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Abstract 
This paper describes the use of a genetic search 

method in the design of a command augmentation 
system for a high-performance aircraft.    A genetic 
algorithm is used in the design of H^ controllers for 

the longitudinal and lateral-directional channels by 
selecting the weighting functions. The integral of 
absolute value of error between the actual response 
and that of an ideal model is used as the fitness 
criterion, along with additional terms to penalize for 
cross-coupling between ps and ny, non-minimum 
phase behavior, and the closed-loop infinity-norm 
bound, y. Starting from an initial population of 
weighting functions, the algorithm generates new 
functions with the goal of improving the fitness. 
These controllers are then evaluated in a 6 degree-of- 
freedom nonlinear model of the aircraft. 

I. Introduction 
The most common approach to flight control law 

design is gain-scheduling, which requires the design 
of control laws for a large matrix of flight conditions. 
Each design can be a time-consuming process, and 
there is generally a significant amount of trial-and- 
error involved. Most control law designs have 
favored classical techniques, where there are a large 
number of choices in structure and parameters that 
need to be made by the designer. There is also 
currently great interest in using multivariable 
approaches to improve the design process. However, 
it can be challenging to relate parameters like 
weighting matrices in multivariable control 
approaches to the complex quantitative and qualitative 
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design requirements of a flight control law.1 The 
purpose of this paper is to present preliminary results 
of an ongoing research effort into the use of genetic. 
search methods to aid in controller design. The goal 
of this work is to help automate and accelerate the 
flight control system design process. Genetic 
methods are seen as potentially useful to automate 
certain of the more trial-and-error parts of the flight 
control design process. 

Genetic methods have several advantages as an 
optimization technique. First, a wide variety of 
different types of fitness criteria (cost functions) may 
be used for optimization. This includes the use of 
discontinuous or non-smooth functions. As a result, 
the designer has a great deal of freedom, as well as the 
ability to choose criteria that more closely represent 
the actual design goals, rather than having to adapt 
these goals to meet the needs of a more restrictive 
optimization approach. Another advantage of a 
genetic search is that it can be used to directly design 
control laws, rather than just to find control law 
parameters. The structure of the controller does not 
need to be specified in advance, with only some 
numerical constants to be optimized. Properly set 
up, a genetic search can piece together mathematical 

functions to form control laws2. On the other hand, 
the primary disadvantage of using a genetic 
optimization approach is there is no guarantee that 
the controller chosen is optimal or near-optimal in 
any sense with regards to ,the chosen cost criteria. 
Also, genetic optimization takes considerable 
computer time, and this may make it impractical for 
design changes that require fast turn-around time, like 
working with a pilot to improve handling qualities in 
a simulator. 

In this paper, a genetic search method is used to 
design H« controllers for a high-performance aircraft 

by selecting the weighting functions. Fitness is 
determined by comparing the closed-loop response 
with a Level  1  flying qualities model.    Figure  1 
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illustrates the overall design process. An initial 
population of weighting parameters is chosen to start 
the process. Next, new members are synthesized 
using genetic operations. These new members are 
then used to synthesize H^ controllers that are 

evaluated through simulations. Finally, these new 
members are added to the population. 

Section II discusses genetic search methods, 
Section IB contains the problem setup, and Section 
IV presents results. 

TT. denetic Algorithms and Genetic Programming 
Only a brief description of genetic algorithms and 

genetic programming will be given in this paper. 
The interested reader is referred to the references herein 
for more information. 

The basic concept of genetic algorithms was 

introduced by Holland3, who showed how the 
evolutionary process could be applied to artificial 

systems^. The genetic algorithm is a mathematical 
algorithm which transforms a set (population) of 
mathematical objects (members) into a new set using 
operations similar to the process of natural selection, 
as described by Charles Darwin in his well-known 

treatise^. The main operations are reproduction, 
crossover, and mutation. Each new population is 
called a generation. The fitness of each member of 
the current generation is evaluated according to some 
specified function. The members with the best 
fitness are more likely to be selected to be carried over 
to the next generation (reproduction) or used to create 
offspring (crossover) which will be included in the 
next generation. Members with poor fitness are more 
likely to be eliminated from the population. 
Members can also be selected at random and altered 
(mutation). 

