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Abstract

Artificial neural qetwofks can be defined as approximate mathematical models of the human
brain’s learning activities.. In rei:éﬁt years neural networks have dénionstrated abilities to perform
autopilot and fault tolerant control tasks when applied to non-linear numerical aircraft simulations.
Five on-line learning nem:'al netwbrk autopilot systems, trained with the Standard and Extended Back-
Propagation algorithms, ’:\'yer'e applied to a six degree-of-freedom non-linear simulation of a Boeing
747-200. The perfonhénce vof the aufopilots was compared based on their abilities to perform
maneuvers at linear conditions and to adapt at non-linear conditions to restore steady state conditions.

Linear maneuvers were performed by introducing reference values of altitude and speed, pitch
angle, roll angle, or heading anglé. The performance using the SBPA was satisfactory, but the EBPA
performance was clearly superior throughout the entire range maneuvers while compensating for lightly
damped phugoid and Dutch roll modes.

Non-linear adaptation investigations were performed by exciting the non-linear terms in the
equations of motion. The non-linear conditions were achieved in two ways: by simultaneously

exciting pitch and roll rates with maximum elevator and aileron inputs, and the other by simultanéously

. exciting roll, pitch, and yaw rates with maximum elevator, aileron, and rudder inputs. The EBPA

based controllers were able to regain steady state conditions for both non-linear tests with better
transient performance than their SBPA counterparts. The SBPA showed only limited ability to adapt in
cases where all three angular rates were excited.

Artificial neural networks trained on-line using the Extended Back-Propagation algorithm are
concluded to be better suited for autopilot systems for the 1/25 scale Boeing 747 based on their

superior abilities to perform linear maneuvers and regain steady state conditions when at non-linear

conditions.
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Artificial neural networks can be defined as approximate mathematical models of the human
brain’s learning activities. In recent years neural networks have demonstrated abilities to perform
autopilot ‘and fault tolerant control tasks when applied to non-linear numerical aircraft simulations.
Five on-line learning neural network autopilot systems, trained with the Standard and Extended Back-
Propagation algo}ithms, were applied to a six degree-of-freedom non-linear simulation of a Boeing
747-200. The performance of the autopilots was compared based on their abilities to perform
maneuvers at linear conditions and to adapt at non-linear conditions to restore steady state conditions.

Linear maneuvers were performed by introducing reference values of altitude and speed, pitch
angle, roll angle, or heading angle. The performance using the SBPA was satisfactdry, but the EBPA
performance was clearly superior throughout the entire range maneuvers while compensating for lightly
damped phugoid and Dutch roll modes.

Non-linear adaptation investigations were performed by exciting the non-linear terms in the
equations of motion. The non-linear conditions were achieved in two ways: by simultaneously
exciting pitch and roll rates with maximum elevator and aileron inputs, and the other by simultanéously
- exciting roll, pitch, and yaw rates with maximum elevator, aileron, and rudder inputs. The EBPA
based controllers were able to regain steady state conditions for both non-linear tests with better
transient performance than their SBPA counterparts. The SBPA showed only limited ability to adapt in
cases where all three angular rates were excited.

Artificial neural networks trained on-line using the Extended Back-Propagation algorithm are
concluded to be better suited for autopilot systems for the 1/25 scale Boeing 747 based on their
superior abilities to perform linear maneuvers and regain steady state conditions when at non-linear

conditions.
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Abstract

Artificial neural networks can be defined as approximate mathematical models of the human
brain’s learning activities. In recent years neural networks have demonstrated abilities to perform
autopilot and fault tolerant control tasks when applied to non-linear numerical aircraft simulations.
Five on-line learning neural network autopilot systems, trained with the Standard and Extended Back-
Propagation algorithms, were applied to a six degree-of-freedom non-linear simulation of a Boeing
747-200. The performance of the autopilots was compared based on their abilities to perform
maneuvers at linear conditions and to adapt at non-linear conditions to restore steady state conditions.

Linear maneuvers were performed by introducing reference values of altitude and speed, pitch
angle, roll angle, or heading angle. The performance using the SBPA was satisfactory, but the EBPA
performance was clearly superior throughout the entire range maneuveré while compensating for lightly
damped phugoid and Dutch roll modes.

Non-linear adaptation investigations were performed by exciting the non-linear terms in the
equations of motion. The non-linear conditions were achieved in two ways: by simultaneously
exciting pitch and roll rates with maximum elevator and aileron inputs, and the other by simultanéously
- exciting roll, pitch, and yaw rates with maximum elevator, aileron, and rudder inputs. The EBPA
based controllers were able to regain steady state conditions for both non-linear tests with better
transient performance than their SBPA counterparts. The SBPA showed only limited ability to adapt in
cases where all three angular rates were excited.

Artificial neural networks trained on-line using the Extended Back-Propagation algorithm are
concluded to be better suited for autopilot systems for the 1/25 scale Boeing 747 based on their
superior abilities to perform linear maneuvers and regain steady state conditions when at non-linear

conditions.
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Chapter 1: Introduction

1.1 Biological and Artificial Neural Networks

It can be argued that the best control system is an experienced human operator. Human beings
are able to learn to do very complex tasks. Once properly trained, humans are able to perform these
tasks with minimal concentration while performing other tasks simulfaneously. Consider a child
leaniing to ride a bicycle or a teenager learning to drive a car. Initially, total focus and attention is
required to control the bicycle or car. Any small disturbance may elicit a significant reaction. With
time and exberience the control of these systems requires less and less effort. Think of a novice pilot.
It takes a significant amount of time to learn the purpose of the instruments and how to operate the
aircraﬂ.’ Initially, the workload may seem overwhelming. However, training and practice eventually
will help the pilot become an expert to the point where flying an airplane becomes natural to him. The
remarkable ability of the human brain to learn and perform complex tasks .is the rﬂotivation for the
development of Artificial Neural Networks (ANN’s).

The human brain is made up of approximately 10'' processing elements called neurons. Each
neuron has on the order of 10* connections to other neurons'. In other words, the brain is comprised of
many interconnected parallel processing elements. Each neuron has three key elements: dendrites,
soma or cell body, and axons. The dendrites serve as the input signal carriers. They carry the input
signals to the neurons from other connected neurons and chemically alter thg signals, which is similar
to multiplying them by scaling factors. The cell body (soma) sums the scaled incoming signals. Once A
the potential reaches some threshold value the cell sends an output signal over the axons to other
neurons"?, |

Since the brain is so powerful, it is desirable to model it, in a limited way, to solve complex
problems using ever advahcing computer fechnology. ANN’s are approximate mathematical models

inspired by the brain’s neural anatomy. ANN’s are made up of many processing elements, also



referred to as neurons. These neurons share and transmit information through connection links. These
connéctions also have associated vs;eights that multiply the incoming signais to the neurons. The
individual neuron sums the weighted input signals and applies a mathematical activation function to the
weighted sum input to produce the output to be transmitted to other neurons™. ANN’s are
characterized by the arrangement of neurons and connections and the method used td update the
connection weights. Detailed presentations of different architectures and training éigorithms are

presented in Refs.[1,2,6,7].

1.2 Historical Develo'pment‘ of Artificial Neural Networks

Pioneer research work on artificial neural networks éan be traced back to the 1940’s when
Warren McCulloch and Walter Pi&s desigﬁed what are commonly considered the first neural networks.
The McCulloch-Pitts neuron compared a weighted sum input to a threshold. If the weighted sum was
greater than or equal to the threshold, the neuron output was assigned a value of 1. If the weighted sum
was less than the threshold, the neuron output was 0. These neurons were arranged into a network and
weights adjusted to produce outputs that were combinations of logical functions>. The 1940’s also
brought about the first learning law for ANN’s. In 1949 psychologist Donald Hebb developed a
learning law based on the premise that the connection weights between two simultaneously active
neurons should be strengthened®. |

The 1950’s and 1960’s are referred to as “The First Golden Age of ‘Neural Networks.”? Frank
Rosenblatt was interested in applying sets of interconnected neurons using non-linear hard-limiting
activation ﬁlncﬁons using iterative weight adjustment to typed character recognition. Rosenblatt’s
neural network was a hardware based network known as the Perceptron. The Perceptron had the ability

to separate data inputs into one of two classes as long as there was a suitable set of connection weights

~ to solve the problem. Oscillatory behavior resulted when suitable weights did not exist>>.



During the same time frame, Bernard Widrow and Marcian Hoff developed the “Adaptive
Linear Neuron” (ADALINE) and “Multiple Adaptive Linear Neuron” (MADALINE). The difference
between the ADALINE, MADALINE, and Perceptron was in the activation function and training.
Widrow used a continuous non-linear activation function and a Least Meé‘n Square training method>>.
The MADALINE network has been aﬁplied to adaptive modems, nulling'of RADAR jammers, and m
adaptive equalizers in telephone lines. |
| | The limitations of the aforementioned networks led to loss of interest in neural network
research in the 1970’s. The main limitation of these networks was that they were only able to solve
linearly separable problems. Both Rosenblatt and Widrow broposed that multiple layer networks
would be able t§ overcome this limitation, but neitherb wés able to apply their learning rules to train
more than their single layer networks'. Although interest in neural networks subsided, Teuvo Kohonen
applied associative networks to speech recognition, musical composition, and solved the classical
“Traveling Salesman Problem.” James Anderson also applied associative memory networks to medical
diagnosis®.

