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PREFACE 

In the late 1970s and the early 1980s, gun dynamics research and engineering at Ben6t 
Laboratories began to focus on finite elements in space and time—with a desire to reduce the 
demands placed on the computational hardware platforms of the day. 

However, finite elements in time are inherently problematic. The distinction between the 
forward motion of an object in time and heat or stress distribution on an object in space is not 
subtle. Causality—the property of real dynamic systems that says that future inputs cannot affect 
current response—is not provided any particular safeguard, and the straightforward application of 
variation principles does not appear to work. (At least, this author's attempts thus far have 
failed.) Thus, Simkins employed an unorthodox approach using Lagrange multipliers, which 
included boundary condition terms that normally drop out of the formulation, while Wu 
examined the adjoint operator and avoided the unknown boundary conditions by setting a 
"stiffness" to a numeric equivalent of infinity. (See Wu, J. J. and Simkins, T. E., "A Numerical 
Comparison Between Two Unconstrained Variational Formulations," ARLCB-TR-79024, 
September 1979.) 

This challenge aside, this author contends that structural dynamic problems, posed in 
their entirety in both space and time, provide a uniquely powerful holistic perspective from 
which to view the design optimization process—regardless of the variational approach used to 
formulate the temporal dynamics. This perspective or vantage point closes the gap between 
numerical experiment (simulation) and modeling for design. This paper presents a simplified 
design problem—which was posed using finite elements in space and time—that demonstrates 
the potential utility of space-time finite element modeling as a new design tool. It is hoped that 
this will encourage feedback from the research, engineering, and development communities 
regarding space-time finite element modeling. 

Although not trivial, inclusion of the state-dependent loading that defines the moving 
mass problem (gun dynamics) has been demonstrated in the past; thus, the design method 
presented here may be extended to launch dynamics of most large caliber weapon systems. In 
addition, the nature of the design method and the availability of an analytic Jacobian lends itself 
to optimization in high dimensional design spaces, where the potential utility versus simulation 
are clear. 

Thus, with the emphasis placed on optimization in a high dimension parametric space, the 
next obvious question is: "What is there to design? A gun is merely a glorified tapered 
cylindrical pressure vessel." This author contends that a gun is a structural conduit that imparts a 
great deal of kinetic energy to a projectile, and subsequently accumulates both kinetic and strain 
energy within itself during launch. Designing the structure to accumulate as little energy as 
possible or to divert the energy to the least sensitive portions of the structure is critical to the 
future effectiveness of precision cannons. This area of inquiry is wide open for exploitation using 
non-traditional structural modification. Thus, maturation of a new design method may shed light 
on the bottom of Pandora's box prior to opening it. 

iv 



INTRODUCTION 

This paper presents a new method for designing dynamic systems to achieve specific time 
domain response. It leverages and extends previous work regarding the modeling of a continuum 
structure—an Euler beam—using finite elements in both space and time for initial value 
problems (ref 1). The result is a determined set of equations that can be represented by a single 
matrix formulation. Initial conditions are subsequently imposed on the solution—thereby 
reducing the number of unknowns and leaving the original set of equations overdetermined. QR 
decomposition (ref 2) and subsequent matrix inversion is then applied to solve for the remaining 
unknowns in a least squares sense. (In practice, inversion is rarely used. The MATLAB matrix 
left division operator [< \ >] typically uses Gaussian elimination [ref 3].) In all runs attempted 
thus far, the least squares solution has converged with the solution obtained by an ordinary 
differential equation (ODE) solver—MATLAB's <lsim> command (ref 4). 

Modeling for design—as opposed to mere numerical simulation—is enabled by the 
additive assembly of the system matrix formulated using finite elements in time. This enables a 
specific system design parameter to be segregated from the matrix assembly. Once segregated, 
variation of the design parameter does not require the original finite element statement of the 
problem to be reformulated. To further enhance the utility of the free design parameter, a Taylor 
series expansion about a nominal value is used to eliminate the need for matrix inversion with 
each design parameter variation. Design objectives can be achieved by minimizing the 
analytically-based objective function of the difference between the desired and computed 
response with respect to the free design parameter. An example that demonstrates the method for 
designing a vibration absorber that is coupled to the tip of a cantilevered beam is also shown. 

