REPORT DOCUMENTATION PAGE				Form Approved OMB No. 074-0188		
Public reporting burden for this collection of inform maintaining the data needed, and completing and suggestions for reducing this burden to Washingto	ation is estimated to average 1 hour per respons reviewing this collection of information. Send co n Headquarters Services, Directorate for Informa	se, including the time for reviewing in comments regarding this burden estimation Operations and Reports, 1215	structions, searching hate or any other aspe	existing data sources, gathering and ect of this collection of information, including		
and to the Office of Management and Budget, Pap 1. AGENCY USE ONLY (Leave blank	erwork Reduction Project (0704-0188), Washing	work Reduction Project (0704-0188), Washington, DC 20503 2. REPORT DATE 3. REPORT TYPE AND DATES CC				
4. TITLE AND SUBTITLE Detection and Retrieval of Cirrus Based on Fire-II-IFO Composite	5. FUNDING NUMBERS Air Force Geophysic Directorate Contract F19628-95-K-002					
6. AUTHOR(S) K.N. Liou, S.C. Ou, N.X. Rao, ar	NASA Grant	ASA Grants NAG5-1050 NAG1-1719				
7. PERFORMING ORGANIZATION N/ University of Utah Department of Meteorology/CAR Salt Lake City, Utah 84112			8. PERFORMIN REPORT NU N/A	IG ORGANIZATION IMBER		
9. SPONSORING / MONITORING AG SERDP 901 North Stuart St. Suite 303 Arlington, VA 22203		ONSORING / MONITORING ENCY REPORT NUMBER				
11. SUPPLEMENTARY NOTES Published in the proceedings of the supported in part by Air Force Get NAG5-1050 and NAG1-1719. The material contained herein. All other	cophysics Directorate under Con the United States Government has	tract No. F19628-95-K- as a royalty-free license	002, and by N	ASA under Grants No.		
12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution is unlimited				12b. DISTRIBUTION CODE A		
13. ABSTRACT (MaxImum 200 Word A detection scheme to identify AVHRR Ch.1-2 reflectances and	single and multilayer cirrus clo	ud systems was develop	ed based on th	e physical properties of the		
14. SUBJECT TERMS AVHRR, FIRE-II-IFO, NCAR-CLASS, SERDP, cirrus, cloud detection				15. NUMBER OF PAGES 5 16. PRICE CODE N/A		
OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE unclass	19. SECURITY CLASSIF OF ABSTRACT unclass	ICATION	20. LIMITATION OF ABSTRACT UL		
NSN 7540-01-280-5500		1		ndard Form 298 (Rev. 2-89) cribed by ANSI Std. Z39-18		

9980807 045

CLOUD IMPACTS ON DOD OPERATIONS AND SYSTEMS 1995 CONFERENCE

U.S. Air Force Phillips Laboratory – Science Center Hanscom Air Force Base, Massachusetts 24-26 October 1995

CIDOS – 95

Cloud Modeling and Data for Defense Simulation Activities "Emphasizing Sufficient Physical Reality in Simulating Clouds" PL-TR-95-2129 Environmental Research Papers, No. 1179

PREPRINT OF THE CLOUD IMPACTS ON DoD OPERATIONS AND SYSTEMS 1995 CONFERENCE (CIDOS-95)

Editor

Donald D. Grantham

1 October 1995

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHILLIPS LABORATORY Directorate of Geophysics Air Force Materiel Command Hanscom Air Force Base, MA 01731-3010

 $\mathbf{\dot{r}}$

DETECTION AND RETRIEVAL OF CIRRUS CLOUD SYSTEMS USING AVHRR DATA: VERIFICATION BASED ON FIRE-II-IFO COMPOSITE MEASUREMENTS

K.N. Liou, S.C. Ou, N.X. Rao, and Y. Takano University of Utah Department of Meteorology/CARSS Salt Lake City, Utah 84112

ABSTRACT

We have developed a detection scheme to identify single and multilayer cirrus cloud systems based on the physical properties of the AVHRR Chs. 1-2 reflectances and ratios, the brightness temperature differences between Chs. 4 and 5, and the 4 brightness temperatures. Clear pixels are first separated from cloudy pixe cirrus, cirrus/low cloud, and which are then classified into three types: cloud. This scheme has been applied to the NOAA satellite data collected over FIRE-II-IFO area, Kansas, during nine overpasses within seven observation d (November - December 1991). We have validated the detection results against cloudy conditions inferred from the collocated and coincident ground-based lidar radar images, balloon-borne replicator data, and NCAR-CLASS humidity sounding a case-by-case basis. We show that the satellite detection results are consis with the cloudy conditions inferred from these independent and complement measurements. We have also modified our retrieval scheme for the determinatio cirrus optical depth and ice crystal size in multilayer cirrus cloud systems case study using FIRE-II-IFO data is reported.