The advent of the Backprbpagation algorithm (BPA) sparked a renewed interest in neural
networks in the 1980’s. The BPA was designed to train a multiplé layer network by “propagating”
information about the output error to the hidden layer neurons. The idea of training a multiple layer
network using the output error was ﬁ;st int_roduced by Werbos in 1974. The method was again
discovered independently by Parker and LeCmi in 1985 and 1986 respectively‘.b Finally, David
Rumethart and James McClelland refined and publicized Parker’s work. The BPA is a gradient
descent method that minimizes the mean squared error between desired and actual network 6utputs ora
cost function representing desired system behavior™>*. |

Other work during the 1980’s included the development of the Hopfield network by John
Hopfield and David Tank. The Hopﬁeld( network is characterized by fixed weights and adaptive

activation functions and were applied to solve constraint satisfaction problems like the “Traveling



Salesman Problem.” The Neocognitron was applied by Kunihiko Fukushirﬁa to character recognition
problems where the charécter was distorted by position or rotation’.

The BPA solved the problems associated with the early neural networks, namely the ability to
train multi-layer networks and to solve linearly separable problems, but it too had some limifaﬁons.
The BPA had problems in becoming trapped in local minima characterized by oscillating wéights and
outputs, resulting in network failure to converge to the desired output. The BPA also can be slow in
bleaming large order or complex systems. These two problems with the BPA prompted the
development of the Extended Back-Propagation Algorithm (EBPA) by Chih-Liang Chen in 1992 at
West Virginia Univérsi_ty (WVU). The EBPA is a heterogeneous network that increases the learning -
capabilities of the BPA by allowing each individual neuron in the hidden and output layers to update its

output characteristics by adjusting the range and slope of the activation function™®.

1.3 Applications of Artificial Neural Networks
Artificial neural networks are being applied in many different disciplines. The banking and
financial industries use them to read documenté and checks, evaluate credit applications, and perform
corporate financial analyses. The medical field utilizes ANN’s to assist in making diagnoses, analyze
breast cancer cell tests, and ‘evaluate EEG and ECG readings. The defense industry uses neural
networks in differentiating between friendly and hostile targets, weapon steering, and target tracking.
Manufacturing companies use themi in process control, dynamic modeling, and product quality
analysis. These are just a few fields, and limited number of examples for each, where artificial neural
 networks are used. Other ﬁélds use neural networks for speech production, speech recognition, non-
linear mathematical modeling, design analysis, quality assessment, and various types of optimizétion
problems'.
* Another main interest area of applying neural network technology is in aircraft control. Neural

networks are being applied to flight path simulations, autopilot systems, flight control systems, and




component fault detection, identification, and accommodation’. In 1991 C.M. Ha épplied ANN’sto a
pitch rate controller and to the lateral control laws of a 6 degree-of-freedom linear state-space aircraft
model. Ha trained his netWorks off-line using the linear model, froze the weights, and tested the
resulting neural str_ucfure on-line’. In 1989 Dr. Marcello Napolitano at WVU began applying neurai
network algorithms to Actuator Failure Detection Identiﬁcation and Accommodation (AFDIA)
problems®!!. Later, he extended research to include Sensor Failure Defection Identification and
Accommodation (SFDIA) schemes'?. Neural network research at WVU has also included neural
network autopilots for an F-15 simulation mode13”3”4; neural network autopilot and SFDIA schemes
applied to the NASA/Aurora Thesis aircraft*®!’, and signal reconstruction from black box data for

crash investigations'®!.

SFDIA research has been extended by hardware implementation using a
custom made neural network PC board interfaced with a Simulink model of the longitudinal dynamics
of an F-14 aircraft'®. These studies have concluded that software and hardware based artificial neural
network technology has the ability to leamn complex non-linear dynamics on-line to perform basic
autopilot functions and to detect and accommodate for a variety of hardware failures.

The motivation for using neural network technology in aircraft control is to replace the existing
linear time invariant (LTI) based methods with more flexible and adaptable systems. Current methods
rely on feedback gains calculated off-line at many points in the flight envelope. These gains are then
stored in the flight computer and interpolated between when moving between models in the flight
envelope. These methods are computationally intensive in the scheduling of the feedback gains and are
not suitable for highly non-linear conditions. Furthermore, performance of controllers designed using
LTI methods critically depends on accurate modeling of the system dynamics®'*'*. Neural networks
using an on-line learning approach have the ability to learn the aircraﬁvdynamics throughout the entire
flight envelope, regardless if the system is linear or non-linear, t;me variant or time invariant, and with

or without system and measurement noise>*%!5,




1.4 Research Objectives

The 1/25 scale B747 model is being used to test neural network based autopilot controllers,
SFDIA, and AFDIA schemes. Phase I of the project is to design, construct, gnd conduct the first flight
of the vehicle. Phase II is to carry out flight testing that will produce the aerodynamic information
necessary to build a simulation code based on a non-linear mathematical model. Phase IIl and Phase
IV are to be conducted simultaneously to develop the fault detection and autopilot neural systems using
the simulation model of the aircraft. Lastly, the neural network algorithms will be implemented into a
flight computer system and tested.

While Phase I was being carried out, it was decided to develop the autopilot systems using a
non-linear simulation code for the actual B747 built from readily available information. Once the
flight testing was éomplete, the simulation code would then be altered and the neural network
autopilots adjusted for the 1/25 simulation model. Therefore, the objective of this research was to ‘
develop and evaluate the neural network autopilot systems using a computer simulation of the B747
dynamics.

. Five neural network autopilot systems were developed using a six degree-of-freedoni non-
linear mathematical model of the B747. Concurrent designs were performed using the Standard and
Extended Back-Propagation algorithms. These autopilot systems were compared bas;':d on their

abilities to perform maneuvers by changing speed apd altitude, pitch éngle, roll angle, or direction
angle. They were also evaluated on their abilities to adapt at non-linear conditions. Non-linear
conditions were simulated by simultaneously exciting the angular rates to values where their products
and squares are not negligible, as assumed in linearized models of the aircraft dynamics.

The rest of this document contains: the derivation of the six degree-of-freedom non-linear
equations of motion, step by step presentation of the EBPA, description of the simulation program,
discussion of the neural network autopilot designs, results of the linear and non-linear tests, and,

finally, conclusions and recommendations.



Chapter 2: Aircraft Equations of Motion

2.1 Introduction
The simulation code that served as the basis for the development of the neural network
autopilot systems was built using a non-linear 6 degree-of-freedom mathematical model. This chapter

will present an overview of the derivation of the equations of motion. The full details of the derivation

can be found in Refs.[8,19,20,21].

2.2 Derivation of Equations of Motion '
The equations are derived with the following assumptions:
B The mass of the airplane remains constant with time
B The aircraft is symmetric about the XZ plane

¢ B The aircraft is a rigid body

B Aerodynamic and thrust forces are the only external forces acting on the aircraft
The equations of motion development begins with Newtonian expressions of conservation of ,

linear and angular momentum applied to the aircraft as a non-rotating inertial axis system:

. d .
D FE,= —(mV) @2.1)
- d -
2 M, = AL (2.2)

The external forces and moments acting on the aircraft are shown in Figure 2.1. The quantities ¥ and

h are vectors representing the velocity and angular momentum, respectively, about the aircraft center

~of gravity. It is first necessary to convert these expressions from the non-rotating axis system to the

rotating axis system using:




> F, =§(ml7)+a'5x(ml7) (2.3)

Zﬂa,=§’-ﬁ+dixﬁ 4

In the equations above, @ is the angular velocity vector of the body axis system and 7 is related to

the angular velocity vector by the body axis inertia matrix as expressed below.

I, -1, -1, |
h=|-1, I, -1 & 2.5)
-1, -1, I,

Equations 2.3 and 2.4 can also be expressed as scalar equations with respect to the body axis by

carrying out the vector mathematics and substituting the components of V (u,v,w) and @ (p,q.1).

Theses operations result in the following scalar expressions for the external forces and moments:

F, =m(i+qw—rv) (2.6)
F, =m(v+ru-pw) - | 2.7
F,=m(w+ pv-qu) (2.8)
M, =‘1,“p—1;yq—1,¢r'+(1zz ~1,)qr+1,(r* —q*)-1_pq+1,pr (2.9)
M, =—Ixyj9+1”,q—]yzf+(1x,—Izz)rp+1xz(p2—rz)—lwqr+lwpq 2.10)

M, =-I_p-1,4+15+(, —Im)pq+1xy(qz —pz)-—Iﬂpr+I,zqr (2.11)

The forces expressed on the left hand sides of Equations 2.6 - 2.8 can be expressed as functions of

thrust, aerodynamic, and gravity forces as shown below.



F,=gSC,-mgsin(@)+T" (2.12)
F,=gSC, + mgsin(®)cos(O) (2.13)

F, =gSC, + mgcos(®)cos(®) (2.14)

Similarly, the moments expressed on the left hand sides of equations 2.9-2.10 can be expreséed using

aerodynamic and thrust forces as follows:

M, =gShC, | | (2.15)

M, =gseC, 2.16)
M, =gShC, | @.17)

| It is assumed in the force and m(;ment equations above that the engine thrust line lies on the X'body
axis.
It is now necessary to express the aircraft orientation relative to the earth fixed inertial
reference system &uough the introducﬁonv of the Euler angles ©, @, \P. Hﬁs is accomplished througﬁ
a series of axis transformations described by Figure 2.2, Note that the order of the ﬁmsfomaﬁon .