THE SPATIAL FINITE ELEMENT MODEL 

The spatial portion of the finite element modeling is conducted separately using the 
traditional Hermite cubic polynomial basis (refs 2, 5). The cantilevered boundary conditions are 
imposed by eliminating the first and second rows and columns of the "free-free" system model. 
Because no time-invariant assumptions are required by the temporal formulation, time 
dependence of the system parameters is left in place. 

-([M(O] m)+ [c(o] m + [KW] m - m = Q (D 
dt 

In equation (1), the inertia, damping, and stiffness parameters are represented by the first 
three matrices, respectively. The lateral and rotational deflections of the beam are represented by 
the yitxvector. Time derivatives are denoted using standard over-dot notation (d/dt =» "  "). For 
future reference, the size of the spatial matrices and vectors will be denoted as nxn and nxl, 
respectively. 



VARIATIONAL STATEMENT OF THE PROBLEM 

Variation in time is applied in the same manner that variation in space was used to 
formulate the spatially discretized finite element representation in equation (1) (ref 1). (Refer to 
Claes Johnson [ref 6] for a direct treatment of variational methods or Leonard Meirovitch [ref 7] 
for a virtual work perspective.) Simply put, the transpose of an arbitrary test function 
vector—v£/)—premultiplies each term of the spatial equation of motion, equation (1). By 
definition, the equation of motion satisfies the zero vector on the right side. Thus, regardless of 
the choice of v£f}, the sum of the four inner products of the test function vector and the spatial 
equation terms (e.g., inertia, damping, stiffness, and force, respectively) must equal zero. To 
complete the process, the varied equation is integrated in time across the temporal region of 
interest. 

vmr [Mio] m+ xinT k(o] m + üMr [c(o] m + rf [*(o] m - mT-m dt 

I  [v£Ür'ü]^ 

(2) 

The variation enables the integration by parts to be applied to the acceleration term. This 
reduces the order of the differential equations. (In mechanics, this leads to Hamilton's method 
[ref 7].) 

1 mT[M(t)}m\dt = \mT[M{t)]m 

12 12 

I [mT[mt)]m]dt - I [vMr[M(o]im]^   @) 

Using equation (3), the acceleration term can be replaced by three first order terms; one of 
which cancels with the second term of equation (2). To complete Hamilton's approach, the 
boundary condition term—the one that is not integrated—is assumed to be zero. This requires 
that either the variation be set to zero at the boundary—which implies that the boundary 
conditions are known—or the momentum be zero. The former boundary condition is commonly 
called Dirichlet, essential, or geometric; the latter is called Neumann or natural. (A Dirichlet 
condition was assumed at the cantilever root, while a Neumann condition—representing the 
second and third spatial derivatives—was assumed at the cantilever tip of equation (1).) Breaking 
from the norm, the boundary condition term of equation (3) will be left in place (ref 1). 



TEMPORAL FINITE ELEMENT FORMULATION 

Definition of a Finite Element Basis 

Posing the problem using finite element analysis (FEA) requires an approximation of the 
solution vector, yj&, and the test vector, v£ü—both of which represent an nxl column of 
continuous functions in time—by a column of approximations that are continuous in time but 
spanned by a finite basis. 

For this effort, Hermite cubic polynomials were chosen as the basis to approximate the 
continua. To achieve this, the time span between tl and t2 was broken up into q 
elements—resulting in q+1 temporal nodes. The Hermites were then applied within each element 
in order to specify the velocity terms at the boundaries. They were inefficient in their requirement 
for C2 continuity, which may be relaxed in later developments. As a result of the continuity, two 
coefficients were required at each time node; thus, the number of unknown coefficients was 
m=2(q+l) for each of the n elements of the solution and test vectors. The Hermites shown below 
are for the pth element with a span in time of Atp. {Note on the notation: the superscript integers 
from one to four distinguish between the four Hermites and are not intended to denote powers.) 

