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The Rotating Unbalanced Mass (RUM) device was originally developed at 

NASA's Marshall Space Flight Center by Dr. Michael Polites to provide an efficient, 

accurate means of scanning space/balloon-borne gamma ray and x-ray telescopes. 

The special optics in a gamma ray or x-ray telescope only allow for physical scanning 

of the telescope to image the radiation source. Physical scanning requires that the 

entire telescope be moved in a manner to generate the particular patterns required to 

image the radiation source. Employing the RUM device on a space or balloon-borne 

system reduces the complexity and power requirements compared to standard 

scanning actuators such as control moment gyros (CMG), reaction wheels, or torque 
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motors.    To further enhance the benefits of utilizing the RUM device, pointing 

actuation is currently being researched. 

This dissertation focuses on the development of a complete model of the RUM 

actuated system and on the feasibility study of RUM actuated pointing. This research 

effort involves extensive modeling using a robotics approach known as the Lagrange 

Formulation. Applying well-developed robotic kinematic and kinetic concepts to this 

problem provides a systematic approach to system modeling and identifies how 

individual components of the system interact. The RUM actuated system, however, is 

unique in a robotics sense because of its configuration and actuation. Therefore, the 

Lagrange Formulation must be modified when applying it to the RUM system. This 

detailed modeling approach reveals previously unmodeled inertia, centripetal, and 

coriolis terms in the equations of motion for the RUM actuated system. Obtaining this 

complete model facilitates detailed control analysis, which helps determine the 

feasibility of pointing actuation using the RUM device. This analysis draws from non- 

linear reachability conditions and the dynamic coupling index. These discoveries give 

considerable insight into control schemes and computer simulations confirm that 

pointing actuation may be possible using the RUM device. An additional control 

scheme, which cancels undesirable dynamic components including certain inertia, 

centripetal and coriolis terms, is necessary along with possible configuration changes. 
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CHAPTER 1 

INTRODUCTION 

Remote sensing of gamma ray and x-ray sources poses unique attitude control 

challenges for balloon or space borne telescopes. The challenges include pointing and 

scanning of the telescope optical systems. Pointing is two dimensional motion that 

turns the telescope in a given direction for target acquisition and centering a scan on 

the target. Figure 1 shows an example of a ground based telescope in pointing motion. 

pointing 
motion 

Figure 1 Telescope Pointing Motions 



Scanning is small, localized two dimensional motion accomplished by electronically 

or physically changing or moving the optics of the sensor. Figure 2 shows an example 

of a ground based telescope in physical scanning motion. 

scanning 
motion 

Figure 2 Telescope Scanning Motion 

The special optics in a gamma ray or x-ray telescope only allow for physical 

scanning of the telescope to image the radiation source. Physical scanning requires 

that the entire telescope be moved in a manner to generate the particular patterns 

required to image the radiation source. An innovative new type of actuator called the 

rotating unbalanced mass (RUM) device was recently developed at NASA (National 

Aeronautics and Space Administration) by Dr. Michael Polites [1,2] to accomplish the 

scanning requirements of these optical systems. The RUM has proven to provide an 

efficient, accurate means of scanning space/balloon-borne gamma ray and x-ray 

telescopes during ground testing [3]. Employing the RUM device on a space or 



balloon-borne system reduces the complexity and power requirements compared to 

standard scanning actuators such as control moment gyros (CMG), reaction wheels, or 

torque motors. The next challenge is to use the device to accomplish the pointing 

necessary for target acquisition and proper imaging. If the RUM device proves to be as 

effective at pointing actuation as it has been at scanning actuation, considerable 

actuator hardware reductions are possible. 

1.1 Problem Statement 

Attitude control for balloon and space-borne gamma ray and x-ray telescopes 

is divided into two areas: scanning and pointing. Currently, the telescope is pointed 

using an auxiliary control system (ACS) consisting of the standard CMG's, reaction 

wheels or torque motors and scanning is accomplished using the RUM actuator. The 

research conducted for this dissertation is motivated by the prospect of simplifying or 

eliminating the ACS by using a pointing control scheme incorporating RUM devices 

for pointing actuation. 

1.2 Problem Approach 

Since linearized scanning models of the RUM actuated systems appear to be 

inaccurate for pointing control, a systems approach to modeling and control is 

incorporated that draws from dynamic modeling of robots using the Lagrange 

Formulation. Applying well-developed robotic kinematic and kinetic concepts to this 

problem provides a systematic approach to system modeling and identifies how 



individual components of the system interact. The RUM actuated system, however, is 

unique in a robotics sense because of its configuration and actuation. Therefore, the 

Lagrange Formulation must be modified when applying it to the RUM system. This 

unique approach provides equations of motion that give the designer physical insight 

into the behavior of the overall system and is critical in the development of pointing 

control schemes. 

1.3    Dissertation Overview 

This dissertation describes the approach used to analyze pointing control using 

the RUM device. This research focuses on the development of a complete model of 

the RUM actuated system and on the feasibility study of RUM actuated pointing. The 

dissertation is divided into the following chapters: Chapter 2 presents background 

information on the special scanning requirements of gamma ray and x-ray optics and 

how this scanning is accomplished using the RUM device. This chapter also presents 

previous work on pointing control using the RUM device. Chapter 3 introduces 

robotic modeling concepts that are used in Chapter 4 for the development of the RUM 

equations of motion; e.g. Denavit-Hartenberg (DH) convention and Lagrange 

Formulation. Chapter 4 covers RUM system kinematic modeling based on the DH 

convention and RUM system dynamic modeling based on the Lagrange Formulation. 

It covers, in detail, the modifications necessary when applying these robotic modeling 

techniques to the RUM actuated system. Since this modeling approach is unique in a 

robotics sense, the dynamic model is validated in Chapter 5.  Chapter 6 examines the 



feasibility of RUM actuated pointing control by investigating several control 

approaches that might achieve pointing control. This chapter addresses the nonlinear 

control aspects of the system and points out control considerations for RUM actuated 

systems. Chapter 7, the concluding chapter, presents a summary of research 

discoveries and suggestions for future work in numerous areas related to the RUM 

analysis. 



CHAPTER 2 

BACKGROUND INFORMATION 

The RUM device was originally developed to provide an efficient means of 

scanning space and balloon borne telescopes. This chapter provides background 

information on the unique requirements of gamma ray and x-ray detectors and how 

they influenced the development of the RUM device. Next, it presents an overview of 

RUM actuator concepts when used for scanning purposes. Finally, prior work 

accomplished toward pointing control is discussed along with the necessary technical 

study involving modeling and control issues. 

2.1    Optical Requirements for Gamma Ray and X-ray 

This section presents the needs of the user based on optical requirements of 

this special remote sensing equipment. 

2.1.1    Space and Balloon-Borne Systems 

Gamma ray and X-ray detectors require a balloon-borne or space borne 

platform for several reasons [4]: 

1.   Atmospheric absorption prevents much of the radiation from ever reaching ground 

based telescopes. Figure 3 depicts the electromagnetic (EM) frequencies reaching 



the surface of the Earth and those absorbed or blocked by the atmosphere. X-ray 

and gamma ray radiation is blocked at rather high altitudes (approximately 25 to 

30 thousand feet) making it very difficult if not impossible to detect these radiation 

sources from ground based sensors. In order to detect gamma ray or X-ray sources 

accurately, the imaging system must be above the level of the atmosphere that is 

distorting and blocking the radiation. 

2. Images of astronomical objects are blurred when light travels through the turbulent 

and clumpy air around the Earth. 

3. Ground  based telescopes  receive  stray  light  interference  from  cities  and  from 

atmospheric auroras. 

4. Angular resolution is dramatically increased when using space based optical 

telescopes. Space telescopes can generally distinguish details separated in angle 

ten times better than ground based systems. 

visible light 
60,000 

3 

ed 

radio micro 
wave 

infrared 

:.:■■'::-. -8!:;:-        '"sea leva! 
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ray 

blocking 

0 -2 -4    -5 -6 -9 -13 

(where: wavelength = (10(x> cm)) 

Figure 3 Atmospheric Blocking of EM Radiation [ 4] 



2.1.2   Special Optics 

Gamma rays and X-rays penetrate the normal 'mirror' optics of standard 

telescopes without being detected. Gamma ray detectors require unique hardware such 

as used in the spark detector shown in Figure 4. Gamma ray detectors track the 

gamma-ray photon as it passes close to the nucleus of an atom in the target. The 

photon disappears and a pair of electrons take its place. The electrons absorb the 

photon's energy and retain much of its trajectory leaving trails of ions in the detector. 

£  
visual image 

of 
ionizing tracks 

A 
y-ray shield 

nucleus 
\ 

target 

electron      / 
pair       e+' 

\  ionizing 
\ tracks detector 

Figure 4 Spark Chamber Gamma Ray Detector [ 4] 

Similarly, the X-ray detector requires special optics such as the grazing incidence 

telescope shown in Figure 5. It uses highly polished glass tubes to direct the X-ray 

radiation by placing them at high incidence angles to the source. Applying Snell's 

Law to gamma-ray and X-ray radiation provides the incidence angles needed for 

proper focusing of the image. 



Focus 

nested array 
of hyperboloid 

nested array 
of paraboloids. 

X-ray 
Energy 

Figure 5 Grazing Incidence X-Ray Detector [ 4] 

2.1.3    Scanning 

The special optics and the sources to be detected present some unique control 

requirements for the imaging process. First, the limited field of view (FOV) requires 

that the imaging device be scanned to give proper dimension to the image [5]. 

Referring to Figure 6, a simple example of electro-optical scanning would include a 

one dimensional scan of an object orthogonal to the flight path of an aircraft. The 

motion of the aircraft generates the second dimension of the image and is an example 

of physical scanning. 
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Physical 

Figure 6   Scanning Example 

Second, since gamma ray and X-ray radiation is always present as background 

radiation, it is necessary to distinguish between background radiation and source 

radiation when imaging a gamma ray or X-ray source. Scanning "on target" and "off 

target" identifies the flux coming from the background so it can be compared to that 

coming from the source [6]. Typical scanning patterns include linear, circular, and 

raster scanning as depicted in Figure 7 [5,6,1]. Gamma ray and X-ray detectors 

generally require adjustable scan periods and radii to meet user needs. 

linear circular raster 

Figure 7 Typical Scanning Patterns 



11 

2.1.4   Traditional Scanning Methods 

The special make-up of gamma ray and X-ray detectors prevent them from 

being electro-optically scanned. Physical scanning is the only option for these 

detectors. Prior scanning techniques incorporated torque motors, reaction wheels, 

control moment gyros or reaction control devices to generate the desired scan patterns. 

A detailed description of these components is covered in Reference [7]. Basic 

operation and advantages/disadvantages of each are described as follows: 

1. Momentum control devices actively vary the angular momentum of small masses 

within the spacecraft to change attitude. Reaction wheels and control moment 

gyros are momentum control devices. Reaction wheels vary spin speed to effect a 

change in the angular momentum. They provide highly accurate, fast response 

attitude control. They are complex and expensive, however, and have a large 

power consumption in the scanning mode of operation. Control moment gyros 

(CMG) vary spin direction to effect a change in angular momentum. The 

advantages and disadvantages are similar to reaction wheels. 

2. Reaction control devices are basically jet thrusters. The thrusters apply a force at a 

distance from the center of mass (CM) to effect a torque about the CM. They can 

produce fast responses but have limited use since they require propellant, which is 

exhaustible. Because of their nonlinear 'on-off behavior, they are difficult to 

control and very inefficient for scanning use since excessive propellant is required. 
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3. Torque motors provide the simplest means of attitude control. Electronic motors 

apply torque to a gimbaled system by 'pushing' against the gimbal platform. The 

'pushing', however, can cause instability for balloon-borne gondola systems [8]. 

Torque motors require excessive power during scanning operation and they cannot 

be used for free flying spacecraft because there is no platform to 'push' against [1]. 

2.2    The RUM Device 

All of the traditional methods of scanning have serious drawbacks including 

excessive weight, cost, and limited lifetime. The primary motivation for developing 

the RUM device was reducing payload mission requirements. Major factors 

influencing space and balloon-borne payloads are efficiency, low cost, and reliability; 

the RUM device was developed to meet all these requirements. Simulation and 

prototype test results have shown that the RUM device has a great advantage over 

reaction wheels and torque motors in the areas of weight and power consumption 

[1,3], This section presents a brief overview of the RUM concepts. References [1] 

and [3] provide excellent explanations of the RUM device. 

2.2.1    Basic Concept 

The concept of scanning using rotating unbalanced masses is a geometry and 

physics problem involving the mechanical properties of the system. The RUM device 

consists of a mass on a lever arm rotating at a constant angular velocity. The mass 

rotation generates a centripetal force that has constant magnitude but changing 
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direction. This force applied through a distance from the center of mass generates a 

torque about the center of mass that also has time varying direction. The time varying 

torque produces the necessary scan motion, which can be circular, linear, or raster 

depending on the configuration of the RUM devices [1]. In developing this concept, 

several assumptions were made: 

1. The center of mass is along the line of sight. 

2. The line of sight is the axis of minimum principal moment of inertia (Imin). 

3. The other two principal moments of inertia are equal (Imax). 

4. Localized RUM motion (i.e. small angle of movement of the experiment). 

5. Constant RUM velocity (constant ©R). 

6. The RUM device is treated as a simple actuator decoupled from the experiment 

dynamics except as an input to the system. 

Note: Assumptions 7 and 8 specifically apply to only balloon-borne systems. 

7. The Experiment is attached to the gondola by a 2 axis gimbal system. 

8. Balloon rotations are isolated from the experiment by a separate azimuth control 

system. 

Based on these assumptions, a linearized equation of motion for the balloon-borne 

gondola system is developed in the next section. 

2.2.2   Equations of Motion 

For the balloon-borne gondola system configured with a RUM device as 

depicted in Figure 8, torque about the center of mass (CM) of the experiment is given 
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by Equation (1) [1].   The masses are 180° spatially displaced from each other and 

rotate in the same direction. 

<9- 

line of 
sight 

180° 

cm 

Figure 8 Balloon-Borne Experiment in a Circular Scan 

~T 1LOS 0 
T = 2mco2

Rrd -sin(0A) 
T _+cos(6R) 

(1) 

where: 

T(LOS,E,X) = torque about the line of sight (LOS), elevation (E), or cross-elevation (X) 

axis respectively (ft-lbs), 

m = mass on end of lever arm of RUM (slugs), 

r = length of lever arm (feet), 
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d = distance from CM to attachment point of RUM (feet), 

(DR = angular velocity of rotating mass (radians/sec), 

OR = OR • t = angular position of rotating mass (radians). 

Using these torques in the linearized equation of motion given by Equation (2) and 

integrating twice gives the steady state scan motion given by Equation (3). 

9 
' LOS r1 

max 0 0 xLOS 

eE 
= 0 r1 

max 0 T 

ex 0 0 r1. mtn T 

(2) 

where: 0()= angular acceleration about the respective axis (rad/sec2) and / 

payload moment of inertia (slug-ft2). 

= the 

2mrd + sin(0/?) 
-cos(0A) 

(3) 

where: 0(E>X) = angular rotation about the elevation and cross-elevation axis (rad). This 

results in the circular scanning motion depicted in Figure 7. The radius of the scan is 

given by Equation (4) and the period of the scan is given by Equation (5). Note that 

the radius and period of the scan are independent of each other. This is a valuable 

design benefit, making it possible to adjust the period of the scan without changing the 

radius of the scan and change the radius without changing the period. 

2mrd <4) 
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period 

2% 

0)o 

(5) 

For the balloon-borne experiment configured as depicted in Figure 9, torque about the 

center of mass of the experiment is given by Equation (6) and results in the steady 

state scan motion given by Equation (7) resulting in the linear scan motion depicted in 

Figure 7. 

rLOS 

cm 

Figure 9 Balloon-borne experiment in a linear scan 

T 0 

T = 2mos\rd 0 

T _cos(0A) 

(6) 

2mrd 
Bx =— cos(0A) (7) 

The raster scan is generated by using the linear scan configuration and superimposing 

complementary motion from an auxiliary control system (ACS) that will be described 
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in the next section.  The development is similar for the free flying spacecraft and the 

gimbaled space platform experiment. See Reference [1] or [3] for details. 

2.2.3   Auxiliary Control System 

An auxiliary control system is needed to supplement the RUM devices and is 

usually made of traditional control devices such as reaction wheels, torque motors, etc. 