~ sequence is important because they do not act as vectors, where the commutative property holds.

Step 1: Translate earth fixed inertial axis X’Y’Z’ such that the axis origin lies at the
aircraft center of gravity and rename it as XlYIZI.
Step 2: Rotate X,Y;Z, about Z, through an angle ¥ (heading angle) to give X,Y,Z,.

Step 3: Rotate X,Y,Z, about Y, through an angle ® (pitch angle) to give X;Y3Z;.




Step 4: Rotate X3Y3Z; about X; through an angle @ (roll angle) to give the original

body axis XYZ.

The resulting roll, pitch, and yaw rates can be expressed by this rotation sequence as functions of the

Euler angles in matrix format.

pl[®] 1 o o To]ft o 0 Joos(® 0 -sin@®)]0
gl=|0[+H0 ocos(®) sin@)[O|+0 cos(@) si®)| 0 1 0 [0]218)
r| |0] [0 -sin(®) cos(@)[0] |0 -sin(®@) cos(®)|sin®) O cos(®) | W

Solving this matrix equation gives expressions for Euler angular rates known as the kinematic

equations:

& = p+gsin(®)tan(©) + r cos(P) tan(O) (2.19)
0= g cos(D)—rsin(D) (2.20)
¥ = ¢sin(®)sec(®) + r cos(P)sec(O) (2.21)

The six degree-of-freedom mathematical model is given by the force, moment, and kinematic
equations. Notice that equations 2.6-2.8 are dependent on the velocity components u, v, and w. These
equations need to be expressed in terms of a polar coordinate system defined by «, B, aﬁd V in order to
be compatible with readily measured aircraﬁ parameters. This system conversion can be accomplished
by employing the following relationship betweeﬁ the aircraft body axis (XYZ), stability axis (differing
from body axis by «), and wind axis (defined using ¥ as the positive X axis). Figure 2.3 indicates the

following:

10



V= i# + v + W | | (2.22)

- -l(_”i) |
a =tan (2.23)
u
~ gin™! _"_)
p=sin (V (2.29)

Evaluating the derivatives of the above equations and working with equatioﬂs 2.6-2.8 results in the

following expressions for the wind axis translational accelerations.

V= L cos(a)cos(B)+ ﬂ sin( ) + Lk sin(a)cos(f) (2.25)
m m m )

. (F,cos(a) - F, sin(a))
“= mV cos( ,6)

+g - pcos(a)tan(f)—rsin(a)tan(fB) = (2.26)

fee cos(a)sin(f5) cos(f3) F,- sin(a);in(ﬂ ) F, + psin(a)—-rcos(a) (2.27)

F
my Ty

The final six degree of freedom non-linear aircraft mathematical model can now be obtained by
substituting the force and moment components into equations 2.9-2.11 and equations 2.25-2.27. The

resulting expressions for the accelerations above are the following:

V= —%’SCDM + gcos(CIJ)cos(@l)sin(a)cos(ﬂ) + gsin(®)cos(®)sin( )

- gsin(®)cos(a)cos(B) + -’%cos(a)cos(ﬂ) (2.28)

11



gs

a = q— ptan(f)cos(a) - r tan(B)sin(a) — m .
gcos(®)cos(P)sin(x) . gsin(@)sin(a); Tsin(a) 29
V cos(B) Veos(B)  mV cos(f) 22
qsS

B = psin(a)-rcos(a)+ = G, + %cos( Ji)) cos(®)>sin(d>)

m

- %sin( 7)) cos(O) cos(P)sin(ax) + -;%sin(,B) sin(®)cos(a) ~ %sin( Pcos(a) (2.30) |

The final equations for roll, pitch, and yaw rates are given next:

I, I, . ( =) 1 _
b= pr)+ 20+ p)+ 5 qr e (G - ) +FSG, (231)

xx XX xx

M I, . (I, -1,) I, 1 _
G=7(p+an)+ (- pg)+ == pr+ 7= - P')+——GSEC,  (232)
» » » pid »w

N i, . (e ) I _
r=-1—(p—qr)+-]—”"(q+pr)+f”-pq+l—"’(p2—q2)+quC,, (2.33)

zz

The kinematic equations are restated below:

® = p+gsin(®)tan(®) + r cos(P) tan(©) (2:34)

© = gcos(®) - rsin(P) | o (235)

Y= gsin(®)sec(®)+rcos(P)sec(®) (2.36)
12



Expressions for accelerations in the normal, x, y, and z directions in g units are given below.

gs
G = = C (237)
a, = ———S—C = (2.38)
mg mg .
gs
a}‘, = m—g Gy | (2.39)
a, = ay,,, €0s(0)cos(P) (2.40)

Finally, aerodynamic force and moment coefficients are defined using a linear component build-up

method. The lift, drag, and side force coefficients are given below. .

q
C=C,+Ca+C 5 +C Lt G, (2V)+C (2V) (2.41)
Cp=Cp + CDaa +Cp, i+ Cp, Op (2.42)
G C+C/3+C 5+C 5+C(b) +C(b) (2.43 |
2w) Py 43)

The lift and drag force coefficients are also related to the normal and axial force coefficients through

the following equations.

C, = Cyom c0s(a) - C, sin(a) (2.44)
C = Cypm Sin(@) + C, cos(@) - (2.45)

13
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Similarly, the wind axis force coefficients can be expressed as functions of the drag and side force

coefficients.

Car., = Cpc03(8) G, sin()

Gy, = Cpsin(f)+ C, cos(B)

Lastly, the pitching, rolling, and yawing moment coefficients afe listed below.

C,=C,+C,a +'Cm‘hi,, +C,, G +C (ﬂ) +C,, (%)

b b
C[ = CIO +Clﬂﬂ+ CIJAJA +CIJR§R +Clp(§?)p+cl,(‘27)r

G =C, +C, B+ Co,, 64 +C, 0 +C

n

2.3 Standard Atmosphefe

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

One last detail needs to be introduced in reference to the equations of motion. These equations -

discussed in this chapter are dependent on the dynamic pressure, q, which is a function of the aircraft

speed and density of the air at altitude. The standard atmosphere is a model of the air properties

resulting from experiments conducted by the U.S. Air Force in 1959%. This model tabulates average

Qalues of pressure, temperature, and density as functions of altitude up to approximately 345,000 feet.

This discussion will be limited to the first two regions of the standard atmosphere, which covers up to

approximately 82,000 ft.
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The first region of the standard atmosphere is a gradient region where the temperature
decreases linearly with increasing altitude. This region begins at sea level and ends at 36,089 feet.

Expressions for the density and temperature are given below.

T "[(7-3.567x10—313)+1]
p=pl 2.51)
T=T,-3567x107(h—h,) (2.52)

the second region of the standard atmosphere is an isothermal region that encompasses altitudes from

36,089 feet to 82,020 feet. The density as a function of altitude in this region is given as:

= pe E/RINAh) (2.53)

Additional regions are not included here or in the rlumeﬂcal Shnulation code since the aircraft does not
operate at altitudes that exceed the second region of the standard atmosphere. Full details on the
definition of the standard atmosphere can be found in Refs.[8,22].

The equatrons of motion presented here are left in the most general form. These are usually
reduced further to produce either linear s-domam transfer functions or linear time domain state space
models. The general model presented here doesn’t lend itself to discussion of dynamic modes
expressed as the roots of the s-domain characteristic equations or the eigenvaluee of the system state
rr’latrix. The full details of linearizing this model are not presented here but can be found in
Refs.[8,19,20]. Mention will be made of the use of a linear model of the aircraft dynamics to give an

awareness of the dynamic modes and handling qualities.
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Chapter 3: The Extended Back Propagation Algorithm

3.1 Introduction

The‘diffusion of the Back-Propagation algorithm renewed interest in neural network research

by introducing a method of training multi-layer networks. This removed the limitation of applying
neural networks to linearly separable problems. However, the BPA, referred to here as the Standard
Back-Propagation algorithm, has been shown to have limitations. In attempting to mM@ze a cost
function the SBPA has a tendency to become trapped in local minima, characterized by oscillating

| weights and network outputs, which the network may or may not eventually break out of. In on-line
learning control problems becoming trapped may cause system instability and divergence.
Additionally, the SBPA can be slow in learﬁing the behavior of complex systems characteriied by non-
linear dynamics. Quicker learning can be achieved by increasing the léarnjﬁg rate, but this also
increases the tendency to become trapped in local minima. Many solutions to these problems have
been proposed, most notably of which is the addition of a momentum term. This modification adds a
portion of the previous weight change to the new connection weights®>. In theory, when the network is
mb'viﬁg in the direction toward the solution, this additional term will give “momentum” to weight
changes in that direction. The pit fall of this method is that when the network is moving aWay from the
| desired. solution, the momentum term will continue to push the network in the wrong direction. Again,
this behavior is undesirable in on-line learning control applications. These problems with the SBPA

prompted the developmexit of the Extended Backpropagation Algorithm.

