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Abstract 

Artificial neural networks can be defined as approximate mathematical models of the human 

brain's learning activities. In recent years neural networks have demonstrated abilities to perform 

autopilot and fault tolerant control tasks when applied to non-linear numerical aircraft simulations. 

Five on-line learning neural network autopilot systems, trained with the Standard and Extended Back- 

Propagation algorithms, were applied to a six degree-of-freedom non-linear simulation of a Boeing 

747-200. The performance of the autopilots was compared based on their abilities to perform 

maneuvers at linear conditions and to adapt at non-linear conditions to restore steady state conditions. 

Linear maneuvers were performed by introducing reference values of altitude and speed, pitch 

angle, roll angle, or heading angle. The performance using the SBPA was satisfactory, but the EBPA 

performance was clearly superior throughout the entire range maneuvers while compensating for lightly 

damped phugoid and Dutch roll modes. 

Non-linear adaptation investigations were performed by exciting the non-linear terms in the 

equations of motion. The non-linear conditions were achieved in two ways: by simultaneously 

exciting pitch and roll rates with maximum elevator and aileron inputs, and the other by simultaneously 

exciting roll, pitch, and yaw rates with maximum elevator, aileron, and rudder inputs. The EBPA 

based controllers were able to regain steady state conditions for both non-linear tests with better 

transient performance than their SBPA counterparts. The SBPA showed only limited ability to adapt in 

cases where all three angular rates were excited. 

Artificial neural networks trained on-line using the Extended Back-Propagation algorithm are 

concluded to be better suited for autopilot systems for the 1/25 scale Boeing 747 based on their 

superior abilities to perform linear maneuvers and regain steady state conditions when at non-linear 

conditions. 
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Abstract 

Artificial neural networks can be defined as approximate mathematical models of the human 

brain's learning activities. In recent years neural networks have demonstrated abilities to perform 

autopilot and fault tolerant control tasks when applied to non-linear numerical aircraft simulations. 
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747-200. The performance of the autopilots was compared based on their abilities to perform 

maneuvers at linear conditions and to adapt at non-linear conditions to restore steady state conditions. 

Linear maneuvers were performed by introducing reference values of altitude and speed, pitch 
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performance was clearly superior throughout the entire range maneuvers while compensating for lightly 

damped phugoid and Dutch roll modes. 

Non-linear adaptation investigations were performed by exciting the non-linear terms in the 
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exciting pitch and roll rates with maximum elevator and aileron inputs, and the other by simultaneously 

exciting roll, pitch, and yaw rates with maximum elevator, aileron, and rudder inputs. The EBPA 

based controllers were able to regain steady state conditions for both non-linear tests with better 

transient performance than their SBPA counterparts. The SBPA showed only limited ability to adapt in 

cases where all three angular rates were excited. 

Artificial neural networks trained on-line using the Extended Back-Propagation algorithm are 

concluded to be better suited for autopilot systems for the 1/25 scale Boeing 747 based on their 

superior abilities to perform linear maneuvers and regain steady state conditions when at non-linear 

conditions. 
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Figure 6.67     Aircraft normal and lateral acceleration responses to non-linear conditions when p, q, 
and r are above 4 deg/sec at HC. 

Figure 6.68    NN control inputs in response to p, q, and r excitations above 4 deg/sec at HC. 

Figure 6.69    Aircraft response to non-linear conditions when p, q, and r are above 6 deg/sec at HC. 

Figure 6.70     Aircraft normal and lateral acceleration responses to non-linear conditions when p, q, 
and r are above 6 deg/sec at HC. 

Figure 6.71     NN control inputs in response to p, q, and r excitations above 6 deg/sec at HC. 

Figure 6.72     Aircraft response to non-linear conditions when p, q, and r are above 8 deg/sec at HC. 

Figure 6.73     Aircraft normal and lateral acceleration responses to non-linear conditions when p, q, 
and r are above 8 deg/sec at LC 

Figure 6.74     NN control inputs in response to p, q, and r excitations above 8 deg/sec at HC. 

Figure 6.75     Aircraft response to non-linear conditions when p, q, and r are above 10 deg/sec at HC. 

Figure 6.76     Aircraft normal and lateral acceleration responses to non-linear conditions when p, q, 
and r are above 10 deg/sec at HC. 

Figure 6.77    NN control inputs in response to p, q, and r excitations above 10 deg/sec at HC. 
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Chapter 1: Introduction 

1.1 Biological and Artificial Neural Networks 

It can be argued that the best control system is an experienced human operator. Human beings 

are able to learn to do very complex tasks. Once properly trained, humans are able to perform these 

tasks with minimal concentration while performing other tasks simultaneously. Consider a child 

learning to ride a bicycle or a teenager learning to drive a car. Initially, total focus and attention is 

required to control the bicycle or car. Any small disturbance may elicit a significant reaction. With 

time and experience the control of these systems requires less and less effort. Think of a novice pilot. 

It takes a significant amount of time to learn the purpose of the instruments and how to operate the 

aircraft. Initially, the workload may seem overwhelming. However, training and practice eventually 

will help the pilot become an expert to the point where flying an airplane becomes natural to him. The 

remarkable ability of the human brain to learn and perform complex tasks is the motivation for the 

development of Artificial Neural Networks (ANN's). 

The human brain is made up of approximately 1011 processing elements called neurons. Each 

neuron has on the order of 104 connections to other neurons1. In other words, the brain is comprised of 

many interconnected parallel processing elements. Each neuron has three key elements: dendrites, 

soma or cell body, and axons. The dendrites serve as the input signal carriers. They carry the input 

signals to the neurons from other connected neurons and chemically alter the signals, which is similar 

to multiplying them by scaling factors. The cell body (soma) sums the scaled incoming signals. Once 

the potential reaches some threshold value the cell sends an output signal over the axons to other 

neurons1'2. 

Since the brain is so powerful, it is desirable to model it, in a limited way, to solve complex 

problems using ever advancing computer technology. ANN's are approximate mathematical models 

inspired by the brain's neural anatomy.   ANN's are made up of many processing elements, also 



referred to as neurons. These neurons share and transmit information through connection links. These 

connections also have associated weights that multiply the incoming signals to the neurons. The 

individual neuron sums the weighted input signals and applies a mathematical activation function to the 

weighted sum input to produce the output to be transmitted to other neurons2'5. ANN's are 

characterized by the arrangement of neurons and connections and the method used to update the 

connection weights. Detailed presentations of different architectures and training algorithms are 

presented in Refs.[l,2,6,7]. 

1.2 Historical Development of Artificial Neural Networks 

Pioneer research work on artificial neural networks can be traced back to the 1940's when 

Warren McCulloch and Walter Pitts designed what are commonly considered the first neural networks. 

The McCulloch-Pitts neuron compared a weighted sum input to a threshold. If the weighted sum was 

greater than or equal to the threshold, the neuron output was assigned a value of 1. If the weighted sum 

was less than the threshold, the neuron output was 0. These neurons were arranged into a network and 

weights adjusted to produce outputs that were combinations of logical functions1'2. The 1940's also 

brought about the first learning law for ANN's. In 1949 psychologist Donald Hebb developed a 

learning law based on the premise that the connection weights between two simultaneously active 

neurons should be strengthened2. 

The 1950's and 1960's are referred to as "The First Golden Age of Neural Networks."2 Frank 

Rosenblatt was interested in applying sets of interconnected neurons using non-linear hard-limiting 

activation functions using iterative weight adjustment to typed character recognition. Rosenblatt's 

neural network was a hardware based network known as the Perceptron. The Perceptron had the ability 

to separate data inputs into one of two classes as long as there was a suitable set of connection weights 

to solve the problem. Oscillatory behavior resulted when suitable weights did not exist2'3. 



During the same time frame, Bernard Widrow and Marcian Hoff developed the "Adaptive 

Linear Neuron" (ADALINE) and "Multiple Adaptive Linear Neuron" (MADALINE). The difference 

between the ADALINE, MADALINE, and Perception was in the activation function and training. 

Widrow used a continuous non-linear activation function and a Least Mean Square training method2'3. 

The MADALINE network has been applied to adaptive modems, nulling of RADAR jammers, and in 

adaptive equalizers in telephone lines. 

The limitations of the aforementioned networks led to loss of interest in neural network 

research in the 1970's. The main limitation of these networks was that they were only able to solve 

linearly separable problems. Both Rosenblatt and Widrow proposed that multiple layer networks 

would be able to overcome this limitation, but neither was able to apply their learning rules to train 

more than their single layer networks1. Although interest in neural networks subsided, Teuvo Kohonen 

applied associative networks to speech recognition, musical composition, and solved the classical 

"Traveling Salesman Problem." James Anderson also applied associative memory networks to medical 

diagnosis2. 

The advent of the Backpropagation algorithm (BPA) sparked a renewed interest in neural 

networks in the 1980's. The BPA was designed to train a multiple layer network by "propagating" 

information about the output error to the hidden layer neurons. The idea of training a multiple layer 

network using the output error was first introduced by Werbos in 1974. The method was again 

discovered independently by Parker and LeCun in 1985 and 1986 respectively. Finally, David 

Rumelhart and James McClelland refined and publicized Parker's work. The BPA is a gradient 

descent method that minimizes the mean squared error between desired and actual network outputs or a 

cost function representing desired system behavior2'3'4. 