1. INTRODUCTION

Cirrus clouds have been recognized to play a key role in the global radiative energy balance and climate change (Liou 1986). Information on cirrus cloud parameters is critically important to the development of cirrus cloud formation models, the upgrade of real-time global cloud analyses, and the computation of atmospheric and surface radiative parameters in climate and general circulation models.

In recent years, our research group has developed a novel and comprehensive remote sensing algorithm for the retrieval of cirrus cloud temperature, optical depth, and mean effective ice crystal size using AVHRR data (Ou et al. 1993; Rao et al. 1995). Validation of this cirrus remote sensing program has been carried out using the local daytime satellite data collected during FIRE-I-IFO and FIRE-II-IFO (Rao et al. 1995; Ou et al. 1995a). A very important procedure in determining cirrus cloud parameters is the detection of the sky condition within the field-ofview of satellite radiometers. Our detection and retrieval schemes have been developed primarily for applications to single-layer cirrus clouds.

Surface observations show that multilayer clouds frequently occur in the frontal areas where cirrus clouds overlay boundary layer convective or stratus clouds. In this paper, we describe a numerical scheme for detecting multilayer cirrus pixels using AVHRR Chs. 1 (0.63 μ m), 2 (0.86 μ m), 4 (10.9 μ m), and 5 (12.0 μ m) data. Moreover, we also present a preliminary investigation for the retrieval of cirrus cloud optical depth and ice crystal size in multilayer cloudy conditions. Verifications of the detection as well as retrieval schemes utilize the composite data sources available from FIRE-II-IFO.

2. DETECTION AND RETRIEVAL OF MULTILAYER CIRRUS CONDITIONS

95

3:

DETECTION 2.1

During daytime, with the availability of visible channel data, differentiation between clear and cloudy conditions over various types of surfaces can be made using the following criteria. First, the AVHRR Ch. 1 reflectance must be less than a threshold value as a necessary condition for the presence of clear pixels. Second, we can define a ratio Q = r_2/r_1 , where r_2 and r_1 are reflectances for Chs. 2 and 1, and use two thresholds Q_1 and Q_2 , determined from the Q histograms, to identify cloudy and clear pixels over land and water surfaces, respectively. Third, the Ch. 4 brightness temperature for a clear pixel must be higher than that for a cloudy pixel so that a threshold temperature can be established for identification. Fourth, over clear regions, because of the behavior of Planck functions and atmospheric transmissions for Chs. 4 and 5 the brightness temperature difference is less than a prescribed value. We find that the preceding four criteria that use visible radiances and IR brightness temperatures are necessary and sufficient to

After all the cloudy pixels are identified, they are further classified into identify the clear condition. three classes: cirrus, cirrus/low cloud, and low cloud. First, we use the Ch. 4 brightness temperatures to detect optically thick cirrus clouds. temperatures less than 233 K are identified as thick cirrus. Second, the visiblechannel reflectances for low clouds are generally larger than those for cirrus clouds because the former are composed of water droplets with relatively small sizes and high number concentrations and are generally optically thicker than the latter (Liou 1992, Table 4.2). For this reason, a visible-channel threshold (~ 0.2) can be established to filter out those pixels that contain low clouds. ratio for low clouds is usually smaller than the Q-ratio for cirrus clouds. cirrus over land this ratio is larger than that for cirrus over low clouds. Moreover, the Q-ratio for cirrus over water is smaller than that for cirrus over low clouds. Thus, we can set threshold values to separate cirrus from either low cloud

The preceding three criteria are used to separate single layer cirrus from or cirrus/low cloud.

cirrus/low cloud and low cloud alone conditions. Finally, we establish a threshold for the brightness temperature difference between Chs. 4 and 5 to differentiate the presence of nonblack cirrus overlapping low cloud and black low cloud. Moreover, the Ch. 4 brightness temperature can also be used to separate cirrus/low cloud and low cloud, because the latter temperature must be higher than about 253 K. More detailed descriptions of the detection scheme are presented in Ou et al. (1995b).