3.2 The Extended Back Propagation Algorithm (EBPA)
The heterogeneous structure of the EBPA trained network lends to its increased learning
capabilities over the SBPA. Each neuron in the hidden and output layers has the ability to update the

upper limit, lower limit, and slope of its individual sigmoid activation function. In contrast, every




-hidden and output neuron in the SBPA network uses ‘the same aétivation function and updates only the

connection weights. This section presents the step by step process of the EBPA. A general neural

network trained by the EBPA is given in Figure 3.1. | |
The difference between the EBPA and the SBPA is characterized by the activation function.

The SBPA uses a bipolar sigmoid function given by the equation below.

f(net)= -1 @B.1)

1+e™

The EBPA uses a “modified” sigmoid function. The modified sigmoid actiﬁatipn function is given by

the following equation:

f(net, U,LT) =———-7+L 3.2)
1+e

The 'U, L, and T arguments correspond to general upper bound, lower bound, and température (slope)
of the sigmoid function respectively. Each of these parameters is updated for every hidden and output
neuron during training. Note that the standard sigmoid function results if U,L,and T are 1, -1, and 1
respectively. Figure 3.2 describeé the modified sigmoid function. The Extended Back-Propagation

algorithm is presented step-by-step below. The full details of the EBPA are outlined in Ref[11].
Step #0 (off-line): Initialize the connection weights (v and w), upper and lower boundé U, L),

temperatures (T), and thresholds (®, I') as random numbers between -0.5 and 0.5. Also assign values

to the learning rates (N, Nur, and 17). Note that the SBPA only uses Mper.
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Foreword Phase

Step #1:" Calculate the input to the hidden layer neurons using the following equation.
net,= Y v,I,+I, ; i=1,...k (neurons in hidden layer) (3.3)
1

Step #2: Calculate hidden layer output using modified sigmoid function (Equation (3.2)).

Step #3: Calculate the input to the output layer using the equation below.
k .
net; = Zl:w"in +®; ; j=1,...,n (number of output neurons) - (B4
i=

Step #4: Calculate Output Layer Output using modified sigmoid function given by Equation (3.2).
Step #5: Evaluate the error or cost function to propagate back to the network. |
Backward Phase

Step #6: Back-Propagation of error to output layer through error signals:

5netj = n'et_,(Yj _Oj) (3.5)
&, = Jfu,(¥;-0;) (3.6)
8, =1 -0) (3.7)
o, = f7,(1;-0;) 3.3)
where:
18



e _ ‘? __(Hi_Ui)(Hi—Li)

o het, L(U,-L)
,_F 1
fU, = 0»-[}- = ~net,
" l+e
fo= g s
,_ & nmetf,
==

Step #7: Back-Propagation of the error to the hidden layer through error signals:

nel,z

5{1, =f(},25Uijj
o

6 =fL’,Z5LJW
j .

7, = fr’ Z 5TJ W,
J
where:

' g - (Of"Uf)(Oj"Lj)

" e, T,(U,-L,)
A 1
fUJ = d]j = —net,
1+e ¥
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(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



fij:z;-.-l_fl}j
g net ot

f, — — E)

Va,T

Step #8: Update connection weights:

AVV;j(k + 1) = nnetdnethj + anetAW(k)

Al/y(k + 1) = nneté;ret, Hi + anetAV(k)
Step #9: Update Thresholds:

AT(k+1) = 1B, + 0, AT,(K)

AG)](k + 1) = nnelé;tetj + anetArj(k)
Step #10: Update Upper Bounds:

AU (k+1)= nmd,! +ay AU (k)

AUk +1)= n, 6, + ay AU (K)
Step #11: Update Lower Bounds:

AL,(k+1)= 18, + 0 AL (k)

AL (k+1)= 13,6, + o, AL (k)
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



Step #12: Update Temperatures:

AT (k+1)= 1,8, + ;AT (k) (3.29)

AT(k+1)= 18, + G AT,(K) (30)

thisQ procedure can be directly applied to the aircraft neural network autopilot controllers. The details
of selecting the input data pattern, number hidden layer neurons, output, and performance index will be

discussed in Chapter 5.

3.3 On-Line Learning

The typical training of a neural network involves presenting the network with sets of training

data consisting of input and corresponding desired output values. Once the network has been trained to

desired performance levels, the structure is “frozen” (learning disabléd) and applied to perform the task
it was trained for. This requires that enough training data be presented to represent the entire range of
possible network inputs. In the case of an aircraft, this would require vast amounts of flight data
covering the ‘entire flight envelope. Although neural networks have remarkable capabiliﬁeé of

generalizing their training to new situations, there is no practical way for them to be trained to cover

~ every circumstance. On-line learning is an indirect technique where the network learns the dynamics of

the system as it operates. Instead of presenting the network with data sets of inputs and desired output
pairs, the network is presented with the aircraft states for several previous time steps. The output of the
network is the control input to the system. | The network continuously (learning never disabled) updates
its structure in order to find the control inputs necessary to minimize a éost function that is related to
the desired aircraft state. This allows the neural network autopilot systems to leam the local dynamics,

of the system, linear or non-linear, time invariant or time variant, at any point in the flight envelope.
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Chapter 4: Numerical Simulation

4.1 Introduction
A simulétion software was developed for the Boeing 747 using Microsof.’t® Visual Basic®
versioﬁ 5;0. This software combined the six degree-of-freedom non-linear mathematical model with
neural network autopilot algorithms using the Standard and Extended Back-Propagation algorithms.
- This chapter will give details on the combination of these topics in the numerical simulation program.

This chapter will also discuss the simulation of the linear and non-linear tests of the ANN autopilots.

4.i Aircraft Geometric and Aerodynamic parameters

The B747 is a transport aircraft with commercial and military applications. The aircraft has a
wing span of 196 feet and 4 engines giving a total thrust of 192,000 1bs. The primary controlv surfaces
are: elevator, rudder, and ailerons. The elevator and rudder have maximum deflections of +25
degrees while the maximum aileron deflection is +20 degrees. The ailerons afe assumed to move
- symmetrically giving the total aileron surface deflection. Aerodynamic data were not available to
include spoilers and flaps in the simulation. The geometric properties, mass characteristics, and
aerodynamic coefficients corresponding to low and high cruise conditions are given in Ref.[>19] and
summarized in Table 4.1.

The dynamic modes of the aircraft were reviewed by consulting linear approximations of the
aircraft dynamics presented in Refs.[19,20]. The short period and phugoid are the longitudinal
dynamic modes, which exhibit oscillatory resporise characteristics, described by 2 pairs of complex
conjugate s-domain poles. The lateral ciynamics are characterized by 2 real poles and 1 pair of
' complex conjugate poles corresponding to rolling, spiral, and Dutch roll modes. The longitudinal
mode of concern is the phugoid at high cruise. It has a very low natural frequéncy (about 0.08) and

small negative damping ratio (about -0.028) implying that the uncompensated system will tend to
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slowly diverge in response to an elevator input. The Dutch roﬂ mode is the lateral directional mode of
concern for both low and high cruise conditions. This mode is characterized by coupled rolling and
yawing motion which naturally tends to be lightly damped for swept wing aircraf®*. The Dutch roll
damping is approximately 0.1 and 0.05 for low and high cruise respectively. The high cruise phugoid
is easily controlled by the pilot or by a longitudinal stability augmentation system. Likewise, the Dutch
roll mode can be compensated for using a yaw damper control system. However, on-line leamning

neural networks have the ability to control these modes without using additional compensation.

4.3 Simulation of Aircraft Dynamics

The simulation program featurés a graphical interface utilizing various Windows feafures, such
as scroll bars, menus, and buttons accessible through key strokes or mouse clicks. This user interface is
shown in Figure 4.1. The simulation begins with the choice of flight condition through the “Flight
Condition” menu. When a flight condition is chosen the aerodynamic, mass, and geometric properties
are initialized. Additionally, the aircraft trim elevator deflection, angle of attack, and throttle settings
are calculated. Once the flight condition is chosen the “Start” button is unlocked and can be clicked to
begin the simulation.

Figure 4.2 is a block diagram describing the program steps. The system inputs are passed to
the differential equations, whjch are evaluated and integrated using a fourth order Runge-Kutta
technique to find the aircraft states”. These states are then displayed in the text bvoxes- on the screen
and saved to data files if the appropriate selection has been made from the “Save Data” menu. A check
is then made to see if the autopilot systems have been engaged thrdugh tile “Aﬁtopilots” menu. If the
autopilots are engaged, the neural networks detenﬁine the control inputs for the next time step. Refer

back to Figure 3.1 for details on the neural network autopilot block in Figure 4.2. If the autopilots have

not been engaged, the program takes the user defined system inputs made by moving the throttle and

control surface scroll bars. Other features of the software include user ability, through a menu
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selection, to view plots on-line of any of the aircraft states. Additionally, the user has the abilities to
~ change the default learning rates of the networks and to engage the momentum terms to aid network

learning performance.

4.4 Simulation of Linear and Non-linear Tests

The neural networks were used to perform linear maneuvers involving commande(i altitude
and speéd inputs, roll,-pitch, or direction angle inputs. Modified definitions for settling times were
introduced. In the case of the AHNN, the settling time is the time from when the network is engaged
until oscillation within +5 feet is achieved. The settling time fdr the SHNN is the time to achieve
oscillation within +1 ft/s. The settling times for the RHNN, PHNN, and DHNN aré defined to be the
time from network engagement until the plane reaches and remains within 0.5 degrees of the input
reference value.