Other work during the 1980's included the development of the Hopfield network by John 

Hopfield and David Tank. The Hopfield network is characterized by fixed weights and adaptive 

activation functions and were applied to solve constraint satisfaction problems like the "Traveling 



Salesman Problem." The Neocognitron was applied by Kunihiko Fukushima to character recognition 

problems where the character was distorted by position or rotation2. 

The BPA solved the problems associated with the early neural networks, namely the ability to 

train multi-layer networks and to solve linearly separable problems, but it too had some limitations. 

The BPA had problems in becoming trapped in local minima characterized by oscillating weights and 

outputs, resulting in network failure to converge to the desired output. The BPA also can be slow in 

learning large order or complex systems. These two problems with the BPA prompted the 

development of the Extended Back-Propagation Algorithm (EBPA) by Chih-Liang Chen in 1992 at 

West Virginia University (WVU). The EBPA is a heterogeneous network that increases the learning 

capabilities of the BPA by allowing each individual neuron in the hidden and output layers to update its 

output characteristics by adjusting the range and slope of the activation function4'8. 

1.3 Applications of Artificial Neural Networks 

Artificial neural networks are being applied in many different disciplines. The banking and 

financial industries use them to read documents and checks, evaluate credit applications, and perform 

corporate financial analyses. The medical field utilizes ANN's to assist in making diagnoses, analyze 

breast cancer cell tests, and evaluate EEG and ECG readings. The defense industry uses neural 

networks in differentiating between friendly and hostile targets, weapon steering, and target tracking. 

Manufacturing companies use them in process control, dynamic modeling, and product quality 

analysis. These are just a few fields, and limited number of examples for each, where artificial neural 

networks are used. Other fields use neural networks for speech production, speech recognition, non- 

linear mathematical modeling, design analysis, quality assessment, and various types of optimization 

problems1'2. 

Another main interest area of applying neural network technology is in aircraft control. Neural 

networks are being applied to flight path simulations, autopilot systems, flight control systems, and 



component fault detection, identification, and accommodation1. In 1991 CM. Ha applied ANN's to a 

pitch rate controller and to the lateral control laws of a 6 degree-of-freedom linear state-space aircraft 

model. Ha trained his networks off-line using the linear model, froze the weights, and tested the 

resulting neural structure on-line3. In 1989 Dr. Marcello Napolitano at WVU began applying neural 

network algorithms to Actuator Failure Detection Identification and Accommodation (AFDIA) 

problems9"11. Later, he extended research to include Sensor Failure Detection Identification and 

Accommodation (SFDIA) schemes12. Neural network research at WVU has also included neural 

network autopilots for an F-15 simulation model31314, neural network autopilot and SFDIA schemes 

applied to the NASA/Aurora Thesis aircraft4'8'15, and signal reconstruction from black box data for 

crash investigations 17. SFDIA research has been extended by hardware implementation using a 

custom made neural network PC board interfaced with a Simulink model of the longitudinal dynamics 

of an F-14 aircraft18. These studies have concluded that software and hardware based artificial neural 

network technology has the ability to learn complex non-linear dynamics on-line to perform basic 

autopilot functions and to detect and accommodate for a variety of hardware failures. 

The motivation for using neural network technology in aircraft control is to replace the existing 

linear time invariant (LTI) based methods with more flexible and adaptable systems. Current methods 

rely on feedback gains calculated off-line at many points in the flight envelope. These gains are then 

stored in the flight computer and interpolated between when moving between models in the flight 

envelope. These methods are computationally intensive in the scheduling of the feedback gains and are 

not suitable for highly non-linear conditions. Furthermore, performance of controllers designed using 

LTI methods critically depends on accurate modeling of the system dynamics3'1314. Neural networks 

using an on-line learning approach have the ability to learn the aircraft dynamics throughout the entire 

flight envelope, regardless if the system is linear or non-linear, time variant or time invariant, and with 

or without system and measurement noise3'4'815. 



1.4 Research Objectives 

The 1/25 scale B747 model is being used to test neural network based autopilot controllers, 

SFDIA, and AFDIA schemes. Phase I of the project is to design, construct, and conduct the first flight 

of die vehicle. Phase II is to carry out flight testing that will produce the aerodynamic information 

necessary to build a simulation code based on a non-linear mathematical model. Phase m and Phase 

IV are to be conducted simultaneously to develop the fault detection and autopilot neural systems using 

the simulation model of the aircraft. Lastly, the neural network algorithms will be implemented into a 

flight computer system and tested. 

While Phase I was being carried out, it was decided to develop the autopilot systems using a 

non-linear simulation code for the actual B747 built from readily available information. Once the 

flight testing was complete, the simulation code would then be altered and the neural network 

autopilots adjusted for the 1/25 simulation model. Therefore, the objective of this research was to 

develop and evaluate the neural network autopilot systems using a computer simulation of the B747 

dynamics. 

Five neural network autopilot systems were developed using a six degree-of-freedom non- 

linear mathematical model of the B747. Concurrent designs were performed using the Standard and 

Extended Back-Propagation algorithms. These autopilot systems were compared based on their 

abilities to perform maneuvers by changing speed and altitude, pitch angle, roll angle, or direction 

angle. They were also evaluated on their abilities to adapt at non-linear conditions. Non-linear 

conditions were simulated by simultaneously exciting the angular rates to values where their products 

and squares are not negligible, as assumed in linearized models of the aircraft dynamics. 

The rest of this document contains: the derivation of the six degree-of-freedom non-linear 

equations of motion, step by step presentation of the EBPA, description of the simulation program, 

discussion of the neural network autopilot designs, results of the linear and non-linear tests, and, 

finally, conclusions and recommendations. 



Chapter 2: Aircraft Equations of Motion 

2.1 Introduction 

The simulation code that served as the basis for the development of the neural network 

autopilot systems was built using a non-linear 6 degree-of-freedom mathematical model. This chapter 

will present an overview of the derivation of the equations of motion. The full details of the derivation 

can be found in Refs.[8,19,20,21]. 

2.2 Derivation of Equations of Motion 

The equations are derived with the following assumptions: 

■ The mass of the airplane remains constant with time 

■ The aircraft is symmetric about the XZ plane 

'■                       ■   The aircraft is a rigid body 

■ Aerodynamic and thrust forces are the only external forces acting on the aircraft 

The equations of motion development begins with Newtonian expressions of conservation of 

linear and angular momentum applied to the aircraft as a non-rotating inertial axis system: 

Y,Fe« = -ft(
mV) (2.1) 

Z^«=^(*) (2.2) 

The external forces and moments acting on the aircraft are shown in Figure 2.1. The quantities V and 

h are vectors representing the velocity and angular momentum, respectively, about the aircraft center 

of gravity. It is first necessary to convert these expressions from the non-rotating axis system to the 

rotating axis system using: 



<rp    - d  - 

(2.3) 

(2.4) 

In the equations above, CO is the angular velocity vector of the body axis system and h is related to 

the angular velocity vector by the body axis inertia matrix as expressed below. 

A = 

-/. w 
-I xy        ~yy -I yz 

-L yz zz 

CO (2.5) 

Equations 2.3 and 2.4 can also be expressed as scalar equations with respect to the body axis by 

carrying out the vector mathematics and substituting the components of V (u,v,w) and 3 (p,q,r). 

Theses operations result in the following scalar expressions for the external forces and moments: 

Fx = m{ii + qw - rv) (2.6) 

Fy = m(v + ru- pw) (2.7) 

Fz = m(w + pv - qu) (2.8) 

K = KP ~ Kg ~ IJ + (/« - lyy )<F ^I^-q1)-1xPq + I^pr (2.9) 

My=-IxyP + Iyyq-Iytr + (Ixx-Izz)rp + Ixz(p
2-r2)-Ixyqr + I)Bpq 2.10) 

K=-KP-^J + JJ + (Iyy-Ixx)pq + I^(q2-p2)-Iy2pr + Ixzqr (2.11) 

The forces expressed on the left hand sides of Equations 2.6 - 2.8 can be expressed as functions of 

thrust, aerodynamic, and gravity forces as shown below. 



Fx=qSCx-mgsin(@) + T1 (2.12) 

Fy = qSCy + mgsin(O)cos(0) (2.13) 

Fz = qSCz + mgcos(O)cos(0) (2.14) 

Similarly, the moments expressed on the left hand sides of equations 2.9-2.10 can be expressed using 

aerodynamic and thrust forces as follows: 

Mx=qSbC, (2.15) 

My = qScCm (2.16) 

Mz = qSbC„ (2.17) 

It is assumed in the force and moment equations above that the engine thrust line lies on the X body 

axis. 

It is now necessary to express the aircraft orientation relative to the earth fixed inertial 

reference system through the introduction of the Euler angles 0, O, *P. This is accomplished through 

a series of axis transformations described by Figure 2.2. Note that the order of the transformation 

sequence is important because they do not act as vectors, where the commutative property holds. 

Step 1: Translate earth fixed inertial axis X'Y'Z' such that the axis origin lies at the 

aircraft center of gravity and rename it as Xi YiZi. 

Step 2: Rotate XiYiZj about Zi through an angle *F (heading angle) to give X2Y2Z2. 

Step 3: Rotate X2Y2Z2 about Y2 through an angle 0 (pitch angle) to give X3Y3Z3. 



Step 4: Rotate X3Y3Z3 about X3 through an angle <D (roll angle) to give the original 

body axis XYZ. 

