
TRAC-WSMR-TM-98-015

Technique for Increasing
Efficiency and Accuracy of Data
for Mix Analysis

TRAC

WSMR

Bruce W. Gafner

July 1998 Technical Memorandum

Approved for public release; distribution is unlimited.

r^jxg QUALITY INSPECTED 1

DESTRUCTION NOTICE

Destroy by any method that will prevent disclosure of contents or reconstruction of
the document.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other official documents.

WARNING

Information and data are based on inputs available at the time of preparation. The
results are subject to change.

TRAC-WSMR-TM-98-015

Technique for Increasing Efficiency and
Accuracy of Data for Mix Analysis

Bruce W. Gafner

Technical Memorandum

DEPARTMENT OF THE ARMY
TRADOC Analysis Center-White Sands Missile Range (TRAC-WSMR)
White Sands Missile Range, NM 88002-5502

July 1998

Reviewed By

2¥l* A^y

SERVANDO HERNANDEZ
Study Director
TRAC-WSMR

Released

ROY F. REYNOLDS
SES, US Army
Director, TRAC-WSMR

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden (or this colleclion of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection ot information Send comments regarding this burden estimate or any ofher aspect ol this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204, Arlington.
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-O1S8} Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
July 1998

3. REPORT TYPE AND DATES COVERED
October 1997 - May 1998

4. TITLE AND SUBTITLE
Technique for Increasing Efficiency and Accuracy of Data for Mix Analysis

6. AUTHOR(S)

Bruce W. Gafner

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TRADOC Analysis Center-White Sands Missile Range (TRAC-WSMR)
ATTN: ATRC-WA
White Sands Missile Range, NM 88002-5502

8. PERFORMING ORGANIZATION
REPORT NUMBER

TRAC-WSMR-TM-98-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
TRADOC Analysis Center-White
Sands Missile Range (TRAC-WSMR)
ATTN: ATRC-WA
White Sands Missile Range, NM
88002-5502

10.
SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report is an examination of the issues and possible solutions to the problem of
statistical overlapping groups. The research which was the basis for the development of
improved accuracy for a mix model analysis, was conducted jointly by the Training and
Doctrine Command (TRADOC) Analysis Center-White Sands Missile Range (TRAC-WSMR)
and New Mexico State University (NMSU) as a dissertation research project by the author.
The objective of this research and the conclusion reached in this report is to establish a
statistic based method for separating treatment means into distinct groups without group
overlap, thereby increasing accuracy of data used for mix analysis. Additionally, using
computer processing improves the efficiency of data preparation and adds improved
accuracy derived from the developed method. Six different representative data sets were
processed using five different multiple comparison procedures and heuristic algorithms.
The results were analyzed and the procedures that were most effective at producing the
best groupings were identified. The Base Grouping Heuristic provided the best results
when used with Tukey's multiple comparison procedure with a significance level of 0.05 or
with Fisher's Least Significant Difference procedure with a significance level of 0.01. The
Base Grouping Heuristic was then programmed into an automated procedure.

14. SUBJECT TERMS

multiple comparison procedures, mix analysis, mean grouping heuristics
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18 SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Technique for Increasing Efficiency study Gist
and Accuracy of Data for Mix Analysis

Purpose. This report is an
examination of the issues and possible
solutions to the problem of overlapping
groups of "different" means, using a
technique known as the Separation of
Treatment Means. The research was the
basis for the development of an
automated procedure to improve the
efficiency and accuracy of data for the
Training and Doctrine Command
Analysis Center-White Sands Missile
Range (TRAC-WSMR) Mix Model.

Objective. The objective of this
research is to establish a method for
separating treatment means into
distinct groups without overlap.
Additionally, computer processing
improves the efficiency of data
preparation and the accuracy derived
from the developed method.

Principal Findings. The Base
Grouping Heuristic provided the best
results when used with Tukey's
multiple comparison procedure with a
significance level of 0.05 or with Fisher's
Least Significant Difference procedure
with a significance level of 0.01.

Utility to the Army. This automated
procedure will reduce the labor
intensive data processing for the
TRAC-WSMR Mix Model, which will in
turn provide more time for analysis of
results. This will result in increased
acceptance and validation of the model.

Main Assumptions. Selected data sets
are representative of future data sets.
Minor data changes will not invalidate
the process or results.

Principal Limitation. Algorithm code
requires standard Statistical Package
for the Social Sciences (SPSS) output
and current TRAC-WSMR Mix Model
input formats. Code will require
modification to work correctly with
other data formats.

Scope. This research addresses the
Combined Arms and Support Task
Force Evaluation Model (CASTFOREM)
to TRAC-WSMR Mix Model data
analysis process. The CASTFOREM
engagement summary file provided the
input data. The SPSS software package
was used to statistically analyze the
data. The algorithm developed to group
the data was programmed in C
computer code.

Approach. To increase the efficiency of
data analysis an algorithm that could be
automated was required. Six different
representative data sets were processed
using five different multiple comparison
procedures and heuristic algorithms.
The results were analyzed and the
procedures that were most effective at
producing the best groupings were
identified. The best algorithm was then
programmed into an automated
procedure.

m

Study Sponsor. TRAC-WSMR

Performing Organization and
Principal Author. TRAC-WSMR,
Bruce Gafner

Literature Search. Key topics were
searched in the Science Citation Index,
Defense Technical Information Center
(DTIC), and other databases. Subject
was addressed to numerous statistical
experts.

DTIC Accession Number. TBD

Start and Completion Dates.
October 1997 - May 1998

IV

Table of Contents

Study Gist iii
Acknowledgements vii

Purpose 1
Objective 1
Background 1
Methods for Separation and Grouping of Means 3

The Grouping Problem 3
Cluster-Nested Procedure 4
US Army Conference on Applied Statistics 5
Base Grouping Heuristic (BGH) 7

Analysis of Test Data Sets 8
Data Set 1 8
Data Set 2 9
Data Set 3 10
Data Set 4 11
Data Set 5 12
Data Set 6 12
Summary of Analysis of Test Data Sets 13

Data Reduction and Manipulation 14
Conclusions 17

Appendix A. CASTFOREM Data Sets 19
Appendix B. SPSS - Mix Model Algorithm Code 23

References 43
Acronyms 45

VI

Acknowledgements

The author greatly appreciates the support that was given for this research and
thanks all those involved. Richard Porter, past director of Brigade Combat Directorate,
United States Army Training and Doctrine Command (TRADOC) Analysis Center-
White Sands Missile Range (TRAC-WSMR), encouraged this research and provided the
necessary resources. Mr. Porter was the study director of the Antiarmor Resource
Requirements (A2R2) study, which provided the foundation and the catalyst for this
research. Richard Laferriere developed the Mix Model in the early 1990s and the
methodology has since been used in numerous studies. Mr. Laferriere was the Mix
Model team leader for the A2R2 study and provided leadership and instruction to the
author in programming and running of the Mix Model. Doug Shoop was very helpful
with the programming logic and wrote most of the data reduction programming code.
Mary Anne Staffeldt, Ph.D., Industrial Engineering Department, New Mexico State
University, encouraged the incorporation of a work related project for Ph.D. dissertation
research. Dr. Staffeldt assisted with the statistical analysis of this research.

Vll

Vlll

Technique for Increasing Efficiency and
Accuracy of Data for Mix Analysis

Purpose

This report is an examination of issues and possible solutions to the problem of
statistical overlapping groups, using a technique known as the Separation of Treatment
Means. During the Antiarmor Resource Requirements study conducted in 1996, the
issue of overlapping groups, i.e., group means overlapping, was identified as an area
that could benefit from additional research. The research, which was the basis for the
development of improved accuracy for a mix model (MM) analysis, was conducted jointly
by the United States (US) Army Training and Doctrine Command Analysis
Center-White Sands Missile Range (TRAC-WSMR) and New Mexico State University as
a dissertation research project by the author.

Objective

The objective of this research and the conclusion reached in this report is to
establish a statistic based method for separating treatment means into distinct groups
without group overlap, thereby increasing accuracy of data used for mix analysis.
Additionally, using computer processing improves the efficiency of data preparation and
adds improved accuracy derived from the developed method.

Background

TRAC-WSMR currently uses the TRAC-WSMR Mix Model to assist in providing top
level US Army decision makers with major weapon system analysis. Figure 1 gives an
overview of the TRAC-WSMR Mix Model. The mix model methodology has three major
components: Exploratory Data Analysis, Scenario Analysis, and a Decision Support
System. Scenario Analysis is the largest and most important component of the Brigade
Mix Model (Laferriere, 1991) which was the predecessor of the TRAC-WSMR Mix
Model. TRAC-WSMR work addresses the planning of a higher level brigade force
structure.

Combat Model
Runs

Multiple Scenarios*
• Base case

Decision Support System
(Spreadsheet Analysis)

Figure 1. TRAC-WSMR Mix Model

Before running the Mix Model, TRAC-WSMR analysts evaluate the performance of
lower level battalion sized task force combat units using the Combined Arms and
Support Task Force Evaluation Model (CASTFOREM). CASTFOREM is a stochastic,
two-sided, combat battle simulation used to analyze weapon systems, tactics, and
organizations. Written in SIMSCRIPT II simulation language, it is the US Army's
highest resolution combat simulation model (Mackey, et al., 1995). A team, usually
composed of a number of Department of the Army civilians and military operations
research analysts, may spend more than 6 months developing a new "base case"
scenario for CASTFOREM. After developing an established base case, the team
develops alternatives to the base case. Each alternative case usually consists of
modifying a selected weapon system or a specific part of a base case scenario. Once the
alternatives cases are developed, they are run in the model to determine the
contribution ofthat alternative system, or set of systems, to the outcome of the
CASTFOREM battle. There may be many alternative cases. For a recent study, five
scenarios were developed and run to compare potential capabilities at two future dates
to analyze 26 different alternatives (Porter, 1996). Selected portions of the
CASTFOREM output are analyzed and the means of the parameters are statistically
grouped into mix model inputs. In the past, analyzing the grouping was labor intensive,
inefficient, and required subjective interpretation of some of the data.

Methods for Separation and Grouping of Means

The Grouping Problem

Simultaneous statistical inference and multiple comparison procedures are standard
methods for analyzing multiple treatment means. Fisher (1935), Tukey (1952, 1953),
Scheffe (1953), and others developed multiple comparison procedures (MCP) which
result in grouping similar treatment means together. These procedures have the
sometimes discomforting possibility of assigning a treatment to more than one group.
This group overlapping and "nonseparation" of means can be troublesome for the
interpretation of results to compare the benefits of single systems to the benefits of a
mix of systems working together.