The auxiliary control system is used for the following pointing and scanning purposes: 

1. Target acquisition. 

2. Keeping the center-of-scan on target. 

3. Producing the complementary motion for raster scanning. 

Figure 10 shows the test configuration of the gimbaled system using torque motors for 

the ACS. The elevation and cross-elevation axis are controlled independently with 

low frequency/low amplitude torques where as the RUM devices are controlled by 

high frequency/high amplitude torques [1]. Low pass filtering keeps the ACS from 

fighting the motion generated by the RUM devices. 
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Figure 10 Test Configuration 

2.3    Prior Work on Pointing Control 

It has been suggested by Dr. Polites that the RUM device can be used for not 

only scanning motion but also to control pointing motion. The research work 

conducted through the NASA/ASEE Summer Faculty Fellowship Program during the 

summer of 1996 produced promising results in the area of RUM actuated pointing 

control [9]. The goals of the research program included further dynamical analysis of 

the experimental system and development of microcontroller code to achieve pointing 

control. The following two sections cover dynamical analysis and control analysis of 

the RUM actuated pointing system. 
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2.3.1   Dynamical Analysis 

The dynamical analysis centers around the basic concept that a time varying 

RUM velocity (coR) will produce a centripetal force having both time varying 

magnitude and direction [2,9]. This force can generate a torque about the center of 

mass that also has time varying magnitude and direction. Figure 11 shows a 

comparison between a constant ©R torque profile and a time varying CöR torque profile. 

Note that a net torque can be generated, depending on how the RUM velocity is 

varied, which in turn can generate the necessary pointing motion. 

constant COR 

time varying (0R 

Figure 11 Torque Profile about the Center of Mass 

The gimbal mounted experiment is configured in the circular scan mode to ensure both 

the elevation axis and cross-elevation axis have 'steering' opportunities. In other 

words, for the circular scan configuration, RUM rotation generates torques about both 

the elevation and cross elevation axis as compared to the linear scan configuration 

where torque is generated about only one axis.    Dynamical analysis starts with 
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Equation (8) which represents the equations of motion for constant RUM angular 

velocity resulting from combining Equations (1) and (2).   Assuming reaction forces 

from the acceleration of the RUM masses are small, pointing control will be achieved 

by varying RUM angular velocity, (oR), in Equation (8). 

■A Idmr . 2 

*E 

ex =^cos(eR)col (8) 

Equation (8) yields some interesting observations [9]: 

1. The elevation and cross-elevation angle dynamics are functions of RUM position 

(9R) and velocity (G)R). 

2. The control input, coR , varies based on the position of the RUM (i.e. is weighted 

by sin(0R) and cos(9R) for elevation and cross-elevation respectively). 

3. The control input, aR , enters the equation of motion as a squared term. Negative 

G)R has the same effect as positive <DR and must rely on the sign changes of cosine 

and sine factors to effect positive and negative accelerations. 

These observations are used in the next section to develop the control input necessary 

for pointing motion. 
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2.3.2   Control Analysis 

Dr. Polites originally proposed to use a control signal that introduces periodic 

variations in the RUM rate roR. The basic approach for determining the control input 

is to start with a nominal RUM velocity and vary it slightly about each axis. The 

nominal velocity will provide the scanning motion necessary while the rate variation 

will provide the change in the net torque necessary for pointing motion. The control 

input is defined in Equation (9) as: 

coR = (o„ + Aax cos(0A) - AcoE sm(6R ) (9) 

where: 

coro = a constant (nominal RUM rate of rotation), 
Ao)x = a rate variation to compensate for cross- elevation gimbal error, 
AaE = a rate variation to compensate for elevation gimbal error. 

Since the control input is based on the position of the RUM, the rate variations must 

be 'timed' properly to effect the desired input. The sine and cosine terms in Equation 

(9) weight the rate variations to give them the proper 'timing'. Substituting the control 

input into the dynamical model of Equation (8) and eliminating small higher order 

terms results in the elevation and cross-elevation axis acceleration approximations in 

Equation (10). 
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it        it 
scanning pointing 

There are several interesting observations made from this analysis: 

1. The first sinusoidal terms cause the periodic 'scanning' motion of the main body. 

2. The second terms affect the 'pointing' motion. 

Therefore, pointing control can be accomplished by introducing periodic RUM rate 

variations Aa)X and A©E for cross-elevation and elevation axis errors, respectively, 

without interfering with the scanning motion controlled by ©ro. The control developed 

around this model required a pointing controller and a RUM speed controller as shown 

in Figure 12. Note that this is the control system for a single RUM device. Control 

for the second RUM device is identical with the exception that the second RUM is 

180° spatially displaced from the first RUM. 
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Figure 12 Control System Overview 

The pointing controller uses a proportional derivative control design (PD) to provide 

gimbal control via coupling to the RUM speed controller which uses proportional - 

integral - derivative (PID) control. The elevation and cross elevation torque motors 

are disabled leaving the RUM devices for actuation of pointing and scanning motion. 

The test results are shown in Figure 13 for a small impulse disturbance input in the 

elevation axis. 
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Figure 13   Elevation Axis Disturbance Response 

Pointing control test result observations: 

1. Scanning motion is shown as high frequency oscillation on the plots. 

2. Without pointing control, the system has no disturbance rejection. 

3. With pointing control off, the system demonstrates a non-linear behavior even 

before it turns over 90°. A linear system would have displayed a ramp-type 

response to an impulse input instead of the exponential type response shown. This 

seems to indicate there is some coupling between the RUM dynamics and the 

motion of the experiment beyond simple scanning or pointing movement. 

4. There is a large steady state error (approximately 10°) with pointing control on. 

5. Test 2, in Figure 13, shows the best result obtained from the pointing control test 

and was difficult to duplicate. 

6. Further testing indicated there was a small stability margin. 
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2.4    Necessary Technical Study 

Work accomplished in the summer of 1996 indicates that pointing control may 

be possible using the RUM device as an actuator. There are several open issues that 

arise, however, when incorporating the RUM device and a RUM control algorithm to 

accomplish the pointing control. The issues are divided into two primary areas: 

Modeling issues and control issues. These issues are briefly introduced in the next 

two sections with detailed treatment presented in subsequent chapters. 

2.4.1   Modeling Issues 

The modeling approach taken thus far has been to use the RUM device as an 

actuator basically independent of plant dynamics. The dynamic model developed 

previously used the RUM device as strictly a torque input. This was a valid approach 

when the small angle and constant co assumptions were valid. A different modeling 

approach may be necessary if these assumptions are not valid. Time varying CöR 

generates additional reaction force terms in the modeling of the RUM device that are 

neglected in the original dynamical analysis. A more accurate model should include 

these terms as shown in Equation (11). 

"LOS 
2mrd 

max 

0 
u 

-co sin(ÖR) + — COS(#R) 

+ co2 cos(0R) + — sin( 0R) 

ft ft 
centripeta 1 components    reaction component 

(11) 
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where: 

u = torque applied to the RUM (control input) 
J = moment of inertia of the RUM 
u 
— = CÖ„ 
J       R 

Even this model, however, may not be completely accurate. Coupling between the 

system dynamics and the RUM dynamics would invalidate previous systems models. 

A systems approach to modeling should be used in order to account for the possible 

coupling of the RUM device to the experiment dynamics. Robotics provides a large 

body of knowledge that may be applicable to the proposed model. The physical 

makeup of the plant and RUM devices as seen in Figure 10 resembles the make-up of 

robotic mechanisms. Using a robotics approach will allow for the mechanics of the 

problem by addressing how individual components of the system interact. Applying 

well-developed robotic kinematics and kinetics concepts to this problem provides a 

systematic approach to system modeling. The Lagrange Formulation [10] is an 

important modeling technique that appears to be applicable. The RUM actuated 

system is unique in a robotic sense, however, requiring modifications to the Lagrange 

Formulation. 

2.4.2   Control Issues 

The technical study must address several control issues that result from the 

development of equations of motion for a time varying RUM velocity.  Even though 
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Equation (11) may not be completely accurate, it brings up the following control 

issues: 

1. RUM control actuation is unique in a robotics sense. Robots generally use torques 

at the base and subsequent joints to generate motion at the end effector. In the 

RUM actuated system, the actuator is at an end effector equivalent and is used to 

generate motion about the base (or center of mass). Also, the RUM actuator is 

relying on centripetal force to generate torques that cause movement at the center 

of mass of the experiment instead of using directly applied torques. 

2. A nonlinear system model and large angular motion require a different control 

method. Well-developed robotic control methods involving feedback 

linearization, adaptive control, or nonlinear trajectory control appear to be more 

appropriate than linear control methods [10,11,12,13]. 

3. The system displays "periodic controllability" [14]. Periodic controllability is a 

term used to indicate the periodic nature of the control signal. The RUM device 

generates the sine and cosine terms in the centripetal and reaction components of 

Equation (11). These terms have a periodic effect on the "steering" opportunities 

for each axis. 

2.5    Conclusions 

This chapter presents a brief summary of the RUM development and 

preliminary research in the area of RUM actuated pointing control. The basic concept 

employed uses a time varying RUM velocity that produces torques about the center of 
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mass of the experiment having time varying magnitude and direction. These torques, 

in turn, effect pointing motion. Experimental testing indicates that pointing control 

may be possible but considerable research is necessary. The technical study must 

address several issues to improve pointing performance of the RUM actuated system. 

Modeling and control issues indicate a systems approach is necessary to account for 

"periodic controllability" and possible coupling of the RUM device to experiment 

dynamics. Chapters 3,4 and 5 treat the modeling issues in detail and Chapter 6 treats 

the control issues. 



CHAPTER 3 

SYSTEMS APPROACH TO MODELING 

The modeling approach presented in References [1] and described in Chapter 2 

treats the RUM device as an actuator that operates independent of plant dynamics. 

The dynamic model developed in Chapter 2 treats the RUM device as strictly a torque 

producing device. This is a valid approach when the small angle and constant o 

assumptions are satisfied. A different modeling approach is necessary if these 

assumptions are not valid, as in a pointing control application. Equations (1) through 

(7) are developed under the small angle and constant © assumption. Equation (11), 

developed for time varying ra, does not consider large angle motion seen in the 

experiment or coupling dynamics linking the RUM to the payload (or telescope). A 

systems-level modeling approach must be used to accurately account for the coupling 

of the RUM device to the telescope dynamics. 

Robotics provides a large body of knowledge that is applicable to the model. 

The physical makeup of the plant and RUM devices, as seen in Figure 8, resembles the 

make-up of robotic mechanisms. The robotics approach addresses individual 

component interaction thus identifying detailed dynamics not found in simpler 

modeling techniques.    Well-developed robotic kinematics and kinetics concepts 

29 
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provide a systematic approach to system modeling of this problem. This chapter 

presents an overview of the general modeling approach applying the Lagrange 

Formulation. It is organized in a 'top-down' manner starting with basic concepts of 

the Lagrange Formulation including expressions for the kinetic and potential energy. 

Since these expressions require kinematic calculations, kinematics is presented next. 

Finally, an outline of the Lagrange Formulation steps is given to summarize the entire 

process. The formulation results in a dynamical model of the entire manipulator in 

terms of all joint variables. The equations of motion give the designer physical insight 

needed to understand the behavior of the overall system. Chapter 4 describes the 

Lagrange Formulation specifically applied to the RUM actuated system. 

3.1    Lagrange Formulation - Basic Concepts 

The Lagrange formulation [10] is derived from Hamilton's principle, one of 

the most basic principles of mechanics [15]. The development presented here is based 

on a robotics application. Figure 14 shows a general system of TV components or links. 

The variable qt at each joint defines the link's motion within its own frame of 

reference, thus making the #'s independent from each other. The q{ can be a 

rotational variable for a revolute joint (Joints 1 and 2 of Figure 14) or a translational 

variable for a prismatic joint (as in Joint N of Figure 14). The motion of link;' affects 

the motion of links z'+l to TV" for an N link system. 
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Figure 14 - N Link Manipulator 

The Lagrange Formulation provides a systematic approach to dynamic modeling that 

accounts for the effects of the joint motions on system dynamics. The objective of the 

Lagrange Formulation is to relate the joint position variable, qh and the joint velocity 

variable, q., to the potential and kinetic energies of the system. The kinetic and 

potential energies are then used to develop the Lagrange Energy Function which in 

turn is used to calculate the equations of motion for the entire system. The Lagrange 

energy function for a system is defined in Equation (12). The variable qisa vector of 

N independent variables as previously defined, q(t) = [#, (i) ••-. qN (t)f, describing 

the motion of a manipulator with N joints. K(») and P(«) are the kinetic energy and 

potential energy expressions for the manipulator respectively. 

L(q,lt) = K{q,lt)-P(q,t) (12) 

Once the energy function is specified, the equations of motion for the manipulator are 

obtained through the Euler-Lagrange equation defined in Equation (13). 
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dt 
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(13) 
dL{q,q,t)    ^ 
 5 ~*i 

Where: /' = 1, ..., JV and Ft is the generalized, non-conservative force acting in the 

direction of the qt coordinate (i.e. external forces, frictions, etc.). The general model 

resulting from the Lagrange Formulation is of the form defined in Equation (14). The 

first term on the left side of the equation is associated with the manipulator inertia. 

The second term represents the coriolis and centripetal forces and is associated with 

the manipulator kinetic energy. The third term signifies the gravity effects and is 

associated with the potential energy. The term on the right side of Equation (14) 

specifies the generalized forces acting on each joint. In robotics, this term represents 

the control input(s) to the system. 

(14) 
B(q)q+C(q,q)q + G(,q) = F 

Expressions for the kinetic and potential energies as functions of the joint variables, 

q and q, must be developed for each link of the system to use the formulation in 

Equations (14). The kinetic and potential energy expressions are developed in the 

next few sections. 

3.1.1   Potential Energy 

Potential energy is a function of the position of the manipulator components 

therefore it is configuration dependent. The configuration can be described as a 

function of the joint variables, q, thus making potential energy a function of qas well 
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[16]. Equation (15) represents the general form of potential energy for the /'th link of 

the system connected to the /'-l coordinate frame as shown in Figure 15. 

p = m<rTr , . (15) 

where: mt = mass of /'th link, g = gravity vector, and /j_lid= position vector for /'th link 

center of mass in reference to the M coordinate frame. 

5o /" 
On 

x0 y0 

base frame 

link /' 
Xi-l 

.... OM /       ri-l,ci 

►# cm 

Yi-i 
Zi-l t m,g 

Figure IS - Relative Position of Link Center of Mass 

The total potential energy of the system is the sum of the potential energy of each 

link, since potential energy is a scalar quantity. To accomplish this summation, each 

term in the summation must be represented in a common reference frame. In robotics, 

the base coordinate frame is generally used as the common reference and the gravity 

vector is expressed in that frame.    Therefore the position vector, ft_lcj, must be 

represented   in   the   base   coordinate   frame.      This   involves   a   homogeneous 
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transformation which accounts for translation and rotation between coordinate frames 

based on qt, the joint variable. Let Ad'1 be the homogeneous transformation between 

frames i-\ and 0, the base frame.  Then the total potential energy, P, can be expressed 

as in Equation (16). 

N 
P = Y.miST A~%x,a (16) 

i=\ 

This concept will be discussed further in the development of kinematic equations in 

Section 3.2 to follow. In summary, the potential energy is a function of ^because the 

position vector represented in the base frame involves homogeneous transformations 

that are a function of q. 

3.1.2   Kinetic Energy 

The kinetic energy of each link is developed in a manner similar to that for 

potential energy. However, the calculations are complicated by the fact that the total 

kinetic energy is composed of translational and rotational components. Equation (17) 

represents the kinetic energy for the rth link of the system. The first term is the 

translational kinetic energy based on linear velocity vector, vd, of the center of mass 

of the link. The second term is the rotational kinetic energy based on the angular 

velocity vector of the link and the moment of inertia of the link, ä5,and /, respectively. 
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A, = - /W, V„ V„. + - ö>; / ö. 
(17) 

Since kinetic energy is a scalar function, the total kinetic energy of the system is the 

sum of the kinetic energy of each link provided there is a common frame of reference 

for the calculations. This requires a mapping function called the manipulator Jacobian 

that relates the joint velocities, qt, to linear and angular velocity in base frame 

coordinates (Figure 16). 

Joint 
Space 

Jacobian 

Base Coord 
System 

Figure 16 - Manipulator Jacobian Mapping 

The relationship between the linear velocity, vd, and joint velocities is described in 

Equation (18) [16]. 

where: JL = the 3 x N linear velocity Jacobian for the rth link, 

q= the vector of Njoint velocities for an N link system. 

(18) 
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Similarly, the relationship between the angular velocity, mt, and joint velocities is 

described by Equation (19). 

u.-J'A <19> 

where: JA = the 3 x N angular velocity Jacobian for the rth link. Since these 

Jacobians are configuration dependent, they are functions of q. Thus, kinetic energy 

is generally a function of q and q. The calculations for the Jacobians are addressed in 

Section 3.2.3 to follow. The manipulator Jacobian accounts for the mapping of ij to 

v and a in the base coordinate frame but does not take into account how these terms 

are multiplied in Equation (17). The linear terms can be multiplied without reference 

to any particular frame since the product v£ vri is simply the square length of the 

vector   vd .   Transforming vd into a different reference frame does not change its 

length, but only rotates it [17]. Therefore, the translational kinetic energy for link /' 

can be expressed as in Equation (20). 