The resulting roll, pitch, and yaw rates can be expressed by this rotation sequence as functions of the 

Euler angles in matrix format. 

p <D 1       0          0 ~0~ "l       0          0 "cos(0) 0 -sir<0)~ "o~ 
q - 0  H h 0   cos(<I>)   sin(0) 0 H h 0   cos(<l>)   sin(<l>) 0      1       0 ■0 

r 0 0  -sin(<I>)  cos(0) _0_ 0 -sir<0) cos(<I>) sir<0)  0   cos(0) ¥ 

(2.18) 

Solving this matrix equation gives expressions for Euler angular rates known as the kinematic 

equations: 

O = p + q sin(O)tan(0) + r cos(O)tan(0) 

0 = q cos(O) - r sin(O) 

4* = ^sin(O)sec(0) + rcos(O)sec(0) 

(2.19) 

(2.20) 

(2.21) 

The six degree-of-freedom mathematical model is given by the force, moment, and kinematic 

equations. Notice that equations 2.6-2.8 are dependent on the velocity components u, v, and w. These 

equations need to be expressed in terms of a polar coordinate system defined by a, ß, and V in order to 

be compatible with readily measured aircraft parameters. This system conversion can be accomplished 

by employing the following relationship between the aircraft body axis (XYZ), stability axis (differing 

from body axis by a), and wind axis (defined using V as the positive X axis). Figure 2.3 indicates the 

following: 
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V = Vw2 + v2 + w2 (2.22) 

a = tan"1 — (2.23) 

/^sin-'ljy (2.24) 

Evaluating the derivatives of the above equations and working with equations 2.6-2.8 results in the 

following expressions for the wind axis translational accelerations. 

•     F F F 
V = — cos(a)cos(/?) + —sin(y0) +—sin(a)cos(/?) (2.25) 

m mm 

.    (F. cos(a) - Fx sin(a)) ,  x     , ^       . ,  s 
a = — V—77r-^-^- + ^-jpcos(a)tan(/?)-rsin(a)tan(5) (2.26) 

mVcos(p) 

•       cos(g)sinQg) ^    cos(yg) ^    sin(g)sin(>g) „ _ 
/?=" ^ F*+~mT~Fy- m~V F.+P**")-r™*<*)    (2-27) 

The final six degree of freedom non-linear aircraft mathematical model can now be obtained by 

substituting the force and moment components into equations 2.9-2.11 and equations 2.25-2.27. The 

resulting expressions for the accelerations above are the following: 

— o 

V = -—CD    + gcos(O)cos(0)sin(a)cos(/?) + gsin(<3>)cos(0)sin(/?) 

T 
-gsin(0)cos(a)cos(/O +—cos(a)cos(/?) (2.28) 
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ä = q-ptan(ß)cos(a)-rtm(ß)sin(a)-   J        CL mVcos(ß) 

gcos(0)cos(g>)sin(«)   gsin(Q)sin(«)     Tsinja) 
Tcos(^) +     Fcos(>9)     ~ mVcos(ß) (2'29) 

ß = psm(a)-rcos(a) + ——Cr   +-Jcos(yff)cos(0)sin(O) 
mV    "*•'    V 

g £ zT 
•^sin(/?)cos(0)cos($)sin(a) + psin(y?)sin(0)cos(a)--2—sin(>ff)cos(a) (2.30) 

The final equations for roll, pitch, and yaw rates are given next: 

P = JL(q-pr) + ^(r + pq)+(I,y    Uqr + ^(q2-r2) + qSbC, (2.31) 
XX XX *xx *xx 

q = ^(P + qr) + ^(r-pq)+iL~I"\r + j^(r2-p2) + ~qScCm      (2.32) 
yy yy yy yy *yy 

^^(p-qr^iq + pr^'^^q + ^ip'-q^ + qSbC» (2.33) 

The kinematic equations are restated below: 

Ö = p + #sin(<D)tan(0) + rcos(O)tan(0) (2.34) 

0 = ^cos(O)-rsin(O) (2.35) 

4, = ^sin(d))sec(0) + rcos(<D)sec(0) (2.36) 
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Expressions for accelerations in the normal, x, y, and z directions in g units are given below. 

_qS_ 
aNorm - (--Norm (2.37) 

ax = -—CA+  (2.38) 
mg   \    mg 

qs „ ay=—Cy (2.39) y    mg 

«z=^om,cos(0)cos(<E)) (2.40) 

Finally, aerodynamic force and moment coefficients are defined using a linear component build-up 

method. The lift, drag, and side force coefficients are given below. 

Q = Ch+CLa + CLJE + CLJh+CL^ + CL^ (2.41) 

CD = CDo+CDa + CDJh + CDJE (2.42) 

Cr = Cro+Cyßß+CrJA+CrJR + Cyl^)p + Cy[^)r (2.43) 

The lift and drag force coefficients are also related to the normal and axial force coefficients through 

the following equations. 

Q = CNom cos(a) - CA sin(or) (2.44) 

CD=CNomsm(a) + CAcos(a) (2.45) 
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Simüarly, the wind axis force coefficients can be expressed as functions of the drag and side force 

coefficients. 

CD^=CDcos(ß)-CySin(ß) (2.46) 

Cr^ = CD 
sin(ß) + Cr cos(yff) (2.47) 

Lastly, the pitching, rolling, and yawing moment coefficients are listed below. 

Cm-C^+Cma^C^h + CmJE + Cml^) + Cml§) (2.48) 

Q = q+C^+C^+C^ + Ct(^ + q(^)r (2.49) 

C„ = C^+Q/+C%^+C„^Ä + C^^ + C„^ (2.50) 

2.3 Standard Atmosphere 

One last detail needs to be introduced in reference to the equations of motion. These equations 

discussed in this chapter are dependent on the dynamic pressure, q, which is a function of the aircraft 

speed and density of the air at altitude. The standard atmosphere is a model of the air properties 

resulting from experiments conducted by the U.S. Air Force in 195922. This model tabulates average 

values of pressure, temperature, and density as functions of altitude up to approximately 345,000 feet. 

This discussion will be limited to the first two regions of the standard atmosphere, which covers up to 

approximately 82,000 ft. 
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The first region of the standard atmosphere is a gradient region where the temperature 

decreases linearly with increasing altitude. This region begins at sea level and ends at 36,089 feet. 

Expressions for the density and temperature are given below. 

( T 3.567x10-3 W+l 

KFJ ^ P = Po 

T = T0-3.567xlO-\h-h0) (2.52) 

the second region of the standard atmosphere is an isothermal region that encompasses altitudes from 

36,089 feet to 82,020 feet. The density as a function of altitude in this region is given as: 

P = Pie     ' l (2.53) 

Additional regions are not included here or in the numerical simulation code since the aircraft does not 

operate at altitudes that exceed the second region of the standard atmosphere. Full details on the 

definition of the standard atmosphere can be found in Refs.[8,22]. 

The equations of motion presented here are left in the most general form. These are usually 

reduced further to produce either linear s-domain transfer functions or linear time domain state space 

models. The general model presented here doesn't lend itself to discussion of dynamic modes 

expressed as the roots of the s-domain characteristic equations or the eigenvalues of the system state 

matrix. The full details of linearizing this model are not presented here but can be found in 

Refs.[8,19,20]. Mention will be made of the use of a linear model of the aircraft dynamics to give an 

awareness of the dynamic modes and handling qualities. 
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Chapter 3: The Extended Back Propagation Algorithm 

3.1 Introduction 

The diffusion of the Back-Propagation algorithm renewed interest in neural network research 

by introducing a method of training multi-layer networks. This removed the limitation of applying 

neural networks to linearly separable problems. However, the BPA, referred to here as the Standard 

Back-Propagation algorithm, has been shown to have limitations. In attempting to minimize a cost 

function the SBPA has a tendency to become trapped in local minima, characterized by oscillating 

weights and network outputs, which the network may or may not eventually break out of. In on-line 

learning control problems becoming trapped may cause system instability and divergence. 

Additionally, the SBPA can be slow in learning the behavior of complex systems characterized by non- 

linear dynamics. Quicker learning can be achieved by increasing the learning rate, but this also 

increases the tendency to become trapped in local minima. Many solutions to these problems have 

been proposed, most notably of which is the addition of a momentum term. This modification adds a 

portion of the previous weight change to the new connection weights2. In theory, when the network is 

moving in the direction toward the solution, this additional term will give "momentum" to weight 

changes in that direction. The pit fall of this method is that when the network is moving away from the 

desired solution, the momentum term will continue to push the network in the wrong direction. Again, 

this behavior is undesirable in on-line learning control applications. These problems with the SBPA 

prompted the development of the Extended Backpropagation Algorithm. 

3.2 The Extended Back Propagation Algorithm (EBPA) 

The heterogeneous structure of the EBPA trained network lends to its increased learning 

capabilities over the SBPA. Each neuron in the hidden and output layers has the ability to update the 

upper limit, lower limit, and slope of its individual sigmoid activation function.   In contrast, every 
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hidden and output neuron in the SBPA network uses the same activation function and updates only the 

connection weights. This section presents the step by step process of the EBPA. A general neural 

network trained by the EBPA is given in Figure 3.1. 

The difference between the EBPA and the SBPA is characterized by the activation function. 

The SBPA uses a bipolar sigmoid function given by the equation below. 