PRELIMINARY RETRIEVAL 2.2

Retrieval of the cirrus cloud optical depth and ice crystal size in multilayer cirrus condition using the AVHRR 0.63, 3.7, and 10.9 μ m channels follows the numerical procedures developed by Ou et al. (1993), Rao et al. (1995), and Ou et al. (1995a). In brief, the 3.7 and 10.9 μm thermal radiances are used to retrieve the cloud temperature and emissivity from which the ice crystal size and optical depth can be determined on the basis of cloud microphysics and radiative transfer Removal of the solar component in the 3.7 μ m radiance for applications to daytime satellite data is then made by correlating the 3.7 μ m parameterizations. (solar) and 0.63 μ m reflectances. The numerical scheme is primarily developed for Validation of the algorithm has been performed by

using various datasets that were collected during FIRE-II-IFO. We have modified the preceding retrieval program to include the presence of

low cloud. If its area coverage is larger than cirrus, then the upwelling radiances reaching the cirrus cloud base can be determined from the statistical histogram analyses similar to the single-layer cirrus case. The low cloud albedo can also be determined from the visible radiance for input to the removal-retrieval program developed by Rao et al. (1995). However, if both cirrus and low clouds have the same coverage, information of the thermal upwelling radiances in the 3.7 and 10.9 μ m channels as well as the low cloud albedo is unknown and must be assumed a priori. In this case, we use the climatological microphysics data for stratus to perform theoretical calculations to obtain the required inputs in retrieving the cirrus optical depth and ice crystal size. We can then compute the visible radiances at the top of the atmosphere and compare with observed radiances to assess the reliability of the calculated optical depth for low cloud. Subsequently, iterations can be developed to derive a consistent set of optical depths for both cirrus and low clouds.

3. VALIDATION OF THE DETECTION AND RETRIEVAL SCHEMES USING FIRE-II-IFO DATA

The FIRE-II-IFO was carried out near Coffeyville, Kansas, during November and December 1991. There were a number of dates during which multilayer cloudy conditions occur. For the detection of cirrus cloud pixels, the high-resolution (HRPT) AVHRR data from NOAA-11 and NOAA-12 polar-orbiting satellites are used. We have acquired ground-based lidar and radar images, balloon-borne replicator data, and NCAR-CLASS humidity soundings on a case-by-case basis. From the available datasets, we have selected seven representative dates (nine overpasses) for our study, including clear, cirrus, and cirrus/low cloud conditions. For each case, we compare cloud types identified from satellite radiances with those derived from ground-based composite instruments.

Table 1 summarizes the results of the comparisons. Columns 2-6 list the required parameters for numerical processing determined from satellite data, while columns 7-11 depict cloudy conditions obtained from satellite data and various ground-based and in situ instruments. Overall, the satellite detection scheme successfully differentiates among clear (12/6b), cirrus (11/26b and 12/5b), and cirrus/low cloud conditions. These results are consistent with the cloudy conditions identified from the independent and complementary ground-based measurements.

We have selected the cirrus/low case that occurred on 29 November 1991 for testing the retrieval scheme. Figure 1(a) displays the temperature and relative humidity profiles obtained from the NCAR-CLASS sounding launched at 1343 UTC. The cirrus cloud base and top heights derived from the replicator, PSU 94 GHz cloud radar, and visible lidar are ~ $6(-20^{\circ} \text{ C})$ and 9 km (- 41° C), respectively. A moist layer roughly corresponding to the cirrus cloud layer is evident. Moreover, another moist layer (RH > 90 %) existed between ~ 1 and 2 km, corresponding to a low-level cloud layer detected by the PSU radar. Temperature inversion occurred at the lowlevel cloud top and near the peak of the relative humidity around 7 km. The mean retrieved cloud temperature is 233 K, which is the average of 62 pixels within the 0.1° x 0.1° area. The standard deviation is 5.8 K, indicating that cloud temperatures were not uniform within the retrieval domain. Moreover, the mean cloud height determined from the temperature sounding is 9.2 km, which is near the cloud top.

On 29 November 1991, there were only three levels of replicator measurements available. At 9.13 km, ice particles are composed of bullet rosettes, columns, and irregular crystals with the maximum dimensions ranging from 25 to 425 μ m. The size distribution peaks at 75 μ m with a number concentration of 0.24 L⁻¹ μ m⁻¹. At 8.18 km, the ice crystal size distribution is similar to that at 9.13 km. However, the upper limit of the measured sizes increases to 575 μ m. The size distribution also peaks at 75 μ m, but with a smaller value of number concentration of 0.1 L⁻¹ μ m⁻¹. The level at 7.46 km corresponds to a local peak in the relative humidity profile. The size distribution with a upper limit of 875 μ m is broader than the previous two. The ice crystal shapes include bullet rosettes and aggregates. The derived mean effective sizes for these three levels are 96, 116, and 146 μ m from top to bottom. The vertically averaged mean effective ice crystal size is 134.6 μ m (solid vertical bar in Fig. 1b). The retrieved mean effective size from satellite radiances is

97

z.

130.9 μ m. On the bottom scale are shown the replicator derived and the satellite retrieved optical depths, which are 2.21 and 2.44, respectively.

We are in the process of improving and refining the retrieval program for the determination of cirrus optical depth and mean ice crystal size. More comprehensive analyses and validations will be reported in the future.

