. 
Usually simultaneous solution of three quadratic equations is searched. For non-linear problems, it 
is difficult to realize traditional ways of regularization. But both reflectometers realize holographic 
approach with three reference signals [1], thus special system of linear equation can be formed. 
This fact opens perspectives of the use of Tikhonov's regularization. 

In differ from the traditional approaches, six-port analyzer on base of E-plane cross-junction of 
standard rectangular waveguides has been developed [2], This device divides the input power in 
four approximately equal parts. Simultaneously it serves for summation of a signal under test with 
three reference signals obtained by dividing the input signal. 

Peculiarity of use of the cross-junction is an opportunity to evaluate scattering matrix elements with 
use of rigorous electrodynamic methods. The cross-junction has rather smooth frequency 
characteristics in whole work band of rectangular waveguide. 

HOLOGRAPHIC METHODS WITH THREE REFERENCE SIGNALS 
E-plane cross-junction of standard rectangular waveguides is used as the basic element of six-port 
analyzer [2]. The cross-junction is described with scattering matrix Sy. Using clockwise numbering 
of ports we assume that input port is port 1 then port 4 is port for attachment of standards and loads 
under test. The system transforms into ill-posed system by the use of port 3 to attach load. From 
symmetry of the device, S2\ = S4i = Su = Sn = S34 = S32 follows. Matched power meters are 
connected to ports 1,2,3. Directional detectors are used as matched power meters, which measure 
voltages £/i,2,3 proportional to corresponding powers Pi,2,3 in ports 1,2,3. Additionally directional 
detector for input power P0 measurement is connected to port 1. Multiple reflections between 
device under test and transducer was taken into account by new variable A4, which is bilinear 
transform of reflection coefficient A4 = TS4\ I (l-r&w) = A\+jA"4. 

According to the technique [1] of processing in the holography with three reference signals the 
following system of two linear equations have to be solved 

Ba = q, a = 4 
9u/2 

0) 

where B is matrix with elements Bi 1 = Re( S*miSm4) | Sn4 |2- Re( S\iSn4) | Sm4 \2,    B12 = 
= Im( SmlS*m4 )\Sn4\

2- Im( SnlS\4 )\Sm4\
2, B2l = Re( S*klSk4) | Si4 |2 -   Re( S\Su )\Sk4\ \ 

B22 = Im(SklS\4)\Si4\
2-  Im(SnS*H)\Sk4\

2. 
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Values 4W, which determine elements of the vector q, equals to 

<?mn = Om-P0m) | Sn4 | 2" (Pn 'POn ) I ^4 | (2) 

withpo = |&i|2 and/?i = |SLii|2 t/eoW / ( UciU0), where 5ui is equal to Sa + Si4SnTo/ (1-Snrc). T0 is 
a calibrating standard reflection coefficient, Uc0 and U0 are the voltages of input power under 
calibration and measurement correspondingly, U* and U-x are voltages being measured in cross- 
junction ports under calibration and measurement correspondingly. In differ from the scheme of 
processing [1] for our case it is necessary to multiply the first term in (2) on \Sn4\2, and the second 
term in (2) on \Sm4\2. 

REGULARIZATION PROCEDURE 
Holographic processing [1] replaces three quadratic equations to linear algebraic system. Thus, the 
standard Tikhonov's regularization [5] for linear system can be used 

(£T5 + a/)a = 5Tq. (3) 

Numerical experiment has shown, that the solution of (3) with a = 0 coincides with the solution 
obtained according to the method of radical center with accurate to calculation error. Principle of 
generalized discrepancy demands to estimate norm of difference of rigorous operator and its 
approximation. That is rather difficult. According the generalized discrepancy principle of 
regularization parameter depends on solution norm. We practically determined regularization 
parameter from best value for standard load with reflection coefficient that was approximately 
equal to reflection coefficient of load under test. 

Principle of generalized residual formalizes regularization parameter a searching as the root of 
equation 

||2fcB-q||2 = (5 + A||.lJaV, (4) 
where 5 is measure of error in q, h = \\B - BT\\, and BT is rigorous operator, p = inf ||£a - q || is 
measure of inconsistency. Values 5, h, \i can be determined by calibration procedure with three 
standard loads. It is very important that according to (5) a depends on value of A4, thus a is 
function of load reflection coefficient. 

Unfortunately A4 substantially depends from value of r. Variation of the phase of T from 0°to 360° 
with step 20° have showed that \A4\ has changed in ~ 2.5 times for |r|=l, in 1.5 times for |T|=0.5 and 
only in -1.2 and 1.09 times for |r| equal to 0.2 and 0.1 correspondingly. Thus, choosing a for 
standard loads with rather small RC allows us to determine optimal value, for large values of |r| the 
approach is failure. This fact explains that a optimal for |r|«0.2 have given accurate result for 
|r|«0.1 and vice versa. But utilization of a optimal for metallic plate has not been successful for 
sliding short circuit piston. 

CONCLUSIONS ,    ,   .       r,- i   u   ■ 
The traditional variants of six-port reflectometer has direct links T and solution of linear algebraic 
system therefore The proposed approach is more perspective in this case. 
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where ||x| = A",2 + x\ + x] + x] + x% + x6
2 + x] + x%. 

Tliis set (2.6) can be rewritten in the following form : 

Ax = ibrll • x 
(2.7) 

The analysis of this set shows, that this set has 8 solves, except trivial (zero Jones matrix). As the main 
matrix A is symmetrical, that's why there are only four independent solves. The steps in solving this set must 
be next: 
• determination of eigenvectors and eigenvalues of matrix A. 
• the selection of closest to 4*Mi i eigenvalue. 
• to normalize selected eigenvector equal on selected eigenvalue for taking xl.. x8, i.e, recalculated Jones 

matrix. 