1     -r_       1     ir _„._,* (20) 

Similarly, the triple product of (b]li<äi in the rotational kinetic energy term does not 

need to be referenced to any particular coordinate frame thus making the summation 

of the translational kinetic energy and the rotational kinetic energy in Equation (17) 

possible without regard to any particular reference frame.   There is a requirement, 
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however, that  ö5, and I be in the same frame in order to calculate the triple product. 

In the calculation of a>i in Equation (19), multiplying q by J\ puts 3i into the base 

coordinate frame. Therefore, 7, must be expressed in the base frame or cbi must be 

transformed into the same frame in which 7, is expressed. It is generally simpler to 

express /, in the link coordinate frame. Therefore, a>t will be expressed in the link 

frame as shown in Equation (21). 

<°i - KK0   )   JA<1 

where: R'0~
l is the rotational transformation from the base frame to the rth link frame. 

Note that Ro~ is an orthogonal submatrix of the homogeneous transformation Ad'1. 

Therefore, {Ro~')T is the inverse of Rd'1. Thus, the rotational kinetic energy can be 

expressed as in Equation (22). 

löfiA^rJZK^KVSJ (22> 

It follows from Equations (21) and (22), the total kinetic energy of an N link system 

can be expressed as in Equation (23). 

(23) 
1   ir K=-qT 

Z^JL+JAK^K'YJA 
i=i 

<l 

In summary, the kinetic energy requires a mapping between joint space 

velocity variables, q, and the base coordinate frame velocity variables, vand a> thus 
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making kinetic energy a function of q and q since the Jacobian (mapping function) is a 

function of q.   The next several sections discuss the calculations of the kinematics of 

a mechanical system.    These kinematics are required in order to accomplish the 

mapping necessary for the potential and kinetic energy calculations. 

3.2    Kinematics 

Kinematics is the branch of mechanics that deals with the motion of rigid 

bodies without reference to their masses or forces producing the motion [10]. 

Basically, kinematics defines the geometry of the system, and the coordinate systems 

chosen determine the mathematical relations developed. The objective of kinematic 

modeling is to determine the cumulative effects of the entire set of joint variables. 

Kinematic modeling can be divided into two areas: Position kinematics and velocity 

kinematics. In each area the goal is to relate knowledge of the manipulator joint 

variables, q and q, to the movement of the entire system. The next several sections 

describe this relationship. 

3.2.1    Position Kinematics 

Position kinematics involves the representation of points in one reference 

frame to that of another frame. Figure 17 shows the position vector of point P in 

reference to different frames. If knowledge about point P is obtained in one frame, 

position kinematics enables that knowledge to be represented in another frame. 
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Figure 17 - Position Representation 

The tool for accomplishing these different representations is called the homogeneous 

transformation [16]. In general, this transformation accounts for rotations and 

translations in three dimensional space by using a matrix of the form shown in 

Equation (24). 

4-. -^3*3       "3x1 

./l 1x3        ^IJCI 

rotationsubmatrix   translationvector 
perspectivevector      scalingvector 

(24) 

This matrix converts the coordinates of a point expressed in the z'th (xi,y;,Zi) coordinate 

frame to the coordinates of the same point described in the z'-l (xi.i,yi-i,Zi-i) coordinate 

system. The translation vector describes the translation between the origins of the z'-l 

and z'th coordinate systems. The rotation matrix is a 3x3 submatrix specifying the 

rotation of the z'th coordinate system relative to the z'-l coordinate system. The scaling 

factor can be used to adjust the desired scale for the components of the translation 
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vector but is generally specified as 1 for robotics applications. The perspective vector 

may be applied to determine the position (size) of an object image using the focal 

length of a camera for optical sensing but will be zero in this robotics application. The 

components in this matrix are functions of the joint variable q and the manipulator 

configuration. Therefore, in order to represent point P (in Figure 17) in terms of 

reference frame 0 given its position vector in reference frame N, the following 

transformations must be used. 

-4";} 

(25) 

Note that the position vectors must be augmented by 1 to account for the translational 

part of the transformation. If the transformation is purely rotational, then A._r 

simplifies to Equation (26). A short hand notation given for Equation (26) is 

Rotaxis.angie  which specifies the axis and angle of rotation. 

(26) 

0      1 
AU = 
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If the transformation is purely translational, then A\_x simplifies to Equation (27).  A 

short hand notation given for Equation (27) is Trcmsmäs,disumce   which specifies the axis 

and distance of translation. 

4.1 
"'3*3       "3x1 

0 0 

(27) 

Different combinations of these two simple forms can result in the representation of 

transformations between any two reference frames. For example, point P in Figure 18 

can be represented in two reference frames. The frames are separated by a distance -a 

along the x0 axis and the rotation 0 about the z0 axis. 0 is measured from the x0 axis to 

the projection of the x} axis into the 0th frame. 

<▼ -Pi 
AZj 

a K 
Yi 

Figure 18 - Example Transformation 

Letting i?<J be the rotation submatrix of A\, the problem can be broken down into a 

simple rotation and a simple translation as shown in Equation (28). 
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^0 = Rl
0Pl + d\ 

1 = RotzfiTranSx,a i 
= 

-A1 

i 

(28) 

cos0 -sin# 0   -a 

sin0     cos<9 0     0 

0 0 10 

0 0 0     1 

Multiplying the rotation and translation matrices results in the homogeneous 

transformation, A\, between frames 0 and 1. This approach allows for a large amount 

of flexibility in determining transformations between reference frames. A more 

systematic approach is the Denavit-Hartenberg (DH) convention addressed in the next 

section. 

3.2.2   Denavit- Hartenberg (DH) Convention 

The DH convention is a systematic approach that uses the minimum number of 

parameters to describe kinematic relationships by restricting the types of rotations and 

translations allowed [10]. Rotations and translations are only allowed about or along 

the x and/or z axis. The joint variable, qt, is also restricted to a single variable per 

joint always about or along the z axis defined for that reference frame. The joint 

variable is further restricted to be either a single translational variable or a single 

rotational variable but not both. Applying the DH convention to the homogeneous 

transformation results in an A\_x matrix defined in Equation (29). 
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4-i = RotzftTranszATramxaRotx<ai <29> 

where[10]: 

0i = angle of rotation about the positive z,.j axis measured from the positive xt.i axis to 

the positive xt axis (or its parallel projection) where the positive direction is 

counterclockwise (joint variable for a revolute joint), 

dt = offset distance measured along the z,_; axis from the origin of the i-1 frame to the 

intersection of the zt.i axis and the xt axis (joint variable for a prismatic joint), 

a, = link length measured along the x, axis from the origin of the ith frame to the to the 

intersection of the z,.; axis and the x, axis (constant), 

or, = twist angle between two joint axes measured about the positive x, axis from the 

positive z,.; axis (or its parallel projection) to the positive z, axis where the positive 

direction is counterclockwise (constant). 

Figure 19 shows an example of applying the DH convention to a simple manipulator. 

Table 1 lists the parameters for each joint of the system. Note that the ( )* signifies 

the joint variable, qt, and that the joints are numbered starting with 1 at reference 

frame 0. 
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Figure 19 - DH Convention Example 

Joint a; as di 9i 

1 ai 0 0 9/ 

2 a2 180° 0 9/ 

3 0 0 d3* 0 

Table 1 - Joint Parameters 

The  general   form  of the  homogeneous  transformation  incorporating  the  DH 

convention is shown in Equation (30). 

COS0; -sin#, cosar, sin 0t sin a, ai cos#, 
sin 0{ cos0; cos a, -cos#, sina, ai sin 9i 

1-1 0 sin a, cos a, dt 

0 0 0 1 

(30) 
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There are several advantages to using the DH convention in the development 

of kinematic relationships. It provides a systematic approach to defining these 

relationships with only 4 parameters. It also makes the manipulator Jacobian 

calculations simpler since the joint variable, qt, is always defined with reference to the 

z axis in the local frame. There are some disadvantages, however, to using the DH 

convention. The main drawback is that a "dummy link" or "dummy joint" may have 

to be incorporated to abide by the restrictions placed on the homogeneous 

transformation. In the RUM actuated system development presented in the next 

chapter, a "dummy link" and 2 "dummy joints" are required in order to apply the DH 

convention to this system. 

3.2.3   Velocity Kinematics 

Velocity kinematics involves the development of the manipulator Jacobian 

discussed in Section Kinetic Energy which relates the joint velocities, q, to linear and 

angular velocities in the base coordinate frame. The following development assumes 

the DH convention is used to set up the kinematic relationships. 

3.2.3.1   Angular Velocity Jacobian 

The angular velocity of link j attached to the revolute joint j is the vector 

&j = zj_xqj as shown in Figure 20.  If the angular velocity of link j is written in the 

base coordinate frame, it can simply be added to angular velocities from other revolute 

joints when they are also written in the base frame. 
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Figure 20 Angular Velocity Vectors for Revolute Joints 

A prismatic joint adds no angular velocity to the system. Therefore, the total angular 

velocity of the rth link, in reference to the base frame, is the sum of all the angular 

velocities contributed by the 1 to / revolute joints. Joints z'+l to JVdo not contribute to 

the angular velocity of the ;'th link. Equation (31) demonstrates this vector addition. 

G)f =ö5,+ö52+-" + ö5> +--- + 3i 

= *o4i + bA + • • •+bj-tfj +■■■+KA 

= JAA +AI9I+'"+J'AAJ +■■•+J'Ai 

= 49 

(31) 

where: bjA = R^ xzj_,, the representation of z.yX in the base frame 

J'A = the angular velocity Jacobian for the i* link. 
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Therefore, the yth component of the angular velocity Jacobian for the yth joint is 

simply bj_t  for a revolute joint and zero for a prismatic joint.    Equation (32) 

summarizes the construction of the angular velocity Jacobian, JA
J, for the rth link. 

A=[SM  - A,   - 4,   o - o] <32> 

where:  /;.={ V>    ^ a revolute joint 
[ 0 for a prismatic joint 

3.2.3.2   Linear Velocity Jacobian 

Similarly, the linear velocity of the center of mass of link j attached to the 

prismatic jointy is the vector vg. = z^tfj as shown in Figure 21. If the linear velocity 

of link j is written in the base coordinate frame, it can simply be added to linear 

velocities from other prismatic joints when they are also written in the base frame. 

Therefore, theyth component of the linear velocity Jacobian for theyth prismatic joint 

is bj_x, the representation of £,_, in the base frame. 
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Figure 21 - Linear Velocity Vectors for Prismatic Joints 

The development of the linear velocity Jacobian for a revolute joint is more 

complicated, however, since a revolute joint contributes a linear velocity term that is 

tangential to the motion of the link. Figure 22 shows the linear velocity contribution 

of revolute joint y to the center of mass of link /'. 



center of mass 
of link i 

joint j 

Figure 22 - Linear Velocity Vector for Revolute Joints 

The velocity vector of the center of mass of link /' can be written as in Equation (33). 

-      ..     - (33) 
vci=G)jxrj_lyCi 

Where: /}_1>dis the position vector from theyth joint to the center of mass of the rth 

link. Once this velocity vector is written in terms of the joint variable and the base 

coordinate frame, it can also be added to other linear velocity terms. This requires that 

cbj and fj_lcj be written in terms of the base frame.   The angular velocity vector is 

equal to ai - bj_xqj as presented previously. To represent the position vector, fM a, 

in the base coordinate frame requires vector addition as shown in Figure 23. 
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Figure 23 - Position Vector Representation 

Since r0td and roj_x can be represented in the base frame by using the homogeneous 

transformations developed for the system, fj_lci is represented in the base frame by 

their vector subtraction as seen in Equation (34). 

f   -r      =r (34> 'o,ci      'OJ-1        'j-\,ci 

Where f0>ci and roj_x are represented in the base coordinate frame.  Therefore, the rth 

link's linear velocity contribution from theyth revolute joint is represented in Equation 

(35). 

v'=y>- (3S) 

= (Pj_lx(f0ci-rOJ_l))qj 
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The total linear velocity of the rth link, in reference to the base frame, is the sum of all 

the linear velocities contributed by the 1 to / prismatic and revolute joints. Joints /+1 

to N do not contribute to the linear velocity of the rth link. Equation (36) demonstrates 

this vector addition. 

= Jtä+4A+-"+Jlij+"'+>te, (36) 

Where J[ is the linear velocity Jacobian for the rth link. Equation (37) summarizes the 

construction of the linear velocity Jacobian for the rth link. 

A=[n.i - 4 - J'U o - o] 
(37) 

Where :J[.=\   - ^ * ('°-d " F°^l)    f°r a reV°lute j°int 
Li    '  bj^ for a prismatic joint 

3.3    Summary of Lagrange Formulation Steps 

In summary, the Lagrange Formulation results in the dynamic equations of 

motion for mechanical systems. The process involves several steps in determining the 

relationships between joint  variables  and  kinetic  and  potential  energy.     This 
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information is then used to calculate the Euler-Lagrange equations of motion.   This 

section provides a brief outline of the steps to the Lagrange formulation using the DH 

convention. 

Step 1.   Assign a coordinate frame to each joint of the manipulator. 

•     Use the DH convention when it is appropriate. 

Step 2.   Define coordinate frame parameters for each joint: ai, Oi, di, 6i. 

Step 3.   Determine the homogeneous transformations between each coordinate frame 

using Equation (3.19) repeated here. 

4-i 

cos#, - sin 0t cos a, 
sin#, cos 6i cos a, 

0 sin a, 
0 0 

sin 0, sin a, a, cos#, 
- cos 0, sin a, a,sin0, 

cos a, di 

0 1 

Step 4.   Determine the position  kinematic  equations  relating  each  link  of the 

manipulator to the base coordinate frame. 

Step 5.   Determine the velocity kinematics. 

•     Requires calculation of the Manipulator Jacobian for each link using 

Equations (32) and (37) repeated here. 

J* = \r J A I//Ü J Aj J'«   o »] 

j  bj_x    forarevolutejoint 
0        for a prismatic joint 

Aj 

v =\ r -  J\, J'u    0 o] 
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SLj = 

bj-\ * (f0,a ~ Kj-i)    for a revolute joint 
bj_x for a prismatic joint 

<   _ 

•     Use Manipulator Jacobian to calculate linear and angular velocities from 

joint velocities using Equations (31)and (35)repeated here. 

ö5, = JAq 

Step 6.   Calculate the potential energy for each link with reference to the base 

coordinate frame using Equation (16) repeated here. 

1=1 

Note that n will have to be augmented by 1 when multiplying by Ao1 to account 

for the translational part of the homogeneous transformation. 

•     Requires calculation of the position vector of the center of mass of each 

link relative to the base coordinate frame using the kinematic equations 

from step 4. 

Step 7.   Calculate the kinetic energy for each link with reference to the base 

coordinate frame using Equation (23) repeated here. 

2 Zrn^Ji+SJK'UK-'fA 
i=i 
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Step 8.   Calculate the Lagrangian energy function, L(q,q.t), by subtracting potential 

energy from kinetic energy. 

Step 9.   Calculate the equations of motion for the manipulator through the Euler- 

Lagrange equation defined in Equation (13)repeated here. 

d_ 
dt 

dL(q,q,t) dL{q,q,t) 

0q, 
= F< 



CHAPTER 4 

RUM-ACTUATED SYSTEM MODELING 

There are several benefits to applying Chapter 3 concepts to modeling the 

RUM actuated system. It is a systematic approach to modeling complex systems and 

it produces a complete dynamic model. Applying the Denavit-Hartenburg coordinate 

convention and the Lagrange Formulation to standard robotic manipulators is 

generally straightforward since robots are designed specifically and efficiently to 

perform certain tasks. There are certain drawbacks, however, to directly applying this 

formulation to the RUM actuated system. The RUM system is unique in a robotics 

sense since it is not an efficient use of joints or links and is under-actuated, having 

only the RUM torque motors for actuation. It would take six links and joints (some 

dummy) to represent this system that only has three degrees of freedom. Certain 

physical properties of the RUM system can be used to reduce the system order and 

complexity if taken into account during the modeling process. Therefore, in order to 

benefit from the systematic, detailed aspects of the Lagrange Formulation without 

unduly complicating the model, special insight and some modifications are required. 

All RUM actuated systems will require similar modifications and considerations when 

applying the Lagrange Formulation.    The modifications are divided up into two 

55 
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groups: Kinematic modifications and dynamic modifications. The development of the 

RUM actuated system equations of motion using these modifications is presented in 

this chapter. 

4.1    Kinematic Modifications 

Recall that the objective of kinematic modeling is to determine the cumulative 

effects of the entire set of joint variables. The next several sections will discuss 

physical properties of the RUM system along with modeling assumptions, position 

kinematic modifications and velocity kinematic modifications used to reduce model 

order and complexity. 

4.1.1   Modeling Assumptions and System Properties 

Three modeling assumptions are made during the development of the 

equations of motion. The first assumption is that no rotational motion about the line of 

sight axis is possible. This is a valid assumption for the test configuration described in 

Chapter 2 since the gimbal mount only allows cross-elevation and elevation axes 

motion. The second assumption is that the RUM mass arms are controlled to maintain 

the 180° spatial displacement. Note that the masses are not physically held in these 

positions by hardware but must be controlled to maintain this displacement. This 

property allows a model reduction since the RUMs can be treated as a single actuator. 