Throughout   the   1980's,   extensions   to   the 

standard genetic algorithm were proposed3'". In the 
standard genetic algorithm the members are usually 
fixed-length strings. The strings are made up of 
binary numbers which can represent real numbers or 
just actions (i.e. fast vs. slow, high vs. low, etc.). A 
string therefore represents a set of numbers or a 
sequence of actions. By breeding and mutating these 
strings, new combinations are formed, and the new 
strings are evaluated for fitness. However, the length 
of the string, and the sturcture of the solution, is 
always fixed in genetic algorithms. In the genetic 

programming methodology,3 the complexity of the 
members undergoing adaptation is much greater. The 
members may be rules such as logical operators. In 
this way a genetic algorithm can be used to create 

computer programs to solve a specific problem. 
According to Ref. 3, "...the structures undergoing 
adaptation in genetic programming are active. They 
are not passive encodings of the solution to the 
problem. Instead, given a computer on which to run, 
the structures in genetic programming are active 
structures that are capable of being executed in their 

current form."3. It is this process of creating 
programs that leads to the term "genetic 
programming." There are variations of the classical 
genetic algorithm and genetic programming, but they 
all share the basic concepts, so they are referred to 
collectively as genetic search methods. 

In Ref. 2, genetic search methods were used to 
design nonlinear control laws for a model of an A-4 
aircraft. Both autopilot controllers and guidance laws 
were developed using this methodology. Other The 
present study will use a genetic search to design a 
command augmentation  system   (CAS)  with   H» 

control using linearized models. 

III. Command Augmentation System (CAS) 
Synthesis 

Although the genetic search methodology can 
handle models of arbitrary complexity, in the interests 
of saving computer time, linearized aircraft models are 
used as the basis for CAS design. Linear models 
were obtained from a nonlinear, 6 degree-of-freedom 
model. From the full-order linearized model, a 
second-order longitudinal model and a fourth-order 
lateral-directional model were extracted. The state 
variables of the longitudinal model are q (pitch rate) ■ 
and w (body z-axis velocity), the feedback variables 
are q and nz (normal acceleration), and the input is 

the stabilator. Normal acceleration will be the 
commanded quantity. The state variables of the 
lateral-directional model are v (body y-axis velocity), 
<|) (roll angle), p (body axis roll rate), and r (body axis 
yaw rate). The feedbacks are ps (stability axis roll 
rate), r, and ny (lateral acceleration), and the inputs are 

effective aileron and rudder. Roll control is achieved 
with a combination of ailerons and differential 
stabilator, which is referred to here as effective 
aileron. The quantities to be commanded in the 
lateral channel are ps and nv. 

Two separate controllers will be designed, one for 
the longitudinal dynamics and one for the lateral- 
directional dynamics. Figures 2 and 3 show the 
generalized plants which are to be used for the 
designs. There are poles, zeros, and gains of the 
weighting functions, which the engineer would select 
based on certain guidelines and also trial-and-error. 



The weights will be expressed in terms of free 
parameters. The performance variables are the 
weighted control signals and the errors between actual 
outputs and the outputs of ideal models. 

The ideal models represent dynamics that are 

classified as Level 1 handling qualities7. The ideal 
model for the short-period mode is the second-order 
transfer function: 

CO 
fsp(s) = T    „,. s   + 2£cos + co 

The values of C, and co are chosen to be 0.7 and 3, 
respecively. The ideal model for the roll mode is: 

fr(s) =  
s + a 

where a is chosen to be 2.5. The ideal model for the 
Dutch roll mode is also a second-order transfer 
function like fsp(s), and the values of £ and CO are 

chosen to be 0.7 and 1.5, respectively. Uncertainties 
are included at the plant input in the longitudinal case 
and at the output in the lateral-directional case, and 
disturbances are included in all measurements. 