Experimental examples. 
We presents examples of well known deterministic objects analysis: 

Object 
Experi- 
mental 

Empty Space 
1         -0.0104   -0.0234 -0.0057" 

Ideal linear polarizator 
1      0.774   0.632   -O.OOf 

Mueller 
matrix 

0.0035      1.0123 

-0.0030   -0.0096 

0.0161 

0.9879 

0.0015 

-0.0049 

0.778    0.61     0.50    -0.001 

0.593   0.468   0.382   -0.004 

-0.0049   -0.0037 -0.0128 0.9995 0.003    0.002   0.002        0 
Theoreti- 

cal Mueller 
matrix 

I   0 

0   1 

0   0" 

0   0 

1           oa<2^            sm(2-^       0 

OCB(2-6$      oc^(2-^      ccs(2-^-sm(2-^ 0 

0   0 1   0 sir(2-<$) oa<2^sffl(2-$      sin2(2-6)      0 

0   0 0   1 0              0                    0          0 

Theoreti- 
cal Jones 

"1 0" cos2 (2-0)         cos(2-0)-sin(2-<9)~ 
matrix 0 1 cos(2-0)-sin(2-0)         sin2 (2-0) 

Recalcu- 
lated Tones " 0.706 + i- 0.001 i- 0.001 "0.889-/'• 0.001   0.317 + z'-0.00f 

matrix -0.009 -i •0.( )03 0 .70? \-i 0.001_ 0.301 + /-0.001    0.107+ *'• 0.001 
As you can see, this method decreases the measurement error influence and exctracts deterministic part 

enough well. 

Conclusions 
We have developed new method of recalculation experimentally obtained Mueller matrix of determinis- 

tic object into correspondent Jones matrix. This gives us the possibilty to decrease measurement error influ- 
ence. 
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Abstract This paper discusses an approach to estimation of statistical characters**; of arising 
of modulation interferences. Statistical model of electromagnetic environment that enables 
u To solve this problem is proposed. Special attention is paid to determination of 
electromagnetic environment model in time and power. Illustrative numerical results are given. 
An algorithm based on the direct Monte-Carlo simulation is used. 

One of the important problems of electromagnetic compatibility (EMC) is forming a 
model of radio interfering influence on receiver. In this paper, we discuss some points in 
determination of model of electromagnetic (EM) environment. Special attention will be paid 
to studying the conditions in EM environment that lead to intennodulation (IM) interferences^ 

As the interfering influence on receiver is massive and random, it must be registered by 
means of the methods of probability theory and mathematical statistics. Therefore the statistical 

theory of EMC [1] offers a statistical model of EM environment. 
Consider a model of EMI as an n-dimensional system of random points. In this model we 

suppose that interfering signals are characterized by the set of random ^ P*™^ * 
(iS[l,...,n]), and hence can be estimated by means of the n-dimensional probability density 

function (PDF), o(Xi,X2,...,Xn). 
In the case of statistical independence of EMI parameters: 

o(X1,X2,...,Xn)=    n<D(Xi),   XieDXi, 

where DX are the ranges of radio interference (RI) parameters X, o(XD are one-dimensional 

PDF^^dP
erto

mhtvrintermodulation interferences arrived it is necessary to satisfy certain 

conditions: 
1) coincidence of RIs in time domain; 
2) fulfilling the frequency conditions of IM; 
3) sum of RI's power forming M interference must exceed the threshold level of 

intermodulation Pirn . 
XPi>Pim. vU 
i 

So we are especially interested in the PDFs of RI in time t, frequency f, power P. 
Suppose that EMI is formed, in general, by N different RI sources. A first approximation 

to characterize the performance of these sources in time domain is a stochastic process without 
after-effect [2] known as Poisson process. Time interval x between two occurrences of 

interfering signals has PDF given by 
Oj(x)=^exp(-^T) 
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where Aj is the intensity of the Poisson law, Aj=Nj'/To, where N/ is the number of 
occurrences in observation period T0, j=l,...,N. As for PDF of RI duration co(T), it can be 
improved separately. 

By using the methods presented in [3] we can estimate the coincidence probability of 2, 
3,...,k RIs and the mean duration of pulses of coincidence process, that is a measure of after- 
effect in the integral process O(T). 

As for PDF of radio interferences in the frequency domain, co(f), we suppose RI sources 
to be uniformly distributed, so that 

o(f)=l/Df, 
and RI spectrum width is 

Af=k/T,    k>l, 
where T is the RI duration. 

To determine an opportunity to satisfy the condition (1), PDF of RI power o(P) is to be 
considered. Different approaches to o(P) determining are available. In [1], for example, a class 
of hyperbolic distribution functions is proposed. RI power has PDF as 

o(P)=ßPm,    P0<P<Pmäx, 
where ß is a normalization factor, m is the distribution parameter, m>0, P0 is the receiver 
threshold level. The amplitude range D=Pmax/P0 of interfering power and the ratio Dim=Pim/ 
Po are important parameters of EM environment as well. 

In order to estimate an opportunity to satisfy the condition (1), we define the probability 
P that the power of a single RI exceeds the threshold level of intermodulation, Pirn. This 
probability is determined as 

Pmax 
P=    J   ßP~mdP. 

Pirn 

Some numerical results are shown in Figs. 1 and 2. Dependences of probability P were 
investigated for the following set of EM environment parameters D: D=1E6, D=1E7, D=1E8, 
D=1E9, D=1E10, D=1E11, D=1E12 

1E-1 

1E-2 

1E-3 

1E-4 _ 

Dim=lE5 

m=1.25 

m=1.5 

1E-5 

1E-6 

m=1.75 

m=2 

j L 

6      1       8       9      10      11  lgD 

Fig. 1. 
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In Fig. 1 we show the probability P of exceeding the single interference threshold level Pirn 

versus D, with PDF o(P) parameter m=1.25, 1.5,1.75,2. 
As can be concluded, P is a decreasing function of m. This can be explained by the 

increasement of the mean of RI power in accordance with decreasement of m. This dependence 

was obtained when Dim was equal to 1E5. 
Dependences of the probability P on EM environment parameters Dim and D are shown 

in Fig. 2. EM environment parameter m is equal to 1.5. Dependences of P on EM parameter 

Dim do not need any special comments. 

p  1  1          1 

m=1.5 

i           i 

Diffl=lE3 

1E-2 

Dim=lE4 

Dim=lE5 

IE-3 i           1           i           1          1. 