The last assumption, that the mass of the RUM link may be treated as a 'point mass' 

located at the center of mass of that link, is a valid assumption since the mass of the 
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RUM is much larger than the mass of the rod attaching the RUM to the telescope and 

the center of mass of the RUM link is located near the end of the link arm.    This 

assumption also allows for a simplified model as discussed in Section 4.1.3 to follow. 

4.1.2   Position Kinematic Modifications 

Position kinematics must be used to properly model the RUM positions, 

regardless of the modeling approach used. Certain considerations in position 

kinematics, however, will simplify the velocity kinematics and system dynamics 

developed in Sections 4.1.3 and 4.2 respectively. Figure 24 shows the RUM actuated 

system diagram. Since the circular scan RUMs are the only actuators used in this 

model development, the elevation and cross-elevation torque motors have been 

removed, as well as the linear scan RUMs. The joint variables are identified with 0i 

as indicated. 
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Figure 24 - RUM Actuated System Diagram 

There is a 2-degree-of-freedom gimbal joint at the center mount of the beam (or 

telescope). Since the DH convention is used, this joint will be modeled with two 

distinct coordinate frames with origins separated by a distance of zero. The telescope 

body can be modeled in several ways. Each method results in the same equations of 

motion but requires different calculations for the velocity kinematics. The telescope is 

treated as a single link to simplify the velocity kinematics in Section 4.1.3. However, 

several dummy frames and joints must be included in the model to ensure the proper 

configuration of the RUM system and to account for the geometry of the system. 

Figure 25 shows the coordinate frames used to model the RUM system. Reference 

frame 0 signifies the elevation axis motion while reference frame 1 signifies the cross- 

elevation axis motion.   The DH convention also requires that a "dummy" link and 
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joint be used between reference frames 1 and 2. Reference frames 3 and 5 signify the 

attachment points of the RUM actuator.   Reference frames 4 and 6 are attached to the 

end of the RUM mass and are required to determine the relative displacement of the 

RUM mass from the other reference frames. 

r 
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\ \ 
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joint 1 

Figure 25 - RUM System Coordinate Frames (DH Convention) 

Table 2 defines the joint parameters for the RUM actuated system. In order to 

maintain the correct telescope orientation, 90° must be added to the 02 variable. The 

parameters defined by ()* are the joint variables, q;. To ensure that the RUMs are 

kept at the 180° spatial displacement, '- r' is used in the 6th joint parameter and the 
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RUM rotation variables, 96 and 04, will be set equal to each other in the dynamic 

modifications in Section 4.2. This modification simplifies the calculations and enables 

a reduction of the system order later in the development. Note that joints 3 and 5 have 

all constant parameters. These are required for kinematic 'bookkeeping' to ensure 

compliance with the DH convention and the proper orientation of the telescope and 

RUMs. Although the position kinematics are complicated because of two 'dummy' 

joints, the velocity kinematics can be simplified since the constant parameters do not 

add dynamics to the system model. 

Joint a; Otj 4 0i 

1 0 +90° 0 e,' 

2 0 +90° 0 e2*+9o° 

3 0 0 d 0 

4 r 0 0 04* 

5 0 0 -d 0 

6 -r 0 0 e6' 

Table 2 - RUM System Joint Parameters 

4.1.2.1   Homogeneous Transformation Modifications 

The RUM system is unique in terms of robotic homogeneous transformations. 

Normally, a kinematic chain of equations relates the N* link to the base coordinate 



61 

frame by passing through all the other links. However, a RUM link (or arm) is 

attached to each end of the telescope requiring distinctly different kinematic chains. 

Therefore, the homogeneous transformations and the kinematic equations go from the 

base frame 0 out to frame 4 for the first RUM. For the second RUM, the 

transformations and equations go from the base frame 0 through frames 1 and 2 again, 

and then to frames 5 and 6. MapleV*1", a symbolic computation program, was used to 

facilitate these calculations. Appendix A provides detailed results of the homogeneous 

transformations. The kinematic equations for the first and second RUMs are shown in 

Equations (38) and (39) respectively. 

A: = A\A\A\A\ (38) 

A0 = A0Al A2A5 v    / 

4.1.2.2   Potential Energy Simplification 

Since the system is gimbaled at the center of mass of the telescope, the 

potential energy of one half of the telescope is equal and opposite to the other half of 

the telescope when calculated in terms of the base coordinate frame. Therefore, the 

potential energy of the entire telescope is equal to zero since the two halves cancel 

each other when added. If the 180° spatial displacement is maintained between the 

masses of the RUM arms, their potential energy will be equal and opposite as well 

thus resulting in a zero potential energy. Therefore, assuming a 180° RUM spatial 

displacement, the total potential energy of the entire system is zero. 
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4.1.3   Velocity Kinematic Modifications 

The physical properties analyzed in the previous sections facilitate the 

development of velocity kinematics. The different links of the RUM actuated system 

contribute different components to the kinetic energy. Each link can contribute a 

linear velocity term, an angular velocity term or both as shown in Equation (40) 

repeated here from Chapter 3. 

2 XVfJl+WM 
i=i 

(40) 

ft ft 

linear velocity angular velocity 
terms terms 

These terms are based on the mass of each link, the inertia about the center of mass of 

each link, and the velocity of the center of mass of each link. Figure 26 shows the 

five links of the RUM actuated system and RUM and telescope centers of mass 

necessary for analysis. 
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Figure 26 - Links of the RUM Actuated System 

Links 1 and 2 have zero kinetic energy since there is no mass or inertia in either link. 

The mass and inertia of the telescope is contained entirely in link 3. Modeling the 

telescope as a single link simplifies the kinetic energy calculation for link 3 since it 

rotates about its center of mass. This motion produces only rotational kinetic energy 

since the link rotates about its center of mass and the center of mass does not translate. 

Modeling links 4 and 5, the RUM arms, as point masses further reduces the 

complexity of the velocity kinematics. Even though the RUM arms are rotating, they 

contribute only a linear velocity term to the kinetic energy. This is due to the fact that 

for a point mass model, there is no inertia about the center of mass and the rotation 
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occurs about a point other than the center of mass.   These modifications result in a 

total kinetic energy consisting of only three terms as described in Equation (41). 

Kxotal — K3;Rotational +  ^Translational + Ks/franslational (41) 

There is one drawback, however, to these modifications. The notation used in Chapter 

3 is no longer valid and considerable care must be taken when calculating the 

manipulator Jacobians. A systematic approach must still be used since there are 

intricate kinematics involved primarily because of the complexity of the RUM motion 

in reference to the base frame. Appendix B shows detailed calculations for the RUM 

system Jacobians. 

4.2    Dynamic Modifications 

The kinematic modifications made in the previous sections reduce the 

complexity of calculating the system's kinetic energy and allow further reductions of 

the dynamic model presented in this section. Although the specific notation used in 

Chapter 3 is no longer useful because of the modifications necessary for modeling the 

RUM system, the basic concepts are still valid. The Lagrange energy function, 

£(#>#> 0> requires the calculation of only three kinetic energy terms since potential 

energy is zero. Applying the Euler-Lagrange equation discussed in Chapter 3, 

(repeated here in Equation (42) below), will result in the desired equations of motion 

but in a very unstructured form. 
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d_ 
dt 

0L{qj,f) _ (42) 

The results of Equation (42), require significant manipulation to separate the sixteen 

inertia terms and sixteen coriolis/centripetal terms into a form similar to Equation (43) 

(repeated from Chapter 3). Note there are no gravitational terms in the RUM system, 

since potential energies cancel. 

H(q)4     +C(q,ffi + G(q) = F 

ft               ft ft                                                        (43) 

inertia       coriolis/ gravity 
term        centripetd term 

term 

The form presented in Equation (43) is desirable since it provides considerable insight 

into model validation and controllability (discussed in Chapters 5 and 6).   A more 

systematic and algorithmic approach, presented by Spong and Asada [17,16], takes 

advantage of the relationship between the kinetic energy coefficients, the inertia terms, 

and the coriolis / centripetal terms.   Recalling that the Jacobians, J, and the rotation 

matrices, R, are functions of the joint variables, q,, Equation (44) shows the 

relationship between the kinetic energy coefficients and the inertia matrix, H(q). 
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1     r 

2       M 

coefficient matrix , « , 
(44) 

IT1/       JV 

z ;=1    y=i 

where: A;J(<7) is the (ij) component of H(q). There are four independent joint 

variables, qi through q4 , corresponding to 0i, 02, 04, and 86 for the RUM system. 

Therefore, the Jacobians, J[ and J\, are 3x 4 matrices, resulting in a 4 x 4 coefficient 

matrix for the kinetic energy equal to the H(q) matrix. Equation (45) shows a further 

relationship between the inertia matrix, H(q), and the coriolis / centripetal matrix, 

C(q,q). [17] 

"*y=tii^U"1-—    dKj^ ■ + ■ 
(45) 

*=i 2 [ dqt      %!j     dqk j ' 

where: Ckj is the (kj) component of the C{q,q) matrix, which is also a 4 x 4 matrix 

for the RUM system. These calculations result in the system of equations in the form 

of Equation (46) below. Detailed values are given in Appendix C. 
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K 
K 
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C2X 

C3X 

C22 

C32 

C23 

0 

C24 

0 ?3 

K K 0 K\ _?4_ .C41 C42 0 0 _?4 

(46) 

where: hy is a function of # and cig is a function of qandq. Analysis of the 

components of the H(q) and C(q,q) matrices reveal certain relationships allowing 

further simplifications. The H(q) matrix is symmetric and, due to system 

configuration, hi3=hi4 and h23=h24. Therefore, h3i=li4i and h32=h42. System 

configuration also helps simplify the C(q,q) matrix with the following relationships: 

CI3=CH, C23=C24, c3i=c4i, and c32=C42. Assuming that 06 = 04,06 = 04,06 = 04 (i.e. 

position references, velocities and accelerations are the same for both RUM devices) 

and noting that torque is applied only at the RUM torque motor, Equation (46) reduces 

to Equation (47). 

hx K % 4 °XX     °X2    2*13 <h 0 

Kx K 2^3 % H ̂  °ix   Cn   "^23 4 = 0 

h k* 43_ % Cn   <hi     0_ <k -h 

(47) 
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4.3    Summary 

Efficient modeling of the RUM actuated system requires numerous 

modifications to the standard Lagrange Formulation presented in Chapter 3. The 

modifications void the standard notation used in Chapter 3 but result in a simplified 

model. Directly applying the Lagrange Formulation to the RUM system would result 

in six equations of motion with only three degrees of freedom present. The 

modifications presented in this chapter enable a reduction of system order, without 

loss of system details, resulting in three equations of motion for the system model. 

The approach taken in this chapter, however, is unconventional in robotic applications. 

Therefore, it is critical to validate the model to ensure that the modifications were 

accomplished correctly. Chapter 5 discusses this validation using several different 

methods. 



CHAPTER 5 

MODEL VALIDATION 

The modeling approach described in Chapter 4 borrows from robotic modeling 

methods, but is unconventional in a robotic modeling sense. Therefore, it is necessary 

to validate the model. Analytic analysis, simulation tools (including Maple™ and 

Matlab ), and experiments provide model validation. This chapter discusses 

kinematic model validation and dynamic model validation. 

5.1    Kinematic Model Validation 

Validation of the kinematic model is critical to subsequent development of the 

dynamic equations of motions. Kinematics errors will result in errors in the model 

dynamics due to misrepresentation of the system configuration. Matlab™ simulation 

results, shown in Figure 27a. - Id, validate the kinematic equations for the following 

parameters: RUM radius (r) = 0.5 feet, distances between telescope gimbal and RUMs 

(d) = 2.5 feet. A different joint variable is put into motion for each simulation. The 

patterns traced indicate the end position of the mass of each RUM. Comparison of 

these simulations to analytical solutions confirms that the kinematic model is correct. 

This validation helped identify and correct a configuration error in the orientation of 
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the telescope resulting in the 02 + 90° term for the joint 2 parameters seen in Table 2 of 

Chapter 4. 
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Figure 27 Kinematic Simulations 

5.2    Dynamic Model Validation 

The dynamic model is validated in several steps detailed in the following 

subsections.   An analytic validation is accomplished by first applying the Lagrange 
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Formulation to a simple, known, mechanical system to ensure the approach is valid for 

a known system and to gain insight into application to the RUM actuated system. 

Then, the RUM system inertia and the coriolis/centripetal matrices are investigated to 

ensure they have the proper form. Next, the RUM model developed in Chapter 4 is 

compared to other models presented in Chapter 2. Finally, an experimental validation 

is accomplished by comparing the experimental results with the Matlab™ simulations 

of the system in the different modes of operation (i.e. scanning and pointing). 

5.2.1   Pendulum Example 

The first validation uses a robotics approach to apply the Lagrange 

Formulation to a simple, known, mechanical system to confirm the validity of its use 

and provides some understanding into how to apply it to more complex systems. The 

kinetic energy calculations of a pendulum system can help identify errors in the RUM 

model. A simple pendulum system, shown in Figure 28, is used to validate the 

approach. 
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Figure 28 Simple Pendulum 

The pendulum has a known equation of motion [18] given by Equation (48). 

ma2e + mgasm 6 = -k9 
or 

ma20 + kÖ + mga sin0 = O 

(48) 

where: kB is the generalized friction torque at the joint. 

Applying the Lagrange Formulation to the pendulum system results in the 

same equation of motion. The process of modeling the pendulum gives considerable 

insight into application of the Lagrange Formulation to the RUM actuated system. The 

"link" of the pendulum system is similar to the link of the telescope system containing 

the RUM mass. Each is modeled as a point mass with center of mass at the end of the 
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link arm.   Since the links are modeled as point masses, the inertia about the center of 

mass of each link is zero. Therefore, the kinetic energy will only have a translational 

component and not a rotational component.   This is an important discovery that can 

help identify inertia errors in the RUM model. 

5.2.2   Verifying Matrix Properties 

Certain properties of the inertia and coriolis/centripetal matrices can also be 

used as analytical tools to validate the model. The inertia matrix, H, will be 

symmetric if the modeling process is performed properly [17]. Results from Chapter 4 

indicate that the 4x4 H matrix (before the model reduction) is symmetric for the RUM 

system. In fact, this symmetry is one of several properties used to reduce the order of 

the model. Further investigation of the H matrix and the coriolis/centripetal matrix, C, 

is performed by investigating the properties of N(q,q) defined in Equation (49). 

N{Ü) = H{q)-2C{q,q) 
(49) 

If the calculations for C and H are correct, N(q,q) will be skew symmetric. That is, 

rtjk ofN satisfies nJk = - n%. The proof of this property is given in [17]. Calculating 

N(q,q) for the RUM actuated system results in a skew symmetric matrix. 
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5.2.3   Model Analysis 

Two models are available for comparison with the model developed in Chapter 

4. These models have certain limitations and assumptions associated with their 

development. The purpose of this section is to determine if the model developed in 

Chapter 4 yields the simple models under the same assumptions. The next subsections 

briefly describe the different models, including their attributes and limitations, 

followed by an analytical comparison of each model. 

5.2.3.1   Model Descriptions 

The models described in this section are the equations of motion developed 

using the different modeling techniques employed in Chapter 2 and Chapter 4. Model 

1, repeated here in Equation (50), was developed in Chapter 2 assuming a constant 

speed RUM and treats the RUM as an actuator independent of telescope dynamics. 

0, LOS 

0v 

2mrd 
0 (50) 

The attributes of Model 1 include: 

1. Simplicity permits a closed form solution. 

2. Elevation and cross-elevation axes are not coupled. 

3. RUM arm is coupled to the telescope only through the centripetal terms. 
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4. Constant RUM speed is assumed. 

5. Small angular displacement in the elevation and cross-elevation axes is assumed. 

Since Model 1 does not account for variations in the RUM speed, Model 2 was 

developed in Chapter 2 assuming a variable speed RUM and is repeated here in 

Equation (51). 

ft LOS 

6>v 

2mrd 
0 

rE'[-02
Rsm(9R)+eRcos(eR)] 

rx'[0'cos(0R) + 0Rsm(<0R)] 

ft ft 

centripetal reaction 
components        components 

(51) 

The attributes of Model 2 include: 

1. Model 2 is slightly more complex than Model 1 but still fairly simple. 

2. Elevation and cross-elevation axes are not coupled. 

3. RUM arm is coupled to the telescope only through the centripetal terms and 

reaction terms. 

4. Variable RUM speed is assumed. 

5. Small angular displacement in the elevation and cross-elevation axes is assumed. 

Model 3 is the reduced order, detailed model developed in Chapter 4. It has equations 

of motion shown in Equation (52) where hy and Cy are as previously defined in 

Chapter 4 and Appendix C. 
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^11   °\1 

<h.X    C-. 22 
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2C23 ?2 = 0 
0 .«. 3. 