Non-linear studies focused on two areas. The first focused on the coupling between the
longitudinal and lateral directional dynamics by simultanéously exciting p and q. This state was |
simulated by moving the aileron scroll bar to -20 degrees and the elevator scroll bar to 25 degrees.
Once both p and q reached a specified tolerance level, the RHNN and PHNN autopilots were engagéd.‘
They were instructed to return the aircraft to a constant pitch angle of three degrees and wings level
condition. The settling times recorded for these runs were selected to reflect the ﬁﬁe to reach and
maintain +0.5 degrees of the reference roll and pitch angles. The second study involved
simultaneously exciting all of the non-linear térms in the equations of motion. All three angular rates,
P, q, and r, were raised to various tolerance levels, at which time the PHNN and DHNN were engaged.
These networks were instructed to return to constant three degrees of pitch, wings level, and zero yaw
fate. The settling times recorded for these runs were selected to reflect the time to reach and maintain
10.5 degrees of the reference roll and pitch angles and yaw rate oscillation between 0.1 deg/s. The

results of these tests are presented in Chapter 6.
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Chapter 5: On-Line Learning Neural Network Autopilot Systems'

S.1 Introduction
The previous chapter discussed the combination of the equations of motion with the neural
network autopilot controllers in a simulation code. This chapter will discuss the design of the

autopilots and the final network structures. The autopilot systems considered were:

W Altitude Hold (AHNN)
n Pitch. Hold (PHNN)

B Airspeed Hold (SHNN)

B Roll Angle Hold (RHNN)

W Direction (heading) Angle Hold (DHNN)

On-line training using both SBPA and EBPA algorithms was chosen in order to avoid facing the same
dilemmas as classical autopilots using gain scheduling. Although the networks could be trained off-
line using non-linear simulation models, their effectiveness would vstill be limited to situations
resembling the training model while requiring significant training time and massive amounts of training
data. Furthermore, training the neural networks to have the abilities to perform maneuvers at linear
maneuvers as well as regain steady state conditions when at non-linear conditions would be extremely
challenging. On-line training adds ﬂexibiﬁty by allowing the neural controllers to adjust their
structures to learn the dynamics of the syétem at any given time to perform linear nianeuvers or adapt
at non-linear cpnditions while requiring no initial training. The final neural network designs are
presented below. Their design parameters were chosen based on observing their performances at linear

and non-linear conditions.
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5.2 Design Considerations
There are many degrees of freedom in designing on-line learning neural network controllers.
Careful consideration of these design parameters is important to the performance of the network

controllers. These design parameters include:

B Performance index to be minimized

B Selection of input data pattern

B Network topology (single or multiple hidden layer,‘number of neurons per
hidden layer)

8 Learning rate

Neural network autbpilot performance is most critically dependent on the selection of the
performance index to be minimized. It seems logical that the quantities used in the feedback loops of
classical controllers should be used in the performaxice indices to be miﬂimized’in neural néfwork
control systems. Previous investigations found these variables to bé effective quantities to be used in
the performance indices when anangéd to resemble error formulations of classical PI, PD, or PID
controllers>. See Refs.[20,23] for block diagrams of classical autopilot systems. This allows a
theoretical link to be made b¢tween classical and neural network control methods. A general form for

the performance indices is given by:
J=wX- X )+ X-X,,) (5.1)

where w and v are weighting factors, X indicates the general variable to be controlled, and the
reference values are chosen by the user. Terms can be added to this form to change the behavior of the

controller. Although neural network controllers are not designed using the classical specifications of
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rfse time, settling time, peak overshoot, and delay time, they can be directly influenced by the selection
of the weighting terms. The weighting terms in the performance indices presented below were chosen
in order to minimize: the peak overshoot in linear maneuvers, transient oscillatory behavior for bothv
linear maneuvers and non-linear excitations, and settling times.

Previous studies have suggested that careful selection of the input data pétterns is another
im‘portant factor in controller performance'. Since each autopilot system is being tasked to learn the
non-linear relationship between the system control inputs and the resulting aircraft states, careful
consideration of the inputs to the networks must be made. Selecting input data that is not strongly
related to the controlled state and the network output will result m uﬁdesirable performance. With
some éxceptions in the AHNN and DHNN, the same quantities used in the performance indices and the
associated control values are used as inputs to the neural networks. The aforementioned reference also
indicates that on-line learning neural networks are robust to the size of the input data window.
However, the data window should Be large enough to allow the neural controllers to adequately learn
the system dynémics, but small enough to keep computational costs to a minimum.

The studies mentioned in Ref.[13] mentioned that neural controllers are robust in the selection
of the number of hidden layers. It has been shown that single hidden layer networks are as capable of
performing the control task as multiple layer netvvorks13 . In fact, it has been shown that neural network
architectures with at least one hidden layer haye the ability to map any non-linear dynamics after being

4
d ,8,13,

adequately traine . Therefore, single hidden layer networks were chosen for the autopilot systems.

-Additional hidden layers slow the process by adding more connections resulting in more multiplication

operations in the foreword phase and more complex operations in the feedback phase as the output
error has to be passed to an additional hidden léyer to update its structure.

Selection of the petwork learning rates also strongly affects the performance of the neural
autopilots. Since on-line learning is being used, it is necessary to select the largest possible learning

rates to aid in the leaming of the system dynamics. However, learning rates that are too large will
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result in longer converge times caused by significant overshoot of target values due to large initial
changes in the network free parameters. The networks will eventually converge at linear conditions,
but at non-linear conditions where the network is trying to regain steady state conditions, oscillating

behavior may cause an unrecoverable aircraft state. Observing simulation output indicated that the

" EBPA works well with learning rates that range from 0.2 to 0.5 while the SBPA performs best with

learning rates on the order of 0.001. The network learning rates were chosen to minimize the
occurrences of local minima trappings as well as satisfy criterion mentioned for selection of the
weighting terms in the performance indices.

The considerations of performance index, input data pattern, netwo;k topoiogy, and learning
rate were used to design the autopilot systems mentioned below. The SBPA and EBPA networks have
the same input data, performance indices, and output values. The ﬁvo algorithms differ in the network

structures and learning rates.

5.3 Altitude Hold Autopilot (AHNN)
The AHNN can be activated to maintain a specified cruising altitude or to perform a change in
altitude manéuver by introducing a new reference altitude value. The inputs for this autopilot were
chosen to reflect the relationships between altitude, altitude rate of change, pitch angle, and pﬁch rate,

and elevator control inputs. The neural inputs, outplit, and performance index are given below:

Inputs: © ,q, h, h,5;
Output: J;

PL  J=005(h~-h,)+075(h-h,)+10(g-q,,)

Notice that the performance index differs from equation 5.1 by the additional term dealing with the

pitch rate. This term was chosen to penalize pitching mbtion, which would oscillate significantly
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enough'to cause the system behavior to become highly unstable when performing altitude change

maneuvers.

5.4 Pitch Hold Autopilot (PHNN)

The pitch hold autopilot has several duties. Under linear conditions it is used to maneuver the
aircraft to desired reference pitch angles. When engaged under non-linear excitation this network is
used as a pitch damper. It cancels pitch rate aﬁd returns the aircraft to an arbitrary reference pitch angle
(3 degrees in this research). The neural network input quantities were chosen to reflect the relationship
between the pitch angle, pitch rate, and elevator control inputs. The neural inputs, output and

performance index are stated below:

Inputs: © , q,5;
Output: &

P J=0250-0,)+05g-q,,)

5.5 Airspeed Hold Autopilot (SHNN)
The job of this controller was to maintain or maneuver to a reference cruising speed. The
inputs to the neural network allow the network to learn the relationship between the airspeed,

acceleration, and thrust control inputs. The inputs, output, and performance index are given below:

Inputs: V,V, &,
Oufput: or

P J =05V, -V)+08(V -V,,)
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5.6 Roll Hold Autopilot (RHNN)

The Roll Hold neural network autopilot has similar function to the pitch hold network. Under
linear conditions it can be used to maneuver and maintain a desired roll angle. When employed during
non-linear excitations it is used as a roll damper whose job is to stop angular motion and return to
steady state roll condition (® = 0). The input variables were chosen to represent the rélationships
between roll angle, roll rate, aileron deflection, and rudder control inputs. The inputs, output and

performance index are given below:

Inputs: (I),p,é'A;§R
Output: 5,

P J =025, - D)+20p,, - p)

~ 8.7 Direction Hold Autopilot (DHNN)

The DHNN has the most difficult job of any neural controller designed for this project. This is
due to the complex dynamic modes in the lateral directional dynamics. The lowly damped Dutch roll
root necessitates the ébility of the network to replace the yaw damping function in the typical flight
control sysfem. The DHNN serves two functions: to allow a direction change maneuvers by
presenting the network with reference heading angles, and to compensate when subjected to non-linear
excitations.