8       9 

Fig. 2 

10      11   lgD 

In this work, the dependence of the probability P for the different EM environment 

parameters: m, D, Dim has been investigated. 
It is known that probability of arising of M interference formed by more than 5 RI 

signals is negligibly small. In this research, by using the Monte-Carlo method, it was shown 
that under conditions of increasing the number of interfering signals from 1 to 5, the probability 

P increases proportionally. 
The method proposed in this paper enables us to set the concrete values of RI 

parameters K D, Dim and the number of RI sources to estimate the probability weights of IM 

interferences formed by 1, 2,..., k interfering signals. 
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INTRODUCTION 
Development of the videopulse subsurface scanning systems is task of the modern radio-physics and is 

investigated by many authors. The videopulse (ultrawideband) scanning systems usually produce data that are 
hard to interpret. This implies a necessity of developing the efficient data processing algorithms. Very efficient 
ones can be obtained on the basis of the synthetic aperture method (SAM). The SAM was initially created for 
the Side Looking Radars in remote sensing data processing but can also be applied to the subsurface scanning 
data [1]. The SAM algorithm can be divided on two stages: the inverse-matched filtering of the reflected by the 
medium signal and the spatial convolution of the set of returned signals. The first stage, where the time deriva- 
tive of the signal illuminated is used as reference function, is aimed to the sharpening the echo-returns and thus 
to increasing the vertical resolution. The second stage is aimed to the convolution of the hyperbola-like reflec- 
tion of buried objects and thus to increasing the horizontal resolution. 

However the natural media which are to be investigated have a considerable value of conductivity, so 
they change the shape of the signals propagating through them. This is the reason why the efficiency of the 
classical SAM algorithm application to such media is rather limited. Another problem connected with the SAM 
algorithm application is the quick growth of the computational time needed to provide a spatial convolution of 
the massive set of the echo-returns. In this paper we represent two methods which enable one: 

1. to consider the scanning signal shape distortion in media using the a-priory information about the 
medium under investigation; 

2. to shorten the computation time about 3 times during the convolution of the echo-returns set. 

PROBLEM STATEMENT 
The results of the ultrawideband subsurface radar system work usually are implemented as a set of the 

echo-returns {v(xr,t)}?=l,t e[O;0] (0 is the total recording time) which characterize the subsurface 

structure in the rectangular area which is defined by the length of the scanning route and 0 . They are imple- 

mented as a matrix N x M, where N is the quantity of the time samples in each realization and M is the 
quantity of the realizations on the route. The classical SAM supposes that connection between the signals re- 
ceived at the point (xR,0) and transmitted at the point (xR +L,0) = (xT,0) is established as follows: 

v{xR,t) = J—\ £^L±Ilf.p(Xt2)e-a(LT+LR)uV_LL±LR_ 
2nV k   (LTLRf V (1) 

where V is the velocity in the medium, T is the object contour, p{x,z) is the complex reflectance amplitude, 

xr is the point at the route, LT = -j(x -xTf+z2, LR = ^(x-xRf + z2 are the distances between the anten- 

nas and the contour point, a is the attenuation constant. The relation (1) corresponds to the Fresnel-Kirchhgoff 
diffraction theory. 

The data processing using SAM is reduced to the applying to the v(xr,t) an inverse-matched filter 
with the transfer function: 

/ 

#i(/) = 
Vi*(f) ■ jT Cjcoslnfii (2) 

l->7 + #l(/)|2    ,= 1 

where / is the frequency, 0 < rj < 1, {Cf}{, {*,■}/ are the sets of the predefined parameters, * means the complex 

conjunction, and Vx{f) is the spectrum of the time derivative of the radiated signal. Then the spatial convolu- 
tion of the echo-returns set is provided by: 

{ V (LTLR)2 (3) 
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Here Ais the implementation of the route, w(x,t) is the output of the filter defined by (2), b{x,z) is the so- 
called imaging function [2], i.e. a result of the data processing. 

INVERSE-MATCHING FILTER MODIFICATION 
The first problem considered is the scanning pulse shape distortion in conducting media (see Fig. 1). 

The Fresnel-Kirchhgoff diffraction model, represented by (1), does not take it into account, and thus filter (2) 
does not work properly. The shape of the radiated pulse can be estimated by using preliminary information 
about the medium under investigation. One can consider the conducting medium as a filter with the transfer 
function that can be obtained as follows [3]: 

G(d,a>) = \T(o))\cxp{-da(o)) -1(^(0)) - dß(co)}, (4) 

CO 

r(«) = |r(0)|e'*'r(ü'),       r<» = 
cv 

+ ß(a>) + ia{co) 

(5) a(co) = —  £-j(<y)sinh(— asmh—k ), p{ca) = — \€\((a)ch{— asinh— ) 
c\ 2 CO£Q£I(ü}) C\ 2 ae0£i(co) 

Here G(d,co) is the transfer function at the depth d , <x> = 2nf, f is the frequency , SQ is the free space 

permittivity, fjisthe related permittivity of the medium, conductivity, a\ is the medium conductivity, eis the 

free space velocity. 
The shape of electromagnetic pulse in loam estimated accordingly to (5) is presented at the Fig.l. The 

filter (2) uses u'(t) as the reference function and this can result in unpredictable errors at the output. On the 
other hand the approximation of G(d,w) demands to use only the values of ^and crj which both can be esti- 

mated beforehand. It is suggested to use following function instead of u'{t), as the reference one in (2), in or- 

der to obtain more information from the depth d : 

W) = F -1 G(d,co)F j^F-\(F[u(t)]G(d,co)] (6) 

Here F[...] means Fourie transform and u(t) is the scanning signal. Fig. 2 represents the real echo-profile (a), 

and results of its procession by using (2) with u'{t) and J^(/), d — 2 (c, d) respectively. 

It can be seen from (2) that modified that modified filter more accurately represents the data from the 
range of depths of 1.8 to 2.2 m. 