(52) 

Equation (52) must be put into a form similar to Equations (50) and (51) using the 

equations of motion for the line of sight, elevation and cross-elevation axes to allow 

for comparison of the models. From the model developed in Chapter 4, q\ represents 

Ox, qi represents OE, and #3 represents OR. The line-of-sight angular motion is 

physically constrained to zero by the gimbal mount, allowing the equations of motion 

for the line of sight, elevation and cross-elevation axes for Model 3 to be written as 

shown in Equation (53). 

0 LOS 

0E 

0\ . Kli-K0E - IthA -Cvßx -cl20E-2cJR) 

(53) 

The Model 3 attributes include: 

1. Model 3 is a detailed model involving complicated, nonlinear terms. 

2. Shows coupling between the elevation and cross-elevation axes. 

3. Shows coupling of the telescope with the RUM arm through inertia terms and 

coriolis/centripetal terms. 

4. No assumptions made about RUM speed; valid for all operating conditions. 

5. Also provides an equation of motion for the RUM link (i.e. 0R) when in the form 

of Equation (52). 
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5.2.3.2   Model Comparisons 

The models developed in Chapter 2 and described in the previous section contain 

only the equations of motion (eom) for the line of sight, elevation, and cross-elevation 

axes of the RUM actuated telescope. Model analysis is accomplished by comparing 

the line of sight axis eom, elevation axis eom, and the cross-elevation axis eom 

between models. An analytic comparison of the models reveals that under certain 

assumptions, the model developed in Chapter 4 (Model 3) reduces to Model 1 and 

Model 2. Reducing Model 3 to Model 2 requires the following assumptions: 

1. No cross-coupling in the inertias of the elevation and cross-elevation telescope 

axes. The RUM is coupled to the telescope inertias only through the ho and h23 

terms. 

Result:   Inertia matrix has constant diagonal elements and two, time varying, off 

diagonal elements. 

2. Zero telescope centripetal and coriolis effects. Also, zero coriolis effects between 

telescope and RUM axes. The only effects retained in the model are the RUM 

centripetal terms. 

Result: All C-matrix elements are zero, except for C13 and C23 in Equation (53). 

3. Let 9E be small, so cos(6fc) = 1 and sin(öfe) = 0. 

Result: Equation (54), which is the Model 2 with a few minor differences. 
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0, LOS 

0v 

2mrd IE\0
2

Rsin(OR)-0Rcos(0R)] 

+ I~A-0RCOS(0R)-OR sin(0Ä)] 

(54) 

Note that the terms in Equation (54) are shifted 180 degrees from the terms in 

Model 2 shown in Equation (51). Since the choice of reference frame changes all 

the relationships by 180 degrees, the eom's are not altered by the difference in 

frame selection. Therefore, the results show that Model 3 contains the reaction 

force model. 

Reducing Model 3 to Model 1 requires the same three assumptions listed previously 

plus an additional assumption: 

4.   Constant RUM speed. The 0R (RUM acceleration) is zero and 0R (RUM velocity) 

is constant. 

Result: Equation (55), which is Model 1 with terms shifted 180 degrees similar to 

Model 2. 

0, LOS 

0v 

= 2mrd 

0 

rj02
Rsm{9R) 

-/^cos^) 

(55) 

Therefore, the results show that Model 3 contains Model 1 as well. 

5.2.4   Experimental Validation 

Experimental validation is performed by comparing Matlab™ simulation 

results with the actual NASA test system experimental results.  Numerous tests were 
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conducted on the NASA experiment and documented in [19]. There is an important 

distinction between these tests and those reported earlier by Polites [3,20]. Earlier 

tests confirmed accurate scanning and pointing performance when auxiliary gimbal 

control actuators and closed-loop gimbal control are employed. The tests described 

here are conducted without gimbal control thus evaluating the open-loop response of 

the system. Since the goal of the present testing is to validate a new model of the 

open-loop system dynamics, these test results cannot be compared to the findings 

reported earlier. This section describes how the simulations were accomplished by 

introducing different representations for Models 1 and 2. This section also compares 

simulation results with experimental results under different modes of operation 

including a constant RUM speed mode of operation, start-up transient response, and a 

variable RUM speed mode of operation. 

5.2.4.1   Model Form 

Putting Model 3 into a robotics framework helps identify the input to the RUM 

torque motors necessary for different operating modes. The models are put into the 

same format, namely H(q)q + C(q,q)q = r, to facilitate simulation. The control 

input is through the x term, which is the input torque vector to the different joints. 

This is significantly different than Polites' original model in which he used a torque 

input about the elevation and cross-elevation axes generated by the centripetal force of 

the RUM. In the above form, however, the torque input to the RUM actuated system 
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is T = [0 0 r3 j showing that the cross-elevation and elevation joints are unactuated 

(i.e. Ti and T2 are zero). T3 controls the speed of the RUM arms through input torque 

to the RUM torque motors. Equation (52) shows Model 3 already in this form. Since 

Model 1 and Model 2 are contained in Model 3, they can easily be put into this same 

form as shown below in Equation (56) and (57). Note that these equations are shifted 

by 180 degrees to permit comparison with Model 3. 

0 

0 0 

0 ~'i\ 
0 ft + 

XUM _ .&_ 

0 0 2(mrdq3 sin (q3J) 

0 0 2(mrdq3 cos(q3J) 
0   0 0 

r?l~ "0" 

4l = 0 

W. .T3_ 

(56) 

Ix    0    -2mrdcos(q3) 

j     2mrdsm(q3) 0 

0 
'RUM 

0 0 2(mrdq3 sin (q3J) 

0 0 2(mrdq3 cos(q3)) 
0   0 0 

"«I- "0" 

^2 
= 0 

-*_ _r3. 

(57) 

In this form, both models contain an equation of motion for the RUM arm. This gives 

the designer considerable insight into how to apply the desired torque to the RUM 

arm. This form also gives model flexibility by allowing friction or disturbances at the 

different joints through the torque inputs (ti, T2, T3). 
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5.2.4.2   Matlab™ Simulations 

In the Matlab™  simulations,  the  equations  of motion  are numerically 

integrated to solve for q and q.  A numerical integration is required for the detailed 

model because of the complexity of C, H and H"1 and the lack of a closed form 

solution for q.   Model 1 and Model 2 are simulated using the same techniques to 

ensure that differences in numerical techniques do not contribute to differences in the 

simulations. Matlab™ contains numerous numerical integration procedures called 

ordinary differential equations (ODE) solvers. They are intended to solve a general 

system of differential equations of the form  y = f(t,y), where t is the scalar 

independent variable and y = y(t) is the vector of dependent variables. This ODE 

solver is based on the classic Runge - Kutta method [21]. This method treats/^ as a 

function of two independent variables, samples the function for several different 

values of these variables, combines the samples to approximate the Taylor series, and 

integrates the resulting approximation over one time step.   ODE 45 is used in the 

RUM system simulations.   The digits 4 and 5 refer to the order of the underlying 

method. ODE 45 employs two approximations, one of order 4 and one of order 5, and 

uses their difference to estimate the error in each step.   The order is roughly the 

number of terms in the Taylor series approximation. 

To put the RUM actuated system into 'first order' form consistent with 

y ~ f(f>y), the six state variables are defined as: 



82 

x, = qx       (elev postion) 

x2 = q2      (x-elev position) 

x3 = q3      (RUM position) 

x4 - 4i       (e^ev velocity) 

x5 = q2       (x-elev velocity) 

x6 = <lz       (RUM velocity) 

The resulting 'first order' differential equation is shown in Equation (58): 

x = 
0 3*3 '3x3 

03,3   -HXC 
x + 03*3 (58) 

where: H and C were previously defined in the Chapter 4 calculations. The control 

input, x, is the single torque input to the RUM torque motors. The Matlab™ 

simulations use several M-files containing RUM system parameters. Figure 29 shows 

the flow diagram for the simulations. 



83 

Systemparameteis 
m,r,d,I 

I 
Initialize 

start ' ' stop 

i = 0 

t = t i        ' start 

V, 

H and C matrix calculations 
Hixi,u\i^i),H'\xuuxi2,xui),C{xi) 

H'\C 

x, = 

Thetadot 

pM   -HAC\ 
0,, 3*3 

X 

'i+I —'.sto/> 

0£>£45 

(solutions  to xt are 

the next new states) 

/ = / +1 

OutputofODE45 

^0      X0,l      Xo,2      Xo,l      Xo,4      Xo,5      Xo,6 

}i       Xi,\      Xi,2      Xi,3       Xl,4       Xi,5       Xi,t 

^l+l >tstop 

•*i+i>'j+i 

Figure 29 Flow Diagram for RUM Simulations 
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The system parameters used for the RUM actuated system simulation are specified 

below and are consistent with the test configuration shown in Chapter 2. 

m = .155 slugs 

d = 2.5 feet 

r = 0.5 feet 

I (telescope along x axis) = I (telescope along y axis) = 26 slug - ft2 (specified in reference frame 2) 

Note that this numerical integration technique was successfully tested on the simple 

pendulum system to validate its use for the RUM system. 

5.2.4.3   Constant RUM Speed Analysis 

Polites' analysis in Chapter 2 and [3,20] indicates that a constant RUM speed 

should generate a circular scanning motion. Constant RUM speed is implemented 

using a RUM torque command based on velocity feedback. Proportional control is 

used to generate the commanded torque given in Equation (59). 

r3 = proportional gain (Velocity ÄW_ - VelocityRUM>actual) (59) 

= ^(constant- q3) 

This torque is generated in the Matlab™ thetadot.m program. The initial conditions 

are based on the assumption that the system is in the steady state scanning mode 

already.    That is, the RUM is rotating at a constant speed and the telescope is 
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scanning.   For a RUM reference speed of 7t rad/sec and RUM position (q3) of 0 

radians, the initial conditions are: 

*0       1*0,1       *"0,2       ^0,3       X0A *0,5       *0,6 1 
.    2mrd   n   2mrd 
0       0    n   0   n (60) 

Figure 30 shows a comparison between the experiment and simulation results for each 

of the models. Note that the initial offset bias is removed from the experimental data. 

Experimental Data 
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Figure 30 Constant RUM Velocity Simulation Results 

Observations: 

1. Scanning is a "steady state" mode. 

2. The experiment radius of the scan is .015 radians with a period of 2 sec. 

3. There are some unmodeled disturbances in the experiment observed by the 

fluctuations in the scan pattern. There are a number of possible sources for the 

disturbances including imbalances in the system, control cable interference, 

friction, etc. 

4. All 3 models closely approximate the experiment in the scanning mode with a 

radius of approximately 0.015 radians and a 2 second scan period. 

5.2.4.4   Start-Up Transient Behavior. 

The  start-up transient  response  simulation is  conducted with all  initial 

conditions set to zero (i.e. the system is at rest).  Torque is then applied to the RUM 
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actuator to accelerate to and maintain a constant speed of K rad/sec.  The simulation 

results are compared to the experimental results in Figure 31. 
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Figure 31 Start-Up Transient Response Simulation Results 

Observations: 

1.   The experiment shows small fluctuations in the transient response presumably 

caused by the synchronization of the RUM arms to the 180° spatial displacement 
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position.    After the fluctuations settle out, a fairly constant steady state scan is 

observed with no significant offset. 

2. Model 1 shows significant errors in the transient behavior of the model compared 

to the experimental results. It shows a large offset in both the elevation and cross- 

elevation axis. 

3. Models 2 and 3 show similar results observed on the experiment. 

5.2.4.5   Variable RUM Speed Analysis. 

This section investigates the behavior of the experiment and all three models 

when a variable RUM speed is introduced to the system. A variable RUM speed can 

be generated by adjusting the RUM joint torque input (x3). Equation (61) shows one 

such possibility for varying the RUM speed. 

q3{ref) = nominal speed + —cos(q3 + <f>) *   ' 

Where A is the change in maximum to minimum RUM speed and <J> is a phase shift 

term used to adjust the location of RUM acceleration and deceleration in each 

revolution. Applying the torque in this manner generates a RUM velocity profile 

shown in Figure 32. Note that the nominal speed is % rad/sec and <|> = 7t/4. 
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Figure 32 RUM Velocity Profile 

Viewing the velocity profile on a polar plot in Figure 32 reveals where the RUM is 

accelerating and decelerating in each revolution. Note that since there is no feedback 

from the elevation and cross-elevation axes present in x3, these simulations address the 

open loop behavior of the system. The results of applying this torque to the 

experiment and models are shown in Figure 33. Note that A = 0.1 for the Model 1 

simulation and A = 1.0 for the other simulations. The larger A is used to determine if 

a larger velocity change may increase the offset in the elevation and/or cross-elevation 

axes. 
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Figure 33 Variable RUM Velocity Simulation Results 

Observations: 

1.   The control input from Equation (61) alone has little noticeable effect on the 

experimental systems pointing motion.  That is, significant changes in the average 
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cross-elevation and elevation angles are not possible using the control input (61) 

alone. 

2. Model 1 predicts significant effects on the instrument pointing motion by using the 

control input (61) alone. It shows a large offset in both the elevation and cross- 

elevation axis. 

3. The reaction force model predicts no noticeable effect on the instrument pointing 

by using control input (61) alone. Even the larger A has no noticeable effect. 

4. The detailed model predicts a very small, long term effect on the pointing angles. 

The detailed model is in agreement with the behavior observed in the experimental 

system. The predicted effect is small, however, and may be easily washed out by 

imperfections in the actual experiment (e.g. nonlinear friction at the gimbals, 

gravity, cable tensions, etc.). Again, the larger A has no significant effect. 

5. Even though Model 1 does not agree with either the experiment or the other two 

models, it does give insight to how instrument pointing can be achieved by a 

modified control. In other words, the control input (61) may not be suitable alone, 

but may be effective if augmented by other control effort. This is explained 

further in Chapter 6. 

5.3    Summary 

Validation of the RUM actuated system model involves several techniques. Since all 

of the dynamics depend on the position and velocity of each component, the 

kinematics of the system must be validated to ensure proper system configuration. 
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The data presented in this chapter has validated the dynamic model analytically and 

experimentally.   Further, the dynamic model is shown to contain the simple models 

and does not contradict the experimental results. 



CHAPTER 6 

FEASIBILITY OF RUM ACTUATED POINTING CONTROL 

A detailed model is very important when considering the control of the RUM- 

actuated system. The difference between the models is significant.   Model 1 and 

Model 2 have limited use in pointing control design since they do not consider large 

angular motion in the elevation and cross-elevation axes which is the goal for the 

pointing control schemes.   They also neglect coupling between the elevation axis and 

the cross-elevation axis and some coupling between the RUM arm and these axes. 

Knowledge of this coupling may be essential when considering a control scheme 

because of the limited number of actuators in the system.    Therefore, the model 

developed in Chapter 4 and validated in Chapter 5 is necessary when investigating 

pointing control schemes. Models 1  and 2, however, can lend insight into the 

controllability of the RUM actuated system.   In this chapter, the feasibility of RUM 

actuated pointing is examined by analyzing the open loop response of the system to 

different control inputs.  Open loop response here means no cross-elevation or 

elevation motion information is used for the feedback control. Figure 34 shows the 

general control scheme used in this chapter.  Note that the RUM motion is used for 

feedback control of the RUM velocity only. 
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Figure 34 General Open-Loop Control Scheme 

Several different control schemes are investigated for pointing actuation using 

the RUM devices. Pointing control using simple RUM rate variations is examined 

first, followed by feedback 'cancellation' analysis. Next, since these two control 

schemes raise issues regarding the controllability of the system, system controllability 

(or reachability) and a coupling index are discussed. Finally, variable gimbal braking 

and variable RUM arm length are considered as possible additions to the pointing 

control configurations and schemes. 
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6.1    Pointing Control Using RUM Rate Variations 

In this section, Polites' control scheme presented in Chapter 2 is investigated. 

Polites proposed to use a control signal that introduces periodic variations in the RUM 

rate, ©R. The suggested control input is repeated here in Equation (62). 

<°R = °>RO +Aa)x cos(0Ä )-Ao)E sin(0fi ) (62) 

where: 

(ORO   : a constant (nominal RUM rate of rotation) 

AOJX : a rate variation to compensate for cross-elevation gimbal error 

ACOE : a rate variation to compensate for elevation gimbal error 

Recall that the sine and cosine terms in Equation (62) weight the rate variations to give 

them the proper 'timing'.   In Chapter 2, this control scheme was implemented in a 

disturbance rejection test. Here, the control scheme is applied to Model 3 (full model) 

and is used to determine the feasibility of pointing control. The variable RUM speed 

analysis conducted in the Chapter 5 investigates this type of control input for constant 

rate variations (Aa* and Ao*). Note that since there is no feedback from the elevation 

and cross-elevation axes, these studies address the open loop behavior of the system. 

The following conclusions can be drawn: 

1.   The control input from Equation (62) alone has little noticeable effect on the 

experimental systems pointing motion.  That is, significant changes in the average 
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cross-elevation and elevation angles are not possible using the control input (62) 

alone. 

2. Model 1 predicts significant effects on the instrument pointing motion by using the 

control input (62) alone. 