The data inputs for the TRAC-WSMR Mix Model are derived from the output of
CASTFOREM combat simulations. If four treatments, i.e., CASTFOREM alternatives,
(TrT4) are assigned to a specific group (G{), it is desirable to provide the mix model
with one single data input value for all of these four treatments. If there is no
significantly discernible difference between the treatments, they should all be given the
same value (\i{). However, with group overlapping, what if one treatment (T4) is also
assigned to group G2 that has three treatments T4-T6 (figure 2)? Again, reason would
assign all the treatments of G2 with value |J.2. Here is where the problem surfaces.
Should T4 that is assigned to both Gj and G2, be given the value \i 1? |x2, or some other
value?

6 7

i
A i.

c '2
T6

T5

R
a 1 r
n t i i. T4

g
e

c i T
T

2
3

Ti

i r
i is. i

Figure 2. Treatment and Group Overlap

Tukey (1949) attempted to separate treatment means into distinct groups with his
Gap Straggler Method, however, this is still an unsolved problem. Miller (1981)
believes that separating treatments into families or groups "is the hardest part (of
Statistical Inference)... because it is where statistics takes leave of mathematics and
must be guided by subjective judgment" (1981, p. 31). "There are no hard-and-fast rules
for where family lines should be drawn, and the statistician must rely on his own
judgment for the problem at hand" (Miller, 1981, p 35). For determining a valid data
parameter for each mix model input, a specific value must be assigned. There can be no
subjective evaluation of the treatment parameter or the consideration of other factors.
A basic mix model will have more than 100 specific data parameters for every combat
simulation being modeled. To increase the validity of the mix model, a nonsubjective
procedure must be established.

Group overlapping is also a concern when specific parameters or factors are
presented to management and decision makers. Here, the concern is not what value to
assign to each group, but what are the specific and discrete groups. Though distinct
groups are favorable, a combination of factors could help describe and analyze possible
group overlap. Other factors could be included to help analyze the group separation and
breakpoints. Also, a combination of factors could be analyzed to help determine overall
treatment grouping. When considering multiple factors and overall treatment
grouping, a cluster based procedure may be appropriate. Baustista, Smith, and Steiner
(1996) and Conover (1996) have suggested such an approach. In this case, determining
the overall treatment groupings may not be as difficult as the problem of determining
valid single factor data input values.

Cluster-Nested Procedure

The Baustista, Smith, and Steiner (1996) method is a cluster-nested heuristic, which
determines groupings without group overlap. Figure 3 flow charts the steps of the
heuristic. Each step is described as follows:

All
Treatments in
Single Group Define Groups by the

Previous Level of
Grouped Means

Figure 3. Cluster-Nested Heuristic

Step 1. <Decision Point> F-test to determine if there are differences between
means.

Step 2a. Yes - Cluster analysis of the means.

Step 2b. No - All treatments in single group.

Step 3. Group the closest means.

Step 4. Conduct a nested analysis of variance of the between groups and within
groups means.

Step 5. <Decision Point> Is there a difference among treatments within groups?

Step 6a. No - repeat steps 3-5.

Step 6b. Yes - define groups by the previous level of cluster-nested analysis.

Since it is neither desirable to run the mix model with overlapping groups nor take
into account other outside variables, a technique for the development of specific discrete
groups and treatment values will improve the process. The questions now become:

• Would a cluster-nested based approach be valid for determining overall
treatment means groupings?

• Would a cluster-nested based approach be valid for determining specific single
factor means (parameter, input, etc.)?

• Would such a method be more powerful than the already established MCP?

• Can the established MCP be modified and adapted into a heuristic to identify
distinct groupings, and provide discrete values?

• Can MCP be modified without introducing unnecessary increased error?

US Army Conference on Applied Statistics

Gafner (1996) presented this problem and the above procedure to the US Army
Conference on Applied Statistics in 1996. A panel of statistical experts provided their
professional guidance and recommendations for addressing this problem. A summary of
the panel discussion during the conference follows:

It was suggested that the cluster-nested based method of Baustista, Smith, and
Steiner has no statistical validity and should not be considered. Since group
overlapping is the statistical truth and, therefore acceptable, analysts should examine
the grouping and explain the overlapping to management and decision makers. This
would not be appropriate and sufficient for determining the 100(+) specific data
parameter inputs of the mix model.

Another suggestion by the panel was that the grouping problem should be
analyzed beyond basic hypothesis testing, i.e., MCP. A Bayesian approach or some
other methods might be appropriate. Bayesian statistics have been studied in other
military modeling and simulation applications (Dewitz, 1996). Its usefulness within the
mix model methodology will need to be researched. Duncan (1955, 1961, 1965) and
Lehmann (1957) used Bayesian approaches for MCP. However, Miller "does not
consider Bayes strategies to be a practical answer, since ... almost universally
impossible to specify a priori probabilities" (Miller, 1981, p 33).

Increasing the number of replications per treatment was also suggested by the
panel. This may be a valid means for establishing group separation and a test could be
easily conducted. However, one of the potential benefits of mix model analysis is to
reduce the amount of computing time used for CASTFOREM and other combat model
simulations. Given enough computing capacity and time, all possible force mixes could
be run in CASTFOREM, which would eliminate the need and benefits of a mix model.
Increased replications for the stochastic model would also greatly increase the overall
computing time. Currently, CASTFOREM alternatives are run for 21 replications, and
with more than a few alternatives, increased replications would be unwieldy.

Another concern addressed by the panel was the determination of the
appropriate value for the amount of error allowed in a statistical test, a. An a = 0.05
gives a confidence level (1-a) of 0.95. Historically, a = 0.05 has been used as an initial
value. Changes of the value of a may result in group shifting but may not result in
defining distinct groups. Values of a = 0.10 and a = 0.01 can be used to determine the
resulting groups. Past experience of varying a has not resulted in obtaining distinct
groups.

To address the overall treatment grouping, multiple factors could be considered.
During the panel discussion, Garver (1996) suggested that groupings based specifically
on one factor, such as Blue Losses, are not all that meaningful by themselves.
Therefore, groupings should consider a combination of other factors such as cost or
Threat kills. Multiple factor comparisons appear to be an area for additional research.
A cluster analysis based approach that considers multiple factors may turn out to be a
helpful method for analyzing overall treatment grouping. However, for determining
single factor input parameters, multiple factors would be inappropriate. The mix model
itself takes all of the different input parameters and models the interaction effects of
multiple factors.

Conover (1996) provided a nonstatistical insight. He suggested that if management
and decision makers are interested in distinct groupings, then the exactness of the
statistics is not (all) that important. If a specific number of groups has been or could be
specified, then one could just conduct a cluster procedure that separates the treatments
into distinct groups. A combination of Conover's and Garver's suggestion may be a valid
approach for the overall treatment group separations. A multiple factor cluster analysis
for a specified number of groups would be rather straight forward. If the number of

groups is not specified, the cluster-nested procedure is a possible solution for
determining the number of groups.

With this research into existing techniques in mind, it was possible to move into the
development of a technique for separation and grouping of means. This technique
would fit the needs of processing multiple combat model output data into meaningful
and statistically correct groupings for use in the TRAC-WSMR Mix Model.

Base Grouping Heuristic (BGH)

Now let us return to the mix model problem of specifying one factor input data
parameters. The exact statistics may not be that important here. Due to the closeness
of many means, assigning to a treatment the value of any group mean (to which it
belongs) should not introduce much error into the model. There would be no additional
type I error, and in agreement with Baustista, Smith, and Steiner's cluster-nested
procedure, there would be slightly more type II error.

To investigate the above, the following "base grouping" heuristic procedure is
proposed for determining mix model input parameter values:

Step 1. Conduct multiple comparison tests (least significant difference (LSD),
Scheffe, Tukey).

Step 2. Check for group overlap. If yes, continue.

Step 3. Combine all treatments of all groups which contain the base case treatment
into a single "base" group (remaining treatments are significantly different from the
base case treatment) and record mean of group.

Step 4. Proceed to the first treatment that is statistically different from base case
(or break point treatment) and designate that treatment as the current break point
treatment.

Step 5. Repeat as per step 3, combing all treatments that are different from the
base case (or previous break points) but not different from the current break point
treatment.

Step 6. Repeat steps 4 and 5 until all treatments are grouped.

The BGH may introduce additional type I and II error. Members at opposite ends of
the base group may be significantly different and should not have been grouped
together (a type I error). Nonbase treatments may belong to overlapping groups but are
not assigned to both groups (a type II error). To test this method, the possible errors
introduced by using the steps above was analyzed. Questions to be answered by this
analysis were: Given a specified a, how much more error is introduced and what effect
could the different groupings and increased error have on the mix model final results?
To address the questions, the mix model input parameters of specific Blue system kills

on Threat systems were examined. This allowed for the determination of which method
would introduce less error. Data came from three CASTFOREM scenarios that had
been used for many combat system analyses.

Analysis of Test Data Sets

The following is an analysis of six sets of results from CASTFOREM data. This data
was used in a recent US Army study. Two data sets were selected from each scenario.
Data sets 1, 2, 5, and 6 had 9 treatments, each with 21 replications (samples). Sets 3
and 4 had 10 treatments with 11 replications (samples). Complete data sets are located
in appendix A. A treatment is a specific CASTFOREM alternative in which changes
have been made to the base case treatment. The base case alternative should be viewed
as a placebo case, i.e., the treatment that is expected without additional changes.

All of the data sets are results from significant firing system/target pairings. This is
to insure that the developed grouping procedure applies to the important shooter and
target pairings relating to critical study issues. Other shooter and target pairings,
although important, are not considered to minimize the testing of the procedure. To
help insure the validity of the recommended grouping procedure across different
situations, two attributes of the data are varied. The first attribute is the resulting
location of treatment 1, the base case or placebo case, mean. There are two
considerations for this attribute, the value can appear at either extreme, or somewhere
between the extremes. The second attribute is the inclusion of any treatments with
mean value of 0.0 (lowest value). This situation can occur when the shooter of concern
is not modeled in one or more of the treatments. Preceding the analysis of each of the
following six data sets, these two attributes will be identified.