This network is unique because it has two outputs: 8, and 8z. This was chosen since the
single rudder output version designed to stop yawing motion did not cooperate with the RHNN. The
RHNN had difficulty compensating for the rolling'rhotion induced by rudder inputs. Therefore, since a
large correlation exists between rolling and rudder input, it was decided to try a multiple output ‘
network configuration. Additionally, each output neuron has a performance index relating to it. One

performance index updates the network according to rolling motion and the other according to yawing,.
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Also, the network uses a separate set of performance indices for maneuvering and non-linear
compengation. Classical heading angle command autopﬂot systems use roll rate, roll angle, and
heading angle in feedback, while yaw dampe;s feedback yaw rate”. In other words, the ﬁeading angle
command has an embedded roll command system in it. This was reflected in the choice of the

performance indices for the DHNN. The inputs, outputs, and performance indices are stated below.

Inputs: ®,p, ¥,r §,,6;
Output: J, , 5,

PE J,=01(¥ -, +07(r —1,,) )+ 025( ~ 7 )

J, =0U(®D,, - D)+25(p,, - p)+025(p,, - p)

At non-linear conditions the performance indices are altered slightly. A penalty is not placed on the
heading angle. The only concern is to damp out the yawing motion and return to level wmg position.

The performance indices used for this task are given as follows:

PI: Jy =07(r —r1,,)+025(7 - Frof )
J, =03(®,,, - D)+ 2'5(P'ef -p)

The final network structures presented in this chapter displayed the best observed performance
in terms of transient response characteristics and settling times for the entire range of linear and non-
linear tests. The designs began with considering the aforementioned guidelines for choosing neural
network autopilot parameters and referring to neural network structures for autopilot designs preseﬁted
- in Refs.[3,13,14] as examples. These considerations were theﬁ applied to the B747 neural network
autopilot designs. The weighting factors in the performance indices and learning rates were adjusted in

order to reduce oscillating behavior while keeping settling times as small as possible.
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Chapter 6: Evaluation of Adaptation Capabilities at

Linear and Non-linear Conditions

6.1 Linear Maneuvers Using AHNN and SHNN Autopilots

The altitude and speéd networks were engaged together to perform the maneuvers
corresponding to the flight conditions listed in Table 6.1 for low cruise and Table 6.2 for high cruise.
These maneuvers involved altitude changes up to 1500 feet ﬁnd speed changes up to 130 ft/s. The
initial cruising condition selected was presented to the AHNN and SHNN first in order to allow the
networks to update their random structures. The resultmg AHNN and SHNN responses are glven in
Figures 6.1-6.4 for low cruise and in Figures 6.5-6.10 for high cruise. The settling times for these
maneuvers are reported in Tables 6.3 and 6.4. At low cruise, the SBPA and EBPA AHNN ’s results are
similar. The EBPA does, however, move to the desired altitudé withlless oscillation, resembling a flfst
order response. The speed resbonses differ significantly between the SBPA and EBPA SHNN’s;_ The
EBPA responses show moderate overshoot with quick convergence to the commanded value for all
conditions. The SBPA follows similar trends for the first few maneuvers but soon shows difficulty in
achieving the reference value and eventually fails. When _failure occurred the thrott1¢ locked at
maximum value. At this time the SHNN was disengaged and the throttle reset to tﬂe initial condition in
order to continue AH maneuvers. Similar behavior is displayed at high cruise for both the SBPA and
EBPA speed and altitude networks. The SBPA speed hold network did fail and was disengaged, as in
the low cruise case, to allow maneuvéring in altitude to continue. At both cruising conditions the
AHNN using the EBPA appeared to perform consistently throughout the cycle where the SBPA
performance improved slightly with continued training. The EBPA trained AHNN and SHNN were
able to perform the maneuvers at high cruise while accommodating for the moderately unstable

phugoid.
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6.2 Linear Maneuvers Using PHNN and RHNN Autopilots
- Similar procedures were used to separately test the ability of the PHNN and RHNN autopilots
to perform maneuvers by presenting them with reference pitch or roll angies. They are both reported in
this section due to the similarities in procedures and results. The reference pitch and roll angles were

varied betwéen +20 degrees at both low and high cruise conditions. The settling times for the PHNN

are reported in Tables 6.5 and 6.6 and the pitch responses are given in Figures 6.11 and 6.12. Similarly,

the RHNN settling times are reported in Tables 6.7 and 6.8 and the roli responses are plotted in Figures
6.13 and 6.14. The pitch responsés at both low cruise and high cruise are similar for both SBPA and
EBPA with the SBPA actually reaching the desired targets sooner than the EBPA. The SBPA PHNN
exhibits more oscillatory behavior at high cruise than does its EBPA counterpart. Although the SBPA
reaches the target tolerances quicker than the EBPA, the EBPA oscillates less. The rolling responses
show that the SBPA and EBPA based RHNN’s performances are virtually identical. The settling ﬁmés
for the RHNN’s are similar with the SBPA being slightly lower. As with the altitude network, the

SBPA appears to improve its performance‘as time passes whereas the EBPA performs consistently.

‘Again, the pitch responses show that the NN based controllers have the ability to compensate for the

lowly damped high cruise phugoid.

6.3 Linear Maneuvers Using DHNN Autopilots

Heading angle maneuvers were performed similarly to the roll and pitch maneuvers. These

- maneuvers were performed at low and high cruise by presenting the DHNN with a series of reference

heading anglés corresponding to changes up to 20 degrees. Figures 6.15 and 6.16 show the heading
angle and corresponding roll angle resf;onses at low cruise. The same responses for high cruise are
shown in Figures 6.17 and 6.18. Additionally, Tables 6.9 and 6.10 report the settling times for these |
maneuvers. The EBPA demonstrates the ability to achieve the commanded heading angles in every

case for both flight conditions while reducing the roll angle to about 0 degrees. The SBPA also shows
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the ability to achieve the desired heading angles at low cruise, but takes significantly longer than the
- EBPA. The SBPA does have difficulty returning the aircraft to level wing position, but seems to

perform better as more maneuvers are performed. It does, however, diverge in the last case.

6.4 Non-linear Adaptation Capabilities with Excited p and q Rates

Non-linear conditions were simulated by setting the aileron and elevator positions to maximum
settings. The PHNN and RHNN autopilots were engaged once bothvpitch and roll rates exceeded
target values ranging from 1 to 18 deg/s. Figures 6.19-6.36 show the aircraft responses and neural
control inputs at low cruise. High cruse aircraft responses and control inputs are glven in Flgures 3.37-
6. 44. Tables 6.11 and 6.12 report the correspondmg settling times. The tablels report the settling
times for all cases while the plots give the results for only the even cases. The SBPA has shorter
settling times for the lower cases, but oscillates more than the EBPA. The EBPA has considerably
shorter settling times for cases above 3 deg/s and moves more directly to fhe desired aircraft states.
The SBPA has difficulty with ﬂie 4, 6, and 8 deg/s cases at low cruise and vnth the 6 and 8 deg/s cases
at high cruise. At the 4 deg/s, the SBPA diverges as the neural aileron input to the system locks at
maximum deflection. The SBfA behavior at the 6 and 8 deg/s cases at low and high cruise are
characterized by oscillaﬁng aileron inputs, which cause high frequency low amplitude oscillations in
roll rate about 0 deg/s. The roll angle, however, does not oscillate and moves to the 0 degrees of roll
state. The SBPA fails to achieve steady state conditions beyond 12 deg/s. The EBPA performs
consistently throﬁgh the range of excitation except for the 16 deg/s case. At 16 deg/s the EBPA

displays oscillating aileron inputs causing oscillation in the roll angle and roll rate.

6.5 Non-linear Adaptation Capabilities'with Excited p, q, and r Rates
The most difficult task for the NN autopilots is to adapt when subjected to all three angular

rates. The non-linear conditions were induced by giving maximum open loop elevator, aileron, and
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rudder inputs. Once all three angular rates were above target values ranging from 1 to 12 deg/s, the
DHNN and PHNN autopilots were engaged. Figures 6.45-6.62 show the low cruise aircraft responses
and NN iﬁputs to the system as they attempt to compensate for the non-linear conditions. Figures 6.63-
6.77 show the high cruise aircraft responses and NN control inputs. Tables 6.13 and 6.14 report the
corresponding settling times. Overall, the EBPA ha§ quicker settling times and more direct movement

toward the target aircraft state at low cruise. The EBPA does have difficulty with the 4 and 8 deg/s

cases, which take the EBPA 'longer to damp the rolling and yawing rates. At high cruise, the EBPA

clearly demonstrates superior ability to compensate for the non-linear disturbances. The EBPA
converges for every case whereas the SBPA only converges for 4 out of 10. The EBPA generally
converges with lower settling times and less oscillation. The EBPA doés have some difficulty with the

6 and 7 deg/s cases displaying the same behavior as with the 4 and 8 deg/s cases at low cruise.