3. Model 2 predicts no noticeable effect on the instrument pointing by using control 

input (62) alone. 

4. Model 3 predicts a very small, long term effect on the pointing angles. Model 3 is 

in agreement with the behavior observed in the experimental system. The 

predicted effect is small, however, and may be easily washed out by imperfections 

in the actual experiment (e.g. nonlinear friction at the gimbals, gravity, cable 

tensions, etc.). 

5. Even though Model 1 does not agree with either the experiment or the other two 

models, it does give insight to how instrument pointing can be achieved by a 

modified control. In other words, the control (62) may not be suitable alone, but 

may be effective if augmented by other control effort. This is explained further in 

the next section. 

6.2    Pointing Control using Feedback 'Cancellation' 

Analysis of the Model 1 suggests that pointing control of the system should be 

possible if the undesirable dynamic effects of the RUM acceleration and deceleration 

can be cancelled. The more detailed models 2 and 3 indicate that cross-coupling and 

other nonlinear dynamics are significant and cannot be ignored.  From the controller 
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design viewpoint, it is suggested that these nonlinear effects be cancelled by feedback 

control [19]. The idea is very similar to feedback linearizing control, which has been 

proven in robotics control (but called "computed torque control") to give linear 

closed-loop dynamics to systems that are inherently nonlinear [17]. In the RUM 

application, however, closed-loop dynamics consistent with that predicted by the 

nonlinear Model 1 is the goal, rather than linear closed-loop dynamics. From the 

previous variable RUM speed analysis, reaction forces can be identified that prevent 

pointing from happening. When the reaction terms are taken out, pointing is possible 

as shown in Figure 35. 
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Figure 35 Variable Speed Control on Model 3 without Reaction Forces 
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In order to accomplish this feedback cancellation a significant amount of cross- 

coupling must be present since the system is under-actuated. That is, the system has 

more joints (and degrees of freedom) than actuators. The RUM actuated system has 

three degrees of freedom and a single actuator since the RUMs are held at 180° spatial 

displacement. The restriction on the RUM phasing ties their motion together and 

causes them to become a single actuator. Dynamic coupling between the RUM arm 

and the telescope is necessary for the single actuator to affect motion about the 

elevation and cross-elevation axes. This requires the determination of system 

controllability, discussed in the next several sections. 

6.3    Controllability Analysis Tools. 

A system is said to be controllable at time t0 if it is possible to transfer the 

system, with some control' u ', from any initial state 3c(/0)to any other state x(f,)in a 

finite interval of time [22]. This section provides several valuable tools used in the 

determination of system controllability. To lay the foundation for controllability of 

the non-linear RUM system, a linear system analogy is described first. Then, non- 

linear system controllability is discussed, followed by the development of a coupling 

index used for under-actuated system analysis. 

6.3.1   Linear System Control Analogy 

Consider the linear system model given by Equation (63). 
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-     ^    „- (63) 

where:  x = n x 1 state vector 

u = m x 1 control vector 

A=nxn system matrix 

B = nxm input matrix 

The system is said to be completely state controllable if every state is controllable. 

The states of the RUM actuated system are the position and velocity of each joint 

variable as discussed in Section 0 to follow. Every state is controllable if and only if 

the n x n controllability matrix given by Equation (64) has rank n [22,24]. 

[B  AB  •••   A"'B\ 

6.3.2   Nonlinear System Controllability (Reachability) 

Consider the non-linear system model given by Equation (65). 

where: x = n x 1 state vector 

(64) 

(65) 

u = m x 1 control vector 

f{x) and g(x) = vector functions of the states 

The 'controllability condition' of Equation (65) is given by the linear independence of 

the vectors in Equation (66) similar to the linear systems described previously [13]. 
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[g,   adfg,   ...,   ad}~xg\ (66) 

where: 

adfg = U,g] = Vgf-Vfg 
adfg = [f,ad?g] 

V/ = df/dx   (nxn matrix) 
Vg ~ dg/dx    (nxn matrix) 

[f,g] is known as the Lie Bracket of/ and g.  Note that for linear systems, Equation 

(66) becomes the controllability matrix [B   AB   •■•   A"~*B\. 

6.3.3   Coupling index 

Using the Lagrange Formulation (i.e.H(q)q + C(q,q)q + G(q) = t) for the 

RUM actuated system facilitates the use of numerous robotic analysis techniques. 

One technique that is particularly useful for control analysis is the coupling index 

developed by Bergerman, Lee, and Xu [23]. The coupling index is a measure of 

dynamic coupling present in under-actuated systems. Under-actuated refers to 

systems that have more joints than control actuators. Some examples of under- 

actuated systems are robots with failed actuators, legged robots with passive joints 

and hyper-redundant (snake like) robots with passive joints. This tool will provide 

insight into the coupling available for control and help determine system 

controllability. This section briefly explains the indexing process and its use for 

determining controllability of a nonlinear system. 
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To use the coupling index technique, the system equations of motion must be 

put into a form that reveals the relationship between active and passive joints. 

Equation (67) provides this relationship for a system with: 

n = total number of joints, 

r = number of active joints (joints with actuation), 

p = number of passive joints. 

(67) 

ßpa      Hpp ßp. 
+ X 

A. 
= 

X' 
o_ 

Where: qa = active joint angles 

qp = passive joint angles 

b = coriolis, centripetal, and gravitational terms 

Note that this H matrix may not always equal the conventional inertia matrix but the 

properties are preserved such as symmetry and positive-definiteness [23],    From 

Equation (67), the relationship between the acceleration of the active joints and the 

passive joints is represented by Equation (68). 

HJIa+H3+b=0 

or (68) 

qp = -H-lHja-H;lb 
pp p 

Mcqa-H~lb: pp p 
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This can be rewritten as: 

qp+H-#f=Meqa 
(69) 

The term on the left side of Equation (69) is viewed as the virtual acceleration of the 

passive joints. Therefore, analysis of how active joint acceleration (qa) effects 

passive joint acceleration (qp ) involves careful study of theMc matrix. The following 

results apply to theMc matrix [23]: 

1. If row /', 1 < /' < p, in matrix Mc contains only zeros, the z'th passive joint cannot be 

controlled via dynamic coupling with the active joints. 

2. lfr<p, then r passive joints can be controlled at every instant, while p - r 

passive joints cannot. The p - r passive joints will depend linearly on the 

acceleration of the other r joints. 

3. In order to independently control all p passive joints, at least p actuators are 

necessary. 

This analysis tool is used in Section 6.5 to help determine the dynamic coupling and 

controllability of the RUM actuated system. 

6.4    Reachability Analysis - RUM Actuated System 

This section uses the controllability condition tool to make comparisons 

between the three models representing the RUM actuated system. Model 1 and Model 

2 exhibit the two extremes of the controllability condition.   Model 3 appears to be 
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somewhere in between as will be explained below.   Approaching the controllability 

issue in this way sheds considerable light into a very complex topic. 

The RUM actuated system consists of the six state variables previously defined 

in Chapter 5: 

*i = tfi       (elev postion) x4 = qx       (elev velocity) 

x2 = q2      (x-elev position) ^ = ^       (x-elev velocity) 

x3=q3      (RUM position) x6=q3       (RUM velocity) 

Putting the RUM actuated system into Equation (65) format results in Equation (70): 

"03,3 -'3x3 x + "o3x3 

k* -H~lC [Hl (70) 

where: H and C were previously defined in the Chapter 4 calculations. The control 

input, T, is the single torque input to the RUM torque motors. This causes the system 

to be under-actuated as discussed previously. To accurately describe this under- 

actuated system for controllability analysis, g(x) must account for this single input. 

Therefore, for r = [o   0   T3]
T

 , f(x) = '3x3 

J3x3 

-"3x3 

■H~XC 
x, g{x)h the last column of 

0. 

H 
3x3 

1 
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6.4.1   Model 1 Controllability Condition 

For Model 1, the controllability condition matrix is Equation (71) where s(q3) 

and c(q3) stand for sin(q5) and cos(q5) respectively. 

(71) 

cc = 

0 0 -4dq^   -6dq>^     &C«      10^34^> 
rlx ^3   rlx ^   rlx *3   rlx 

0 0 4dq^     -6dq?S-^    -Sdq3>^    10<%4Ä> 
rly rly rly *3   rly 

0 =■ 0 0 0 0 
mr 

0      4^3^>     2dq?C-^-    -2dq>^   -2dq3*
C-M     2<*^ 

0      -4^3M    2dq^      2dq3
3«&     -Idq?^   -2dq^ 

rIy rly rly rly 
%   rly 

0 0 0 0 0 
1 

mr1 

There are several interesting observations: 

1. The matrix (cc) is a function of RUM position and velocity only (q3 and q3). 

2. The matrix is full rank no matter what the RUM position is as long as the RUM is 

rotating (i.e. velocity * 0). 

3. Even though the matrix is full rank, the RUM position effects sparseness of the 

matrix. This in turn implies less control effectiveness to the RUM actuation. A 

comparable example would be control of the lateral dynamics of an airplane 

actuated using only rudder input [24]. Even though the controllability matrix has 

full rank and the system is controllable, the maneuverability of the airplane would 
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be greatly degraded with this type of control. "Controllability does not guarantee a 

high-quality control, it just guarantees that all the states can be manipulated to zero 

in some fashion in some finite time." 

4. The above observation indicates the periodic nature of the controllability for the 

system as discussed in Chapter 2. Equations (72) and (73) show how the 

controllability matrix changes as the RUM position goes from q3 = 0° to q3 = 90° 

respectively. Note q3=n rad/sec. 

cc = 

0 

0 

0 

0 

0 

1 

1 
mr 

0 

Ad 
K 

rL 

Ad^- 
rIy 

0 

2d 
K 

0 

0 

n 
r7„ 

-6d 

0 

0 

0 

2d±- 
rL, 

-8c/ 

mr 

-2d^- 
nx 

0 

0 

lOrf 
n 

0 

0 

0 

-2d±- 
rL. 

(72) 

cc 

0 

0 

0 

0 

0 

J_ 
mr2 

Ad 

0 

1 
mr2 

n 

0 

0 

-Ad— 

0 

0 

0 

2d 
K 

rL, 

6d 
~r7„ 

-2d 

0 

0 

n 
rh 

Sd 
n 

~rTx 

0 

0 

0 

2d 
n 
rL, 

0 

\0d 
n 

~rT.. 

2d 
n 

rL 

0 

0 

(73) 



106 

6.4.2   Model 2 Reachability Condition 

For Model 2, the controllability condition matrix is given by Equation (74). 

cc = 

0 

0 

0 

rl. 

_2dM*± 
rl.. 

mr 
2f/cosfe)     ^HqJ 

rl. 

2rf^>    -2^3^^ 
rl. rl., 

1 
mr 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

(74) 

There are several interesting observations made from this analysis: 

1. The matrix is also a function of RUM position and velocity only. 

2. The matrix never has full rank; it always has a rank of 2. 

3. Since the matrix is less than full rank, Model 2 cannot be controlled at every 

instant in time. Scanning motion, however, is controllable for Model 2. 

Conclusion: the system dynamics produce the necessary motion for scanning even 

though they are not always controllable. 

4. In calculating the Lie Brackets for columns 3, 4, 5, and 6, the 

Vg • / and V/ • g terms completely negate each other, resulting in the zero vectors. 

This is due to the reaction terms in Model 2. Therefore, the reaction terms negate 

a significant part of the controllability of the system. 
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6.4.3   Model 3 Reachability Condition 

For Model 3, the Lie Brackets associated with Equation (66) quickly become 

very complicated due to the complexity of the Model 3 representation. Maple™ was 

used to facilitate calculation of the Lie Brackets for Model 3. Because of the 

complexity and recursive nature of higher order Lie Brackets, Maple™ was only able 

to calculate the first three Lie Brackets. The calculations for the first three Lie 

Brackets show linearly independent vectors in the controllability condition matrix. The 

following conclusions result from the controllability analysis of Model 3: 

1. The cc matrix is a function of all states. 

2. Since the complexity of the Lie Brackets increases with each recursion, it appears 

that the controllability matrix will be full rank. The full rank matrix seems to be 

due primarily to the cross-coupling between axes which does not appear in Models 

1 and 2. Because the cc matrix is a function of all states, there may be certain 

states (i.e. positions and velocities) that cause the cc matrix to lose rank and thus 

system controllability. This is unlikely because of the complexity of the matrix. 

However, a decrease in control effectiveness and system maneuverability may 

occur at certain states. 

3. Because Model 3 encompasses both Models 1 and 2, it has a controllability 

condition somewhere between Models 1 and 2. Model 1 represents a system that 

is completely controllable and Model 2 represents a system that is not controllable 

at every instant in time. 
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4.   The analysis done here and in Section 6.1 seems to indicate that Model 3 

represents a situation where the system is controllable but the 'maneuverability' is 

poor and it must rely on large inputs and system dynamics to accomplish certain 

motions. 

Since the RUM actuated system is under-actuated, the control input is based on the 

amount of coupling between the actuator and the telescope.   Therefore, to further 

understand the controllability of Model 3, a coupling index measuring this coupling is 

necessary. 

6.5    Coupling index - RUM Actuated System 

Unlike Models 1 and 2, Model 3 lends significant insight into the amount of 

coupling available for control. In the next few sections the coupling index is 

calculated and compared for each model. 

6.5.1    Model 1 Coupling index 

Putting Model 1 into Equation (67) form results in Equation (75). 

lRUM 

0 

0 0    / 

0" ~<73~ 
0 #i + 

Ü _&_ 

0 V 
2^/wsin(?3) = 0 
- 2q3mr cos(q3) 0 

(75) 

Using (75) to calculate theMc matrix results in Equation (76). 
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\h 0] 
Mm = pp 0 *x\ 

M   = pa 0_ 

(76) 

Mc=M-ppMpa = 

The following observations are made from this result: 

1. Indicates that it is not possible to control the elevation joint and cross-elevation 

joint at every instant via coupling to the RUM joint. 

2. Appears to contradict earlier findings on controllability condition in Section 6.4.1. 

This index, however, measures inertia coupling only and does not account for 

coriolis or centripetal coupling which are important factors in RUM control. Mc = 

0 is consistent with the fact that Model 1 does not account for coupling of the 

elevation and cross-elevation axes to the RUM via inertia terms. This analysis 

shows that the inertia terms cannot be ignored in modeling the RUM actuated 

system. 

3. The pointing motion observed in Model 1 tests are generated strictly from 

centripetal terms as previously observed. 

6.5.2   Model 2 Coupling index 

Putting Model 2 into Equation (67) form results in Equation (77). 
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hvM                     0         0" '%' 0 \ 
-2mrdcos(q3)   IE    0 ä + 2q3mrsm(q3) — 0 
-2mrdsm(q3)    0    Ix .&_ -2q3mrcos(q3) 0 

(77) 

Using Equation (77) to calculate theMc matrix results in Equation (78). 

M 
pp 

M pa 

0    Iv 

-2mrdcos(q3) 
-2mrdsm(q3) 

■ 2mrd cos(q3)y 

K=M;PMpa -2mrdsin(q3)/ 

(78) 

The following observations are made from this result: 

1. Indicates that the passive joints are both controlled via dynamic coupling with the 

active joints. 

2. The terms in this coupling matrix were previously identified as the reaction terms 

in Chapter 2 analysis. These terms keep the telescope from pointing when a 

variable RUM velocity control is used. In essence, they "control" the telescope so 

that variable speed cannot affect pointing motion. 

3. Since the number of active joints (r = 1) is less than the number of passive (p = 2), 

one of the passive joints cannot be independently controllable at every instant.  In 
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fact, it appears there is a trade off between control of each axis as q3 rotates from 0 

to 2% again showing the periodic controllability of the system. 

6.5.3   Model 3 Coupling index 

Putting Model 3 into Equation (67) form results in Equation (79). 

K K K ~<ii 

2*3 K K ft 

2ÄZ3 K hn_ Ai. 

+ C(q,q)q = 
(79) 

Where: Hij is as previously defined in Chapter 4 and Appendix C and C(q,q)q are the 

coriolis and centripetal terms. 

Using Equation (79) to calculate theMc matrix results in: 

pp 

M    - [*2*b 1 
pa VKA 

(80) 

K=M-ppMpa 
M ell 

M cl\. 

Where detailed values for Mc are shown in Appendix D.  The following observations 

are made from this result: 

1. The Mc matrix is a function of the RUM position angle and the cross-elevation 

position angle only. There is no elevation position term in the matrix. This 

indicates that the coupling of the RUM actuator to the elevation joint is through 
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the cross-elevation joint.  This makes sense physically since the elevation joint is 

in the base frame. 

2. The reaction terms are in the Mc matrix similar to Model 2 but there are other 

inertia terms that might be used for control. 

3. Since the number of active joints (r = 1) is less than the number of passive (p = 2), 

one of the passive joints cannot be independently controllable at every instant of 

time. 