Each of the data sets are grouped according to the cluster-nested approach and three
different multiple comparisons using the previously suggested BGH. Fisher's LSD,
Scheffe's and Tukey's honest significant difference (HSD) are the three MCP used.
Fisher's LSD is the most powerful, Scheffe's is the most conservative, and Tukey's HSD
is considered a moderate procedure (Dowdy and Warden, 1991). Dowdy and Warden
also noted that Fisher's LSD is likely to have type I errors and Scheffe's is likely to have
type II errors. Two different a values (0.05 and 0.01) are used for Scheffe's and Fisher's
LSD to see what effect changes in a will have on the errors and resulting groupings,
a = 0.05 is used for Tukey's procedure. Statistical Package for the Social Sciences
(SPSS) is a statistical package resident on the TRAC network that provides a full range
of statistics based on input values from the population (SPSS, 1983). SPSS was used to
run these statistics and the cluster-nested procedure.

Data Set 1

The columns of the following tables list the treatment mean values arranged in
increasing mean value order to simplify the groupings. The rows of the table list the
procedures used to determine the groupings.

Data set 1 (table 1) has the attributes that treatment 1 mean (base case/placebo
case) is not located at an extreme and the lowest values for this set are 0.0.

Table 1. Data Set 1
Treatment 4 5 9 3 8 1 6 2 7

Treatment Mean 0.0 0.0 7.5 9.3 11.2 11.7 11.8 12.2 16.0
Procedure a Groupings

Cluster/Nested NA 1 1 2 2 2 2 2 2 3
LSD 0.05 1 1 2 2 3 3 3 3 4
LSD* 0.01 1 1 2 3 3 3 3 3 4
Scheffe* 0.05 1 1 2 3 3 3 3 3 4
Scheffe 0.01 1 1 2 2 2 2 2 2 2
Tukey (HSD)* 0.05 1 1 2 3 3 3 3 3 4

*Grouping procedures give same results
Overall - Range: 0.0-24.0, Mean: 8.85, Standard Deviation: 6.05

Analysis of Results for Data Set 1: Scheffe (0.05), LSD (0.01) and Tukey give the
same resulting groupings. This grouping can not be reached by any step of the cluster-
nested procedure. One additional step in the cluster-nested procedure would give the
same result as Scheffe (0.01). The previous step in the cluster-nested procedure gave
the same result as LSD (0.05). All solutions result in treatments 4 and 5 (value 0.0)
being in one group that is different from all other group. Scheffe (0.01) results in an
extremely conservative grouping with treatment 4 and 5 grouped together and every
other treatment in a second group. This grouping is likely to have a type II error.
Excluding this grouping, all the other groupings place treatment 7 in a group by itself.

The "final grouping" is the grouping breakdown that should be used for the mix
model analysis. After analysis of all of the suggested groupings, the final grouping is
determined to be the best breakdown.

Table 2. Data Set 1 Final Grouping: (Group 3 is Base Group)
Treatment
Group
Group Mean

4
1
0.0

5
1
0.0

9
2
7.5

3
3

11.2

8
3

11.2

1
3

11.2

6
3

11.2

2
3

11.2

7
4

16.0

This grouping is the same as Scheffe (0.05), LSD (0.01), and Tukey. There is
possible error of placement for treatment 3 in group 2 or in group 3. If treatment 3 is
placed in group 2 instead of 3, the mean of group 2 would be 8.4 and of group 3 will be
11.7. Although the differences between groups change slightly, the only change that
might cause a difference is the value assigned to treatment 3. Treatment 3 would be
different from the base case, treatment 1, and its value would decrease from 11.2 to 8.4.

Data Set 2

Data set 2 has the attributes that: the lowest value(s) for this set are 0.0 and
treatment 1 mean (base case/placebo case) is located at an extreme.

Table 3. Data Set 2
Treatment 5 3 2 8 9 7 4 6 1

Treatment Mean 0.0 0.0 0.0 57.0 62.2 74.1 75.3 83.1 91.0
Procedure a Groupir tgs

3 3 4 Cluster/Nested NA 1 1 1 2 2 5
LSD 0.05 1 1 1 2 2 3 3 4 5
LSD* 0.01 1 1 1 2 2 3 3 4 4
Scheffe 0.05 1 1 1 2 3 3 3 4 4
Scheffe 0.01 1 1 1 2 2 2 3 3 3
Tukey (HSD)* 0.05 1 1 1 2 2 3 3 4 4

*Grouping procedures give same results
Overall - Range: 0.126, Mean: 49.2, Standard Deviation: 38.0

Analysis of Results for Data Set 2: LSD (0.05) and the cluster-nested procedure
have the same resulting grouping but may be too powerful, resulting in a possible type
II error. LSD (0.01), Tukey, and the cluster-nested with one additional step give the
same result. All solutions result in treatments 5, 3, and 2 (value 0.0) being in one group
and treatment 8 being in another group. Scheffe (0.01) results in an extremely
conservative grouping and is likely to have a type I error. Except for Scheffe (0.05), all
the other groupings result with treatment 9 being in a group with treatment 8. The
final decision is where to place treatment 6. The 95 percent confidence range for
treatment 6 is 74.8-91.4, for treatment 1 is 84.7-97.4 and for treatment 4 is 68.3-79.9.
Comparing these ranges, 86 percent of the range of treatment 6 overlaps the range of
treatment 1 (11.8/16.6). Only 30 percent of the range of treatment 6 overlaps the range
of treatment 4 (5.1/16.6). Therefore, as in three of the procedures, treatment 6 should
be grouped with treatment 1.

Table 4. Final Grouping; (Group 4 is Base Group)
Treatment
Group
Group Mean

5
1
0.0

3
1
0.0

2
1
0.0

8
2

59.6

9
2

59.6

7
3

74.7

4
3

74.7

6
4

87.1

1
4

87.1

If treatment 6 is placed in group 3, the mean of group 3 changes to 77.5 and of group
4 changes to 91. The deltas between groups would not change significantly; however,
the value assigned to treatment 6 would decrease by 9.5

Data Set 3

Data set 3 has the attributes that the lowest value(s) for this set are not 0.0 and the
treatment 1 mean (base case/placebo case) is not located at an extreme. Also, this data
set has a tight range of values. With the exception of treatment 6, all the other values
are within 1.7 of each other.

10

Table 5. Data Set 3
Treatment 6 8 3 10 1 4 9 5 7 2

Treatment Mean 5.2 8.5 8.8 9.0 9.1 9.2 9.4 9.8 10.0 10.2
Procedures a Groupings

Cluster/Nested NA 1 2 2 2 2 2 2 3 3 3
LSD* 0.05 1 2 2 2 2 2 2 2 2 2
LSD* 0.01 1 2 2 2 2 2 2 2 2 2
Scheffe* 0.05 1 2 2 2 2 2 2 2 2 2
Scheffe 0.01 1 2 2 2 2 2 2 2 2 2
Tukey (HSD)* 0.05 1 2 2 2 2 2 2 2 2 2

*Grouping procedures give same results
Overall - Range: 2-14, Mean: 8.92, Standard Deviation: 2.14

Analysis of the Results from Data Set 3: With one additional step, the cluster-
nested procedure gives the same result as all of the other procedures. With treatment 1
located in the middle, this makes sense. We are trying to determine what groups are
different from the base (treatment 1). At the extremes, treatment 2 with mean of 10.2
could be different from treatment 8 with mean of 8.5. However, neither are much
different from treatment 1 mean of 9.1. Clearly, treatment 6 mean of 5.2 is different
and should be in a group by itself. This was the only case where all of the MCP
groupings had the same result. Only the cluster-nested procedure was different and it
reached this result with one additional step.

Table 6. Final Grouping; (Group 2 is Base Group)
Treatment
Group
Group Mean

7
1
5.2

8
2
9.3

3
2
9.3

10
2
9.3

1
2
9.3

4
2
9.3

9
2
9.3

5
2
9.3

7
2
9.3

2
2
9.3

Data Set 4

Data set 4 has the attributes that the lowest value(s) for this set are 0.0, and
treatment 1 mean (base case/placebo case) is located at an extreme.

Table 1 . Dat -a Set 4
Treatment 5 3 2 8 4 9 7 10 6 1

Treatment Mean 0.0 0.0 0.0 6.3 8.6 8.9 10.3 10.4 11.0 11.4
Procedures a Grou pings

Cluster/Nested NA 1 1 1 2 3 3 4 4 5 5
LSD* 0.05 1 1 1 2 3 3 4 4 4 4
LSD* 0.01 1 1 1 2 3 3 4 4 4 4
Scheffe 0.05 1 1 1 2 3 3 3 3 3 3
Scheffe 0.01 1 1 1 2 3 3 3 3 3 3
Tukey (HSD)* 0.05 1 1 1 2 3 3 4 4 4 4

^Grouping procedures give same results
Overall - Range: 0-13, Mean: 6.68, Standard Deviation: 4.86

Analysis of Results from Data Set 4: Both LSDs, Tukey, and the cluster-nested
procedure with one additional step give the same result. Both Scheffes give the same
result but may be too conservative. The 95 percent confidence range of treatment 1 is

11

10.4-12.3, of 9 is 7.6-10.2, and of 8 is 4.8-7.8. Treatment 9 has no overlap with
treatment 1 and an overlap of only 0.2 with treatment 8. Therefore, as suggested by
three of the groupings, treatment 9 should be grouped separate from treatments 1 and
8.

Treatment
Group
Group Mean

Table 8. Data Set 4 Final Grouping:
5
1
0.0

3
1
0.0

2
1
0.0

8
2
6.3

(Group 4 is Base Group)
9 FT" Tiö""-' 6

3 3 4 4 4
8.8 8.8 10.8 10.8 10.8

1
4

10.8

Data Set 5

Data set 5 has the attributes that the lowest value(s) for this set are not 0.0 and
treatment 1 mean (base case/placebo case) is not located at an extreme.

r Fable 9. Data Set 5
Treatment 4 5 9 8 6 7 2 1 3

Treatment Mean 1.8 2.0 2.6 3.0 3.5 3.6 3.8 4.1 4.9
Procedures a Groupings

Cluster/Nested NA 1 1 2 3 3 3 3 4 5
LSD 0.05 1 2 2 3 3 4 4 4 5
LSD* 0.01 1 1 2 3 3 3 3 3 3
Scheffe 0.05 1 1 1 2 2 2 2 2 2
Scheffe 0.01 1 1 1 2 2 2 2 2 2
Tukey (HSD)* 0.05 1 1 2 3 3 3 3 3 3

*Grouping procedures give same results
Overall - Range: 0-7, Mean: 3.7, Standard Deviation: 1.37

Analysis of Results from Data Set 5: LSD (0.01), Tukey, and two additional steps of
cluster-nested procedure result in the same solution. The cluster-nested and LSD (0.05)
procedures seem too powerful with five resulting groups. Both Scheffes may be too
conservative with only two groupings. Comparing the 95 percent confidence ranges, we
see the range of treatment 1 is 3.68-4.60 and of treatment 8 is 2.50-3.6. With no overlap
between the treatments, these treatments should be in separate groups.