.2      J ov/fivv.)      .4,,    I ovr* {fp,fp+1} 
*>® = JA^-2x^)v,e {r,.r,+ll        ^ = j Ar, ft -,]) V , e „,.,,„ } (4) 

AtP= '(p..)" <P 

where: 
T

P=(f-fp)/A'/> 

Assembling the basis for each of the q+l nodes (both displacement and velocity), the 
resulting mxl, basis column vector is formed (presented as a transpose): 

dixT = d>ko) (tfw) (d>?(o + *J(o) (*t(o + *2(o) (*2« + <l>fr)) ••• (<C,(o + <#o) (*;«) (<(o) (5) 

Using the finite basis, the approximation of the nxl solution and test vectors and their 
first time derivatives can be represented as the product of nxm coefficient matrices and the mxl 
basis vector: 

m*[u]m       ma[u]m 

via = [5[/]fl(ä      m - [bu]m (6) 



Equation (6) clarifies that the coefficient matrices bear no burden with re: pect to the time 
derivative. Their coefficients are not a function of time; only the basis is a function of time. Also, 
use of the 8 notation—which is common to virtual work—distinguishes between the solution and 
the test function coefficients. (As a simplified example, if n = 1, this implies that equation (1) 
represents a one degree of freedom system, [U] and its variation [öU] would be \xm vector 
transposes.) 

Finite Element Formulation of the Variational Statement 

Using equation (2) and substituting equation (3) and equation (6), the following is 
achieved: 

a    a 

amT[bU]T[M(t)][u]m \mT[?>u}T[M(t)}[u]<m\dt 

J'2n ,2n ^ 

lmT[?>u]T[c(t)][u}m]dt +1 [aw.T[^uY[K(t)][u]m}dt-1 [mT[?>u]Tm}dt = o 

// ti a 

It is important to note the compatibility of the matrices in equation (7). The basis 
coefficient matrix and its variation are compatible on the inside (with the nxn spatial matrix) and 
on the outside (with the mxl basis vectors). The combined result is a single scalar value that 
must be equal to zero—regardless of the choice of variation coefficients, [SU]. 

Extrication of the Coefficient Matrix from the Variational Integration 

The unknown coefficient matrix and its variation must be removed from the variational 
integration and posed as the solution of a linear system of equations. This can be achieved by 
rearranging the summation order that defines the matrix multiplications. For convenience, the 
method will be shown for just one matrix term—the stiffness term. The remainder follow in 
analogy. 



I [mT[w] '[m][u]m\dt 

fl n      n 

mT ££K~m,o]*«,,;,[t/(1,mJ)f 

fm      m In      n_ 
t2. 

8WW) 

flOEl 

a,(0 
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1=1 ;=i 

n      n 

EE 
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E 
j=i 

^(.-.oir 

K-m,olr 

n      n m      m i* 

11 EE6y- J[ 

fl 

\ak(t)K(t\.jff.t) \dt 

V " 

I/, (/J) 

flca^w^flüip 
V ti 

u, 
(1-")J) 

m'K(%,nm\dt U, (l-mj) 

= 0 

= 0 

= 0 

= 0 

(8) 

= 0   V ' e {l,2,...,«} 

As seen above, the nested sum has successfully removed the coefficient matrix from the 
variational integration. The last step requires an understanding of the role of the test function. 
The test function can be set to any value—subject to continuity requirements—that are satisfied 
by the basis formulation. As such, a valid series of test functions would be to set all columns of 
[ÖU] to 0—except for the z-th column. Because this can be done independently for each column, 
the inner summation in j must be zero for all outer summation variations in i. If this were not the 
case, there would be at least one variation for which the equality of the system to zero would not 
hold. Thus, the outer summation can be removed. Because the modified equation is true for all i, 
the equations may be considered to form a column of n equations—with each row corresponding 
to a valid i that must independently equal zero. (Note that the size of the center matrix—the basis 
outer product about K(ij)—is mxm. However, the inner product of the mxl variation and the 
solution coefficient matrix columns about the center matrix collapse it down to a scalar 
equation.) 



