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INTRODUCTION 

Treatment of the breast cancer at an early stage is the most significant means of 
improving the survival rate of the patients. Mammography is currently the most sensitive 
method for detecting early breast cancer, and it is also the most practical for screening. 
However, the positive predictive value of mammographic diagnosis is only about 15%- 
30%. As the number of patients who undergo mammography increases, it will be 
increasingly important to improve the positive predictive value of mammography in order 
to reduce costs and patient discomfort. 

In this proposal, our goal is to investigate the problem of classifying 
mammographic lesions as malignant or benign using computer vision, automatic feature 
extraction, statistical classification, and artificial intelligence techniques. We hypothesize 
that a second opinion provided by computerized analysis would increase the positive 
predictive value of mammography, reduce the number of unnecessary biopsies without 
increasing the number of missed carcinomas, and reduce both cost and patient 
discomfort. 

Our efforts are concentrated on the computer-aided classification of two kinds of 
breast abnormalities, masses and microcalcifications, which are the primary 
mammographic signs of malignancy. We are investigating computerized extraction of 
useful features for the differentiation of malignant and benign cases for both 
abnormalities, and the application of classical statistical classifiers and newly developed 
paradigms such as neural networks and genetic algorithms for the classification task. Our 
purposes are to i) improve existing techniques, devise new methods, and identify the 
preferred approaches for the classification of mammographic lesions, ii) show that 
computerized classification of mammographic lesions is feasible, and iii) develop a 
computerized program that can subsequently be shown to improve radiologists' 
classification of mammographic abnormalities. 

BODY 

The progress made so far in the development of the five technical objectives of 
this project are summarized below. The implications of these results are summarized in 
the conclusion section. 

Technical Objective 1: Database collection 

We have continued the collection of mammograms in the second year of this 
proposal. We have digitized over 600 new films from over 100 patients where each case 
contained either a biopsy proven mass or a biopsy proven microcalcification cluster. The 
expert mammographer in this project, Dr. Mark Helvie, is currently reading these films, 
which involves the identification of the biopsied lesion, and its rating for malignancy and 
visibility. To date, he has read films of 30 new patients. The digitized mass cases will be 
used as an independent test set in year three for the evaluation of the classification 
algorithms developed in this project. 



Technical Objective 2: Feature Extraction for Masses: 

Segmentation of masses: 

Computerized segmentation of mammographic masses is a very important step in 
our project because all the subsequent processing steps depend on the segmentation 
results. A clustering algorithm was developed for the segmentation of breast masses in 
year 1 of the project. In year 2, we evaluated two additional methods for the 
segmentation of mammographic masses. These methods were (i) a neural network (NN) 
based segmentation method [1], and (ii) a method based on Gaussian Markov Random 
Fields (GMRF) [2]. The purpose of both methods was to incorporate neighborhood 
information into the segmentation process. 

NN-based segmentation: 
In the neural network-based segmentation method, we formulated the 

segmentation problem as an optimization problem, and proposed to solve the 
optimization problem using a Hopfield neural network. In our model, each neuron 
represented a pixel of the image. A neuron that fired represented a pixel of the segmented 
mass, and a neuron that did not fire represented a background pixel. The net input to each 
neuron was modeled as a bias input, plus a constant % times the sum of the outputs of 
neighboring neurons. Our formulation was such that when the constant X was chosen as 
?l=0, the segmentation solution coincided with our previous clustering algorithm 
operating only on one feature (the input image). A larger value of X meant more 
interaction of neighboring pixels into the segmentation of a particular pixel. 

The segmentation algorithm was tested on a data set of 33 mammograms [1]. The 
accuracy of the algorithm was evaluated by comparing the computer segmentation with 
hand segmentations obtained using the expertise of radiologists. Three quantitative 
measures were examined: Hausdorff distance measure (HD), area overlap measure (AO), 
and perimeter to area ratio (PAR). The results showed that, compared to clustering, the 
neural network segmentation provided superior HD and PAR, but inferior AO. We 
believe that the neural network segmentation is a promising approach. In our initial 
investigation [1], a one-dimensional feature vector was used for NN-based segmentation. 
The use of a multi-dimensional feature vector will be investigated in the future. 