Tab
Treatment
Group
Group Mean

e 10. Final Grouping: (Group 3 is Base Group>
4
1
1.9

5
1
1.9

9
2
2.8

8
2
2.8

6
3
4.0

7
3
4.0

2
3
4.0

1
3
4.0

3
3
4.0

Data Set 6

Data set 6 has the attributes that the lowest value(s) for this set are not 0.0 and
treatment 1 mean (base case/placebo case) is not located at an extreme.

12

Tab! lell. Data Set 6
Treatment 5 2 3 4 6 7 8 1 9

Treatment Mean 17.9 22.4 22.6 23.2 24.7 25.4 26.2 26.9 28.1
Procedures a Groupings

Cluster/Nested NA 1 2 2 2 2 2 2 2 2
LSD* 0.05 1 2 2 2 3 3 3 3 3
LSD* 0.01 1 2 3 3 3 3 3 3 3
Scheffe* 0.05 1 2 2 2 2 2 2 2 2
Scheffe 0.01 1 2 2 2 2 2 2 2 2
Tukey (HSD)* 0.05 1 2 2 2 2 2 2 2 2

*Grouping procedures give same results
Overall - Range: 3-40, Mean: 24.1, Standard Deviation: 6.08

Analysis of the Results from Data Set 6: Both Scheffes, Tukey, and the cluster-
nested procedures give the same result with only two groups. Both LSDs have three
groups, but break the groups at different locations. Considering the 95 percent
confidence range of treatment 1 is 24.7-29.0 along with the range of treatment 4 of 20.5-
25.8, we can see that there is very little overlap. Therefore, there is little chance of the
treatments being the same. LSD (0.05) would match the previous step of the cluster-
nested procedure.

Table 12. Data Set 6 Final Groups; (Group 3 is Base Group)
Treatment
Group
Group Mean

5
1

17.9

2
2

22.7

3
2

22.7

4
2

22.7

6
3

26.3

7
3

26.3

8
3

26.3

1
3

26.3

9
3

26.3

Summary of Analysis of Test Data Sets

Reviewing the six sets of data, Tukey and Fisher LSD (0.01) procedures were the
best of those used in the BHG. They identified the recommended grouping five of the
six times. Data set 6 was the only situation for which these procedures did not identify
the final grouping. At the extremes, neither a very powerful procedure (LSD 0.05) nor a
conservative procedure (Scheffe) performed nearly as well. These procedures identified
the final grouping three or less times.

The nested-cluster procedure seems to produce fairly reliable results and is usually
within one step or two of the recommended groupings. The only situation in which the
cluster-nested did not come close was in data set 1. Within this data set, treatment 1
was in the center and there were groups at both ends that did not include treatment 1.
Further analysis of additional data sets would help to see if this trend holds.

With the Tukey and LSD (0.01) procedures giving the best results, it is necessary to
examine the one case in which these procedures did not result in the final grouping.
Data set 6 had a relatively small standard deviation (6.08) compared to the range (3-40)
and mean (24.1). Although the overall range (3-40) was fairly wide, the 95 percent
confidence range for most of the treatments was much narrower. A review of the raw
data provides the information that treatment 5 has by far the lowest value (3) of the

13

values in the data set. This one extremely low value might be suspect. However, the
next closest value is still small (10) and is in the same treatment. Again, further
analysis of additional data sets may help.

In conclusion, to establish group separation use a moderate multiple comparison
such as Tukey's HSD, or use the powerful LSD procedure with a smaller alpha (0.01)
with the BGH procedure. Since the cluster-nested procedure did not perform as well as
the BGH with the above MCP, the cluster-nested procedure was discarded as an
appropriate method for analyzing mix analysis data.

Data Reduction and Manipulation

For each specific use, the TRAC-WSMR Mix Model requires some modifications. For
example, the model constraints and the objective function may change for each
application. Such changes require detailed review to incorporate the goals of the model
user. Upon completion of the CASTFOREM simulations, a quick turn around time from
the mix model is desired to meet study objectives. Before the mix model runs may
begin, the required input data must first be preprocessed from the results of
CASTFOREM battle simulations. Data preprocessing consumes a large percentage of
the total time required to obtain mix model results. This section presents the research
and development of procedures to expedite the data preprocessing.

With the establishment of the BGH as the recommended treatment/group
separation procedure, the development of a practical detailed algorithm could proceed.
When completed, the algorithm was programmed into a computer program that
provides quick execution for efficiency in processing model results. The data
preprocessing routine transforms CASTFOREM output data into the required model
input formats.

Preprocessing the data from the combat simulations consists of five major data
manipulation steps:

Step 1. Extraction of CASTFOREM output data.

Step 2. Statistical analysis of the data.

Step 3. Grouping of data.

Step 4. Generation of base input data tables.

• A complete base interaction m x n matrix for all resources (m) and tasks (n)
(friendly m system kills of enemy n systems, a friendly killer victim scoreboard).

• A base resource expenditure table (friendly m systems lost).

Step 5. Generation of exceptions to base data table/matrix and concatenating
exceptions from each scenario.

14

The development of simple UNIX based programming scripts helped improve step
one. These scripts may have the possibility of additional development and
improvement. Further development would continue past step one and execute the
SPSS statistical program to start step two. Before proceeding to step three, the only
additional step two requirement is a manual analysis of the SPSS output. This analysis
is a quick review and check of the data for any noticeable errors and to get an overall
understanding of significant trends and insights. Insights and any problems are
recorded and forwarded to the appropriate combat battle analysts. The output of the
SPSS program provides formatted data for step four.

The development of a standard grouping algorithm was a preliminary step for
streamlining the data preprocessing. As an algorithm, the BGH procedure described in
the previous section expedites the development of a high-level language program to
perform this task. As a heuristic and as did hand generation of data groupings, the
algorithm may produce some errors. Besides the potential time savings, especially with
large amounts of data or under the pressure of time, the algorithm is more reliable than
manual processing. The algorithm also provides for standardized manipulation of the
data sets. The grouping algorithm picks up at step three and continues through step
five.

As output from step two, each data parameter in the SPSS output is listed and
followed with a lower left triangle (LLT) format table. The LLT shows which
treatments produce statistically significant differences for the variable of concern. As
an example:

Table 13. Example SPSS Output (Data Set 1 With LSD .01 or Tukey's)

Mean Treat-
ment

Treat-
ment

4

Treat-
ment

5

Treat-
ment

9

Treat-
ment

3

Treat-
ment

8

Treat-
ment

1

Treat-
ment

6

Treat-
ment

2

Treat-
ment

7
0.00 4
0.00 5
7.48 9 * *

9.33 3 * *

11.24 8 * * *

11.67 1 * * *

11.76 6 * * *

12.19 2 * * * *

16.00 7 * * * * * * * *

indicates significant difference

Reading down the LLT, treatments 4 and 5 are not different from any prior
treatment. Treatments 9 and 3 are different from the first two (4 and 5). Treatments 8,
1, and 6 are different from the first three (4, 5, 9), and treatment 2 is additionally
different from the fourth treatment (3). Finally, treatment 7 is different from all of the
other eight treatments.

Now let us step through the BGH algorithm described in the previous section.
Starting with treatment 1, the base (placebo), is different from the first three

15

treatments. Therefore, treatments 4, 5, and 9 are excluded from the base group. Below
treatment 1, treatment 7 is the first and only treatment different from treatment 1 (as
the number of stars are greater than or equal to the position of treatment 1). So
treatment 7 is excluded from the base group. Treatment 7 can also be placed in its own
separate group. The base group now contains five treatments (3, 8, 1, 6, 2). Although
the LLT shows that treatment 2 is different from treatment 3, they are grouped
together since neither are different from the base case treatment 1. Going back up the
LLT, since treatment 1 was different from the first three, we move to treatment 9.
Treatment 9 is different from the first two treatments and is in a group by itself.
Moving to treatment 5, at the position of the number that is different from treatment 9,
there are no differences shown. With no additional differences, all the treatments from
treatment 5 to the first treatment are in the one final group. Here, just treatment 5 and
treatment 4 are grouped together.

Having grouped all the treatments, we record the mean of the variable for all the
treatments within each group. The base group is labeled as "base" and the different
treatments within the base group are no longer a concern. For this example, the average
of the five "base" alternative means:

(9.33 + 11.24 + 11.67 + 11.76 + 12.19)/5 = 11.24

is assigned to base variable Vmn in the base matrix. For many variables in the complete

M x N matrix, no treatments are different from the base. These variables usually
correspond to minor players within the different battles. After completing this
algorithm for all the base variable values, the base m x n matrix is written out to a file.
The same basic algorithm is also applied to resource expenditures, i.e., friendly systems
lost.

The treatments/groups that are different from the base group are addressed next.
The treatments that compose groups that are different from the base are recorded in a
separate file and the mean value of the group is assigned. For this example, treatment
7 has a value of 16.0, treatment 9 has a value of 7.48 and treatments 4 and 5 are
assigned the mean value of 0.0.

Four parameters are required for each adjusted variable. These are recorded as: For
Battle B, if treatment t, system m, by system/task n, updated Vmn. The above data set

example would result in four sets or lines of data in the "adjustments" file (table 14).

Table 14. Adjustments File
B t m n 'mn

Bl 4 13 25 0.0
Bl 5 13 25 0.0
Bl 7 13 25 16.0
Bl 9 13 25 7.48

For Battle = Bl, m = 13 n = 25

16

This algorithm is executed for each m x n variable (Vmn) in the battle. The
algorithm is then repeated for each CASTFOREM battle being considered within the
overall scenario used in the study.

Once the algorithm was completely developed, an efficient program to execute this
algorithm was developed. This SPSS/MM program is written in the C language. The
SPSS/MM program has 500(+) lines of codes and required an expenditure of
approximately 100 staff hours of work (appendix B). The program provided the overall
structure and incorporates probably 90 percent of the SPSS/MM program. Compiled
and run on a Hewlett Packard HP-700 UNIX workstation, the generation of more
correct and properly formatted mix model input data is now almost instantaneous.