6.5.4   Summary 

The coupling index is an important tool used in controllability and reachability 

analysis. In the RUM actuated case, however, it only shows part of the picture 

involved in control. It verifies the observations made in the variable RUM rate 

analysis and explains how the inertias couple to prevent pointing motion. It does not 

show the influence of coriolis and centripetal terms which are major factors generating 

scanning motion. 

6.6    Modifications to Control Input 

The controllability condition analysis of Model 3 indicates that the RUM 

actuated system is controllable. The control index analysis indicates that the system is 

not controllable at every instant of time. It also indicates that the coupling, although 

present, may not be enough to affect an efficient pointing control scheme.    This 
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section discusses possible control scheme changes that may achieve the desired 

pointing control. 

Using Polites' original control scheme shown in Equation (62), one possible 

change in the control input would be to vary the RUM speed above the nominal speed 

instead of varying it above and below the nominal speed as suggested by Polites. 

Figure 36 shows a comparison between the two speed profiles. 

Reference Velocity Comparisons 

time (sec) 

Figure 36 Speed Profile Comparison 

>   A 

> A 

This control is accomplished by using RUM velocity and position feedback and 

simply adding an off-set to the reference RUM speed as shown in Equation (81). 
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A     A (81) 
3W) = (nominal speed +—) +—cos(^3 + $J) 

4* JLt 

Where A is the change in maximum to minimum RUM speed and § is a phase shift 

term used to adjust the location of RUM acceleration and deceleration in each 

revolution. By varying the RUM speed above the nominal speed, an average speed 

change occurs. Note that this is different than just changing the RUM velocity to a 

higher constant value. Changing to a higher constant RUM velocity results in a faster 

scan only, without pointing motion. Varying the RUM speed as shown in Figure 36 

results in initiating multiple transient responses as the RUM speed goes from nominal 

speed to maximum speed. It is analogous to turning the system on and off and using 

the small transient behavior to affect pointing. Note that varying the RUM speed 

above the nominal also allows for a larger change in velocity (A) during each 

revolution of the RUM without worrying about the velocity going negative which is a 

problem with the original control input. Having a nominal speed above zero ensures a 

non-zero RUM velocity, essential for control. Theoretically there would be an 

infinitely large control input available for pointing actuation which may solve some of 

the control issues addressed earlier. Practically, however, power is limited and at a 

premium. Therefore it must be conserved and used efficiently. Figure 37 shows the 

results of the change in control input for cross-elevation axis motion using A = 4. 
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Elevation position vs X-Elevation position 
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Figure 37 Cross-Elevation Axis Motion with New Control (30 sec simulation) 

For elevation axis motion, a much larger A is required in the reference speed to induce 

a similar amount of motion. Figure 38 shows the results of elevation axis motion for 

A ten times that used for the cross-elevation motion. 
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Elevation position vs X-Elevation position 
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Figure 38 Elevation Axis Motion with New Control (A times 10) 

The following significant observations result from the new control input: 

1. Hardware limitations and large input requirements will restrict the maximum 

RUM speed thus reducing the effectiveness of this control scheme. Another 

pointing strategy may be more appropriate. Note that this control scheme has not 

been tested on the actual system. 

2. It would appear that the motion in cross-elevation axis and elevation axis should 

be symmetric. Linearized models of the system will be symmetric but non-linear 

models of the system may not be. Another example of the asymmetry in the 

system is the existence of a singularity in one axis but not in the other.  Since the 
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elevation axis motion is defined in the base frame, the use of a universal (U) joint 

configuration at the gimbal mount in the RUM system introduces a singularity 

when the RUM rotation is in the same plane as the elevation axis motion. The 

singularity occurs because the RUM axis motion cannot be distinguished from 

elevation axis motion. This type of configuration contributes to the asymmetry in 

the motion of the elevation and cross-elevation axes. Even with this asymmetry, 

some pointing motion is possible with the new control input. Note that if the base 

frame motion is changed from elevation axis motion to cross-elevation axis 

motion, the singularity is switched as well. 

3. The difference in cross-elevation axis and elevation axis motion and control 

requirements is also partly explained by the coupling index from Section 6.5.3. 

The absence of the elevation axis variable in the Mc matrix and the fact that there 

are more passive joints than active joints indicates that one passive joint cannot be 

controlled at every instant. 

4. There is a significant amount of coupling between axes that in essence prevents 

large pointing motions in the elevation axis. This could account for the success of 

the disturbance test conducted in Chapter 2. A small disturbance in the elevation 

axis did not have much impact on the motion of the telescope when Polites' 

control scheme is implemented. Again, the coupling index from Section 6.5.3 

helps explain this phenomenon. 
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6.7    System Configuration Changes 

Using the single RUM control strategy only may not be the most efficient or 

practical means of controlling pointing. A possible solution to the under-actuated 

control issues raised previously is to add another actuator. One obvious solution is to 

allow the RUM arms to rotate without the 180° spatial displacement requirement. 

This would in essence add an additional actuator to the system by using the hardware 

already present. There would be four joints with 4 degrees of freedom and two 

actuators available to control them. This, however, would cause lateral motion about 

the center of mass of the telescope causing pendulum like oscillations in the balloon 

borne system. Polites originally designed the RUM actuated system with the 180° 

spatial displacement to prevent this lateral motion because it destabilizes the gondola 

platform and makes the balloon borne telescope unusable. This configuration, 

however, could be used for a space borne system since the lateral motion could be 

used for pointing. The space borne system will require extensive model changes due 

to the increased degrees of freedom compared to the current gimbal mounted model. 

This configuration will be addressed in the future work section of Chapter 7. Two 

other possible actuator additions are promising. They are a variable gimbal braking 

actuator and a variable RUM arm length actuator. These configurations are 

investigated in the next two sections. 
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6.7.1   Variable Gimbal Braking 

One possible solution to reducing the auxiliary control system hardware may 

be to reduce the complexity of the system by using simple brakes at the gimbal mount 

instead of torque motors, reaction wheels or CMGs. Obviously this configuration 

would only be suitable for balloon borne systems because the braking system requires 

a platform to brake against. Simple brakes have been used on numerous occasions as 

a simple way to increase actuation for under-actuated systems [23,25]. A variable 

braking system would apply a friction force at the gimbal mount in the elevation and 

cross elevation axis. The RUM would rotate at a constant speed and the braking 

would be synchronized with the RUM position to affect pointing in different 

directions. Equation (82) shows an example of the friction force generated by the 

braking system necessary for pointing control. 

r, = -(0.5 + 0.5cos(tf3 + <j>))qx 

r2 = -(0.5 + 0.5cos(#3 + ^M 

(82) 

This configuration would take advantage of the RUM motion and allow the telescope 

to continue scanning at the same time it was being pointed, fy is used to change the 

direction of the pointing command. Figure shows the open loop response to such a 

command for § = 45°. 
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Elevation position vs X-Elevation position 
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Figure 39 Variable Gimbal Braking Pointing Actuation 

6.7.2   Pointing Control using Variable RUM Arm Length 

Adding an actuator to vary the RUM arm length is another possible solution to 

the under-actuated control issues raised previously. In this configuration, the RUMs 

will continue to rotate as before (i.e. 180° spatial displacement) at a constant velocity 

but the RUM arm length would vary during each revolution. Since the variable arm 

length adds new dynamics to the system, a new model is required. Applying the 

Lagrange Formulation to this new configuration results in equations of motion given 

by Equation (83). 
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K  K 2Ä.3 2K #1 Cll       C12 

K  Ki 2^23 2Ä24 ?2 + 
C21       C22 

Ki  Ki K 0 ?3 C31       C32 

K  K 0 K\ #4 _C41       C42 

2c13 2c14" V "0" 

2cB 
2cM ?2 0 

C33 C34 <ll *"3 

C43 C44. ß4. J4_ 

(83) 

where: #3 and q3 are the RUM angular velocity and acceleration, respectively and 

q4 and q4 are the RUM arm velocity and acceleration, respectively. Varying the RUM 

arm length by as little as 1.2 inches (from 6 inches to 7.2 inches) generates 

considerable pointing motion as shown in Figure 40. 

Elevation position vs X-Elevation position 

T 

0 0.1 0.2 0.3 0.4 0.5 0.6 
x-elev pos (rad) 

Figure 40 Variable RUM Arm Length Pointing Actuation 
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Therefore, variable RUM arm length appears to be an effective method for 

accomplishing scanning and pointing. Since the 180° spatial displacement in RUM 

positions is maintained, lateral motion should be eliminated making this configuration 

suitable for both balloon and space borne systems. Varying the RUM arm length, 

however, will require another actuator, meaning major hardware changes to the 

physical system. This will require an investigation into the mechanical 

implementation of another actuator. Some suggested ideas are a geared camshaft that 

can provide a variable arm length at different locations in the RUM's rotation or a 

spring loaded telescoping arm. This configuration does eliminate the requirement for 

an auxiliary control system but it may be difficult and complicated to implement 

physically. 

6.8    Conclusions 

This chapter investigates the feasibility of pointing control using RUM 

actuators. System controllability condition and coupling index are two valuable tools 

used in reachability analysis. Each has its limitations and must be used carefully. The 

controllability matrix can be quite complex and the coupling index shows only the 

inertia coupling. This chapter also provides a sampling of different pointing control 

strategies and configurations. Model 3 provides a detailed representation available for 

control, but discovering that control scheme will require considerable research. Simple 

control schemes, such as a variable RUM rate control do not appear to be highly 
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effective for pointing control at this point in the research. Two simpler solutions are 

variable gimble braking or variable RUM arm length configurations and control 

schemes. Implementation of these will require substantial hardware changes but will 

reduce or eliminate the auxiliary control system requirements. Much more research is 

required to determine a control strategy and configuration that will be effective and 

efficient for pointing actuation. 

The RUM actuated system contains very complex dynamics. Under-actuated 

system analysis has shown that a 3 degree of freedom system cannot be controlled at 

every instant of time by a single actuator. That does not mean, however, that the 

RUM actuated system is not usable. For example, a single RUM actuator successfully 

produces accurate scanning motion. This begs the question, "Is the motion generated 

by the actuator a motion we can use (but may not be able to control at every time 

instant but possibly on average)?" In other words, if the RUM device actuates motion 

that can be used for scanning, perhaps other physical properties of the RUM device 

can be controlled to give the pointing motion desired. Further research is required in 

this area. 



CHAPTER 7 

FUTURE WORK AND CONCLUSIONS 

The RUM device was developed at NASA to partially meet the unique control 

challenges of space and balloon-borne gamma ray and x-ray imagining telescopes. 

This dissertation takes the analysis of this unique actuator to a new level. It provides a 

systematic method of modeling the RUM actuated system. The modeling approach 

draws from robotics but extends the application of the Denavit-Hartenberg (DH) 

coordinate convention and the Lagrange Formulation to this unusual "robot" 

configuration. The RUM actuated system is unique in a robotic sense since it is not an 

efficient use of joints or links and is under-actuated, having only the RUM torque 

motors for actuation. Through the application of this modified modeling approach, 

this dissertation provides the first known complete model of the RUM actuated 

system. Prior models do not accurately account for coupling between the telescope 

axes and the RUM device or provide an accurate prediction of telescope motion under 

all operating conditions. 

Obtaining this complete model facilitates detailed control analysis, which helps 

determine the feasibility of pointing actuation using the RUM device.   This analysis 

draws from non-linear reachability conditions and the dynamic coupling index.   The 

results of the feasibility study indicate that simple variable RUM rate control schemes 
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do not appear to be highly effective for pointing control. Experimental simulations 

give insight into the physical behavior of the system. The results show that pointing 

motion generated by RUM rotation is due primarily to start-up transient behavior. 

System configuration changes, such as variable gimbal braking or variable RUM arm 

length, appear to be effective means of obtaining pointing but substantial hardware 

changes are necessary. These approaches, however, will help simplify or eliminate the 

auxiliary control system. The feasibility study also points out the limitations of 

existing analysis tools. For complex systems, the Lie Bracket calculations quickly 

become unmanageable and the coupling index provides valuable information about the 

inertia coupling but does not account for coriolis or centripetal coupling, a major 

factor in RUM actuated motion. Analysis of the RUM actuated system is a rich and in- 

depth area of research. It yields numerous other areas of study that will lead to years 

of future research topics as discussed in the next section. 

7.1    Future Research 

1.   RUM Phasing 

Allowing the RUM arms to rotate independently from each other seems to be 

the next logical approach for increasing the number of actuators since the hardware is 

already in place, i.e. the two RUM actuators can be phased different by control alone. 

Increased computing power will be required and there are certain drawbacks to using 

the RUMs in this manner as discussed in Chapter 6. Also, since lateral motion may be 

a by-product of the RUM phase approach, some experiment modification will be 
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necessary.    The telescope (T beam) must be suspended to simulate a gondola 

configuration. Suspending the telescope will allow lateral motion and a more accurate 

experimental setup.   Model 3 must be modified to allow for lateral motion in the 

cross-elevation and elevation axis plus rotational motion in the line of sight axis. 

2. Variable RUM Arm Length 

Simulations involving variable RUM arm length appear to show a promising 

method for accomplishing scanning and pointing. Varying the RUM arm length, 

however, requires another actuator which means major hardware changes. 

Investigation into the mechanical implementation of another actuator is necessary. 

Some suggested ideas are a geared camshaft that can provide a variable arm length at 

different locations in the RUM's rotation. The development of a closed loop control 

scheme incorporating elevation and cross-elevation motion is necessary as well. 

3. Variable Gimbal Braking 

Variable gimbal braking appears to be the most effective and accurate pointing 

control scheme studied in this dissertation. It takes advantage of the RUM motion and 

is considerably less complex than other Auxiliary Control System (ACS) hardware. 

Again, hardware changes are necessary along with the development of a closed loop 

control scheme 

4. Linear Scan Configuration 

The circular scan was originally studied because two axis pointing is necessary 

for telescope applications and both elevation axis and cross-elevation axis motion are 
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affected with the circular scan configuration. Since it was shown (in Chapter 6) that 

3-degrees of freedom cannot be controlled at every instant by a single RUM actuator, 

perhaps a step back is necessary. The linear scan configuration meets the minimum 

coupling index criteria (i.e. there must be at least as many active joints as passive 

joints). Studying the linear scan motion may provide some clues and possible 

solutions to using a single actuator to accomplish pointing along a single axis (i.e. one 

axis pointing may be possible with a single actuator). This is an easier problem that 

may shed light on single actuator control but it may not directly apply to the circular 

scan configuration. 

5.   Unique Actuators 

Unique types of actuators, such as the RUM device, provide a wealth of 

potential research topics in the area of controlling mechanical systems. The RUM 

device is a unique actuator because it uses centripetal force to affect motion. Further 

investigation is warranted to determine what other types of actuators are available and 

whether they have similar modeling and analysis issues as those encountered with the 

RUM actuated system. The question to ask when looking at these types of actuators is 

not whether they are completely controllable but whether the motion generated by the 

actuators can be used in some form to control mechanical system behavior? Perhaps 

another actuator can provide the pointing motion as part of its physical properties. 
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6.  Under-actuated Systems 

Under-actuated system analysis has shown that a 3-degree of freedom system 

cannot be controlled at every instant by a single actuator. But, the RUM system is 

controlled in the scanning mode with a single actuator. This is because the motion of 

one axis depends on the motion of the other axis. This dependence is very predictable 

and can be controlled by changing system parameters such as RUM arm length and 

RUM mass. The RUM actuated system appears to fit into the category of 

'nonholonomic' systems. Nonholonomic systems are best described by comparing 

them to 'holonomic' systems. Given two points in space, A and B, a holonomic 

systems can take arbitrary paths to get from one point to the other. For nonholonomic 

systems, motion between points A and B are constrained to specific paths [26], 

Examples of nonholonomic systems are automobiles, space-based robot manipulators, 

and orbiting satellites. A classic example of controlling a nonholonomic system is 

parallel parking a car. The car must be moved along a certain path to move the car 

into the parking space. Backing the car into the space is the optimum solution. The 

RUM system may be a similar situation. The RUM must rotate in order to affect 

elevation and cross-elevation axes motion. This motion constrains the path that the 

elevation and cross-elevation axes can take. If unlimited power is available, RUM rate 

variations will generate pointing along this constrained path. If not, another approach 

is necessary similar to backing the car into the parking space. The discovery of these 

types of control are usually ad hoc in nature and will require considerable research. 
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7.  Additional Non-linear Analysis Tools 

Limitations in the reachability analysis tools appear to indicate a need for 

additional non-linear analysis tools. A tool that is not unduly complicated is needed to 

analyze the coupling of centripetal, coriolis, and gravitational terms. These three 

terms may be significant factors in the control actuation of certain systems (e.g. 

gravity gradient control of space satellites). Having an analysis tool that can describe 

their coupling with other system dynamics would greatly facilitate reachability 

analysis. 

7.2    Summary of Contributions 

The research presented in this dissertation provides a number of contributions 

in the area of RUM actuated system modeling, analysis, and control as follows: 

• Developed the first model that accounts for nonlinear coupling between payload 

axes and the RUM devices (Chapter 4). 