GMRF-based segmentation 
The GMRF-based segmentation technique first estimates texture parameters in the 

region of interest using the assumption that the textures are Gaussian and fit GMRF 
models. To compute the texture parameters, the image is divided into overlapping 
subimages, and sample correlations, which are known to be sufficient statistics under 
GMRF models, are computed. These parameters constitute the feature vectors for each 
pixel. Pixels with similar feature vectors are assigned to the same class using a clustering 
algorithm. 

The segmentation algorithm was tested on a data set of 249 mammograms [2]. 
The accuracy of the algorithm was evaluated by comparing the computer segmentation 
with hand segmentations obtained using the expertise of radiologists. The AO measure, 



as well as the fractional background tissue (FBT) measure was used for quantitative 
analysis. Our results indicated that, compared to the clustering method, the GMRF-based 
segmentation technique yielded superior AO measure, but inferior FBT measure. The 
average RMS error between the hand-segmentation and GMRF segmentation was 
2.3mm, and the RMS error between the hand-segmentation and clustering was 2.4mm. 
Although GMRF segmentation seemed to be marginally superior, the difference between 
the two methods was not statistically significant. 

The radiologists who participated in this study were also asked to rate the size of 
the computerized classification on a scale 1 to 5. A rating of 1 meant 25% or more 
undersized computer segmentation; 2: 25%-10% undersized; 3: between 10% undersized 
and 10% oversized; 4: 25%-10% oversized; 5: 25% or more oversized. It was 
determined that for both methods, less than 10% of the masses received a rating of 1 or 5. 
This shows that both methods are satisfactory in determining the mass size. 

Both methods developed in year 2 for segmentation of mammographic masses 
yielded satisfactory performance. However, the advantages of these methods did not 
seem to be significant enough to replace the clustering-based segmentation algorithm in 
our automatic classification method. We will continue searching for a significantly better 
segmentation method in year 3. 

Morphological feature extraction 

In year 1 of the project, a classification method based on texture features was 
developed. The shape of the mass, and morphological features extracted from this shape 
are also known to be good indicators of malignancy. In year 2, we developed 
morphological feature extraction methods in order to take advantage of these indicators. 

For morphological feature extraction, boundaries of the masses were manually 
delineated by two MQSA-approved radiologists. The morphological features evaluated 
in this study included Fourier descriptors, convexity measures, normalized radial length 
statistics, contrast, circularity, area, perimeter, and the perimeter-to-area ratio. Our data 
set included 205 biopsy-proven masses, of which 100 were malignant and 105 were 
benign. The best two morphological features were the Fourier descriptor summary feature 
(Az=0.87) and the convex hull area measure (Az=0.84). When the Fourier descriptor 
summary feature and four texture features were combined in a linear discriminant 
classifier, the area under the ROC curve was 0.91 using leave-one-case-out test scores. 
In comparison, for the classification of the same set of masses, the accuracy of the two 
radiologists were Az= 0.91 and 0.88. 

From this study, we conclude that the morphological features extracted from the 
mass shapes were effective for classification of the masses as malignant or benign. The 
use of texture features in addition to morphological features in a linear classifier will 
likely improve the classification accuracy. 

To be used in an automatic classification algorithm, the shapes of the masses have 
to be automatically segmented. In year 3, we will evaluate morphological features 
extracted from mass shapes obtained by our current segmentation algorithm, and 



investigate new segmentation methods to improve the classification accuracy of these 
features. 

Technical Objective 3: Feature extraction for microcalcifications 

In year 2 of our project, we investigated the use of texture features extracted from 
spatial gray-level dependence (SGLD) matrices for classification of microcalcifications 
as malignant and benign. 