Knet) = j—^-\ (3.1) 

The EBPA uses a "modified" sigmoid function. The modified sigmoid activation function is given by 

the following equation: 

f(net,U,L,T) =-—r+L Q2) 

The U, L, and T arguments Correspond to general upper bound, lower bound, and temperature (slope) 

of the sigmoid function respectively. Each of these parameters is updated for every hidden and output 

neuron during training. Note that the standard sigmoid function results if U, L, and T are 1, -1, and 1 

respectively. Figure 3.2 describes the modified sigmoid function. The Extended Back-Propagation 

algorithm is presented step-by-step below. The full details of the EBPA are outlined in Ref.fl 1]. 

Step #0 (off-line): Initialize the connection weights (v and w), upper and lower bounds (U, L), 

temperatures (T), and thresholds (0, T) as random numbers between -0.5 and 0.5. Also assign values 

to the learning rates (r|net, r^, and r|T). Note that the SBPA only uses r|net. 
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Foreword Phase 

Step #1: Calculate the input to the hidden layer neurons using the following equation. 

m 

neti=2_,vliIj+Ti;   i= l,...,k (neurons in hidden layer) (3.3) 

Step #2: Calculate hidden layer output using modified sigmoid function (Equation (3.2)). 

Step #3: Calculate the input to the output layer using the equation below. 

netj =2lwtjHi+Qj  ; j = l,...,n (number of output neurons) (3.4) 

Step #4: Calculate Output Layer Output using modified sigmoid function given by Equation (3.2). 

Step #5: Evaluate the error or cost function to propagate back to the network. 

Backward Phase 

Step #6: Back-Propagation of error to output layer through error signals: 

önetj=ttetj(Jj-0j) '(3-5) 

<^=/^(F,-6>,) (3.6) 

SLj=flj(Yj-0J) (3.7) 

Sr^f^Yj-Oj) (3.8) 

where: 
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Step #7:   Back-Propagation of the error to the hidden layer through error signals: 

n 

<L, =A2X0^ (3.13) 
j 

Su^tiX^W, (3.14) 
J 

öLl=ttXöLWv (3.15) 
J 

n 

ST, = frX^H <316) 

where: 

"J 

_   ff   _   {OJ-UJXOJ-LJ) 
Jnet'    chetj TjiUj-Lj) (317) 

er _     1 
Jvi~ du ~     --^ (318) 
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A'=I;=1-^ (319) 

Step #8: Update connection weights: 

AWv(k + 1) = Vneßne.Oj + OjLW{k) (3.21) 

AVtJ(k + \)=rinet8netHi+anetAV{k) (322) 

Step #9: Update Thresholds: 

AT((^ +1) = nJS^ + aJKtf) (3.23) 

A0,(* +1) = T]netSnetj + anetATj(k) (3.24) 

Step #10: Update Upper Bounds: 

AUj(k +1) = T1ULSUJ + a^AUjik) (3.25) 

AUt(k +1) = rhjL5Ui + a^AU^k) (3.26) 

Step #11: Update Lower Bounds: 

A^/(* +1) = %A, + araALy(A:) (3.27) 

A£,(* +1) = %t<%, + cCmAL^k) (3.28) 
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Step #12: Update Temperatures: 

ATj(k +1) = rjj.^ + aTATj(k) (3.29) 

ATt(k +1) =*&.<$. + arATt(k) (3.30) 

this procedure can be directly applied to the aircraft neural network autopilot controllers. The details 

of selecting the input data pattern, number hidden layer neurons, output, and performance index will be 

discussed in Chapter 5. 

3.3 On-Line Learning 

The typical training of a neural network involves presenting the network with sets of training 

data consisting of input and corresponding desired output values. Once the network has been trained to 

desired performance levels, the structure is "frozen" (learning disabled) and applied to perform the task 

it was trained for. This requires that enough training data be presented to represent the entire range of 

possible network inputs. In the case of an aircraft, this would require vast amounts of flight data 

covering the entire flight envelope. Although neural networks have remarkable capabilities of 

generalizing their training to new situations, there is no practical way for them to be trained to cover 

every circumstance. On-line learning is an indirect technique where the network learns the dynamics of 

the system as it operates. Instead of presenting the network with data sets of inputs and desired output 

pairs, the network is presented with the aircraft states for several previous time steps. The output of the 

network is the control input to the system. The network continuously (learning never disabled) updates 

its structure in order to find the control inputs necessary to minimize a cost function that is related to 

the desired aircraft state. This allows the neural network autopilot systems to learn the local dynamics, 

of the system; linear or non-linear, time invariant or time variant, at any point in the flight envelope. 
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Chapter 4: Numerical Simulation 

4.1 Introduction 

A simulation software was developed for the Boeing 747 using Microsoft® Visual Basic® 

version 5.0. This software combined the six degree-of-freedom non-linear mathematical model with 

neural network autopilot algorithms using the Standard and Extended Back-Propagation algorithms. 

This chapter will give details on the combination of these topics in the numerical simulation program. 

This chapter will also discuss the simulation of the linear and non-linear tests of the ANN autopilots. 

4.2 Aircraft Geometric and Aerodynamic parameters 

The B747 is a transport aircraft with commercial and military applications. The aircraft has a 

wing span of 196 feet and 4 engines giving a total thrust of 192,000 lbs. The primary control surfaces 

are: elevator, rudder, and ailerons. The elevator and rudder have maximum deflections of ±25 

degrees while the maximum aileron deflection is ±20 degrees. The ailerons are assumed to move 

symmetrically giving the total aileron surface deflection. Aerodynamic data were not available to 

include spoilers and flaps in the simulation. The geometric properties, mass characteristics, and 

aerodynamic coefficients corresponding to low and high cruise conditions are given in Ref. [19] and 

summarized in Table 4.1. 

The dynamic modes of the aircraft were reviewed by consulting linear approximations of the 

aircraft dynamics presented in Refs.[ 19,20]. The short period and phugoid are the longitudinal 

dynamic modes, which exhibit oscillatory response characteristics, described by 2 pairs of complex 

conjugate s-domain poles. The lateral dynamics are characterized by 2 real poles and 1 pair of 

complex conjugate poles corresponding to rolling, spiral, and Dutch roll modes. The longitudinal 

mode of concern is the phugoid at high cruise. It has a very low natural frequency (about 0.08) and 

small negative damping ratio (about -0.028) implying that the uncompensated system will tend to 
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slowly diverge in response to an elevator input. The Dutch roll mode is the lateral directional mode of 

concern for both low and high cruise conditions. This mode is characterized by coupled rolling and 

yawing motion which naturally tends to be lightly damped for swept wing aircraft24. The Dutch roll 

damping is approximately 0.1 and 0.05 for low and high cruise respectively. The high cruise phugoid 

is easily controlled by the pilot or by a longitudinal stability augmentation system. Likewise, the Dutch 

roll mode can be compensated for using a yaw damper control system. However, on-line learning 

neural networks have the ability to control these modes without using additional compensation. 

4.3 Simulation of Aircraft Dynamics 

The simulation program features a graphical interface utilizing various Windows features, such 

as scroll bars, menus, and buttons accessible through key strokes or mouse clicks. This user interface is 

shown in Figure 4.1. The simulation begins with the choice of flight condition through the "Flight 

Condition" menu. When a flight condition is chosen the aerodynamic, mass, and geometric properties 

are initialized. Additionally, the aircraft trim elevator deflection, angle of attack, and throttle settings 

are calculated. Once the flight condition is chosen the "Start" button is unlocked and can be clicked to 

begin the simulation. 

Figure 4.2 is a block diagram describing the program steps. The system inputs are passed to 

the differential equations, which are evaluated and integrated using a fourth order Runge-Kutta 

technique to find the aircraft states25. These states are then displayed in the text boxes on the screen 

and saved to data files if the appropriate selection has been made from the "Save Data" menu. A check 

is then made to see if the autopilot systems have been engaged through the "Autopilots" menu. If the 

autopilots are engaged, the neural networks determine the control inputs for the next time step. Refer 

back to Figure 3.1 for details on the neural network autopilot block in Figure 4.2. If the autopilots have 

not been engaged, the program takes the user defined system inputs made by moving the throttle and 

control surface scroll bars.    Other features of the software include user ability, through a menu 
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selection, to view plots on-line of any of the aircraft states. Additionally, the user has the abilities to 

change the default learning rates of the networks and to engage the momentum terms to aid network 

learning performance. 

4.4 Simulation of Linear and Non-linear Tests 

The neural networks were used to perform linear maneuvers involving commanded altitude 

and speed inputs, roll, pitch, or direction angle inputs. Modified definitions for settling times were 

introduced. In the case of the AHNN, the settling time is the time from when the network is engaged 

until oscillation within ±5 feet is achieved. The settling time for the SHNN is the time to achieve 

oscillation within ±1 ft/s. The settling times for the RHNN, PHNN, and DHNN are defined to be the 

time from network engagement until the plane reaches and remains within ±0.5 degrees of the input 

reference value. 

Non-linear studies focused on two areas. The first focused on the coupling between the 

longitudinal and lateral directional dynamics by simultaneously exciting p and q. This state was 

simulated by moving the aileron scroll bar to -20 degrees and the elevator scroll bar to 25 degrees. 

Once both p and q reached a specified tolerance level, the RHNN and PHNN autopilots were engaged. 