6.6 Summary of Results

These results can‘ be summarized by stating that the EBPA based autopilotvsystems generally
performed better than the SBPA autopilot systems. The EBPA neural networks were able to perform
maneuvers and non-linear compensation for cases beyond where the SBPA networks failed. The
EBPA based neural network controllers displayed less oscillating behavior over the entire range of
linear maneuvers and non-linear compensation tests, even at conditions where the phugoid and Dutch
roll dynamic modes were lightly damped. This is true even in the limited number of cases where the
SBPA based autopilots reached the target conditions in less time. The ability of each hidden and
output layer neuron in the EBPA based networks to adjust the slope and output range of its individual

sigmoid activation function leads to this improved performance over the SBPA.
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Chapter 7: Conclusions and Recommendations

7.1 Conclusions
Five on-line learning neural network autopilot systems were applied to a six degree-df-frecdom

non-linear simulation model of a Boeing 747. Two training algorithms were used: the SBPA and

"EBPA. They were tested and compared based on their abilities to perform maneuvers at linear

conditions and adaptation capabilities at non-linear conditions. In general, on-line learning neural
ﬁetwork algorithms have the abilities to perform the linear maneuvers and compensate for non-linear
disturbances whjlé dealing with moderately undesirable dynamic\modes. Proper design choices of the
performance indices, neural structure, énd learning rates allow the networks to perform these tasks by
quickly learning the dynamics of the system and control it without previous training. The training
algorithm choice depends on the purpose of the autopilot. The SBPA performs adequately for linear
maneuvers involving pitch and roll angles, or compensation at slightly non-linear conditions involving
p and q. The EBPA clearly is more effective for maneuvers involving altitude and speed or direction
changes, and for the entire range of non-linear compensation. Overall, the EBPA trained neural
network autopilot systems have the ability to perform a wider range of linear maneuvers while
compensating for undesirable dynamic modes and to adapt to non-linear excitations to regain steady

state conditions.

7.2 Recommendations
The main suggestion for extending this research is to apply the simulated controllers to the
physical system. The simulation program presented in this document should be updated to simulate the - v
dynamics of the 1/25 scale B747 once the flight testing phase produces the necessary information. The
neural network autopilot systemg should then be evaluated and updated as necessary to perform the

autopilot tasks of the scale model. The simulation program should be further updated by the
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introduction of sensor and system noise models. Once the simulation code and the neural network
autopilot systems have been updated, the networks could then be implemented via hardware and
interfaced with the simulation code. After ensuring the hardware based neural network autopilot
systems have the ability to operate as desired, they should then be placed in the flight computer to be
used in the control laws.

Another extension of this research would be to design stability augmentation controllers, using
either classical or neural network methods, to éompensate for the high cruise phugoid and lowly
damped Dutch roll. These controllers could be applied to in;:réase the stability of the system, which
then could serve as the basis for neural autopilot design. The neural autopilots designed using the
stable platform could then be compared to the ones designed using the pure open loop dynamics.

Lastly, studies need to be performed to determine the optimal selection of the performance |
indices to be minimized in neural network autopilot systems. It has been shown that performance
indices resembling the error formulations of classical PI, PD, and PID controllers are eﬁ'ecﬁve.
However, the theoretical link between the selection of the weighting factors and meeting classical time
domain specifications of rise time, settling time, overshoot, closed loop natural frequency, and closed
loop damping _is still vague. It would be beneficial to know how to select the weighting terms based
on defined classical time domain specifications to reduce the interactive nature of adjusting the

weighting factors.
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Table 4.1: Geometric, mass, and aerodynamic data for the B747 from Ref.[19].

Reference Geometry

S (f%) 5500

 (ft) 27.3

b (ft) 196

Flight Condition Low Cruise High Cruise
h (ft) 20,000 40,000
Mach Number 0.65 0.9 -

U, (fts) 673 871

C.G. location (fraction of € ) 0.25 0.25

Angle of attack o, (deg) 25 24

Mass Data

W (Ibs) 636,636 636,636

I (slugs f%) 18,200,000 18,200,000
Ly (slugs f%) 33,100,000 33,100,000
I, (slugs %) 49,700,000 49,700,000
Iy, (slugs %) 970,000 970,000
Steady State Coefficients

C, 0.4 0.52
Cp, 0.0250 0.0450

C 0.0250 0.0450

C, 0 0

C,, 0 0
Longitudinal Coefficients

Cp, 0.0164 0.0305

C, 0 0.22

C, 0.20 0.50

C. -0.055 -0.950

C, 0.21 0.29

C, 0.13 -0.23

C, 4.4 55

C, 7.0 8.0

C, 6.6 7.8

Cpn 0 0

Cp 0.013 -0.09
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C, -1.0 -1.6
C,,: -4.0 -9.0
Cma -20.5 -25.5
e ; \
Cmr,, 0 0
Longitudinal Control Derivatives
Cp, (rad™) 0 0
Cy, (rad™) 0.32 0.30
CmJE (rad™) -1.30 -1.20
CD,«,, (rad™") 0 0
CL:,. (rad™) 0.70 | 0.65
Cm% (md-l) -2.7 -2.5
Lateral-Directional Coefficients

b -0.160 -0.095
C, -0.340 -0.320
C: 0.130 0.200
Cyﬁ -0.90 -0.90
Cyp 0 0
Cy, 0 0
C, 0.160 0.210
Cn«,ﬂ 0 0
C, -0.026 0.020
C,: -0.280 -0.330
Lateral-Directional Control
Derivatives .
CI,;A (rad™) 0.013 0.014
C’sR (rad™) 0.008 0.005
C,, (rad™) 0 0
C%R (rad™) 0.120 0.060
C, (rad™) 0.0018 -0.0028

’ -0.100 -0.095

C,, (rad™)
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Table 5.1: Final Neural Network Autopilot Structures. .

[ AANN ]
J =005(h~h,)+0.75(h - h,)+10(g — g, ) By =g, =0

Inputs Output  n  Window (SBPAEBPA)  Structure (SBPA\EBPA)
©,q9,h,h,6; O (00103 6\ 30-50-1\20-30-1

[ PANN ]

J=0250-0,,)+05¢-q,,) Gry = 0
Inputs Output n Window (SBPA\EBPA) Structure (SBPA\EBPA)
©,q,0, St 0.0105 44 12-15-1\12-15-1

[ SHNN ]

J =05V, -V)+08(V -V,,) Vg =0
Inputs Output M Window (SBPA\EBPA) Structure (SBPA\EBPA)
V.,V.,ér Or 005025 vy 12-15-1\12-15-1
| RHNN ]
J = 025(®,, - ®)+2.0(p,; - p) Prr =0
Inputs Output n Window (SBPA\EBPA) Structure (SBPA\EBPA)
D,p,6,,0r O o105 a4 | 16-19-1\16-19-1
[ DENN ]

Jy =01 - P, ) +07(r— ) + 0250 - £,,)
J, = 0(®@,; — ®)+25(p, — p)+025(p,, - p)
Jy = 07(r =1, )+025(F — F.)

J, = 03(®,, - ®)+25(p,, - P)

(Linear) rref = .ref =pref = przf =0

(Nonlinear) 7, =#_=p, =0

Inputs Output n___ Window (SBPA\EBPA) Structure (SBPA\EBPA)
®.p,6, 6,% ooonos 56 36-75-2\30-36-2
Y ,r,0,
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Table 6.1: AHNN and SHNN reference input values for maneuvering at LC.

Flight Altitude Speed A Altitude A Speed

Cond (fY) (ft/s) (f) (ft/s)
1 20000 . 680 0 0
2 20050 690 50 10
3 20150 685 100 -5
4 19950 - 650 -200 -35
5 20250 . 700 : 300 50
6 19900 725 -350 25
7 19500 700 -400 -25
8 20000 680 500 -20
9 20500 750 500 70

10 21000 . 780 500 30
1" 19000 650 - 2000 -130
12 20000 680 1000 30

Table 6.2: AHNN and SHNN reference input values for maneuvering at HC.

Flight  Altitude Speed  AAltitude A Speed

Cond (f) (ft's) (f) (ft/s)
1 40000 775 0 0
2 40050 789 50 14
3 40150 774 100 -15
4 39950 739 -200 -35
5 40250 789 300 50
6 39900 809 -350 20
7 39500 784 -400 -25
'8 40000 - 775 500 -9
9 41000 875 1000 100
10 40500 844 -500 -31
11 39000 744 -1500 -100

12 40000 775 1000 31
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Table 6.3: Settling times for maneuvers at LC using AHNN's and SHNN's.

Flight Ts (Altitude) Ts (Altitude) Ts (Speed) Ts (Speed)

Cond (sec) (sec) (sec) (sec)
SBPA EBPA SBPA EBPA
1 29.1 8.4 15.1 7.6
2 31.2 32.35 10.2 10.1
3 42.85 43.25 10.75 7.55
4 58.85 51.95 69.85 22.65
5 57.4 57.5 35.05 23.1
6 61.4 4 61.05 255 15
7 65.85 62.2 60.5 224
8 65.75 66.15 13.75 18.35
9 66.35 65.95 4235 22.75
10 66.3 65.85 2875 ’ 21
11 123.45 85.1 Throttle Locked 27.65
12 105.9 75.3 Throttle Locked 27.35

Note: Ts (altitude) is the time from AHNN engagement until oscillation within 5 feet.
Note: Ts (speed) is the time from SHNN engagement until oscillation within 1 ft/s.

Table 6.4: Settling times for maneuvers at HC usiﬂ AHNN's and SHNN's.

Flight Ts (Altitude) Ts (Altitude) Ts (Speed) Ts (Speed)

Cond (sec) (sec) "~ (sec) (sec)

SBPA EBPA SBPA EBPA

1 53.35 20.6 15.75 14,95
2 4245 29.9 8.45 15.1
3 45.8 43.55 9 12.3
4 170.15 53.75 . 233
5 784 60.55 287

6 78.19 61.65 Throttle Locked 12.95
7 77.3 63.2 and set to 34% 27.9
8 89.45 65.85 to keep performing 194
9 104.3 77.85 © altitude maneuvers 31
10 75.9 67.5 238
11 81.85 80.9 _ 38.6

12 80.1 75.85 34.95

Note: Ts (altitude) is the time from AHNN engagement until oscillation within 5 feet.
Note: Ts (speed) is the time from SHNN engagement until oscillation within 1 ft/s.
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Table 6.5: Settling times for maneuvers at LC using_; PHNN's.