A region of interest (ROI) containing the microcalcification cluster was identified 
by an expert radiologist so that only true microcalcification clusters were analyzed. An 
ROI of 1024 X 1024 pixels (corresponding to 3.58 cm X 3.58 cm on the film) was 
extracted for analysis. The low-frequency background was subtracted using the 
background subtraction technique presented in the original proposal. After background 
correction, SGLD texture matrices were computed as discussed in our original proposal. 
Forty SGLD matrices were derived from each ROI at different 10 distances and 4 
directions. Thirteen features were extracted from each SGLD matrix, and features 
extracted at axial directions and diagonal directions were averaged. The final texture 
space therefore contained 260 features for each ROI. The classifier used with these 
features is described in the discussion of Technical Objective 4, and accuracy of the 
designed classifier is described in the discussion of Technical Objective 5. 

Technical Objective 4: Development of Classifiers 

Neural Network Design for Optimization of the Partial Area under the Receiver 
Operating Characteristic Curve 

In classification of mammographic lesions, the cost of missing a malignant case is 
much larger than that of misclassifying a normal case. The decision threshold therefore 
cannot be determined without a well-designed cost-benefit analysis. Receiver Operating 
Characteristic (ROC) analysis is a commonly-used methodology for representing the 
tradeoff between the true-positive fraction (TPF) and the false-positive fraction (FPF) in a 
two-group classification task. The area ATPF above a sensitivity level TPF0 under the 
ROC curve represents the average specificity above that sensitivity level. By maximizing 
Axpp , where TPF0 is close to 1, one can design a classifier that has good specificity at 
high sensitivity. In year 1 of the project, a GA-based high sensitivity classifier was 
designed using this idea. In year 2, we developed a methodology for training a 
backpropagation neural network (BPN) by maximizing the same criterion. 

The training of a BPN via the gradient-descent rule involves the computation of 
the partial derivatives of the network error with respect to the network weights. For 
training a high-sensitivity BPN, the network error to be minimized is defined as -A-ppp^ 
With this new error criterion, the partial derivatives cannot be computed analytically. 
However, using a judicious approximation [3], we were able to represent the partial 
derivatives fairly accurately. 



To test our new BPN training algorithm, we used a randomly-generated Gaussian 
data set. We studied the effect of the number of hidden layer nodes on the conventional 
and high-sensitivity training algorithms by varying the number of hidden-layer nodes 
between 2 and 9. For both training algorithms, the BPN was trained starting from the 
same initial condition. After 5000 training iterations, test outputs were obtained by 
applying independent test samples to the trained network. Our results indicated that for 
small number of hidden-layer nodes, the new training algorithm achieved the goal of 
decreasing false-positives for a TPF of 0.8 and above. When the number of hidden-layer 
nodes was increased, the difference between the two training algorithms diminished. 
This simulation study therefore demonstrated that the new training algorithm would be 
useful if the number of hidden layer nodes has to be small. This is a frequently 
encountered condition in practical situations, because the limited number of training 
samples confines us to use a simpler classifier with fewer hidden-layer nodes. 

Development of a hierarchical classifier 

A hierarchical classifier, which combines an unsupervised adaptive resonance 
network (ART2) and a supervised linear discriminant classifier (LDA) was developed for 
the classification of mammographic masses as malignant or benign. At the first stage, the 
ART2 network separated the masses based on the similarity of the input vectors. At the 
second stage, a separate LDA model was formulated within each class to classify the 
masses as malignant or benign. In a preliminary study to examine the utility of this 
approach, the ART2 network was presented with texture features that were useful in 
classifying the masses as spiculated or non-spiculated. The ART2 network classified the 
masses into three classes, one of which contained predominantly spiculated masses. For 
each class, stepwise feature selection was used to determine the optimal feature subset for 
classification of malignant and benign masses using LDA. The areas under the ROC 
curve for the three classes were 0.94, 0.86, and 0.95. Approximately 48% percent of the 
benign masses could correctly be identified without missing a malignant mass, compared 
to 41% with LDA alone. 