The remaining summation in j could also be removed in analogy with the summation in i 
(e.g., a coefficient by coefficient interpretation of the variation). However, the current 
construction lends itself to a convenient matrix realization. Equation (8) can now be restated as a 
single matrix equation with the unknown coefficient matrices elongated column by column into 
(n-m)xl column vectors: 

bu, (l-m,l) 

w (l-m,n) 

a a 
j[aitiK(t)0l)amT}dt  +f[mK(t\Un)QmT]dt 

a 
■ + f[a!ümln-y)m

T]dt 

hV. <l-m,l) 

St/, (l-m,n) 

a 

- + \[QlilK(t\nn)eitiT)di 

u, (1-m,1) 

U, (l-m,n) 

(9) 

|[fl£U/,(0]* 

(2 

/[ flM/„(0 rfr 

6f7, (l-m.l) 

61/, (l-m.n) Ü 

By restating the unknown coefficient matrix and its variation as (n-m)xl column vectors 
U and ÖU; naming the sum of the four expanded system matrices (two inertia, one damping, and 
one stiffness) as an (n-m)x(n-m) matrix [A]; and naming the expanded (nm)x\ force vector F, 
equation (9) can be compactly stated as: 

M1
T
[A] LI = MlTE (10) 

INCLUSION OF INITIAL CONDITIONS 

The boundary condition matrix—the first term of equation (7)—plays a central role in 
applying finite elements in time. It implies the requirement for the initial conditions for the 
problem formulation. The initial conditions will impose 1-n values on U—corresponding to the 
initial displacements and velocities, y(tJ) and y(tl). respectively. This reduces the number of 
unknowns in equation (10) from n-m to n-(m-2); however, the number of equations remains n-m 
(ref 1). Thus, the system is overdetermined; however, a least squares error solution can be found. 



To pose equation (10) with imposed initial conditions, QR decomposition will be used 
(ref 2). This is achieved by shuffling the columns and rows of equation (10) so that the first 2-n 
elements of U correspond to the approximation of yiül and yitiy, respectively. (Currently, U is in 
the order of alternating deflections and velocities of the beam's first lateral deflection for time 
from tl to t2—followed by the first rotational deflection for time from tl to t2 and so on up to the 
tip rotation velocity at t2. Shuffling the indices is greatly facilitated by MATLAB's colon 
notation [ref 3].) Once shuffled, the system matrix, [A], can be broken down into left and right 
submatrices that correspond to the columns concerning the imposed initial conditions and the 
remaining unknown solution coefficients. Also, the variation can be removed from both sides of 
the equation. (It is important to note that the variation remained on the temporal boundary 
conditions at both tl and tl. Thus, no Dirichlet condition was applied.) Finally, once the initial 
conditions are imposed, the equality of equation (11) degrades to an approximation—the least 
squares error fit to the overdetermined system of equations. Then, in equation (12), QR 
decomposition can be applied to the (m-n)x(m-(n-2)) matrix [AR] of equation (11): 

S^[K]K 
UK 

LL^ 
(ID 

:om 
[QYlQh [Q][QY* M 

where: ' 

[*] = 
[A]' 

.&[ß]r = 

(12) 

In equation (12), [R] is upper triangular. Because both [AR] and [R] have more columns 
than rows, the bottom 2-n rows of [R] are populated by zeros. The upper triangular submatrix, 
[A], is square—(m-(n-2))x(m-(n-2)). [Q] is orthonormal; its transpose is broken up into 
submatrices—with the upper— [(?,]—being (m-(n-2))x(wn). Using equation (12) and 
eliminating the zeros at the base of [R] and the subsequently irrelevant base of [ß]T, equation 
(11) can be restated as: 



\Q}[R]llb*\E-[AL]lL 

[R]llb*[Q]T[E-[AL]lL 

[A]iZ^[ßM[£-K]i//c 

Ub~~[AV[Q\}\E-[AL]Uic 

(13) 

In practice, the MATLAB matrix left division operator (< \ >) is used to solve for the 
unknowns using numerical methods that are more efficient than inversion (ref 3) and that can be 
applied without explicitly implementing QR decomposition. Regardless, the result is the least 
squares error solution to the overdetermined equation (11). 

NUMERICAL VALIDATION OF THE RESULTS 

By using three equidistant finite elements in space (n = 6) and 40 equidistant elements in 
time (m = 82), the methods developed have been successfully applied to a normalized, 
cantilevered beam. Two beam dynamics cases are presented in the following pages 
—homogeneous "ring-down" from an initial condition and a forced excitation of the beam with a 
vibration absorber coupled to its tip (n = 7) (ref 8). (The nearly impulsive loading for the forced 
response is constructed as one-half of a sine wave that spans the width, At7 = TI/60, of the 
seventh temporal element.) In both cases, the dynamic response of the beam was computed in 
time using a traditional ODE solver—the MATLAB <lsim> command (ref 4) after conversion of 
the second order equations of equation (1) to first order state-space (ref 5). 