They were instructed to return the aircraft to a constant pitch angle of three degrees and wings level 

condition. The settling times recorded for these runs were selected to reflect the time to reach and 

maintain ±0.5 degrees of the reference roll and pitch angles. The second study involved 

simultaneously exciting all of the non-linear terms in the equations of motion. All three angular rates, 

p, q, and r, were raised to various tolerance levels, at which time the PHNN and DHNN were engaged. 

These networks were instructed to return to constant three degrees of pitch, wings level, and zero yaw 

rate. The settling times recorded for these runs were selected to reflect the time to reach and maintain 

±0.5 degrees of the reference roll and pitch angles and yaw rate oscillation between ±0.1 deg/s. The 

results of these tests are presented in Chapter 6. 
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Chapter 5: On-Line Learning Neural Network Autopilot Systems 

5.1 Introduction 

The previous chapter discussed the combination of the equations of motion with the neural 

network autopilot controllers in a simulation code. This chapter will discuss the design of the 

autopilots and the final network structures. The autopilot systems considered were: 

■ Altitude Hold (AHNN) 

■ Pitch Hold (PHNN) 

■ Airspeed Hold (SHNN) 

■ Roll Angle Hold (RHNN) 

■ Direction (heading) Angle Hold (DHNN) 

On-line training using both SBPA and EBPA algorithms was chosen in order to avoid facing the same 

dilemmas as classical autopilots using gain scheduling. Although the networks could be trained off- 

line using non-linear simulation models, their effectiveness would still be limited to situations 

resembling the training model while requiring significant training time and massive amounts of training 

data. Furthermore, training the neural networks to have the abilities to perform maneuvers at linear 

maneuvers as well as regain steady state conditions when at non-linear conditions would be extremely 

challenging. On-line training adds flexibility by allowing the neural controllers to adjust their 

structures to learn the dynamics of the system at any given time to perform linear maneuvers or adapt 

at non-linear conditions while requiring no initial training. The final neural network designs are 

presented below. Their design parameters were chosen based on observing their performances at linear 

and non-linear conditions. 
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5.2 Design Considerations 

There are many degrees of freedom in designing on-line learning neural network controllers. 

Careful consideration of these design parameters is important to the performance of the network 

controllers. These design parameters include: 

■ Performance index to be nunimized 

■ Selection of input data pattern 

■ Network topology (single or multiple hidden layer, number of neurons per 

hidden layer) 

■ Learning rate 

Neural network autopilot performance is most critically dependent on the selection of the 

performance index to be minimized. It seems logical that the quantities used in the feedback loops of 

classical controllers should be used in the performance indices to be minimized in neural network 

control systems. Previous investigations found these variables to be effective quantities to be used in 

the performance indices when arranged to resemble error formulations of classical PI, PD, or PID 

controllers fl . See Refs. [20,23] for block diagrams of classical autopilot systems. This allows a 

theoretical link to be made between classical and neural network control methods. A general form for 

the performance indices is given by: 

J = w(X-X^)+v(X-X^) (5.1) 

where w and v are weighting factors, X indicates the general variable to be controlled, and the 

reference values are chosen by the user. Terms can be added to this form to change the behavior of the 

controller.  Although neural network controllers are not designed using the classical specifications of 
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rise time, settling time, peak overshoot, and delay time, they can be directly influenced by the selection 

of the weighting terms. The weighting terms in the performance indices presented below were chosen 

in order to minimize: the peak overshoot in linear maneuvers, transient oscillatory behavior for both 

linear maneuvers and non-linear excitations, and settling times. 

Previous studies have suggested that careful selection of the input data patterns is another 

important factor in controller performance13. Since each autopilot system is being tasked to learn the 

non-linear relationship between the system control inputs and the resulting aircraft states, careful 

consideration of the inputs to the networks must be made. Selecting input data that is not strongly 

related to the controlled state and the network output will result in undesirable performance. With 

some exceptions in the AHNN and DHNN, the same quantities used in the performance indices and the 

associated control values are used as inputs to the neural networks. The aforementioned reference also 

indicates that on-line learning neural networks are robust to the size of the input data window. 

However, the data window should be large enough to allow the neural controllers to adequately leam 

the system dynamics, but small enough to keep computational costs to a minimum. 

The studies mentioned in Ref. [13] mentioned that neural controllers are robust in the selection 

of the number of hidden layers. It has been shown that single hidden layer networks are as capable of 

performing the control task as multiple layer networks13. In fact, it has been shown that neural network 

architectures with at least one hidden layer have the ability to map any non-linear dynamics after being 

adequately trained4'813'. Therefore, single hidden layer networks were chosen for the autopilot systems. 

Additional hidden layers slow the process by adding more connections resulting in more multiplication 

operations in the foreword phase and more complex operations in the feedback phase as the output 

error has to be passed to an additional hidden layer to update its structure. 

Selection of the network learning rates also strongly affects the performance of the neural 

autopilots. Since on-line learning is being used, it is necessary to select the largest possible learning 

rates to aid in the learning of the system dynamics.   However, learning rates that are too large will 
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result in longer converge times caused by significant overshoot of target values due to large initial 

changes in the network free parameters. The networks will eventually converge at linear conditions, 

but at non-linear conditions where the network is trying to regain steady state conditions, oscillating 

behavior may cause an unrecoverable aircraft state. Observing simulation output indicated that the 

EBPA works well with learning rates that range from 0.2 to 0.5 while the SBPA performs best with 

learning rates on the order of 0.001. The network learning rates were chosen to minimize the 

occurrences of local minima trappings as well as satisfy criterion mentioned for selection of the 

weighting terms in the performance indices. 

The considerations of performance index, input data pattern, network topology, and learning 

rate were used to design the autopilot systems mentioned below. The SBPA and EBPA networks have 

the same input data, performance indices, and output values. The two algorithms differ in the network 

structures and learning rates. 

5.3 Altitude Hold Autopilot (AHNN) 

The AHNN can be activated to maintain a specified cruising altitude or to perform a change in 

altitude maneuver by introducing a new reference altitude value. The inputs for this autopilot were 

chosen to reflect the relationships between altitude, altitude rate of change, pitch angle, and pitch rate, 

and elevator control inputs. The neural inputs, output, and performance index are given below: 

Inputs: 0 , q, h, h,SE 

Output: SE 

PI:       J = 0.05(A-/W) + 0.75(/7-^) + 10(?-<^) 

Notice that the performance index differs from equation 5.1 by the additional term dealing with the 

pitch rate.   This term was chosen to penalize pitching motion, which would oscillate significantly 
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enough to cause the system behavior to become highly unstable when performing altitude change 

maneuvers. 

5.4 Pitch Hold Autopilot (PHNN) 

The pitch hold autopilot has several duties. Under linear conditions it is used to maneuver the 

aircraft to desired reference pitch angles. When engaged under non-linear excitation this network is 

used as a pitch damper. It cancels pitch rate and returns the aircraft to an arbitrary reference pitch angle 

(3 degrees in this research). The neural network input quantities were chosen to reflect the relationship 

between the pitch angle, pitch rate, and elevator control inputs. The neural inputs, output and 

performance index are stated below: 

Inputs: 0 , q, SE 

Output:  6E 

PI:       J = 025(Q-&^) + 0.5(q-q^) 

5.5 Airspeed Hold Autopilot (SHNN) 

The job of this controller was to maintain or maneuver to a reference cruising speed. The 

inputs to the neural network allow the network to learn the relationship between the airspeed, 

acceleration, and thrust control inputs. The inputs, output, and performance index are given below: 

Inputs:  V, V, ST 

Output: ST 

PI:       J = 0.5(V^-V) + 0.S(V-V^) 
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5.6 Roll Hold Autopilot (RHNN) 

The Roll Hold neural network autopilot has similar function to the pitch hold network. Under 

linear conditions it can be used to maneuver and maintain a desired roll angle. When employed during 

non-linear excitations it is used as a roll damper whose job is to stop angular motion and return to 

steady state roll condition (O = 0). The input variables were chosen to represent the relationships 

between roll angle, roll rate, aileron deflection, and rudder control inputs. The inputs, output and 

performance index are given below: 

Inputs:   0,p,SA,SR 

Output: SA 

PI:       J = 0.25(®ref-<t>) + 2.0(pref-p) 

5.7 Direction Hold Autopilot (DHNN) 

The DHNN has the most difficult job of any neural controller designed for this project. This is 

due to the complex dynamic modes in the lateral directional dynamics. The lowly damped Dutch roll 

root necessitates the ability of the network to replace the yaw damping function in the typical flight 

control system. The DHNN serves two functions: to allow a direction change maneuvers by 

presenting the network with reference heading angles, and to compensate when subjected to non-linear 

excitations. 

This network is unique because it has two outputs: 6A and 8R. This was chosen since the 

single rudder output version designed to stop yawing motion did not cooperate with the RHNN. The 

RHNN had difficulty compensating for the rolling motion induced by rudder inputs. Therefore, since a 

large correlation exists between rolling and rudder input, it was decided to try a multiple output 

network configuration. Additionally, each output neuron has a performance index relating to it. One 

performance index updates the network according to rolling motion and the other according to yawing. 
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Also, the network uses a separate set of performance indices for maneuvering and non-linear 

compensation. Classical heading angle command autopilot systems use roll rate, roll angle, and 

heading angle in feedback, while yaw dampers feedback yaw rate23. In other words, the heading angle 

command has an embedded roll command system in it. This was reflected in the choice of the 

performance indices for the DHNN. The inputs, outputs, and performance indices are stated below. 