The weights are chosen by the genetic algorithm 
and the controller is designed with commercially 
available H^ design software (MATLAB® with \i- 

Tools® Toolbox). In the longitudinal case, the free 
parameters determine the weights as follows: 

WS1 = 

WA = 

K5(s + (K6 + K7)) 

(s + K7) 
Ws2 = K4 

1/(1 + Kl)(s + (K2 + K3)) 

(s + K3) 

WU=K8 

Wdi=Wd2=0.01 

where Kl - K8 are the free parameters and represent 
real numbers. Both weights Wsi and Ws2 are on 
error signals between the actual output and the output 
of an ideal model. The penalty is higher at low 
frequencies and lower at high frequencies, so the zero 
should be faster than the pole. Since the emphasis is 
on normal acceleration, less weight is placed on pitch 
rate, and hence Ws2 is expected to be a small, 
constant value. For WA, the uncertainty is expected 
at low frequency, and low gain above that, so the zero 

is faster than the pole, and the gain is constructed to 
ensure the gain is less than 1 at high frequencies. Wu 

is the weight on control and is a constant value over 
all frequencies. A frequency-dependent weight could 
have been used for the control variables also, but this 
approach seems to work and keeps the order of the 
controller, and the number of free parameters, smaller. 
Wdl and Wd2 are noise levels and are held fixed. 

Typical frequency responses for Wsi and WA are 

shown in Fig. 4. 
The free parameters in the lateral-directional case 

K9 - K17 determine the weights as follows: 

Wsi = 
l/O + lO^fs + lO^s + fKlO + Kll + KU) ) 

(s + lO^+KllVs + lO^+K^j 

l/(l + 10*K13)(s + K14 + K15) 
Ws2 = 

wtl=wt2=wt3 = 

S + K15 

O.Ol(s-H) 
s + 10 

Wul=K16,   Wu2=K17 

Wdl=Wd2=Wd3=Kr3 

Both weights WS1 and Ws2 are on error signals 
between the actual output and the output of ideal 
models. The weight for roll rate, Wsi, is largest in 

the middle frequencies. A zero at very low frequency 

(10~4 rad/s) is inserted to reduce gain at low 
frequency. There are two poles faster than this zero, 
and another zero above the poles. The gain is 
constructed to ensure that the magnitude is less than 1 
at high frequencies, and the factor of 10 was included 
increase the effectiveness of K9 and K13 regardless of 
their values. The weight on lateral acceleration, Ws2, 
is constructed to have high gain at low frequency and 
gain less than one at high frequency. The weights on 
output uncertainty, Wti, Wt2, and Wt3, are fixed for 
all designs and reflect increased uncertainty at higher 
frequencies. The weights on controls, Wui and Wu2, 

are constants. The weights on noise, Wdi, Wd2, and 

Wd3, are held fixed at a small value. 
The frequency-dependent weights were kept as 

simple as possible in order to keep the controller 
order low, thereby circumventing the need for order 
reduction. While the structure of the weights is fixed 
in this work, it should be possible to allow the 
structure to vary, although this would create more 



complexity in the design problem, with attendant 
difficulties. 

The values of the free parameters for the weights 
have the following parametrization: 

ui = 1,..., 9, 10°, 10~\ 10"2, 10"3, 10"4, lo\ 102 

i = 1,..., 16 

K(n) = ui * uj 

Each of the free parameters K(n) will have its own 
separate population. A member, then, for this work, 
means a set of members, each drawn from one of the 
K(n) populations. This set will be evaluated and 
assigned a value of fitness, so that each element of 
the set has the same fitness associated with it. 

A set of parameters is sought for designing the 
Hoo controllers. While the problem could be set up 
using binary strings, as in the classical genetic 
algorithm, an alphanumeric parametrization is used 
instead, which adds flexibility. The standard genetic 
algorithm represents choices with binary strings of 
fixed length. Such an arrangement describes discrete 
values. Using the above parametrization, and 
assuming fixed strings with only one multiplication, 
there would be 16 x 16 = 256 possible values for each 
free parameter. For Hoo design, the poles, zeros, and 
gains of the weighting functions are seldom required 
to have more than one or two significant digits, so 
the expressions can be kept fairly simple. Any 
positive, real number could be represented by 
multiplication and addition of the parameters uj if 
expressions were allowed to grow longer with more 
operations. However, although expressions are 
manipulated, the end result is still just the formation 
of real numbers without affecting the structure of the 
control law. Hence, the present work really employs 
a genetic algorithm without using binary strings. 

In order to motivate the application of genetic 
search methods for the present CAS design problem, 
plots (two views) of the fitness with respect to some 
of the parameters in the weighting functions are given 
in Figs. 5 and 6. These figures are for simultaneous 
variations in K3 and K8. Not all values of K produce 
a controller, so for those values which did not, the 

fitness was set to 106. From these figures, it may be 
observed that some conventional search techniques are 
likely to fail due to the discontinuous and mostly 
non-smooth behavior of the search task. There are 
also several local minima. There is no guarantee that 
genetic methods will find a global minimum, 
although the chances increase the more generations 

that are run. While this is not a rigorous 
examination, it gives some indication that genetic 
methods may have distinct advantages over other 
optimization methods for solving this problem. 