In the following plots (Figures 1 and 2), the ODE solver is shown as solid lines, and the 
FEA nodal values are shown as circles. (The interpolation of the FEA solution is not shown, 
although the Hermites do interpolate between the FEA nodes.) Four plots of the response are 
included for both cases. These plots consist of the lateral deflection, rotational deflection, and 
their respective velocities versus time from tl = 0 to t2 = 2TT/3. In addition, an exaggerated image 
of the deflected beam during the dynamics is shown—with the spatial nodes clearly labeled and 
the beam parameter magnitudes listed. (Any consistent system of units can be used such that: 
E =*/-f2; I => V4; p - m-rl; L, x, and y => {; C and cVA =»/-H''; ß and ßVA - t\ K and kVA =>/-f'; 
M and mVA =» m; and f: 

*VA 

VA       J ' *    ' K ""u KVA        '' "■ "11U 'n'A 
/.) For the forced case, the input force is plotted as a function of time. 



EXAMPLE (1)  Homogeneous Response of an Euler Beam 
x10~ Deflection Velocity 

• 

0.5 1.5 

0 

Beam 

1 
Time 

■ at Time = 0.367 

ODE FEA 

-y1 o  y-| 

-y2 .  y2 

-y3 • y3 

ODE FEA 

-y1' o yl' 

-y2' . y2' 

-y3' • y3' 

Note the decreasing fidelity as derivatives 
are approximated with increasing convergence 
as time approaches, t2. 

E(x) = l(x) = p(x) = L = 1,[C] = ß[K]        L 
where$ = \% 

Figure 1. Homogeneous response of the beam to an isolated initial velocity of the beam with a 
magnitude of 0.05 (lateral displacement/time), just forward of the cantilevered root at yj 

EXAMPLE (2)  Forced Response of the Euler Beam with a Vibration Absorber 

x10" Deflection Velocity 

03 

0) 
to 

ODE FEA 

-y1 o  y1 

-y2 o   y2 

-y3 • y3 
-y4 o y4 

FEA ODE 

-y1' o  y-|' 

-y2' • y2' 

-y3' • y3' 

1 
Time 

1.5 

Applied Lateral Force Just Forward 
of the Root of the Beam at y1. 

1 
Time 

1.5 mVA = 1/2, kVA = 5, cVA = ßvAkvA 
where ßVA = 5% 

Figure 2. Forced response of the same beam shown in Figure 1 with a vibration absorber coupled 
at the tip to an impulsive force applied to the beam, just forward of the cantilevered root at y{ 
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DESIGN OPTIMIZATION 

Segregation of a Design Parameter 

As a direct consequence of the additive construction of [A], which was demonstrated in 
equation (9), a set of design parameters can be segregated and independently scaled by a single 
scalar coefficient. An example for the Euler beam being examined would be to examine the 
effect on the vibrations of a beam whose Young's modulus is being compromised by different 
environmental temperatures. Thus, all occurrences of Young's modulus in the formulation (i.e., 
all of the stiffness contributions) could be segregated to a separate matrix called [B]. (An 
example shown later will segregate the stiffness and stiffness proportional damping of the 
vibration absorber constraint of Figure 2.) A segregated system of equations that explicitly states 
the dependence of Ub on parametric design variations represented by Aa can be shown in analogy 
with equation (10) and equation (11): 

&T [i4] + (a0+A«)[ß] 
MAal h$i 

M + «V*«)[**]  JÄAfiÜ, * \E -   [At] + (o0+Ao)[fit] 11 ic 

(14) 

Using equation (14), QR decomposition can be applied in analogy with equation (13). 
Thus, the effect on system response resulting from Aa can be resolved without having to 
recompute the finite element formulation. Note on the nomenclature: Aa is a scalar value that 
bears no relationship to the square upper triangular matrix [A] of equations (12) and (13). 

Taylor Series Approximation 

Equation (14) showed that the effect of a design variation can be achieved without 
reformulating the finite element problem. However, the resulting system of equations must still 
be solved using an inversion, as shown in equation (13). 