MODIFICATION OF THE CONVOLUTION PROCEDURE 
Replacing the integrals in (3) with finite sums, one obtains: 

M 
LT+LR   q(br+LR) 

(7) 
r=1       VTLRY 

where B^ is the sampled imaging function, wrT is the sampled output of the filter (2), Mis the quantity of the 

LT+LR realizations in the route r = , and [...] means the integer part. Further, 

LT = V(x - r)2 dx2 + z2dz2 , LR=yj(x-r- X)2 dx2 + z2dz2 , where dx = — , L is the length of the route, 
M 

6 T — R 
dz = — ,   A = —-—.  If X   is integer (this means the following: every point of radiation becomes later the 

N dx 
one of reception so this requirement can be satisfied physically), then the following equalities hold: 

LR=LT(x,z,r + X), (8) 

LT(x + l,z,r) = J(x-(r-l))2dx2+z2dz2 =LT(x,z,r-l), (9) 
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Abstract. Technique of impulse structure characteristic calculation on base of scalar 
mXfrequency measurements using holographic approach wrth two reference «goals is 
proposed. Conditions of the technique realization are presented. Method of combmat on of 
modulus of autocorrelation function spectrum and phase of spectrum of cro s-correlaion 
Son with reference signal is discussed. Application of the approach for antenna pattern 
SraSn from multifrequency data measured under conditions of reflecting environment is 

illustrated. 

T^meTnalCs™Nsis method on base of multifrequency measurements of complex reflection 
coefficient (RC) is powerful mean to localize discontinuities in microwave components and 
£Äu2£ stLures via spectral analysis of experimental WW\*^^ 
amnlitude scalar measurements is rather simple, phase measurements is a problem. Use ot 
vec^or analyzer such as six-port is traditional way of complex reflection J^7££ 
coefficient measurements. If the purpose to obtain time-domain signal an ordinary scalar 
XaZltTr can be applied. It has additional reference reflection (comparison reflectometer). 
WbSon of time-domain signal after time-gating to frequency domain gives complex 
Rraf&nSonof frequency. Similar to filtering, time-gatingdistortsboundanes of frequency 
b^d Sme-gating is a linear operation thus it can not separate completely informative and 
spurious parts of time-domain signals. This fact induces additional components of error. 

It was shown [3] that if distance between reference discontinuity and a structure under test 
SUT was provided more value than SUT electric thickness, one could obtain a part: of resul 

of transformation into time domain coinciding with ^^m\^ Cf^ülIZof 
transform of complex RC. Reference reflection can appear as before or after reflections ot 
SUT TMs kiew«applied to measure reflection characteristics of dielectric structures m free 
Laie using XLn from waveguide open end as the reference signal. Requiremento 

Irease Ihf distance between antenna and SUT demands to use a J^^^J^ 
waveguide. The latter has gain 6-7 dB, horn's gain is approximately 20-25 dB. But the horn 
has two discontinuities. Both of them play role of reference reflections. 

Lfuf an^ImplLe reflectivity *a» in presence two reference reflections n and r2 with 
time delay { and ."from SUT with complex RC i?(co). Then ^(a,) is given by 

JKO) = %exp(+ya*) + ^iM)+ *** = MhP+bf+Wl^^^expC-Ä)'+ 

+ n/?»ap(/arfi) + rM^M-m) + r^\co)cxp{jcot2) + nVxptMMi)] + 

+ rir2*exp[-7'co(Mi)]}- *>' 
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For horn, experiments show that the autocorrelation function rA(t)=F1{\R((ü)\2}(Fi{ } - the 
inverse Fourier transform) is more powerful than cross-correlation functions /^'(O = 

F1 {ri*R((o)exp(-j(oh)} and rR"(t)=r {^2*^(co)exp(-y'(ö?2)} if reflection of metal plate is 
measured. For SUT's with RC 0.2-0.3, these functions are comparable. For SUT's with RC 
approximately equals 0.05,'cross-correlation functions are dominated. Similar to open end 
preliminary processing in form 1 - A I {k% |A*O|

2
 ) with \ r0 |2 = \riexp[/(o(t2-h)]+r2\2 is 

impossible due to small values in \r0\2. Autocorrelation function of horn k\ro\2 is subtracted 
from experimental data A((o) which are square of modulus of sum of horn reflection 
(reference signal) and SUT reflection. 

After subtraction k\ro\ from A((6) we have 

A'(a>) = k{\R((ö)\2+ri R((ü)Qxp(-jcot{) + r^R (<x))exp(/atfi) + r2 R((o)exp(-j(ot2) + 

+/"2i?*(<B)exp(/atf2)} • (2) 

Cross-correlation functions T*R'(/) and rR"(t) are not overlapping if t\, h and \h-t2\ are greater 
than time of propagation in SUT. For SUT time-domain signal extraction, any cross-corre- 
lation function A-R'(/) or rn"(t) can be used. If only cross-correlation r&(t) is used, situation can 
be simplified. The conditions for time intervals must be realized only for reference 
discontinuity ri, the first in the horn. Thus the length of horn must be longer than SUT 
electrical thickness. The latter requirement can be relaxed if impulse function of SUT has 
tendency to decrease. Effect of cross-function overlapping is negligibly small in this case. 

Measurements are multifrequency ones. Batterworth form time-gating the result of inverse 
Fourier transform for extracting the cross-function and direct Fourier transform allows us to 
reconstruct frequency complex RC. Normalization is reached by dividing the frequency data 
by ones for metallic plate. 

Analysis of (2) shows that combination of time-gating and inverse Fourier transform can 
extract k\R((o)\ . After square rooting modulus of RC is obtained. Phase information is taken 
from the inverse Fourier transforms of the cross-correlation function. This approach is 
appropriate if frequency property of reference reflection is not optimal thus the error of 
modulus reconstructed from cross-correlation function is rather large. Another appropriate 
situation is one then autocorrelation is greater than any cross-correlation functions but under 
real conditions all spurious reflections form their proper autocorrelation functions. Spectra of 
all these functions have identical support thus informative autocorrelation function is 
corrupted. Practical significance of this approach lies in situation then additional signals are 
absent or rather small. 

THE PRINCIPLE OF FOURIER IN ANTENNA PATTERN DETERMINATION 
The principle of Fourier holography can be used to extract signal of direct way in antenna 
pattern (AP) measurement by multifrequency methods under conditions of reflecting 
environment. According to [4] we assume that the direct signal can be represented as 
F((o)^Aexp(-j(nTi), signals caused by antenna range reflections as 

jp(o))=S Aiexp(-j(oTi) 
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with time delay 71. The reference signal has similar form with time delay T0. Then, the 
signal registered is square of sum of reference, direct and multipath signals. Measurement of 
amplitude of transmission coefficient is simpler than one of complex data at many 
frequencies. Squares of modulus of AP taken without the reference signal (this component 
after transformation to the time domain corresponds to autocorrelation function of AP) and 
the reference signal modulus against frequency can be measured separately. Subtracting two 
latter components from basic data one can obtain amplitude of direct signal by means of 
parametric spectral analysis, for instance the Prony's method. Repeating this set of operations 
for all discrete angles and dividing by the maximum value of direct signal amplitude one 
estimates AP after elimination of environmental effect influence. Normalization by the square 
of reference signal amplitude eliminates influence of generator characteristic and improves 
estimation accuracy. 