For future mix model analyses, this program alone will be a significant contribution.
Besides the elimination of possible human induced errors, this program will save at
least 10 staff hours of data intensive work per combat simulation battle. With only two
mix model analyses consisting of five battles each, the break-even point for the research
and development of the program will be reached quickly.

Conclusions

For improved efficiency, the TRAC-WSMR Mix Model requires automated data
processing and specific nonsubjective input data. These data often come from statistical
overlapping groups. This research recommends using Tukey's honest significant
difference multiple comparison procedure or Fisher's least significant difference with a
= 0.01 for the base grouping heuristic for the analysis of Mix Model input data. Based
on the data sets analyzed in this research, automated processing of input data combined
with these procedures will not decrease the accuracy of the input data. This in turn will
increase the accuracy, validity, and efficiency of TRAC-WSMR Mix Model.

17

18

Appendix A. CASTFOREM Data Sets

This appendix lists the complete data sets described in the main body of this report.

Data Set 1
Alts: 0 1 2 3 4 8 9 10 11

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9

1 14 14 7 0 0 10 11 11 9
2 14 14 9 0 0 6 18 16 9
3 13 9 12 0 0 14 18 11 4
4 15 19 9 0 0 11 18 11 7
5 8 14 18 0 0 21 24 13 8
6 10 9 14 0 0 11 21 14 8
7 13 6 4 0 0 11 8 13 4
8 12 10 15 0 0 13 19 10 10
9 17 19 13 0 0 11 24 7 5
10 12 8 11 0 0 14 16 10 4
11 9 21 9 0 0 9 11 16 6
12 8 19 9 0 0 12 14 10 6
13 12 7 11 0 0 16 14 13 8
14 9 9 6 0 0 9 12 14 8
15 17 9 7 0 0 18 18 12 5
16 9 12 6 0 0 8 18 10 9
17 7 6 6 0 0 7 13 9 7
18 11 10 4 0 0 13 18 11 9
19 11 14 9 0 0 14 16 8 9
20 14 15 11 0 0 13 14 8 6
21 10 12 6 0 0 6 11 9 16

Mean 11.67 12.19 9.33 0.00 0.00 11.76 16.00 11.24 7.48
Alts - alternatives Rep - repetition Trt - treatment

19

Data Set 2
Alts: 0 1 2 3 4 8 9 10 14

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9
1 105 0 0 65 0 54 59 36 27
2 88 0 0 65 0 98 84 51 39
3 81 0 0 65 0 68 99 86 65
4 69 0 0 100 0 92 70 71 75
5 90 0 0 63 0 93 78 62 58
6 89 0 0 95 0 77 93 70 51
7 93 0 0 74 0 74 73 64 70
8 86 0 0 79 0 118 63 49 79
9 95 0 0 73 0 90 62 71 59

10 95 0 0 74 0 75 53 78 49
11 126 0 0 66 0 96 66 54 78
12 105 0 0 59 0 57 63 65 31
13 82 0 0 79 0 48 82 66 40
14 68 0 0 78 0 80 46 75 43
15 101 0 0 81 0 87 96 55 71
16 89 0 0 73 0 91 108 79 50
17 93 0 0 73 0 109 83 41 67
18 81 0 0 96 0 81 79 47 35
19 71 0 0 45 0 98 69 79 62
20 95 0 0 79 0 98 75 68 73
21 110 0 0 74 0 62 80 39 76

Mean 91.05 0.00 0.00 74.10 0.00 83.14 75.29 62.19 57.05

Data Set 3
Alts: 0 1 2 3 4 8 9 10 11 14

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9 TrtlO
1 9 9 8 8 10 2 9 9 9 9
2 8 9 10 8 10 3 9 12 9 10
3 8 11 9 11 9 6 10 10 8 8
4 14 11 10 12 11 6 12 6 9 7
5 9 9 6 9 10 8 9 6 10 8
6 10 11 10 11 10 5 11 10 11 10
7 8 8 9 9 11 3 10 10 10 12
8 6 9 9 6 8 7 9 9 8 11
9 8 10 8 6 8 4 9 7 8 9

10 8 11 9 11 8 8 9 9 9 8
11 12 14 9 10 13 5 13 6 12 7

Mean 9.09 10.18 8.82 9.18 9.82 5.18 10.00 8.55 9.36 9.00

20

Data Set 4
Alts: 0 1 2 3 4 8 9 10 11 14

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9 TrtlO
1 12 0 0 8 0 11 13 5 12 8
2 10 0 0 11 0 8 12 7 11 9
3 13 0 0 7 0 13 12 11 10 12
4 12 0 0 8 0 10 12 7 10 12
5 10 0 0 6 0 12 10 5 10 10
6 9 0 0 6 0 13 8 6 9 6
7 12 0 0 10 0 11 11 2 9 10
8 12 0 0 9 0 11 9 6 8 13
9 10 0 0 11 0 9 5 8 7 12

10 12 0 0 11 0 11 11 7 6 11
11 13 0 0 8 0 12 10 5 6 11

Mean 11.36 0.00 0.00 8.64 0.00 11.00 10.27 6.27 8.91 10.36

Data Set 5
Alts: 0 1 2 3 4 5 6 7 8

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9
1 3 4 5 4 2 4 4 3 4
2 3 5 3 2 1 5 4 3 4
3 4 4 5 4 2 3 2 2 3
4 5 5 5 2 3 5 2 4 1
5 6 3 5 2 2 2 3 2 1
6 3 3 7 1 1 3 3 3 2
7 4 3 4 2 3 5 3 2 2
8 4 4 5 3 2 3 4 3 2
9 4 3 4 2 2 3 4 3 3

10 5 4 5 2 2 1 3 0 3
11 3 4 5 2 3 4 3 4 2
12 4 4 5 2 3 3 3 3 3
13 4 4 5 2 2 3 4 2 3
14 2 5 4 4 2 4 3 4 3
15 6 4 6 1 2 3 2 5 4
16 5 3 5 2 1 4 5 2 2
17 4 2 4 1 1 3 4 2 2
18 4 4 4 1 1 6 5 5 3
19 5 4 6 2 1 4 5 4 3
20 5 5 5 2 0 3 3 4 3
21 4 3 6 0 1 2 7 4 2

Mean 4.14 3.81 4.90 2.05 1.76 3.48 3.62 3.05 2.62

21

Data Set 6
Alts: 0 1 2 3 4 8 9 10 11

Rep/Trt Trtl Trt2 Trt3 Trt4 Trt5 Trt6 Trt7 Trt8 Trt9
1 29 22 29 15 13 26 28 29 27
2 34 26 21 26 23 26 25 26 28
3 22 31 22 30 17 16 21 27 23
4 23 18 22 22 26 28 29 30 35
5 26 24 23 21 15 27 19 30 28
6 25 26 27 28 3 23 27 30 23
7 29 21 25 27 15 25 17 26 28
8 39 12 18 20 22 33 21 20 29
9 27 25 20 25 13 24 21 25 31
10 31 16 28 28 14 26 24 34 21
11 30 14 32 37 21 22 40 27 33
12 29 20 11 30 21 28 29 27 33
13 25 15 27 20 17 23 29 25 24
14 33 19 15 25 19 24 28 23 29
15 24 33 14 24 11 24 20 17 28
16 20 20 15 19 22 32 28 24 32
17 23 15 30 18 29 11 22 27 30
18 23 28 32 24 17 30 29 35 25
19 26 23 29 19 26 20 21 24 27
20 26 27 12 16 21 26 24 23 36
21 20 36 22 13 10 24

24.67
32

25.43
21

26.19
21

Mean 26.86 22.43 22.57 23.19 17.86 28.14

22

Appendix B. SPSS - Mix Model Algorithm Code

SPSS/MM program SPSS to Mix Model Program

kvsb.c: Killer Victim Score Board generation program
This program reads a SPSS generated ONEWAY output file
and summarizes the significance information into a base KV
Scoreboard for use in the TRAC-WSMR Mix Model.

Written by-
Bruce Gafner & Doug Shoop
U.S. Army TRADOC Analysis Command, WSMR, NM

'I

#include <stdio.h>
#include <string.h>
#include "kvsb.h"

char buf[BUFSIZE];
char line[MAXLENGTH_IN]

/* General purpose buffer */
/* Line buffer */

/ ~k ~k ~k ~k "X rnp -i f-> "tc ~k ~#z ~jz ^

/

main(arge, argv)
int arge;
char *argv[];
{

FILE *infile;
FILE *outfile;
FILE *outfile2;
char *ptr;
int abort = FALSE;
float basegroupmean;

int basegroupnum;

char firer[MAXNAME_LENGTH];
int found = FALSE;
char infilename[255];
char killnum[MAXNAME_LENGTH];
LLTLINE lltarray[MAXALTS];
int numalts;
char outfilename[255];
char outfilename2[255];
char progname[31];
int status = TRUE;

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Input file */
Output file for base KVSB */
Output file for differences*/
Gen purpose char pointer */
Abort flag */
Mean for group containing the
BASE alt */
Group number of the group
containing the BASE alt */
Firer name */
Found beginning of data flag *
Input file name */
Kill number */
Lower Left Triangle array */
Number of alts */
Output file name */
Output file name */
Program name string */
Status of a function call */

23

char
float
KVSB
int

ALT_KVSB

int

extern char
extern char

void

int
void
void

void
void

target[MAXNAME_LENGTH]
totalmean;
kvsb[MAXPAIRS];
kvsb_itemcnt;

alt_kv[MAXPAIRS]; /*

alt_kv_itemcnt; /*

buf[BUFSIZE]; /*
line[MAXLENGTH_IN]; /*

echo_data();

get_llt_data();
proc_diff();
proc_nodiff();

write_kvsb();
write_alt_kv();

/* Target name */
/* Total mean for all alts */
/* Base KV score board */
/* Count of Firer to target

pairs */
Alternative different than the
base kvsb */
Count to case different from base
kvsb*/
General purpose buffer */
Line buffer */

/*Function to echo data read from
file */

/*Function to retrieve data from file*/
/* Process data that are different
/* Process data that are not

different*/
/* Procss to write to base kvsb */
/* Procss to write to alt kvsb */

7

/* Save the program name */
if(ptr = strrchr(argv[0],'/')) strcpy(progname,ptr+1)
else strcpy(progname,argv[0]);