Inputs:   <D,/?, ¥,r SA,SR 

Output: SA ,SR 

PI:       Jx = 0.1CP - HV) + 0.7(r - rref ) + 0.25(r - rref ) 

h = 0.1(0^ - O) + 2.5^ -p) + 0.25C/V - p) 

At non-linear conditions the performance indices are altered slightly. A penalty is not placed on the 

heading angle. The only concern is to damp out the yawing motion and return to level wing position. 

The performance indices used for this task are given as follows: 

PI:       /1=0.7(r-r^) + 0.25(r-r^) 

h =0.3(0^-0) + 2.50V-/>) 

The final network structures presented in this chapter displayed the best observed performance 

in terms of transient response characteristics and settling times for the entire range of linear and non- 

linear tests. The designs began with considering the aforementioned guidelines for choosing neural 

network autopilot parameters and referring to neural network structures for autopilot designs presented 

in Refs.[3,13,14] as examples. These considerations were then applied to the B747 neural network 

autopilot designs. The weighting factors in the performance indices and learning rates were adjusted in 

order to reduce oscillating behavior while keeping settling times as small as possible. 
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Chapter 6: Evaluation of Adaptation Capabilities at 

Linear and Non-linear Conditions 

6.1 Linear Maneuvers Using AHNN and SHNN Autopilots 

The altitude and speed networks were engaged together to perform the maneuvers 

corresponding to the flight conditions listed in Table 6.1 for low cruise and Table 6.2 for high cruise. 

These maneuvers involved altitude changes up to 1500 feet and speed changes up to 130 ft/s.  The 

initial cruising condition selected was presented to the AHNN and SHNN first in order to allow the 

networks to update their random structures.  The resulting AHNN and SHNN responses are given in 

Figures 6.1-6.4 for low cruise and in Figures 6.5-6.10 for high cruise.   The settling times for these 

maneuvers are reported in Tables 6.3 and 6.4. At low cruise, the SBPA and EBPA AHNN's results are 

similar. The EBPA does, however, move to the desired altitude with less osculation, resembling a first 

order response. The speed responses differ significantly between the SBPA and EBPA SHNN's   The 

EBPA responses show moderate overshoot with quick convergence to the commanded value for all 

conditions. The SBPA follows similar trends for the first few maneuvers but soon shows difficulty in 

achieving the reference value and eventually fails.   When failure occurred the throttle locked at 

maximum value. At this time the SHNN was disengaged and the throttle reset to the initial condition in 

order to continue AH maneuvers.  Similar behavior is displayed at high cruise for both the SBPA and 

EBPA speed and altitude networks. The SBPA speed hold network did fail and was disengaged, as in 

the low cruise case, to allow maneuvering in altitude to continue.   At both cruising conditions the 

AHNN using the EBPA appeared to perform consistently throughout the cycle where the SBPA 

performance improved slightly with continued training.  The EBPA trained AHNN and SHNN were 

able to perform the maneuvers at high cruise while accommodating for the moderately unstable 

phugoid. 
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6.2 Linear Maneuvers Using PHNN and RHNN Autopilots 

Similar procedures were used to separately test the ability of the PHNN and RHNN autopilots 

to perform maneuvers by presenting them with reference pitch or roll angles. They are both reported in 

this section due to the similarities in procedures and results. The reference pitch and roll angles were 

varied between ±20 degrees at both low and high cruise conditions. The settling times for the PHNN 

are reported in Tables 6.5 and 6.6 and the pitch responses are given in Figures 6.11 and 6.12. Similarly, 

the RHNN settling times are reported in Tables 6.7 and 6.8 and the roll responses are plotted in Figures 

6.13 and 6.14. The pitch responses at both low cruise and high cruise are similar for both SBPA and 

EBPA with the SBPA actually reaching the desired targets sooner than the EBP A. The SBPA PHNN 

exhibits more oscillatory behavior at high cruise than does its EBPA counterpart. Although the SBPA 

reaches the target tolerances quicker than the EBPA the EBPA oscillates less. The rolling responses 

show that the SBPA and EBPA based RHNN's performances are virtually identical. The settling times 

for the RHNN's are similar with the SBPA being slightly lower. As with the altitude network, the 

SBPA appears to improve its performance as time passes whereas the EBPA performs consistently. 

Again, the pitch responses show that the NN based controllers have the ability to compensate for the 

lowly damped high cruise phugoid. 

6.3 Linear Maneuvers Using DHNN Autopilots 

Heading angle maneuvers were performed similarly to the roll and pitch maneuvers. These 

maneuvers were performed at low and high cruise by presenting the DHNN with a series of reference 

heading angles corresponding to changes up to 20 degrees. Figures 6.15 and 6.16 show the heading 

angle and corresponding roll angle responses at low cruise. The same responses for high cruise are 

shown in Figures 6.17 and 6.18. Additionally, Tables 6.9 and 6.10 report the settling times for these 

maneuvers. The EBPA demonstrates the ability to achieve the commanded heading angles in every 

case for both flight conditions while reducing the roll angle to about 0 degrees. The SBPA also shows 
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the ability to achieve the desired heading angles at low cruise, but takes significantly longer than the 

EBPA. The SBPA does have difficulty returning the aircraft to level wing position, but seems to 

perform better as more maneuvers are performed. It does, however, diverge in the last« case. 

6.4 Non-linear Adaptation Capabilities with Excited p and q Rates 

Non-linear conditions were simulated by setting the aileron and elevator positions to maximum 

settings.   The PHNN and RHNN autopilots were engaged once both pitch and roll rates exceeded 

target values ranging from 1 to 18 deg/s.   Figures 6.19-6.36 show the aircraft responses and neural 

control inputs at low cruise. High cruse aircraft responses and control inputs are given in Figures 3.37- 

6.44.   Tables 6.11 and 6.12 report the corresponding settling times.   The tablets report the settling 

times for all cases while the plots give the results for only the even cases.   The SBPA has shorter 

settling times for the lower cases, but oscillates more than the EBPA.   The EBPA has considerably 

shorter settling times for cases above 3 deg/s and moves more directly to the desired aircraft states. 

The SBPA has difficulty with the 4, 6, and 8 deg/s cases at low cruise and with the 6 and 8 deg/s cases 

at high cruise.   At the 4 deg/s, the SBPA diverges as the neural aileron input to the system locks at 

maximum deflection.   The SBPA behavior at the 6 and 8 deg/s cases at low and high cruise are 

characterized by oscillating aileron inputs, which cause high frequency low amplitude oscillations in 

roll rate about 0 deg/s. The roll angle, however, does not oscillate and moves to the 0 degrees of roll 

state.   The SBPA fails to achieve steady state conditions beyond 12 deg/s.   The EBPA performs 

consistently through the range of excitation except for the 16 deg/s case.   At 16 deg/s the EBPA 

displays oscillating aileron inputs causing oscillation in the roll angle and roll rate. 

6.5 Non-linear Adaptation Capabilities with Excited p, q, and r Rates 

The most difficult task for the NN autopilots is to adapt when subjected to all three angular 

rates.  The non-linear conditions were induced by giving maximum open loop elevator, aileron, and 
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rudder inputs. Once all three angular rates were above target values ranging from 1 to 12 deg/s, the 

DHNN and PHNN autopilots were engaged. Figures 6.45-6.62 show the low cruise aircraft responses 

and NN inputs to the system as they attempt to compensate for the non-linear conditions. Figures 6.63- 

6.77 show the high cruise aircraft responses and NN control inputs. Tables 6.13 and 6.14 report the 

corresponding settling times. Overall, the EBPA has quicker settling times and more direct movement 

toward the target aircraft state at low cruise. The EBPA does have difficulty with the 4 and 8 deg/s 

cases, which take the EBPA longer to damp the rolling and yawing rates. At high cruise, the EBPA 

clearly demonstrates superior ability to compensate for the non-linear disturbances. The EBPA 

converges for every case whereas the SBPA only converges for 4 out of 10. The EBPA generally 

converges with lower settling times and less oscillation. The EBPA does have some difficulty with the 

6 and 7 deg/s cases displaying the same behavior as with the 4 and 8 deg/s cases at low cruise. 

6.6 Summary of Results 

These results can be summarized by stating that the EBPA based autopilot systems generally 

performed better than the SBPA autopilot systems. The EBPA neural networks were able to perform 

maneuvers and non-linear compensation for cases beyond where the SBPA networks failed. The 

EBPA based neural network controllers displayed less oscillating behavior over the entire range of 

linear maneuvers and non-linear compensation tests, even at conditions where the phugoid and Dutch 

roll dynamic modes were lightly damped. This is true even in the limited number of cases where the 

SBPA based autopilots reached the target conditions in less time. The ability of each hidden and 

output layer neuron in the EBPA based networks to adjust the slope and output range of its individual 

sigmoid activation function leads to this improved performance over the SBPA. 
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Chapter 7: Conclusions and Recommendations 

7.1 Conclusions 

Five on-line learning neural network autopilot systems were applied to a six degree-of-freedom 

non-linear simulation model of a Boeing 747. Two training algorithms were used: the SBPA and 

EBPA. They were tested and compared based on their abilities to perform maneuvers at linear 

conditions and adaptation capabilities at non-linear conditions. In general, on-line learning neural 

network algorithms have the abilities to perform the linear maneuvers and compensate for non-linear 

disturbances while dealing with moderately undesirable dynamic modes. Proper design choices of the 

performance indices, neural structure, and learning rates allow the networks to perform these tasks by 

quickly learning the dynamics of the system and control it without previous training. The training 

algorithm choice depends on the purpose of the autopilot. The SBPA performs adequately for linear 

maneuvers involving pitch and roll angles, or compensation at slightly non-linear conditions involving 

p and q. The EBPA clearly is more effective for maneuvers involving altitude and speed or direction 

changes, and for the entire range of non-linear compensation. Overall, the EBPA trained neural 

network autopilot systems have the ability to perform a wider range of linear maneuvers while 

compensating for undesirable dynamic modes and to adapt to non-linear excitations to regain steady 

state conditions. 