• Showed that the model agrees with pointing control experimental results (Chapter 

5). In contrast, earlier models give incorrect predictions. 

• Identified dynamic effects (terms in the model) that prevent pointing (Chapter 6). 

• Placed the pointing problem in the framework of under-actuated robotic systems 

(Chapter 6). Showed that necessary conditions for pointing control are not 

satisfied by present system. 

• Identified several potential solutions to the pointing problem (Chapter 6). 

• Identified numerous other areas of study that will provide years of future research. 
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7.3    Closing Thoughts 

This dissertation has taken a significant step toward the development of a 

comprehensive attitude control strategy for RUM actuated systems by providing the 

first complete system model and initial control analysis. The detailed model developed 

in this dissertation provides a valuable tool for continued research in the area of 

pointing control. Even though the system does not appear to be completely 

controllable, that doesn't mean it is not useable. Perhaps it is a matter of determining 

a better control approach that accounts for these system limitations. 
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APPENDIX A 

KINEMATIC MODELING DETAILS 

1.   Homogeneous Transformations: 

A01- 

cos(lhetal) 0     sin(£ke£al) 0" 
sin(£he£al) 0    -cos(thetal) 0 

0 10 0 
0 0 0 1 

A12:= 

-sm(£ke£a2) 0    cos(tketa2) 0 
cos(£ke£a2) 0    sin(tketa2) 0 

0 10 0 
0 0 0 1 

^2J:= 

1 0 0 0] 
0 1 0 0 
0 0 1 d 
0 0 0 1. 

A34:= 

cos(£ke£a4) -sin.(£ke£a4) 0   r cos(£he£a4)~ 
sm(£ke£a4) cos(£ke£a4) 0    r sin(£ke£a4) 

0 0 10 
0 0 0 1 

A25:= 

1 0 0 0 
0 1 0 0 
0 0 1 -d 
0 0 0 1. 
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A56- 

cos(tketaö) -sjn(£ke£a6)    0 -r cos(£ke£aö) 
sia(£he£a6) cos(thetaö)    0 -r sw.(tketa6) 

0 0            1 0 
0 0            0 1 

2.  Kinematic Equations: 

A04- 
[-cos(tketal) sia(£he£a2) cos(£ke£a4) + sm.(tke£al) sin(£he£a4) , 
cos(tketal) sm(£ke£a2) sin(£he£a4) + sm(£ke£al) cos(£ke£a4) , 
cos(tketctl) cos(£he£a2), -cos(tketal) sw(theta2) r cos(£ke£a4) 
+ ski(£he£al) r ski(£ke£a4) + cos(£ke£al) cos(£keta2) d] 
[sin(£ke£al) sm(£he£a2) cos(£ke£a4)- cos(tketal) sm(£he£a4), 
sm(£ke£al) sin(£he£a2) sw.(£he£a4) - cos(£ke£al) cos(£ke£a4), 
sin(£he£al) zos{£ke£a2) , -sm{£he£al) sin.(£ke£a2) r cos(£he£a4) 
- cos(£ke£al)r sin(£ke£a4) + sm(£ke£al) cos(£he£a2) d] 
[cos(£he£a2) cos(£he£a4) , -cos(£ke£a2) sin(£ke£a4), sm(£he£a2) , 
cos(£he£a2) r cos(£he£a4) + sin(£ke£a2) d] 
[0,0,0,1] 

A06:= 
[-cos(£he£ai) sm(£he£a2) cos(£ke£a6) + sin(£he£al) sin(£he£a6) , 
cos(£he£al) sin(£ke£a2) sin(£ke£a6) + sin(£ke£al) cos(£heta6), 
cos(£ke£al) cos(£he£a2) , cos(£he£al) sm.(£he£a2) r cos(£ke£a6) 
- sm(£kelal) r sm(£he£a6) - cos(£ke£al) cos(£he£a2) d] 
[sm(£ke£al) sm(£he£a2) cos(£he£a6)- cos(£ke£al) sm(£ke£a6) , 
sm(£he£al) sm(£he£a2) sm(£he£a6)- cos(£ke£al) cos(£ke£a6), 
sin(£ke£al) cos(£ke£a2) , sm(£he£al) sm(£he£a2) r cos(£ke£a6) 
+ cos(£ke£al)r sin(£he£aö) - sin(£he£al) cos(£ke£a2) d] 
[cos(£he£a2) cos(£he£a6) , -cos(£ke£a2) sin(£he£a6) , sm(£he£a2) , 
-cos(£he£a2) r cos(the£aö) - ski(£he£a2) d] 
[0,0,0,1] 
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VELOCITY JACOBIANS 

1.   Linear Velocity Jacobians: 

JL1:= 
0   0   0 01 
0    0    0 0 
0    0   0 0. 

JL2:= 
0    0    0 01 
0    0    0 0 
0   0   0 0. 

JL3:= 
0    0   0 01 
0    0    0 0 
0    0   0 0. 

JL4- 
[sin(tketal) sin(tke£a2) r cos(£he£a4) + cos{£ke£al) r sin(£ke£a4) 
- sin(£ke£al) cos(£ke£a2) d , 
-cos(tketal) cos(£he£a2) r cos(tke£a4) - cos(£ke£al) sin(£ke£a2) d , 
ixsx{£hs£al) r cos(£ke£a4) + sin(£ke£a2) cos(£ke£al) r sm.(£he£a4), 0] 
[ -cos(£ke£al) sm(£he£a2) r cos(£ke£a4) + sin(£ke£al) r $m{£ke£a4) 
+ cos(the£al) cos(£he£a2) d, 
-sin(£ke£al) cos(£he£a2) r cos(£ke£a4) - sm(£ke£al) ski(£ke£a2) d , 
-cos(£ke£al) r cos(£he£a4) + sin.(£ke£a2) s\a{£he£al)r sin(£keta4) , 0] 
[0 , -ski(£ke£a2) r cos(£he£a4) + cos(£heta2) d, -zos(the£a2) r sw.{£he£a4) , 0] 

JL5:= 
0 0   0    01 
0 0    0    0 
0 0   0    0. 
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JL6:= 
[sm(the£al) sm(theta2) r cos(thetaö) - cos(£he£al)r sin(£ke£a6) 
+ sm(tketal) cos(theta2) d, 
cos(£ke£al) cos(£ke£a2) r cos(tketaö) + cos(thetal) sin(£ke£a2) d, 0 , 
-sm.(£ke£al) r cos(tketaö) - sm(£he£a2) cos(thetal)r sin(£keta6)] 
[cos(thetal) sm(£ke£a2) r cos(thetaö) - sia.(£ke£al) r sm{tketa6) 
- cos(theial) cos(£ke£a2) d, 
sm{tketal) cos(theta2) r cos(£ke£a6) + sin(£ke£al) sm(£ke£a2) d, 0 , 
cos(£he£al) r cos(£ke£a6) - sin(£he£a2) sin(£he£al) r sin(£he£a6) ] 
[0 , sin(£he£a2) r cos(£he£a6) - co$(£he£a2) d , 0 , cos(£ke£a2) r sm(£heta6) ] 

2.   Angular Velocity Jacobian: 

JA1~ 
0 0   0    0] 
0 0    0    0 
1 0   0   0_ 

JA2:= 
0     sin.(£he£al)     0    0" 
0 -cos(£ketal)    0    0 
1 0 0    0 

JA3:= 
0     sin(£he£al)     0    0" 
0 -cos(£ke£al)    0    0 
1 0 0    0 

JA4:= 
0 sin(£he£al) cos(£ke£ai) cos(the£a2) 0 
0 -cos(£ke£al) sm(£ketal) cos(£he£a2) 0 
.1 0 sin(£heta2) 0. 

JA5:= 
0     sm.(£he£al)     0    0" 
0 -cos(£he£al)    0    0 
1 0 0    0 



APPENDIX C 

H AND C MATRIX VALUES 

Notational note for K(q) and C(q,q) calculations: 

thetal = #, thetaldot=#, 

theta2 = q2 theta2dot = q2 

theta4 = theta6 = q3 theta4dot = thetaödot = q3 

1.   H(#) Matrix: 

H     1   := (-2 mRUMr2 cos(tketa4)2 + 2 mRUMd2 + Iteix) cos(tketa2)2 

- 4 mRUMsm(thela2) r cos(theta4) cos(theta2) d + 2 mRUMr2 

H     2, := (-2 mRUMr2 cos(tketa2) cos(theta4) - 2 mRUMr sm(tketa2) d) sm(the£a4) 

H — -mRUMr cos(tketa2) d cos(tketa4) + mRUMr2 sin(tketa2) 
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^r 1 41 = ~fnRU^r cos(£heta2) d cos(£ke£a4) + mRUMr2 sm(tketa2) 

H\2 11:= ^"2 mRUMr2 cos(theta2) cos{theta4) - 2mRUMr sm(tketa2) d) sm(£ke£a4) 

H     21 ~ItelY+ 2 mRUMd2 + 2 mRUMr2 cos(tketa4)2 

H     _   .= -mRUMr sm(tketa4) d 

H — -mRUMr s'm(the£a4) d 

H\3 11 = ~mRUMr cos(£kete2) d cos(theta4) + mRUMr2 sw.{tketa2) 

H. ., . . := -mRUMr sin(£ke£a4) d 

H ~ mRUMr2 
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*[3.4]:-° 

H\A 11 = ~mRUMr c°s(tkel<*2) d cos(tketa4) + mRUMr2 sm(theta2) 

H     21 := -mRUMr sm(tfieta4) d 

Ä[4.3r=° 

HTA      ■= mRUMr2 

[4,4] 

2.   C( q, q) Matrix Values 

C' 1  11:= ^"4 mRUMcos(£heta2)2 r cos(£heta4) d [ 

+ \-lleiX- 2 mRUMd2 + 2 mRUMr2 cos(tketa4)2)sm(tketa2) cos(theta2) 

+ 2 mRUMr cos(tke£a4) d) thetaldot + ( 

2 mRUMcos(£heta2)2 r2 cos(theta4) sm(£ke£a4) 

+ 2 mRUMsin(the£a2) r sin(the£a4) cos{theta2) d) theta4dot 
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c := (-4 mRUMcos{theta2)2 r cos(theta4) d 

+ (-ItelX- 2 mRUMd2 + 2 mRUMr2 cos(theta4)2) sm(theta2) cos(theta2) 

+ 2 mRUMr cos(theta4) d) thetaldot + ( 

2 mRUMr  sm(theta4) sm(theta2) cos(the£a4) 

- 2 mRUMr sm(theta4) cos(tketa2) d)theta2dol 

+ ( 2 mRUMr2 - 2 mRUMr2 cos(theta4)2) cos(theta2) theta4dot 

c := {mRUMsm(theta2) r sin(theta4) cos(theta2) d 

+ mRUMcos(£keta2)2 r2 cos(theta4) sm(theta4)) thetaldot 

+ (-mRUMr2 cos(theta4)2 + mRUMr2) cos(tketa2) theta2dot 
+ mRUMr sm(theta4) cos(theta2) d tketa4dot 

c := {mRUMsin(theta2) r sin(theta4) co$(theta2) d 

+ mRUMcos(£heta2)2 r2 cos(theta4) sm(£heta4)J thetaldot 

+ (-mRUMr2 cos(theta4)2 + mRUMr2) cos(theta2) tketa2dot 
+ mRUMr sxa.(theta4) cos(theta2) d theta4dot 

c :=V4 mRUMcos(theta2)2 r cos(theta4) d 

+ ( -2 mRUMr2 cos(theta4)2 + 2 mRUMd2 + ItelX) sm(theta2) cos(theta2) 

- 2 mRUMr cos(theta4) d) thetaldot + 

(-2 mRUMr2 cos(thela4)2 cos(theta2) - 2 mRUMr cos(theta4) sm(theta2) d) 
theta4dot 
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c := -2 mRUMr* cos(£he£a4) sin(£he£a4) thetaUot 

C\2 3T~'~mRUMr"2 z°s(&e£a4)2 cos(theta2)- mRUMr cos(the£a4) sin(£ke£a2) d) 

thetaldot - mRUMr* cos(£heta4) sm(£ke£a4) theta2dot 
- mRUMr zos(tketa4) d theta4dot 

cr :={-mRUMr2 cos(the£a4)2 cos(tke£a2)- mRUMr cos(the£a4) sm(£keta2)d) 
:2.4] 

- mRUMr cos(£heta4) d£he£a4do£ 
£he£aldo£ - mRUMr* cos(£ke£a4) sin(£ke£a4) £he£a2do£ 

c.,      :={-mRUMcos(£he£a2)2 r2 cos(£he£a4) sm(£he£a4) 

- mRUM sm.(£ke£a2) r sm(£he£a4) cos(£ke£a2) d)£he£aldo£ + 

{mRUMr cos(£he£a4) sm(£he£a2) d + mRUMr2 cos(£ke£a4)2 cos(£he£a2)) 
£he£a2do£ 

c := {mRUMr cos(£he£a4) sin(£he£a2)d +mRUMr2 cos(£he£a4)2 cos(£he£a2)) [3,2] 

£he£aldo£+mRUMr2 cos(£he£a4) sm(£he£a4) £he£a2do£ 

c :=0 
[3,3] 
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c :=0 
[3,4]" 

C\A 11 :=^-fnRUMcos(theta2)2 r2 cos(tketa4) sm(theta4) 

- mRUM sva.{theta2) r sm(theta4) cos(the£a2) d) thetaldot + 

\mRUMr cos(tketa4) sh.(theta2) d + mRUMr2 cos(theta4)2 cos(£keta2)) 
tketa2dot 

C\4 21:= ^mRUMr cos(riwto4) sm(theta2) d + mRUMr2 cos(theta4)2 cos(tketa2)) 

thetaldot + mRUMr* cos(theta4) sm(the£a4) theta2dot 

c :=0 
[4,3] 

c :=0 
[4,4] 



APPENDIX D 

COUPLING INDEX - MODEL 3 

Notational note for coupling index calculations: 

thetal = qx 

theta2 = q2 

theta4 = theta6 = q3 

Mcll :=2r mRUM\ItelYcos(£he£a2) d cos(£ke£a4) - ItelYr sin(tketa2) 

+ 2 mRUMd3 cos(the£a2) cos(£ke£a4) - 2 mRUMr3 cos(£he£a4)2 sin(£he£a2) 

+ 2 mRUMr2 cos(£he£a2) cos(£he£a4) d- 2 r mRUMd2 sin(£he£a2) cos(theta4)2) 

j(-cos(£keta2)2 RelXItelY- 2 cos(£he£a2)2 ItelX mRUMd2 

- 2 cos{£keta2)2 ItelXmRUMr2 cos(theta4)2 - 2 cos(£he£a2)2 mRUMd2 ItelY 

- A cos(£keta2)2 mRUM2 d4 + 2 cos(£he£a2)2 mRUMr2 cos(£he£a4)2 UelY 
+ 4 mRUMsin(£he£a2) r cos(£ke£a4) cos(£he£a2) dhelY 

+ 8 mRUM2 sm.(£ke£a2) r cos(£heta4) cos(£he£a2) d3-2 mRUMr2 helY 

- 4 mRUM2 r4 cos(£he£a4)2 + 4 mRUM2 r4 cos(£he£a2)2 cos(£ke£a4)2 

+ 8 mRUM2 r3 cos(£he£a2) cos(£ke£a4) sm(£he£a2) d 

- 4 mRUM2 r2 d2 coz{£he£a2)2 - 4 mRUM2 r2 d2 cos(£he£a4)2 

+ A mRUM2 r2 d2 cos(£heta2)2 cos(£ke£a4)2) 
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Mc2I := 2 mRUMr sm.(theta4) cos(theta2) (-2 mRUMr3 cos(theta4) sin(tketa2) 

- 2 mRUMr sin(£heta2) d2 cos(tketa4) + 2 mRUMr2 d cos(theta2) 

+ dcos(theta2) ltelX+ 2 mRUMcos(theta2) d3)/(-cos(theta2)2 ItelXItelY 

- 2 cos(theta2)2 ItelXmRUMd2 - 2 cos(theta2)2 UelXmRUMr2 cos(tketa4)2 

- 2 cos(theta2)2 mRUMd2 ItelY- 4 cos(theta2)2 mRUM2 dA 

+ 2 cos(theta2)2 mRUMr2 cos(tketa4)2 ItelY 
+ 4mRUMsin(theta2) r cos(tketa4) cos(theta2) d ItelY 

+ 8 mRUM2 sm(theta2) r cos(theta4) cos{theta2) d3-2 mRUMr2 ItelY 

- 4 mRUM2 rA cos(theta4)2 + 4 mRUM2 r4 cos(theta2)2 cos(tketa4)2 

+ 8 mRUM2 r3 cos(theta2) cos(tketa4) sm(theta2) d 

- 4 mRUM2 r2 d2 cos(theta2)2 - 4 mRUM2 r2 d2 cos(tketa4)2 

+ 4 mRUM2 r2 d2 cos(theta2)2 cos(tketa4)2) 