/* Check the command line args */
if(argc != 3) {

fprintf(stderr,"\nUsage: %s input_data_file
output_file\n\n",progname);

exit(1) ;
}
else {

/* Save the arguments */
strcpy(infilename, argv[l]);
strcpy(outfilename, argv[2]);
strcpy(outfilename2, argv[2]);
strcat(outfilename2, "_diff");

} /* End else */

/* Check if input file exists and is readable */
infile = fopen{infilename, "r");
if(infile == NULL) {

sprintf(buf," Unable to open %s",infilename);
perror(buf);
exit(1);

}

/* Check if output file is writeable */
outfile = fopen(outfilename, "w");
if(outfile == NULL) {

sprintf(buf," Unable to open %s",outfilename);
perror(buf);
exit(1);

}

24

/* Check if output file is writeable */
outfile2 = fopen(outfilename, "w") ;
if(outfile2 == NULL) {

sprintf(buf," Unable to open %s",outfilename2);
perror(buf);
exit(1);

}

kvsb_itemcnt =0; /* Init the to target pair index */
alt_kv_itemcnt =0; /* Init the index for alternatives different

than base case */
/* Position the input file to the beginning of data section */
found = FALSE; /* while records in file */
while(fgets(line, MAXLENGTH_IN, infile) != NULL) {

if(!strstr(line,"- -ONEWAY--")) continue;
found = TRUE;
break;

}
/* If beginning of data section was not found,

let user know and exit */
if(!found) { fprintf(stderr,"\nERROR: ONEWAY data section not

found. Check that your\n");
fprintf(stderr," input file is the correct one.\n\n");
exit(1);

}

/* Process the input file */
while(status = get_llt_data(infile,killnum,firer,target,lltarray,

&totalmean,&numalts)) {
7* Init the base group mean and number */
basegroupmean = -9999.0;
basegroupnum = -1;
/* Perform operations on the data according to status */
switch(status) {

case DIFFERENT:
/* Put your difference code here */

proc_diff(killnum,firer,target,lltarray,
totalmean,numalts,&basegroupmean,
&basegroupnum,kvsb,kvsb_itemcnt,alt_kv,
&alt_kv_itemcnt);
kvsb_itemcnt++;

break;
case NO_DIFFERENCE:

proc_nodiff(firer,target,totalmean,
kvsb,kvsb_itemcnt);
kvsb_itemcnt++;

break;
case NO_DATA:

break;
case READ_ERROR:

fprintf(stderr,"Corrupt file.

25

Repair and rerun program.\n");
fprintf(stderr,"A good place to start
looking is at or after:\n");
fprintf(stderr,"Variable
%-10.10s",killnum);

if(strlen(firer)) fprintf(stderr,"
%-8.8s versus %s\n",firer,target);
fprintf(stderr,"\n\n");
abort = TRUE;
break;

case FINISHED:
break;

} /* End switch */
/* If we need to abort, break out of processing loop */
if(abort) break;

} /* End while status */

/* write kvsb to a file or to stdout */
write_kvsb(kvsb,kvsb_itemcnt,arge,outfilename);

/* write the alternatives taht are different than base */
write_alt_kv(alt_kv,alt_kv_itemcnt,arge,fopen(outfilename2,"w"));

/* Close the files */
fclose(infile);
fclose(outfile);
fclose(outfile2);

} /* End main */

/it***********************/

/***** get_llt_data *****/
/************************/

int
get_llt_data(infile,killnum,firer,target,11tarray,totalmean,numalts)
FILE *infile;
char killnumt];
char firer [] ;
char target[];
LLTLINE lltarray[];
float *totalmean;
int *numalts;
{

char *ptr;
char *stat;
int alt;
float fprob;
int found;

/* Gen purpose char pointer */
/* Status of an fgets */
/* Alternative index */
/* F Probability */
/* Found flag */

26

float fratio; /* F Ratio */
int i,j; /* Gen purpose indexes */

extern char buf[BUFSIZE]; /* General purpose buffer */
extern char line[MAXLENGTH_IN]; /* Line buffer */

/* Init the data */
strcpy(killnum,"");
strcpy(firer,"");
strcpy(target,"");
for(i =0; i < MAXALTS; i++) {
lltarray[i].mean = 0.0;
strcpy(lltarray[i].alt,"");
lltarray[i].num_diff = 0;
lltarray[i].group =■ 0;
for(j =0; j < MAXALTS; j++) lltarray[i].difflag[j] = FALSE;

}
*totalmean = 0.0;
*numalts = 0;

/* Get the KILLNUM, FIRER, and TARGET */
found = FALSE;
while((stat = fgets(line, MAXLENGTH_IN, infile)) != NULL) { /* while

records in file */
if(!strstr(line," Variable ")) continue;
sscanf(line," Variable %s %s versus %s",killnum,firer,target);
found = TRUE;
/* break apart killnum into filler and target */
if (!strlen(firer)) {

/* firer = killnum until reach an "_" */
/* target will be _+l */
i = 0;
while (killnumfi] != '_') {

firer[i] = killnumfi];
i++;

}
firer[i] = '_';
firer[i+1] = '\0';

i++;
strcpy(target,&killnum[i]);

}
break;

}
/* If EOF or error encountered return finished status */
if(!stat) return(FINISHED);
/* If not found, return a read error status */
if(!found) {

fprintf(stderr,"\nERROR: Unable to locate KILLNUM, FIRER, and
TARGET.\n");

return(READ_ERROR);
}

/* Get the F Ratio and F Prob */
found = FALSE; /* while records in file */

27

while {(stat = fgetsdine, MAXLENGTH_IN, inf ile)) != NULL) {
if(!strstr(line,"Between Groups")) continue;
/* Skip the D.F, Sum of Squares, Mean Squares,
but read F Ratio and F Prob */

/* If nothing was scanned in, there was not data.
Position the file to the */

/* next page and return the no data status. */
if(Isscanf(line,"Between Groups %*i %*f %*f %f

%f",&fratio,&fprob)) { /* while records in file */
while ((stat = fgetsdine, MAXLENGTH_IN, inf ile)) != NULL) {

if(!strstr(line,"- - ONEWAY - -")) continue;
break,-

}
return(NO_DATA);

} /* End if Isscanf of the fratio and fprob */
found = TRUE;
break;

}
/* If not found, return a read error status */
if(!found) {

fprintf(stderr,"\nERROR:Unable to locate F Ratio and F Prob.\n");
return(READ_ERROR);

}

/* Get the total mean */
found = FALSE;
/* Init a counter.

We are interested in the second line that begins with Total */
i = 0; /* while records in file */
while ((stat = fgetsdine, MAXLENGTH_IN, inf ile)) != NULL) {

if(strncmp(line,"Total ", 7)) continue;
/* Check if this is the second one */
if(++i != 2) continue;
/* Skip the Count field and get the Mean */
sscanf(line,"Total %*i %f",totalmean);
/* Position the file to the next page */
while ((stat = fgetsdine, MAXLENGTH_IN, inf ile)) != NULL) {

/* while records in file */
if(Istrstr(line,"- -ONEWAY--")) continue;
found = TRUE;
break;

}
break;

}
/* If not found, return a read error status */
if(!found) {

fprintf(stderr,"\nERROR: Unable to locate total mean.\n");
return(READ_ERROR);

}

/* Look for the line that says whether or not there is a difference
between groups */

found = FALSE; /* while records in file */
while ((stat = fgetsdine, MAXLENGTH_IN, inf ile)) != NULL) {

28

if(strstr(line,"(*) Indicates significant differences")) {
/* You found a difference so break out */
found = TRUE;
break;

}
else if(strstr(line,"- No two groups are significant different")) {

/*There was not difference,so position the file to the next
page and return the no difference status. */

while((stat = fgets(line, MAXLENGTH_IN, infile)) != NULL) {
/* while records in file */

if(!strstr(line,"- -ONEWAY--")) continue;
break;

}
return(NO_DIFFERENCE);

}
continue;

}
/* If the difference/no difference line was not found,

return a read error status */
if(!found) {

fprintf(stderr,"\nERROR: Unable to find statement of difference/no
significant difference.\n");

return(READ_ERROR);
}

/* Get to the beginning of the lower left triangle data lines */
found = FALSE; /* while records in file */
while((stat = fgets(line, MAXLENGTH_IN, infile)) != NULL) {

if(!strstr(line,"Mean ")) continue;
/*You are one blank line away. Read the blank line to get past it.*/
fgetsdine, MAXLENGTH_IN, infile);
/* You are at the first line of the data.
Now read in the array until */

/* you get to a blank line. A blank line terminates the data. */
found = TRUE;
alt = 0; /* while records in file */
while((stat = fgetsdine, MAXLENGTH_IN, infile)) != NULL) {

/* Get the mean and alternative name. If you see a form feed, then
you have reached the end of the data, so break out. If you don't get
a scan for the mean and alt, then you had a blank line and are
finished. If it is possible that the array may run over on to the
next page, we need to revise this code to pick up reading those that
fall on that page. */
if(strchr(line, '\014 ')) break; /* Found a form feed,

so end of data */
if(ptr = strchr(line,'\n')) *ptr = ' \0';

/* If present, Remove trailing newline */
if(!strlen(line)) break;
sscanf(line,"%f %s",&lltarray[alt].mean, lltarray[alt].alt);
/* Set difference flags ... */
/* Use i as the index into the difflag array */
i = 0;
/* For each * set a corresponding difflag element to true */
ptr = line;

29

while((ptr = strchr(ptr, '*')) != NULL) {
lltarrayfalt].difflag[i++] = TRUE;
ptr++;

}
/* Save the number of differences for this alt */
lltarray[alt] .num_diff = i ;
/* Increment the alt number */
alt++;

} /* End while to read in the array */
/* Set the number of alts to the last alt value */
*numalts = alt;
/* Position the file to the next page and return the

different status */ /* while records in file */
while((stat = fgets(line, MAXLENGTH_IN, infile)) != NULL) {

if(!strstr(line,"- -ONEWAY--")) continue;
break;

}
return(DIFFERENT);

} /* End while to get to the beginning of the lower left triangle data
lines */

/* If not found, return a read error status */
if(!found) {

fprintf(stderr,"\nERROR: Unable to locate lower left triangle
data.\n");

return(READ_ERROR);
}

} /* End get_llt_data */

/***** proc_diff *****/
/*** BASE case fix ***/

void
proc_diff(killnum,firer,target,lltarray,totalmean,numalts,

basegroupmean,basegroupnum,kvsb,kvsb_.itemcnt,
alt__kv, alt_kv_itemcnt)

char killnum[];
char firer [];
char target[];
LLTLINE 11tarray[];
float totalmean;
int numalts;
float *basegroupmean;
int *basegroupnum;
KVSB kvsb[];
int kvsb_itemcnt;
ALT_KVSB alt_kv[];
int *alt kv itemcnt;

30

int col; /*
int end_group; /*
float group_mean; /*
int group_num; /*
int num_diff; /*
int num_in_group; /*
int start_group; /*
float sum_of_means; /*
int this_alt; /*
int base_l = FALSE; /*
int base_cnt; /*
int first_base; /*
int last_base; /*
int i; /*

Column index */
End of group index */
Avg of means inside a group */
Group number */
Number differences */
Number of alts in a group */
Start of group index */
Sum of means in the group */
Current alt index */
If base group # is 1, check for mean */
Counter to get to BASE case */
First alt in Base Group */
Last alt in Base Group */
Alt index for check */

/* Init some of the data */
base_cnt = 0;
this_alt = 0;
last_base = 0;
first base = 0;

/* count until reach the base case */
while (!