BPN for microcalcification classification 

The texture features described in Technical Objective 4 were used in a 
backpropagation neural network (BPN) for classification of microcalcification clusters as 
malignant or benign. First, stepwise feature selection was used to select effective 
features for classification. Then, several BPN structures were tested their classification 
accuracy. The BPNs employed a modified delta-bar-delta rule to improve the 
convergence rate. The number of hidden nodes in the BPNs varied between 1 and 10. In 
order to make efficient use of the relatively small number of training samples, a leave- 
one-case-out methodology was used for testing the BPN. The classification accuracy was 
evaluated by ROC methodology. 

Technical Objective 5: Evaluation of classification methods 

Classification of masses: Observer study 



In year 1 of the project, an algorithm was developed and tested for computerized 
classification of mammographic masses as malignant or benign [6-8]. In year 2, the 
effect of this algorithm on radiologist' classification was evaluated using an observer 
study [9]. Of the 255 films that were used in our previous studies, 15 were used for 
training the radiologists to use the computer estimation for malignancy, and the 
remaining 240 were used for the actual evaluation. Six MQSA-approved radiologists 
assessed the probability of malignancy of the masses with and without CAD. Two 
experiments, one with single view and another with two views were conducted. The 
classification accuracy was quantified by the area, Az, under the ROC curve. 

The computer classifier alone distinguished the malignant and benign masses with 
a test Az of 0.92. The radiologists' Az ranged from 0.78 to 0.91 without CAD and were 
improved to 0.91 to 0.97 with CAD. For a subset of 77 matched paired views, the 
radiologists' Az ranged from 0.87 to 0.93 without CAD and were improved to 0.91 to 
0.97 with CAD. The improvements were statistically significant with p=0.02 and 0.01, 
respectively. 

Classification of microcalcifications: Computer performance with texture features 

The BPN classifiers described in Technical Objectives 4 were tested on a database 
of 86 mammograms from 54 cases [10]. The Az value obtained with different BPN 
structures varied between 0.88 and 0.86 with the best feature set. An analysis of the 
dependence of the classification accuracy on BPN architecture indicated that the BPN 
with one hidden node provided the best classification accuracy. Since a BPN with a 
single hidden node is equivalent to a linear classifier, this result appears to indicate that a 
linear classifier may be optimal with this data set and training samples. However, it has 
to be emphasized that this observation may not apply when the classifiers are trained with 
large number of samples. The reduction in classification accuracy with increased number 
of hidden layer nodes in our current study could have been caused by overtraining with a 
small sample size. 

Using the best classifier in this study, 11 out of 45 benign films could correctly be 
classified without any false negatives (a sensitivity of 100% and a specificity of 24%). 
Because some of the films are from the same patient, it is reasonable to make the 
malignant or benign decision on a case-by-case basis. In this case, 11 of the 28 benign 
cases could correctly be identified without missing any malignancies (a sensitivity of 
100% and a specificity of 39%). 

CONCLUSION 

In the second year of the proposal, we have made progress in all five major 
objectives of this proposal: 
• Over 600 new films from over 100 patients were digitized for our database. 
• Two new methods have been investigated for the segmentation of masses on 

mammograms [1,2]. 
• A   number   of  morphological   features   were   developed   for   classification   of 

mammographic masses.   Using mass boundaries delineated by radiologists, it was 
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shown that these features are effective in classifying masses as malignant and benign 
[3]. 

• A neural network training algorithm was designed for training high-sensitivity 
classifiers. Using simulated data, it was shown that the new algorithm could be more 
effective than traditional neural network training for improved specificity at high 
sensitivity [4]. 

• A hierarchical classifier which combines an unsupervised adaptive resonance network 
(ART2) and a supervised linear discriminant classifier (LDA) was developed for the 
classification of mammographic masses as malignant or benign [5]. 

• The effect of the mass classification algorithm on radiologists' classification was 
evaluated using an observer study [9]. Using a database of 240 mammograms, it was 
shown that the radiologists' classification was significantly improved when they were 
aided by the computerized classification scores. 

• Texture features extracted from spatial gray-level dependence matrices were 
evaluated for classification of microcalcifications as malignant and benign. Using a 
backpropagation neural network for classification, the area under the receiver 
operating characteristic curve was 0.88 for a database of 86 films [10]. 
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