CONCLUSIONS 
Application of Fourier holography principle for complex characteristic reconstruction under 
situation then two reference signals are present can be realized for scalar multifrequency 
measurements if time of propagation in structure under test is less than time intervals between 
reference signals and between structure and each of reference signals. Forming complex 
reflection coefficient as function of frequency by the combination of the modulus of 
autocorrelation function spectrum and the phase of spectrum of the cross-correlation function 
is appropriate if spurious reflections are negligibly small. Analogous approach can be utilized 
for signal of direct way extraction from multifrequency data measured under conditions of 
antenna range with environmental reflections. 
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The accuracy and resolution of remote sensing instruments 
employing radio-wave techniques can be increased by applying the methods 
of estimation of the model parameters. On the basis of a priori information 
on the structure of signals, effective computing algorithms for the 
construction of models of investigated process are used. A data model is 
assumed to consist of a limited number of plane waves (oscillations) 
embedded in noise, and the signal-to-noise ratio q>\. 

Methods of spectral estimation based on Levinson's, Berg's, 
Cholesky's and least squares algorithms with a solution of the system of the 
linear equations by Gauss's method are used in the simulations. 

Applying different methods of an autoregressive parameter 
estimation, computer simulations are conducted at various values of q and 
for a number of waves (oscillations). 

The effects of the order of autoregressive models on the results of 
evaluation are investigated, as well as the effects of the length of the time 
series. 

The accuracy and stability of the spectral component estimator most 
of all depends on the magnitude of q. Frequently it is enough to limit its 
magnitude by q = 5-10. 

The least effective for computing is Gauss's algorithm which allows to 
obtain the most stable and unbiased estimates. The application of the 
algorithms to nonlinear fitting does not result in an ssential improving of 
the estimates obtained. The results of experimental investigations of the 
ionospheric plasma at various altitudes obtained from the HF Doppler 
sounding technique, partial reflection technique, etc. are presented. 
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The radar equation for remote radio sounding of distributed targets with 

ultra-wideband radio signals 

Leonid F. Chernogor and Oleg V. Lazorenko 

Department of Space Radio Physics, Kharkiv State University, 

4 Svoboda Square, Kharkiv 310077, Ukraine 

E-mail: Leonid.F. Chernogor@univer.kharkov.ua 

Ultra-wideband (UWB) radio signals are signals the bandwidth of 

which is of the order of magnitude of or equal to the average value of the 

frequency. 
Recently such signals have been widely employed for sounding 

natural resources, monitoring in glaciology, hydrology, etc., as well as in air 

navigation radar. We have studied the possibility of using UWB signals for 

remote radio wave sounding of the atmosphere, the ionosphere, the 

magnetosphere, and the near-Earth environment. For this purpose in 

particular, the radar equation is derived for remote sensing instruments 

employing radio wave techniques; it takes into account the features of 

distributed targets and relates the signal-to-noise ratio at the input of the 

receiving system to the parameters of the facility and the medium. The 

mathematical models of UWB signals are suggested. 

The computer simulations of the dependence of the signal-to-noise 

ratio q on the wideband index and on the mean frequency of UWB signals, 

as well as on the parameters of the facility and media, are performed. The 

applicability of these results to the radio sounding of near-Earth space with 

the mesosphere-stratosphere-troposphere (MST) radar, incoherent scatter 
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radar and partial reflection facilities is discussed. In case of narrow-band 

signals, 

PGSa(T 

"~Pn    (4x)2R4Pn 

where P is the power of sounding signals, G is the gain of the transmitting 

antenna, Sa is the effective aperture of the receiving antenna, a is the volume 

scattering cross section of a beam-filling target, R is the range. 

The equation for UWB signals remains the same, but P, Sa, u, Pn, and 

also R for distributed targets become functions off. In this case, 

Jin ax 

Pc   = M> \ÄMf)s,(f)4$f <   M-\W)l 
Jin ax 

Pn=Wn(fo)   JF(fW 
Jii tin 

where fmin, fmax, fo are the minimum, maximum and mean frequencies in the 

signal spectrum, respectively, k is Boltzman's constant, Tn(fi) is the noise 

temperature at the mean frequency in the signal spectrum, F(f) is the 

dimensionless noise (interference) distribution as a function of frequency, T 

and    s(f) are a pulse length and a complex signal power distribution as a 

function of frequency, respectively. 

L. F. Chernogor has been supported by Science and Technology 

Center in Ukraine Grant No. 471. 
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RESULTS OF THE DYNAMIC RADAR TARGET CHARACTERISTICS 
CALCULATIONS IN THE DECAMETRIC WAVE BAND 

V.A.Kovalchuk 
Kharkov Military University, Svoboda sq. 6, Kharkov, 310043, Ukraine 

The problem of target scattering analysis is very important for radar. It be- 
comes complicated considerably in over-the-horizon radar, where a number of 
additional factors caused by ionosphere influence, earth surface, etc. appear. The 
total sum of these factors can change the radar characteristics of the target 
(RCT) such as the elements of polarization scattering matrix. The RCT determi- 
nation is realized either by experiments or by physical and mathematical simu- 
lation. Experiments and physical simulation requires considerable material and 
temporal expenses and can be carried out, as a rule, in the presence of a number 
of limiting conditions. Mathematical simulation of RCT has no such disadvan- 
tage. But the main goal: reliability of obtained results, must be achieved m this 
case. It puts strict requirements on the choice of mathematical model. 

Presented mathematical model is worked out for decametric wave band and 
enables one to evaluate the dynamic RCT moving over an arbitrary earth sur- 
face. The model basis is a four- beam signal propagation scheme. According to 
this scheme the electromagnetic field at the observation point is determined as 
the sum of radio wave fields scattered by the target to the observation point both 
directly and after reflections from the earth surface (in various combinations). 