(!strcmp(lltarray[this_alt].alt,"BASE")
!strcmp(lltarray[this_alt].alt,"base")
!strcmp(lltarray[this_alt].alt,"Base")

base_cnt++;
this_alt++;

}
/* number that base is different from */
first_base = lltarray[base_cnt].num_diff;

)) {

/* find last alt not different from base */
while (lltarray[this_alt].num_diff <= base_cnt &&

this_alt < numalts) {
this_alt++;

}
last_base = (this_alt - 1);
/* assign values to base group */
sum_of_means = 0.0;
num_in_group =0;
for (this_alt = first_base; this_alt <= last_base; this_alt++) {
sum_of_means += lltarray[this_alt].mean;
num_in_group++;

}
group_mean = sum_of_means/num_in_group;
/* always assign group num 0 to BASE */
group_num = 0;
*basegroupmean = group_mean;
*basegroupnum = group_num;

31

/* work forward through the LLT array grouping the alternatives that are
not different */

this_alt = last_base + 1;
while (this_alt < numalts) {

group_num+ +;
start_group = this_alt;
end_group = this_alt;
/* Init the sum of means and number of alts in the group */
sum_of_means = 0.0;
num_in_group = 0;
/* Group the alts */
while (lltarray[this_alt].num_diff <= start_group &&

this_alt < numalts) {
sum_of_means += lltarray[this_alt].mean;
num_in_group++;
this_alt++;
end_group++;

}
/* Get the average mean for the group */
group_mean = sum_of_means/num_in_group;
/*Assign the group number and avg mean

to each member of the group*/
for(this_alt = start_group; this_alt <= (end_group-l); this_alt++) {
lltarray[this_alt].group = group_num;
lltarray[this_alt].group_mean = group_mean;

}
} /* End working forward through the LLT array */

/* Work backward from base through the LLT array */
start_group = (lltarray[base_cnt].num_diff -1);
end_group = (lltarray[base_cnt].num_diff -1);
/* grouping the alternatives that are not different */
while(end_group > 0) {

/* Increment the group number */
group_num++;
/* Init the sum of means and number of alts in the group */
sum_of_means = 0.0;
num_in_group = 0;
/* Group the alts */
this_alt = start_group;
end_group = end_group -(end_group - ltarray[start_group].num_diff);
while(this_alt >= end_group) {

sum_of_means += lltarray[this_alt].mean;
num_in_group++;
this_alt--;

}
/* Get the average mean for the group */
group_mean = sum_of_means/num_in_group;
/*Assign the group number and avg mean

to each member of the group*/
for(this_alt = start_group; this_alt >= end_group; this_alt--) {
lltarray[this_alt].group = group_num;
lltarray[this_alt].group_mean = group_mean;

32

}
/* Set the start group index */
start_group = end_group - 1;

} /* End working backward through the LLT array */

/* Check for base value == to 0.0 and only one alt != 0.0 */
/* This other alternative would be a alternative system */
/* Include this alternative in base kvsb data structure */

if (*basegroupnum == 0 && *basegroupmean <0.00000001) {
base_l = FALSE;
for (i = 0; i < numalts; i++) {
if (11tarray[i].group != 0) {

base_l = TRUE;
break;

}
}

} /* if base == 0 and only two groups */
if (base_l == TRUE && lltarray[i].group == 1) {

kvsb[kvsb_itemcnt].num_killed = lltarray[i].group_mean;
strcpy(kvsb[kvsb_itemcnt].target,target);
strcpy(kvsb[kvsb_itemcnt].firer,firer);

}
/* if above is not true then continue below */

else {
/* put base data in scoreboard */

strcpy(kvsb[kvsb_itemcnt].firer,firer);
strcpy(kvsb[kvsb_itemcnt].target,target);
kvsb[kvsb_itemcnt].num_killed = *basegroupmean;

/* put differing alts to another data structure */
for(this_alt = numalts-1;this_alt >= 0; this_alt--) {
if (lltarray[this_alt].group != *basegroupnum &&

lltarray[this_alt].group_mean >= 0.00001) {
strcpy(alt_kv[*alt_kv_itemcnt].alt,lltarray[this_alt].alt);
strcpy(alt_kv[*alt_kv_itemcnt].firer,firer);
strcpy(alt_kv[*alt_kv_itemcnt].target,target);
alt_kv[*alt_ky_itemcnt].num_killed =

lltarray[this_alt].group_mean;
*alt_kv_itemcnt += 1;

}
/*Check to make sure the alt_kv_itemcnt has not exceeded MAXPAIRS */

if(*alt_kv_itemcnt >= MAXPAIRS) {
fprintf(stderr,"ERROR: Maximum number of pairs has exceeded

%d.\n",MAXPAIRS);
fprintf(stderr," Ask programmer that MAXPAIRS be

adjusted.\n\n",MAXPAIRS);
exit(l);

}
}

} /* End proc_diff */

33

/**** proc_nodiff****/

void
proc_nodiff(firer,target,totalmean,kvsb,kvsb_itemcnt)

char firer[];
char target[];
float totalmean;
KVSB kvsb[];
int kvsb_itemcnt;

{

strcpy(kvsb[kvsb_itemcnt].firer,firer);
strcpy(kvsb[kvsb_itemcnt].target,target);
kvsb[kvsb_itemcnt].num_kilied = totalmean;

/* basegroupmean = totalmean when no diff */

} /* end proc_nodiff */

/•■A-**********************************/

/* Loads & print kvsb matrix format */
/*****************•******************/

void
write_kvsb(kvsb,kvsb_itemcnt,arge,outfilename)

KVSB kvsb[];
int kvsb_itemcnt;
int arge;
char outfilename[];

{
int i ;
char tgt[MAXPAIRS][LIST_ITEM_LEN];
int tgt_itemcnt = 0;

int add_item();
void print_kvsb();

/* Load the tgt list from the kvsb */
for(i=0;i<kvsb_itemcnt;i++) {

if (strcmp(kvsb[i].target,"RED") &&
strcmp(kvsb[i].target,"BLUE"))

add_item(tgt, kvsb[i].target, &tgt_itemcnt);

}
/* Print the kvsb matrix */
if(arge ==3) {
print_kvsb(kvsb, kvsb_itemcnt, tgt, tgt_itemcnt,

fopen(outfilename,"w"));

34

}
else {
print_kvsb(kvsb, kvsb_itemcnt, tgt, tgt_itemcnt, stdout);

}

/••it**/

/* Loads & print alts differing from base kvsb */
/♦A***/

void
write_alt_kv(alt_kv,alt_kv_itemcnt,argc,fp)

ALT_KVSB alt_kv[];
int alt_kv_itemcnt;
int arge;
FILE *fp;
{
int i ;

if(arge ==3) {
fprintf(fp, "** BLUE Kills \n");
fprintf(fp, "** If in Then Kills of Changes \n");
fprintf(fp, "** Below Battle below below to \n");
fprintf(fp, " \n");

for(i=0;i<alt_kv_itemcnt;i++) {
if (strcmp(alt_kv[i]-firer,"RED") &&

strcmp(alt_kv[i].target,"RED")
&& strcmp(alt_kv[i].firer,"BLUE") &&

strcmp(alt_kv[i].target,"BLUE"))
fprintf(fp,"LTJ1('%-8s' , 'HR??' , '%-6s' , '%-6s') =
%5 .2f,- \n" ,alt_kv[i] .alt,

alt_kv[i].firer,alt_kv[i].target,alt_kv[i].num_killed);
}

}
else fprintf(stderr, "Unable to open differences file");

}

/******** add item *************/

/* Add item to the list in alphabetical order. */

mt

35

add_item(list, newitem, itemcnt)
char list[MAXPAIRS][LIST_ITEM_LEN];
char *newitem;
int *itemcnt;
{

/* If newitem is null, just return */
if(!newitem || !*newitem) {

fprintf(stderr,"WARNING: Attempted to added NULL item
to list.\n");

return(1);

}

/* If list is full, just return */
if(*itemcnt == MAXPAIRS) {

fprintf(stderr,"ERROR: Item list is full.
Item %s not added to list.\n",newitem);

return(0);
}

/* If item doesn't exist, add it to the list,increment item count,
and resort */

if(Ibsearch(newitem,list,*itemcnt,LIST_ITEM_LEN,strcmp)) {
strcpy(list[*itemcnt],newitem);
*itemcnt += 1;
/* Resort the list */
qsort(list,*itemcnt,LIST_ITEM_LEN,strcmp);

}

/* Return success code */
return(1);

} /* End add_item */

/••a-***********************************/

/******** cret list index *************/
/•••it**************************-********/

/* Find the list index of an item from a sorted list. */
/* Item index is returned if found. If not found, a */
/* negative value is returned. */

int
get_list_index(list, itemcnt, item)
char list[][LIST_ITEM_LEN];
int itemcnt;
char *item;
{

36

char *ptr;
int idx;

/* If newitem is null, return */
if(!item || !*item) return(-1);

/* Compute the index */
ptr = (char *) bsearch(item,list,itemcnt,LIST_ITEM_LEN,strcmp);
if(ptr) {

idx = ((int)ptr-(int)list)/LIST_ITEM_LEN;
}
else {

idx = -1;

}

/* Return index */
return(idx);

} /* End get_list_index */

/***** kvsbcmp *****/
/*******************/

/* Compares two KVSB values with respect to the firer+tgt values */

int
kvsbcmp(vail,val2)
KVSB *vall;
KVSB *val2;
{

char bufl[31];
char buf2[31];