7.2 Recommendations 

The main suggestion for extending this research is to apply the simulated controllers to the 

physical system. The simulation program presented in this document should be updated to simulate the 

dynamics of the 1/25 scale B747 once the flight testing phase produces the necessary information. The 

neural network autopilot systems should then be evaluated and updated as necessary to perform the 

autopilot tasks of the scale model.    The simulation program should be further updated by the 
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introduction of sensor and system noise models. Once the simulation code and the neural network 

autopilot systems have been updated, the networks could then be implemented via hardware and 

interfaced with the simulation code. After ensuring the hardware based neural network autopilot 

systems have the ability to operate as desired, they should then be placed in the flight computer to be 

used in the control laws. 

Another extension of this research would be to design stability augmentation controllers, using 

either classical or neural network methods, to compensate for the high cruise phugoid and lowly 

damped Dutch roll. These controllers could be applied to increase the stability of the system, which 

then could serve as the basis for neural autopilot design. The neural autopilots designed using the 

stable platform could then be compared to the ones designed using the pure open loop dynamics. 

Lastly, studies need to be performed to determine the optimal selection of the performance 

indices to be minimized in neural network autopilot systems. It has been shown that performance 

indices resembling the error formulations of classical PI, PD, and PID controllers are effective. 

However, the theoretical link between the selection of the weighting factors and meeting classical time 

domain specifications of rise time, settling time, overshoot, closed loop natural frequency, and closed 

loop damping is still vague. It would be beneficial to know how to select the weighting terms based 

on defined classical time domain specifications to reduce the interactive nature of adjusting the 

weighting factors. 
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Reference Geometry 

5500 
27.3 
196 

 .—,^-j. 

- 
Stft2) 
c(ft) 
b(ft) 

Flieht Condition Low Cruise High Cruise 

h(ft) 
Mach Number 
U, (ft/s) 
CG. location (fraction of c ) 
Angle of attack ai (deg) 

20,000 
0.65 
673 
0.25 
2.5 

40,000 
0.9 
871 
0.25 
2.4 

Mass Data 

W (lbs) 
L* (slugs ft2) 
lyy (slUgS ft2) 
Izz (slugs ft2) 
I« (SlUgS ft2) 

636,636 
18,200,000 
33,100,000 
49,700,000 
970,000 

636,636 
18,200,000 
33,100,000 
49,700,000 
970,000 

Steady State Coefficients 

0.4 0.52 CA 
CA 0.0250 0.0450 

^i 
0.0250 0.0450 

C. 0 0 

0 0 

Longitudinal Coefficients 

0.0164 0.0305 <v 
^ 0 0.22 
c*. 0.20 0.50 

-0.055 -0.950 

CA, 0.21 0.29 
C^ 0.13 -0.23 

Q. 4.4 5,5 

Q; 7.0 8.0 

c* 
6.6 7.8 

0 0 

0.013 -0.09 
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Cm                                           -1.0 -1.6 
C*                                              "40 -9.0 

Cmq                                              -20.5 -25.5 
C^                                               ° 0 
c-;                     o 0 

Longitudinal Control Derivatives 

o CDsE(rad-1)                              0 

Ci% (raT1)                               0.32 0.30 

C^ (rarf-1)                               -1.30 -1.20 

CDih (rad'1)                               0 0 

QJm^1)                                 0.70 0.65 

Cmih (rad-1)                               -2.7 -2.5 

Lateral-Directional Coefficients 

-0.095 Clß                                               -0.160 

Q                                                -0.340 
p -0.320 

C,r                                               0.130 0.200 
- 

C„                                               -0.90 -0.90 

Qyp                                             0 0 
C*                                         o 0 

Q,                                                 0.160 0.210 
c%                  ° 0 

C„                                                -0.026 
p 0.020 

C„                                                -0.280 -0.330 

Lateral-Directional Control 
Derivatives 
C,   (rad'1)                               0.013 0.014 

C^ (rad-1)                               0.008 0.005 
C^("rf"1)                                 ° 0 

C^ (rad'1)                             0.120 0.060 

C    (raJ"1)                               0.0018 -0.0028 

CnsR (rad'1)                              -0.100 -0.095 
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Table 5.1: Final Neural Network Autopilot Structures. 

AHNN 

J = M5{h-hr4) + M5{h-hr4) + W{q-qrtf) V = 1* = ° 

Inputs 

0 ,q, h, h,Si 

Output r\       Window (SBPA\EBPA)        Structure (SBPA\EBPA) 

0.001 \0.3 6\4 30-50-1 \20-30-1 

PHNN 

J = 0.25(®-®nf) + 05(q-q^) Iref   =   0 

Inputs Output T)       Window (SBPA\EBPA)        Structure (SBPA\EBPA) 

&,q,SE SE 0.01 \0.5 4\4 12-15-1 \12-15-1 

SHNN 

J = 0.5(V^-V) + 0W-V^) vref = o 

Inputs Output T\       Window (SBPA\EBPA)        Structure (SBPA\EBPA) 

s7 v , V , ST 'T       0.05\0.25 4\4 12-15-1 \12-15-1 

RHNN 

J = 0.25(0^ -<!>) +2.0(^-/0 Pr.f    =   0 

Inputs Output Ti       Window (SBPA\EBPA)        Structure (SBPA\EBPA) 

®> P>OA>°R 0A        0.01\0.5 4\4 16-19-1 \16-19-1 

DHNN 

J, =0.1(^-^) + 0.7(r- V) + 0.25(r-r^) 

J2 = 0.1(0^ - 0)) + 25{Pref - p) + 0.25QV - p) 

■/2= 0.3(0^-<D) + 2.5(^-jp) 

Inputs 

° > P >S A        SA ÖR     0.001\0.5 

(Linear)  ^ = fref = pre/ = pref = 0 

(Nonlinear)  rre/ = rre/ = pre/ = 0 

Output TI       Window (SBPA\EBPA)        Structure (SBPA\EBPA) 

5\6 36-75-2\30-36-2 
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Table 6.1: AHNN and SHNN reference input values for maneuvering at LC. 

Flight      Altitude      Speed       A Altitude     A Speed 
c°"d W WS) (ft) (Ws)  

1 20000 680 0 0 
2 20050 690 50 10 
3 20150 685 100 -5 
4 19950 650 -200 -35 
5 20250 700 300 50 
6 19900 725 -350 25 
7 19500 700 -400 -25 
8 20000 680 500 -20 
9 20500 750 500 70 
10 21000 780 500 30 
11 19000 650 -2000 -130 
12 20000 680 1000 30 

Table 6.2: AHNN and SHNN reference input values for maneuvering at HC. 

Flight       Altitude       Speed       A Altitude      A Speed 
Cond (ft) (ft/s) {ft) (WsJ  

0 
14 

-15 
-35 
50 
20 
-25 
-9 

100 
-31 

-100 
12 40000 775 1000 31 

1 40000 775 0 
2 40050 789 50 
3 40150 774 100 
4 39950 739 -200 
5 40250 789 300 
6 39900 809 -350 
7 39500 784 -400 
8 40000 775 500 
9 41000 875 1000 
10 40500 844 -500 
11 39000 744 -1500 
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Table 6.3: Settling times for maneuvers at LC using AHNN's and SHNN's. 

Flight    Ts (Altitude)   Ts (Altitude) Ts (Speed) Ts (Speed) 
Cond (sec) (sec)      (sec] (sec) 
 SBPA EBPA SBPA EBPA 

8.4 15.1 7.6 
32.35 10.2 10.1 
43.25 10.75 7.55 
51.95 69.85 22.65 
57.5 35.05 23.1 

61.05 25.5 15 
62.2 60.5 22.4 

66.15 13.75 18.35 
65.95 42.35 22.75 
65.85 28.75 21 
85.1 Throttle Locked 27.65 
75.3 Throttle Locked 27.35 

Note: Ts (altitude) is the time from AHNN engagement until oscillation within 5 feet. 
Note: Ts (speed) is the time from SHNN engagement until oscillation within 1 ft/s. 