Model bloc-diagram is presented in Fig.l. Target type, its motion charac- 
teristics, the incident electromagnetic wave parameters and the type of underly- 
ing earth surface are referred to the model input data. 

The static RCT are determined in the first bloc. For this purpose a problem 
of radio wave reflection from unmoving target of complex shape located in free 
space is solved. In the over-the-horizon radar the typical target dimensions are 
comparable with the radar signal wavelength. In this case the problem of radio 
wave scattering can be solved approximately if a continuous target surface is 
replaced by a net wire approximating the target shape. After that the set of inte- 
gral equations is reduced to a set of linear integral equations in accordance to the 
methods described in [1]. There were worked out three models representing 
target characteristic types: strategic bomber, fighter and cruise missile. 

The model of earth surface is presented in the second bloc. The earth sur- 
face is defined by the form of correlation function, correlation interval, variance 
of irregularity heights, electrical parameters, level of sub-surface water, presence 
of vegetation, bushes, woods, reservoirs, etc. We assume that these data are a 
priori well known in statistical sense. 
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Model 
of the static 

RCT 

r2- 
Model of the 
earth surface 

r3- 

The target motion model is represented 
in the third bloc. Each new target position is 
defined as xi=xo+V/f, where xo is the previous 
target position, V is the target motion 
velocity, f is the frequency of the radar pulse 
repetitions. 

In the fourth bloc all specular points at 
the earth surface, with taking into account the 
possible shadows that one surface irregularity 
throws at another, and also the total 
electromagnetic field at the observation point 
are determined. The sequence of pulses 
scattered by the target is called the 
modulating function. The obtained 
modulating function was analyzed in the 
frequency and time domains: distribution laws 
of reflected signal parameter were determined, 
frequency spectra of modulating function and 
its correlation function were calculated, the 
Doppler frequency spectrum width of the 
scattered signal and correlation interval of the 

modulating function were evaluated. The results were averaged for ten realiza- 
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tions of the ground surface. 
The typical modeling results are presented in Fig.2 and Fig.3. In Fig.2, a 

correlation interval Tcor of modulating function for the vertically polarized signal 
is shown. In this case the target is a fighter flying with the speed of 300 meters 
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\ A 4-AFu'' 
 *l 

\  / ,2 
3 

\ N ■^ 
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:r^~ 

0 5        6 
H,km 

Fig.3 

8 10 

per second above the earth surface with parameters: surface correlation function 
of a Gauss type, correlation radius is 2000 m, dispersion of roughness heights is 
100m2, soil type is a black earth. The results were averaged for N samples of the 
earth surface. The Doppler frequency spectrum width at the different levels of 
the scattered vertically polarized signals and the estimate of the maximum Dop- 
pler frequency spectrum width are shown in Fig.3. 

Analogous theoretical results obtained for all target types. 
The analysis of simulation results enables us to state the following. Statisti- 

cal characteristics of signals scattered by aerodynamic target depend on its 
flight height. We can distinguish three height ranges at which the difference 
from statistical characteristics is observed most distinctly. The laws of reflected 
signal parameter distributions, correlation intervals of modulating function of 
various target types differ from each other. These differences form a basis of 
target recognition algorithms. 
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DETECTING QUADRATIC-TYPE NONLINEARITIES OF RANDOM 
PROCESSES IN THE PRESENCE OF ADDITIVE NOISE 

Vladimir G. Galushko 

Institute of Radio Astronomy, National Academy of Sciences of Ukraine 
4, Chervonopraporna Str., 310002, Kharkov, Ukraine 

The problem of detecting nonlinear effects often arises in investigations of different 
physical, engineering and other systems. These can be, for example, nonlinear distortions in 
radio devices, coupling of waves in nonlinear media, or nonlinear mechanisms of their 
generation. A powerful tool for solving this problem is the use of cumulants or their 
associated Fourier transforms, known as polyspectra [1,2]. However, the estimation of 
cumulants (or polyspectra) of real processes (especially for fairly long realizations) requires 
cosiderable computation resources, in particular, RAM. The present paper illustrates the 
potentials of the so called "1-jD - spectra", T(co), for solving the problem of detecting weak 

quadratic-type nonlinearities of random processes in the presence of additive noise [2]. This 
technique is a particular case of the bispectral analysis being, however, much easier in use. 

The response, u0(t), of a quadratic-type nonlinear system to an input process, us(t), 

can be represented as 

u0(t) = u,(t) + k-u,2(t), 

with k being the nonlinearity factor. Because of the noise, the input of an analyzer oriented 
toward detection of this type of nonlinearity and estimation of k is 

ii(0 = tf0(0 + »(0» (!) 

where n(t) is the random noise. As can be shown, 

for a random stationary process y{t) the "1-jD - 

spectrum" is 
+oo 1    -fee 

r,(«)= \driBy(a>,<o<) = -—\drCy{T,T)e-i'>" , 

where By((o,a)') and Cy{j,x) are the bispectrum 

and third-order cumulant of y(t), respectively. 

Since   Cy(T,T)=<y(t)-y2(t + t)>   (the  angular 

brackets denote the expectation procedure), Yy(co) 

can be regarded as a cross-spectrum of y(i) and 

y2(t). Hence, the functional diagram of the 
algorithm can be represented as it is shown in Fig. 
1. If us(t)  and n(t) are mutually independent 
stationary zero-mean Gaussian processes and k is 
sufficiently small, then T(co) can be written as 

Fig. 1 Functional diagram of the algorithm for 
calculating T(co): UA(a>), H^ct)) 

and TL2 {&) are responses of the analyzer 
input device and filters, respectively 
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-H» 

T(a>) = 2k J dflll, {coll + £)|n2 (fl>/2 - £)| • Q(a, &«»*> (2) 
—oo 

Here I    I denotes the absolute values of the complex functions; 

ö(^l)=|n.H|n^(ö)/2+^)||n,(e>/2-^)|[<|^(ö)|2 x\ss(<o/2+zf >+ 

+ <\Ss{a>f ><\S,(a/2-tf> + <)S,(a/2 + gh2 x|5,(»/2-fl2 >]; 