/* Combine the firer and target for vail */
strcpy(buf1,vall->firer);
strcat(buf1,"+");
strcat(buf1,vall->target);

/* Combine the firer and target for val2 */
strcpy (buf 2 ,val2->f irer) ,-
strcat(buf2,"+");
strcat(buf2,val2->target);

/* Return the result of the comparison of the two buffers */
return(strcmp(buf1,buf2));

} /* End kvsbcmp */

37

/••••a*****************************/

/******** nrint kvsb *************/
/*************•********************/

/* Print a KVSB matrix. */

void
print_kvsb(kvsb, kvsb_itemcnt, tgt, tgt_itemcnt, fp)
KVSB kvsb[];
int kvsb_itemcnt;
char tgt[][LIST_ITEM_LEN];
int tgt_itemcnt;
FILE *fp;

{

char *tgt_null_format = "%-6.6s
/* Format for a null value under target */

char *tgt_real_format = "%5.2f ";
/* Format for a real value under target */

char buf[81]; /* Gen purpose buffer */
int firsttime; /* First time through flag */
int i; /* Gen purpose index */
int j; /* Gen purpose index */
int k; /* Gen purpose index */
int numblk; /* Number of block sections */
int block; /* Block section for printing */
int lastcol; /* Last column printed */
int nextcol; /* Next column to print */

int get_list_index(); /* Function to find tgt column number */
int kvsbcmp(); /* KVSB order comparison function */

/* Determine number of blocks to print */
numblk = tgt_itemcnt/MAXCOL;
if ((tgt_itemcnt%MAXCOL) != 0) {
numblk++;

}
/* Sort the kvsb array */
qsort(kvsb,kvsb_itemcnt,sizeof(KVSB),kvsbcmp);

/* break into sections or blocks */
for (block = 0; block < numblk; block++) {

if (block != 0)
fprintf (fp, " \n\n+") ,-

/* Print the target column headers */
fprintf(fp,"\n%14s"," ");
/* print column headers up to MAXCOL */
for(j = (block*MAXCOL); j < ((block+1)*MAXCOL); j++) {

38

fprintf(fp,tgt_null_format,tgt[j]);

}
fprintf(fp,"\n");

/* Null the buffer */
strcpy(buf,"");
/* Set firsttime flag */
firsttime = 1;

/* For each firer in the kvsb... */
for(i =0; i < kvsb_itemcnt; i++) {

/* If this is a new firer ... */
if(strcmp(buf,kvsb[i].firer)) {

/* If not first time through, complete line with null values */
if(!firsttime) {

for(k = lastcol; k < MAXCOL; k++) {
fprintf(fp,tgt_null_format," ");

fflush(fp);
}

/* Reset the last column index */
lastcol = block*MAXCOL;

} /* End if not first time through */
/* Start a new line */

fprintf(fp,"\nHR??.%-8s",kvsb[i].firer);
fflush(fp);
/* Save the name in the buffer for comparing to next firer name */

strcpy(buf,kvsb[i].firer);
/* Init the last printed column position */

lastcol = block*MAXCOL;
/* Reset the first time through flag */

firsttime = 0;
} /* end if new firer */

/* Get the column number to print the mean under */
nextcol = get_list_index(tgt, tgt_itemcnt, kvsb[i].target);

if (nextcol >= (block*MAXCOL) && nextcol < ((block+1)*MAXCOL)) {

/*Move to next print column filling nulls with appropriate
characters*/

for(k = lastcol; k < nextcol; k++) {
fprintf(fp,tgt_null_format," ");

fflush(fp);
}

/* Print the mean in its column */
fprintf(fp,tgt_real_format,kvsb[i].num_killed);

fflush(fp);

}

/* Else we already processed this target in the previous block
so bypass it now */

39

else continue;

/* Update the last column printed index */
lastcol = nextcol + 1 ;

} /* End for each firer in the kvsb */
} /* End block cycle */

} /* End print_kvsb */

/***** echo_data *****/

void
echo_data(killnum,firer,target,11tarray,totalmean,numalts,

basegroupmean,basegroupnum)
char killnum[],-
char firer[];
char target[];
LLTLINE lltarray[];
float totalmean;
int numalts;
float basegroupmean;
int basegroupnum;
{

int i, j ;

fprintf(stdout,"killnum = %s\n",killnum);
fprintf(stdout,"firer = %s\n",firer);
fprintf(stdout,"target = %s\n",target);
fprintf(stdout,"totalmean = %. 4f\n",totalmean);
fprintf(stdout,"num alts = %d\n",numalts);
fprintf(stdout,"\n");
if(numalts) {

fprintf(stdout,"Mean ALT Num Diff Group Num Group
Mean\n\n");

for(i =0; i < numalts; i++) {
fprintf(stdout,"%9.4f %-10.10s %5d %5d %9.4f

lltarray[i].mean,lltarray[i].alt,
lltarray[i].num_diff,lltarray[i].group,
lltarray[i].group_mean);

for(j = 0; j < numalts; j++) {
if(lltarray[i].difflag[j]) fprintf(stdout,"* ");
else fprintf(stdout," ") ;

}
fprintf(stdout,"\n");

}
if(basegroupmean < -9999.1 || basegroupmean > -9998.9) {

fprintf(stdout,"BASE group mean = %f\n", basegroupmean);
}

40

if(basegroupnum >= 0) {
fprintf(stdout,"BASE group number

}
} /* End if numalts */
fprintf(stdout,"\n\n");

= %d\n", basegroupnum);

} /* End echo_data */
/* lltsum.h */

#define BUFSIZE 96 /'
#define DIFFERENT 1 /'
#define TRUE 1 /*
#define FALSE 0 /*
#define FINISHED 0 /*
#define MAXLENGTH_IN 1024 /*
#define MAXLENGTH_OUT 132 /*
#define MAXNAME_LENGTH 31 /*
ttdefine MAXALTS 50 /*
ttdefine MAXPAIRS 1000
#define NO_DATA 2
#define NO_DIFFERENCE 3 /"
ttdefine READ_ERROR 4
ttdefine LIST_ITEM_LEN 11
ttdefine MAXCOL 12

Size of buffer */
Differences detected among groups '

True */
False */
Finished reading file */
Max length of a read line */
Max length of an output line */
Max length of a name */
Max number of alternatives */

/* Max number of firer to target pairings '
/* No data for killnum */

No difference detected among groups *
/* Error in reading data file */
/* Length of list items */

/* Max number of columns per block */

typedef struct {
float mean;
char a1t[MAXNAME_LENGTH]
int group;
float group_mean;
int num_diff;
char difflag[MAXALTS];

} LLTLINE;

typedef struct {
char firer[MAXNAME_LENGTH];

char target[MAXNAME_LENGTH];
float num_killed;

}KVSB;

typedef struct {
char alt[MAXNAME_LENGTH];
char firer[MAXNAME_LENGTH];

char target[MAXNAME_LENGTH];
float num_killed;

} ALT_KVSB;

typedef struct {
char b_system[MAXNAME_LENGTH];
float num_lost;

} BSL;

typedef struct {
char alt[MAXNAME_LENGTH];

41

char b_system[MAXNAME_LENGTH]
float num_lost;

} ALT_BSL;

42

References

Baustista, M.G., Smith, D.W., and Steiner, R.L. (1996): A Cluster-Based Approach to
Means Separation, Journal of Agricultural, Biological, and Environmental Statistics,
2,2:179-197.

Brooke, A., Kendrick D., and Meeraus, A. (1988): GAMS - A User's Guide, The
Scientific Press, CA.

Conover, W.J. (1996): Texas Tech University, Member of Audience - see Gafner, B.

Dewitz, (1996): Bayesian Analysis Methodology, US Army Material Systems Analysis
Activity (AMSAA), MD.

Dowdy, S. and Warden, S.(1991): Statistics for Research, 2d ed., John Wiley & Sons,
Inc., New York.

Duncan, D.B. (1955): Multiple Range and Multiple F Tests, Biometrics, 11:1-42.

 (1961): Bayes Rules for a Common Multiple Comparison Problem and Related
Student-t Problems, Ann. Math. Statist., 32:1013-1033.

 (1965): A Bayesian Approach to Multiple Comparisons, Technometrics, 7:171-
222.

Fisher, R.A. (1935): The Design of Experiments, Oliver & Boyd, Ltd., London.

Gafner, B.W. (1996): Grouping and Separation of Means Problem, presented as a
clinical problem, U.S. Army Conference on Applied Statistics, 23 Oct., Monterey, CA.

Garver, D.P. (1996): US Naval Postgraduate School, Panelist - see Gafner, B.

Laferriere, R.R.Q991): Brigade Mix Model, TRAC-WSMR, published in the proceedings
of the 6th ROK-US Defense Analysis Seminar.

Lehmann, E.L. (1957): A Theory of Some Multiple Decision Problems, I, Ann. Math.
Statist., 28:1-25.

Mackey, D.C. et al.(1995): CASTFOREM Users Guide, TRAC-WSMR-TD-95-024,
TRADOC Analysis Center-White Sands Missile Range (TRAC-WSMR), NM.

Miller, R. G Jr.(1981): Simultaneous Statistical Inference, 2d ed., Springer-Verlag,
New York.

Porter, R.W. (1996) Anti Armor Resource Requirements Study (Classified), TRAC-
WSMR, NM.

43

Scheffe (1953): A Method for Judging all Constraints in the Analysis of Variance,
Biometrika, 40:87-104.

SPSS, (1983): SPSS User's Guide, SPSS Inc., Chicago.

Tukey, J.W. (1949): Comparing Individual Means in the Analysis of Variance,
Biometrics, 5:99-114.

 (1952): Allowances for Various Types of Error Rates. Unpublished IMS address,
Virginia Polytechnic Institute, Blacksburg, VA.

 (1953): The Problem of Multiple Comparisons, Unpublished manuscript.

44

Acronyms
■ ■ ■ . ..■■.■.■''■' ■■■' "■ ■ ■

A
Alts alternatives

B
BHG base grouping heuristic

C
CASTFOREM Combined Arms and Support Task Force Evaluation Model

H
HSD honest significant difference

L
LLT
LSD

lower left triangle
least significant difference

M
MCP
MM

multiple comparison procedures
Mix Model

R
Rep repetition

S
SPSS Statistical Package for the Social Sciences

T
TRAC-WSMR
TRADOC
Trt

TRADOC Analysis Center-White Sands Missile Range
Training and Doctrine Command
treatment

u
US United States

45

46