A member is evaluated by substituting the values 
of the free parameters into the block diagrams, 
forming the generalized plant, obtaining the Hoo 

controllers, and then simulating the closed-loop 
system. Not all members will produce a controller. 
The controller synthesis function requires an initial 
guess for the upper and lower bounds of the closed- 
loop infinity norm. The upper limit is set fairly 
high, and any member which does not saitisfy the 
upper bound is rejected. Given a controller, fitness 
is determined by evaluating the responses of the 
closed-loop system with various inputs. The inputs 
are step functions to normal acceleration in the 
longitudinal case and roll rate and lateral acceleration 
in the lateral-directional case. An example of how the 
fitness is determined is shown in Fig. 7. The idea is 
to try to match the behavior of the ideal model, or 
minimize the error between the ideal model and the 
actual system. The goal, then, is to obtain the 
lowest possible fitness. Additional terms are 
computed to penalize cross-coupling between ps and 
ny, non-minimum phase behavior, and the closed- 
loop infinity-norm bound, y, and added to the fitness. 
Also, for practical reasons, controllers with right-half- 
plane poles or very fast poles are rejected. 

The initial population is generated randomly. 
After evaluation of the initial population, the process 
of crossover is carrried out to generate new members. 
A maximum population size is maintained, and 
members with high fitness are deleted from the 
populations. This process is continued until a 
desirable response is achieved. In evolutionary 
processes, it is difficult to say that any particular 
member is optimal, so deciding when to stop the 
genetic algorithm is somewhat subjective. In theory, 
running the algorithm longer will continue to produce 
better results. Several runs are usually conducted. 

The genetic search method used in this work 
differs from the classical algorithm in a few ways. 
Firstly, only one type of operation, crossover, is 
used. Secondly, selection of the members for genetic 
operations is done randomly rather than on the basis 
of fitness. Thirdly, in the traditional meaning of 
genetic methods, a generation is the population after 
all members have been acted upon. However, in this 
work, a generation refers to the population after one 
pair of members has undergone crossover. In the 
traditional sense, all of the members have undergone 



reproduction (replication) except the two which have 
undergone crossover. 

TV. Results 
Designs have been completed for several flight 

conditions, and results using a nonlinear aircraft 
simulation for the flight condition 19000 ft., Mach 
0.8 will be presented here. For the longitudinal case, 
four runs were made, each starting with a population 
of 500 members, a maximum population size of 500, 
and lasting 1000 generations. The fourth run 
produced the best result. Typically the best fitness of 
the initial population was around 0.02. The best 
fitness after 1000 generations was 0.00988. While 
the changes may appear small, the differences are 
significant. The controller with the lowest fitness 
produced a closed-loop infmty norm of 0.9780, and 
the simulation showed good performance. In the 
lateral case, three runs of 500 generations were made 
(less generations were used in the lateral case due to 
the slower run time). The second run produced the 
best result, with a fitness of 0.01979 and a closed- 
loop infinity norm of 2.4414, and good performance 
in the simulation. 

The closed-loop responses to various inputs are 
shown in Figs. 8, 9, and 10. The first is the 
response to a 0.1 g pulse command to normal 
acceleration, the second response is with a 0.1 rad/sec 
doublet command to stability axis roll rate, and the 
third is a 0.1 g pulse to lateral acceleration. The 
closed-loop system responds well to all three inputs. 
There is some unavoidable nonminimum phase 
behavior. 

V. Conclusions 
With the parametrization used in this study, the 

genetic algorithm produced good results. The fitness 
criterion is fairly simple, but it should be possible to 
add further refinements in the design problem. 
Fitness could be defined by directly computing 
handling qualities metrics, similar to the 

NASA/Army code CONDUIT8. Also, the use of 
nonlinear simulations with the complete aircraft 
model during optimization would give a more 
accurate evaluation and thus might be preferable. 
However, this was impractical for the present study 
with the available computer resources, given the 
computation time required for nonlinear simulations. 
In addition, more study of the effects of genetic search 
parameters such as initial and maximum population 
size is needed. 
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