<|Ss(o)|2 > is the power spectrum of »,(/); and <pA{eo), <PM) md ^C®) are Phase 

responses of the analyzer and the filters, respectively. In Eq. 2 we have omitted the terms 
which contribute at co = 0 and assumed 1^(0)1 = 0. In practical situations expectations are 

replaced by sample averages and, hence, the following estimate can be suggested: 

1   f T "\2 N  +ec A 
I>) = - —   Y{d^Si(cD)Si(co')S;(a> + ^), (3) 

M \  0.7T I   TT J 

T 

where 5 (©) = - \dtu {t)e'itot, and N = T0 / r is the number of T -length realizations of the 

u{t) process within the total observation time T0. As can be shown, Eq. (3) yields unbiased 

and consistent estimates of I» with variances c£ and al of real and imaginary parts of 

f(<y), respectively (for a sufficiently small k) 

1 ~2    _^2    - 

4N 
J^|nlr| £>(*>,£) + 

+^|n,(«)|4|n,(2«)|2n2r(«)<K(«)|2 >2<\su{2cof > 

Here 
D{a,z)=\nA{af\nA{&i2-zt\nA®ii+Zi <\su&t >* 

x<\Su{col2-^f ><|S„(<y/2+!)|2 >; 
nir(ß),^) = ni(«/2-^)n2(«/2 + ^) + ni(fi;/2 + ^)n2(ß)/2-^);and 

n2,(«)=n1(«)n;(2<9)n1(2ö)n;(0)+|n1(2«)|2|n2(o)|2 + 

+ |ni(ö)|2|n2(2ß;)|2+n;(2e;)n2(ö;)n;(öj)n2(2«). 

Since T0 is always finite, cr£, and a^ are actually non-zero values and, hence, F{&) is 
usually estimated with some error. To reduce the error, several procedures can be applied, 
e.g., frequency averaging or the use of a duly selected approximation for T(o). 

The phase response, <pA (m), in Eq. (2) is not always known with a required accuracy. 
This difficulty can be overcome by the use of sufficiently narrow band filters. The most 
suitable are rectangular filters (e.g., synthesized numerically). If the filter bandwidth is 
significantly smaller than UA {cci), then we obtain 
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|l»| = 2k J^n, (co/2 + 4)\\ll2 (co/2 - £)| ■ Q(co,4). (4) 

To estimate k from Eq. (4) one needs a knowledge of < \SS (<»)|  >, while in the most of 

practical cases this information is absent. However, there is a possibility to resolve this 
problem. Let us assume the spectral density of noise to be a constant value within the 

frequency band of the analyzer, i.e. <|S„(G))|  >= I2 = const, while <\SS(CO)\  > depends on 

frequency. Since for a sufficiently small k 

<\Ss(a>f>*<\Su(a>)\2>-l\ 
and we can write, in accordance with Eq. (4): 

|f(ß))| = k[A(a))I4 - 2B(a)I2 + C(o))]. (5) 

Here A(a>) = 6Jdt\ni(a>/2+^\TI2(co/2-Z)\\nA(tD,Zf, 
-co 

+CO 

B(a>) = 2Jdt\lIl(<»/2 + Z)\\lI2(co/2-Z)\\nA(<»,ö\x 
-co •• 

{:\Su(cof > + <\Su(co/2 + tf > + <\Su(ü>/2-tf >;) 

C(co) = 2JdZ\Tll(ü)/2 + Z)\\n2(ü>/2~ZJQu(ü>,Z);md 

|n,(«^)|=|n,(ßJ)|n,(ÖJ/2+^)|n,(cy/2-^)|. 

The function QU(ü),^) can be obtained from Q{co,%) (see Eq.(2)) by replacing <\Ss(a))\2 > 

with < 1^ (co)\ >. If T{co) is measured at two frequencies, mx and a>2, then we have a set of 

two equations with respect to I2 and k. 
The proposed algorithm was tested by means of a numerical simulation. Standard 

software was applied to generate statistically independent random Gaussian processes us (t) 

and n(t) with specified parameters. At the first stage the real and imaginary terms of T(o)) 
were estimated from Eq. (3) at two frequencies. The inaccuracy pertaining to the estimates 
was reduced by using an approximation function matched to the expected T(co) in the best 

way for the given shape of <|^u(«)|2> and I2 = const and filter responses. Then the 

modulus of T(a>) was calculated at both frequencies. Finally, by solving a set of two 
equations like Eq. (5), the nonlinearity factor k was found. The relative errors in determining 
k did not exceed 10% for N= 1000. Hence, the algorithm proved to be quite acceptable for 
practical applications. 
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Abstract 
Recently considerable attention is still attracted to creation and development of various 

schemes of Mueller-polarimeters. However, there are some disadvantages in existing models. In 
present paper the general-purpose electronically controlled transformer of polarization using 
electrooptical effect is suggested to utilize it as a main part of modern Mueller-polarimeter. 
Application of this transformer is shown to give some significant advantages, such as: 

-any polarization state of probing radiation can be realized (generally, the whole Pomcare 
sphere); 

-high speed of measurements (up to 5-10 microsec. per single measurement); 
-possibility of full automatization of Mueller-polarimeter and measurement process; 
-multi-frequency (spectral) measurements (frequency range is limited with other parts of 

Mueller-polarimeter, in particular, on photodetector); 
-functional elasticity (the possibility of work in main polarimetry measurement regimes: four- 

polarization method, dual rotating-compensator method; measurement of studied object 
response to any polarization state of probing radiation; Jones matrix measurement etc.). 

Introduction 
At present time there is a variety of methods to investigate linear interaction of 

electromagnetic radiation and studied object. It is known the interaction can be fully characterized by 
Mueller matrix [1], which describes the transformation of polarization state of probing radiation into 
output radiation, received by photodetector. 