To achieve an optimization, it is best to eliminate such computations in favor of matrix 
multiplication. This can be accomplished via a Taylor series expansion of the system. However, a 
Taylor series expansion will require [AR] and [BR] to be square. To achieve this, a conditioning 
matrix of compatible size—(m-(n-2))x(m-n)—must premultiply both sides of the equation. The 
qualitative goal is to reduce the loss of information contained within the (m-n) equations and 
force vector terms as they are reduced in size by 2n. One means of achieving this is to intersperse 
the information throughout the remaining equations using a suitably sized matrix of random 
elements. Although this works, the condition of a random matrix is generally poor due to the 

10 



inherent mix of large and small magnitudes of the elements. (Using the MATLAB <cond> 
command [ref 3], the condition of such a matrix with m = 82 and n = 7 is more than 3,000.) A 
second method is to intelligently pick a matrix whose elements consist of ones and minus ones. 
A suitably sized submatrix of a Hadamard matrix is very well-conditioned. (A condition of eight 
was found.) Finally, the [QT

(] matrix—equation (12)—for the nominal system (Aa = 0) is 
particularly well-suited (a condition of one). (A guaranteed least squares error solution is 
sacrificed by this operation. Although not shown, good agreement with the QR decomposition 
continues for a well-conditioned matrix.) For a simplified presentation, it assumed that the initial 
conditions are all set to zero; this eliminates the a terms on the right-hand side. By 
premultiplying both sides of equation (14) by [Q0

T,], the following is achieved: 

" 
I r 

Q' [AÄ] + (a0+Aa)[BÄ] U(Aa)h * 
b Q ' £ - 

fß T [AJ + (a0+Aa) QT \B«}] V(Av)h - QT £ 
J 

U(Aa) 

AL] + (ao+Aa)[BL] 

AQ] + (afl+Aa)[BQ 

if 
(15) 

Equation (15) introduces the subscript Q notation to denote the new square 
—m-(n-2))x(m-(n-2))— realization for [AR] and [BR] and the (m-(n-2))xl force vector, FQ. 

(Recall that U^ is a (m-(n-2))xl unknown coefficient vector.) A Taylor series expansion of iV 
terms about a = a0 + Aa results in equation (16). 

MAaX I 
;' = ] 

(-Aa) O'-i) AcM*e. B, Ad+a4ßö 
(i-i) 

(16) 

Weighted Quadratic Objective Function 

An objective function provides a single scalar metric by which to measure how well the 
design process is meeting the desired response of the system. For a given set of initial conditions, 
the desired response is represented by a reference coefficient vector, UR, which is the same size 
as the unknown coefficient vector, U^. The difference between the two vectors is the error vector. 
The simplest quadratic objective function would be the inner product of the transpose of the error 
vector multiplied by itself. The utility of the objective function is greatly expanded when a 
weight matrix is included in the inner product statement. For example, the absence of a weight 
matrix imposes a scaling between the non-equivalent units of rotation and the lateral deflection 
of the beam, based on the unit system selection. The use of degrees increases the objective 
function sensitivity to rotation by (180/'nf with respect to the use of radians. Furthermore, the 
weight matrix enables the design effort to concentrate on specific spatial and temporal nodes. 

J(Ao) = [uR- U(Aa)b]T[W] [UR- U(Aa)J (17) 
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Finally, it must be noted that the objective function can be analytically formulated by 
incorporating equation (15) into equation (17). Therefore, its Jacobian can be readily computed 
in analogy with equation (16)—thereby enabling enhanced optimization algorithms such as cubic 
polynomial time searching (MATLAB's <fminu> command [ref 9]). 

CASE STUDY: DESIGN OF A VIBRATION ABSORBER CONSTRAINT 

The Design Objective 

A straightforward design objective is to select the stiffness of the vibration absorber 
constraint of Figure 2 so that the beam and the coupled absorber are almost straight at a specific 
instant in time after the impulse. The vibration absorber coupling directly alters four elements of 
the spatial stiffness matrix of equation (1) (ref 8). Furthermore, the same indices of the damping 
matrix of equation (1) are also affected by the stiffness proportional damping. Thus, the vibration 
absorber constraint can be segregated from the damping and stiffness matrices of equation (1). 
Their separation can be maintained by adding the temporal finite element formulation of 
equation (9) so that the controlled coupling parameters are contained within [BQ] of equation 
(15), while [AQ] is totally devoid of their presence. The nominal value of the scalar design 
coefficient (a0) is set to one, with the remaining system parameters identical to those of Figure 2. 