4. ACKNOWLEDGEMENTS

This work was supported by the Air Force Geophysics Directorate Contract F19628-95-K-002 and NASA Grants NAG5-1050 and NAG1-1719.

REFERENCES

Liou, K.N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167-1199.

- Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. Oxford University Press, New York, 487 pp. Liou, K.N., 1992:
- Ou, S.C., K.N. Liou, W.M. Gooch, and Y. Takano, 1993: Remote sensing of cirrus cloud parameters using advanced very-high resolution radiometer 3.7 and 10.9
- µm channels. <u>Appl. Opt.</u>, 32, 2171-2180. Ou, S.C., K.N. Liou, Y. Takano, et al., 1995a: Remote sounding of cirrus cloud
- optical depths and ice crystal sizes from AVHRR data: Verification using FIRE-II-IFO measurements. J. Atmos. Sci., FIRE-II Special Issue (accepted and Detection of multilayer cirrus cloud in press).
- Ou, S.C., K.N. Liou, and B. Baum, 1995b: Verification based on FIRE-II-IFO composite systems using AVHRR data:
- measurements. J. Appl. Meteor., (accepted and in press). Rao, N.X., S.C. Ou, and K.N. Liou, 1995: Removal of the solar component in AVHRR 3.7 μ m radiances for the retrieval of cirrus cloud parameters.

<u>Meteor.</u>, 34, 482-499.

2.

Table 1.

Results of the satellite-based cloud detection compared with ground-based radar, lidar, and balloon-borne replicator measurements.

- r₁: Ch. 1 reflectance
- Q: Ratio of Ch. 2 to Ch. 1 radiances
- BTD45: Brightness temperature difference between Ch. 4 and Ch. 5
- T₄: Ch. 4 brightness temperature
- a: NOAA-12 overpass (~ 1400 UTC)
- b: NOAA-11 overpass (~ 2100 UTC)

	Parameter Values				Cloudy Condition					
	number of pixels	r,(%)	Q	BTD45(K)	T₄(K)	satellite	PSU radar	ETL lidar*	LaRc lidar*	soundings
12/6b	117	12.1	1.22	0.92	287.0	clear	clear	clear	clear	/dry
12/00 12/5b	89	32.1	1.07	3.04	249.4	cirrus	cirrus	cirrus	cirrus	ice/dry
12/30 11/26b	79	24.2	1.10	2.73	271.6	cirrus	cirrus	cirrus	cirrus	ice/dry
11/200 11/22a	93	57.7	0.91	0.46	244.7	ci/low	ci/low	cirrus	cirrus	ice/low
11/22a 11/29a	52	45.6	0.89	1.18	249.7	ci/low	ci/low			ice/low
	100	23.8	0.91	2.09	272.1	ci/low	ci/low	cirrus	cirrus	ice*/lov
11/28a		20.0	1.04	1.77	284.2	cirrus	cirrus	cirrus	cirrus	ice*/dr
11/28b	85	20.0 44.5	0.91	0.80	246.0	ci/low	ci/low			/low
11/27a [@] 11/27b	67	44.5 63.5	0.91	3.74	262.7	ci/low	ci/low			/low

Both ETL lidar and LaRc lidar measured signals from the backscattering of boundary layer aerosols and *. low cloud particles. These signals were not included in the images analyzed in this study.

- 1

ž

Based on replicator measurements between the two satellite overpasses. +:

Satellite cloud detection results are based on data over 1.0°x1.0° area around 38.5° N, 96.5° W. @:

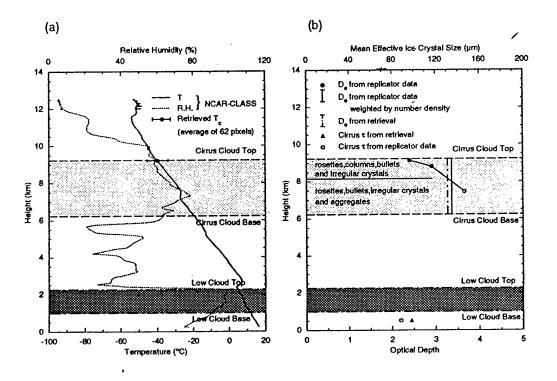


Figure 1. (a) Cloud base and top heights for cirrus and stratus determined from lidar, radar and sounding data, as well as temperature and humidity profiles obtained from the NCAR CLASS sounding system at 1343 UTC, 29 November 1991. Overlapped with the temperature profile are the mean retrieved cirrus cloud temperature over 0.1° x 0.1° domain around Coffeyville, Kansas, and (b) Display of the replicator-derived mean effective sizes at selected height levels, their vertical average, and the retrieved value. Also shown on the bottom scale are the optical depths derived form the replicator data and from the retrieval.