Any polarization state of quasimonochromatic radiation (non-, partly- or fully-polarized) can 
be presented by 4-dimension Stokes vector, having such form: S = {/; Q\ U\ V} ,where components 
of Stokes vector give us all information about predominant types of polarization [1]. As we said 
above. Mueller matrix describes the transformation of polarization state of radiation through 
interaction, and mathematically it is the matrix operator of linear transformation from Stokes vector 
of probing radiation to Stokes vector of output radiation: 

S , = [M]Sin 0) 
"out       L       J   m «..^.t. F •* 

So the measurement of Mueller matrix of studied objects is of great interest because ol its 
great informativity. Usually, the basic scheme of Mueller-polarimeter consists of three blocks: 
polarization state generator PSG (forming probing radiation), studied object and polarization 
state analyzer PSA (analyzing polarization state of radiation after its interaction with object)_ 
The principle of measuring Mueller matrix is based on irradiation of object by different states ol 
polarization (at least four) and calculating Mueller matrix by analyzing output radiation. 
Differences between some schemes of Mueller-polarimeters are in particular execution ol Pi>U 
and PSA and conforming calculations. Analyzing some particular schemes of Mueller- 
polarimeters [2-6], some their disadvantages were found: l)low level of automatization and 
comparatively long time of measuring, which don't permit us to study some objects with 
fluctuating characteristics; 2) high level of Mueller matrix elements measurements error; 3)some 
schemes contain excessive quantity of optical elements, which makes some difficulties, connected 
with automatization and calibration of the device; 4)measurements are carrying out only on one 
wavelength of probing radiation, that's why there's no any information about disperse properties 
of studied objects; 5) narrow range of applications (low level of functional easticity), making 
some difficulties when use of Mueller-polarimeter for other measurements (measuring Jones 
matrix, analysis of polarization state of studied radiation, etc.). To decrease these disadvantages 
improved polarization state generator using electrooptical effect is suggested in this paper. 

Mueller-polarimeter scheme. 
We suggest to use in polarization state transformer of probing channel to make it multipurpose 

electrically controlled elements with linear phase and amplitude (ideal) amsotropy. Full 
functional scheme of Mueller-polarimeter is shown on Fig. 1 below. 
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Now, consider additional advantages of this Mueller-polarimeter: 
1) it is fully automatic and have high speed of measurements; 

2) it have complete functional elasticity (without major changes it gives us opportunity to 
conduct analysis of polarization state of studied light, measurements of Jones matrices, 
investigation of studied object response to given polarization state etc.). 

3) it can operate in comparatively wide frequency band. 
Particularly, this frequency band caused by working band of utilized photodetector. We 
conducted the measurements on 2 wavelengths, generated by helium-neon laser LG-126: 0.63um 
and 1.15um, which are in working band of utilized photodetector (PEM-62). So, the'Mueller- 
polarimeter can measure dispersion characteristics, containing additional information on studied 
object. By the way, in this case switching from one wavelength to another is comparatively easy 
operation which could be done program-simulated. 
4) it contains very limited number (the quantity of elements is minimally necessary for Mueller- 
polarimeter) of optical elements and that is why it is comparatively easy in calibration and 
alignment. 
5)The measurement error must be at least twice lower than measurement error of Mueller- 
polarimeter [5] because polarization state generator supplies any needed polarization state (in 
details, look below) and that's why Mueller-polarimeter can operate under absolute minimal 
COND [8]. 

Mathematical support of PSG. 
Optical scheme of PSG (polarization state generator) is shown on Fig.l above. To make 

radiation with needed polarization state we can operate by azimuth of polarizer 0l, azimuth of 

retardation plate 02 and its retardance A2. So, we have 3 degrees of freedom, that is enough to 

maintain 2 degrees of freedom of polarized radiation (azimuth 6 and ellipticity angle s). That's 
why we'll show below that we can maintain any needed polarization state using retardation plate 
with A = n 12. With the help of computer, we can automatically keep stable this value of 
retardation after switching to another wavelength. As a source of radiation we must use any 
monochromatic source of depolarized (but collimated) or circularly-polarized light (we use He- 
Ne laser with retardation plate A 14). 

Making some matrix calculations to find Stokes vector of radiation on the output of PSG 
(under condition that A2 = n I 2), we have: 

"l 

»J;„ — (2) 
1  cos(20,) - sin(202) sin(202 - 20,) 

sin(20,) + cos(202) sin(2#2 - 26',) 

sin(202-20,) 
We must maintain polarization state with any needed parameters $ and s, so according Stokes 
vector is shown: 
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«J.M   — 

1 

1   COS(2£)COS(20) (3) 

cos(2e)cos(20) 

Lsin(2e) 
Therefore, after calculations from (2) and (3) we have the needed values for 9X and 92 

1.1 A 

(4)   or 

0, =—arcsins, + -arcsin(- . : 1       2 2 JTT,,)- 0 
(5) when Stokes 

92 =-arcsm(- . : 2 £-&)' 0 

vector of the needed radiation is given in form : Sin = [t *; S2; S3 ]. We can see that formulas (4) 

or (5) can maintain any polarization state because they give us correspondence between 
parameti! of\he needed radxation and azimuths e.,9, of polarization devrces. So, gxven PSGxs 
multipurpose. . 

/ = 0.25{5l + (cos2(204) + sin2(204)cosA4)S'l + (6) 

+(cos(204)sin(204)(l - cos A4))50
2
Ilf - sin(204)sin A4S^} 

,,4,«*   <?    -<9° -S1  'S2 'S3 } is Stokes vector of analyzed radiation, 6>4  and A4 - where on.., — \>3 out, *-> om > >-> 0ut > ^ ow > ^       ,r. . .   ;„fnrra(1tjnn 

scheme  of MueUer-polarimeter [5,6],  where   9, = at,  we have expresses for Founer- 

components of intensity: ] 

Dconstant component: /„ = 0.25{S°OU, + [1 - (1 - cos A4)0.5]5OM! 

2)with sm(2mt): /, = -0.25sinAX« (7) 

3)with cos(2crt) : 72 =0.125(1-cosA4)5L 

4)with sin(4srt) :   /, = 0.125(1 - cos A4)S^ • . 

the dependence of A4 on wavelength. 

^™RGS:"M<*n, description of polarized hght: matrix methods» //Optics and Laser 

ItS?L'S^ÄSÄ ^ imperfect compensators" //Jonrna, of Oprica, 

rSltS^^N^KÖstov M.K. "Polarimeter-h Becriogjratory Modnlators» 

J^A.T$£S£." SÄ*- „»epemm napaMerpo. no^oBamtoro 

L^OBamto«+O.OB08 saoae™»// "gS^SSXSSSi^Ä ^ 

^e^B^^z^rc^rrio r, ^s™ ««— 
MuALrimet'er parameters upon the error of the measured restdts   // SPIE Proc. 

vol.3199,N32. 
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