Taylor Series Convergence 

The Taylor truncation error can be represented by the standard deviation of the difference 
between the solution vectors computed by equations (15) and (16) and normalized by the 
standard deviation of equation (15). Convergence is shown in Figure 3. 

Objective Function Definition 

An examination of Figure 2 reveals an opportunity to achieve a coincident zero crossing 
of all deflections (not velocities) just prior to the 39th time node (t = 1.99). Because the goal is a 
zero crossing, the desired coefficient vector (UR) consists of zeros. To concentrate only on the 
desired zero crossing coefficients, all of the elements of [ W] will be set to zero except the seven 
diagonal terms that correspond to the deflections at the 39th time node—(3) beam rotational + (3) 
beam lateral + (1) vibration absorber lateral = (7) coefficients—which will be set to one. A plot 
of the objective function is depicted in Figure 4. A standard numerical optimization routine—the 
MATLAB <fmin> command (ref 3)—is then applied to locate a minimum. Figure 4 
demonstrates the numerical optimization's ability to escape nearby local minima in favor of the 
true minimum within the depicted range. The result is depicted in Figure 5. 
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Contour of Taylor Series Truncation Error 
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Figure 3. Taylor series convergence contour plot 
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Figure 4. Plot of the objective function, J(Aa) 

EXAMPLE (3)   Coincident Deflection Zero Crossing at the 39'" Time Node 
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Figure 5. Forced response of the same beam of Figure 2 with the optimal absorber stiffness 
identified in Figure 4 
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It is also interesting to examine the effects of various design approaches for achieving the 
zero crossing. Figure 6 consists of a close-up of the lateral zero crossing for: 

i. The original case—Figure 2—corresponding to a = a0 = 1 
ii.        The optimal case—Figure 5—corresponding to a = 2.8338, Aa = 1.8338 
iii.       The local minimum to the left of the optimal case—as shown in Figure 4— 

a =1.7794, Act = 0.7794 
iv.       The case in which the optimization is restricted to achieve a zero crossing of 

the vibration absorber only—regardless of the six remaining beam deflections, 
a = 2.0496, Aa = 1.0496. (Note: This design objective is exactly achievable.) 

i. Original Case ii. Global Optimum       iii. Local Optimum        iv. Optimum y4 Only 

x-ICT4 a =1.0000        x10"4 a = 2.8338        x 10"4 a = 1.7794 x 10~4 a = 2.0496 

1.9       1.99 
Time 

8 

4 

0 

-4 
H^ 

yi 
y2 

y4 

2.1     1.9       1.99 2.1     1.9       1.99 2.1     1.9 
Time Time 

Figure 6. Several design cases to achieve a desired zero crossing 

1.99        2.1 
Time 

CONCLUSIONS 

1. The temporal finite element formulation produces a good correlation with traditional 
ODE solution methods for the progression of beam dynamics. The FEA solution closely 
matches the deflections of the beams—with reduced fidelity in the approximation of 
combined spatial and temporal derivatives. 

2. Scalar design parameters can be segregated during the finite element formulation. These 
design parameters can later be optimized without the need to reformulate the finite 
elements. 

3. A Taylor series expansion of the finite element equation of motion regarding a scalar 
design parameter can be achieved—thereby eliminating the need to invert the system 
matrix during optimization. 

4. To approach a desired dynamic trajectory, a weighted quadratic objective function can be 
used to optimize system performance regarding the scalar design parameter. 
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Final Notes 

There is no inherent limitation of the method to a single design parameter. Multi- 
parameter optimization would be greatly enhanced by the analytic formulation of the 
objective function and the subsequent availability of a readily computed Jacobian. 

There is no inherent limitation of the design method to the system parameters. Open-loop 
control can be enabled via design with respect to applied force. It is clear that an efficient 
basis for the control force representation would greatly increase the pragmatic 
implementation of such a design. 

The potential to impose desired final conditions and solve for required initial conditions 
may exist. 
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