Maneuver  Gref A® Ts Ts
(deg) (deg) (sec) (sec)
SBPA EBPA
0 2.65 - - -
1 5 2.35 6.55 6.75
2 10 5 9.6 11.05
3 -5 15 . 143 16.35
4 15 20 4235 17.2
5 20 5 11.6 10.95
6 0 -20 27.9 18.25
7 -5 -5 8.7 11.4
8 5 10 11.85 15.4
9 -10 -15 14.15 16.15
10 -20 -10 10.3 13.15
11 10 10 43 11.85
12 2.65 12.65 4.45 11.3
13 10 7.35 425 10.25
14 20 10 10.75 11.75
15 2.65 -17.35 21.3 14.8

Note: Ts is the time from PHNN engagement until oscillation within 0.5 deg.

Table 6.6: Settling times for maneuvers at HC using PHNN's.

Maneuver  Gref A® Ts Ts
(deg) (deg) (sec) (sec)
SBPA EBPA
0 2.6 - - -

1 5 2.4 14.2 18.65
2 10 5 13.1 17.15

3 0 -10 16.9 21.45

4 15 15 31.25 36.65

5 20 5 - 456

6 0 -20 45.35 52.9

7 -5 5 13.65 17.4

8 5 10 15.95 20.15

9 -10 -15 27.85 32.45
10 -20 -10 14.35 16.45

11 0 20 11.35 21.9

12 3 3 4.2 10.45

Note: Ts is the time from PHNN engagement until oscillation within 0.5 deg.
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Table 6.7: Settling times for maneuvers at LC using_; RHN_l:l's.

Maneuver "Oref AD Ts Ts
(deg) (deg) (sec) (sec)
SBPA EBPA
0 0 - - -
1 5 5 15.8 19.75
2 15 10 18.3 20.1
3 30 15 - -
4 20 -10 31.25 36.4
5 10 -10 23.45 26.8
6 0 -10 203 229
7 -5 5 15 16.8
8 -15 -10 17.4 19.15
9 20 5 12.65 14.35
10 -10 10 23.7 26.3
1 0 10 20.5 229

Note: Ts is the time from RHNN engagement until oscillation within 0.5 deg.

Table 6.8: Settling times for maneuvers at HC using RHNN's.

Maneuver  Oref AD Ts Ts
(deg) (deg) (sec) (sec)

SBPA EBPA

0 0 - - : -
1 5 5 17.6 12.9
2 15 10 19.35 19
3 30 15 1955 = 19.4
4 20 -10 29.55 28.5
5 10 -10 22.15 22.8
6 0 -10 20.85 - 20.35
7 -5 -5 17.1 17.75
8 -15 -10 19.45 19.25
9 -20 5 11.2 15.25
10 -10 10 22.2 22.7
11 0 10 20.85 20.3

Note: Ts is the time from RHNN engagement until oscillation within 0.5 deg.
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Table 6.9: Settling times for maneuvers at LC using DHNN's.

Maneuver Yref AY Ts Ts
(deg) {(deg) (sec) (sec)
SBPA EBPA
0 0 - - -
1 5 5 89 32
2 15 10 93.2 21.35
3 20 5 88.75 40.8
4 10 -10 94.95 49.7
5 0 -10 76.3 51.05
6 -5 -5 76.75 226
7 -15 -10 g97.4 27.05
8 -20 -5 88.85 22.45
9 -10 10 - 228
10 0 10 93 20.4
11 18 18 - 35.65
12 0 -18 - 53.85

Note: Ts is the time from DHNN engagement until oscillation within 0.5 deg.

Table 6.10: Settling times for maneuvers at H(_: using DHNlls.

Maneuver Pref AY Ts Ts
(deg) (deg) (sec) (sec)
SBPA EBPA

0 0 - - -
1 5 5 80.35 25.05
2 15 10 - 66.15
3 20 5 - 77
4 10 -10 86.9 63.3
5 0 -10 - 64.55
6 - -5 -5 96.7 47.25
7 -15 -10 1.5 747
8 -20 -5 88.65 25.8
9 -10 10 - 92.95
10 0 10 - 92.35

Note: Ts is the time from DHNN engagement until oscillation within 0.5 deg.
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Table 6.11: Settling times for p and q non-linear excitations at LC.

P, q Ts Ts
(degls) - (sec) (sec)
SBPA EBPA
1 12.1 12.2 Oref = 3 deg
| 2 12 128 ®ref = 0 deg
| 3 16.55 13.1
; 4 - 13.8
| 5 19.65 15.45
{ 6 255 22.75
| 7 38.15 23.8
| 8 49.75 24.5
| 9 39.45 253
| 10 29.4 20.65
‘ 11 44.95 20.8
12 64.3 24.35
| 14 - 25.3
16 - -
18 - 39.15

Note: Ts is the time from PHNN and RHNN engagement until ® and ® oscillation
within 0.5 deg of reference values.

Table 6.12: Settling times for p and g non-linear excitations at HC.

P, 9 Ts Ts
| (deg/s) {sec) (sec)
| . SBPA EBPA
| 1 12.7 16.35 Oref = 3 deg
| 2 16.2 17.5 ®ref = 0 deg
| 3 18.45 19.5
| 4 26.75 20.1
5 31.4 29.15
6 35.45 30.45
7 35.25 30.85
8 35.75 30.85

within O. 5 deg of reference values

|
_ Note: Ts is the time from PHNN and RHNN engagement until ® and ® oscillation
\
|
\
|
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Table 6.13: Settlingrtimgs for p, g and r non-linear excitations at LC.

P, qQ, T Ts Ts
(deg/s) (sec) (sec)
SBPA EBPA
1 161.9 23.95 Oref = 3 deg
2 65.8 336 ref = 0 deg
3 47 30.05 rref = 0 deg/s
4 46.6 82.35
5 46.5 40.65
6 46.25 43.05
7 '46.8 46.45
8 47.55 52.75
9 47.9 286
10 48.5 33.35
11 © 485 334
12 49.55 37.25

Note: Tsis the time from PHNN and DHNN engagement until ® and ® oscillation within 0.5 deg
and r within 0.1 deg/s of reference values. '

Table 6.14: Settling times for p, g and r non-linear excitations atv HC.

p,q,r - Ts Ts
(degls) (sec) (sec)
SBPA EBPA
1 - 206 Oref = 3 deg
2 - 38.65 ®ref = 0 deg
3 1055 55.8 rref = 0 deg/s
4 87.2 28
5 66.25 62
6 67.25 - 108.2
7 - 111.2
8 - 321
9 - -
10 - 39.25

Note: Ts is the time from PHNN anc; DHNN engagement until ® and ® oscillation within 0.5 deg
and r within 0.1 deg/s of reference values.

50



Figures

51




‘SIXe ApOq 92U} INOGe SJUSWIOW! PUB SI0I0J PJeIoNy :[°Z 2anSig

99.10,] [BULION

32.10,] 3PIS
W=w 3210,
ey

52



"$3[3uy I8Ny JO UonONPORUL Ay} A WINSAS AJBUIPIOOD SIXY [BIISU] PXE] YMeH Y3 0) 30odsal YIm UOHEIUSLIO PYeIoNy 7' d4nSig

Z
A A

SIXY [e1MoU] POXL] Yireq

X<

yred W34

53



WNSAS aeuIpIood wjod
1 Jod Sursn swasAs sixe puip, pue ‘Kijiqes ‘Apog usomyaq drysuoneloy ¢z samSig

54



EXTENDED BACK-PROPAGATION ALGORITHM

Updates Weights (W,V), Thresholds (T, ®)
Upper and Lower Bounds (U,L), Temperatures (T)

COST FUNCTIONAL

Output Layer
n Neurons

Weights: V

Input Layer
m input data

Weights: W N/ N/ N e N
Thresh: Gamma ‘ N>
bl
Hidden Layer p oSS
k neurons ¥ N T )
Thresh: Theta

Data Data . - | ] Data
‘k"l""k'p ‘k_l)_tk_p’ . ‘k_l’_&k_p$
Input #1

] IInput #2 } ------------------------------ *IInput #r I

Figure 3.1: General representation of a 3 layer neural network trained with the Extended Back-

Propagation Algorithm",

Upper Bound, U e

f(net,U,L,T)

Slope, T

Lower Bound, L

Figure 3.2: Extended Back-Propagation sigmoid activation function for general U, L, and T

arguments,
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Control Values
55 8A 61{ 81‘

Motion Equations
&
Fourth Order Runge Kutta
Numerical Integration

avq®h
BprdV¥Y
ax @y 8 8y

Update Text Output
Update Plot (if enabled)
Write States to Data file (if enabled)

N On-Line Pilot
Keyboard/Mouse
Input .

Autopilots On?

v

On-Line Learning Neural Network
Autopilots '
(AHNN,PHNN,SHNN,RHNN,DHNN)
determine next control input

Ok 84 Or O1

Figure 4.2: General block diagram of simulation program with neural network autopilot controllers.
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