1 29.1 
2 31.2 
3 42.85 
4 58.85 
5 57.4 
6 61.4 
7 65.85 
8 65.75 
9 66.35 
10 66.3 
11 123.45 
12 105.9 

Table 6.4: Settling times for maneuvers at HC using AHNN's and SHNN's 

Flight Ts (Altitude) Ts (Altitude) Ts (Speed) Ts (Speed) 
Cond (sec) (sec) (sec) (sec) 

SBPA EBPA SBPA EBPA 

1 53.35 20.6 15.75 1495 
2 42.45 29.9 8.45 15.1 
3 45.8 43.55 9 12.3 
4 170.15 53.75 23.3 
5 78.4 60.55 28.7 
6 78.19 61.65 Throttle Locked 12.95 
7 77.3 63.2 and set to 34% 27.9 
8 89.45 65.85 to keep performing 19.4 
9 104.3 77.85 altitude maneuvers 31 
10 75.9 67.5 23.8 
11 81.85 80.9 38.6 
12 80.1 75.85 34.95 

Note: Ts (altitude) is the time from AHNN engagement until oscillation within 5 feet. 
Note: Ts (speed) is the time from SHNN engagement until oscillation within 1 ft/s. 
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Table 6.5: Settling times for maneuvers at LC using PHNN's. 
Maneuver ©ref 

(deg) 
A© 

(deg) 
Ts 

(sec) 
Ts 

(sec) 
SBPA EBPA 

0 2.65 - - - 
1 5 2.35 6.55 6.75 
2 10 5 9.6 11.05 
3 -5 -15 14.3 16.35 
4 15 20 42.35 17.2 
5 20 5 11.6 10.95 
6 0 -20 27.9 18.25 
7 -5 -5 8.7 11.4 
8 5 10 11.85 15.4 
9 -10 -15 14.15 16.15 
10 -20 -10 10.3 13.15 
11 -10 10 4.3 11.85 
12 2.65 12.65 4.45 11.3 
13 10 7.35 4.25 10.25 
14 20 10 10.75 11.75 
15 2.65 -17.35 21.3 14.8 

Note: Ts is the time from PHNN engagement until oscillation within 0.5 deg. 

Table 6.6: Settling times for maneuvers at HC using PHNN's. 
Maneuver ©ref 

(deg) 
A© 

(deg) 
Ts 

(sec) 
Ts 

(sec) 
SBPA EBPA 

0 2.6 - - - 
1 5 2.4 14.2 18.65 
2 10 5 13.1 17.15 
3 0 -10 16.9 21.45 
4 15 15 31.25 36.65 
5 20 5 - 45.6 
6 0 -20 45.35 52.9 
7 -5 -5 13.65 17.4 
8 5 10 15.95 20.15 
9 -10 -15 27.85 32.45 
10 -20 -10 14.35 16.45 
11 0 20 11.35 21.9 
12 3 3 4.2 10.45 

Note: Ts is the time from PHNN engagement until oscillation within 0.5 deg. 
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Table 6.7: Settling times for maneuvers at LC using RHNN's. 
Maneuver Oref AO Ts Ts 
 (deg) (deg) (sec) (sec) 

SBPA EBPA 

0 0 - - - 

1 5 5 15.8 19.75 
2 15 10 18.3 20.1 
3 30 15 - - 

4 20 -10 31.25 36.4 
5 10 -10 23.45 26.8 
6 0 -10 20.3 22.9 
7 -5 -5 15 16.8 
8 -15 -10 17.4 19.15 
9 -20 -5 12.65 14.35 
10 -10 10 23.7 26.3 
11 0 10 20.5 22.9 

Note: Ts is the time from RHNN engagement until oscillation within 0.5 deg. 

Table 6.8: Settling times for maneuvers at HC using RHNN's. 
Maneuver Oref AO Ts Ts 
 (deg) (deg) (sec) (sec) 

SBPA EBPA 

0 0 - - - 
1 5 5 17.6 12.9 
2 15 10 19.35 19 
3 30 15 19.55 19.4 
4 20 -10 29.55 28.5 
5 10 -10 22.15 22.8 
6 0 -10 20.85 20.35 
7 -5 -5 17.1 17.75 
8 -15 -10 19.45 19.25 
9 -20 -5 11.2 15.25 
10 -10 10 22.2 22.7 
11 0 10 20.85 20.3 

Note: Ts is the time from RHNN engagement until oscillation within 0.5 deg. 
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Table 6.9: Settling times for maneuvers at LC using DHNN's. 
Maneuver        *Fref A*P Ts Ts 
 (deg) (deg) (sec) (sec) 
  SBPA EBPA 

0 0 - - - 
1 5 5 89 32 
2 15 10 93.2 21.35 
3 20 5 88.75 40.8 
4 10 -10 94.95 49.7 
5 0 -10 76.3 51.05 
6 -5 -5 76.75 22.6 
7 -15 -10 97.4 27.05 
8 -20 -5 88.85 22.45 
9 -10 10 - 22.8 
10 0 10 93 20.4 
11 18 18 - 35.65 
12 0 -18 - 53.85 

Note: Ts is the time from DHNN engagement until oscillation within 0.5 deg. 

Table 6.10: Settling times for maneuvers at HC using DHNN's. 
Maneuver Tref AT Ts Ts 

(deg) (deg) (sec) (sec) 
SBPA EBPA 

0 0 
1 5 5 80.35 25.05 
2 15 10 - 66.15 
3 20 5 - 77 
4 10 -10 86.9 63.3 
5 0 -10 - 64.55 
6 -5 -5 96.7 47.25 
7 -15 -10 11.5 74.7 
8 -20 -5 88.65 25.8 
9 -10 10 - 92.95 
10 0 10 - 92.35 

Note: Ts is the time from DHNN engagement until oscillation within 0.5 deg. 
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Table 6.11: Settling times for p and q non-linear excitations at LC. 
p, q Ts Ts 

(deg/s)     (sec)      (sec)  
SBPA EBPA 

1 12.1 12.2 0ref = 3 deg 
2 12 12.8 Oref = 0 deg 
3 16.55 13.1 
4 - 13.8 
5 19.65 15.45 
6 25.5 22.75 
7 38.15 23.8 
8 49.75 24.5 
9 39.45 25.3 
10 29.4 20.65 
11 44.95 20.8 
12 64.3 24.35 
14 - 25.3 
16 - - 
18 _ 39.15 

Note: Ts is the time from PHNN and RHNN engagement until 0 and 0> oscillation 
within 0.5 deg of reference values. 

Table 6.12: Settling times for p and q non-linear excitations at HC. 
p, q                   Ts Ts 

(deg/s) (sec) (sec) 
SBPA EBPA 

1 12.7 16.35 0ref = 3 deg 
2 16.2 17.5 Oref = 0 deg 
3 18.45 19.5 
4 26.75 20.1 
5 31.4 29.15 
6 35.45 30.45 
7 35.25 30.85 
8 35.75 30.85 

Note: Ts is the time from PHNN and RHNN engagement until 0 and O oscillation 
within 0.5 deg of reference values. 
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Table 6.13: Settling times for p, q and r non-linear excitations at LC. 
P. q, r                 Ts Ts 
(deg/s) (sec) (sec) 

SBPA EBPA 

1 161.9 
2 65.8 
3 47 
4 46.6 
5 46.5 
6 46.25 
7 46.8 
8 47.55 
9 47.9 
10 48.5 
11 48.5 
12 49.55 

Note: Ts is the time from PHNN and DHNN engagement until 0 and <E> oscillation within 0.5 deg 
and r within 0.1 deg/s of reference values. 

23.95 0ref = 3 deg 
33.6 <Dref = 0 deg 

30.05 rref = 0 deg/s 
82.35 
40.65 
43.05 
46.45 
52.75 
28.6 
33.35 
33.4 

37.25 

Table 6.14: Settling times for p, q and r non-linear excitations at HC. 
P,q, r ts ts 
(deg/s) (sec) (sec)  

SBPA EBPA 

1 - 20.6 0ref = 3 deg 
2 - 38.65 Oref = 0 deg 
3 105.5 55.8 rref = 0 deg/s 
4 87.2 28 
5 66.25 62 
6 67.25 108.2 
7 - 111.2 
8 - 32.1 
9 - . 
10 . 39.25 

Note: Ts is the time from PHNN and DHNN engagement until 0 and $ oscillation within 0.5 deg 
and r within 0.1 deg/s of reference values. 
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EXTENDED BACK-PROPAGATION ALGORITHM 

Updates Weights (W,V), Thresholds (T, 0) 
Upper and Lower Bounds (U,L), Temperatures (T) 

Output Layer 
n Neurons V^Q 

Weights: W 
Thresh: Gamma 

Hidden Layer 
k neurons 

Thresh: Theta 
Weights: V 

Input Layer 
m input data 

Input#1 Input #2 Input #r 

Figure 3.1:   General representation of a 3 layer neural network trained with the Extended Back- 
Propagation Algorithm14. 

Upper Bound, U 

Lower Bound, L" 

Figure 3.2:    Extended Back-Propagation sigmoid activation function for general U, L, and T 
arguments. 
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Control Values 
8E 8A 8R 8T 

Motion Equations 
& 

Fourth Order Runge Kutta 
Numerical Integration 

a vq ©h 
ßpr<D¥ 
ax ay az 3n 

Update Text Output 
Update Plot (if enabled) 

Write States to Data file (if enabled) 

N 

On-Line Learning Neural Network 
Autopilots 

(AHNN,PHNN,SHNN,RHNN,DHNN) 
determine next control input 

8E 8A 8R 8T 

On-Line Pilot 
Keyboard/Mouse 

Input 

Figure 4.2: General block diagram of simulation program with neural network autopilot controllers. 
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